五年级数学:《数的奇偶性》的说课稿

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学新课程标准教材

数学教案( 2019 — 2020学年度第二学期 )

学校:

年级:

任课教师:

数学教案 / 小学数学 / 小学五年级数学教案

编订:XX文讯教育机构

《数的奇偶性》的说课稿

教材简介:本教材主要用途为通过学习数学的内容,让学生可以提升判断能力、分析能力、理解能力,培养学生的逻辑、直觉判断等能力,本教学设计资料适用于小学五年级数学科目, 学习后学生能得到全面的发展和提高。本内容是按照教材的内容进行的编写,可以放心修改调整或直接进行教学使用。

一、说教材分析

北师大版小学数学五年级上册第一单元14-15页《数的奇偶性》。《数的奇偶性》是在学生已经学习数的奇数和偶数的基础上进行的。

教材安排了几个不同的数学活动和游戏让学生体会数的奇偶变化规律,引发学生的思考,让他们在探究规律的活动中,发现解决问题的方法,从而运用这些方法去解决生活中的实际问题。

根据我对教材的理解,本课主要设计了两个活动:

活动一:通过具体情境让学生体会数的奇偶性规律,会利用数的奇偶性规律解决一些简单的实际问题。主要是让学生发现小船开始状态在南岸,“奇数次在北岸,偶数次在南岸”的规律。(我将教材改为学生翻手掌,得出规律)对学生进行列表、画图等解决问题策略的指导。

活动二:主要是运用上面的奇偶规律探索数学计算中的奇偶变化规律。通过经历尝试列

式计算—初步得出结论—举例验证—得出结论过程,探索奇数、偶数相加的规律,提高学生推理能力。

二、说学生分析

五级学生已经有了一些探索数学问题的方法和总结规律的经验,思维比较活跃。他们能随时发现并提出数学问题。在解决问题的过程中,能根据具体问题选择有效的解决方法和策略,并能及时地总结自己的方法,在运用中积累经验。他们的好奇心和探索的欲望极强,渴望发现规律。通过前侧,我发现有三分之一的学生已经初步掌握所学知识,我通过下面的教学,可以让大部分学生掌握本节课所学的内容,形成认识,实现学习目标。

三、说学习目标

1、尝试运用“列表”“画示意图”等方法发现规律,运用数的奇偶性解决生活中的一些简单的问题。

2、经历探索加法中数的奇偶性变化的过程,在活动中发现计算中数的奇偶性的变化规律,在活动中体验研究方法,提高推理能力。

3、在学习“数的奇偶性”的活动中,能组织学生积极参与数学学习活动。

教学重点:发现加减法中数的奇偶性的变化规律

教学难点:能应用数的奇偶性分析和解释生活中一些简单问题

四、说教学过程:

一、创设情景,激发学生的求知欲望

同学们喜欢做游戏吗?(喜欢),下面老师就和你们一起来做游戏——翻手掌),大家玩过了吗?其实在翻手掌中也有许多数学知识,你留心了吗?今天老师就看谁细心观察,在翻手掌中获得数学规律,大家有信心吗?

二、探索新知

(一)、让学生感受生活中的奇偶性

活动一:师生互动,组织学生通过多种方法发现规律(翻手掌)

1、让全体学生做游戏(翻手掌)

课件出示游戏规则:所有学生手心向下,然后依次手心向上还是向下,再把手心向下,这样来回翻。

2、思考你翻5次后,手心向下还是向上?

学生交流:你是怎样想的?

3、要解决翻100次后你的手心向下还是向上?该怎么办?1000次、9999次怎么办呢?

(1)独立思考

(2)集体汇报交流

(3)老师进行解决问题方法的指导:列表或画图。

4、通过解决这些问题,观察板书,你有什么发现?

翻奇数次后,手心朝

翻偶数次后,手心朝

5、学以致用:翻100次、1000次、9999次,手心向上还是向下?

6思考:只要确定第几次的位置,就能确定所有奇数次的位置?也就能确定所有偶数次的位置?

7、思考:有人说手心翻了999次后,手心向下,这种说法对吗?为什么?

8、同桌问一问:手心翻了()次后,手心向(),为什么?

活动二:扩展延伸、巩固所学

1、原来利用数的奇偶性可以帮助我们解决一些问题。

(1)请同学用手里的杯子,完成第14页的试一试 (课件出示:一个杯子杯口朝上放在桌上,翻动1次杯口朝下,翻动2次杯口朝上。翻动10次后,杯口朝

,翻动19次后杯口朝。尝试说说理由)

a、独立思考

b、集体交流,指名说说自己的想法

(2)体会奇偶数的相对性

改变杯子开始状态杯口朝下,看有什么规律

质疑:为什么刚才奇数次杯口朝下,现在奇数次的杯口确向上呢?

小结:因为每次的起点不一样。所以的奇数次位置也会发生改变。但我们只要记住第一次的位置,就可以以不变应万变。

2、结合生活实际,运用所学解决问题

根据你的生活经验,你能举出和今天学习的类似的例子吗?

(二)自主探究奇偶性在计算中的作用

1、出示下面的数,让学生判断圈里、方框框里的数各是什么数?

1、11、21、49、21、25、37、3、101、87

2、12、18、20、6、34、80、16、52

偶数

奇数

2、探究奇偶性的规律:

(1)你们从圆中任意选两个数相加或相减,我就能判断它们的和或差是奇数还是偶数?(不信或信)

想知道老师这么快说出来的奥秘吗?

(2)让学生从正方形中任选2个数相加或相减,看你能发现什么规律?

(3)再写几组两个偶数相加减的算式,进行验证.

(4)得出结论:当两数都是偶数时,加减后的结果一定是偶数。

(5)如果从圆中任选两个数他们的和或差是奇数还是偶数?尝试验证并得出结论。

当两数都是偶数时,加减后的结果一定是偶数

(6)如果要使两个数他们的和或差是奇数,该怎么办?

个别学生可能说:我想从圆中任选一个数再从正方形中任选一个数,他们的和是奇数。

让学生尝试验证并得出结论当两数一个是偶数、一个是奇数时,加减后的结果一定是奇数

3、总结:通过刚才的研究,你们发现了什么规律?(能用一句话概括吗?

(1)、对于确定的两个数,无论加法还是减法,运算后的奇偶性是一样的。

(2)、当两数的奇偶性相同时,加减后的结果一定是偶数;当两数的奇偶性不同时,加减后的结果一定是奇数。

相关文档
最新文档