高二下册物理电磁感应知识点梳理-电磁感应线圈

合集下载

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点高二物理期末电磁感应现象必背知识点电磁感应现象的产生条件;感应电流的大小及方向的确定;电磁感应现象的应用第一部分:12节第一节划时代的发现历史背景:1、奥斯特发现电流磁效应:电流磁效应的发现揭示了电现象和磁现象之间存在的联系。

2.法拉第发现电磁感应现象:(1)磁生电是一种在变化、运动的过程中才能出现的效应。

(2)五类情况:变化的电流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体。

第二节探究感应电流的产生条件产生感应电流的条件:1.闭合回路2.穿过回路的磁通量发生变化第二部分:第3节第三节楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律2.应用楞次定律判断感应电流方向的基本步骤:(1)明确原磁场的方向。

(2)判断穿过闭合电路的磁通量是增加还是减少。

(3)根据楞次定律确定感应电流的磁场方向。

(4)利用安培定则确定感应电流的方向。

3.右手定则:导体切割磁感线引起感应电流的方向可以由右手定则来判断。

伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

第三部分:第4---5节第四节法拉第电磁感应定律1、感应电动势:在电磁感应现象中产生的电动势叫感应电动势2、电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即e。

这就是法拉第电磁感应定律(2)表达式:e=n3、导线切割磁感线时的感应电动势e=blv该式通常用于导体垂直切割磁感线,且导线与磁感线互相垂直(l^b)。

一般用于导体各部分切割磁感线的速度相同当导体的运动方向跟磁感线方向有一个夹角时,e=blv1=blvsin 第五节:电磁感应规律的应用1.电磁感应现象中的感生电场(感生电动势)磁场的变化而激发的电场叫感生电场。

感生电场对自由电荷的作用力充当了非静电力。

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式

高二物理磁感应强度知识点讲解n匝线圈磁感应强度公式高二物理磁感应强度知识点讲解【一】感应电流产生的磁场,总是在阻碍引起感应电流的原磁场的磁通量的变化。

楞次定律的核心,也是最需要大家记住的是“阻碍”二字。

在高中物理利用楞次定律解题,我们可以用十二个字来形象记忆:“增反减同,来拒去留,增缩减扩”。

楞次定律(Lenzlaw)是一条电磁学的定律,从电磁感应得出感应电动势的方向。

其可确定由电磁感应而产生之电动势的方向。

它是由物理学家海因里希·楞次(HeinrhFriedrhLenz)在4年发现的。

楞次定律是能量守恒定律在电磁感应现象中的具体体现。

楞次定律还可表述为:感应电流的效果总是反抗引起感应电流的原因。

对楞次定律的正确理解与使用分析^p :第一,电磁感应楞次定律的核心内容是“阻碍”二字,这恰恰表明楞次定律实质上就是能的转化和守恒定律在电磁感应现象中的特殊表达形式第二,这里的“阻碍”,并非是阻碍引起感应电流的原磁场,而是阻碍(更确切来描述应该是“减缓”)原磁场磁通量的变化第三,正因阻碍是的是“变化”,所以,当原磁场的磁通量增加(或减少)而引起感应电流时,则感应电流的磁场必与原磁场反向(或同向)而阻碍其磁通量的增加(或减少),概括起来就是,增加则反向,减少则同向。

这就是老师总结的做题应用定律“增反减同”四字要领的由来。

楞次定律阻碍的表现有哪些方式?(1)产生一个反变化的磁场。

(2)导致物体运动。

(3)导致围成闭合电路的边框发生形变。

楞次定律的应用步骤具体应用包括以下四步:第一,明确引起感应电流的原磁场在被感应的回路上的方向第二,搞清原磁场穿过被感应的回路中的磁通量增减情况第三,根据楞次定律确定感应电流的磁场的方向第四,运用安培定则判断出感生电流的方向。

高中物理网编辑提醒大家,楞次定律要灵活运用,有些题可以通过“感应电流的磁场阻碍相对运动”出发来判断。

在一些由于某种相对运动而引起感应电流的电磁感应现象中,如运用楞次定律从“感应电流的磁场总是阻碍引起感应电流的原磁场的磁通量变化”出发来判断感应电流方向,往往会比较困难。

高中物理电磁感应知识点汇总

高中物理电磁感应知识点汇总

电磁感应(磁生电)第一部分电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向B的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:若从一面穿入为正,则从另一面穿入为负.4.5.6.(1)(2)(3)1.2.表述表述3.合,源.1.,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量的变化.3.判断感应电流方向的思路:用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,如下:根据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).重点题型汇总一、磁通量及其变化的计算:由公式Φ=BS计算磁通量及磁通量的变化应把握好以下几点:1、此公式只适用于匀强磁场。

2、式中的S 是与磁场垂直的有效面积3、磁通量Φ为双向标量,其正负表示与规定的正方向是相同还是相反4、磁通量的变化量ΔΦ是指穿过磁场中某一面的末态磁通量Φ2与初态磁通量Φ1的差值, 即ΔΦ=|Φ2-Φ1|. 【例】 面积为S 的矩形线框abcd,处在磁感应强度为B 的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图9-1-1所示,当线框以ab 为轴顺时针转90过程中,穿过 abcd 的磁通量变化量ΔΦ= .【解析】设开始穿过线圈的磁通量为正,则在线框转过900的过程中,穿过线圈的磁量为:ΔΦ【答案】通量为正 :楞次定律A.a → C.先b,其极。

1.法拉第电磁感应定律:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.公式:n t∆ΦE =∆公式理解:① 上式适用于回路中磁通量发生变化的情形,回路不一定闭合.② 感应电动势E 的大小与磁通量的变化率成正比,而不是与磁通量的变化量成正比,更不是与磁通量成正比. 要注意t∆Φ∆与ΔФ和Φ三个量的物理意义各不相同,且无大小上的必然关系.③ 当∆Φ由磁场变化引起时, t ∆∆Φ常用t B S ∆∆来计算;当∆Φ由回路面积变化引起时,t∆∆Φ常用t S B ∆∆来计算.图9-1-3④ 由tnE ∆∆Φ=算出的是时间t ∆内的平均感应电动势,一般并不等于初态与末态电动势的算术平均值. ⑤ n 表示线圈的匝数,可以看成n 个单匝线圈串联而成。

电磁感应、电磁场电磁波的知识点总结全

电磁感应、电磁场电磁波的知识点总结全

可编辑修改精选全文完整版高二物理电磁感应、电磁场电磁波的知识点总结2012.6一、产生感应电流的条件:1.磁通量发生变化(产生感应电动势的条件)2.闭合回路*引起磁通量变化的常见情况:(1)线圈中磁感应强度发生变化(2)线圈在磁场中面积发生变化(如:闭合回路中的部分导体做切割磁感线运动)(3)线圈在磁场中转动二、感应电流的方向判定:1.楞次定律:(适用磁通量发生变化)感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

关于“阻碍”的理解:(1)“阻碍”是“阻碍原磁通量的变化”,而不是阻碍原磁场;(2)“阻碍”不是“阻止”,尽管“阻碍原磁通量的变化”,但闭合回路中的磁通量仍然在变化;(3)“阻碍”是“阻碍变化”,当原磁通量增加时,感应电流的磁场方向与原磁场方向相反——阻碍原磁通量的增加;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同——阻碍原磁通量的减少。

2.右手定则:(适用导体切割磁感应线)伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

其中四指指向还可以理解为:感应电动势高电势处。

*应用楞次定律判断感应电流方向的具体步骤①明确闭合回路中原磁场方向(穿过线圈中原磁场的磁感线的方向)。

②把握闭合回路中原磁通量的变化(φ原是增加还是减少)。

③依据楞次定律,确定回路中感应电流磁场的方向(B感取什么方向才能阻碍φ原的变化)。

④利用安培定则,确定感应电流的方向(B感和I感之间的关系)。

*楞次定律的拓展1.当闭合回路中磁通量变化而引起感应电流时,感应电流的效果总是阻碍原磁通量的变化。

(增反减同)2.当线圈和磁场发生相对运动而引起感应电流时,感应电流的效果总是阻碍二者之间的相对运动(来斥去吸)。

3.当线圈中自身电流发生变化而引起感应电流时,感应电流的效果总是阻碍原电流的变化(自感现象)。

三、感应电动势的大小:1. 法拉第电磁感应定律:在电磁感应现象中,电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

高中物理 电磁感应 知识点归纳[汇编]

高中物理 电磁感应 知识点归纳[汇编]

高中物理电磁感应知识点归纳[汇编]电磁感应是指导体内部的自由电子在磁场作用下发生的运动所产生的电动势的现象。

以下是针对电磁感应的知识点归纳。

1. 电磁感应原理当导体在磁场中运动时,导体内部的自由电子将发生运动,并在导体两端产生电动势。

这种现象被称为电磁感应。

电磁感应原理是法拉第电磁感应定律,它描述了磁场和电场之间的相互作用。

2. 磁通量磁通量是磁场通过某一平面的量度。

磁通量的单位是韦伯(Wb),它等于磁场的强度在时间上的积分。

如果随着时间而改变的磁场穿过一个闭合的线圈,该线圈内将会产生一个电动势。

此时,电动势与磁通量的改变率成正比。

3. 法拉第电磁感应定律法拉第电磁感应定律是指一个变化的磁场穿过一个闭合电路时,该电路中将会产生电动势。

电动势的大小和磁场的变化率成正比。

若闭合电路中还存在电阻,则可产生电流。

电磁感应有着广泛的应用,如电磁感应式发电、变压器、感应加热、感应炉、电感传感器等。

其中,电磁感应式发电是最广泛应用的电磁感应原理。

5. 感应电动势感应电动势是指导体内部的自由电子在磁场作用下运动所产生的电动势。

感应电动势大小与磁通量变化率成正比。

若磁通量不变,则感应电动势为零。

感应电动势的方向遵循楞次定律。

当导体在变化的磁场中运动时,产生的感应电动势遵循楞次定律:感应电动势的方向是这样的,即它的磁作用面积的方向与感应电流方向构成右手法则,并且感应电动势方向与磁场的变化方向相反。

若导体不断旋转,则电动势的方向将始终相同,即感应电动势的方向与导体运动的轴线相垂直。

为了研究电磁感应现象,可以进行一些简单的实验。

例如,在一个磁场中放置一个闭合线圈,使它在磁场中旋转。

当线圈旋转时,将会产生一个感应电动势。

这个电动势可以通过连接电阻来产生电流。

总之,了解这些基本的电磁感应知识点是理解该领域的关键。

它们不仅是高中物理的重要部分,也是应用于电力和电子工程的基础。

电磁感应高中物理知识点

电磁感应高中物理知识点

电磁感应高中物理知识点1. 电磁感应的基本概念电磁感应是指当导体相对于磁场运动或磁场的强度发生变化时,会在导体中产生感应电动势和感应电流的现象。

电磁感应是电磁学的重要基础,具有广泛的应用。

2. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的重要定律。

它的表达式为:感应电动势的大小与导体中磁场的变化率成正比。

3. 磁通量和磁感应强度磁通量表示磁场穿过某个面积的数量,用符号Φ表示,单位为韦伯(Wb)。

磁感应强度表示单位面积上的磁通量,用符号B表示,单位为特斯拉(T)。

4. 楞次定律和楞次圈定律楞次定律是描述电磁感应中电流方向的定律。

根据楞次定律,感应电流会产生一个磁场,其方向与原磁场相反。

楞次圈定律是描述电磁感应中感应电动势的方向的定律。

根据楞次圈定律,感应电动势的方向使得感应电流产生一个磁场,其磁场的方向与原磁场相反。

5. 弗莱明右手定则弗莱明右手定则是判断电流在磁场中受力方向的定则。

根据该定则,当右手大拇指指向电流方向,四指指向磁场方向时,手掌所指方向就是电流受力方向。

6. 涡流和涡流损耗涡流是指在导体中由于磁场的变化而产生的感应电流。

涡流会在导体内部产生能量损耗,称为涡流损耗。

涡流损耗的大小与导体特性、磁场强度、频率等因素有关。

7. 互感和自感互感是指两个或多个线圈之间由于磁场的相互作用而产生感应电动势的现象。

互感的大小与线圈的匝数、磁场强度等因素有关。

自感是指线圈中自身磁场变化所产生的感应电动势。

自感的大小与线圈的匝数、磁场强度等因素有关。

8. 电磁感应的应用电磁感应在生活和工业中有广泛的应用,如变压器、电动机、发电机、电磁感应炉等。

它们的原理都是利用电磁感应现象。

以上是电磁感应的高中物理知识点的简要介绍。

电磁感应是电磁学中的重要概念,对于理解电磁现象和应用具有重要意义。

希望这份文档能对你有所帮助!。

物理电磁感应知识点

物理电磁感应知识点

物理电磁感应知识点
电磁感应是物理学中的一个重要概念,它描述了磁场与电流、电压之间的关系。

以下是关于电磁感应的主要知识点:
1. 法拉第电磁感应定律:当一个线圈中的磁通量发生变化时,在线圈中会产生感应电动势。

感应电动势的大小与磁通量变化率成正比,即E=-dΦ/dt,其中E是感应电动势,Φ是磁通量,t是时间。

2. 楞次定律:感应电流的磁场总是阻碍引起感应电流的磁通量的变化。

换句话说,感应电流的磁场总是试图阻止产生它的磁通量变化。

3. 右手定则:当导线在磁场中运动,并且导线中的电流方向已知时,可以用右手定则来判断导线受到的安培力方向。

具体来说,伸开右手,使拇指与其余四指垂直,并让磁感线穿过手心,拇指指向电流的方向,四指指向安培力的方向。

4. 交流电和电磁场:交流电会产生变化的磁场,这个变化的磁场又会产生感应电动势。

在电力系统中,变压器就是利用这个原理来升高或降低电压的。

5. 麦克斯韦方程组:麦克斯韦方程组是描述电场、磁场和电荷密度、电流密度之间关系的方程组。

它包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。

以上是关于电磁感应的主要知识点,掌握这些知识点有助于理解电场和磁场之间的相互作用,以及它们在电力系统和电子设备中的应用。

物理高二年级下册电磁感应知识点总结

物理高二年级下册电磁感应知识点总结

物理高二年级下册电磁感应知识点总结
高中物理是高中理科(自然科学)基础科目之一,小编准备了物理高二年级下册电磁感应知识点,希望你喜欢。

[感应电动势的大小计算公式]
1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率}
2)E=BLV垂(切割磁感线运动){L:有效长度(m)}
3)Em=nBS(交流发电机最大的感应电动势){Em:感应电动势峰值}
4)E=BL2/2(导体一端固定以旋转切割){:角速度(rad/s),V:速度(m/s)}
2.磁通量=BS{:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
3.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极}
*4.自感电动势E自=n/t=LI/t{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,t:所用时间,I/t:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点;(2)自感电流总是阻碍引起自感电动势的
电流的变化;(3)单位换算:1H=103mH=106H。

物理高二年级下册电磁感应知识点就为大家介绍到这里,希
望对你有所帮助。

高二物理电磁感应知识点总结

高二物理电磁感应知识点总结

高二物理电磁感应知识点总结电磁感应是物理学中的重要概念,它描述了磁场变化引起电流变化的现象。

在高二物理学习中,我们学习了许多与电磁感应相关的知识点。

本文将总结高二物理电磁感应的关键概念和公式。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述电磁感应现象的基本定律。

它表明,当一个导体中的磁通量发生变化时,导体中就会产生感应电动势。

法拉第电磁感应定律的数学表达式为:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,dt代表时间的微小变化量。

2. 洛伦兹力洛伦兹力是描述电荷在磁场中受力的现象。

当电荷以速度v通过磁场时,就会受到一个垂直于速度和磁场方向的力,这就是洛伦兹力。

洛伦兹力的数学表达式为:F = qvBsinθ其中,F代表洛伦兹力,q代表电荷量,v代表速度,B代表磁感应强度,θ代表速度方向与磁场方向之间的夹角。

3. 感生电动势感生电动势是指由于磁场变化而在导体中产生的电动势。

当导体与磁场相互运动或磁场发生变化时,导体中就会感生电动势。

感生电动势的数学表达式为:ε = -N dΦ/dt其中,ε代表感生电动势,N代表线圈匝数,dΦ/dt代表磁通量的变化率。

4. 电磁感应的应用电磁感应的原理广泛应用于发电机、变压器和感应炉等设备中。

发电机利用电磁感应的原理将机械能转化为电能。

通过旋转磁场和线圈之间的相对运动,产生感应电动势,进而产生交流电。

变压器利用电磁感应的原理改变交流电的电压大小。

通过互感作用,将输送电能的电压升高或降低。

感应炉则利用电磁感应的原理加热金属物体。

高频交流电在感应炉线圈内产生变化的磁场,从而使金属物体发生电流,进而产生热能。

总之,电磁感应是物理学中一个重要的概念,我们通过学习法拉第电磁感应定律、洛伦兹力和感生电动势等知识,能够深入理解电磁感应现象的发生机制和相关应用。

这些基础知识为我们进一步探索电磁学和电力学领域奠定了坚实的基础。

通过实践和观察,我们可以更好地理解电磁感应现象,并将其应用于日常生活和工程实践中。

[高中电磁感应的物理知识点] 电磁感应线圈

[高中电磁感应的物理知识点] 电磁感应线圈

[高中电磁感应的物理知识点] 电磁感应线圈
一.感应电动势的大小计算公式
1)E=n/t(普适公式){法拉第电磁感应定律,E:感应电动势(V),n:感应线圈匝数,/t:磁通量的变化率}
2)E=BLV垂(切割磁感线运动) {L:有效长度(m)}
3)Em=nBS(交流发电机最大的感应电动势) {Em:感应电动势峰值}
电磁感应物理知识点4)E=BL2/2(导体一端固定以旋转切割) {:角速度(rad/s),V:速度(m/s)}
二.磁通量=BS {:磁通量(Wb),B:匀强磁场的磁感应强度(T),S:正对面积(m2)}
三.感应电动势的正负极可利用感应电流方向判定{电源内部的电流方向:由负极流向正极
四.自感电动势E自=n/t=LI/t{L:自感系数(H)(线圈L有铁芯比无铁芯时要大),I:变化电流,?t:所用时间,I/t:自感电流变化率(变化的快慢)}
注:(1)感应电流的方向可用楞次定律或右手定则判定,楞次定律应用要点
(2)自感电流总是阻碍引起自感电动势的电流的变化。

(3)单位换算:1H=103mH=106H。

(4)其它相关内容:自感〔见第二册P178〕/日光灯。

感谢您的阅读!。

高中物理电磁感应总结

高中物理电磁感应总结

高中物理电磁感应总结
电磁感应是指导线或导体中有磁场变化时,产生感应电动势和感应电流的现象。

1.法拉第电磁感应定律:当导线中有磁通量的变化时,沿导线会产生感应电动势,其大小与磁通量的变化率成正比。

即E=-dΦ/dt,其中E为感应电动势,Φ为磁通量,t为时间。

2.楞次定律:感应电流的方向总是阻碍产生它的磁场的变化。

根据楞次定律,当磁场增大时,感应电流的方向与原磁场方向相反;当磁场减小时,感应电流的方向与原磁场方向相同。

3.自感与互感:当电流通过导线时,导线本身也会产生磁场,这就是自感。

而当通过一根线圈的电流发生变化时,会在另一根线圈中感应出电动势,这就是互感。

4.电磁感应的应用:电磁感应是许多电器设备运行的基础,例如发电机、变压器、电感、电动机等。

电磁感应也广泛应用于现代科技领域,如无线充电、电磁拖动、电磁制动等。

5.电磁感应与电磁波:电磁感应是电磁波的产生和接收机制之一。

当导体中有电磁波经过时,会产生感应电动势,从而实现电磁波的接收和转化。

而反过来,当导体中有感应电动势时,也可以产生电磁波的辐射。

电磁感应是一种重要的物理现象,它不仅具有理论意义,而且有着广泛的应用价值。

通过研究电磁感应,可以深入理解电磁现象的本质,并为科技创新和实际生活带来便利。

物理高二选修2电磁感应知识点

物理高二选修2电磁感应知识点

物理高二选修2电磁感应知识点一、电磁感应的基本原理电磁感应是指通过磁场和导体之间的相互作用产生电流的现象。

在物理高二选修2中,我们主要学习了电磁感应的基本原理和相关知识。

1. 法拉第电磁感应定律法拉第电磁感应定律是描述导体中感应电动势大小的定律。

它的表达式为:ε = -dΦ/dt,其中ε表示感应电动势,Φ表示磁通量,t表示时间。

法拉第电磁感应定律告诉我们,磁通量的改变会导致感应电动势的产生。

2. 洛伦兹力和电磁感应定律洛伦兹力是描述电荷在磁场中受力的定律。

当导体中的电子受到洛伦兹力的作用,就会发生感应电流。

电磁感应定律指出,感应电流的大小和方向与洛伦兹力成正比。

二、电磁感应的应用1. 电磁感应在发电机中的应用发电机是利用电磁感应原理来转换机械能为电能的装置。

其基本原理是通过旋转的导体在磁场中感应电动势,从而产生电流。

这一原理被广泛应用于电力工业中,为我们提供了丰富的电力资源。

2. 电磁感应在变压器中的应用变压器是利用电磁感应原理来改变交流电压大小的设备。

它主要由高压线圈和低压线圈构成,通过磁场的变化来感应电动势,并实现电压的升降。

变压器在电力传输和分配中起到了至关重要的作用。

3. 电磁感应在感应炉中的应用感应炉是利用电磁感应原理来加热物体的装置。

通过交变的电流在导体中产生交变磁场,从而感应出感应电流。

这样,导体就会发生电阻加热效应,实现对物体的加热。

感应炉广泛应用于冶金、炼钢等行业。

4. 电磁感应在感应电动机中的应用感应电动机是利用电磁感应原理来转换电能为机械能的装置。

通过感应电动势的产生,使转子在磁场的作用下转动,从而实现机械能的输出。

感应电动机是最常用的电动机之一,广泛应用于各种机械和工业设备中。

三、电磁感应的衍生知识1. 自感现象自感是指导体中的自感电动势。

当电流改变时,导体中会产生变化的磁场,从而感应出自感电动势。

自感现象主要应用于电路中的电感元件,如变压器、感应线圈等。

2. 磁场的能量电磁感应过程中,磁场对电荷做功,将机械能转化为电能。

高中物理电磁感应知识点总结

高中物理电磁感应知识点总结

高中物理电磁感应知识点总结电磁感应是物理学中一个重要的概念,涉及到电流、磁场和电磁波等多个方面。

在高中物理课程中,学生通常会学习有关电磁感应的基本原理和应用。

本文将对高中物理电磁感应的知识点进行总结。

一、法拉第电磁感应定律法拉第电磁感应定律是电磁感应的核心原理之一。

该定律指出:当一个导体在磁场中运动或者遇到磁场变化时,会在导体的两端产生感应电动势。

具体表达式为:ε = -N * ∆Φ / ∆t其中,ε表示感应电动势,N是线圈的匝数,∆Φ表示磁通量的变化量,∆t表示时间的变化量。

该定律说明了磁场变化可以通过感应产生电动势,实现能量的转化。

二、楞次定律楞次定律是指当导体中有感应电流产生时,其方向使得产生的磁场抵消原磁场的变化。

该定律可以通过以下表达式表示:η = - ∆Φ / ∆t其中,η表示感应电流的方向,∆Φ表示磁通量的变化量,∆t表示时间的变化量。

楞次定律说明了感应电流的方向会使得磁场的变化趋于减小,以保持能量守恒。

三、电磁感应的应用1. 电动机电动机是利用电磁感应原理工作的设备。

当通过导线的电流受到磁场的力作用时,电动机的转子就会受到力的作用而转动。

电动机在工业和家用电器中广泛应用,是现代生活中不可或缺的部分。

2. 发电机发电机是通过电磁感应原理将机械能转化为电能的设备。

发电机通过旋转导线在磁场中产生感应电动势,并通过导线的电流输出电能。

发电机广泛应用于能源领域,为人们的生活提供了可靠的电力供应。

3. 变压器变压器是基于电磁感应原理工作的设备,用于改变交流电的电压大小。

变压器通过电磁感应将输入线圈中的能量传递到输出线圈中,从而实现电压的升降。

变压器在电力输送和电子设备中承担着重要的角色。

4. 电磁感应传感器电磁感应传感器利用感应电动势的变化来检测周围环境的磁场变化。

该传感器在许多领域中都有应用,包括导航、无线通信和环境监测等。

四、自感和互感自感是指一个导体中的电流变化时,由于导体本身的磁场变化而产生的感应电动势。

电磁感应线圈工作原理

电磁感应线圈工作原理

电磁感应线圈工作原理
电磁感应线圈是一种由绕在铁芯上的线圈组成的电器元件。

其工作原理基于法拉第电磁感应定律,即当磁通量通过线圈时,线圈中产生感应电动势。

当线圈受到磁通量的影响时,线圈中的导体会受到电磁感应,产生感应电动势。

这个感应电动势的大小与导体受到的磁通量变化的速率成正比。

如果导体是闭合回路,感应电动势将导致电流在线圈中流动。

具体来说,当磁场通过线圈时,线圈中的导体将感受到磁场的变化。

这个变化可以是磁场的强度、方向或者是磁场线的数量。

只要磁通量发生变化,线圈内部就会产生感应电动势。

一旦感应电动势产生,根据欧姆定律,电流将在线圈中流动。

这个电流可以通过连接线圈的电路进行利用,完成一系列的工作。

例如,它可以产生电磁力,驱动电动机运动;它可以产生电热效应,使线圈加热等。

电磁感应线圈在实际应用中广泛存在。

例如,在变压器中,感应线圈用于传递电力,将高压电能转换为低压电能。

在发电机中,感应线圈将机械能转换为电能。

在电感器中,感应线圈用于储存和释放电能。

总的来说,电磁感应线圈的工作原理是利用磁通量的变化来产生感应电动势,从而实现电能转换和传输的功能。

高二物理下册《电磁感应》期末知识点总结【推荐下载】

高二物理下册《电磁感应》期末知识点总结【推荐下载】

高二物理下册《电磁感应》期末知识点总结高二物理下册《电磁感应》期末知识点总结《电磁感应》1、首先发现电磁感应现象的科学家:英国的法拉第2、产生感应电流的条件:闭合回路中的磁通量发生变化(磁通量单位:韦伯-Wb)3、法拉第电磁感应定律:回路中感应电动势的大小,跟穿过这一回路的磁通量的变化率成正比。

(n是线圈的匝数,叫磁通量的变化率,表示磁通量的变化快慢)4、发电机的工作原理:电磁感应5、磁通量:(适用)6、正弦式电流:电流、电压随时间按正弦函数的规律变化的电流最大值= 有效值,即、说明:(1)我国民用交流电的电压有效值为220V,动力的为380V,频率为50HZ(2)家用使用交流的电器上所标的额定电压、额定电流值都指的是交流的有效值。

7、理想变压器(不损耗能量)的三个关系式:、即(1)工作原理:电磁感应(改变的是交流的电压、电流) (2)n2>;n1,则U2>;U1,升压;n28、电能的输送:、9、自感的应用:日光灯中的镇流器;涡流的应用有:电磁炉、感应炉第四章《电磁波及其应用》1、电磁波的波长、波速、频率的关系:c= f(c=3×108m/s)2、首先建立完整的电磁场理论,并预言电磁波存在的科学家是英国的麦克斯韦;用实验证实电磁波存在的科学家是德国的赫兹。

3、麦克斯韦电磁场理论的要点:变化的电场产生磁场,变化的磁场产生电场。

4、电磁波:电磁场由近向远传播形成电磁波。

在真空中所有电磁波(不管频率、波长及能量多大)传播的速度等于光速,它能产生发射、折射、干涉和衍射,具有能量。

5、电磁波谱:无线电波、微波、红外线、可见光、紫外线、x射线、γ射线(按波长由长到短或按频率由小到大来排),它们的具体应用课本82-83页。

6、调制(调幅、调频):把信息加到载波上随电磁波发射出去;解调:从载波上把信息取出来。

7、传感器:启动器中的双金属传感器、自动门中的红外传感器、楼道灯的光控传感器、空调器中的温度传感器、电子秤中的压力传感器等。

高二物理 电磁感应基础知识

高二物理 电磁感应基础知识

电磁感应基础知识【要点梳理】要点一、电流的磁效应1820年,丹麦物理学家奥斯特发现载流导线能使小磁针偏转,这种作用称为电流的磁效应。

要点诠释:(1)为了避免地磁场影响实验结果,实验时通电直导线应南北放置。

(2)电流磁效应的发现证实了电和磁存在必然的联系,受其影响,法国物理学家安培提出了著名的右手螺旋定则和“分子电流”假说,英国物理学家法拉第在“磁生电”思想的指导下,经过十年坚持不懈的努力终于找到了“磁生电”的条件。

要点二、电磁感应现象1831年,英国物理学家法拉第发现了电磁感应现象,即“磁生电”的条件,产生的电流叫感应电流。

要点诠释:(1)法拉第将引起感应电流的原因概括为五类:①变化的电流;②变化的磁场;③运动的恒定电流;④运动的磁场;⑤在磁场中运动的导体。

(2)电流的磁效应是由电生磁,是通过电流获得磁场的现象;电磁感应现象是磁生电现象,两个过程是相反的。

要点三、 产生感应电流的条件感应电流的产生条件是穿过闭合电路的磁通量发生变化。

也就是:一是电路必须闭合,二是穿过闭合电路的磁通量发生变化。

即一闭合二变磁。

要点诠释:判断有无感应电流产生,关键是抓住两个条件:(1)电路是闭合电路;(2)穿过电路本身的磁通量发生变化。

其主要内涵体现在“变化”二字上,电路中有没有磁通量不是产生感应电流的条件,如果穿过电路的磁通量很大但不变化,那么无论有多大,也不会产生感应电流。

只有“变磁”才会产生感应电动势,如果电路再闭合,就会产生感应电流。

要点四、电流的磁效应与电磁感应现象的区别与联系 1.区别:“动电生磁”和“动磁生电”是两个不同的过程,要抓住过程的本质,动电生磁是指运动电荷周围产生磁场;动磁生电是指线圈内的磁通量发生变化而在闭合线圈内产生了感应电流。

要从本质上来区分它们。

2.联系:二者都是反映了电流与磁场之间的关系。

要点五、磁通量Ф的计算1. 公式ФBS =中的B 是匀强磁场的磁感应强度,S 是与磁场方向垂直的面积,可以理解为ФBS =⊥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二下册物理电磁感应知识点梳理:电磁感应线

1.电磁感应现象电磁感应现象:利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流。

(1)产生感应电流的条:穿过闭合电路的磁通量发生变化,即0。

(2)产生感应电动势的条:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势。

产生感应电动势的那部分导体相当于电源。

(3)电磁感应现象的实质是产生感应电动势,如果回路闭合,则有感应电流,回路不闭合,则只有感应电动势而无感应电流。

2.磁通量(1)定义:磁感应强度B与垂直磁场方向的面积S的乘积叫做穿过这个面的磁通量,定义式:=BS。

如果面积S与B不垂直,应以B乘以在垂直于磁场方向上的投影面积S,即=BS,国际单位:Wb 求磁通量时应该是穿过某一面积的磁感线的净条数。

任何一个面都有正、反两个面;磁感线从面的正方向穿入时,穿过该面的磁通量为正。

反之,磁通量为负。

所求磁通量为正、反两面穿入的磁感线的代数和。

3.楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化。

楞次定律适用于一般情况的感应电流方
向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便。

(2)对楞次定律的理解①谁阻碍谁---感应电流的磁通量阻碍产生感应电流的磁通量。

②阻碍什么---阻碍的是穿过回路的磁通量的变化,而不是磁通量本身。

③阻碍---原磁通量增加时,感应电流的磁场方向与原磁场方向相反;当原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即增反减同。

④阻碍的结果---阻碍并不是阻止,结果是增加的还增加,减少的还减少。

(3)楞次定律的另一种表述:感应电流总是阻碍产生它的那个原因,表现形式有三种:
①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感)。

4.法拉第电磁感应定律电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比。

表达式E=n/t 当导体做切割磁感线运动时,其感应电动势的计算公式为E=BLvsin。

当B、L、v 三者两两垂直时,感应电动势E=BLv。

(1)两个公式的选用方法
E=n/t计算的是在t时间内的平均电动势,只有当磁通量的变化率是恒定不变时,它算出的才是瞬时电动势。

E=BLvsin中的v若为瞬时速度,则算出的就是瞬时电动势:若v为平均速度,算出的就是平均电动势。

(2)公式的变形
①当线圈垂直磁场方向放置,线圈的面积S保持不变,只是磁场的磁感强度均匀变化时,感应电动势:E=nSB/t。

②如果磁感强度不变,而线圈面积均匀变化时,感应电动势E=Nbs/t。

5.自感现象(1)自感现象:由于导体本身的电流发生变化而产生的电磁感应现象。

(2)自感电动势:在自感现象中产生的感应电动势叫自感电动势。

自感电动势的大小取决于线圈自感系数和本身电流变化的快慢,自感电动势方向总是阻碍电流的变化。

6.日光灯工作原理(1)起动器的作用:利用动触片和静触片的接通与断开起一个自动开关的作用,起动的关键就在于断开的瞬间。

(2)镇流器的作用:日光灯点燃时,利用自感现象产生瞬时高压;日光灯正常发光时,利用自感现象,对灯管起到降压限流作用。

7.电磁感应中的电路问题在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流。

因此,电磁感应问题往往与电路问题联系在一起。

解决与电路相联系的电磁感应问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画等效电路。

(3)运用全电路欧姆定律,串并联电路性质,电功率等公式联立求解。

8.电磁感应现象中的力学问题(1)通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本方法是:①用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向。

②求回路中电流强度。

③分析研究导体受力情况(包含安培力,用左手定则确定其方向)。

④列动力学方程或平衡方程求解。

(2)电磁感应力学问题中,要抓好受力情况,运动情况的动态分析,导体受力运动产生感应电动势感应电流通电导体受安培力合外力变化加速度变化速度变化周而复始地循环,循环结束时,加速度等于零,导体达稳定运动状态,抓住a=0时,速度v达最大值的特点。

9.电磁感应中能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受
力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本方法是:
(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向。

(2)画出等效电路,求出回路中电阻消耗电功率表达式。

(3)分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程。

10.电磁感应中图像问题
电磁感应现象中图像问题的分析,要抓住磁通量的变化是否均匀,从而推知感应电动势(电流)大小是否恒定。

用楞次定律判断出感应电动势(或电流)的方向,从而确定其正负,以及在坐标中的范围。

另外,要正确解决图像问题,必须能根据图像的意义把图像反映的规律对应到实际过程中去,又能根据实际过程的抽象规律对应到图像中去,最终根据实际过程的物理规律进行判断。

相关文档
最新文档