机械原理运动副

合集下载

机械原理——构件、约束、运动副

机械原理——构件、约束、运动副
2.2.3 约束力 2.2.3 构件运动约束的设计
可以通过加入中间元件改善磨损状况 无摩擦的柔顺机构
2.3运动副及其分类 如果仅仅考虑构件之间接触所提供的 运动约束的类型,这种对构件之间的 物理连接所作的理想化的描述定义为 运动副。
2.3.2.1 力闭合运动副、形闭合运动副 及材料闭合运动副
力闭合运动副
第2章 构件、约束和运动副
机械运动 约束运动
接触 点\线\面
2.1 构件及其分类 2.1.1构件 运动单元体
2.1.2构件的类型 刚性构件,拉曳件 机架、原动件和从动件
2.2 构件的运动约束
空间自由运动的构件有6个自由度
平面自由运动的构件有3个自由度
y
y
x
z
x
构件接触形成约束,约束性质与接触方式相关
形闭合运动副
材料闭合运动副
2.3.2.2 平面运动副和空间运动副
常见的平面运动副有移动副、转动 副和曲线副
(a)
(b)(c)(d)源自空间运动副2.3.2.3 低副和高副
高副,构件之间为一个点或一条线接触 低副,构件之间为平面或圆柱面接触
2.3.2.4 运动副的级
根据运动副所引入的约束数可以将运动副分为五 级:引入一个约束的运动副为Ⅰ级副,引入两个约束 的运动副为Ⅱ级副,依次类推,还有Ⅲ级副、Ⅳ级副, 最多为Ⅴ级副。
分析图示机器人机构构件和运动副组成
至少有三个活动构 件、机架和三个移 动副组成
直角坐标机械手 柱坐标机械手 极坐标机械手
机构设计鉴赏
肘关节设计
y
x
z
j
Pi
j i
y
j
j
x
i
i
2.2.1构件之间的运动 自由度与约束数的关 系

机械原理

机械原理
i=1 j=1
5
p
末杆自由度: 末杆自由度:λ
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (3)具有公共约束的单闭环机构自由度计算
F = ∑i ⋅ pi − 6 −m) = ∑fj − λ (
5
p
λ = λr + λtt + λtr
i=1
j=1
基本转动(移动)自由度: 基本转动(移动)自由度: 各轴线都平行于某一个方向:其值=1 1)各轴线都平行于某一个方向:其值=1 分别平行于两个不同方向: 其值=2 2)分别平行于两个不同方向: 其值=2 有不与前两个方向共面的第三个方向, 3)有不与前两个方向共面的第三个方向, 其值=3 其值=3
2.2.1 运动副
构成运动副的点、 构成运动副的点、线、面称为运动副的元素。 面称为运动副的元素。 (1)低副:两构件通过面接触构成的运动副. 低副:两构件通过面接触构成的运动副. (2)高副:两构件通过点或线接触构成的运动副. 高副:两构件通过点或线接触构成的运动副. 点或线接触构成的运动副
2.2.1 运动副
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
2.3.2 空间机构的自由度
1. 空间机构自由度计算 (4)计算机构自由度重要注意的问题 1)局部自由度
公共约束: 公共约束: 是指在机构中由于运动副的特性及布 置的特殊性, 置的特殊性,使得机构中所有的活动构件共同失 去了某些自由度, 去了某些自由度,即对ห้องสมุดไป่ตู้构中所有活动构件同时 施加的约束,公共约束记为m 施加的约束,公共约束记为m 。

2.运动副的分类及运动简图的绘制

2.运动副的分类及运动简图的绘制
一、机构的组成要素
1.构件 作为一个整体参与机构运动的刚性单元体称为构件
连杆机构
规格严格 功夫到家
4
构件
一个构件,可以是不能拆开的单一整体,也可能是由 若干个不同零件组装起来的刚性体。
例如:
规格严格 功夫到家
5
运动副
2.运动副
由两个构件直接接触而产生一定相对运动的联接称为 运动副。
两构件上参与接触构成运动副的部分称为运动副元素。
20
机构运动简图的绘制
绘制十字滑块联轴节的运动简图
规格严格 功夫到家
21
教学单元1结束
规格严格 功夫到家
22
规格严格 功夫到家
23
机械原理
第二章 机构的结构分析和综合
(模块2教学单元1)
陈明
哈尔滨工业大学
2013年3月
规格严格 功夫到家
1
§2-1 结构分析和综合的基本内容
机械原理课程对机械的研究主要有以下几个方面:
一、对已有机械进行分析
机械的结构分析
机械的运动分析
机械的动力分析
二、设计新的机械
机构的选型 设计机构 机构的运动设计
7
运动副的分类
二、运动副的分类
组成机构的运动副的类型决定机构的运动形式。运动
副有多种类型,对运动副进行正确的分类,在机构设计和
综合中是非常重要的。
自由度与约束
y
y
x
x
z
z
规格严格 功夫到家
8
运动副的分类
运动副的分类可以根据其所引入的约束 数分类也可根据组成运动副的两个运动副 元素的接触情况分类以及根据运动副连接 的两个构件的相对运动分类。
规格严格 功夫到家

机械原理 第一章 构件 约束 运动副

机械原理  第一章 构件 约束 运动副

按在机械传动中的功能分类:
机 构件分成 活动构件 从动件 机 架:机架是指要被固定、而作为机构运动的参考 系的构件 。 原动件:作用有驱动力或驱动力矩的活动构件,又称主 动件。 从动件:在机构中除机架和原动件以外的其余构件则称 为从动件 。
动画链接1 2
架(或固定构件) 原动件(主动件)
机架 原动件
从动件
传动构件
从动件
输出构件
按照其几何和运动特征进行分类:
如齿轮、凸轮、摩擦轮、滑块、导槽、杆件等
滑块、导槽、杆件
动画链接
广义来讲,随着科学技术的不断发展,机构中的构件可 以是有形的,也可以是无形的,只要它在传递运动和力或在 运动的导引的过程中能完成一些确定的运动任务,我们都可 以将其视为一个构件。例如:液态介质或气态介质、可塑性 的颗粒状物质等等,只要这些物质能够充满所提供的空腔, 在运动的传递过程中起到了必不可少的作用,都可以看作为 压力构件;机械运动的计算机控制程序等也可以看作是一个 构件。
只有1个自由度
用平面和曲面构造约束:用四个平面构造的相对移动约束
只有1个自由度
约束中加入中间元件,改变接触处的摩擦状态 滑动摩擦
滚动摩擦
钢球
滑动摩擦
保持架
滚动摩擦
2-9(b)
2-9(c)
1.4
1.4.1
运动副及其分类
运动副
运动副:两个构件直接接触组成的仍能产生某些相对运 动的联接。
三个条件,缺一不可
第一章 构件、约束和运动副
1.2 构件及其分类
构件和零件是两个不同的概念:构件是运
动时的单元体,而零件是制造时的单元体。
构件是由一个或若干个零件组成。
这些零件之间没有任何的相对运动。

机械原理运动副.ppt

机械原理运动副.ppt

π m1cosα1= π m2cosα2

m1 = m2 = m
α1 = α2 = α
结论 一对渐开线齿轮正确啮合的条件是两轮的模数和压力 角应分别相等。
渐开线直齿圆柱齿轮的啮合传动(2/6)
2.中心距及啮合角 (1)中心距
1)在确定传动中心距时应满足的要求: ① 保证两轮的齿侧间隙为零,即 c′= 0。 ② 保证两轮的顶隙为标准值,即 c = c*m
2)标准中心距 a
a = r1+r2 = m (z1+z2)/2 结论 当两标准齿轮按标准中心距安装时,既能保证两轮顶隙 为标准值,又能保证齿侧间隙为零,即 c = c*m, c′= 0。
(2)啮合角
渐开线直齿圆柱齿轮的啮合传动(3/6)
渐开线齿轮传动的啮合角α′就等于其节圆压力角。 当两轮按标准中心距安装时,则实际中心距 a′= a; 当两轮实际中心距 a′与标准中心距 a 不同时,则:
第十章 齿轮机构及其设计
§10-1 齿轮机构的应用及分类 §10-2 齿轮的齿廓曲线 §10-3 渐开线齿廓的啮合特点 §10-4 渐开线标准齿轮的基本参数和几何尺寸 §10-5 渐开线直齿圆柱齿轮的啮合传动 §10-6 渐开线齿轮的变位修正 §10-7 斜齿圆柱齿轮传动 §10-8 蜗杆传动 §10-9 圆锥齿轮传动 §10-10 圆弧齿轮传动简介
(2)连续传动条件 为了两轮能够连续传动,必须保证在前一对轮齿尚未能脱离
啮合时,后一对轮齿就要及时进入啮合。则实际啮合线段B1B2应大 于或至少等于齿轮的法向齿距 pb,即B1B2 ≥ pb。
通常把 B1B2与 pb的比值εα称为齿轮的重合度, 故齿轮连续传 动的条件为
εα = B1B2 /pb ≥1

机械原理复习重点

机械原理复习重点

1. 什么叫机械?什么叫机器?什么叫机构?它们三者之间的关系机械是机器和机构的总称机器是一种用来变换和传递能量、物料与信息的机构的组合。

讲运动链的某一构件固定机架,当它一个或少数几个原动件独立运动时,其余从动件随之做确定的运动,这种运动链便成为机构。

零件→构件→机构→机器(后两个简称机械)2. 什么叫构件?机械中独立运动的单元体3. 运动副:这种由两个构建直接接触而组成的可动联接称为运动副。

高副:凡两构件通过单一点或线接触而构成的运动副称为高副。

低副:通过面接触而构成的运动副统称为低副。

4. 空间自由运动有6歌自由度,平面运动的构件有3个自由度。

5. 机构运动简图的绘制6. 自由度的计算7. 为了使机构具有确定的运动,则机构的原动件数目应等于机构的自由度数目,这就是机构具有确定运动的条件。

当机构不满足这一条件时,如果机构的原动件数目小于机构的自由度,则将导致机构中最薄弱的环节损坏。

要使机构具有确定的运动,则原动件的数目必须等于该机构的自由度数目。

8. 自由度计算:F=3n -(2p1+pn)n:活动构件数目 p1:低副 pn:高副9. 在计算平面机构的自由度时,应注意那些事项?1. 要正确计算运动副的数目2.要除去局部自由度3.要除去虚约束10. 由理论力学可知,互作平面相对运动的两构件上瞬时速度相等的重合点,即为此两构件的速度瞬心,简称瞬心。

11.因为机构中每两个构件间就有一个瞬心,故由N个构件(含机架)组成的机构的瞬心总数K=N(N-1)/212.三心定理即3个彼此做平面平行运动飞构件的3个瞬心必位于同一直线上。

对于不通过运动服直接相连的两构件的瞬心位置,可可借助三心定理来确定。

13.该传动比等于该两构件的绝对瞬心与相对瞬心距离的反比。

14.平面机构力分析的方法:1静力分析:在不计惯性力的情况下,对机械进行的分析称为机构的静力分析。

使用于惯性力不大的低速机械。

2动态静力分析:将惯性力视为一般外力加于产生该惯性力的构件上,就可以将该结构视为处于静力平衡状态,仍采用静力学方法对其进行受力分析。

机械原理第二章2-1

机械原理第二章2-1

2 1
3 1 4
2
4
3
2. 机构
机构:若将运动链的一个构件固定为机架
时,运动链便成为机构。
构件的分类
机构中的构件可分为三大类: (1)机架 机构中固定不动的构件。 一个机构只有一个机架。 (2)原动件(主动件) 机构中按给定的已知运动规律独立运动的构件。 (3)从动件 机构中除原动件外的其余活动构件。 当确定原动件后,其余从动件随之作 确定的运动。
•根据运动副引入的约束数 •根据构成运动副的两构件之间的相对运动 •根据构成运动副的两构件之间的接触情况 •根据构成运动副的两构件的接触部分几何形状
运动副分类
根据运动副引入的约束数,运动副分为五级 I级副: 引入1个约束的运动副 Ⅱ级副:引入2个约束的运动副 Ⅲ级副:引入3个约束的运动副 Ⅳ级副:引入4个约束的运动副 Ⅴ级副:引入5个约束的运动副
圆柱副(cylindric pair)
球销副(sphere-pin pair)
环运动副(looping pair)
二、运动链(Kinematic Chain)和机构
1.运动链(Kinematic Chain)
2.机构
1.运动链(Kinematic Chain) 运动链
用运动副将两个或两个以上的构件连接 而成的系统称为运动链。
1 2 3 4
3
2 1
如果机构中有一个或多个高 副,则称此机构为高副机构。
机构
平面机构中的所有运动副一定是平面运动副, 但是只包含平面运动副的机构也可能是空间机构。
例如:
万向联轴节是空 间机构,该机构 只包含转动副 (平面运动副)
三、平面机构运动简图
1.机构运动简图的定义和目的 2.机构运动简图的作用 3.运动副和构件的表示方法 4.绘制机构运动简图的步骤

机械原理复习

机械原理复习

第四章 平面机构的力分析
作用在构件上的力
给定力
外加力 惯性力
驱动力 阻抗力 重力
约束反力 法向反力 切向力
静力分析 机构力分析
动态静力分析
静力分析——在不计惯性力的条件下,对机械进行力的 分析称为静力分析。
动态静力分析——将惯性力视为一般外加于相应构件上 的力,再按静力分析的方法进行力分析。
构件组的静定条件
C.运动副的相对位置 D.构件的形状和运动副的结构
(3)有一构件的实际长度L=0.5m,画在机构运动简图中的长度为
20mm,则画此机构运动简图时所取的长度比例尺是( D )。
A.25 B.25mm/m C.1:25 D.0.025m/mm
(4)用一个平面低副连接两个做平面运动的构件所形成的运动链
共有( C )个自由度。
A.0
B.1
C.4
D.6
(5)在机构中,某些不影响机构运动传递的重复部分所带入的约
束为( A )。
A.虚约束 B.局部自由度C.复合铰链 D.真约束
(6)机构具有确定运动的条件是( D )。
A.机构的自由度F≥0 B.机构的构件数N ≥ 4
C.原动件数W ≥ 1 D.机构的自由度F>0,并且F=原动
增加一个齿轮,使机构增加一个虚约束
计算机构的自由度:
局部自由度
n=7, PL=9, pH=2 F=3n-2PL-PH =3×7-2×9-2=1
复合铰链
三、机构具有确定运动的条件
1、F>0,当机构自由度和原动件数相等时, 机构具有确定的运动。 2、 F>0,但F>原动件时,机构的运动不确定。 3、当F>0,但F<原动件时,机构会遭到破坏.

机械原理课件第二章

机械原理课件第二章

1个虚约束
计算机构自由度典型例题分析
例三. 计算下图所示大筛机构的自由度。
1.分析: n = 7, PL = 9, PH = 1
2.计算 F =3n- 2PL-PH = 2 ,
此机构应有两个原动件
例 四 图示牛头刨床 设计方案草图。设计 思路为:动力由曲柄1 输入,通过滑块2使摆 动导杆 3 作往复摆动, 并带动滑枕4作往复移 动 ,以达到刨削加工 目的。 试问图示的构 件组合是否能达到此 目的? 如果不能,该 如何修改?
§2-6 计算机构自由度应注意的事项(续)
(3) 若两构件在多处相接触构成平面高副,且各接触 点处的公法线重合,则只能算一个平面高副。若公法线方 向不重合,就构成了复合高副,相当于一个低副,将提 供各2个约束。
(a)
(b)
©
§2-6
计算机构自由度应注意的事项(续)
例:计算图示凸轮机构自由度 解:F=3n-2 pl – ph
运动副引入的约束数等于两构件相对自由度减少的数目。
空间运动副引入的约束数最多为5个,平面最多为2个
§2-5 机构自由度的计算公式
◆ 平面机构自由度的计算公式
分析: 平面自由构件:3个自由度 平面低副:引入2个约束 平面高副:引入1个约束 假设平面机构有n个活动构件:
3n个自由度
有Pl个低副和Ph个高副: 引入(2 Pl +Ph)约束 平面机构的自由度计算公式:
F=3n-(2 pl + ph)=3n-2 pl - ph
◆自由度计算实例分析
四杆机构 五杆机构
F=3n-2 pl – ph =3×3 - 2×4-0=1
F=3n-2 Pl – Ph =3×4 - 2×5-0=2
计算下列机构的自由度并分析其运动

机械原理运动副.

机械原理运动副.

机构运动简图的绘制方法和步骤:
1.确定构件数目及原动件、输出构件; 2.根据各构件间的相对运动确定运动副的种类和数目; 3.选定比例尺,按规定符号绘制运动简图; 4.标明机架、原动件和作图比例尺;
机械原理
例1 颚式破碎机
§1-2、平面机构的运动简图
2
A B 1
3
4 C
D
机械原理
一、构件的自由度
§1-3、平面机构的自由度
面接触、相对转动或相对移动 低副
机械原理
§1-1、运动副及其特点: 点或线接触、沿接触点切线方向相对移动、绕接触点 的转动 高副
机械原理
运动副符号
§1-1、运动副及其分类
转动副
移动副
机械原理
1
1
§1-1、运动副及其分类
2
齿轮副
2
2
2
凸轮副
机械原理
参与形成两个运动副的构件
处理:排除。
2 1 4 3
2
1
5 4
3
F=3n-2PL-PH = 3 3 -2 4-0 =1
F=3n-2PL-PH = 3 4 -2 6- 0 =0 F=3n-2PL-PH =3 3-2 4 -0 =1


机械原理
虚约束常发生在下列情况
§1-3、平面机构的自由度
1、两构件在同一轴线上形成多个转动副。 2、两构件在同一导路或平行导路上形成多个移动副。
F =3n 2PL PH

F=3n2PL PH =3 3 24 0 = 1
F=3n2PLPH =32 2 2 1 = 1
机械原理
§1-3、平面机构的自由度
2.机构(运动链)具有确定相对运动的条件

机械原理知识点整理1-2章

机械原理知识点整理1-2章

机械原理知识点整理机器:一种能变换或传递能量、物料和信息的机构的组合。

机构:用来传递和变换运动和力的可动装置。

机械:机器和机构的总称。

机械原理的研究对象:机械。

构件:机器中每一个独立的运动单元体。

运动副:由两构件直接接触而组成的可动的连接。

运动副元素:两构件能参加接触而构成运动副的表面。

高副:两构件通过单一点或者线接触而构成的运动副。

低副:两构件通过面接触而构成的运动副。

复合运动副:由三个或三个以上的构件在同一处构成运动副。

运动链:构件通过运动副的连接而构成可相对运动的系统。

闭式运动链(闭链):组成运动链的各构件构成了首末封闭的系统。

开式运动链(开链):组成运动链的各构件未构成首末封闭的系统。

* 平面运动链:组成运动链的各构件间相对运动为平面运动;* 空间运动链:组成运动链的各构件间相对运动为空间运动。

机构组成:在运动链中,将某一构件固定成为机架,则该运动链便成为了机构。

原动件(主动件):机构中按给定的已经运动规律独立运动的构件;从动件:除了原动件以外的其余活动构件。

机构运动简图:根据机构的运动尺寸,按照一定的比例尺定出个运动副的位置,就可以用运动副及常用机构运动简图的代表符号和一般构件的表示方法将机构的运动传递情况表示出来。

绘制步骤:①首先定出原动件和执行构件;循着运动传递的路线搞清楚原动件的运动是怎样经过传动部分传递到执行构件的②选择多数构件的运动平面视为视图平面。

③根据机构的运动尺寸,定出各运动副之间的相对位置,然后用运动副的代表符号、常用机构运动简图符号和构件的表示方法将各部分画出。

)机构示意图:只是为了表面机械的机构状况,不按严格的比例来绘制简图。

机构的自由度:机构具有确定运动时所必须给定的独立运动参数的数目。

(要是机构具有确定的运动,则机构的原动件数目应等于机构的自由度的数目)机构自由度》1*欠驱机构(欠驱机械系统):原动件数目少于机构自由度的机构或机械系统。

(遵循最小阻力定律,例如:机器人避障,欠驱机械手指,欠驱制动器,等。

机械原理第10章 空间连杆机构及机器人机构概述

机械原理第10章  空间连杆机构及机器人机构概述

Fig.10-2 Spatial kinematic pairs 2(空间运动副2)
(4)Ⅳ类副 具有4个约束和2个自由度的运动副。图10-3a 所示的球销副中,由于球销的约束,仅保留2个转动自由 度。运动副符号如图10-3b所示,名称用S′表示。图10-3c中 的圆柱副中,仅保留沿轴线的移动和绕轴线的转动自由度, 运动副符号如图10-3d所示,名称用C表示。Ⅳ类运动副在 空间机构中应用较广泛。
10.1 空间连杆机构概述
1.空间连杆机构中的运动副
(1)Ⅰ类副 图10-1a所示的球放在平面上,形成点接触的高副,仅提供沿 二者公法线n—n方向的一个约束。 (2)Ⅱ类副 具有2个约束、4个自由度。图10-1b所示的圆柱平面副中,提 供沿z轴移动和绕x轴转动的2个约束,用CE表示圆柱平面副。图10-1c所 示的球槽副中,提供沿z轴移动和沿x轴移动2个约束,用SG表示球槽副, 它们是典型的Ⅱ类副。Ⅱ类副也很少应用。
例10-3 计算图10-8所示开链机器人机构自由度。
Fig.10-8 Open link robot mechanism (开链机器人机构)
10.2 机器人机构概述
1.串联机器人机构
串联机器人大都是开链机构,图10-9a所示机器人是3个 转动副、3个构件组成的串联机器人,也简称3R串联机器人。 串联机器人机构可以是平面开链机构,也可以是空间开链 机构。串联机器人一般由底座、腰部、大臂、小臂和腕部 组成,分别对应腰关节、肩关节、肘关节和腕关节。图109b为其机构简图。
Fig.10-3 Spatial kinematic pairs 3(空间运动副3)
(5)Ⅴ类副 具有5个约束、1个自由度的运动副。图10-4a所示的转动 副中,仅有一个绕轴线的转动自由度,运动副代表符号如图10-4b所示, 名称用R表示。图10-4c所示移动副中,仅有1个沿导路方向的移动自 由度,运动副代表符号如图10-4d所示,名称用P表示。图10-4e所示的 螺旋副中,沿轴线的移动和绕轴线的转动线性相关,所以只有1个移 动自由度,代表符号如图10-4f所示,名称用H表示。

机械原理简答题总结

机械原理简答题总结

第一章绪论基本概念1.机械:机器和机构的总称。

2.机构:用来传递与变化运动和力的可动装置。

3.机器:根据某种使用要求设计的执行机械运动的装置,可用来变换或传递能量、物料和信息。

第二章机构的结构分析1.何谓构件?构件与零件有何区别?试举例说明其区别。

构件是由一个或多个小零件刚性联接的独立运动单元体,它是机构组成的基本要素;而零件则是独立的制造单元,所有机器均由零件构成。

2.何谓运动副和运动副元素?运动副是如何进行分类的?由直接接触形成的可动联接为运动副;其接触表面称作运动副元素;运动副根据接触特性分为高副与低副;按照相对运动形式,可分为移动副、转动副、齿轮副、凸轮副和螺旋副;此外,依据引入的约束数目对它们进行分类。

I级副-V级副3.何谓高副?何谓低副?在平面机构中高副和低副一般各带入几个约束?齿轮副的约束数目应如何确定?点线接触为高副,面面接触为低副;各带入1个和2个约束;若两齿轮(条)固定则引入一个约束,不固定引入2个约束。

4.何谓运动链?运动链与机构有何联系和区别?通过运动副的联接而构成的可相对运动的系统;机构是具有固定构件的运动链。

5.何谓机构的自由度?在计算平面机构的自由度时,应注意哪些问题?机构具有确定运动是所必须给定的独立运动参数的数目,亦及必须给定的独立的广义坐标的数目,称为机构的自由度。

注意复合铰链(包含机架),去除局部自由度(某些构件产生的局部运动并不影响其他构件的运动),去除虚约束(在机构中,有些运动副带入的约束对机构的运动只起重复约束作用)。

6.既然虚约束对于机构的运动实际上不起约束作用,那么在实际机构中为什么又常常存在虚约束?虚约束是指对机构运动起不到实际约束作用的约束。

虚约束可以改善构件的受力情况,提高机构的刚度和强度,有于保证机械顺利通过某些特殊位置。

(尽量减少虚约束)7.机构具有确定运动的条件是什么?机构具有确定运动的条件是其原动件数目等于机构自由度的数目。

当不满足此条件时,若原动件少于自由度,机构运动将不确定;反之,若原动件多于自由度,则可能导致机构最薄弱环节的破坏。

机械原理基本知识点

机械原理基本知识点

机械原理基本知识点2机器里每一个独立的运动单元体称为一个构件。

两个构件直接接触而构成的可动的连接称为运动副。

自由度:机构具有确定运动时所必须给定的独立运动参数的数目。

高副:点线接触,2自由度。

低副:面接触,1自由度。

机械运动简图和机构示意图。

机构自由度:F=3n-(2Pl+Ph-p撇)-F撇(虚约束:重复约束)(局部自由度:产生局部运动而不影响其他构件的运动)复合铰链有n-1个转动副。

低副:移动副,转动副.自由度为1机构具有确定运动条件:原动件数等于其所具有的自由度。

基本杆组:最后不能再拆的最简单的自由度为零的构件组(2构三低,四狗六地)速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点,即为两构件的速度瞬心。

(Pij)三心定理:三个作彼此平面平行运动的构件的三个瞬心必位于同一直线上。

科氏加速度----是动点的转动与动点相对运动相互耦合引起的加速度。

科氏加速度的方向垂直于角速度矢量和相对速度矢量。

4运动副中摩擦力的确定:ψ=arctanf.摩擦圆半径ρ=fv·r.运动副中法向反力和摩擦力的合力称为运动副中的总反力。

总反力方向:1总反力与法向反力偏斜一摩擦角ψ。

2总反力Fr21与法向反力偏斜的方向与构件1相对于构件2的相对速度V12的方向相反。

构件组的静定条件:3n=2Pl+Ph总反力方位的确定:1不计摩擦时确定总反力的方向2计摩擦力时总反力与摩擦圆相切3轴承2对轴颈1的总反力对轴颈中心之距离的方向必与轴颈1相对于轴承2的相对较速度w12的方向相反。

(可根据铰接处两者转向判断,摩擦力与之相反,或总反力看作推力,推动摩擦圆与铰接处转向相反。

)5效率=理想比实际。

串联等于相乘,并联分别计算功率,理论功率比实际功率。

运动副自锁条件:作用在轴颈上的驱动力为单力F,且作用于摩擦圆之内,即a&lt;ρ.(力矩小于最大摩擦力矩)移动副自锁条件:作用于滑块的驱动力作用在其摩擦角之内。

6动平衡:惯性力与惯性力矩平衡。

机械原理课件第二章

机械原理课件第二章

Ⅲ级杆组
Ⅱ级杆组
计算自由度,高副低代
计算自由度 n=4,PL=5,PH=1
拆杆组
机构的组成
机构的分解
五杆机构
大筛机构
感谢下 载
感谢下 载
(①一定②不一定③一定不)
6、绘制机构运动简图的长度比例尺为

7、一个构件,它的实际长度
,在机构运动简图中,图示长度
AB=40mm,试问其长度比例lAB 尺 0.8m 。
8、在比例尺
的机构运动简图中,量得构件长度AB=20mm,
试问该构件 的0.00实5m/际mm长度 =

9、机构具有确定运动的条件是主动构件数 少于)机构的自由度数。
3. 运动副分类:
• 按接触形式分: (1)低副:面接触的运动副。 图 (2)高副:点或线接触的运动副。 图
第一节 机构的组成(3)
• 按相对运动形式分:
(1)平面运动副
转动副

移动副
高副

(2)空间运动副 • 圆柱副、球面副、螺旋副等。
第一节 机构的组成(4)
• 按运动副引入的约束数分:x个约束,x级副。 1级副、2级副、… • 构件的自由度:构件具有的独立运动的数目。
比例表示各运动副的相对位置。这种能够表达机构运动特性的简单图形称为 机构运动简图。
• 运动副、构件的表示:表2-2 • 常见机构表示:表2-3
第二节 机构运动简图(2)
• 二、机构运动简图绘制
• 1.分析机械的结构和动作原理,确定构件的数目。
• 2.分析构件间的相对运动,确定运动副的数目和类型。
• 3.选定视图投影面及比例尺μL=实际尺寸/图上尺寸(m/mm),顺序确定转动副和 移动副导路的位置,根据原动件的位置及各杆长等绘出各构件,得到机构运

机械原理

机械原理

1.机器的单元:构件和零件。

2.现代机械的组成;驱动装置 执行装置 传动装置 控制装置3.机构与机器的区别:机构是实现预期运动规律的实物组合体,而机器则是由各种机构组成的能实现预期机械运动并转换机械能,或完成有用功,或处理信息,以代替或减轻人的劳动的机构系统。

4.运动副:由两个构件组成的仍能产生某些相对运动的连接.5.高副:运动副元素以点或线接触的运动副.6.低副:动副元素以面接触的运动副。

7.机构的概念:机构—两个以上的构件通过可动联接形成的构件系统,各构件之间具有确定的相对运动。

8.机构的特征:(1)人为的实物组合体。

(2)各实体之间具有确定的相对运动。

9.机构的类型:机架,输入件、主动件或原动件,从动件。

⎪⎩⎪⎨⎧=<>>≤。

原动件数目,运动确定原动件数目,不能动。

运动不确定。

原动件数目运动链不能运动。

F F F F F ,0010.机构具有确定运动的条件:机构的原动件数应等于机构的自由度数.11.平面机构的组成原理: 机构都是由机架、原动件和从动件组构成的。

12.传动比:3个构件中的2个活动构件的绝对角速度之比,等于这2构件的相对瞬心到各自绝对瞬心距离的反比。

13.虚约束的作用a. 使受力状态更合理b. 使机构平衡c. 考虑机构在特殊位置的运动,保证机械顺利通过某些特殊位置等。

14.速度瞬心(瞬心):两个互相作平面相对运动的刚体(构件)上绝对速度相等(相对速度为0)的重合点。

15.区别:相对瞬心-重合点绝对速度不为零。

绝对瞬心-重合点绝对速度为零。

16.三心定理:三个做平面运动的构件应有三个瞬心,这三个瞬心必位于同一直线上。

17.自锁现象:在实际机械中,由于摩擦的存在以及驱动力作用方向的问题,有时会出现无论驱动力如何增大,机械都无法运转的现象,这种现象称为自锁。

18.自锁条件:不论作用于机械中的驱动力大小如何,机械在驱动力的方向可能产生的最大摩擦力大于或等于驱动力,则该机械必发生自锁。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据这一定律,可求得齿廓曲线与齿廓传动比的关系;也可 按给定的传动比来求得两轮齿廓的共轭曲线。
齿轮的齿廓曲线(2/2)
1)实现定传动比传动时两轮齿廓应满足的条件 无论两轮齿廓在何位置接触, 过接触点所作的两齿轮廓公法 线必须与其连心线相交于一定点。 故必为圆形齿轮传动。 2)实现变传动比传动时对两齿轮齿廓曲线的要求 要求两齿廓的节点按其传动比的变化规律在其连心线上移动。 故必为非圆齿轮传动。
第十章 齿轮机构及其设计
§10-1 齿轮机构的应用及分类 §10-2 齿轮的齿廓曲线 §10-3 渐开线齿廓的啮合特点 §10-4 渐开线标准齿轮的基本参数和几何尺寸 §10-5 渐开线直齿圆柱齿轮的啮合传动 §10-6 渐开线齿轮的变位修正 §10-7 斜齿圆柱齿轮传动 §10-8 蜗杆传动 §10-9 圆锥齿轮传动 §10-10 圆弧齿轮传动简介
上述参数即为渐开线齿轮的五个基本参数。
标准齿轮的基本参数和几何尺寸(3/3)
3.标准齿轮及其几何尺寸计算 (1)标准齿轮 是指 m、α、ha*、 c*均为标准值,且e=s的齿轮。 (2)标准齿轮的几何尺寸计算
一个标准齿轮的五个基本参数确定之后,其主要尺寸及齿廓形 状就完全确定。
1)标准直齿轮的几何尺寸计算 2)标准直齿轮的任意圆齿厚计算
(b)
式中inv αk称为渐开线函数(即展角θk),
是压力角αk的函数。
(3)渐开线的极坐标方程式
θk = inv αk = tan αk- αk
rk = rb / cos αk
(c)
渐开线齿廓的啮合特点(3/3)
3.渐开线齿廓的啮合特点 (1)渐开线齿廓能保证定传动比传动
i12 = ω1/ω2 = O2P/O1P = const (2)渐开线齿廓之间的正压力方向不变
4.齿条和内齿轮
(1)齿条:齿条的齿廓为直线;齿廓上各点压力角相同,等于 其齿形角。
(2)内齿轮:内齿轮的齿廓为内凹齿;齿根圆大于齿顶圆;齿 顶圆必须大于基圆。
§10-5 渐开线直齿圆柱齿轮的啮合传动
1.齿轮正确啮合的条件
一对渐开线齿轮在传动时,它们的齿廓啮合点都应位于其啮 合线上。因此要两轮能正确啮合,应使处于啮合线上的多对轮齿 能同时进入啮合。即应满足两齿轮的法向齿距相等,即
§10-3 渐开线齿轮的啮合特点
1.渐开线的形成及其特点 (1)渐开线的形成 (2)渐开线的特性
1)发生线沿基圆滚过的长度等于基圆上被滚过的弧长; 2)渐开线上任意点的法线恒切于基圆; 3)渐开线愈靠近基圆的部分,曲率半径愈小; 4)渐开线的形状取决于基圆的大小; 5)基圆内无渐开线。
2.渐开线的函数及渐开线方程式 在研究渐开线齿轮传动时,常常需要用到渐开线的函数及渐 开线数学方程式。
(1)渐开线压力角αk=∠BOK
渐开线齿廓的啮合特点(2/3)
αk= arccos (rb/rk)
(a)
结论 渐开线上的压力角是变化的, 随rk增大而增大。
(2)渐开线函数
( (
tan αk= BK/rb= AB/rb
= rb (αk +θk) / rb= αk + θk
故 inv αk = θk= tan αk- αk
系d=列zp表/π)。它为是便决于定设齿计轮、大计小算的、主制要造参和数检,验d,=令mzp。/π=m,m称为齿轮
的模数。
③ 压力角α,即分度圆压力角,并规定其标准值为α
=
20。。
它是决定齿轮齿廓形状的主要参数。
④ 齿顶高系数 ha*,其标准值为 ha* = 1。 ⑤ 顶隙系数 c*,其标准值为 c* = 0.25。
返回
§10-1 齿轮机构的应用及分类
1.齿轮机构的应用 (1)应用实例
例10-1 某航空发动机附件传动系统 例10-2 桑塔纳轿车的主传动系统 (2)传动特点 优点:① 齿轮传动用来传递空间任意轴间的运动及动力; ② 传递功率范围大; ③ 传动比准确; ④ 效率高、寿命长、安全可靠。 缺点: 制造成本较高。
分度圆 r,d
齿顶,齿顶高 ha
齿根,齿根高 hf
齿全高 h = ha +hf
基圆
rb, db
基圆齿距
Pb、Pn
o
标准直齿圆柱外齿轮
2.齿轮的基本参数 ① 齿数 z
标准齿轮的基本参数和几何尺寸(2/3)
② 模数 由m,于其齿单轮位的为分m度m圆,直且径已d标可准由化其了周(长表z1p0-确1,定标,准即模数
π m1cosα1= π m2cosα2

m1 = m2 = m
α1 = α2 = α
结论 一对渐开线齿轮正确啮合的条件是两轮的模数和压力 角应分别相等。
因渐开线齿廓之间的正压力方向沿其接触点的公法线方向, 即为啮合线,且为一定直线N1N2。 故在传动过程中,其正压力方 向是始终不变的。
(3)渐开线齿廓传动具有可分性 一对渐开线齿轮传动,即使两齿轮的实际中心距与设计中心
距有偏差,也不会影响其传动比的这一特性,称为渐开线齿轮传 动的可分性。这对于齿轮的装配和使用都是十分有利的。
2.齿轮机构的分类 (1)平行轴间的传动 (2)相交轴间的传动 (3)交错轴间的传动
齿轮机构的应用及分类(2/2)
外啮合传动 直齿轮传动 内啮合传动
齿条与齿轮传动 斜齿轮传动 人字齿轮传动
直齿圆锥齿轮传动 斜齿圆锥齿轮传动 曲线齿圆锥齿轮传动
交错轴斜齿轮传动 蜗杆传动 准双曲面齿轮传动
§10-2 齿轮的齿廓曲线
结论 正是由于上述优点,故渐开线齿轮传动获得十分广泛 应用。
§10-4 标准齿轮的基本参数和几何尺寸
1.齿轮各部分的名称和符号
pi
齿顶圆 齿根圆 齿厚 齿槽宽
ra,da
rf,df
任分意度圆圆齿齿厚厚 ssi 任分意度圆圆齿齿槽槽宽b
齿 距 任分意度圆圆齿齿距距 ppi==ssi++eei
一对齿轮传动是依靠它们的共轭齿廓来实现的。 所谓共轭齿廓是指两轮相互连续接触传动并能实现预定传动 比规律的一对齿廓。 1.齿廓啮合的基本定律 由瞬心概念知, 两轮的传动比为
i12=ω1/ω2=O2P/O1P 此式表明: 一对齿轮在任意位置时的传动比, 都与其连心 线O1O2被其啮合齿廓在接触点处的公法线所分成的两段成反比。 这个规律称为齿廓啮合基本定律。 点P 称为两轮的啮合节点(简称节点)。
相关文档
最新文档