直流斩波电路

合集下载

第3章直流斩波电路

第3章直流斩波电路

电容泵常用于小功率电源电路(IC) 由于不用电感,电磁干扰小
26
3.2.3
多重斩波电路:
多重斩波电路
等效频率升高,有利滤波平稳电流 可增大输出容量 可冗余备用,提高抗故障能力。
27
本章小结
本章介绍了6种基本斩波电路、2种复合斩波电路及多 相多重斩波电路。
本章的重点 降压和升压斩波电路,2,4象限斩波电路 ---- 原理,输入输出关系、分析方法、工作特点

5

E=200V ,Em=30V, R=1.0Ω,ρ=0.01 m=30/200=0.15 α=0.25, Io=(200*0.25-30)/1.0=20A---? Δi=0.01*0.25*(1-0.25)*200/1.0=0.375 A Io>Δi/2—io连续,Io有效 或: αc=0.15+0.01/8=0.151 α> αc ---……

6
降压斩波器I闭环驱动LED
LD—电流给定,CS—电流反馈
7
升压斩波电路 (Boost Chopper) 电路 ---利用L电势升压
储存电能
保持输 出电压
8
3.1.2 升压斩波电路
工作原理
α期间V通D断: L由 E充电; C向R放电。 β期间V断D通: E和L同时向C和R放电。 电流连续时输出平均电压: 按波形: UV =βUo 按电路: E-r*IL= Uv (电感UL=0 电容Ic=0) 略电源侧r Uo=E/β=E/(1- α) α↑ Uo↑ (同降压..
-∑In*rLn/3
In=(Un-Uo)/rLn可闭环控为Io/3
特点 (1)等效开关频率升为3倍,有利滤 波平稳电流. (2)可增大电流容量 (3)可冗余备用,提高抗故障能力

第5章 直流斩波电路

第5章  直流斩波电路
U0 D 1 D E
图5.21 Zeta斩波电路
图5.8 升压型斩波器主电路临界导通时的电压和电流的波形
5.3.2 连续导电模式
电流连续时升压型斩 波电路的工作波形如 图5.9所示。 输出电压
U0 T t o ff E 1 1 D E
图5.9 升压型斩波器电压与电流波形
5.3.3 断续导电模式
当E和D保持不变时, 若输出负载功率逐步 减小,其电流也逐步 减小。当小于临界电 流时,电流就会出现 断续,虽然电流峰值 ILm不变,但其输出 功率将减小。
图5.19 Cuk电路断续工作波形
5.6 其他形式斩波电路
5.6.1 Sepic斩波电路
5.6.2 Zeta斩波电路
5.6.1 Sepic斩波电路
图5.20是Sepic斩波电路的主 电路图。当VT处于通态时, E—L1—VT回路和C1—VT— L2回路同时导电,L1和L2储 能。VT处于断态时,E— L1—C1—VD—负载(C2和R) 回路及L2—VD—负载回路同 时导电,此阶段E和L1既向负 载供电,同时也向C1充电, C1储存的能量在VT处于通态 时向L2转移。 Sepic斩波电路的输入/输出关 系由下式给出: t E D E U
L
图5.5 断续状态下斩波器输出波形
5.2.4 输出电压纹波
斩波电路的输出端电 容不可能无穷大,而 是一个有限值,所以 输出电压含有脉动成 分。
图5.7 降压斩波电路的输出纹波
5.3 升压斩波电路(Boost电路)
5.3.1 电路结构与基本原理
5.3.2 连续导电模式 5.3.3 断续导电模式 5.3.4 输出电压纹波
5.2.1 电路结构与基本原理
假设VT、VD均为理想开关元件,并设VT的一个控制周期 为T。在t = 0时刻驱动VT导通,在ton导通期间内,电感L 中有电流通过,电流按指数曲线缓慢上升,负载电压等于 电源电压E。t = t1时刻,VT关断,负载电流经续流管VD 释能,输出电压近似为零,负载电流呈指数曲线下降。

直流斩波电路的性能研究(六种典型线路)

直流斩波电路的性能研究(六种典型线路)

直流斩波电路是一种常用于电力电子器件中的控制电路,用于将直流电源转换成可控的脉冲电压输出,常用于调节、变换和逆变等应用中。

以下是六种典型的直流斩波电路及其性能研究:1. 单元斩波电路:单元斩波电路是最基本的斩波电路,通过单个开关器件(如晶闸管或晶体管)控制输出电压的开关,简单实用。

2. 双元斩波电路:双元斩波电路采用两个开关器件进行控制,可以提高输出电压的精度和稳定性,适用于一定功率范围内的应用。

3. 三元斩波电路:三元斩波电路引入第三个开关器件,通常用于中功率的直流斩波调节电路中,提高了输出波形的质量和稳定性。

4. 逆变斩波电路:逆变斩波电路是将直流输入转换为交流输出的电路,通过斩波技术实现对输出波形的调节和控制,适用于各种逆变器应用。

5. 多电平斩波电路:多电平斩波电路通过控制多个开关器件的状态,实现输出波形的多级调节,提高了输出波形的谐波失真程度和效率。

6. 多电压级斩波电路:多电压级斩波电路结构复杂,但能够实现更高精度的输出电压控制和更低的谐波失真,适用于高要求的功率电子应用。

性能研究包括但不限于以下几个方面:-效率和功率因数:研究直流斩波电路的效率和功率因数,评估其能量转换效率和功率因数对系统整体性能的影响。

-波形质量:分析输出波形的谐波含量、波形失真度等指标,评估直流斩波电路对输出波形的调节和控制能力。

-动态响应特性:研究直流斩波电路的动态响应特性,包括开关速度、响应时间等参数,评估其对系统动态性能的影响。

-稳定性和可靠性:考察直流斩波电路在不同工况下的稳定性和可靠性,包括温度变化、负载变化等条件下的性能表现。

-成本和复杂度:综合考虑直流斩波电路的成本和复杂度,评估其在实际应用中的经济性和可行性。

通过对六种典型直流斩波电路的性能研究,可以全面了解各种电路结构的优缺点,为选择合适的直流斩波电路结构和优化设计提供参考和指导。

直流斩波电路的工作原理是什么

直流斩波电路的工作原理是什么

直流斩波电路的工作原理是什么
直流斩波电路的工作原理是通过控制开关管的导通和关断来改变输入直流电源的占空比,从而实现对输出电压的调节。

直流斩波电路由开关管、二极管、滤波电感和负载组成。

在工作原理上,当开关管导通时,输入直流电源的电能通过电感储存起来,并传递到负载上,此时电感中的电流逐渐增大;当开关管关断时,负载上的电能通过二极管的导通路径回流至电源侧,电感中的电流逐渐减小。

通过控制开关管导通和关断的时间比例,可以实现对输出电压的连续调节。

在工作过程中,当开关管导通时,电感储存的电能会通过滤波电容平滑输出,并为负载提供稳定的电压;当开关管关断时,二极管承担负载电流的传导,保证电压的连续性,同时由于开关管关断时的回流电流较小,也能减小功耗。

通过控制开关管的导通和关断时长及频率,可以实现直流斩波电路对输出电压的调节和稳定性控制,进而满足不同的电源需求和负载要求。

第三章 直流斩波电路

第三章   直流斩波电路

u1正半周:V1导通输出电压,V1关断时,V3 续流;
u1负半周:V2导通;V2关断 时,V4续流。 可通过改变占空比α调节输出电压的大小。
通过谐波分析可知,电源电流中不含有低次 谐波,只含有和开关周期T成反比的高次谐波, 这些高次谐波用很小的滤波器即可滤除。电路的 功率因数接近1。
4.1.2 三相交流调压电路
这种电路常用于电炉的温度控制等时间常数很 大的负载中,以周期为单位进行控制足够了。 当晶闸管导通时刻是正弦波的起始点时,在电 源电压接通期间,负载电压是正弦波,没有谐 波污染。
4.2.2 交流电力电子开关
把反并联的晶闸管串入交流电路中起 接通和断开电路的作用,这就是交流电力 电子开关。其作用是代替电路中的机械开 关。
以交流电的周期(2π)为单位来控 制晶闸管的通断,从而调节输出平均功率 的电路,称为交流调功电路。
设控制周期为M,晶闸管在前N个周期导通, 后M-N个周期关断。
当M=3、N=2时的电路波形如图4-13所示。
调功电路和调压电路的电路形式完全相同,只 是控制方式不同。因其直接调节对象是电路的 平均输出功率,所以被称作交流调功电路。
1)T不变,调节ton,称为脉冲宽度调制,简称PWM; 2) ton不变,改变T,称为频率调制或调频型; 3) ton和T 都调节,称为混合型。 其中第一种方式使用最多。
3.1.2 升压斩波电路
1、工作原理:
当V导通时,E向L补充电能,充电电流为I1,C向负载R 供电,u0基本恒定。 当V阻断时,E和L共同向C充电,并向负载提供能量。
S U1I 0 U1 2
α的移项范围为0°——180°。
2、阻感负载
若把α=0点仍定在电源电压的零点,显然, 阻感负载下稳态时α的移项范围应为 φ<=α<=π。其中负载的阻抗角为φ,负载电 流应滞后于电源电压u1φ角度。在用晶闸管控制 时,很显然只能进行滞后控制,使负载电流更为 滞后,而无法使其超前。

直流斩波电路

直流斩波电路

图3-8 可关断晶闸管电极判别
(3)可关断晶闸管触发特性测试
如图3-9所示。将万用表置于R×1档,黑表笔 接可关断晶闸管的阳极A,红表笔接阴极G悬空,这 时晶闸管处于阻断状态,电阻应为无穷大(∞), 如图3-9(a)所示。
(4)可关断晶闸管关断能力的初步检测
测试方法如图3-10所示。采用1.5V干电池一节, 普通万用表一只。
3.1.4绝缘栅双极晶体管
1.IGBT工作原理 由结构图可知,IGBT相当于一个由MOSFET
驱动的厚基区GTR。其剖面图见图3-21, N沟道IGBT的图形符号如图3-22所示。
图3-21 IGBT结构剖面图
图3-22 N-IGBT图形符号
2.IGBT主要特性
(1)静态特性
IGBT的静态特性包括转移特性和输出特性。
图3-16 功率MOSFET的输出特性
图3-17 功率MOSFET的转移特性
图3-18 功率MOSFET开关过程的电压波形
3.功率MOSFET 的主要参数 (1)通态电阻Ron (2)开启电压UGS(th) (3)跨导gm (4)漏源击穿电压BUDS (5)栅源击穿电压BUGS 4.功率MOSFET的安全工作区
IGBT的转移特性是描述集电极电流IC与栅射电压 UGE之间关系的曲线,如图3-23(a)所示。
图3-23(b)是以栅源电压UGE为参变量的IGBT正 向输出特性,也称伏安特性 。
(2)动态特性
IGBT的动态特性也称开关特性,包括开通和关 断两个部分,如图3-24所示。
图3-23 IGBT的静态特性曲线 (a)转移特性 (b)输出特性
图3-9 可关断晶闸管触发特性简易测试方法
图3-10 可关断晶闸管的Leabharlann 断能力测试3.1.2电力晶体管

直流斩波电路 PPT

直流斩波电路 PPT

√负载电流平均值为
Io
Uo
Em R
(5-2)
☞电流断续时,负载电压uo平均值会被抬高,一般不希望出现电流断续的情 况。
5.1.1 降压斩波电路
◆斩波电路有三种控制方式
此种方式应 用最多
☞脉冲宽度调制(PWM):T不变,改变ton。
☞频率调制:ton不变,改变T。
☞混合型:ton和T都可调,改变占空比
5.1.1 降压斩波电路
■例5-1 在图5-1a所示的降压斩
波电路中,已知E=200V, R=10Ω,L值极大,Em=30V, T=50μs,ton=20s,计算输出电
压平均值Uo,输出电流平均值Io。
解:由于L值极大,故负载电流连续,于是输出电压平均值为
U otT on E2 5 02008 0(V 0)
➢ 在整个周期T中,负载消耗的能量为 Ro 2 T IE M Io T
一周期中,忽略损耗,则电源提供的能量与负载消耗的能量相等。
Eoto In Ro 2T IE M IoT
假设电源电流平均值为I1,则有
Io
EEM
R
I1 tTonIo Io
其值小于等于负载电流Io,由上式得
E1 I Eo IU oIo
☞主要用于电子电路的供 电电源,也可拖动直流电动机
或带蓄电池负载等,后两种情
况下负载中均会出现反电动势, 如图中Em所示。
3.1.1 降压斩波电路
2) 工作原理
t=0时刻驱动V导通,电源E 向负载供电,负载电压uo=E, 负 载 电 流 io 按 指 数 曲 线 上 升 。
t=t1 时 控 制 V 关 断 , 二 极 管 VD续流,负载电压uo近似为 零,负载电流呈指数曲线下 降。

单片机第三章直流斩波电路n

单片机第三章直流斩波电路n

滤波原理
直流斩波电路通过滤波电路对 高频脉冲进行滤波,得到稳定 的直流输出。
控制原理
直流斩波电路通过控制器对开 关元件的控制信号进行调节, 实现对输出的精确控制。
直流斩波电路的基本结构
控制器
控制器负责生成开关元件的控制 信号,用于调节电源的输出。
开关元件
滤波电路
开关元件是直流斩波电路的核心 部分,负责快速切换电源的输出。
优点
• 高效率 • 精确控制 • 能量回收
局限
• 电磁干扰 • 纹波幅度 • 成本较高
直流斩波电路的未来发展趋势
随着电力电子技术的不断进步,直流斩波电路将进一步提高电压和电流的调 节精度,降低纹波幅度,并应用于更广泛的领域,如新能源和电动汽车。
直流斩波电路的作用
电压/电流调节
直流斩波电路能够调节直流电源的输出电压或电流,满足特定的需求。
能量回收
直流斩波电路可实现电能的回收利用,减少能源的浪费。
电机驱动
直流斩波电路可用于控制电机的速度和转向,实现高精度的电机控制。
直流斩波电路的原理
切换原理
直流斩波电路通过开关元件的 快速切换,将直流电源的输出 转换为高频脉冲。
直流斩波电路
直流斩波电路是一种用于调节直流电源输出的电路,通过切换电源的开关来 改变输出电压或电流。
直流斩波电路的定义
1 调节直流电源
直流斩波电路可通过高频开关路由,调节直流电源的输出电压或电流。
2 重要组成部分
直流斩波电路主要由控制器、开关元件和滤波电路组成。
3 作为电源变换器
直流斩波电路也可以将直流电源转换为交流电源。
滤波电路对高频脉冲进行滤波, 使输出稳定且纹波尽可能小。
直流斩波电路的应用示例

直流斩波电路

直流斩波电路

NCP1402SN50T1 1N5817 +5
NCP1402SN50T1是ONSEMI公司生产的高效率、低功耗升压型DC/DC转换器, 其内置PFM(脉冲频率调制)振荡器、PFM控制器、PFM比较器、软起动电路、 电压基准及MOEFET开关管,还具有限流电路。其输入电压范围为0.8V~5.5V, 输出为固定的5V电压,输出额定电流为200mA。 内 部 MOSFET 开 关 管 导 通 时 , 管 脚 LX 连 接 的 47uH 电 感 进 行 储 能 ; 内 部 MOSFET开关管关断时,电感释放能量,在管脚OUT产生高于输入电压的+5V, 通过电容滤波,得到稳定输出电压。外接肖特基二极管,使输出电压不会反回至 输入端。
1 2
U
ref
R = 1 .2 5 1 + R
1 2

合肥工业大学电气工程学院电力电子与电力传动教研组
DC-DC变换 DC-DC变换
3.通过三极管变换
合肥工业大学电气工程学院电力电子与电力传动教研组
直流斩波电路分析
直流斩波电路(DC Chopper) • 将直流电变为另一固定电压或可调电压的直流电 • 也称为直接直流--直流变换器(DC/DC Converter) • 一般是指直接将直流电变为另一直流电,不包括直流—交流—直流 • 习惯上,DC—DC变换器包括以上两种情况,且甚至更多地指后一种情况 • 直流斩波电路的种类 • 6种基本斩波电路:降压斩波电路、升压斩波电路、升降压斩波电路、Cuk 斩波电路、Sepic斩波电路和Zeta斩波电路,其中前两种是最基本的电路 • 复合斩波电路——不同基本斩波电路组合 • 多相多重斩波电路——相同结构基本斩波电路组合
(3-1)

第3章 直流斩波电路

第3章 直流斩波电路

EIoton = RI T + EM I oT
2 o
I
o
=
αE − E
R
M
在上述情况中, 值为无穷大,负载电流平直的情况。 在上述情况中,均假设L值为无穷大,负载电流平直的情况。这 种情况下, 种情况下,假设电源电流平均值为I1,则有
t on I1 = Io = αIo T
EI 1 = α EI o = U o I o
1、升降压斩波电路 、
基本工作原理
i1 V i2 VD IL E uL L C uo R
V通时,电源E经V向L供电使其贮能,此时 通时,电源E 供电使其贮能, 同时, 电流为i1。同时,C维持输出电压恒定并向 负载R供电。 负载R供电。
i1 IL
a) ton toff
V断时,L的能量向负载释放,电流为i2。 断时, 的能量向负载释放, 负载电压极性为上负下正, 负载电压极性为上负下正,与电源电压极性 相反, 相反,该电路也称作反极性斩波电路
I 20 = I10 e

t on
τ
EM + R
− 1 − e τ
t on

I 10 = I 20 e

t off
τ
E − Em − R
t off − 1 − e τ
解上两式得: 解上两来自得:t − off EM 1 − e τ I10 = − T − R τ 1− e
分别是负载电流瞬时值的最小值和最大值。 由图3-1b可知,I10和I20分别是负载电流瞬时值的最小值和最大值。 可知, 用泰勒级数近似有: 用泰勒级数近似有:
I 10 ≈ I 20 ≈

− m )E = Io R

直流斩波电路

直流斩波电路
T
0 uL d t 0
V处于通态
uL = E
E ton Uo toff
V处于断态
uL = - uo
所以输出电压为: U o
ton toff
E ton T ton
E 1
E
升降压斩波电路和Cuk斩波电路
结论
当0<a <1/2时为降压,当1/2<a <1时为升压,故称作升
降压斩波电路。也有称之为buck-boost 变换器。
US
U0
L diL dt
L I ton
t=t1时刻,驱动V关断,在时间内, 电路工作于模式2。VD承受正向 电压而导通,电感L释放储能, 电感电流经VD续流,并呈指数规 律下降。电容C上旳电流为电感 电流与负载电流之差。假如L和C 参数选择合适,负载R上旳电流 基本维持不变,
U0
L
diL dt
L I T ton
因为L和C数值合适时,负载电流维持为Io不变 电源只在V处于通态时提供能量,为 UsIoton 在整个周期T中,负载消耗旳能量为 RIo2T
一周期中,忽视损耗,则电源提供旳能量与负载消耗旳能量相等。
Us Ioton RIo2T
Us I1 Uo Io Uo Io
Io
U s
R
I1
U0
ton
T
t on T
△U
ton
0
T
开通 关断
t
i
0 t
图6.5 平均控制方式波形
3、时间比与瞬时值混合控制方式
此种控制方式是前面两种控制方式旳结合,合用于要求电 流(或电压)按时间比喻式输出,同步又要求控制输出电 流(或电压)瞬时值旳场合。
6.2 基本斩波电路

直流斩波电路

直流斩波电路

(1)直流-直流变流电路(DC-DC )定义:将一种直流电变为另一固定电压或可调电压的直流电的装置。

(2)常见的直流-直流变流电路为直流斩波电路。

(3)基本直流斩波电路为:降压斩波电路和升压斩波电路。

降压斩波电路电路原理图(1)包含全控型器件V ,由IGBT 组成。

(2)包含续流二极管VD ,作用是保证IGBT 关断时给负载中电感电流提供通道。

(3)负载:直流电动机,两端呈现反电动势m E 。

(4)分析前提:假设负载中电感值很大,即保证电流连续。

工作原理分析(1)给出IGBT 的栅射极电压GE U 波形,即G i 波形,周期为T 。

(2)10t -(on t )期间:IGBT 导通,电源E 向负载供电,负载电压E U =o ,由于电感存在,因此负载电流不能突变,所以按指数曲线上升。

(3)T t -1(of f t )期间:控制IGBT 关断,负载电流经过续流二极管VD 续流,负载电压基本为0,负载电流呈现指数曲线下降。

(4)当负载电感值较大时,负载电流连续而且脉动小。

公式(1)负载电压平均值:E E Tt U on α==o ,其中α为占空比。

(2)电感L 极大时,负载电流平均值:R E U I m o -=o 。

计算题:例5-1总结(1)通过改变降压斩波电路的占空比大小,就可以改变输出负载电压的平均值。

电路原理图(1)包含全控型器件V ,由IGBT 组成。

(2)包含极大值的电感L 和电容C 。

(3)负载为电阻R 。

工作原理分析(1)当IGBT 导通阶段:● 电源E 向电感L 充电,充电电流为恒定电流1I ;●电容C 上的电压向负载R 供电,因C 值很大,因此输出电压为恒值o U 。

●通态时间为on t ,此阶段电感L 上积蓄能量为on t EI 1。

(2)当IGBT 关断阶段:●电源E 和电感L 共同向电容C 充电,并向负载R 提供能量。

● 此期间,电感L 释放的能量为off t I E U 1o )(-。

第六章直流斩波变换电路-精品文档

第六章直流斩波变换电路-精品文档

平均负 载电流
在给定T、UO、L和k等参数的条件下,如果平均输 出电流或平均电感电流小于由上式给出的ILB值,那 么iL将不再连续。
6.1 降压式斩波变换电路

三、电流不连续导通时的工作模式 电流不连续导通的工作模式分为输入电压Ud不变和输出 电压UO不变两种情况,这里主要介绍Ud不变的非连续导 通模式。
图6-5 临界连续时的电压、电流波形
6.1 降压式斩波变换电路
电流临界连续时 i0min=0

平均电感电流
1 1 I ( i i ) i LB 0 max 0 min 0 max 2 2
t kT on I ( U U ) ( U U ) I LB d O d O O B 2 L 2 L
图6-1 直流变换系统的结构图
第一节 降压式斩波变换电路
一、基本斩波器的工作原理
降压式斩波电路的输出电压平均值 低于输入直流电压Ud 。
最基本的降压式斩波电路如图 6-2 所示: Q 为斩波开关,是斩波电 路中的关键功率器件,它可用普 通型晶闸管、可关断晶闸管 GTO 或者其它自关断器件来实现。
Q交替通断,在负载上就可得到方 波电压。
第六章 直流斩波变换电路
直流斩波电路:将一个固定的直流电压变换成大小可变的直 流电压的电路。也称之为直流变换电路。 直流斩波技术的应用:被广泛应用于开关电源及直流电动机 驱动中,如不间断电源(UPS)、无轨电车、地铁列车、蓄电 池供电的机动车辆的无级变速及电动汽车的控制。从而使上 述控制获得加速平稳、快速响应的性能,并同时收到节约电 能的效果。 直流变换系统的结构如图6-1所示:
CC 22 2 8 C
2 2 T ( 1 k ) U f 0 1 C2 ( 1 k )( ) 其纹波电压相对值: U 8 LC 2 fs 0

直流斩波电路

直流斩波电路

直流斩波电路简介直流斩波电路(DC Chopper)是一种用来控制直流电动机的电路。

它可以为直流电机提供高效的调速和转向控制,因此在工业应用中非常广泛。

直流斩波电路主要由斩波器、控制电路和直流电源组成。

斩波器是控制电动机转速和方向的核心部分,它通过调节输出电压和电流的波形来实现电机的控制。

控制电路则通常采用微处理器或单片机,用来控制斩波器的工作状态和输出信号的频率、幅值和相位。

直流电源则是为整个系统提供电能,以保证电机能够正常运行。

斩波器斩波器是直流斩波电路中最重要的部分,它通常包括一个开关器件和一个电感元件。

开关器件可以是晶闸管、MOSFET管、IGBT管等。

而电感元件则是用来限制输出电流和平滑输出电压波形的。

在斩波器中,当开关器件导通时,电感元件会吸收输入电源中的能量,同时输出电压也会上升。

而当开关器件关断时,电感元件会反向放电,同时输出电压也会下降。

通过改变开关器件的工作状态,我们就可以改变电源的输出电压和电流波形,从而实现对电动机的控制。

控制电路在直流斩波电路中,控制电路主要负责控制斩波器的开关状态。

控制电路通常由微处理器或单片机实现,可以使用PID等算法来控制输出电压和电流的稳定性和响应性。

控制电路同样可以控制输出信号的频率、幅值和相位。

这些信号不仅可以控制电动机的运行状态,还可以用来监测电机的转速和位置,以实现更加精确的控制。

直流电源直流电源是为整个电路提供电能的部分,它的稳定性和可靠性对整个电路的运行非常重要。

在直流斩波电路中,直流电源通常采用整流电路和充电电路的结合,以实现对电池的充电和电机运行的供电。

直流电源的质量也直接影响了斩波器和控制电路的稳定性,因此需要特别注意。

应用直流斩波电路可以应用于各种不同类型的电机控制,包括直流电动机、无刷直流电机和步进电机等。

它的高效能和高精度控制使得它在精密控制和节能降耗等方面具有广泛的应用前景。

除此之外,直流斩波电路还可以应用在光伏逆变器、风力发电机、电子变压器等领域中,以实现对电能的转换和传输。

直流斩波

直流斩波
u
开关器件
+
ud -
uo
图5-1 斩波器原理示意图
uo
Ud Uo t
5.1
直流斩波电路基本原理
ud u udd 1
斩波电路的控制
时间比控制方式
定频调宽式(脉冲宽度控制PWM)
开关器件的触发频率恒定,调节脉冲宽度τ。
1
toff
ud u udd
t
2T T1 T1
ton tton on
四 象 限 斩 波
电压极性可变、电流极性也可变
V1 E V2 VD1 VD2 L uo R io M EM V4 VD3 V3 VD4
图5- 9 全桥式斩波电路

•V1、VD1+ V4、VD4=B型两象限斩波器 V1、V4导通时,uo>0,io>0;电机吸收能量,io增加 io > 0,Uo可正可负,位于第一、四象限。 VD1、VD4导通时,uo<0,io>0;电机释放能量,io减小 •V2、VD2+ V3、VD3=B型两象限斩波器(左右翻转) V2、V3导通时,uo<0,io<0;电机反方向吸收能量,io增加 io < 0,Uo可正可负,位于第二、三象限。 VD2、VD3导通时,uo>0,io<0;电机反方向释放能量, io减小 •组合后 Io、Uo 极性均可变,电机可四象限运行。
EI Lton (U 0 E ) I Ltoff
化简得:
Uo
ton toff toff
T E E toff
T/toff>1,输出电压高于电源电压,故称该电路为 升压斩波电路
5.2.3
i1
升降压斩波电路
V i2 VD IL E uL L C uo R

第5章---直流斩波电路

第5章---直流斩波电路

降压斩波电路 (Buck Chopper)
电路构造
全控型器件 若为晶闸管,须 有辅助关断电路。
续流二极管
负载 出现 旳反 电动 势
经典用途之一是拖动直流电动机,也可带蓄电池负载。
5.1.1
工作原理
降压斩波电路
V
L io R
E
iG
VD uo
t=0时刻驱动V导通,电源E向
负载供电,负载电压uo=E,负 载电流io按指数曲线上升。
高; 6. 直流电源采用不可控三相整流时,电网功率因数高。
5.2.3 多相多重斩波电路
➢ 基本概念 多相多重斩波电路
在电源和负载之间接入多种 构造相同旳基本斩波电路而
构成
相数 重数
一种控制周期 中电源侧旳电
流脉波数
负载电流脉波数
5.2.3 多相多重斩波电路
3相3重降压斩波电路
电路构造:相当于由3个 降压斩波电路单元并联 而成。
t2
E
+
M EM
-
t
t
t t t
O
EM
t
c) 电流断续时旳波形
图5-1 降压斩波电路得原理图及波形
5.1.1 降压斩波电路
数量关系
电流连续
负载电压平均值:
Uo
ton ton toff
E ton T
E E
(5-1)
ton——V通旳时间 toff——V断旳时间 a--导通占空比
负载电流平均值:
5.2.1 电流可逆斩波电路
电路构造
V1和VD1构成降压斩波电路,电动机 为电动运营,工作于第1象限。
V2和VD2构成升压斩波电路,电动机 作再生制动运营,工作于第2象限。 uo

直流斩波电路

直流斩波电路
➢ 令比T的/倒tof数f为为升b压,比即,b=调tof节f/T其,大则小它,与即导可通改占变空输比出的电关压系U有0的:大a小+b。=1若令升压 ➢ 因此,输出电压可表示为:
U0
1
E
1
1a
E
9
2 升压斩波电路的典型应用
• 一是用于直流电动机传动
• 二是用作单相功率因数校正 (PFC)电路
• 三是用于其他交直流电源中
L
VD
M
EM
V uo
E
a)
uo
E
uo
E
O
t
O
t
i
i1
i2
io
I10
I20
I10
i1
i2
I20
O
ton
toff
T
t
O
ton
t 1 tx
t2
t
t off
T
b)
c)
图3-3 用于直流电动机 回馈能量的升压斩波电 路及其波形 a) 电路图 b) 电流连续时 c) 电流断续时
10
3.1.3 升降压斩波电路和Cuk斩波电 路
第3章 直流斩波电路 (DC/DC变换)
直流斩波电路有时也称为直流-直流变换器。它是将 一种一种直流电压等级转变为另一种电压等级,或固定 为某一电压等级。
3.1 基本斩波电路 3.2 复合斩波电路和多相多重斩波电路
1
3.1 基本斩波电路
3.1.1 降压斩波电路 3.1.2 升压斩波电路 3.1.3 升降压斩波电路和Cuk斩 波电路 3.1.4 Sepic斩波电路和Zeta斩波 电路
i1(t)dt
0
tx 0
i2
(t)dt
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直流斩波电路工作原理主要依赖于全控电力电子器件,如可关断晶闸管(GTO)、电力晶体管(GTR)等。这些器件具有耐压高、电流大等特性,适用于高压、大容量场合。以GTO为例,它是一种四层三端半导体器件,通过门极控制器件的导通和关断。还有最大可关断阳极电流、关断增益等主要参数,对门极驱动也有特定要求。类似地,GTR也是一种耐高电压、大电流的双极结型晶体管,其工作原理和特性与GTO有所不同,但同样在直流斩波电路中发挥着重要作用。除了这些全控电力电子器件外,直流斩波电路还包括基本和其他类型的电路,这些电路的设计和工作原理都是基于满足特定的电力电子应用需求。
相关文档
最新文档