一元二次方程的公共根-讲义

合集下载

一元二次方程公共根

一元二次方程公共根

一元二次方程公共根问题若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题, 两个一元二次方程只有一个公共根的解题步骤:1.设公共根为α,则α同时满足这两个一元二次方程;2.用加减法消去α2的项,求出公共根或公共根的有关表达式;3.把共公根代入原方程中的任何一个方程,就可以求出字母系数的值或字母系数之间的关系式.一、公共根问题二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.二、整数根问题对于一元二次方程20ax bx c ++=(0)a ≠的实根情况,可以用判别式24b ac ∆=-来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程20ax bx c ++=(0)a ≠有整数根,那么必然同时满足以下条件:⑴ 2∆=⑵ 2b ak -=或2b ak --,其中k 为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a 、b 、c 均为有理数)三、方程根的取值范围问题先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围1 已知一元二次方程x 2-4x +k =0有两个不相等的实数根, (1)求k 的取值范围.(2)如果k 是符合条件的最大整数,且一元二次方程x 2-4x +k =0与x 2+mx -1=0有一个相同的根,求此时m 的值.2 若两个关于x 的方程x 2+x +a =0与x 2+ax +1=0只有一个公共的实数根,求a 的值3 已知a >2,b >2,试判断关于x 的方程x 2-(a +b )x +ab =0与x 2-abx +(a +b )=0有没有公共根,请说明理由.4求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求ab b a b a a a --++的值6已知关于x 的两个一元二次方程:方程①:01)2()21(2=-+++x k x k方程②:032)12(2=--++k x k x(1)若方程①有两个相等的实数根,求解方程②;(2)若方程①和②中只有一个方程有实数根,请说明此时哪个方程没有实数根,并化简2)4(1241++-k k (3)若方程①和②有一个公共根a ,求代数式a a k a a 53)24(22++-+的值.练习:1.已知关于x 的一元二次方程062=+-k x x 有两个实数根。

奥数新讲义-一元二次方程-整数根公共根4学

奥数新讲义-一元二次方程-整数根公共根4学

第三讲 一元二次方程4:整数根、公共根一、 基础知识1.一元二次方程的根为有理数对于有理系数的一元二次方程20(0)ax bx c a ++=≠,在240b ac ∆=-≥时,方程有实根,且:方程有有理根−−→←−−24b ac ∆=-为完全平方数(有理数平方) 2.一元二次方程的根为整数(1)对于整系数的一元二次方程20(0)ax bx c a ++=≠,如果有整数根,则必须满足以下两个条件:24b ac ∆=-为完全平方数(自然数平方);24b b ac -±-是2a 的整数倍;(2)在首项系数为1的整系数方程20x px q ++=(p 、q 为整数)的判别式24b ac ∆=-为一个完全平方数,则方程的根为整数,反之,亦成立;(3)对于整系数的一元二次方程20(0)ax bx c a ++=≠,若a 、b 是偶数,c 是奇数,则该方程无整数根;(4)整系数的一元二次方程20(0)ax bx c a ++=≠,若a 、b 、c 都是奇数,且240b ac ∆=->,则方程20(0)ax bx c a ++=≠无整数根.3. 一元二次方程公共根:二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.二、 整数根问题例1已知方程224(1)3240x m x m m k --+-+=对任意有理数m 都有有理根,求k 的值.1.整数根讨论:利用判别式例2不解方程,判定下列各方程的实数根是否是整数根:○123180x x +-=;○228590x x +-=;○322450x x +-=;○42323870x x +-=例3已知420m ≤<,当m 为何值时,方程222(23)41480x m x m m --+-+=有两个整数根?例4整数a 取何值时,方程2(6)0x a x a --+=有两个整数根?例5设m 、n 为整数,证明方程210530x mx n +-+=没有整数根;例6当m 为什么整数时,关于x 的一元二次方程2440mx x -+=与2244450x mx m m -+--=的根都是整数?2.整数根讨论:利用求根公式例7 若直角三角形的两条直角边都是整数,且是方程2210mx x m --+=的根,m 为整数,这样的三角形是否存在?若存在,求出满足条件的所有三角形的三边长,若不存在,请说明理由.例8 设关于x 的二次方程2222(68)(264)4k k x k k x k -++--+=的两根都是整数,求满足条件的所有实数k 的值.3.整数根讨论:利用韦达定理例9 求所有正实数a ,使得方程240x ax a -+=仅有整数根;例10 当m 为什么整数时,关于x 的方程2(1)10x m x m +-++=的两根都是整数?例11 求满足如下条件的所有k 值,使关于x 的方程2(1)10kx k x k +++-=的根都是整数;例12 试确定所有的有理数r ,使得关于x 的方程2(2)320rx r x r +++-=有且只有整数根;4.整数根讨论:变换主元例13试求所有这样的正整数a ,使方程22(21)4(3)0ax a a x a +-+-=至少有一个整数根.例14设方程222170a x ax a ++-=的两根都是整数,求所有正数a ;5.整数根讨论:综合运用例15 求所有的正整数a 、b 、c ,使得关于x 的方程2320x ax b -+=;2320x bx c -+=;2320x cx a -+=的所有根都是正整数.例16 若方程20x mnx m n -++=有整数根,且m 、n 为自然数,则m 、n 可以分别为多少?三、公共根问题【例1】 求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.【例2】 设,,a b c 为ABC ∆的三边,且二次三项式222x ax b ++与222x cx b +-有一次公因式,证明:ABC ∆一定是直角三角形.【例3】 三个二次方程20ax bx c ++=,20bx cx a ++=,20cx ax b ++=有公共根.⑴ 求证:0a b c ++=;⑵ 求333a b c abc++的值.【例4】 试求满足方程270x kx --=与26(1)0x x k --+=有公共根的所有的k 值及所有公共根和所有相异根.【例5】 二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求b ab a a b a b --++的值.练习题1. b 、c 是整数,如果一元二次方程220x bx c --=有整数根,那么,必有( )A .0b c ==B .20b c +=C .2b c +是整数的平方D .2b c +是偶数的平方2.若260x mx +-=的两根都是整数,则m 可以取值的个数是( )3.设二次方程2220x px q ++=有实根,其中p 、q 都是奇数,那么它的根一定是( )A .奇数B .偶数C .分数D .无理数 4已知关于x 的一元二次方程20x px q ++=有两个不相等的整数根,p 、q 是自然数,且是质数,这个方程的根为_______;5.方程20x px q ++=的两根都是正整数,且1992p q +=,则方程较大根与较小根的比等于_________;6.已知p 为质数,且方程24440x px p +-=有两个整数根,则p =________;7.已知方程22(1)2(51)240a x a x --++=有两个不等的负整数根,则a 的值是多少?8.方程()(8)10x a x ---=有两个整数根,求a 的值;9. 若关于x 的方程()()()26911715540k k x k x ----+=的解都是整数,则符合条件的整数k 的值有_______个.10. 已知关于x 的方程()21210a x x a -+--=的根都是整数,那么符合条件的整数a 有______个.11. 当m 为整数时,关于x 的方程()()2212110m x m x --++=是否有有理根?如果有,求出m 的值;如果没有,请说明理由.。

公共根

公共根

一元二次方程是中学代数中最重要的
内容之一,它是代数式简单方程的发展,同时
也是学习其他方程、函数、不等式的重要基
础.尤其,探索一元二次方程的公共根、有理
根、整数根等问题,蕴含着丰富的数学思想.
成为各类竞赛中重要考点之一,近几年的中
考中,逐渐渗透了类似题型及数学思想,值得
观注.
下面简单介绍一下此类题的常用解题方
法及经验。

l 公共根
例1 如果方程x2-px+2q=0,x2-qx+2p=0(p≠q)有公共根,求公共根.解因为两方程有公共根,则两式相
减,整理得(p—q)(菇+2)=0,
因为p≠g,所以茄=一2.
即戈=一2是方程的公共根.
例2 已知两方程菇2+僦+凡=O,石2+
麟+m=O有且仅有一个公共根,求m,凡的
关系.
解两式相减,整理得:
(m—n)(舅一1)=O,
因为方程公共根唯一,所以m一凡≠0.
所以口=1,把Ⅱ=l代入任意一个方程
得m,,n的关系:m+n+l=0且m≠儿.
小结因为有公共根,所以常采用“两
方程相减”的方法解题
2 有理根
例3 设矗为整数,且后≠0,方程k2一
(七一1)戈+l=0有有理根,求Jj}的值.
解若方程有有理根,则△=(忌一1)2
一诎为完全平方数,
设(奄一1)2—4.j}=m2(m为正整数),
贝0七‘一6后+1一m‘=0。

所以(Ji}一3)2一m2=8,(Jj}一3+m)(尼。

初中数学竞赛讲义一元二次方程公共根问题

初中数学竞赛讲义一元二次方程公共根问题

一元二次方程公共根问题若已知若干个一元二次方程有公共根,求方程系数的问题,叫一元二次方程的公共根问题,解题方法:1、直接求根法,再讨论根与根之间的公共关系。

2、由题意用以下解题步骤:若两个一元二次方程只有一个公共根,则:(1).设公共根为α,则α同时满足这两个一元二次方程;(2).用加减法消去α2的项,求出公共根或公共根的有关表达式;(3).把共公根代入原方程中的任何一个方程,然后通过恒等变形求出公共根.或求出字母系数的值或字母系数之间的关系式.例1 已知一元二次方程x2-4x+k=0有两个不相等的实数根,1.求k的取值范围.2.如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.解:(1)b²-4ac=16-4k>0, k<4;(2)由题意得:k=3.∴x²-4x+3=0,即(x-1)(x-3)=0,解方程,得x1=3,x2=1,当x=3时9+3m-1=0, m=-8/3,当x=1时,1+m-1=0,m=0。

∵m²+4>0 ∴此时 m 的值为m=0,或m=-8/3.例2 若两个关于x的方程x2+x+a=0与x2+ax+1=0只有一个公共的实数根,求a的值解:设两个方程的公共根为α,则有α2+α+a=0 ① α2+aα+1=0 ②①-②得(1-a )α+a -1=0,即(1-a )(α-1)=0因为只有一个公共根,所以a≠1,所以α=1把α=1代入x 2+x+a=0得12+1+a=0,a=-2又解:两个方程相减,得:x+a-ax-1=0,整理得:x (1-a )-(1-a )=0,即(x-1)(1-a )=0,若a-1=0,即a=1时,方程x 2+x+a=0和x 2+ax+1=0的b 2-4ac 都小于0,即方程无解;故a≠1,∴公共根是:x=1.把x=1代入方程有:1+1+a=0∴a=-2.例3、已知a >2,b >2,试判断关于x 的方程x 2-(a+b )x+ab=0与x 2-abx+(a+b )=0有没有公共根,请说明理由.解:不妨设关于x 的方程x 2-(a+b )x+ab=0与x 2-abx+(a+b )=0有公共根,设为x0,则有x 02−(a+b)x 0+ab =0① x 02−abx 0+(a+b)=02 整理可得(x 0+1)(a+b-ab )=0.∵a>2,b >2,∴a+b≠ab,∴x 0=-1; 把x 0=-1代入①得1+a+b+ab=0,这是不可能的.所以关于x 的两个方程没有公共根.又解:x 2- (a+b)x + ab = (x-a)(x-b) = 0 所以其两根分别是a 和 b若方程:x 2- abx + (a+b) = 0 有1根x = a,代入,得: a 2 – a 2b + a + b = 0 (b-1)a 2 - a - b = 0( (b-1)a - b ) ( a + 1 ) = 0得:a = b/(b-1) ,或 a = -1(a < 2 ,舍去) 由a = b/(b-1) > 2,(其中b-1>0),得: b > 2(b-1) 即:b < 2这与 b > 2 矛盾同理,方程:x 2 - abx + (a+b) = 0 有1根x = b,也能推出同样的矛盾所以两个方程没有公共根例4、求k 的值,使得一元二次方程210x kx +-=,2(2)0x x k ++-=有相同的根,并求两个方程的根.解答:不妨设a 是这两个方程相同的根,由方程根的定义有a 2+ka-1=0,①a 2+a+(k-2)=0.②①-②有ka-1-a-(k-2)=0,即(k-1)(a-1)=0,所以k=1,或a=1.(1)当k=1时,两个方程都变为x 2+x-1=0,所以两个方程有两个相同的根,没有相异的根;(2)当a=1时,代入①或②都有k=0,此时两个方程变为x 2-1=0,x 2+x-2=0.解这两个方程,x 2-1=0的根为x 1=1,x 2=-1;x 2+x-2=0的根为x 1=1,x 2=-2.∴x=1为两个方程的相同的根.例5二次项系数不相等的两个二次方程222(1)(2)(2)0a x a x a a --+++=和 222(1)(2)(2)0b x b x b b --+++=(其中a ,b 为正整数)有一个公共根,求ab ba b a a a --++的值。

九年级上第03讲 一元二次方程根的判别式及根与系数的关系讲义+练习

九年级上第03讲 一元二次方程根的判别式及根与系数的关系讲义+练习

第3讲一元二次方程根的判别式及根与系数的关系概述适用学科初中数学适用年级初三适用区域人教版区域课时时长(分钟)120知识点1、一元二次方程的根的判别式2、根与系数的关系教学目标1、使学生理解并掌握一元二次方程的根的判别式.2、使学生掌握不解方程,运用判别式判断一元二次方程根的情况.3、通过对含有字母系数方程的根的讨论,培养学生运用一元二次方程根的判别式的论证能力和逻辑思维能力.培养学生思考问题的灵活性和严密性.来解某些一元二次方程.并由此体会转化的思想.4、使学生掌握一元二次方程根与系数的关系(即韦达定理),并学会其运用.教学重点1、一元二次方程根的判别式的内容及应用.2、韦达定理的推导和灵活运用.3、已知方程求关于根的代数式的值 .教学难点1、用两根之和与两根之积表示含有两根的各种代数式.2、一元二次方程根的判别式的推导.3、利用根的判别式进行有关证明【知识导图】用公式法求出下列方程的解:(1)3x 2+x -10=0;(2)x 2-8x +16=0;(3)2x 2-6x +5=0. 引入新课通过上述一组题,让学生回答出:一元二次方程的根的情况有三种,即有两个不相等的实数根;两个相等的实数根;没有实数根.接下来向学生提出问题:是什么条件决定着一元二次方程的根的情况?这条件与方程的根之间又有什么关系呢?能否不解方程就可以明确方程的根的情况?这正是我们本课要探讨的课题.先讨论上述三个小题中b 2-4ac 的情况与其根的联系.再做如下推导:对任意一元二次方程ax 2+bx+c=0(a ≠0),可将其变形为一元二次方程根的判别与及根于系数的关系根的判别有实数根无实数根韦达定理两根和两根积教学过程考点1 一元二次方程根的判别式 二、知识讲解一、导入(x+)2=∵a ≠0,∴4a 2>0.由此可知b 2-4ac 的值直接影响着方程的根的情况. (1)当b 2-4ac >0时,方程右边是一个正数.12x x ==因此b 2-4ac >0时,一元二次方程有两个不相等的实数根 (2)当b 2-4ac =0时,方程右边是122bx x a==-,所以,一元二次方程有两个相等的实数根 (3) 当b 2-4ac<0时,方程右边是一个负数,而方程左边的(x+)2不可能是一个负数,因此方程没有实根.通过以上讨论,总结出:一元二次方程ax 2+bx +c =0的根的情况可由b 2-4ac 来判定.故称b 2-4ac 是一元二次方程ax 2+bx +c =0的根的判别式,通常用“△”来表示. ● 综上所述,一元二次方程ax 2+bx +c =0(a ≠0)当△>0时,有两个不相等的实数根; 当△=0时,有两个相等的实数根; 当△<0时,没有实数根.反过来也成立.● 提问1.一元二次方程ax 2+bx +c =0的求根公式应如何表述? 2.上述方程两根之和等于什么?两根之积呢? ● 新知讲解一元二次方程ax 2+bx +c =0(a ≠0)的两根为:考点2 根于系数之间的关系12x x ==12b x x a +=- 12cx x a=由此得出,一元二次方程的根与系数之间存在如下关系:(又称“韦达定理”) 如果ax 2+bx +c =0(a ≠0)的两个根是x 1,x 2,那么12b x x a +=-12cx x a= 我们再来看二次项系数为1的一元二次方程x 2+px +q =0的根与系数的关系. 如果把方程ax 2+bx +c =0(a ≠0)变形为20b cx x a a++=,我们就可以将之写成20x px q ++=的形式,其中,b cp q a a== ● 得出结论:如果方程x 2+px +q =0的两根是x 1,x 2,那么x 1+x 2=-p ,x 1x 2=q . 由 x 1+x 2=-p ,x 1x 2=q 可知p =-(x 1+x 2),q =x 1·x 2, ∴方程x 2+px +q =0, 即 x 2-(x 1+x 2)x +x 1·x 2=0.这就是说,以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1·x 2=0. ● 一元二次方程的根与系数的关系如果方程ax 2+bx +c =0(a≠0)的两个根为x 1,x 2,那么x 1+x 2=-b a ,x 1·x 2=c a .这个关系通常称为韦达定理.(1)在实数范围内运用根与系数的关系时,必须注意两个条件: ①方程必须是一元二次方程,即二次项系数a≠0;②方程有实数根,即Δ≥0.因此,解题时要注意分析题中隐含条件Δ≥0和a≠0.(2)如果方程x 2+px +q =0的两个根是x 1,x 2,这时韦达定理应是:x 1+x 2=-p ,x 1·x 2=q.如果实数x 1,x 2满足x 1+x 2=-b a ,x 1·x 2=c a,那么x 1,x 2是一元二次方程ax 2+bx +c =0的两个根.考点3 利用根与系数的关系确定一元二次方程(1)利用这一性质比较容易检验一元二次方程的解是否正确.(2)以x 1,x 2为根的一元二次方程(二次项系数为1)是x 2-(x 1+x 2)x +x 1x 2=0. 已知两根求一元二次方程,其一般步骤是: ①先根据两根分别求出两根之和与两根之积;②把两根之和、两根之积代入一元二次方程x 2-(x 1+x 2)x +x 1x 2=0,求出所要求的方程.已知一元二次方程ax 2+bx +c =0(a≠0)的两根为x 1,x 2,则求含有x 1,x 2的代数式的值时,其方法是把含x 1,x 2的代数式通过转化,变为用x 1+x 2,x 1x 2的代数式进行表示,然后再整体代入求出代数式的值.解决此类问题时经常要运用到以下代数式及变形: ①+=(x 1+x 2)2-2x 1x 2;②1x 1+1x 2=x 1+x 2x 1x 2; ③(x 1+a)(x 2+a)=x 1x 2+a(x 1+x 2)+a 2; ④|x 1-x 2|=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2.类型一 一元二次方程根的判别式一元二次方程的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .无实数根 【答案】D若关于x 的一元二次方程x 2+2(k ﹣1)x+k 2﹣1=0有实数根,则k 的取值范围是( ) A .k≥1 B .k >1 C .k <1 D .k≤121x 22x 2x2x 20三 、例题精析例题2例题1考点4 一元二次方程根与系数的关系的应用【答案】D已知:关于x 的一元二次方程x 2+2x +k =0有两个不相等的实数根。

一元二次方程全章讲义

一元二次方程全章讲义

九年级上册第二章一元二次方程一、知识点梳理:知识点一:一元二次方程的定义 知识点二:开平方法解一元二次方程 知识点三:因式分解法解一元二次方程 知识点四:配方法解一元二次方程 知识点五: 一元二次方程的判别公式 知识点六:韦达定理 知识点七:二元一次方程应用题二、各知识点讲解:知识点一 :一元二次方程的定义 (一)知识点:1、只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程.2、判断一个方程是否为一元二次方程的依据(1)是一个整式方程 (2)只含有一个未知数(3)未知数的最高次数是2.这三个条件必须同时满足,缺一不可。

3、一元二次方程的二次项、二次项系数、一次项、一次项系数、常数项.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式.这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.(二)、经典例题及相关练习例题1:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-5x=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0练习1、在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0 2、下列方程是一元二次方程的有__________。

(1)x 2+x1-5=0 (2)x 2-3xy+7=0(3)x+12 x =4(4)m3-2m+3=0 (5)22x2-5=0 (6)ax2-bx=43、下列方程中,是关于x的一元二次方程的有___________.①x2+2x+y=1 ②-5x2=0 ③2x2-1=3x④(m2+1)x+m2=6 ⑤3x3-x=0 ⑥x2+1x-1=0例2:一元二次方程一般形式、各项系数及常数项(1)一元二次方程(x+1)2-x==3(x2-2)化成一般形式是.(2)把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.练习:1、把一元二次方程(x+2)(x-3)=4化成一般形式,得().A、x2+x-10=0B、x2-x-6=4C、x2-x-10=0D、x2-x-6=02、将方程3x2=2x-1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A. 3,2,-1B. 3,-2,-1C. 3,-2,1D. -3,-2,13、一元二次方程3x2-3x-2=0的一次项系数是________,常数项是_________.4、方程4x2=3x-2+1的二次项是 ,一次项是 ,常数项是5、把方程x(x+1)=4(x-1)+2化为一般形式,并写出它的二次项系数、一次项系数、常数项.例3:利用一元二次方程的定义解题(1)关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.练习1、已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是。

实用文档之一元二次方程讲义——绝对经典实用

实用文档之一元二次方程讲义——绝对经典实用

实用文档之"一元二次方程"基础知识1、 一元二次方程 方程中只含有一个未知数,而且未知数的最高次数是2的方程,一般地,这样的方程都整理成为形如ax bx c a 200++=≠()的一般形式,我们把这样的方程叫一元二次方程。

其中ax bx c 2,,分别叫做一元二次方程的二次项、一次项和常数项,a 、b 分别是二次项和一次项的系数。

如:24102x x -+=满足一般形式ax bx c a 200++=≠(),2412x x ,,-分别是二次项、一次项和常数项,2,-4分别是二次项和一次项系数。

注:如果方程中含有字母系数在讨论是否是一元二次方程时,则需要讨论字母的取值范围。

2. 一元二次方程求根方法 (1)直接开平方法形如x m m 20=≥()的方程都可以用开平方的方法写成x m =±,求出它的解,这种解法称为直接开平方法。

(2)配方法通过配方将原方程转化为()x n m m +=≥20()的方程,再用直接开平方法求解。

配方:组成完全平方式的变形过程叫做配方。

配方应注意:当二次项系数为1时,原式两边要加上一次项系数一半的平方,若二次项系数不为1,只需方程两边同时除以二次项系数,使之成为1。

(3)公式法求根公式:方程ax bx c a 200++=≠()的求根公式x b b ac ab ac =-±--≥224240()步骤:1)把方程整理为一般形式:ax bx c a 200++=≠(),确定a 、b 、c 。

2)计算式子b ac 24-的值。

3)当b ac 240-≥时,把a 、b 和b ac 24-的值代入求根公式计算,就可以求出方程的解。

(4)因式分解法把一元二次方程整理为一般形式后,方程一边为零,另一边是关于未知数的二次三项式,如果这个二次三项式可以作因式分解,就可以把这样的一元二次方程转化为两个一元一次方程来求解,这种解方程的方法叫因式分解法。

九年级上册第二十一章一元二次方程2解一元二次方程一元二次方程的根与系数的关系课件

九年级上册第二十一章一元二次方程2解一元二次方程一元二次方程的根与系数的关系课件

的两根为x1、x2,则:
x1+x2和x1.x2与系数a,b,c的关系.
b2 4ac 0
x1
x2
b a
x1 x 2
c a
x1 x2
-b+ x1=
b 2-4ac 2a
x1+x 2= -b+
b2-4ac + -b2a
b2-4ac 2a
=
-2b 2a
b a
x1.x2
x 2 = -b-
b 2-4ac 2a
课堂练习:
1.甲、乙二人解同一个一元二次方程时,甲看错了常数 项所求出的根为1,4;乙看错了一次项系数所求出的根 是 -2,- 3。 则 这 个 一 元 二 次 方 程 为
_ _ _ _ _ _x_2_-_5_x_+_6_=_0_ _ _ _ _ _ _
3
2、如果-1是方程的一个根,2x2-x+m=0则另一个根是__2__ m=__-3__。 (还有其他解法吗?)
⑴不是一般式的要先化成一般式;
⑵在使用x1+x2=

b a
时,
注意“- ”不要漏写.
例2、设 x1 , x2 是方程 2x2 4x 3 0 的两个根
,利用根与系数的关系,求下列各式的值.
(1) x 2 x 2
1
2
(3)( x1 1)( x2 1)
(5 ) x 2 x1
x1
x2
(2) 1 1 x1 x2
x1+ x2
x2-3x+2=0 x2-2x-3=0 x2-5x +4=0
21
3
-1 3
2
14
5
问题:你发现这些一元二次方程的两根

第二章 一元二次方程复习 讲义

第二章 一元二次方程复习 讲义

龙文教育学科教师辅导讲义学员姓名: 辅导课目:数学 年级:八年级 学科教师:汪老师 授课日期及时段课 题第二章 一元二次方程复习重点、难点、考点1、一元二次方程的基本概念2、一元二次方程的解法及应用学习目标1、理解一元二次方程的基本概念及其相应的应用2、一元二次方程的解法及其应用教学内容一、知识回顾:1.一元二次方程:在整式方程中,只含 个未知数,并且未知数的最高次数是 的方程叫做一元二次方程.一元二次方程的一般形式是 .其中 叫做二次项, 叫做一次项, 叫做常数项; 叫做二次项的系数, 叫做一次项的系数。

2. 一元二次方程的常用解法:(1)直接开平方法:形如)0(2≥=a a x 或)0()(2≥=-a a b x 的一元二次方程,就可用直接开平方的方法. (注意:用直接开平方的方法时要记得取正、负.)(2)配方法:关键化原方程为2()x m n +=的形式 (警告: 用配方法时二次项系数要化1.)(3)公式法:一元二次方程20(0)ax bx c a ++=≠的求根公式是221,24(40)2b b ac x b ac a-±-=-≥.(注意:方程要先化成一般形式.)(4)因式分解法(主要有提取公因式、运用平方差公式、运用完全平方公式、十字相乘法):因式分解法的一般步骤是:①将方程的右边化为 ;②将方程的左边化成两个一次因式的乘积; ③令每个因式都等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.(注意:方程要先化成一般形式.)3.一元二次方程根的判别式: 24b ac ∆=-(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根; ③当0∆<时,方程无实数根. (2)判定一元二次方程根的情况; (3)确定字母的值或取值范围。

知识点练习知识一:一元二次方程的概念1、一元二次方程(1-3x)(x+3)=2x 2+1的一般形式是 它的二次项系数是 ; 一次项系数是 ;常数项是 。

一元二次方程全章讲义

一元二次方程全章讲义

九年级上册第二章一元二次方程一、知识点梳理:知识点一:一元二次方程的定义 知识点二:开平方法解一元二次方程 知识点三:因式分解法解一元二次方程 知识点四:配方法解一元二次方程 知识点五: 一元二次方程的判别公式 知识点六:韦达定理 知识点七:二元一次方程应用题二、各知识点讲解:知识点一 :一元二次方程的定义 (一)知识点:1、只含有一个未知数x 的整式方程,并且都可以化成ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式,这样的方程叫做一元二次方程.2、判断一个方程是否为一元二次方程的依据(1)是一个整式方程 (2)只含有一个未知数(3)未知数的最高次数是2.这三个条件必须同时满足,缺一不可。

3、一元二次方程的二次项、二次项系数、一次项、一次项系数、常数项.一般地,任何一个关于x 的一元二次方程,•经过整理,•都能化成如下ax 2+bx+c=0(a 、b 、c 为常数,a ≠0)的形式.这种形式叫做一元二次方程的一般形式.其中ax 2是二次项,a 是二次项系数;bx 是一次项,b 是一次项系数;c 是常数项.注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.(二)、经典例题及相关练习例题1:判断下列方程是否为一元二次方程?(1)3x+2=5y-3 (2) x 2=4 (3) 3x 2-5x=0 (4) x 2-4=(x+2) 2 (5) ax 2+bx+c=0练习1、在下列方程中,一元二次方程的个数是( ).①3x 2+7=0 ②ax 2+bx+c=0 ③(x-2)(x+5)=x 2-1 ④3x 2-5x=0 2、下列方程是一元二次方程的有__________。

(1)x 2+x1-5=0 (2)x 2-3xy+7=0(3)x+12 x =4(4)m3-2m+3=0 (5)22x2-5=0 (6)ax2-bx=43、下列方程中,是关于x的一元二次方程的有___________.①x2+2x+y=1 ②-5x2=0 ③2x2-1=3x④(m2+1)x+m2=6 ⑤3x3-x=0 ⑥x2+1x-1=0例2:一元二次方程一般形式、各项系数及常数项(1)一元二次方程(x+1)2-x==3(x2-2)化成一般形式是 .(2)把方程(1-3x)(x+3)=2x2+1化为一元二次方程的一般形式,并写出二次项,二次项系数,一次项,一次项系数及常数项.练习:1、把一元二次方程(x+2)(x-3)=4化成一般形式,得().A、x2+x-10=0B、x2-x-6=4C、x2-x-10=0D、x2-x-6=02、将方程3x2=2x-1化成一元二次方程的一般形式后,二次项系数、一次项系数和常数项系数可以是( )A. 3,2,-1B. 3,-2,-1C. 3,-2,1D. -3,-2,13、一元二次方程3x2-3x-2=0的一次项系数是________,常数项是_________.4、方程4x2=3x-2+1的二次项是 ,一次项是 ,常数项是5、把方程x(x+1)=4(x-1)+2化为一般形式,并写出它的二次项系数、一次项系数、常数项.例3:利用一元二次方程的定义解题(1)关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.练习1、已知(m+3)x2-3mx-1=0是一元二方程,则m的取值范围是。

一元二次方程的公共根与整数根(讲义)

一元二次方程的公共根与整数根(讲义)

一元二次方程的公共根与整数根(讲义)知识点睛一、公共根问题二次方程的公共根问题的一般解法:设公共根,代入原方程(两个或以上),然后通过恒等变形求出参数的值和公共根.二、整数根问题对于一元二次方程a某2b某c0(a0)的实根情况,可以用判别式b24ac来判别,但是对于一个含参数的一元二次方程来说,要判断它是否有整数根或有理根,那么就没有统一的方法了,只能具体问题具体分析求解,当然,经常要用到一些整除性的性质.方程有整数根的条件:如果一元二次方程a某2b某c0(a0)有整数根,那么必然同时满足以下条件:⑴b24ac为完全平方数;⑵bb24ac2ak或bb24ac2ak,其中k为整数.以上两个条件必须同时满足,缺一不可.另外,如果只满足判别式为完全平方数,则只能保证方程有有理根(其中a、b、c均为有理数)三、方程根的取值范围问题先使用因式分解法或求根公式法求出两根,然后根据题中根的取值范围来确定参数的范围.例题精讲一、一元二次方程的公共根【例1】求k的值,使得一元二次方程某2k某10,某2某(k2)0有相同的根,并求两个方程的根.ABC【例2】设a,b,c为ABC的三边,且二次三项式某22a某b2与某22c某b2有一次公因式,证明:一定是直角三角形.【例3】三个二次方程a某2b某c0,b某2c某a0,c某2a某b0有公共根.⑴求证:abc0;a3b3c3⑵求的值.abc【例4】试求满足方程某2k某70与某26某(k1)0有公共根的所有的k值及所有公共根和所有相异根.【例5】二次项系数不相等的两个二次方程(a1)某2(a22)某(a22a)0和abba的值.(b1)某(b2)某(b2b)0(其中a,b为正整数)有一个公共根,求baab222二、一元二次方程的整数根【例6】k为什么实数时,关于某的方程(6k)(9k)某2(11715k)某540的解都是整数?【例7】若关于某的方程6k9k某211715k某540的解都是整数,则符合条件的整数k的值有_______个.【例8】已知a是正整数,如果关于某的方程某3(a17)某2(38a)某560的根都是整数,求a的值及方程的整数根.【例9】若k为正整数,且关于k的方程(k21)某26(3k1)某720有两个相异正整数根,求k的值.【例10】关于某的二次方程(k26k8)某2(2k26k4)某k24的两根都是整数.求满足条件的所有实数k的值.【例11】当m为何整数时,方程2某25m某2m25有整数解.【例12】已知关于某的方程4某28n某3n2和某2(n3)某2n220,是否存在这样的n值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求出这样的n值;若不存在,请说明理由.【例13】求所有有理数r,使得方程r某2(r1)某(r1)0的所有根是整数.【例14】已知关于某的方程某2(a6)某a0的两根都是整数,求a的值.【例15】已知k为常数,关于某的一元二次方程(k22k)某2(46k)某80的解都是整数,求k的值.【例16】已知p为质数,二次方程某22p某p25p10的两根都是整数,请求出p的所有可能的值.【例17】已知12m40,且关于某的二次方程某22(m1)某m20有两个整数根,求整数m.abm2【例18】若一直角三角形两直角边的长,a、b(ab)均为整数,且满足.试求这个直角三ab4m角形的三边长.【例19】关于某的方程a某22(a3)某(a2)0至少有一个整数解,且a是整数,求a的值.【例20】已知方程a某23a28a某2a213a150(a是非负整数)至少有一个整数根,那么a.【例21】当m是什么整数时,关于某的一元二次方程m某24某40与某24m某4m24m50的根都是整数.【例22】设m为整数,且4m40,方程某222m3某4m214m80有两个整数根,求m的值及方程的根.【例23】当m为何整数时,方程2某25m某2m25有整数解.【例24】已知方程a某23a28a某2a213a150(a是非负整数)至少有一个整数根,那么a.【例25】若关于某的方程6k9k某211715k某540的解都是整数,则符合条件的整数k的值有_______个.【例26】设方程m某2(m2)某(m3)0有整数解,试确定整数m的值,并求出这时方程所有的整数解.【例27】已知a是正整数,且使得关于某的一元二次方程a某22(2a1)某4(a3)0至少有一个整数根,求a的值.【例28】已知关于某的方程a2某2(3a28a)某2a213a150(其中a是非负整数)至少有一个整数根,求a的值.【例29】已知b,c为整数,方程5某2b某c0的两根都大于1且小于0,求b和c的值.【例30】已知a,b都是正整数,试问关于某的方程某2ab某求出来;如果没有,请给出证明.,且某1某20,【例31】已知方程某2b某c0及某2c某b0分别各有两个整数根某1,某2及某1,某20.某1某20;⑴求证:某10,某20,某10,某2⑵求证:b1≤c≤b1;⑶求b,c所有可能的值.1(ab)0是否有两个整数解?如果有,请2【例32】设p、q是两个奇整数,试证方程某22p某2q0不可能有有理根.【例33】试证不论n是什么整数,方程某216n某70没有整数解,方程中的是任何正的奇数.【例34】求方程a3bab32a22b240的所有整数解.某y(a2)某【例35】已知a为整数,关于某,y的方程组的所有解均为整数解,求a的值.23某y(a1)某2a2【例36】求方程【例37】求所有的整数对(某,y),使某3某2y某y2y34某24某y4y247.【例38】设m是不为零的整数,关于某的二次方程m某2(m1)某10有有理根,求m的值.【例39】当m是什么整数时,关于某的一元二次方程m某24某40与某24m某4m24m50的根都是整数.【例40】a是正整数,关于某的方程某3(a17)某2(38a)某560的根都是整数,求a的值及方程的整数根.【例41】已知a,b是实数,关于某,y的方程组y某3a某2b某有整数解(某,y),求a,b满足的关系式.ya某b某y3的所有正整数解.某2某yy27【例42】已知p为质数,使二次方程某22p某p25p10的两根都是整数,求出所有可能的p的值.【例43】设关于某的二次方程(k26k8)某2(2k26k4)某k24的两根都是整数,求满足条件的所有实数k的值.b为何值时,方程某2b某20和某22某b(b1)0有相同的整数根?并且求出它们的整数【例44】根?【例45】已知关于某的方程(a1)某22某a10的根都是整数,那么符合条件的整数a有___________个.【例46】求所有正实数a,使得方程某2a某4a0仅有整数根.【例47】方程(某a)(某8)10有两个整数根,求a的值.【例48】求所有的正整数a,b,c使得关于某的方程某23a某2b0,某23b某2c0,某23c某2a0的所有的根都是正整数.【例49】n为正整数,方程某2(31)某3n60有一个整数根,则n__________.【例50】求出所有正整数a,使方程a某22(2a1)某4(a3)0至少有一个整数根.【例51】已知方程(a21)某22(5a1)某240有两个不等的负整数根,则整数a的值是__________.【例52】不解方程,证明方程某21997某19970无整数根【例53】已知方程某21999某a0有两个质数根,则常数a________.【例54】已知方程某2m某m10有两个不相等的正整数根,求m的值.【例55】当m是什么整数时,关于某的方程某2(m1)某m10的两根都是整数?【例56】设方程m某2(m2)某(m3)0有整数解,试确定整数m的值,并求出这时方程所有的整数解.【例57】已知a是正整数,如果关于某的方程某3a17某238a某560的根都是整数,求a的值及方程的整数根.【例58】若k为正整数,且关于k的方程k21某263k1某720有两个相异正整数根,求k的值.【例59】设a为质数,b,c为正整数,且满足292a2bc5094a1022b511cbc2求abc的值.。

一元二次方程的概念和根-完整版PPT课件

一元二次方程的概念和根-完整版PPT课件
当 ≠±1时,是一元二次方程. 当 =-时1 ,是一元一次方程.
37 2
二 一元二次方程的根
一元二次方程的根
使一元二次方程等号两边相等的未知数的值叫作一 元二次方程的解(又叫做根)
练一练:下面哪些数是方程 2 – – 6 = 0 的解 -4 ,-3 , -2 ,-1 ,0 ,1,2,3 ,4
解: 3和-2
解: 去括号,得 32-3=510 移项、合并同类项,得一元二次方程的一般形式 32-8-10=0 其中二次项是32,系数是3;一次项是-8,系数 是-8;常数项是-10
注意 系数和项均包含前面的符号.
当堂练习
1 下列哪些是一元二次方程?
32=5-2
×
2=0

32-4=2

3y2=3y1y-2
×
2=32-1
方法点拨:求代数式的值,先把已知解代入,再注意 观察,有时需运用到整体思想,求解时,将所求代数式 的一部分看作一个整体,再用整体思想代入求值.
的一元二次方程(m225m2-4=0 有一个根为0,求m的值
解:将=0代入方程m2-4=0, 解得m= ±2 ∵ m2 ≠0, ∴ m ≠-2, 综上所述:m =2
二次项系数不 为零不容忽视
拓广探索 1 已知关于的一元二次方程 a2bc=0 a≠0一个根为1, 求abc的值
2 若 a-b c=0,4a2b c=0 ,你能通过观察,求出方程 a2bc=0 a≠0的一个根吗
=2
课堂小结
概念
一 元 二 一般形
次方程
ห้องสมุดไป่ตู้


① 是整式方程; ② 含一个未知数; ③ 最高次数是2
方法点拨:用一元二次方程的定义求字母的值的方 法:根据未知数的最高次数等于2,列出关于某个字 母的方程,再排除使二次项系数等于0的字母的值.

一元二次方程根与系数关系复习课件

一元二次方程根与系数关系复习课件

2 函数特点
二次函数图像为开口朝 上或朝下的抛物线。方 程解对应于函数与横轴 的交点。
3 关系
一元二次方程和二次函 数密切相关,两者间的 关系将帮助我们更好地 理解方程的根与系数之 间的联系。
方程的根与系数关系
1
零点的作用
一元二次方程的根是使方程等于零的变量值。根的求解与方程的系数之间有着密 切的关系。
在求解方程的过程中,将 求得的根代入原方程进行 验证,以确保结果的正确 性。
多练习
多做一些相关的练习题, 提高对方程根与系数关系 的理解和应用能力。
方程的根与系数的变化会在二 次函数的图像上呈现出不同的 形状和位置。
变化的系数
改变方程的系数,将会对二次 函数图像的位置、形状和纵坐 标有着明显的影响。
正根与负根
方程的根与系数的正负关系也 会显现在二次函数图像中根的 位置和抛物线开口的方向上。
常见考点总结
1 方程的根与系数
了解方程的根与系数的 关系是解题的关键,是 高中数学的重要考点。
方程的解法
1基础解法:配方法 Nhomakorabea对于一般的一元二次方程,我们可以通过配方法将其转化为完全平方的形式来求 解。
2
基础解法:公式法
利用一元二次方程的求根公式,我们可以直接求得方程的根。
3
基础解法:图像法
通过一元二次函数的图像特点,我们可以直观地确定方程的根的个数与位置。
方程的根与系数的图像关系
二次函数图像
2
基本关系
方程的根与系数的关系主要由韦达定理和判别式来描述。
3
韦达定理
根之和和根之积与方程系数之间的关系可以通过韦达定理来表达。
判别式的公式及含义
判别式的公式

人教版九年级上册数学 第21章《一元二次方程》讲义 第1讲 一元二次方程认识及解法(有答案)

人教版九年级上册数学 第21章《一元二次方程》讲义 第1讲  一元二次方程认识及解法(有答案)

人教版九年级上册数学第21章《一元二次方程》讲义第1讲一元二次方程认识及解法(有答案)③配方:将方程两边分别加上一次项系数一半的平方,把方程变形为n m x =+2)(的形式;④求解:若0≥n 时,方程的解为n m x ±-=,若0<n 时,方程无实数解。

5、公式法:一元二次方程)0(02≠=++a c bx ax 的根a ac b b x 242-±-= 当042>-ac b 时,方程有两个实数根,且这两个实数根不相等;当042=-ac b 时,方程有两个实数根,且这两个实数根相等,写为ab x x 221-==; 当042<-ac b 时,方程无实数根.公式法的一般步骤:①把一元二次方程化为一般式;②确定c b a ,,的值;③代入ac b 42-中计算其值,判断方程是否有实数根;④若042≥-ac b 代入求根公式求值,否则,原方程无实数根。

(因为这样可以减少计算量。

另外,求根公式对于任何一个一元二次方程都适用,其中也包括不完全的一元二次方程。

)6、因式分解法:①因式分解法解一元二次方程的依据:如果两个因式的积等于0,那么这两个因式至少有一个为0,即:若0=ab ,则00==b a 或;②因式分解法的一般步骤:若方程的右边不是零,则先移项,使方程的右边为零;把方程的左边分解因式;令每一个因式都为零,得到两个一元一次方程;解出这两个一元一次方程的解可得到原方程的两个解。

第二部分 考点精讲精练考点1、一元二次方程的定义、一般形式例1、下列方程中是关于x 的一元二次方程的是( )A .x 2+x 1=0B .ax 2+bx +c =0C .(x -1)(x +2)=1D .3x 2-2xy -5y 2=0例2、是关于的一元二次方程,则的值应为( ) A.=2 B. C. D.无法确定例3、方程4x 2+7x-3=0的二次项是 ,一次项系数是 ,常数项是 . 例4、若(m+1) x |m|+1-3x+4=0是关于x 的一元二次方程,则m 的值是 . 例5、已知关于x 的方程. (1)m 为何值时,此方程是一元一次方程?(2)m 为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项.例6、一元二次方程a (x-1)2+b (x-1)+c=0化为一般形式后为2x 2-3x-1=0,试求a ,b ,c 的值.举一反三:1、下列关于x 的方程中,一定是一元二次方程的为 ( )A .B .C .D .2、下列关于的方程:①;②;③; ④;⑤.其中是一元二次方程有( )A.1个B.2个C.3个D.4个3、若方程(m-1)x |m|+1-2x=4是一元二次方程,则m= .4、关于x 的方程(m 2-1)x 3+(m-1)x 2+2x+6=0,当m= 时为一元二次方程.5、一元二次方程(1+3x )(x-3)=2x2+1化为一般形式为:______,二次项系数为:______,一次项系数为:______,常数项为:______.6、一元二次方程a (x+1)2+b (x+1)+c=0化为一般式后为3x 2+2x-1=0,试求a 2+b 2-c 2的值的算术平方根.考点2、方程的解例1、若x=3是方程的一个根,则m 的值为( )A.1 B.2 C.3 D.4例2、若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2019-a-b的值是()A.2023 B.2019 C.2019 D.2019例3、已知一元二次方程的两个根是1和3,则,的值分别是()A.=4,=-3 B.=3,=2 C.=-4,=3 D.=4,=3例4、若且,则关于的一元二次方程必有一个定根,它是______.例5、若方程ax2+bx+c=0(a≠0)满足a+b+c=0,则方程必有一根为。

初中数学《一元二次方程》全章讲义

初中数学《一元二次方程》全章讲义

初中数学《一元二次方程》全章讲义一元二次方程的解法包括四种:因式分解法、配方法、公式法和图像法。

1、因式分解法:将一元二次方程化为两个一次因式的乘积,使每个一次因式等于0,从而求出方程的解。

2、配方法:通过加减平方完成方程的配方,将一元二次方程化为一个完全平方式的形式,从而求出方程的解。

3、公式法:利用求根公式求出一元二次方程的解,其中求根公式为x=(-b±√(b²-4ac))/2a。

4、图像法:通过绘制一元二次方程的图像,找出方程在x轴上的根,从而求出方程的解。

例1、用因式分解法解方程x²-3x-10=0.解:将方程化为(x-5)(x+2)=0,得到x=5或x=-2.例2、用配方法解方程2x²+5x-3=0.解:将方程改写为2(x+5/4)²-121/16=0,得到x=-3/2或x=1/2.例3、用公式法解方程3x²+4x-1=0.解:根据求根公式,得到x=(-4±√52)/6,化简后得到x=-1/3或x=1/2.例4、用图像法解方程x²-2x-3=0.解:绘制出方程的图像,找到x轴上的两个根,得到x=-1和x=3.一元二次方程的常用解法包括直接开平方法、配方法、求根公式法和因式分解法。

选择合适的解法可以按以下方法进行:当方程一边为完全平方式,另一边为非负数时,可用直接开平方法;当方程的一边为一次因式的乘积,而另一边可以分解为两个一次因式的乘积的形式时,运用因式分解法求解;当方程的一边较易配成含未知数的完全平方式,另一边为非负数时,常用配方法;当不便用上面三种方法时,就用求根公式法。

例如,对于方程$2x-8=\sqrt{x+2}$,可以使用直接开平方法求解;对于方程$(1-x)^2-9=0$,可以使用因式分解法求解;对于方程$2x(x-3)=5(x-3)$,可以使用配方法求解;对于方程$(4x+y)^2+3(4x+y)-4=0$,可以使用求根公式法求解。

一元二次方程讲义

一元二次方程讲义

一元二次方程讲义(总13页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第6讲 判别式和根与系数的关系【学习目标】1、 使学生会运用根与系数关系解题 2、对一元二次方程以及其根有更深刻的了解,培养分析问题和解决问题的能力【知识要点】1、一元二次方程的判别式:ac b 42-=∆,(1)当042>-ac b 时,方程有两个不相等的实数根,aacb b x 242-±-=;(2)当042=-ac b 时,方程有两个相等的实数根,abx x 221-==; (3)当042<-ac b 时,方程无实数解。

2、一元二次方程根与系数关系的推导:对于一元二次方程02=++c bx ax 其中0≠a ,设其根为21,x x ,由求根公式a acb b x x 24221-±-==,有ab x x -=+21,a cx x =⋅213、常见的形式:(1)212212214)()(x x x x x x -+=- (2))(3)(21213213231x x x x x x x x +-+=+ (3)21221214)(x x x x x x -+±=-【典型例题】例1 当m 分别满足什么条件时,方程2x 2-(4m+1)x +2m 2-1=0,(1)有两个相等实根;(2)有两个不相实根;(3)无实根;(4)有两个实根.例2、已知方程022=--c x x 的一个根是3,求方程的另一个根及c 的值。

例3、已知方程0652=--x x 的根是x 1和x 2,求下列式子的值: (1)2221x x + + 21x x (2)1221x x x x +例4、已知关于x 的方程3x 2-mx-2=0的两根为x 1 ,x 2,且31121=+x x , 求 ①m 的值; ②求x 12+x 22的值.例5、已知关于x 的方程(1)03)21(22=-+--a x a x 有两个不相等的实数根,且关于x 的方程(2)01222=-+-a x x 没有实数根,问a 取什么整数时,方程(1)有整数解【经典练习】姓名: 成绩:一、选择题1、方程012=--kx x 的根的情况是( )A 、有两个不相等的实数根B 、有两个相等的实数根C 、 没有实数根D 、 与k 的取值有关2、已知关于x 的一元二次方程0)1()1(22=+--k x k 的两根互为倒数,则k 的取值是( ).A 、2±B 、2C 、 2-D 、03、设方程0532=+-q x x 的两根为1x 和2x ,且0621=+x x ,那么q 的值等于( ). A 、32-B 、-2C 、91D 、92-4、如果方程12=+mx x 的两个实根互为相反数,那么m 的值为( ) A 、0 B 、-1 C 、1 D 、±15、已知ab ≠0,方程02=++c bx ax 的系数满足ac b =⎪⎭⎫⎝⎛22,则方程的两根之比为( )A 、0∶1B 、1∶1C 、1∶2D 、2∶3 二、填空题1、已知方程0432=--x x 的两个根分别是x 1和x 2,则21x x += _____,21x x =_____2、已知方程02=++b ax x 的两个根分别是2与3,则=a ,=b3、已知方程032=++k x x 的两根之差为5,k=?4、(1)已知方程x 2-12x+m=0的一个根是另一个根的2倍,则m= (2)方程 05242=++mx x 的一个根是另一个根的5倍,则m= ;51为根构造一个一元二次方程 三、简答题1、讨论方程04)1(4)1(22=----x m x m 的根的情况并根据下列条件确定m 的值。

例说一元二次方程有公共根的问题

例说一元二次方程有公共根的问题

因为
x
2 0
+
x0 +
1=
( x0 +
1 2
)2
+
3 4
>
0,
所以 a + b + c = 0,
从而 c = - ( a + b ). 于是 a2 + b2 + c2
bc ca ab
=
a3 + b3 + abc
c3
=
a3 +
b3 - ( a + abc
b) 3
=
-
3ab ( a + abc
b) =
3.
例 1 ( 1988年广州等五城市联赛题 ) 如
果 x+
1 x
=
3,
求 x
4
+
x2 x2
+

x2 x2
+
1=
x2 +
1 x2
+
1
= (x + 1 )2 - 1 x
= 8,
所以原式 = 18. 二、不求特殊求一般
例 2 ( 1992年山东省初中竞赛题 ) 化简
3
1
3
3.
4+ 6+ 9
a = 0只有一个公共根, 则 ( )
(A) a = b
( B) a + b = 0
( C) a + b = 1 (D ) a + b = - 1
解: 设公共根为 , 则 2 + a + b = 0, 2 + b + a = 0.
把上面两个等式相减, 并整理得

八年级数学暑期直升班 第8讲 《一元二次方程的特殊根问题》

八年级数学暑期直升班 第8讲  《一元二次方程的特殊根问题》

【解析】解法 1:将方程 x mx m 左边因式分解可得 (x m)(x m) ,
x m x m x m x m

x
m
,或
x
m
,或
x
m
,或
x
m

75
初二数学目标名校直升班
x x x x
解得
m

m

m

m

故 m 或 m .
解法 2:将方程 x mx m 整理成标准形式: x mx m ,
【解析】(1)设方程的两整数根分别是
x

x
,由韦达定理得:
x x
x
x
m
m

从上面两式中消去 m,可得 xx x x ,
(x )(x ) ()
则有
x x

x x

76
第八讲 一元第二二次讲方程力的与特运殊动根问题
解得:
x x

x x

73
初二数学目标名校直升班
【点评】这是一道中考题,难度偏基础,主要是把我们前面的方程综合起来的这样一道公共解的题 目,还有就是考查孩子们对于多种情况一一进行讨论的思想,也就是强调数学学习的严谨 性,希望同学们学会解决这种基础题的方法.
例题 2
(1)求 k 的值,使得关于 x 的一元二次方程 x kx , x x (k ) 有相同的根,并求两 个方程的根.
由此 x x 或 0,所以 m xx 或 7.
(2)设两个根为
x
x
,由韦达定理得
x
x x
x
a
a

从上面两式中消去 a 得 xx x x ,所以 (x )(x ) ,

新人教版初中数学一元二次方程全章复习知识点及讲义

新人教版初中数学一元二次方程全章复习知识点及讲义

新人教版初中数学一元二次方程全章复习知识点及讲义新人教版初中数学一元二次方程全章复知识点及讲义内容简介:1.了解一元二次方程的定义及一元二次方程的一般形式:ax+bx+c=0(a≠0).2.掌握一元二次方程的四种解法,并能灵活运用。

3.掌握一元二次方程根的判别式,并能运用它解相应问题。

4.掌握一元二次方程根与系数的关系,会用它们解决有关问题。

5.会解一元二次方程应用题。

知识点一:一元二次方程的定义及一般形式知识要点】一元二次方程的一般形式:ax+bx+c=0(a≠0)例1、下列方程中是关于x的一元二次方程的是()A。

(x+1)^3=2(x+1)B。

2x^2+11x-2=0C。

ax+bx+c=2D。

x+2x=x+1变式:当k时,关于x的方程kx+2x=x+3是一元二次方程。

例2、方程(m+2)x针对练:1、方程8x=7的一次项系数是8,常数项是7.2、若方程(m-1)x+(m+3)m x+1=0是关于x的一元二次方程,则m的值为-2或1.知识点二:一元二次方程的解知识要点】1、当已知一元二次方程的一个根时,要熟练地将这个根代入原方程,并灵活运用得到的等式。

2、在ax+bx+c=0(a≠0)中,x取特殊值时,a、b、c之间满足的关系式。

例1、已知2y+y-3的值为2,则4y+2y+1的值为11.例2、关于x的一元二次方程(a-2)x^2+x+a-4=0的一个根为2,则a的值为5.例3、一元二次方程ax+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程x^2-8x+5m=0的两个根,则m的值为10.针对练:1、已知方程x+kx-10=0的一根是2,则k为-5,另一根是-2.2、已知m是方程x^2-x-1=0的一个根,则代数式m^2-m-1=0.3、已知a是x^2-3x+1=0的根,则2a-6=0,a=3.4、方程(a-b)x+(b-c)x+c-a=0的一个根为()A。

25.怎样解关于一元二次方程有公共根的问题---刘培杰 代数

25.怎样解关于一元二次方程有公共根的问题---刘培杰 代数

25 怎样解关于两个一元二次方程有公共根的问题一、关于两个方程仅有一个公共根的问题解这类问题的步骤如下:1.首先作差消去二次项,解出公共根表达式(或公根).2.把公共根表达式(或公根)代入任一个原方程,求出系数(或关系式).例1 已知方程0122=--mx x 与04)3(2=-++x m x 有一个公共根,求m 为何值? 解 两方程作差得(3+3m)x=3,所以m≠一l .当m≠一l 时,x=⋅+11m 代入第一个方程得,0432=+m m 则⋅-==34,021m m例2 方程012=++ax x 与02=++a x x 有且仅有一个公共根,求a 值,并求出公共根.解 两方程作差得(a 一1)x=a 一l .因为当a=1时,原来两个方程都变为,012=++x x 无实根,所以a≠1,x=1(公根).把x=1代入前一个方程得a=-2.二、关于两个一元二次方程仅有一个根互为相反数的问题这类问题可转化为两个一元二次方程仅有一个公共根的问题来解决:只要将一个方程的一次项系数变为相反数,得到的新方程与原来另一个方程联立解得一个公共根.例3 方程0122=--mx x 与方程04)3(2=-++x m x 有一个根互为相反数,求m 的值.解 由已知可知0122=--mx x 与方程04)3(2=-+-x m x 必有一个公共根,解得(3一m)x=一3,所以m≠3.当m≠3时,,33m x --=代入-2x 012=-mx 得,02472=-m m 则⋅==724,021m m 三、关于两个一元二次方程有一根互为倒数(或负倒数)的问题只要把一个方程的二次项系数和常数项交换,这类问题也可转化为两个方程仅有一公共根的问题来解决.例4 方程022=-+kx x 和方程03722=++kx x 有一个根互为倒数,求k 的值.解 由已知可知022=-+kx x 和方程02732=++kx x 必有一个公共根.消去二次项可解得觑=一2,即⋅-=k x 2代入,022=-+kx x 整理得=2k 1,即 k =±1时原两方程有一根互为倒数.例5 方程0122=+-ax x 与0122=--bx x 有一根互为负倒数,求a b 的关系式. 解 由已知可知0122=+-ax x 与0122=++-bx x 必有一个公共根,两方程相加得(a 一b)x=1,所以a≠b,所以,1ba x -=代入=+-122ax x 0得.122=-b a 四、关于上述几种情况的综合例6 已知方程062=-+px x 与方程0232=++qx x 有一个公共根,且有一个根互为负倒数,求P ,q 的值.解 由062=-+px x 与0232=++qx x 有一公共根得 ①J p pq q α238322=--又因为062=-+px x 与0232=++qx x 有一根互为负倒数,则+2x 06=-px 与0322=+-qx x有一根为公共根,得②7523222=-+p pq q解①与②得7,1;7,12211=-=-==q p q p例7设nq ≠-l ,P ≠±mq ,方程0022=++-=++q px hx n mx x 有一根互为倒数,另一根互为负倒数,求证:mp=0.证明 由题可知方程02=++n mx x 与012=++px qx 有一公共根,可得 ①0))(()1(2=----np m mq p nq又可知方程02=++n mx x 与012=+-px qx 有一公共根,可得 ②0))(()1(2=+++-np m mq p nq②一①得0))(())((=--+++np m mq p np m mq p展开整理得 0)1(=+nq mp因为 1-=/nq所以 0=mp。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
故.

学科:数学
专题:一元二次方程公共根
金题精讲
题一
题面:设方程和有公共根,求的值.
判别式,考虑参数范围
满分冲刺
题一
题面:三个二次方程,,有公共根.
⑴ 求证;
⑵ 求公共根的值.
判别式,整数根
题二
题面:二次项系数不相等的两个二次方程
和(其中,为正整数)有一个公共根,求
的值.
判别式,整数根
讲义参考答案
金题精讲
题一
答案:设公共根为,则


①②得

当时,

经检验均合题意
∴.
满分冲刺
题一
答案:⑴ 设上述三个方程的公共根为,则有
,,
三式相加并提取公因式可得,
又,故,
(2)公共根为或.
题二
答案:,
故两根为和
同理,的两根为和.
由题意可知,,故或.
均可化简为:,即
由,为正整数,故或,解得,.
也可采取与之前相同的解法:
设公共根为,
则,
消去项并因式分解可得,(由已知可得)
若,则有(或),与已知矛盾;
若,解法同上.
相关文档
最新文档