2019-2020年人教版八年级下册数学基础知识质量检测(无答案)

合集下载

人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)

人教版2019-2020学年初二数学下学期 第十八章 平行四边形 单元考试试题(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。

北京市第八十中学2019-2020学年八年级下学期4月月考数学试题(含答案及解析)

北京市第八十中学2019-2020学年八年级下学期4月月考数学试题(含答案及解析)

2019-2020学年度第二学期4月初二年级数学调研测试一、选择题1.以下列长度的线段为边能组成直角三角形的是()A. 6,7,8B. 7,8,9C. 3,1,2D. 8,9,10【答案】C【解析】【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【详解】A、∵62+72≠82,∴不能构成直角三角形,故本选项错误;B、∵72+82≠92,∴不能构成直角三角形,故本选项错误;C、∵(3)2+12=22,∴能构成直角三角形,故本选项正确;D、∵82+92=102,∴不能构成直角三角形,故本选项错误.故选:C.【点睛】此题考查勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解题的关键.2.如图,公路AC、BC互相垂直,公路AB的中点M与点C被湖隔开,若测得AB的长为3.2km,则M,C 之间的距离是()A. 0.8kmB. 1.6kmC. 2.0kmD. 3.2km【答案】B【解析】【分析】根据直角三角形斜边上的中线性质得出CM=12AB,代入求出即可.【详解】∵AC⊥BC,∴∠ACB=90°,∵M为AB的中点,∴CM=12 AB,∵AB=3.2km,∴CM=1.6km,故选:B.【点睛】此题考查直角三角形斜边上的中线性质,能根据直角三角形斜边上的中线性质得出CM=12AB是解题的关键.3.如图,在菱形ABCD中,E,F分别是AB,AC的中点,若EF=2,则菱形ABCD的周长为()A. 4B. 8C. 16D. 20【答案】C【解析】【分析】根据三角形的中位线定理求出BC,再根据菱形的四条边都相等解答.【详解】∵E、F分别是AB、AC的中点,∴EF是△ABC的中位线,∴BC=2EF=2×2=4,∴菱形ABCD的周长=4×4=16.故选:C.【点睛】本题考查了菱形的性质,三角形的中位线平行于第三边并且等于第三边的一半的性质,熟记各性质是解题的关键.4.如图,在ABCD中,BE平分∠ABC,交AD于点E,AE=3,ED=1,则ABCD的周长为()A. 10B. 12C. 14D. 16【答案】C【解析】【分析】由角平分线的定义和平行四边形的性质可求得AB=AE ,再结合平行四边形的性质,即可解答.【详解】∵四边形ABCD 为平行四边形,∴AD ∥BC ,AD=BC ,AB=CD ,∴∠AEB=∠CBE ,∵BE 平分∠ABC ,∴∠ABE=∠CBE ,∴∠AEB=∠ABE ,∴AB=AE=3,∵AB= 3,AD=4,∴四边形ABCD 的周长=2(AD+AB )=2×7=14, 故选C.【点睛】此题考查平行四边形的性质,利用平行四边形的性质和角平分线的定义求得AB=AE 是解题的关键. 5.用配方法解方程2640x x ++=时,原方程变形为( )A. 2(3)9x +=B. 2(3)13x +=C. 2(3)5x +=D. 2(3)4x +=【答案】C【解析】【分析】方程整理后,配方得到结果,即可做出判断.详解】解:方程配方得:x 2+6x+5+4-5=0,即(x+3)2=5.故选:C .【点睛】此题考查解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.6.如图,矩形ABCD 中,AB =4,对角线AC ,BD 交于点O ,若∠AOB =60º,则矩形ABCD 的面积为( )A. 16B. 163C. 83D. 3【答案】B【解析】【分析】根据矩形性质得出AC=2AO,BD=2BO,AC=BD,推出AO=OB,得出等边三角形AOB,得出AC,由勾股定理求出BC,即可求出矩形ABCD的面积.【详解】∵四边形ABCD是矩形,∴AC=2AO,BD=2BO,AC=BD,∠ABC=90°,∴AO=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AC=2AO=8,∴BC=2243AC AB-=,∴矩形ABCD的面积=AB•BC=4×43=163.故选:B.【点睛】此题考查等边三角形的性质和判定,矩形的性质的应用,勾股定理;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.二、填空题7.一元二次方程x2=2x的解为________.【答案】x1=0,x2=2【解析】试题分析:移项得x2-2x=0,即x(x-2)=0,解得x=0或x=2.考点:解一元二次方程8.如图,菱形ABCD的两条对角线AC、BD相交于点O,若AC=4cm,BD=6cm,则菱形ABCD的面积是___.【答案】12【解析】【分析】根据菱形的面积等于对角线乘积的一半解答.【详解】∵AC=4cm,BD=6cm,∴菱形ABCD的面积为12×AC×BD=12(cm2).故答案为:12.【点睛】此题考查菱形的性质,解题关键在于利用对角线求面积的方法,在求菱形的面积中用得较多,需要熟练掌握.9.如图,正方形ABCD中,AB=4,点E是BC的中点,点P是对角线AC上一动点(点P与点A、C不重合),则在点P的移动过程中,△PBE周长的最小值为_______.【答案】25+2【解析】【分析】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值,进而得出答案.【详解】解:连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,22224225+=+=,CD CE∴△PBE周长的最小值是:5.故答案为:5.【点睛】此题考查轴对称-最短路线问题和正方形的性质,根据两点之间线段最短,可确定点P的位置.10.如图,折叠矩形ABCD一边AD,点D落在BC边的点F处,若AB=8,BC=10,则EC的长____________.【答案】3【解析】【分析】根据勾股定理求出BF的长;进而求出FC的长度;由题意得EF=DE;利用勾股定理列出关于EC的方程,解方程即可解决问题.【详解】∵四边形ABCD为矩形,∴DC=AB=8cm;∠B=∠C=90°;由题意得:AF=AD=10,设EF=DE=xcm,EC=8-x;由勾股定理得:BF2=102-82,∴BF=6,∴CF=10-6=4;在Rt△EFC中,由勾股定理得:x2=42+(8-x)2,解得:x=5,EC=8-5=3.故答案为:3.【点睛】此题考查翻折变换的性质、矩形的性质、勾股定理;运用勾股定理得出方程是解决问题的关键解题的关键.11.一个三角形的两边的长分别是3和5,要使这个三角形为直角三角形,则第三条边的长为_____.【答案】434【解析】【详解】解:①当第三边是斜边时,第三边的长的平方是:32+52=34;②当第三边是直角边时,第三边长的平方是:52-32=25-9=16=42,故答案是:43412.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=2EC.其中正确的结论是___________________(填序号)【答案】①②④【解析】【分析】过P作PG⊥AB于点G,根据正方形对角线的性质及题中的已知条件,证明△AGP≌△FPE后即可证明①AP=EF;④∠PFE=∠BAP;在此基础上,根据正方形的对角线平分对角的性质,在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,求得⑤DP=2EC.【详解】证明:过P作PG⊥AB于点G,∵点P是正方形ABCD的对角线BD上一点,∴GP=EP,在△GPB中,∠GBP=45°,∴∠GPB=45°,∴GB=GP,同理,得PE=BE,∵AB=BC=GF,∴AG=AB-GB,FP=GF-GP=AB-GB,∴AG=PF,∴△AGP≌△FPE,①∴AP=EF;∠PFE=∠GAP∴④∠PFE=∠BAP,②延长AP到EF上于一点H,∴∠PAG=∠PFH,∵∠APG=∠FPH,∴∠PHF=∠PGA=90°,即AP⊥EF;③∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45度,∴当∠PAD=45度或67.5度或90度时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③错误.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴⑤DP=2EC.∴其中正确结论的序号是①②④.【点睛】此题考查正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.解题关键在于熟练掌握各性质定理.13.如图,菱形ABCD的周长为16,∠ADC=120º,E是AB的中点,P是对角线AC上的一个动点,则PE+PB 的最小值是___________.【答案】3【解析】【分析】连接BD,根据菱形的对角线平分一组对角可得∠BDA=12∠ADC=60°,然后判断出△ABD是等边三角形,连接DE,根据轴对称确定最短路线问题,DE与AC的交点即为所求的点P,PE+PB的最小值=DE,然后根据等边三角形的性质求出DE即可得解.【详解】解:如图,连接BD,∵四边形ABCD是菱形,∴∠BDA=12∠ADC=12×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=3423⨯=.故答案为:23.【点睛】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质,熟记性质与最短路线的确定方法找出点P的位置是解题的关键.14.阅读下面材料已知:如图,四边形ABCD是平行四边形;求作:菱形AECF,使点E,F分别在BC,AD上.小凯作法如下:(1)连接AC;(2)作AC的垂直平分线EF分别交BC,AD于E,F.(3)连接AE,CF所以四边形AECF是菱形.老师说:“小凯的作法正确”.回答问题:已知:在平行四边形ABCD中,点E、F分别在边BC、AD上______________________________________________.(补全已知条件)【答案】EF垂直平分AC【解析】【分析】利用作法可得到EF垂直平分AC,再证明四边形AECF是菱形即可解答;【详解】已知:在平行四边形ABCD中,点E、F分别在边BC、AD上,EF垂直平分AC;证明:∵EF垂直平分AC,∴EA=EC,FA=FC,AC⊥EF,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠DAC=∠ECA,∵EA=EC,∴∠ECA=∠EAC,∴∠EAC=∠DAC,∴AC平分EF,即AC与EF互相垂直平分,∴四边形AECF是菱形.故答案为:EF 垂直平分AC.【点睛】此题考查作图-复杂变换,菱形的判定与性质,平行四边形的性质,解题关键在于掌握作图法则.三、解答题15.解方程(1) 2(2)360x +-=; (2)22760x x -+=【答案】(1)x 1=4,x 2=-8;(2)x 1=32,x 2=2; 【解析】【分析】(1)利用直接开平方的方法解一元二次方程.(2)用十字相乘法解答;【详解】解:(1)(x+2)2-36=0(x+2)2=36x+2=±6解得x 1=4,x 2=-8;(2)因式分解得,(2x-3)(x-2)=0,解得,x 1=32,x 2=2; 【点睛】此题考查解一元二次方程,解题关键在于掌握因式分解法就是利用因式分解求出方程的解的方法. 16.已知关于x 的方程220x ax a ++-=.(1)当该方程的一个根为1时,求a 的值及该方程的另一根;(2)求证:不论a 取何实数,该方程都有两个不相等的实数根.【答案】(1)12,32-;(2)证明见解析. 【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x 1, ∵该方程的一个根为1,∴1111{211a x a x +=--⋅=.解得132{12x a =-=.∴a 的值为12,该方程的另一根为32-. (2)∵()()222241248444240a a a a a a a ∆=-⋅⋅-=-+=-++=-+>,∴不论a 取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用.17.已知:如图,四边形ABCD 中,AB ⊥BC ,AB =1,BC =2,CD =2,AD =3,求四边形ABCD 的面积.【答案】15+【解析】【分析】连接AC ,先根据勾股定理求出AC 的长度,再根据勾股定理的逆定理判断出△ACD 的形状,再利用三角形的面积公式求解即可【详解】解:连接AC .∵∠ABC =90°,AB =1,BC =2,∴AC 225AB BC +=在△ACD 中,AC 2+CD 2=5+4=9=AD 2,∴△ACD 是直角三角形,∴S 四边形ABCD =12AB •BC +12AC •CD , =12×1×2+12×52, =5故四边形ABCD 的面积为5【点睛】此题考查勾股定理和勾股定理的逆定理,掌握运算法则是解题关键18.如图,在ABCD 中,812AC BD ==,,点E F ,在对角线BD 上,点E 从点B 出发以每秒1个单位的速度向点D 运动,同时点F 从点D 出发以相同速度向点B 运动,到端点时运动停止,运动时间为t 秒. (1)求证;四边形AECF 为平行四边形;(2)求t 为何值时,四边形AECF 为矩形.【答案】(1)见解收析;(2)当2t =或10t =时,四边形AECF 为矩形【解析】【分析】(1)由题意证明BEC DFA ≌,BEA DFC ≌,得出CE=AF,AE=CF,即可证明.(2)根据矩形的判定只需要让一个角是直角的平行四边形即可得出矩形,由此思路计算即可.【详解】(1)在ABCD 中,∵AD BC AD BC =,∥,∴EBC FDA ∠=∠.由题意知,BE DF =.在BEC △与DFA 中,BE DF EBC FDA BC DA =⎧⎪∠=∠⎨⎪=⎩,∴()BEC DFA SAS ≌,∴CE AF =,同理可得BEA DFC ≌,∴AE CF =,∴四边形AECF 为平行四边形. (2)当2t =或10t =时,四边形AECF 为矩形.理由如下: 由平行四边形的性质知4OE OF O OC ==,,要使EAF ∠是直角, 只需142OE OF OA AC ====, 则1234∠=∠∠=∠,.∵1234180∠+∠+∠+∠=︒,∴2223180∠+∠=︒,∴2390∠+∠=︒,即90EAF ∠=︒. 此时()()11128222BE DF BD EF ==-=-=或212210BE DF ==-=. 【点睛】本题考查平行四边形的判定和矩形的判定,关键在于灵活运用条件.19.商场某种商品平均每天可销售30件,每件盈利50元. 为了尽快减少库存,商场决定采取适当的降价措施. 经调查发现,每件商品每降价1元,商场平均每天可多售出 2件.设每件商品降价x 元. 据此规律,请回答:(1)商场日销售量增加 ▲ 件,每件商品盈利 ▲ 元(用含x 的代数式表示);(2)在上述条件不变、销售正常情况下,每件商品降价多少元时,商场日盈利可达到2100元?【答案】(1) 2x 50-x(2)每件商品降价20元,商场日盈利可达2100元.【解析】【详解】(1) 2x 50-x .(2)解:由题意,得(30+2x)(50-x)=2 100解之得x 1=15,x 2=20.∵该商场为尽快减少库存,降价越多越吸引顾客.∴x =20.答:每件商品降价20元,商场日盈利可达2 100元.20.如图,在正方形ABCD 中,点M 在CD 边上,点N 在正方形ABCD 外部,且满足∠CMN =90°,CM =MN .连接AN ,CN ,取AN 的中点E ,连接BE ,AC ,交于F 点.(1) ①依题意补全图形;②求证:BE ⊥AC .(2)请探究线段BE ,AD ,CN 所满足的等量关系,并证明你的结论.(3)设AB =1,若点M 沿着线段CD 从点C 运动到点D ,则在该运动过程中,线段EN 所扫过的面积为______________(直接写出答案).【答案】(1)①补图见解析;②证明见解析;(2)2BE=2AD+CN,证明见解析;(3)3 4 .【解析】分析:(1)①依照题意补全图形即可;②连接CE,由正方形以及等腰直角三角形的性质可得出∠ACD=∠MCN=45°,从而得出∠ACN=90°,再根据直角三角形的性质以及点E为AN的中点即可得出AE=CE,由此即可得出B、E在线段AC的垂直平分线上,由此即可证得BE⊥AC;(2)BE=22AD+12CN.根据正方形的性质可得出BF=22AD,再结合三角形的中位线性质可得出EF=12CN,由线段间的关系即可证出结论;(3)找出EN所扫过的图形为四边形DFCN.根据正方形以及等腰直角三角形的性质可得出BD∥CN,由此得出四边形DFCN为梯形,再由AB=1,可算出线段CF、DF、CN的长度,利用梯形的面积公式即可得出结论.详解:(1)①依题意补全图形,如图1所示.②证明:连接CE,如图2所示.∵四边形ABCD是正方形,∴∠BCD=90°,AB=BC,∴∠ACB=∠ACD=12∠BCD=45°,∵∠CMN=90°,CM=MN,∴∠MCN=45°,∴∠ACN=∠ACD+∠MCN=90°. ∵在Rt △ACN 中,点E 是AN 中点,∴AE=CE=12AN . ∵AE=CE ,AB=CB ,∴点B ,E 在AC 的垂直平分线上,∴BE 垂直平分AC ,∴BE ⊥AC .(2)12CN . 证明:∵AB=BC ,∠ABE=∠CBE ,∴AF=FC .∵点E 是AN 中点,∴AE=EN ,∴FE 是△ACN 的中位线.∴FE=12CN . ∵BE ⊥AC ,∴∠BFC=90°, ∴∠FBC+∠FCB=90°. ∵∠FCB=45°, ∴∠FBC=45°, ∴∠FCB=∠FBC ,∴BF=CF .在Rt △BCF 中,BF 2+CF 2=BC 2,∴BF=2BC . ∵四边形ABCD 是正方形,∴BC=AD ,∴BF=2AD . ∵BE=BF+FE ,∴BE=22AD+12CN.(3)在点M沿着线段CD从点C运动到点D的过程中,线段EN所扫过的图形为四边形DFCN.∵∠BDC=45°,∠DCN=45°,∴BD∥CN,∴四边形DFCN为梯形.∵AB=1,∴CF=DF=122,22∴S梯形DFCN=12(DF+CN)•CF=12(222×22=34.点睛:本题考查了正方形的性质、等腰直角三角形的性质、平行线的性质以及梯形的面积公式,解题的关键是:(1)根据垂直平分线上点的性质证出垂直;(2)用AD表示出EF、BF的长度;(3)找出EN所扫过的图形.本题属于中档题,难度不小,解决该题型题目时,根据题意画出图形,利用数形结合解决问题是关键.。

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

人教版初中数学八年级下册期末测试题(2019-2020学年天津市滨海新区

2019-2020学年天津市滨海新区八年级(下)期末数学试卷一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥02.(3分)下列各式中,是最简二次根式的是()A.B.C.D.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,64.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x25.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<011.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.412.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=,=,=.14.(3分)一次函数y=﹣x+5是由正比例函数向平移个单位得到的.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.16.(3分)当x=﹣1时,代数式x2+2x+1的值是.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=;CF=;DE =.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=,OD=;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.516…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为,点B的坐标为;(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.2019-2020学年天津市滨海新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)若是二次根式,则x的取值范围是()A.x≥1B.x≤1C.x<1D.x≥0【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,1﹣x≥0,解得x≤1.故选:B.【点评】本题考查二次根式.解题的关键是掌握二次根式的被开方数是非负数.2.(3分)下列各式中,是最简二次根式的是()A.B.C.D.【分析】利用最简二次根式定义判断即可.【解答】解:A.,故本选项不合题意;B.,故本选项不合题意;C.是最简二次根式,故本选项符合题意;D.,故本选项不合题意.故选:C.【点评】此题考查了最简二次根式,熟练掌握最简二次根式定义是解本题的关键.3.(3分)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.2,2,3B.2,3,4C.3,4,5D.4,5,6【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定则可.【解答】解:A、22+22≠32,不能构成直角三角形,故此选项错误;B、22+32≠42,不能构成直角三角形,故此选项错误;C、32+42=52,能构成直角三角形,故此选项正确;D、42+52≠62,不能构成直角三角形,故此选项错误.故选:C.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.4.(3分)下列各式中,y不是x的函数的是()A.y=x B.|y|=x C.y=2x+1D.y=x2【分析】根据对于x的每一个确定的值,y是否有唯一的值与其对应进行判断.【解答】解:A、y=x,y是x的函数,故此选项不符合题意;B、|y|=x,对于x的每一个确定的值,y不是有唯一的值与其对应,∴y不是x的函数,故此选项符合题意;C、y=2x+1,y是x的函数,故此选项不符合题意;D、y=x2,y是x的函数,故此选项不符合题意;故选:B.【点评】本题考查了函数的定义.解题的关键是掌握函数的定义,设在一个变化过程中有两个变量x与y,对于x的每一个确定的值,y都有唯一的值与其对应,那么就说y是x的函数.5.(3分)如图,在▱ABCD中,若∠B=70°,则∠D=()A.35°B.70°C.110°D.130°【分析】根据平行四边形的对角相等即可得出∠D的度数.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,故选:B.【点评】此题主要考查了平行四边形的性质,熟练掌握平行四边形的对角相等是解题关键.6.(3分)在平面直角坐标系中,下列各点在直线y=2x﹣1上的是()A.P(﹣2.5,﹣4)B.Q(1,3)C.M(2.5,4)D.N(﹣1,0)【分析】分别代入各选项中点的横坐标求出y值,再与点的纵坐标比较后即可得出结论.【解答】解:A、当x=﹣2.5时,y=2x﹣1=﹣6,∴点P(﹣2.5,﹣4)不在直线y=2x﹣1上;B、当x=1时,y=2x﹣1=1,∴点Q(1,3)不在直线y=2x﹣1上;C、当x=2.5时,y=2x﹣1=4,∴点M(2.5,4)在直线y=2x﹣1上;D、当x=﹣1时,y=2x﹣1=﹣3,∴点N(﹣1,0)不在直线y=2x﹣1上.故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.7.(3分)如图,下列四组条件中,不能判定四边形ABCD是平行四边形的是()A.AD=BC,AD∥BC B.AD∥BC,AB=DCC.AD=BC,AB=DC D.AD∥BC,AB∥DC【分析】根据平行四边形的判定定理分别进行分析即可.【解答】解:A、根据一组对边平行且相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据两组对边分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题;D、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.【点评】此题主要考查了平行四边形的判定,关键是掌握(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.8.(3分)由于台风的影响,一棵树在离地面6m处折断,树顶落在离树干底部8m处,则这棵树在折断前(不包括树根)长度是()A.8m B.10m C.16m D.18m【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可.【解答】解:由题意得BC=8m,AC=6m,在直角三角形ABC中,根据勾股定理得:AB==10米.所以大树的高度是10+6=16米.故选:C.【点评】熟练运用勾股定理.熟记6,8,10是勾股数,简便计算.9.(3分)下列命题中,为真命题的是()A.对角线互相垂直的四边形是菱形B.对角线相等的四边形是矩形C.一组邻边相等的菱形是正方形D.对角线相等的菱形是正方形【分析】根据矩形、菱形、正方形的判定定理判断即可.【解答】解:A、对角线互相垂直的平行四边形是菱形,本选项说法是假命题;B、对角线相等的平行四边形是矩形,本选项说法是假命题;C、一组邻边相等的矩形是正方形,本选项说法是假命题;D、对角线相等的菱形是正方形,本选项说法是真命题;故选:D.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.(3分)关于函数y=﹣2x+1,下列结论正确的是()A.图象与直线y=2x+1平行B.y随x的增大而增大C.图象经过第一、二、三象限D.当x>时,y<0【分析】根据一次函数的性质及一次函数图象上点的坐标特点,对各选项进行逐一分析即可.【解答】解:A.由于直线y=﹣2x+1与直线y=2x+1的k值不相等,所以它们不平行,故本选项错误;B.函数y=﹣2x+1中,k=﹣2<0,y随x的增大而减小,故本选项错误;C.函数y=﹣2x+1中,k=﹣2<0,b=1>0,此函数的图象经过一、二、四象限,故本选项错误;D.函数y=﹣2x+1可化为x=,依据>,可得y<0,故本选项正确;故选:D.【点评】本题考查了一次函数y=kx+b(k≠0)的性质:当k>0,图象经过第一、三象限,y随x增大而增大;当k<0,图象经过第二、四象限,y随x增大而减小;当b>0,图象与y轴的交点在x的上方.11.(3分)如图所示,▱ABCD的对角线AC,BD相交于点O,点E是CD的中点,若BC =6,则OE的长为()A.2B.2.5C.3D.4【分析】先说明OE是△BCD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半求解.【解答】解:∵▱ABCD的对角线AC、BD相交于点O,∴OB=OD,∵点E是CD的中点,∴CE=DE,∴OE是△BCD的中位线,∵BC=6,∴OE=BC=3.故选:C.【点评】本题考查了平行四边形的性质:对角线互相平分这一性质和三角形的中位线定理.12.(3分)如图所示,小明家、食堂、图书馆在同一条直线上.小明从家去食堂吃早餐,接着去图书馆读报,然后回家.图反映了这个过程中,小明离家的距离y(单位:km)与时间x(单位:min)之间对应关系.根据图象:下列说法错误的是()A.食堂离小明家0.6kmB.小明在图书馆读报用了30minC.食堂离图书馆0.2kmD.小明从图书馆回家平均速度是0.02km/min【分析】根据题意和函数图象中的数据可以判断各个选项中的说法是否正确,从而可以解答本题.【解答】解:A、食堂离小明家0.6km,正确,不符合题意;B、小明在图书馆读报用了58﹣28=30min,正确,不符合题意;C、食堂离图书馆0.8﹣0.6=0.2km,正确,不符合题意;D、小明从图书馆回家平均速度是km/min,错误,符合题意;故选:D.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.二、填空题(本大题共6小题,每小题3分,共18分)13.(3分)化简:=3,=3,=﹣3.【分析】直接利用二次根式的性质分别化简得出答案.【解答】解:=3,=3,=﹣3.故答案为:3,3,﹣3.【点评】此题主要考查了二次根式的乘除法,正确化简二次根式是解题关键.14.(3分)一次函数y=﹣x+5是由正比例函数y=﹣x向上平移5个单位得到的.【分析】根据平移法则上加下减可得出平移后的解析式.【解答】解:由题意得:一次函数y=﹣x+5的图象可由正比例函数y=﹣x的图象向上平移5个单位长度得到.故答案为:y=﹣x,上,5.【点评】本题考查图形的平移变换和函数解析式之间的关系,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减.15.(3分)如图,利用函数图象回答下列问题:方程组的解为.【分析】观察函数的图象y=2x与y=﹣x+3相交于点(1,2),从而求解;【解答】解:观察图象可知,x+y=3与y=2x相交于(1,2),可求出方程组的解为,故答案为:.【点评】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.16.(3分)当x=﹣1时,代数式x2+2x+1的值是3.【分析】利用完全平方公式得到x2+2x+1=(x+1)2,然后把x的值代入计算即可.【解答】解:∵x=﹣1,∴x2+2x+1=(x+1)2=(﹣1+1)2=3.故答案为3.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.17.(3分)如图,四边形ABCD是矩形纸片,AD=10,CD=8.在CD边上取一点E,将纸片沿AE翻折,使点D落在BC边上的点F处.则AF=10;CF=4;DE=5.【分析】根据折叠的性质得AF=AD=10;根据矩形的性质得AD=CB=10,则CF=BC ﹣BF=4,设DE=x,则EF=x,EC=8﹣x,然后在Rt△ECF中根据勾股定理得到42+(8﹣x)2=x2,再解方程即可得到DE的长.【解答】解:根据折叠可得AF=AD=10,∵四边形ABCD是矩形,∴BC=AD=10,∴FC=10﹣6=4,设DE=x,则EF=x,EC=8﹣x,在Rt△ECF中,∵CE2+FC2=EF2,∴42+(8﹣x)2=x2,解得x=5.则DE=5.故答案为:10,4,5.【点评】本题考查了图形的折叠,矩形的性质和勾股定理,解题的关键是熟练掌握折叠的性质.18.(3分)在如图所示的7×7网格中,每个小正方形的边长均为1,点A、B均落在格点上.(Ⅰ)AB的长等于;(Ⅱ)请在如图所示的网格中,用无刻度的直尺,画出一个以AB为边的正方形ABCD,并简要说明画图的方法(不要求证明).【分析】(Ⅰ)利用勾股定理计算即可.(Ⅱ)利用数形结合的思想解决问题即可.【解答】解:(Ⅰ)AB==.故答案为.(Ⅱ)如图,取格点C,D,依次连接AD,DC,CB,四边形ABCD即为所求.【点评】本题考查作图﹣复杂作图,勾股定理,正方形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题(本大题共7小题,共66分.解答应写出文字说明、演算步骤或推理过程)19.(8分)计算:(Ⅰ);(Ⅱ).【分析】(Ⅰ)先把二次根式化为最简二次根式,然后合并即可;(Ⅱ)利用平方差公式计算.【解答】解:(Ⅰ)原式=3﹣4=﹣;(Ⅱ)原式=(2)2﹣()2=18.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.(8分)如图,在▱ABCD中,点M,N分别是边AB,CD的中点.求证:AN=CM.【分析】根据平行四边形的性质:平行四边的对边相等,可得AB∥CD,AB=CD;根据一组对边平行且相等的四边形是平行四边形,可得AN=CM.【解答】证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵M,N分别是AB、CD的中点,∴CN=CD,AM=AB,∵CN∥AM,∴四边形ANCM为平行四边形,∴AN=CM.【点评】本题考查了平行四边形的判定与性质,根据条件选择适当的判定方法是解题关键.21.(10分)如图所示,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,∠A=90°,求四边形ABCD的面积.【分析】连接BD,根据已知分别求得△ABD的面积与△BDC的面积,即可求四边形ABCD【解答】解:连接BD,∵AB=3cm,AD=4cm,∠A=90°∴BD=5cm,S△ABD=×3×4=6cm2又∵BD=5cm,BC=13cm,CD=12cm∴BD2+CD2=BC2∴∠BDC=90°∴S△BDC=×5×12=30cm2∴S四边形ABCD=S△ABD+S△BDC=6+30=36cm2.【点评】此题主要考查勾股定理和逆定理的应用,还涉及了三角形的面积计算.连接BD,是关键的一步.22.(10分)已知,矩形ABCD的对角线AC、BD相交于点O.(Ⅰ)如图①,若AB=6,BC=8,则BD=10,OD=5;(Ⅱ)如图②,DE∥AC,CE∥BD,求证:四边形OCED是菱形.【分析】(1)由矩形ABCD对角线AC、BD相交于点O,根据矩形的对角线相等,且互相平分,即可求得答案;(2)由矩形ABCD对角线AC、BD相交于点O,易证得OC=OD,又由DE∥AC,CE ∥BD,可证得四边形OCED是平行四边形,即可判定四边形OCED是菱形;【解答】(1)解:∵矩形ABCD对角线AC、BD相交于点O,∵AB=6,BC=8,由勾股定理得:AC=BD=10,∴OD=BD=5;故答案为:10,5;(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是矩形,∴AB=CD,OA=OC,OB=OD,∴OC=OD,∴四边形OCED是菱形;【点评】此题考查了矩形的性质、菱形的判定与性质、平行四边形的判定与性质等知识.注意掌握矩形的对角线相等且互相平分定理的应用是解此题的关键.23.(10分)已知正比例函数y=kx(k≠0)的图象经过点(3,﹣6).(Ⅰ)求这个函数的解析式;(Ⅱ)画出这个函数的图象;(Ⅲ)图象上有两点(﹣1,y1),(2,y2),比较y1与y2的大小.【分析】(Ⅰ)把(3,﹣6)代入正比例函数y=kx可得k的值,进而可得函数解析式;(Ⅱ)正比例函数图象必过(0,0),然后过(0,0)和(3,﹣6)画出图象即可;(Ⅲ)利用正比例函数的性质可得答案.【解答】解:(Ⅰ)∵y=kx(k≠0)的图象经过点(3,﹣6),∴﹣6=3k,解得k=﹣2,∴正比例函数解析式为y=﹣2x;(Ⅱ)如图所示:(Ⅲ)解:方法一(代入法):把(﹣1,y1),(2,y2)分别代入y=﹣2x,y1=﹣2×(﹣1)=2,y2=﹣2×2=﹣4,∴y1>y2.方法二(增减性):∵k=﹣2<0,∴y随x的增大而减小,∵﹣1<2,∴y1>y2.【点评】此题主要考查了一次函数图象上点的坐标特点,以及画函数图象和正比例函数的性质,关键是掌握凡是图象经过的点必能满足解析式.24.(10分)“黄金1号”玉米种子的价格为5元/kg,如果一次购买2kg以上的种子,超过2kg部分的种子的价格打8折.(Ⅰ)根据题意,填写下表:购买种子的数量/kg 1.52 3.54…付款金额/元7.5101618…(Ⅱ)设购买种子数量为xkg,付款金额为y元,求y关于x的函数解析式;(Ⅲ)若小张一次购买该种子花费了30元,求他购买种子的数量.【分析】(1)根据单价乘以数量,可得答案;(2)根据单价乘以数量,可得价格,可得相应的函数解析式;(3)根据函数值,可得相应的自变量的值.【解答】解:(Ⅰ)10,18;(Ⅱ)根据题意得,当0≤x≤2时,种子的价格为5元/千克,∴y=5x,当x>2时,其中有2千克的种子按5元/千克计价,超过部分按4元/千克计价,∴y=5×2+4(x﹣2)=4x+2,y关于x的函数解析式为y=;(Ⅲ)∵30>10,∴一次性购买种子超过2千克,∴4x+2=30.解得x=7,答:他购买种子的数量是7千克.【点评】本题考查了一次函数的应用,分类讨论是解题关键.25.(10分)如图,在平面直角坐标系中,O为原点,已知直线y=﹣x+4与x轴交于点A,与y轴交于点B.(Ⅰ)点A的坐标为(3,0),点B的坐标为(0,4);(Ⅱ)如图①,若点M(x,y)在线段AB上运动(不与端点A、B重合),连接OM,设△AOM的面积为S,写出S关于x的函数解析式,并写出自变量x的取值范围;(Ⅲ)如图②,若四边形OADC是菱形,求菱形对角线OD的长.【分析】(Ⅰ)分别令y=0,和令x=0,可得出答案;(Ⅱ)由点M(x,y)在直线上,可将其纵坐标用x表示出来,然后根据三角形面积公式可写出S关于x的函数关系式;(Ⅲ)先由勾股定理求得AB的长,再根据菱形的性质和面积法可求得OE的长,然后根据菱形的性质可得对角线OD的长.【解答】解:(Ⅰ)∵直线y=﹣x+4与x轴交于点A,与y轴交于点B,∴令y=0,得x=3;令x=0,得y=4,∴A(3,0),B(0,4).故答案为:(3,0),(0,4);(Ⅱ)∵点M(x,y)在直线上,∴M(x,).∴S=AO•y M=×3×()=﹣2x+6(0<x<3);(Ⅲ)由(Ⅰ)得,OA=3,OB=4.∴在Rt△AOB中,AB===5.∵四边形OADC是菱形,∴AC⊥OD,.∴.∵AB×OE=OA×OB,∴5OE=3×4,∴.∵,∴.∴菱形对角线OD的长为.【点评】本题属于一次函数综合题,考查了一次函数与坐标轴的交点、直线上的动点与两定点所围成的三角形的面积问题及一次函数与菱形的有关计算.。

2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (26)

2019-2020初中数学八年级下册《平行四边形》专项测试(含答案) (26)

浙教版初中数学试卷八年级数学下册《平行四边形》测试卷学校:__________一、选择题1.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正方形C.正三角形D.线段AB2.(2分)一个多边形内角和是1080o,则这个多边形是()A.六边形B.七边形C.八边形D.九边形3.(2分)如图,在△ABC中,D,E,F分别是AB,BC,AC上的点,且DE∥AC,EF∥AB,DF∥BC,则图中平行四边形共有()A.1个B.2个C.3个D.4个4.(2分)下列说法正确的是()A.一组邻角互补的四边形是平行四边形B.两组邻边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.对角线互相垂直的四边形是平行四边形5.(2分)下列条件中,能判定四边形为平行四边形的是()A.一组对边平行,另一组对边相等B.一组对边平行,一组对角互补C.一组对角相等,一组邻角互补D.一组对角相等,另一组对角互补6.(2分)下列图形中,是中心对称图形而不是轴对称图形的是()A.平行四边形B.正三角形C.正方形D.线段AB二、填空题7.(3分)如果点M(m,-2)和点N(1,n)关于原点对称,那么m=_______,n=______.8.(3分)如图,四边形的四条边AB、BC、CD和DA,它们的长分别是2、 5 .5、4,其中∠B=90°,那么四边形ABCD的面积为 .9.(3分)如图,已知点E在面积为4的平行四边形ABCD的边上运动,若ABE△的面积为1,则点E的准确位置是.10.(3分)设将一张正方形纸片沿图中虚线剪开后,能拼成右边四个图形,则其中是中心对称图形的是 (填序号).11.(3分)当行边形的边数增加l边时,其内角和增加.12.(3分)点A(5,2)关于直角坐标系原点对称的点的坐标是,关于y轴对称的点的坐标是,关于x轴对称的点的坐标是.13.(3分)平行四边形绕对角线的交点旋转后能与原图形重合.14.(3分)如图所示,AD∥BC,△ABC的面积为25cm2,则△BDC的面积为.15.(3分)如图所示,平行四边形ABCD中,AE平分∠DAB,∠B=100°,则∠DAE= .16.(3分)在□ABCD中,∠A的外角与∠B互余,则∠D的度数为.17.(3分)如图所示,已知在□ABCD中,∠DBC=30°,∠ABD=45°,那么∠BDA= .∠BCD= .18.(3分)如图所示,在□ABCD中,DB=DC,∠C=70°,AE⊥BD于点E,则∠A B CD E F DAE= .19.(3分)在□ABCD 中.AC 与BD 相交于点0,AB=3 cm,BC=4 cm ,AC=6 cm ,BD=8 cm ,则△AOB 的周长是 ,△80C 的周长是 .20.(3分)从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.21.(3分)如图,A ,B 两点分别位于一个池塘的两端,小明想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接达到A ,B 的点C ,•找到AC ,BC 的中点D ,E ,并且测出DE 的长为15m ,则A ,B 两点间的距离为_____m . 评卷人得分 三、解答题22.(6分)写出定理“直角三角形斜边上的中线等于斜边的一半”的逆命题,•这个逆命题是真命题吗?请证明你的判断.23.(6分)如图,在□ABCD 中,点E 、F 在对角线AC 上,且AE =CF.请你以F 为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等.(1)连结: ;(2)猜想: = ;(3)证明:24.(6分)如图,△ABC中,A(-2,3),B(-3,1),C(-1,2).(1)将△ABC向右平移4个单位长度,画出平移后的△A1B1C1;(2)画出△ABC关于x轴对称的△A2B2C2;(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(4)在△A1B1C1,△A2B2C2,△A3B3C3中,△与△成轴对称,对称轴是;△与△成中心对称,对称中心的坐标是.25.(6分)求证:三角形的三个内角的平分线交于一点.26.(6分)写出下列命题的逆命题,并判断真假:(1)如果一个三角形是直角三角形,那么它的两个锐角互余;(2)在角的内部到一个角的两边距离相等的点在这个角的平分线上;(3)等腰三角形的两个底角相等;(4)正多边形的各边相等.27.(6分)如图①所示,已知AE是△ABC的高,F是AE上的任意一点,G是E点关于F 的对称点,过点G作BC的平行线与AB交于点H,与AC交于点I,连结IF并延长交BC 于点J,连结HF并延长交BC于点K.(1)请你在图②中再画出一个满足条件的四边形HJKI(点F的位置与图①不同);(2)请你判断四边形HJKl是怎样的四边形?并对你得到的结论予以证明(图②供思考用).28.(6分)在□ABCD中,AE,AF分别是BC,CD边上的高,AF与BC交于点G,AE=2 cm,AF=5 cm,∠EAF=30°,求□ABCD各内角的度数和AB,AD的长.29.(6分)如图所示.在四边形ABCD中,AC⊥BD于点O.求证:2222+=+AB CD AD BC30.(6分)仔细观察下面的六幅图案,研究它们分别是用哪两种正多边形镶嵌的,并指出同一顶点处有几个正多边形.【参考答案】***试卷处理标记,请不要删除评卷人得分一、选择题1.A2.C3.C4.C5.C6.A评卷人得分二、填空题7.-1,28.6+ 59.AD的中点或CB的中点10.②11.180°12.(-52,(-5,2,(5213.180°14.25 cm215.40°16.45°17.30°,l05°18.20°19.10 cm,1l cm20.()() 22a b a b a b -=+-21.30评卷人得分三、解答题22.逆命题:一边上的中线等于这边的一半的三角形是直角三角形,是真命题.证明如下:如图,已知△ABC中,CD是AB边上的中线,CD=12 AB.求证:△ABC是直角三角形.证明:∵CD是AB边上的中线,CD=12 AB,•∴CD=AD=BD,∴∠1=∠A,∠2=∠B,∵∠1+∠2+∠A+∠B=180°,∴∠1+∠2=90°,•即∠ACB=90°,∴△ABC是直角三角形23.提示:连结DF或BF,则DF=BE或BF=DE,证明△ABE≌△CDF或△ADE≌△CBF.24.解:图略(4)△A2B2C2与△A3B3C3成轴对称,对称轴是y轴.△A3B3C3与△A1B1C1成中心对称,对称中心的坐标是(2,0).25.略26.(1)若一个三角形的两锐角互余,则这个三角形是直角三角形.是真命题;(2)角平分线上的点到角两边的距离相等.是真命题;(3)有两个角相等的三角形是等腰三角形.是真命题;(4)各边都相等的多边形是正多边形.是假命题27.(1)作图与①类似;②四边形HJKI为平行四边形,证略28.30°,150°,30°,l50°,AB=4 cm, AD=10cm29.证明222AB AO OB=+,222CD OC OD=+,222BC BO OC=+,222AD AO OD=+,则2222AB CD BC AD+=+30.图①:l个正方形,2个正八边形图②和图③:3个正三角形,2个正方形图④:4个正三角形,l个正六边形图⑤:2个正三角形,2个正六边形图⑥:l个正三角形,2个正十二边形。

初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)

初二下册数学期末复习03勾股定理必刷提高练习题(原卷版)

2019-2020学年八年级数学下册同步闯关练(人教版)第十七章《勾股定理》17.117.2勾股定理及勾股定理的逆定理知识点1:勾股定理【例1】(2020春•朝阳区校级月考)如图,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,DE是AC 的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD等于()A.4B.3C.2.5D.2.4【变式1-1】(2019秋•雨花区校级期末)如图,Rt△ACB中,∠ACB=90°,AB=13cm,AC=5cm,动点P从点B出发沿射线BC以2cm/s的速度运动,设运动时间为ts,当△APB为等腰三角形时,t的值为()A.或B.或12或4C.或或12D.或12或4【变式1-2】(2020•浙江自主招生)如图,边长为的立方体中,B,C,D为三条棱中点,过BCD的平面切割立方体得四面体,则以△BCD为底面的四面体的高为.【变式1-3】(2019秋•南岸区校级期末)如图,在Rt△ABC,∠ACB=90°,AD在△ABC外,AD=AC,∠CAD=∠ABC,连接BD.若AB=5,AC=3,则BD=.【变式1-4】(2019秋•高安市校级期末)如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD =4,CD=10,求BD的长.【变式1-5】(2019秋•邳州市期末)如图,△ABC中,∠ACB=90°,AB=10,BC=6,若点P从点A出发,以每秒1个单位长度的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足PA=PB时,求此时t的值;(2)若点P恰好在∠BAC的平分线上,求t的值.【变式1-6】(2019秋•南召县期末)如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.(1)出发2秒后,求PQ的长;(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.知识点2:勾股定理的证明【例2】(2019春•德州期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于()A.30B.25C.20D.15【变式2-1】(2019秋•铁西区校级月考)“赵爽弦图”是四个全等的直角三角形与中间一个正方形拼成的大正方形.如图,每一个直角三角形的两条直角边的长分别是3和6,则中间小正方形与大正方形的面积差是()A.9B.36C.27D.34【变式2-2】(2017秋•新泰市期末)如图,是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形,如果EF=4,AH=12,那么AB等于.【变式2-3】(2017春•厦门期末)公元3世纪,我国数学家赵爽用弦图证明了勾股定理,在前面的学习中,我们知道根据勾股定理可以用长为有理数的线段来作出长为,,的线段.若一个直角三角形的一条边长为,其他两边长均为有理数,则其它两边的长可以为,.【变式2-4】(2018秋•泰兴市校级月考)如图(1),是两个全等的直角三角形(直角边分别为a,b,斜边为c).用这样的两个三角形构造成如图(2)的图形,利用这个图形,证明:a2+b2=c2.【变式2-5】(2018秋•商河县期中)如图1是用硬纸片做成的两个全等的直角三角形,两条直角边长分别为a和b,斜边为c;图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能验证勾股定理的图形.(1)画出拼成的这个图形的示意图,并用它验证勾股定理;(2)假设图3中的直角三角形有若干个,你能运用图中所给的直角三角形拼出另一种能够验证勾股定理的图形吗?画出拼成图形的示意图(不写验证过程).【变式2-6】(2016秋•甘州区校级月考)请选择一个图形来证明勾股定理.(可以自己选用其他图形进行证明)【变式2-7】(2018春•遵义期中)如图:在Rt△ABC和Rt△BDE中,∠C=90°,∠D=90°,AC=BD =a,BC=DE=b,AB=BE=c,试利用图形证明勾股定理.知识点3:勾股定理的逆定理【例3】(2019春•贵池区期中)△ABC的三边分别为a,b,c,下列条件能推出△ABC是直角三角形的有()①a2﹣c2=b2;②(a﹣b)(a+b)+c2=0;③∠A=∠B﹣∠C;④∠A:∠B:∠C=1:2:3;⑤;⑥a=10,b=24,c=26.A.2个B.3个C.4个D.5个【变式3-1】(2019秋•义乌市期末)在△ABC中,BC=a,AC=b,AB=c,根据下列条件不能判断△ABC 是直角三角形的是()A.∠B=50°,∠C=40°B.∠A:∠B:∠C=1:2:2C.a=4,b=,c=5D.a:b:c=1:1:【变式3-2】(2019秋•南岸区校级月考)如图,在四边形ABCD中,AB=BC=2,DC=3,AD=,∠ABC=90°,则四边形ABCD的面积是【变式3-3】(2019•郫都区模拟)如图,点A、B、C分别是正方体展开图的小正方形的顶点,则∠BAC的大小为.【变式3-4】(2019秋•泰安期末)如图所示,已知△ABC中,AB=8cm,AC=6cm,BC=10cm.分别以三边AB,AC及BC为直径向外作半圆,求阴影部分的面积.【变式3-5】(2018秋•长丰县期末)如图,在△ABC中,AB=30cm,BC=35cm,∠B=60°,有一动点E 自A向B以2cm/s的速度运动,动点F自B向C以4cm/s的速度运动,若E、F同时分别从A、B出发.(1)试问出发几秒后,△BEF为等边三角形?(2)填空:出发秒后,△BEF为直角三角形?【变式3-6】(2019春•三台县期中)如图,在四边形ABCD中,O是BD的中点,且AD=8,BD=12,AC=20,∠ADB=90°.求BC的长和四边形ABCD的面积.知识点4:勾股数【例4】(2017秋•靖江市校级月考)下列一组数是勾股数的是()A.1.5,2,2.5B.7,40,41C.5,12,13D.12,15,20【变式4-1】下列各组数为勾股数的是()A.2,2,5B.15,8,17C.9,12,13D.3a,4a,5a【变式4-2】(2019秋•眉山期中)观察下列等式:32+42=52;52+122=132;72+242=252;92+402=412;112+602=612…按照这样的规律,第六个等式是.【变式4-3】(2017春•永城市期中)探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【变式4-4】(2015秋•泰兴市期末)阅读理解并解答问题如果a、b、c为正整数,且满足a2+b2=c2,那么,a、b、c叫做一组勾股数.(1)请你根据勾股数的意思,说明为什么3、4、5是一组勾股数;(2)写出一组不同于3、4、5的勾股数;(3)如果m表示大于1的整数,且a=2m,b=m2﹣1,c=m2+1,请你根据勾股数的意思,说明a、b、c为勾股数.【变式4-5】(2014秋•兴化市校级月考)观察下列等式:32=4+5=(5+4)(5﹣4)=52﹣42;52=12+13=(13+12)(13﹣12)=132﹣122;72=24+25=(25+24)(25﹣24)=252﹣242;…(1)仿照上述等式的规律写出:92=+=2﹣2(2)从上面的式子中,可以得到哪些勾股数?按此规律,你还能写出哪些勾股数?(至少三个)【变式4-6】(2018秋•内江期末)我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所知道的四边形中是勾股四边形的两种图形的名称,;(2)如图,将△ABC绕顶点B按顺时针方向旋转60°后得到△DBE,连接AD、DC,若∠DCB=30°,试证明;DC2+BC2=AC2.(即四边形ABCD是勾股四边形)知识点5:勾股定理的应用【例5】(2019春•江岸区校级月考)在平静的湖面上,有一支红莲,高出水面0.1米,一阵风吹来,红莲吹到一边花朵齐及水面,已知红莲移动的水平距离为0.5米,则这里的水深是()A.1米B.1.5米C.1.2米D.1.3米【变式5-1】(2019秋•诸暨市校级月考)如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A.6秒B.8秒C.10秒D.18秒【变式5-2】(2019秋•温州期末)如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B.最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为米.【变式5-3】(2019春•金州区校级月考)如图,有一个长方体的盒子,它的长、宽、高分别是4m,3m和12m,则盒内可放的木棒最长为m.【变式5-4】(2019秋•金台区期末)如图,笔直的公路上A、B两点相距25km,C、D为两村庄,DA⊥AB 于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建一个土特产品收购站E,使得C、D两村到收购站E的距离相等,则收购站E应建在离A点多远处?【变式5-5】(2019春•马山县期中)如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮.经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.(1)求这块四边形空地的面积;(2)若每平方米草皮需要200元,则种植这片草皮需要多少元?【变式5-6】(2019秋•泉港区期末)一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?。

2019-2020年八年级数学下册专题讲解+课后训练:梯形的辅助线 课后练习及详解

2019-2020年八年级数学下册专题讲解+课后训练:梯形的辅助线 课后练习及详解

2019-2020年八年级数学下册专题讲解+课后训练:梯形的辅助线课后练习及详解题一:(1)如图,直角梯形ABCD中,AD∥BC,∠B=90°,腰AB= 4,两底之差为2,求另一腰CD的长;(2)在梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=8,BC=14,求梯形ABCD的周长;(3)如图所示,在等腰梯形ABCD中,AB∥CD,DC=AD=BC,且对角线AC垂直于腰BC,求这个梯形各内角的度数;(4)如图,在梯形ABCD中,AD∥BC,∠B+∠C=90°,AD=1,BC=3,E、F分别是AD、BC的中点,则EF= .题二:(1)如图,在梯形ABCD中,AD∥BC,∠B=30°,∠C=60°,E、F、M、N分别为AB、CD、BC、DA的中点,已知BC=7,MN=3,则EF= ;(2)如图,在梯形ABCD中,AD=DC,AB=DC,∠D=120°,对角线CA平分∠BCD,且梯形的周长为20,则梯形ABCD的面积为;(3)如图,等腰梯形ABCD中,AD∥BC,AD=3,AB= 4,BC=7,求∠B的度数;(4)如图,梯形ABCD中,AD∥BC,AC⊥BD,AD=3,BC=7,E在BC上,CE=2,则DE= .题三:已知:等腰梯形的上底是2cm,腰长是4cm,一个底角是60°,则等腰梯形的下底是cm.题四:已知:等腰梯形的一个底角等于60°,它的两底分别为4cm和7cm,则它的周长为cm.题五:如图所示,在梯形ABCD中,AD∥BC,AB=CD,AC⊥BD,且AD= 4,BC=8,求AC的长.题六:如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,若AD=3,BC=7,求梯形ABCD 面积的最大值.题七:如图,梯形ABCD中,AD∥BC,点E在BC上,AE=BE,点F是CD的中点,且AF ⊥AB,若AD=2.7,AF=4,AB=6,求CE的长.题八:如图,在梯形ABCD中,AB∥CD,∠A+∠B=90°,CD=5,AB=11,点M、N分别为AB、CD的中点,求线段MN的长.题九:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,AB= 4,AD=3,BC=5,点M是边CD的中点,连接AM、BM.求△ABM的面积.题十:如图,已知直角梯形ABCD中,AD∥BC(AD<BC),∠B=90°,AB=AD+BC.点E 是CD的中点,点F是AB上的点,∠ADF= 45°,FE=a,梯形ABCD的面积为m.(1)求证:BF=BC;(2)求△DEF的面积(用含a、m的代数式表示).题十一:以线段a=16,b=13为梯形的两底,c=10,d=6为腰画梯形,这样的梯形() A.只能画出一个B.能画出2个C.能画出无数个D.不能画出题十二:以线段a=5,b=10,c=15,d=20做梯形四边形,这样的梯形(不全等的)() A.至少能做3个B.恰好能做2个C.仅仅只能做1个D.一个也不能做梯形的辅助线课后练习参考答案题一:(1)2;(2)34;(3)60°,60°,120°,120°;(4)1.详解:(1)过D作DE⊥BC于E,∵AB⊥BC,DE⊥BC,AD∥BC,∴四边形ADEB是个矩形,∴AB=DE= 4,CE=BC AD=2,Rt△DEC中,CD===2;;(2)过A、D点作AE⊥BC于E,DF⊥BC于F,∵AB=CD,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴BE=CF,∵AD=8,BC=14,BE=CF=3,又∵在Rt△ABE中,∠B=60°,∴AB=2BE=6,∴梯形ABCD的周长为8+14+6+6=34;(3)如图所示,过点C作CE∥AD,又DC∥AE,∴四边形AECD为平行四边形,又DC=AD=BC,∴四边形AECD为菱形,∴AE=CE=BC,∴∠EAC=∠ECA,∠CEB=∠B,∵∠B+∠CAB=90°,即3∠CAE=90°,∴∠CAE=30°,∴∠B=60°=∠DAB,∠D=∠DCB=120°;(4)过点E作AB、CD的平行线,与BC分别交于G,H,∵∠B+∠C=90°,∴∠EGH=∠B,∠EHG=∠C,∴∠EGH+∠EHG=90°,∴四边形ABGE和四边形CDEH都是平行四边形,△EGH为直角三角形,∵E、F分别是AD、BC的中点,∴BG=CH=0.5,GH=2,根据直角三角形中斜边上的中线是斜边的一半知,EF=GH=1,∴EF=1.题二:(1)4;(2)12;(3)60°;(4)5.详解:(1)过点N分别作NG∥AB,NH∥CD,得平行四边形ABGN和平行四边形DCHN,∴∠NGM+∠NHM=∠B+∠C=90°,GH=BC AD,MG=MH,∴GH=2MN=6,∴AD=76=1,∴EF= 4;(2)∵在梯形ABCD中,AB=DC,∴梯形ABCD是等腰梯形,∴∠D+∠DCB=180°,∵∠D=120°,∴∠B=∠DCB=60°,∵对角线CA平分∠BCD,∴∠ACB=30°,∵AD=DC,∴∠DAC=∠ACD=30°,∴∠BAC=90°,∴BC=2AB,∵梯形的周长为AD+DC+BC+AB=5AB=20,∴AB= 4,∴AC=4,BC=8,过点A作AE⊥BC于点E,∵AB= 4,AC=4,BC=8,∴AE=2,∴梯形ABCD的面积为(4+8)×2×=12;(3)过点A作AE∥DC交BC于E,∵AD∥BC,∴四边形AECD是平行四边形,∴EC=AD=3,DC=AE,∴BE=BC CE=73= 4,∴CD=AB= 4,∴AE=AB=BE= 4,∴△ABE是等边三角形,∴∠B=60°;(4)过D作DF∥AC交BC的延长线于F,∵AD∥BC,∴四边形ACFD是平行四边形,∴CF=AD=3,∵BC=7,∴BF=BC+CF=7+3=10,∵CE=2,∴BE=72=5,EF=2+3=5,∴BE=EF,又∵AC⊥BD,DF∥AC,∴∠BDF=90°,∴DE=BF=5.题三:6cm.详解:过D作DE∥AB交BC于E,∵DE∥AB,AD∥BC,∴四边形ABED是平行四边形,∴AD=BE=2cm,DE=AB=4cm,∠DEC=∠B=60°,AB=DE=DC,∴△DEC是等边三角形,∴EC=CD= 4cm,∴BC= 4cm+2cm=6cm.题四:17cm.详解:过上底顶点D作DE∥AB交BC于E,则四边形ABED是平行四边形,∴DE=AB,AD=BE,∵梯形的一个底角是60°,∴∠C=60°,又∵腰长AB=CD=DE,∴△CDE是等边三角形,∴CD=CE=BC BE=74=3cm,∴它的周长为3+7+3+4=17cm.题五:.详解:过D作DE∥AC交BC的延长线于E,∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∴ADEC是平行四边形,∴AD=CE,AC=DE,即可得出BE=BC+CE=BC+AD=12,又∵AC=BD,∴BD=ED,∴△BDE为等腰直角三角形,∴AC=BD=.题六:25.详解:过D作DE∥AC交BC延长线于E,∵AD∥BC,DE∥AC,∴四边形ACED是平行四边形,∴AD=CE,∴根据等底等高的三角形面积相等得出△ADC的面积等于△DCE的面积,即梯形ABCD的面积等于△BDE的面积,∵AC⊥BD,DE∥AC,∴∠BDE=90°,BE=3+7=10,∴此时△BDE的边BE边上的高越大,它的面积就越大,即当高是BE时最大,即梯形的最大面积是×10××10=25.题七:2.3.详解:延长AF、BC交于点G,∵AD∥BC,∴∠D=∠FCG,∠DAF=∠G,又DF=CF,∴△AFD≌△GFC,∴AG=2AF=8,CG=AD=2.7,∵AF⊥AB,AB=6,∴BG=10,∴BC=BG CG=7.3,∵AE=BE,∴∠BAE=∠B,∴∠EAG=∠AGE,∴AE=GE,∴BE=BG=5,∴CE=BC BE=2.3.题八:3.详解:如图,过D作DE∥BC,DF∥MN,∵在梯形ABCD中,AB∥CD,DE∥BC,∴CD=BE=5,AE=AB BE=115=6,∵M为AB的中点,∴MB=AM=AB=×11=5.5,ME=MB BE=5.55=0.5,∵N为DC的中点,∴DN=DC=×5=2.5,在四边形DFMN中,DC∥AB,DF∥MN,∴FM=DN=2.5,∴FE=FM+ME=2.5+0.5=3=AE,∴F为AE的中点,又∵DE∥BC,∴∠B=∠AED,∵∠A+∠B=90°,∴∠A+∠AED=90°,∴∠ADE=90°,即△ADE是直角三角形,∴DF=MN=AE=×6=3.题九:8.详解:延长AM交BC的延长线于点N,∵AD∥BC,∴∠DAM=∠N,∠D=∠MCN,∵点M是边CD的中点,∴DM=CM,∴△ADM≌△NCM(AAS),∴CN=AD=3,AM=MN=AN,∴BN=BC+CN=5+3=8,∵∠ABC=90°,∴S△ABN=×AB•BN=×4×8=16,∴S△ABM=S△ABN=8,即△ABM的面积为8.题十:见详解.详解:(1)∵四边形ABCD是直角梯形,∴∠A=90°,∵∠ADF=45°,∴∠AFD= 45°,∴AD=AF,∵AB=AF+BF,AB=AD+BC,∴BF=BC;(2)连接FC,设AD=AF=x,BC=BF=y,连接CF,作DH⊥BC于H,易证四边形ABHD为矩形、△CDF为直角三角形,又∵E是CD中点,∴CD=2EF=2a,由勾股定理得x2+y2=2a2…①,由直角梯形的面积公式可得:(x+y)2=2m…②,由②①,得xy=m a2,∵S△DFC=S梯形ABCD S△AFD S△BFC=(x+y)2 x2 y2 = xy,∴S△DEF=S△DFC=m a2.题十一:D.详解:如图,过点B作BE∥AD,则出现平行四边形ABED和一个△BEC,∵AB=13,CD=16,AD=10,BC=6∴CE=3,BE=10,∵3+6<10,∴BE,CE,BC不能构成三角形∴这样的梯形一个也不能作.故选D.题十二:C.详解:作DE∥AB,则DE=AB,①当a=5为上底,b=10为下底,c、d为腰时,105=5,与15,20不能构成三角形,故不满足题意;②当a=5为上底,b=15为下底,b、d为腰时,155=10,与10,20不能构成三角形,故不满足题意;③当a=5为上底,d=20为下底,b、c为腰时,205=15,与10,15可以构成三角形,故满足题意;④当b=10为上底,c=15为下底,a、d为腰时,1510=5,与5,20不能构成三角形,故不满足题意;⑤当b=10为上底,d=20为下底,a、c为腰时,2010=10,与5,15不能构成三角形,故不满足题意;⑥当c=15为上底,d=20 为下底,a、b为腰时,2015=5,与5,10不能构成三角形,故不满足题意;综上可得只有当a=5为上底,d=20为下底,b、c为腰时,满足题意,即以线段a=5,b=10,c=15,d=20做梯形四边形,这样的梯形(不全等的)只能做一个.故选C..。

山西省2019-2020学年第二学期八年级阶段一质量评估试题·数学(人教版)

山西省2019-2020学年第二学期八年级阶段一质量评估试题·数学(人教版)

A. 2
B. 2 2
C. 4
D. 8
8. 阅读下面的计算过程,
(1 3
原式= 24 ÷
2+
50 ÷
2-
81
×
1 3
= 12 + 25 - 27
=2 3 + 5 - 9 3
=5 - 7 3 .
其中首先错误的一步是
(第一步)
(第二步) (第三步) (第四步)
(2)求 a2 + 4ab + 4b2 的值 .
21.(本题 9 分)有一块长方形木板,木工采用如图的方式在木板上截出两个面积分别为
12 dm2和 27 dm2的正方形木板 .
(1)求剩余木料的面积; (2)如果木工想从剩余的木料中截出长为 1. 5 dm,宽为 1 dm 的长 12 dm2
27 dm2
方形木条,最多能截出
块这样的木条 .
第 21 题图
八年级数学 (人教版) 第 3 页 (共 4 页)
22.(本题 11 分)阅读下列材料并回答问题 .
( ) ( ) ( ) ( ) 我们知道, 3 × 3 = 3, 7 + 3 7 - 3 = 7 2 - 3 2 = 4,…,如果两个
含有二次根式的非零代数式相乘,它们的积不含二次根式,就说这两个非零代数式互
A. 9
B. - 12
5. 计算 32 × 8 的结果是
C. 15
D. 18
A. 6 2
B. ± 6 2
C. 3 2
6. 若一长方形的面积为 36,一边长为 48 ,则另一边长为
D. ± 3 2
A. 3
B. 3 3
C. 9 3
D. 18 3

八年级下册数学配套练习册答案人教版(2019)

八年级下册数学配套练习册答案人教版(2019)

八年级下册数学配套练习册答案人教版(2019)第18章函数及其图象§18.1变量与函数(一)一、选择题. 1.A 2.B0.8x2x 3. y二、填空题. 1. 2.5,x、y 2.101.(123.6x2. y100010)三、解答题. 1. y8x§18.1变量与函数(二)一、选择题. 1.A 2.D9x4x,0361 2. 5 3. y二、填空题. 1. x10,50030的整数 2. (1)yx0.5x,01520)三、解答题. 1. y(x(2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A在y轴上,点B在第一象限,点C 在第四象限,点D在第三象限; 2. (1)A(-3,2),B(0,-1),C(2,1)(2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲(3)10米/秒,8米/秒8x5x,040三、解答题. 1. (1)40 (2)8,5 (3)y2. (1)时间与距离(2)10千米,30千米(3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3. y三、解答题1. (1)体温与时间(2):4 (2)作图略xx,042.(1)y§18.3一次函数(一)一、选择题. 1.B 2. B2.6x23. y3,m二、填空题. 1. (1)、(4), (1) 2. m13或5x,(2)390元; 2. 240三、解答题. 1. (1)y§18.3一次函数(二)2t)2 212 18 24 时间t(h) 6一、选择题. 1.A 2. C 体温(℃)39 36 38 36 1(201 3. 0, 3 33 2. 5x二、填空题. 1. y13x三、解答题. 1. ;两条直线平行 2. y§18.3一次函数(三)一、选择题. 1.C 2. D二、填空题. 1. -2,1 2. (-2,0),(0,-6) 3. -23x,218三、解答题. 1. (1)(1,0),(0,-3),作图略(2)3 2. (1) y6 (2)作图略,y的值为6x0§18.3一次函数(四)一、选择题. 1.B 2.B二、填空题. 1. 第四 2. > 13. mb(图略)2,(2)a1 (2) -2 2. (1) x三、解答题. 1. (1)m §18.3一次函数(五)一、选择题. 1.D 2.C2 3. -2, 2x5 2. 答案不,如:y7x二、填空题. 1. y5 2. (1)(4,0)(2)yx三、解答题. 1. y§18.4反比例函数(一)6 2一、选择题. 1.D 2.B 3x,反比例 xx620 2. 1 3. y(2)点B在图象上,点C不在图象上,理由(略) x3三、解答题.1. (1)yx二、填空题. 1. y32. (1)y(2)§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 221 , x2y2 2. (1)y三、解答题.1. (1)-2 (2)y1§18.5实践与探索(一)。

2020年春人教版八年级数学下册 各阶段试题2019天津市中考数学试题(Word版,含解析)

2020年春人教版八年级数学下册 各阶段试题2019天津市中考数学试题(Word版,含解析)

2019年天津市初中毕业生学生考试试卷数学试卷满分120分,考试时间100分钟。

第I 卷一、选择题(本大题12小题,每小题3分,共36分) 1.计算(-3)×9的结果等于A. -27B. -6C. 27D. 6 【答案】A【解析】有理数的乘法运算:=-3×9=-27,故选A. 2.︒60sin 2的值等于A. 1B. 2C. 3D. 2 【答案】B【解析】锐角三角函数计算,︒60sin 2=2×23=3,故选A. 3.据2019年3月21日《天津日报》报道:“伟大的变革---庆祝改革开放四十周年大型展览”3月20日圆满闭幕,自开幕以来,现场观众累计约为4230000人次,将4230000用科学记数法表示为A. 0.423×107B.4.23×106C.42.3×105D.423×104【答案】B【解析】科学记数法表示为4.23×106,故选B.4.在一些美术字中,有的汉字是轴对称图形,下面4个汉字中,可以看做是轴对称图形的是【答案】A【解析】美、丽、校、园四个汉子中,“美”可以看做轴对称图形。

故选A 5.右图是一个由6个相同的正方体组成的立体图形,它的主视图是【答案】B【解析】图中的立体图形主视图为,故选B.6.估计33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间 【答案】D 【解析】因为,所以,故选D.7.计算1212+++a a a 的结果是 A. 2 B. 22+a C. 1 D.14+a a【答案】A 【解析】21221212=++=+++a a a a a ,故选A. 8.如图,四边形ABCD 为菱形,A 、B 两点的坐标分别是(2,0),(0,1),点C 、D 在坐标轴上,则菱形ABCD 的周长等于A.5B.34C.54D. 20【答案】C【解析】由勾股定理可得,由菱形性质可得,所以周长等于故选C. 9.方程组⎩⎨⎧=-=+1126723y x y x ,的解是A.⎩⎨⎧=-=51y xB.⎩⎨⎧==21y xC.⎩⎨⎧==1-3y xD.⎪⎩⎪⎨⎧==212y x【答案】D【解析】用加减消元法,⎩⎨⎧=-=+②①1126723y x y x①+②=1172623+=-++y x y x189=x 2=x 代入2=x 到①中,726=+y 则21=y ,故选D. 10.若点A (-3,1y ),B (-2,2y ),C (1,3y )都在反比函数xy 12-=的图象上,则321,,y y y 的关系 A. 312y y y << B.213y y y << C.321y y y << D.123y y y << 【答案】B【解析】将A (-3,1y ),B (-2,2y ),C (1,3y )代入反比函数xy 12-=中,得:12-112,6212,4312321=-==--==--=y y y ,所以213y y y <<,故选B. 11.如图,将△ABC 绕点C 顺时针旋转得到△DEC ,使点A 的对应点D 恰好落在边AB 上,点B 的对应点为E ,连接BE ,下列结论一定正确的是A.AC=ADB.AB ⊥EBC. BC=DED.∠A=∠EBC【答案】D【解析】由旋转性质可知,AC=CD ,AC ≠AD ,∴A 错 由旋转性质可知,BC=EC ,BC ≠DE ,∴C 错由旋转性质可知,∠ACB=∠DCE ,∵∠ACB=∠ACD+∠DCB ,∠DCE=∠ECB+∠DCB ∴∠ACD=∠ECB ,∵AC=CD ,BC=CE ,∴∠A=∠CDA=21(180°-∠ECB ),∠EBC=∠CEB=21(180°-∠ECB ), ∴D 正确,由于由题意无法得到∠ABE=90°,∴B 选项错误. 故选D 。

北京市铁路二中2019-2020学年八年级下学期期中数学试题(word无答案)

北京市铁路二中2019-2020学年八年级下学期期中数学试题(word无答案)

北京市铁路二中2019-2020学年八年级下学期期中数学试题(word无答案)一、单选题(★) 1 . 在下列性质中,平行四边形不一定具有的是()A.对边相等B.对角互补C.对边平行D.对角相等(★) 2 . 平行四边形的一个内角是70°,则其他三个角是()A.70°,130°,130°B.110°,70°,120°C.110°,70°,110°D.70°,120°,120°(★★) 3 . 下列计算正确的是( )A.B.C.D.(★) 4 . 如右图要测量池塘两侧的两点A、B之间的距离,可以取一个能直接到达A、B的点C,连结CA、CB,分别在线段CA、CB上取中点D、E,连结DE,测得DE=35m,则可得A、B之间的距离为()A.30 m B.70 m C.105m D.140m(★) 5 . 下列线段不能组成直角三角形的是()A.a=3,b=4,c=5B.a=1,b=,c=C.a=2,b=3,c=4D.a=7,b=24,c=25(★★) 6 . 直角三角形两直角边的长度分别为6和8,则斜边上的高为()A.10B.5C.9.6D.4.8(★★) 7 . 顺次连结对角线互相垂直的四边形各边中点所构成的四边形一定是()A.矩形B.菱形C.正方形D.不确定(★★)8 . 如图,在△ 中, ,,边上的中线,那么的长是()A.B.C.D.(★★) 9 . 如图所示□ ABCD,再添加下列某一个条件, 不能判定□ ABCD是矩形的是()A.AC=BD B.AB⊥BCC.Ð1=Ð2D.ÐABC=ÐBCD(★★) 10 . 如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,那么下列结论成立的是().A.线段EF的长逐渐增大B.线段EF的长逐渐减少C.线段EF的长不变D.线段EF的长不能确定二、填空题(★★) 11 . 若代数式在实数范围内有意义,则x的取值范围是_______。

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)

2019-2020年八年级数学打折销售问题(基础知识拔高练习)【知识要点】商品打折销售中的相关关系式.(1)利润=售价-进价(2)利润=利润率×成本(3)利润率=进价利润=进价进价售价 (4)定价=成本×﹙1+期望的利润率﹚﹙利润率也称利润百分数,售价也称卖价﹚(5)打折销售中的售价=标价×10折数 【基础测试】1、某商品原来每件零售价是a 元, 现在每件降价10%,降价后每件零售价是 ;2、某种品牌的彩电降价20%以后,每台售价为a 元,则该品牌彩电每台原价应为 元;3、某商品按定价的八折出售,售价是14.8元,则原定售价是 ;4、500元的9折价是______元 ,x 折是_______元.5、某商品的每件销售利润是72元,进价是120,则售价是__________元.6、某商品利润率13﹪,进价为50元,则利润是________元.7.某商品的标价是1200元,打八折售出价后仍盈利100元,则该商品的进价是多少元?8.一件商品按30%的利润定价,然后按七折卖出,结果亏损了18元,这件商品的成本是多少元?【牛刀小试】1、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少?2、某商店在某一时间以每件60元的价格卖出两件衣服,其中一件盈利25%,另一件亏损25%,卖这两件衣服总的是盈利还是亏损,或是不盈不亏?3、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元?4、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元?5、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?6、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?7、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?8、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元?9、甲乙两件衣服成本共500元,甲按50%的利润定价,乙按40%的利润定价,由于生意不好,两件都打九折,还获利157元,原来甲乙两件衣服各多少元?10、学样准备组织教师和学生去旅游,其中教师2名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按8折费;乙旅行社表示教师和学生一律按7.5折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游?11、某班将买一些乒乓球和乒乓球拍,现了解情况如下:甲、乙两家商店出售两种同样品牌的乒乓球和乒乓球拍。

四川省渠县崇德实验学校2019-2020学年第二学期八年级数学线上教学测试题(Word版,无答案)

四川省渠县崇德实验学校2019-2020学年第二学期八年级数学线上教学测试题(Word版,无答案)

2020 年春季网络教学部分学校联合诚信检测八年级数学试题考试时间∶120分钟试卷总分∶150分第Ⅰ卷(本卷满分100 分)一、选择题(共10 小题,每小题3 分,共30 分)下列各题中均有四个备选答案,其中有且只有一个正确,请选取你认为正确的答案代号.1.下列式子中,是最简二次根式的是B C D.A2.在□ABCD 中, AB= 3,AD= 1,则□ABCD 的周长是A.4 B.5 C.7 D.8.3.下列计算中,不正确的是B=A.=C=D10=4.下列结论中,矩形具有而平行四边形不一定具有的性质是A.内角和为360°B.对角线互相平分C.对角线相等D.对边平行.5.下列条件中,使△ABC 不是直角三角形的是A.AB = 3,BC = 4,AC = 5 B.AB2 - BC2 = AC2C.∠A∶∠B∶∠C=1∶2∶3 D.AB∶BC∶AC=1∶2∶3 .6.下列命题中,其逆命题成立的是A.线段垂直平分线上的点到这条线段两个端点的距离相等B.全等三角形的对应角相等C.如果两个实数都是正数,那么它们的积是正数D.如果两个实数相等,那么它们的平方相等.7.在四边形ABCD 中,AB∥CD,再添加下列其中一个条件后,四边形ABCD 不一定是平行四边形的是A.AB= CD B.AD = BC C.AD∥BC D.∠A = ∠C.8= 4,则a 的值为A.±4 B.±2 C.4 D.2.9.已知菱形的周长是高的8 倍,则菱形的两邻角的度数之比为A.3∶1 B.4∶1C.5∶1 D.6∶1.10.如图,在△ABC 中,∠BAC=90°,AB=AC,点D 在BC 的延长线上,且∠ADC=30°.若AB=2,则CD 的长度为A.1 BC.2二、填空题(共6 小题,每小题3 分,共18 分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.11.式子 x 的取值范围是.12的倒数是.13.如图,点E 在正方形ABCD 的边AB 上,若EB=1,EC=2,那么正方形ABCD 的面积为.14.将一个矩形纸片沿BC 折叠成如图所示的图形,若∠ABC=27°,则∠ACD 的度数为.15.如图,从一个矩形中截去面积分别为2cm2 和8cm2 的两个正方形,则剩下的两个小矩形的面积之和(图中阴影部分的面积)为cm2.16.如图,矩形ABCD 中,对角线AC 的垂直平分线EF 分别交BC,AD 于点E,F,若BE=3,AF=5,则线段AC 的长为.三、解答题(共5 小题,共52 分)下列各题必需在答题卷对应题号的方框内答题,答在方框外或题号错位的无效.17.(本题满分10 分)计算:127650327)318.(本题满分10 分)如图,在四边形ABCD 中,AB= 13,BC= 3,CD =4,DA= 12,∠ADB= 90°,求四边形ABCD 的面积.19.(本题满分10 分)如图,四边形ABCD 和四边形CDEF 都是平行四边形,连结AF、BE 交于点I.求证:AF 和BE 互相平分20.(本题满分10 分)如图,在平面直角坐标系中,已知A(0, 2),B(0,-3),C (4, 0),P (-2, 0),且以A,B,C,D 为顶点的四边形为菱形.(1)直接写出D 点的坐标;(2)请用无刻度直尺作直线l,使直线l 经过点P 且平分菱形的面积,保留作图痕迹(若无法打印答题卡,不便于规范作图,请用几何语言直接描述具体的作图过程代替作图);(3)已知点T 是CD 边上一点,若线段OT 将菱形ABCD 的面积分为2∶3 两部分,直接写出点T 的坐标.21.(本题满分 12 分)如图 1, A 1, B 1,C 1, D 1分别是四边形 ABCD 各边的中点,且 AC ⊥BD ,AC = 6,BD = 10.(1)试判断四边形 A 1B 1C 1D 1的形状,并证明你的结论;(2)如图 2,依次取A 1 B 1,B 1 C 1,C 1 D 1,D 1 A 1的中点A 2,B 2,C 2,D 2,再依次取A 2 B 2 ,B 2 C 2,C 2D 2,D 2 A 2的中点A 3,B 3,C 3,D 3……以此类推,取A n -1 B n -1,B n -1 C n -1 ,C n-1D n-1, D n -1 A n -1的中点A n ,A n ,C n ,D n .根据信息填空:① 四边形A 1 B 1 C 1 D 1的面积是 ;② 若四边形A n B n C n D n 的面积为1516,则 n ;③ 试用 n 表示四边形A n B n C n D n 的面积第Ⅱ卷 (本卷满分 50 分)四.填空题(共 4 小题,每小题 4 分,共 16 分)下列各题不需要写出解答过程,请将结果直接填在答题卷指定的位置.22.如图,以点 O 为圆心的两个较小的圆与大圆的半径 OA 分别相交于点 B ,C ,若三个圆 的面积依次为π,2π,3π,则OCAB的值为 .23.如图,在正方形 ABCD 中,BE =1,将 BC 沿 CE 翻折,使点 B 对应点落在对角线 AC上,将 AD 沿 AF 翻折,使点 D 对应点落在对角线 AC 上,则线段 EF 的长度为 .24.如图, ∆ABC 和 ∆ADE 都是等边三角形,∠CAD < 120°,点 M ,N 分别是 AE ,CD 的中点,连结 MN ,BD ,当∠ADB = 30°,AD = 2,BD = 5 时,MN 的长度为 .25.如图,有一根固定长度的木棍 MN 在正方形 ABCD 的内部如图 1 放置,此时木棍的端 点 M 恰好与点 A 重合,点 N 在 BC 边上,BN = 2.5,将木棍沿 AB 向下滑动 a 个单位长度 至图 2 的位置,同时另一个端点 N 沿 BC 向右滑动b 个单位长度至N ′,且 a ∶ b =7∶9, BM ′ = 3.9,在滑动的过程中,点 D 到木棍中点 P 的最短距离为 .五、解答题(共 3 小题,共 34 分)下列各题必需在答题卷对应题号的方框内答题,答在方框外或题号错位的无效.26.(本题满分 10 分)已知 x =12, y =12 , m =11x y +,n =y xx y+ (1)求 m ,n 的值;(2n m =+=的值.27.(本题满分 12 分)如图,正方形 ABCD 的边长为 6 个单位长度,点 E 是 BC 边的中点,点 F 从点 E 出发,以 1 个单位/秒的速度按 E →C →D →A →B →E 的方向运动,再次回到 E 点 结束运动,设 F 点运动的时间为 t 秒. (1)如图 1,若ΔAEF 为直角三角形,求 t 的值;(2)如图 2,若点 F 在 CD 上,且CF = 2DF ,求∠AEF + ∠AFD 的度数;(3)如图 3,点 G 是对角线 BD 的三等分点,且BD = 3DG ,若EF + GF = 8,直接写出满足条件的 F 点的个数,并注明这些 F 点分别在正方形的哪条边上.28.(本题满分12 分)如图1,已知正方形ABCD 的顶点A,B 分别在y 轴和x 轴上,边CD 交x 轴的正半轴于点E.a=,求 A 点的坐标;(1)若A(0,a2– 4a + 5),且2(2)在(1)的条件下,若3AO = 4EO ,求D 点的坐标;(3)如图2,连结AC 交x 轴于点F,点H 是A 点上方y 轴上一动点,以AF、AH 为边作□AFGH,使G 点恰好落在AD 边上,试探讨BF,HG 与DG 的数量关系,并证明你的结论.。

人教版数学八年级下册第十七章 勾股定理测试卷D卷

人教版数学八年级下册第十七章 勾股定理测试卷D卷

人教版数学八年级下册第十七章勾股定理测试卷D卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·慈溪期末) 下列各组数据作为三角形的三边长,能构成直角三角形的是()A . 2,3,4B . 5,6,8C . 2,,3D . ,2,32. (2分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A .B . 2C . 2D . 83. (2分)(2020·港南模拟) 如图,已知△ABC中,AB=5,AC=4,BC=3,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的值为()A . 1B . 1.5C . 2D . 2.54. (2分) (2017八上·顺德期末) 如图,△ABC中,∠ACB=90°,AC=24,BC=7,点M, N在AB上,且AM=AC, BN=BC,则MN的长为()A . 4B . 5C . 6D . 75. (2分) (2017八下·官渡期末) 如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A . 20B . 10C . 5D .6. (2分)如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为()A . 17B . 18C . 19D . 207. (2分)如图所示,已知在平行四边形ABCD中,AB=6,BC=4,若∠B=45°,则平行四边形ABCD的面积为()B . 12C . 16D . 248. (2分) (2019八上·鄞州期中) 如图,折叠长方形纸片的一边,使点落在边上的点处,已知,,则折痕的长为A .B .C .D . 139. (2分)如图:一个长、宽、高分别为4cm、3cm、12cm的长方体盒子能容下的最长木棒长为()A . 11cmB . 12cmC . 13cmD . 14cm10. (2分) (2019八上·垣曲期中) 勾股定理在平面几何中有着不可替代的重要地位,在我国古算书(周髀算经》中就有“若勾三,股四,则弦五”的记载,如图1是由边长均为1的小正方形和Rt△ABC构成的,可以用其面积关系验证勾股定理,将图1按图2所示“嵌入”长方形LMJK,则该长方形的面积为()B . 110C . 100D . 90二、填空题 (共10题;共30分)11. (3分) (2019八下·大连月考) 如图,在等腰△ABC中,底边BC=16,底边上的高AD=6,则腰AB=________.12. (3分) (2019八下·腾冲期中) 如图,字母A所代表的正方形面积为________.13. (3分) (2020八下·哈尔滨期中) 已知a、b、c是△ABC三边的长,且满足关系式 ||=0,则△ABC的形状是________.14. (3分) (2020八上·丹东期中) 如图,已蚂蚁沿着棱长为2的正方体表面从点出发,经过2个侧面爬到点,如果它运动的路径是最短的,则最短路径长为________.15. (3分)把一张矩形纸片(矩形ABCD)按如图方式折叠,使顶点B和点D重合,折痕为EF.若AB=3cm,BC=5cm,则重叠部分△DEF的面积是 ________ cm2 .16. (3分)(2020·陕西模拟) 如图,正方形ABCD的边长为4,点E、F分别是BC,CD边上的动点,且CE+CF =4,DE和AF相交于点P,在点E,F运动的过程中,CP的最小值为________.17. (3分)如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于________.18. (3分)(2019·东阳模拟) 如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB= S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为________.19. (3分)(2019·宁波) 如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的OP与△ABC的一边相切时,AP的长为________.20. (3分)(2017·衢州) 如图,在直角坐标系中,⊙A的圆心A的坐标为(-1,0),半径为1,点P为直线上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的最小值是________三、解答题 (共6题;共40分)21. (5分) (2019八上·西安月考) 如图,AB=4,BC=3,CD=13,AD=12,∠B=90°,求四边形ABCD的面积.22. (5分) (2020八下·漯河期中) 如图,一架2.5米长的梯子AB斜靠在竖直的墙AC上,这时B到墙底端C的距离为0.7米.如果梯子的顶端沿墙面下滑0.4米,那么点B将向左滑动多少米?23. (5分) (2019八上·织金期中) 如图,一棵树被一阵风折断,树干AC高1.2米,树尖到根部的水平距离AB 长1.6米,求树折断前的高度.24. (5分)如图,在平面直角坐标系中,四边形OABC的顶点O为坐标原点,点C在x轴的正半轴上,且BC⊥OC 于点C,点A的坐标为(2,2),AB=4,∠B=60°,点D是线段OC上一点,且OD=4,连接AD.(1)求证:△AOD是等边三角形;(2)求点B的坐标;(3)平行于AD的直线l从原点O出发,沿x轴正方向平移.设直线l被四边形OABC截得的线段长为m,直线l与x轴交点的横坐标为t.①当直线l与x轴的交点在线段CD上(交点不与点C,D重合)时,请直接写出m与t的函数关系式(不必写出自变量t的取值范围)②若m=2,请直接写出此时直线l与x轴的交点坐标.25. (10分)(2020·玉林模拟) 如图,正方形ABCD中,边长为12,DE⊥DC交AB于点E,DF平分∠EDC交(1)求证:EF=CF;(2)当 = 时,求EF的长.26. (10分) (2018八上·惠山月考) 如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,请你求出旗杆的高度.(滑轮上方的部分忽略不计)四、综合题 (共1题;共10分)27. (10分) (2020八上·龙岗月考) 八年级1班松松同学学习了“勾股定理”之后,为了测量如图的风筝的高度CE,测得如下数据:①测得BD的长度为8米:(注:BD⊥CE)②根据手中剩余线的长度计算出风筝线BC的长为17米;③牵线放风筝的松松身高1.6米.(1)求风筝的高度CE.(2)若松松同学想风筝沿CD方向下降9米,则他应该往回收线多少米?参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共10题;共30分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、略考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共40分)答案:21-1、考点:解析:答案:22-1、考点:解析:答案:23-1、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、考点:解析:四、综合题 (共1题;共10分)答案:27-1、答案:27-2、考点:解析:。

北京市房山区2019-2020学年八年级下学期期中数学试题(word无答案)

北京市房山区2019-2020学年八年级下学期期中数学试题(word无答案)

北京市房山区2019-2020学年八年级下学期期中数学试题(word无答案)一、单选题(★) 1 . 在平面直角坐标系中,点P(-2,5)位于( )A.第一象限B.第二象限C.第三象限D.第四象限(★) 2 . 下列各曲线中,不表示y是 x的函数的是()A.B.C.D.(★) 3 . 若点 A(2,y 1),B(3,y 2)都在一次函数图象上,则y 1与 y 2的大小关系是()A.>B.=C.<D.无法比较大小(★) 4 . 下列实数中,方程x 2-2x= 0 的根是()A.0B.2C.0或1D.0或2(★) 5 . 一元二次方程2x 2+6x+3= 0 经过配方后可变形为()A.=6B.=12C.D.(★) 6 . 对于一次函数 y = kx + b (k, b 为常数),下表中给出几组自变量及其对应的函数值,x-1013y752-1其中恰好有一个函数值计算有误,则这个错误的函数值是()A.-1B.2C.5D.7(★★) 7 . 如图,若点P为函数图象上的一动点,表示点P到原点O的距离,则下列图象中,能表示与点P的横坐标的函数关系的图象大致是()A.B.C.D.(★★) 8 . 为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是()①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②二、填空题(★★) 9 . 函数中,自变量的取值范围是.(★) 10 . 若点P(-1,a)与Q(b,2)关于x轴对称,则a+b=_______.(★) 11 . 2022年将在北京—张家口举办冬季奥运会,北京将成为世界上第一个既举办夏季奥运会,又举办冬季奥运会的城市.某队要从两名选手中选取一名参加比赛,为此对这两名队员进行了五次测试,测试成绩如图所示,你会选择______选手(填A或B),理由是________.(★) 12 . 若一次函数()的图象如图所示,点P(2.5,3)在函数图象上,则关于x的方程的解是_______.(★) 13 . 关于x的一元二次方程ax 2+bx-2020=0有一个根为x=-1,写出一组满足条件的实数a,b的值:a=______,b=________.(★) 14 . 一个y关于x的函数同时满足以下两个条件:(1)图象经过点(-3,4);(2)y随x增大而减小这个函数的表达式可以是_________.(写出一个即可)(★) 15 . 若关于的一元二次方程有两个不相等的实数根,则的取值范围是___________ .(★★) 16 . 如图,在平面直角坐标系xOy中,一次函数y=x+1与x、y 轴分别交于点A、B,在直线 AB上截取BB 1=AB,过点B 1分别作y 轴的垂线,垂足为点C 1,得到⊿BB 1C 1;在直线AB上截取B 1B 2= BB 1,过点B 2分别作y 轴的垂线,垂足为点C 2,得到⊿BB 2C 2;在直线AB 上截取B 2B 3= B 1B 2,过点B 3作y 轴的垂线,垂足为点C 3,得到⊿BB 3C 3;……;第3个⊿BB 3C 3的面积是___________;第n个⊿BB n C n的面积是______________(用含n的式子表示,n是正整数).三、解答题(★) 17 . 用公式法解方程: .(★) 18 . 解方程: .(★) 19 . 函数是关于x 的一次函数,且y 随着x 的增大而减小,求m 的取值范围并指出图象经过哪几个象限?(★★) 20 . 已知关于x 的一元二次方程mx 2-(m+2)x +2=0(m≠0) (1)求证:方程一定有两个实数根;(2)若此方程的两根为不相等的整数,求整数m 的值.(★) 21 . 已知一次函数(1)在平面直角坐标系内画出该函数的图象; (2)当自变量x=-4时,函数y 的值 _________;(3)当x <0时,请结合图象,直接写出y 的取值范围:_______.(★) 22 . 在平面直角坐标系xOy 中,已知点 、点 ,一次函数 的图象与直线AB 交于点P .(1)求直线AB 的函数表达式及P 点的坐标;(2)若点Q 是y 轴上一点,且△BPQ 的面积为2,求点Q 的坐标.(★★) 23 . 列方程解应用题:北京大兴国际机场,是建设在北京市大兴区与河北省廊坊市广阳区之间的超大型国际航空综合交通枢纽.机场主体工程占地多在北京境内,70万平米航站楼,客机近机位92个。

人教版初中数学八年级下册期中试卷(2019-2020学年湖北省鄂州市

人教版初中数学八年级下册期中试卷(2019-2020学年湖北省鄂州市

2019-2020学年湖北省鄂州市八年级(下)期中数学试卷一.选择题(本大题有10小题,每题3分,共30分)1.(3分)下列各式中,最简二次根式是()A.B.C.D.2.(3分)下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=23.(3分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角4.(3分)△ABC的三边分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b ﹣c);③a:b:c=3:4:5.其中能判断△ABC是直角三角形的条件个数有()A.0个B.1个C.2个D.3个5.(3分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断6.(3分)如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1B.﹣+1C.+1D.7.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.8.(3分)如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.69.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.5710.(3分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE =45°,F为△ABC外一点,且FB⊥BC,F A⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③二、填空题(本大题共8小题,共24分)11.(3分)如果二次根式有意义,那么x的取值.12.(3分)已知ab<0,则化简后为.13.(3分)已知直角三角形的两条边长为3和4,则第三边的长为.14.(3分)如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是.15.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=10,则EF的长为.16.(3分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3,上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是.17.(3分)如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB 边由A向B匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为.18.(3分)将五个边长都为4cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为cm2.三、解答题(共7小题,满分66分)19.(12分)解答题计算题:(1)+﹣﹣4(2)(3)已知=0,求的值.20.(8分)如图,在▱ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形21.(8分)如图,把一块三角形(△ABC)土地挖去一个直角三角形(∠ADC=90°)后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地(图中阴影部分)的面积.22.(8分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E =60°,量得DE=8,试求BD的长.23.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;24.(8分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.25.(12分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是.②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是,请证明你的猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.2019-2020学年湖北省鄂州市八年级(下)期中数学试卷参考答案与试题解析一.选择题(本大题有10小题,每题3分,共30分)1.(3分)下列各式中,最简二次根式是()A.B.C.D.【分析】A、D选项的被开方数中都含有能开得尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.所以只有B选项符合最简二次根式的要求.【解答】解:因为:A、=3;C、=;D、=|a|;所以,这三个选项都可化简,不是最简二次根式.故选:B.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.2.(3分)下列计算正确的是()A.3﹣=3B.2+=2C.=﹣2D.=2【分析】直接利用二次根式的性质分别化简计算即可.【解答】解:A、3﹣=2,故此选项错误;B、2+无法计算,故此选项错误;C、=2,故此选项错误;D、=2,正确.故选:D.【点评】此题主要考查了二次根式的hi额性质与化简,正确化简二次根式是解题关键.3.(3分)关于特殊四边形对角线的性质,矩形具备而平行四边形不一定具备的是()A.对角线互相平分B.对角线互相垂C.对角线相等D.对角线平分一组对角【分析】根据矩形、平行四边形的性质即可判断;【解答】解:矩形的对角线互相平分且相等,平行四边形的对角线互相平分,∴矩形具备而平行四边形不一定具备的是矩形的对角线相等,故选:C.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.如,矩形的对角线相等是常考内容.4.(3分)△ABC的三边分别为a,b,c,下列条件:①∠A=∠B﹣∠C;②a2=(b+c)(b ﹣c);③a:b:c=3:4:5.其中能判断△ABC是直角三角形的条件个数有()A.0个B.1个C.2个D.3个【分析】根据三角形的内角和定理和已知求出最大角∠B的度数,即可判断①;根据已知得出a2+c2=b2,根据勾股定理的逆定理即可判断②;设a=3k,b=4k,c=5k求出a2+c2=b2,根据勾股定理的逆定理即可判断③.【解答】解:①∵∠A=∠B﹣∠C,∴∠A+∠C=∠B,∵∠A+∠B+∠C=180°,∴2∠B=180°,∴∠B=90°,∴△ABC是直角三角形,∴①正确;②a2=(b+c)(b﹣c),∴a2=b2﹣c2,∴a2+c2=b2,∴△BAC是直角三角形,∴②正确;③∵a:b:c=3:4:5,∴设a=3k,b=4k,c=5k,∵a2+b2=25k2,c2=25k2,∴a2+b2=c2,∴△ABC是直角三角形,∴③正确;故选:D.【点评】本题考查了勾股定理的逆定理和三角形的内角和定理的应用,主要考查学生的辨析能力,题目比较典型,难度适中.5.(3分)如图,两把完全一样的直尺叠放在一起,重合的部分构成一个四边形,这个四边形一定是()A.矩形B.菱形C.正方形D.无法判断【分析】由条件可知AB∥CD,AD∥BC,再再证明AB=BC即可解决问题.【解答】解:过点D作DE⊥AB于E,DF⊥BC于F.∵两张长方形纸条的宽度相等,∴DE=DF.又∵平行四边形ABCD的面积=AB•DE=BC•DF,∴AB=BC,∴平行四边形ABCD为菱形.故选:B.【点评】本题考查了菱形的判定,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.6.(3分)如图所示,数轴上点A所表示的数为a,则a的值是()A.﹣1B.﹣+1C.+1D.【分析】首先计算出直角三角形斜边的长,然后再确定a的值.【解答】解:∵=,∴a=﹣1,故选:A.【点评】此题主要考查了实数与数轴,关键是利用勾股定理计算出直角三角形斜边长.7.(3分)如图,已知OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是()A.2B.C.D.【分析】由OP平分∠AOB,∠AOB=60°,CP=2,CP∥OA,易得△OCP是等腰三角形,∠COP=30°,又由含30°角的直角三角形的性质,即可求得PE的值,继而求得OP的长,然后由直角三角形斜边上的中线等于斜边的一半,即可求得DM的长.【解答】解:∵OP平分∠AOB,∠AOB=60°,∴∠AOP=∠COP=30°,∵CP∥OA,∴∠AOP=∠CPO,∴∠COP=∠CPO,∴OC=CP=2,∵∠PCE=∠AOB=60°,PE⊥OB,∴∠CPE=30°,∴CE=CP=1,∴PE==,∴OP=2PE=2,∵PD⊥OA,点M是OP的中点,∴DM=OP=.故选:C.【点评】此题考查了等腰三角形的性质与判定、含30°直角三角形的性质以及直角三角形斜边的中线的性质.此题难度适中,注意掌握数形结合思想的应用.8.(3分)如图,在菱形ABCD中,对角线AC=8,BD=6,点E,F分别是边AB,BC的中点,点P在AC上运动,在运动过程中,存在PE+PF的最小值,则这个最小值是()A.3B.4C.5D.6【分析】设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,根据菱形的性质推出N是AD中点,P与O重合,推出PE+PF=NF =AB,根据勾股定理求出AB的长即可.【解答】解:设AC交BD于O,作E关于AC的对称点N,连接NF,交AC于P,则此时EP+FP的值最小,∴PN=PE,∵四边形ABCD是菱形,∴∠DAB=∠BCD,AD=AB=BC=CD,OA=OC,OB=OD,AD∥BC,∵E为AB的中点,∴N在AD上,且N为AD的中点,∵AD∥CB,∴∠ANP=∠CFP,∠NAP=∠FCP,∵AD=BC,N为AD中点,F为BC中点,∴AN=CF,在△ANP和△CFP中∵,∴△ANP≌△CFP(ASA),∴AP=CP,即P为AC中点,∵O为AC中点,∴P、O重合,即NF过O点,∵AN∥BF,AN=BF,∴四边形ANFB是平行四边形,∴NF=AB,∵菱形ABCD,∴AC⊥BD,OA=AC=4,BO=BD=3,由勾股定理得:AB==5,故选:C.【点评】本题考查了轴对称﹣最短路线问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出AB=NF=EP+FP,题目比较典型,综合性比较强,主要培养学生的计算能力.9.(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42B.43C.56D.57【分析】设第n个图形中一共有a n个菱形(n为正整数),根据各图形中菱形个数的变化可得出变化规律“a n=n2+n+1(n为正整数)”,再代入n=6即可求出结论.【解答】解:设第n个图形中一共有a n个菱形(n为正整数),∵a1=12+2=3,a2=22+3=7,a3=32+4=13,a4=42+5=21,…,∴a n=n2+n+1(n为正整数),∴a6=62+7=43.故选:B.【点评】本题考查了规律型:图形的变化类,根据各图形中菱形个数的变化,找出变化规律“a n=n2+n+1(n为正整数)”是解题的关键.10.(3分)如图,在Rt△ABC中,AB=AC,∠BAC=90°,D、E为BC上两点,∠DAE =45°,F为△ABC外一点,且FB⊥BC,F A⊥AE,则下列结论:①CE=BF;②BD2+CE2=DE2;③;④CE2+BE2=2AE2,其中正确的是()A.①②③④B.①②④C.①③④D.②③【分析】根据等腰直角三角形的性质,判断出△AFB≌△AEC,即可得出CE=BF,根据勾股定理与等量代换可得②正确,根据在等腰三角形中,角平分线与中线为一条直线即可得出③,再根据勾股定理以及等量代换即可得出④.【解答】解:①∵∠BAC=90°,F A⊥AE,∠DAE=45°,∴∠CAE=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∠F AB=90°﹣∠DAE﹣∠BAD=45°﹣∠BAD,∴∠F AB=∠EAC,∵AB=AC,∠BAC=90°,∴∠ABC=∠ACB=45°,∵FB⊥BC,∴∠F AB=45°,∴△AFB≌△AEC,∴CE=BF,故①正确,②:由①中证明△AFB≌△AEC,∴AF=AE,∵∠DAE=45°,F A⊥AE,∴∠F AD=∠DAE=45°,∴△AFD≌△AED,连接FD,∵FB=CE,∴FB2+BD2=FD2=DE2,故②正确,③:如图,设AD与EF的交点为G,∵∠F AD=∠EAD=45°,AF=AE,∴AD⊥EF,EF=2EG,∴S△ADE=•AD•EG==,故③正确,④:∵FB2+BE2=EF2,CE=BF,∴CE2+BE2=EF2,在RT△AEF中,AF=AE,AF2+AE2=EF2,∴EF2=2AE2,∴CE2+BE2=2AE2,故④正确.故选:A.【点评】本题考查了勾股定理、全等三角形的判定定理以及等腰直角直角三角形的性质,此题涉及的知识面比较广,解题时要注意仔细分析,难度较大.二、填空题(本大题共8小题,共24分)11.(3分)如果二次根式有意义,那么x的取值x≥4.【分析】直接利用二次根式有意义的条件得出答案.【解答】解:依题意有x﹣4≥0,解得:x≥4.故答案为:x≥4.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.12.(3分)已知ab<0,则化简后为﹣a.【分析】根据ab<0和二次根式有意义的条件可分析出a<0,则b>0,然后再根据二次根式的性质进行化简即可.【解答】解:∵ab<0,∴a、b为异号,∵=,ab<0,∴a<0,∴b>0,∴==﹣a,故答案为:﹣a.【点评】此题主要考查了二次根式的性质与化简,关键是正确分析出a和b的符号.13.(3分)已知直角三角形的两条边长为3和4,则第三边的长为5或.【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【解答】解:设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:32+42=x2,∴x=5;(2)若4是斜边,则第三边x为直角边,由勾股定理得:32+x2=42,∴x=;∴第三边的长为5或.故答案为:5或.【点评】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.14.(3分)如图,一根长18cm的筷子置于底面直径为5cm.高为12cm圆柱形水杯中,露在水杯外面的长度hcm,则h的取值范围是5cm≤h≤6cm.【分析】根据杯子内筷子的长度的取值范围得出杯子外面长度的取值范围,即可得出答案.【解答】解:∵将一根长为18cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,∴在杯子中筷子最短是等于杯子的高,最长是等于杯子斜边长度,∴当杯子中筷子最短是等于杯子的高时,x=12,最长时等于杯子斜边长度是:x==13,∴h的取值范围是:(18﹣13)cm≤h≤(18﹣12)cm,即5cm≤h≤6cm.故答案为:5cm≤h≤6cm.【点评】此题主要考查了勾股定理的应用,正确得出杯子内筷子的取值范围是解决问题的关键.15.(3分)如图所示,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=4,BC=10,则EF的长为3.【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出DF,计算即可.【解答】解:∵DE为△ABC的中位线,∴DE=BC=5,∵∠AFB=90°,D是AB的中点,∴DF=AB=2,∴EF=DE﹣DF=3,故答案为:3.【点评】本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.16.(3分)如图,已知△ABC中,∠ABC=90°,AB=BC,三角形的顶点在相互平行的三条直线l1,l2,l3,上,且l1,l2之间的距离为2,l2,l3之间的距离为3,则AC的长是2.【分析】过A、C点作l3的垂线构造出直角三角形,根据三角形全等和勾股定理求出BC 的长,再利用勾股定理即可求出.【解答】解:作AD⊥l3于D,作CE⊥l3于E,∵∠ABC=90°,∴∠ABD+∠CBE=90°,又∵∠DAB+∠ABD=90°,∴∠BAD=∠CBE,又∵AB=BC,∠ADB=∠BEC,在△ABD与△BCE中,,∴△ABD≌△BCE(AAS),∴BE=AD=3,CE=2+3=5,在Rt△BCE中,根据勾股定理,得BC=,在Rt△ABC中,根据勾股定理,得AC==2,故答案为:2【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.17.(3分)如图,在菱形ABCD中,AB=18cm,∠A=60°,点E以2cm/s的速度沿AB 边由A向B匀速运动,同时点F以4cm/s的速度沿CB边由C向B运动,F到达点B时两点同时停止运动.设运动时间为t秒,当△DEF为等边三角形时,t的值为3s.【分析】连接BD.易证△ADE≌△BDF,即可推出AE=BF,列出方程即可解决问题.【解答】解:连接BD.如图:∵四边形ABCD是菱形,∠A=60°,∴AD=CD=BC=AB=18,△ADB,△BDC都是等边三角形,∴AD=BD,∠ADB=∠DBF=60°,∵△DEF是等边三角形,∴∠EDF=60°,∴∠ADB=∠EDF,∴∠ADE=∠BDF,在△ADE和△BDF中,,∴△ADE≌△BDF(ASA),∴AE=BF,∴2t=18﹣4t,∴t=3,故答案为:3s.【点评】本题考查菱形的性质、等边三角形的判定和性质、全等三角形的判定与性质、一元一次方程等知识,解题的关键是利用全等三角形解决问题,属于中考常考题型.18.(3分)将五个边长都为4cm的正方形按如图所示摆放,点A、B、C、D分别是四个正方形的中心,则图中四块阴影面积的和为16cm2.【分析】如图,连接AB、AF.由△ABE≌△AFG(ASA),推出S△ABE=S△AFG,推出S四=S△ABF=S正方形,推出S阴=4×S正方形=16即可解决问题.边形AEBG【解答】解:如图,连接AB、AF.∵∠EAG=∠BAF=90°,∴∠BAE=∠F AG,在△ABE和△AFG中,,∴△ABE≌△AFG(ASA),∴S△ABE=S△AFG,∴S四边形AEBG=S△ABF=S正方形,∴S阴=4×S正方形=16(cm2),故答案为:16.【点评】本题考查正方形的性质、全等三角形的判定和性质等知识,证明每一个阴影部分的面积等于正方形的面积的是解题的关键.三、解答题(共7小题,满分66分)19.(12分)解答题计算题:(1)+﹣﹣4(2)(3)已知=0,求的值.【分析】(1)先把各二次根式化简,然后合并即可;(2)先进行二次根式的除法运算,然后把各二次根式化简后合并即可;(3)根据分式为0的条件得到,解得,然后把x、y的值代入代数式,最利用分母有理化计算即可.【解答】解:(1)原式=2+3﹣﹣2=2;(2)原式=3﹣2﹣=3﹣2﹣2=﹣;(3)根据题意得,解得,所以原式===.【点评】本题考查了二次根式的化简求值:二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.20.(8分)如图,在▱ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形【分析】(1)根据AAS,只要证明∠ADE=∠CBF,∠AED=∠CFB,AD=BC即可;(2)只要证明AE=CF,AE∥CF即可;【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.【点评】本题考查平行四边形的性质和判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.21.(8分)如图,把一块三角形(△ABC)土地挖去一个直角三角形(∠ADC=90°)后,测得CD=6米,AD=8米,BC=24米,AB=26米.求剩余土地(图中阴影部分)的面积.【分析】先根据勾股定理求出AC的长,再根据勾股定理的逆定理判断出△ACB为直角三角形,再根据S阴影=AC×BC﹣AD×CD即可得出结论.【解答】解:在Rt△ADC中,∵CD=6米,AD=8米,BC=24米,AB=26米,∴AC2=AD2+CD2=82+62=100,∴AC=10(取正值).在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676.∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.∴S阴影=AC×BC﹣AD×CD=×10×24﹣×8×6=96(米2).答:剩余土地(图中阴影部分)的面积为:96米2.【点评】本题考查的是勾股定理在实际生活中的应用,有利于培养学生生活联系实际的能力.22.(8分)小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板如图位置摆放,A、B、D在同一直线上,EF∥AD,∠A=∠EDF=90°,∠C=45°,∠E =60°,量得DE=8,试求BD的长.【分析】过点F作FM⊥AD于M,利用在直角三角形中,30°角所对的直角边等于斜边的一半和平行线的性质以及等腰直角三角形的性质即可求出BD的长.【解答】解:过点F作FM⊥AD于M,∵∠EDF=90°,∠E=60°,∴∠EFD=30°,∵DE=8,∴EF=16,∴DF==8,∵EF∥AD,∴∠FDM=30°,∴FM=DF=4,∴MD==12,∵∠C=45°,∴∠MFB=∠B=45°,∴FM=BM=4,∴BD=DM﹣BM=12﹣4.【点评】本题考查了勾股定理的运用、平行线的性质以及等腰直角三角形的性质,解题的关键是作垂直构造直角三角形,利用勾股定理求出DM的长.23.(10分)如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.(1)判断OE与OF的大小关系?并说明理由;(2)当点O运动到何处时,四边形AECF是矩形?并说出你的理由;【分析】(1)利用平行线的性质得:∠OEC=∠ECB,根据角平分线的定义可知:∠ACE =∠ECB,由等量代换和等角对等边得:OE=OC,同理:OC=OF,可得结论;(2)先根据对角线互相平分证明四边形AECF是平行四边形,再由角平分线可得:∠ECF =90°,利用有一个角是直角的平行四边形可得结论;【解答】解:(1)OE=OF,理由如下:∵MN∥BC,∴∠OEC=∠ECB,∵CE平分∠ACB,∴∠ACE=∠ECB,∴∠OEC=∠ACE,∴OE=OC,同理可得:OC=OF,∴OE=OF;(2)当O为AC中点时,四边形AECF是矩形;理由如下:∵OA=OC,OE=OF(已证),∴四边形AECF是平行四边形,∵EC平分∠ACB,CF平分∠ACG,∴∠ACE=∠ACB,∠ACF=∠ACG,∴∠ACE+∠ACF=(∠ACB+∠ACG)=×180°=90°,即∠ECF=90°,∴四边形AECF是矩形.【点评】本题主要考查了平行四边形的判定、矩形的判定以及正方形的判定、平行线的性质、角平分线的定义,熟练掌握并区分平行四边形、矩形、正方形的判定是解题关键.24.(8分)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长交BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长.【分析】(1)首先证明AB=AF=AD,然后再证明∠AFG=90°,接下来,依据HL可证明△ABG≌△AFG;(2)利用勾股定理得出GE2=CG2+CE2,进而求出BG即可.【解答】解:(1)在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt△ABG和Rt△AFG中,,∴△ABG≌△AFG(HL);(2)∵△ABG≌△AFG,∴BG=FG,设BG=FG=x,则GC=6﹣x,∵E为CD的中点,∴CE=EF=DE=3,∴EG=3+x,∴在Rt△CEG中,32+(6﹣x)2=(3+x)2,解得x=2,∴BG=2.【点评】此题主要考查了勾股定理的综合应用以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.25.(12分)如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.(1)如图1,当点E在AB边得中点位置时:①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是DE=EF.②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是NE=BF,请证明你的猜想.(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.【分析】(1)①根据图形可以得到DE=EF,NE=BF,②要证明这两个关系,只要证明△DNE≌△EBF即可.(2)DE=EF,连接NE,在DA边上截取DN=EB,证出△DNE≌△EBF即可得出答案.【解答】解:(1)①DE=EF;②NE=BF;理由如下:∵四边形ABCD为正方形,∴AD=AB,∠DAB=∠ABC=90°,∵N,E分别为AD,AB中点,∴AN=DN=AD,AE=EB=AB,∴DN=BE,AN=AE,∵∠DEF=90°,∴∠AED+∠FEB=90°,又∵∠ADE+∠AED=90°,∴∠FEB=∠ADE,又∵AN=AE,∴∠ANE=∠AEN,又∵∠A=90°,∴∠ANE=45°,∴∠DNE=180°﹣∠ANE=135°,又∵∠CBM=90°,BF平分∠CBM,∴∠CBF=45°,∠EBF=135°,在△DNE和△EBF中,∴△DNE≌△EBF(ASA),∴DE=EF,NE=BF.(2)DE=EF,理由如下:连接NE,在DA边上截取DN=EB,∵四边形ABCD是正方形,DN=EB,∴AN=AE,∴△AEN为等腰直角三角形,∴∠ANE=45°,∴∠DNE=180°﹣45°=135°,∵BF平分∠CBM,AN=AE,∴∠EBF=90°+45°=135°,∴∠DNE=∠EBF,∵∠NDE+∠DEA=90°,∠BEF+∠DEA=90°,∴∠NDE=∠BEF,在△DNE和△EBF中,∴△DNE≌△EBF(ASA),∴DE=EF.【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质等知识,解决本题的关键就是求证△DNE≌△EBF.。

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2019-2020年八年级下学期期末考试数学试卷含答案(人教版)

2018-2019学年度八年级下学期期末考试数学试卷第Ⅰ卷 选择题(共30分)一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.“垃圾分类,从我做起”,以下四幅图案分别代表四类可回收垃圾,其中是中心对称图形的是( )A .B .C .D .2.下列各式由左边到右边的变形中,属于分解因式的是( )A .()a x y ax ay -=-B .22()()a b a b a b -=+-C .243(4)3x x x x -+=-+D .211()a a a a +=+3. 下列实数中,能够满足不等式30x -<的正整数是( )A .-2B .3C .4D .24. 小颖一家自驾某地旅行,手机导航系统推荐了两条线路,线路一全程75km ,线路二全程90km ,汽车在线路二上行驶的平均车速是线路一上平均车速的1.8倍,且线路二的用时比线路一的用时少半小时,若汽车在线路一上行驶的平均速度为/xkm h ,则下面所列方程正确的是( )A .759011.82x x =+B .759011.82x x =-C .759011.82x x =+D .759011.82x x =- 5. 小贤的爸爸在钉制平行四边形框架时,采用了一种方法:如图,将两根木条AC BD 、的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是( )A .两组对边分别平行的四边形是平行四边形B .两组对角分别相等的四边形是平行四边形C .两组对边分别相等的四边形是平行四边形D .对角线互相平分的四边形是平行四边形6. 如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点O ,过点O 作//EF BC 交AB 于点E ,交AC 于点F ,过点O 作OD AC ⊥于点D ,某班学生在一次数学活动课中,探索出如下结论,其中错误的是( )A .EF BE CF =+B .点O 到ABC ∆各边的距离相等C .90BOC A ∠=+∠oD .设OD m =,AE AF n +=,则12AEFS mn ∆= 7. 已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .18. 已知21x y -=,2xy =,则322344x y x y xy -+的值为( )A .-2B .1C .-1D .29. 某n 边形的每个外角都等于与它相邻内角的14,则n 的值为( ) A .7 B .8 C .10 D .910. 如图,点C 是线段BE 的中点,分别以BC CE 、为边作等腰ABC ∆和等腰CDE ∆,90BAC CDE ∠=∠=o ,连接AD BD AE 、、,且BD AE 、相交于点G ,CG 交AD 于点F ,则下列说法中,不正确的是( )A .CF 是ACD ∆的中线B .四边形ABCD 是平行四边形C .AE BD = D .AG 平分CAD ∠第Ⅱ卷 非选择题(共90分)二、填空题(共5个小题,每题3分,满分15分,将答案填在答题纸上)11. 分式a a b +与22b a b-的最简公分母是 . 12. 因式分解:252x x -= .13.如图,已知一块直角三角板的直角顶点与原点O 重合,另两个顶点A ,B 的坐标分别为(1,0)-,(0,3),现将该三角板向右平移使点A 与点O 重合,得到'OCB ∆,则点B 的对应点'B 的坐标为 .14. 如图,两个完全相同的正五边形ABCDE ,AFGHM 的边DE ,MH 在同一直线上,且有一个公共顶点A ,若正五边形ABCDE 绕点A 旋转x 度与正五边形AFGHM 重合,则x 的最小值为 .15. 如图,在平行四边形ABCD 中,8AB =,12BC =,120B ∠=o ,E 是BC 的中点,点P 在平行四边形ABCD 的边上,若PBE ∆为等腰三角形,则EP 的长为 .三、解答题:本大题共8个小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(1)解不等式:922x x +>(2)解方程:11293331x x =+--17. 如图,在ABCD 中,点E ,F 分别在边BC ,AD 上,且DF BE =.求证:四边形AECF 是平行四边形.18. 如图,在ABC ∆中,AB AC =,36A ∠=o ,DE 是AC 的垂直平分线.(1)求证:BCD ∆是等腰三角形.(2)若BCD ∆的周长是a ,BC b =,求ACD ∆的周长.(用含a ,b 的代数式表示)19. 在如图所示的网格上按要求画出图形,并回答问题.(1)将ABC ∆平移,使得点A 平移到图中点D 的位置,点B 、点C 的对应点分别为点E 、点F ,请画出DEF ∆.(2)画出ABC ∆关于点D 成中心对称的111A B C ∆.(3)DEF ∆与111A B C ∆是否关于某个点成中心对称?如果是,请在图中画出这个对称中心,并记作点O .20. 数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大0.6cm .”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大0.6cm .”设小玲的两块手帕的面积和为1S ,小娟的两块手帕的面积和为2S ,请同学们运用因式分解的方法算一算2S 与1S 的差.21. 如图1,将线段AB 平移至DC ,使点A 与点D 对应,点B 与点C 对应,连接AD 、BC .(1)填空:AB 与CD 的位置关系为 ,BC 与AD 的位置关系为 .(2)如图2,若G 、E 为射线DC 上的点,AGE GAE ∠=∠,AF 平分DAE ∠交直线CD 于F ,且30FAG ∠=o ,求B ∠的度数.22. 学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图所示的是他们的部分对话内容,面对小龙的问题,亮亮也犯了难.(1)请聪明的你用所学的方程知识帮小龙计算一下,他是否符合学校广播站的应聘条件?(2)小龙和奶奶各读一篇文章,已知奶奶所读文章比小龙所读文章至少多了3200个字,但奶奶所用的时间是小龙的2倍,则小龙至少读了多少分钟?23. 定义:既相等又垂直的两条线段称为“等垂线段”,如图1,在Rt ABC ∆中,90A ∠=o ,AB AC =,点D 、E 分别在边AB 、AC 上,AD AE =,连接DE 、DC ,点M 、P 、N 分别为DE 、DC 、BC 的中点,且连接PM 、PN .观察猜想(1)线段PM 与PN “等垂线段”(填“是”或“不是”)猜想论证(2)ADE ∆绕点A 按逆时针方向旋转到图2所示的位置,连接BD ,CE ,试判断PM 与PN 是否为“等垂线段”,并说明理由.拓展延伸(3)把ADE ∆绕点A 在平面内自由旋转,若4AD =,10AB =,请直接写出PM 与PN 的积的最大值.试卷答案一、选择题1-5: CBDAD 6-10:CADCD二、填空题11. 2()()a b a b +- 12. (52)x x - 13. 14. 14415. 6、、三、解答题16.(1)解:去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)解:去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解.17.证明:∵四边形ABCD 是平行四边形∴//AF EC ,AD BC =∵DF BE =∴AD DF BC BE -=-∴AF EC =∴四边形AECF 是平行四边形18.解:(1)∵AB AC =,36A ∠=o ∴180722AB ACB -∠∠=∠==oo∵DE 是AC 的垂直平分线∴AD DC =∴36ACD A ∠=∠=o∵CDB ∠是ADC ∆的外角∴72CDB ACD A ∠=∠+∠=o∴B CDB ∠=∠∴CB CD =∴BCD ∆是等腰三角形.(2)∵AD CD CB b ===,BCD ∆的周长是a∴AB a b =-∵AB AC =∴AC a b =-∴ACD ∆的周长AC AD CD a b b b a b =++=-++=+19.解:(1)如图,DEF ∆即为所求.(2)如图,111A B C ∆即为所求.(3)是,如图,点O 即为所求.20.解:222221(29.821.2)(29.221.8)S S -=+-+ 2222(29.821.8)(29.221.2)=---(29.821.8)(29.821.8)(29.221.2)(29.221.2)=+--+-51.6850.48=⨯-⨯(51.650.4)8=-⨯9.6=(2cm )21.解:(1)//AB CD ,//AD BC(2)∵//AB CD∴BAG G ∠=∠∵G EAG ∠=∠∴EAG BAG ∠=∠∵AF 平分DAE ∠∴FAE FAD ∠=∠∴2BAD FAG ∠=∠∵30FAG ∠=o∴60BAD ∠=o∵//BC AD∴180B BAD ∠+∠=o∴120B ∠=o22.解:(1)设小龙每分钟读x 个字,则小龙奶奶每分钟读(50)x -个字 根据题意,得1050130050x x=- 解得260x =经检验,260x =是所列方程的解,并且符合实际问题的意义. ∵学校广播站招聘的条件是每分钟250-270字∴小龙符合学校广播站的应聘条件.(2)设小龙读了y 分钟,则小龙奶奶读了2y 分钟, 由题意知(26050)22603200y y -⨯-≥解得20y ≥∴小龙至少读了20分钟.23.解:(1)是(2)由旋转知BAD CAE ∠=∠∵AB AC =,AD AE =∴ABD ∆≌ACE ∆(SAS )∴ABD ACE ∠=∠,BD CE = 利用三角形的中位线得12PN BD =,12PM CE =, ∴PM PN =由中位线定理可得//PM CE ,//PN BD∴DPM DCE ∠=∠,PNC DBC ∠=∠∵DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠∴MPN DPM DPN DCE DCB DBC ∠=∠+∠=∠+∠+∠ BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠∵90BAC ∠=o∴90ACB ABC ∠+∠=o∴90MPN ∠=o∴PM 与PN 为“等垂线段”(3)PM 与PN 的积的最大值为49. 提示:12PM PN BD ==∴BD 最大时,PM 与PN 的积最大 ∴点D 在BA 的延长线上∴14BD AB AD =+=∴7PM =∴249PM PN PM •==。

江苏省无锡市江阴市江阴初级中学2019-2020学年八年级下学期期中数学试题(word无答案)

江苏省无锡市江阴市江阴初级中学2019-2020学年八年级下学期期中数学试题(word无答案)

江苏省无锡市江阴市江阴初级中学2019-2020学年八年级下学期期中数学试题一、单选题(★) 1. 下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.(★) 2. 下列计算正确的是()A.B.C.D.(★) 3. 根据分式的性质,分式可以变形为()A.B.C.D.1﹣(★) 4. 一个布袋里装有3个红球,4个黑球,5个白球,它们除颜色外都相同,从中任意摸出一个球,则下列事件中,发生可能性最大的是( )A.摸出的是红球B.摸出的是黑球C.摸出的是绿球D.摸出的是白球(★) 5. 下列调查中,适合进行普查的是( )A.《王牌对王牌》电视节目的收视率B.防控期间,一个班级每个学生的体温C.一批灯泡的使用寿命D.我国中学生对防疫知识的掌握情况(★★) 6. 已知关于 x的方程的解是负数,那么 m的取值范围是( )A.且B.C.且D.且(★) 7. 如图,已知A为反比例函数(<0)的图像上一点,过点A作AB⊥ 轴,垂足为B.若△OAB的面积为2,则k的值为()A.2 B. -2B.4C.-4(★★) 8. 如图,在菱形 ABCD中,菱形的边长为5,对角线 AC的长为8,延长 AB至 E, BF平分∠ CBE,点 G是 BF上的任意一点,则△ ACG的面积为()A.20B.12C.D.24(★★★★) 9. 如图,在Rt△ ABC中,∠ C=90°,把△ ABC绕 AC边的中点 M旋转后得△ DEF,若直角顶点 F恰好落在 AB边上,且 DE边交 AB边于点 G,若 AC=4, BC=3,则 AG的长为( )A.B.C.D.1(★★★★) 10. 如图,在菱形 ABCD中, AB=5 cm,∠ ADC=120°,点 E、 F同时由 A、 C两点出发,分别沿 AB. CB方向向点 B匀速移动(到点 B为止),点 E的速度为1 cm/s,点 F的速度为2 cm/s,经过 t秒△ DEF为等边三角形,则 t的值为( )A.B.C.D.二、填空题(★) 11. 二次根式中 x的取值范围是____.(★) 12. 老师在黑板上随手写下一串数字“010010001”,则数字“0”出现的频率是____.(★★) 13. 如果正比例函数与反比例函数的图象有两个交点,其中一个交点的坐标为(-1,2),那么另一个交点的坐标为____.(★★) 14. 如图,在矩形 ABCD中, E、 F分别是边 AD和 CD的中点, EF=3,则 BD的长为____.(★★) 15. 如图,在正方形 ABCD中, E为 BC上一点,将△ ABE沿 AE折叠至处,与 AC交于点 F,若∠ EFC=67°,则∠ CAE的度数为____.(★★) 16. 如图,△ DEF的三个顶点分别在反比例函数与的图象上,若DB⊥ x轴于 B点,FE⊥ x轴于 C点,若 B为 OC的中点,△ DEF的面积为6,则 m与n的关系式是____.(★★★★) 17. 如图,在正方形 ABCD中, AB= , E是对角线 AC上的动点,以 DE为边作正方形 DEFG, H是 CD的中点,连接 GH,则 GH的最小值为____.(★) 18. 若分式的值为0,则 a=____.三、解答题(★★) 19. 计算:(1);(2)(★) 20. 计算或解方程(1)化简分式:;(2)解分式方程:(★) 21. 先化简,再求值:,其中(★) 22. 某校有3600名学生,为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.(1)参与本次问卷调查的学生共有人,其中选择 D类的人数有人;(2)在扇形统计图中,求 E类对应的扇形圆心角的度数,并补全 C对应的条形统计图;(3)若将 A、 B、 C. D. E这四类上学方式视为“绿色出行”,请估计该校选择“绿色出行”的学生人数.(★★) 23. 如图,在四边形中,,,对角线,交于点,平分,过点作交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.(★★) 24. 如图,方格纸中每个小正方形的边长都是1个单位长度.线段 AB的端点 A、 B都在格点上,请你仅用无刻度的直尺完成下列作图.(保留必要的作图痕迹,不必写作法)(1)在图①中以 AB为边作一个正方形 ABCD;(2)在图②中以点 A、点 B为顶点作一个面积为15的菱形.(★★) 25. 甲、乙两个服装厂加工同种型号的防护服,甲厂每天加工的数量是乙厂每天加工数量的1.5倍,两厂各加工600套防护服,甲厂比乙厂要少用4天.(1)求甲、乙两厂每天各加工多少套防护服?(2)已知甲、乙两厂加工这种防护服每天的费用分别是150元和120元,疫情期间,某医院紧急需要3000套这种防护服,甲厂单独加工一段时间后另有安排,剩下任务只能由乙单独完成.如果总加工费不超过6360元,那么甲厂至少要加工多少天?(★★) 26. 如图,已知一次函数 y= mx+ n的图像与 x轴交于点 B,与反比例函数( k﹥0)的图像交于点 C,过点 C作CH⊥ x轴,点 D是反比例函数图像上的一点,直线 CD与 x轴交于点 A,若∠ HCB=∠ HCA,且 BC=10, BA=16.(1)若 OA=11,求 k的值;(2)沿着 x轴向右平移直线 BC,若直线经过 H点时恰好又经过点 D,求一次函数函数 y=mx+ n的表达式.(★★★★★) 27. 如图1,正方形 CEFG绕正方形 ABCD的顶点 C旋转,连接 AF,点 M是 AF中点.(1)当点 G在 BC上时,如图2,连接 BM、 MG,求证: BM= MG;(2)在旋转过程中,当点 B、 G、 F三点在同一直线上,若 AB=5, CE=3,则 MF= ;(3)在旋转过程中,当点 G在对角线 AC上时,连接 DG、 MG,请你画出图形,探究 DG、MG的数量关系,并说明理由.。

20.1.1平均数(教案)-2019-2020学年人教版八年级数学下册

20.1.1平均数(教案)-2019-2020学年人教版八年级数学下册
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数的基本概念。平均数是一组数据的总和除以数据的个数,它是表示数据集中趋势的一种重要统计量。
2.案例分析:接下来,我们来看一个具体的案例。以计算班级数学平均成绩为例,分析平均数在实际中的应用,以及如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调平均数的计算方法和性质这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
20.1.1平均数(教案)-2019-2020学年人教版八年级数学下册
一、教学内容
本节课选自2019-2020学年人教版八年级数学下册第20章第1节“20.1.1平均数”。教学内容主要包括以下方面:
1.平均数的定义:引导学生理解平均数的概念,掌握如何用总数除以数量来计算平均数。
2.平均数的性质:探讨平均数与数据集中各数值之间的关系,了解平均数作为一组数据的代表。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了平均数的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对平均数的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对平均数的概念和计算方法掌握得相对较好。通过引入日常生活中的实例,他们能够较快地理解平均数的意义。例如,当我们讨论班级平均成绩时,学生们能够直观地感受到平均数在描述整体水平方面的作用。
本节课将紧扣教材内容,以培养学生的核心素养为导向,关注学生的全面发展。
三、教学难点与重点
1.教学重点
-平均数的定义及其计算方法:平均数是一组数据的总和除以数据的个数,这是本节课的核心内容。教师应通过直观的例子,如班级学生成绩的平均分,让学生掌握平均数的计算步骤。

人教版2019-2020学年初二数学第二学期 第十八章 平行四边形 单元测试卷(含答案)

人教版2019-2020学年初二数学第二学期 第十八章 平行四边形 单元测试卷(含答案)

人教版八年级数学下册 第十八章 平行四边形 单元测试题时间:100分钟 满分:120分一、选择题(共10小题,每小题3分,共30分)1.如图,在平行四边形ABCD 中,AD =7,CE 平分∠BCD 交AD 边于点E ,且AE =4,则AB 的长为( )A . 4B . 3C .25 D . 2 2.如图,▱ABCD 中,对角线AC 和BD 相交于点O ,如果AC =12,BD =10,AB =m ,那么m 的取值范围是( )A . 1<m <11B . 2<m <22C . 10<m <12D . 5<m <6 3.如图,在▱ABCD 中,AD =8,点E ,F 分别是BD ,CD 的中点,则EF 等于( )A . 2B . 3C . 4D . 54.Rt △ABC 中,两直角边的长分别为6和8,则其斜边上的中线长为( )A . 10B . 3C . 4D . 55.如图,在Rt △ABC 中,∠A =90°,AB =3,AC =4,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为( )A . 2B . 2.2C . 2.4D . 2.56.如图,在菱形ABCD 中,AB =5,∠B ∶∠BCD =1∶2,则对角线AC 等于( )A. 5 B. 10 C. 15 D. 207.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E,若BF=12,AB=10,则AE的长为()A. 16 B. 15 C. 14 D. 138.正方形具有而矩形不具有的性质是()A.对角线互相平分 B.对角线相等 C.对角线互相平分且相等 D.对角线互相垂直9.小明在学习了正方形之后,给同桌小文出了错题,从下列四个条件:①AB=BC;②∠ABC=90°;③AC=BD;④AC⊥BD中选两个作为补充条件,使▱ABCD为正方形(如图所示),现有如下四种选法,你认为其中错误的是()A.①② B.②③ C.①③ D.②④10.如图,在一个大正方形内,放入三个面积相等的小正方形纸片,这三张纸片盖住的总面积是24平方厘米,且未盖住的面积比小正方形面积的四分之一还少3平方厘米,则大正方形的面积是(单位:平方厘米)()A. 40 B. 25 C. 26 D. 36二、填空题(共8小题,每小题3分,共24分)11.如图,在▱ABCD中,AB=2 cm,AD=4 cm,AC⊥BC,则△DBC比△ABC的周长长________ cm.12.如图,△ABC中,AC、BC上的中线交于点O,且BE⊥AD.若BD=10,BO=8,则AO的长为________.13.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于________.14.如图平行四边形ABCD中,对角线AC、BD相交于点O,且OA=OB,∠OAD=65°.则∠ODC=__________.15.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60°的菱形,剪口与折痕所成的角α的度数应为____________.16.如图,平行四边形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,连接EF,给出下列判断:①若△AEF是等边三角形,则∠B=60°,②若∠B=60°,则△AEF是等边三角形,③若AE=AF,则平行四边形ABCD是菱形,④若平行四边形ABCD是菱形,则AE=AF,其中,结论正确的是__________(只需填写正确结论的序号).17.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=____________.18.现有一张边长等于a(a>16)的正方形纸片,从距离正方形的四个顶点8 cm处,沿45°角画线,将正方形纸片分成5部分,则阴影部分是____________(填写图形的形状)(如图),它的一边长是____________ cm.三、解答题(共8小题,共66分)19.(6分)如图,平行四边形ABCD的对角线AC、BD,相交于点O,EF过点O且与AB、CD 分别相交于点E、F,求证:AE=CF.20. (6分)如图,△ABC中,∠C=90°,CA=CB,E、F分别为CA、CB上一点,CE=CF,M、N分别为AF、BE的中点.求证:AE=MN.21. (6分)如图,△ABC中,AB=AC,点D是BC上一点,DE⊥AB于E,FD⊥BC于D,G是FC的中点,连接GD.求证:GD⊥DE.22. (8分)如图,在矩形ABCD中,AB=24 cm,BC=8 cm,点P从A开始沿折线A-B-C-D 以4 cm/s的速度移动,点Q从C开始沿CD边以2 cm/s的速度移动,如果点P、Q分别从A、C 同时出发,当其中一点到达D时,另一点也随之停止运动,设运动时间为t(s).当t为何值时,四边形QPBC为矩形?23. (8分)已知:如图,在菱形ABCD中,点E、F分别为边CD、AD的中点,连接AE,CF,求证:△ADE≌△CDF.24. (10分)如图,已知点E,F分别是▱ABCD的边BC,AD上的中点,且∠BAC=90°.(1)求证:四边形AECF是菱形;(2)若∠B=30°,BC=10,求菱形AECF面积.25. (10分)四边形ABCD是正方形,E、F分别是DC和CB的延长线上的点,且DE=BF,连接AE、AF、EF.(1)求证:△ADE≌△ABF;(2)若BC=8,DE=6,求△AEF的面积.26. (12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,连接DE交AC于点F.(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.(3)在(2)的条件下,若AB=AC=2,求正方形ADCE周长.答案解析1.【答案】B【解析】∵在ABCD 中,CE 平分∠BCD 交AD 于点E ,∴∠DEC =∠ECB ,∠DCE =∠BCE ,AB =DC ,∴∠DEC =∠DCE ,∴DE =DC =AB ,∵AD =7,AE =4,∴DE =DC =AB =3.故选B.2.【答案】A【解析】在平行四边形ABCD 中,则可得OA =21AC ,OB =21BD , 在△AOB 中,由三角形三边关系可得OA -OB <AB <OA +OB ,即6-5<m <6+5,1<m <11.故选A.3.【答案】C【解析】∵四边形ABCD 是平行四边形,∴BC =AD =8,∵点E 、F 分别是BD 、CD 的中点,∴EF =21BC =21×8=4. 故选C.4.【答案】D【解析】已知直角三角形的两直角边为6、8, 则斜边长为=10,故斜边的中线长为21×10=5, 故选D.5.【答案】C 【解析】连接AP ,∵∠A =90°,PE ⊥AB ,PF ⊥AC ,∴∠A =∠AEP =∠AFP =90°,∴四边形AFPE 是矩形,∴EF =AP ,要使EF 最小,只要AP 最小即可,过A 作AP ⊥BC 于P ,此时AP 最小,在Rt △BAC 中,∠A =90°,AC =4,AB =3,由勾股定理,得BC =5, 由三角形面积公式,得21×4×3=21×5×AP , ∴AP =2.4,即EF =2.4,故选C.6.【答案】A【解析】∵四边形ABCD 是菱形,∴∠B +∠BCD =180°,AB =BC ,∵∠B ∶∠BCD =1∶2,∴∠B =60°,∴△ABC 是等边三角形,∴AB =BC =AC =5.故选A.7.【答案】A【解析】连接EF,AE与BF交于点O,如图,∵AO平分∠BAD,∴∠1=∠2,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,同理:AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∴四边形ABEF是菱形,∴AE⊥BF,OB=OF=6,OA=OE,在Rt△AOB中,由勾股定理,得OA===8,∴AE=2OA=16.故选A.8.【答案】D【解析】因为正方形的对角线相等、垂直、且互相平分,矩形的对角线相等,互相平分,所以正方形具有而矩形不具有的性质是对角线好像垂直.故选D.9.【答案】B【解析】A.∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当②∠ABC =90°时,菱形ABCD 是正方形,故此选项正确,不合题意;B .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当③AC =BD 时,这是矩形的性质,无法得出四边形ABCD 是正方形,故此选项错误,符合题意;C .∵四边形ABCD 是平行四边形,当①AB =BC 时,平行四边形ABCD 是菱形,当③AC =BD 时,菱形ABCD 是正方形,故此选项正确,不合题意;D .∵四边形ABCD 是平行四边形,∴当②∠ABC =90°时,平行四边形ABCD 是矩形,当④AC ⊥BD 时,矩形ABCD 是正方形,故此选项正确,不合题意.故选B.10.【答案】B【解析】设小正方形的边长为a ,大正方形的边长为b ,由这三张纸片盖住的总面积是24平方厘米,可得ab +a (b -a )=24,①由未盖住的面积比小正方形面积的四分之一还少3平方厘米,可得(b -a )2=41a 2-3,② 将①②联立解方程组可得:a =4,b =5,∴大正方形的边长为5,∴面积是25.故选B.11.【答案】4【解析】在▱ABCD 中,∵AB =CD =2cm ,AD =BC =4 cm ,AO =CO ,BO =DO , ∵AC ⊥BC ,∴AC==6 cm,∴OC=3 cm,∴BO==5 cm,∴BD=10 cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4 cm,12.【答案】12【解析】∵BE⊥AD,BD=10,BO=8,∴OD==6,∵AC、BC上的中线交于点O,∴AO=2OD=12.13.【答案】30°【解析】∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.14.【答案】25°【解析】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OC=OD,∴AB=CD,∴四边形ABCD是矩形,∴∠ADC=90°,∵∠ODA=∠OAD=65°,∴∠ODC=∠ADC-∠ODA=25°.15.【答案】30°或60°【解析】∵四边形ABCD 是菱形,∴∠ABD =21∠ABC ,∠BAC =21∠BAD ,AD ∥BC , ∵∠BAC =60°,∴∠BAD =180°-∠ABC =180°-60°=120°,∴∠ABD =30°,∠BAC =60°. ∴剪口与折痕所成的角α的度数应为30°或60°.16.【答案】①③④【解析】①∵△AEF 是等边三角形,∴∠EAF =60°,AE =AF ,又∵AE ⊥BC ,AF ⊥CD ,∴∠C =120°,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∠C =∠BAD =120°,∴∠B =180°-∠C =60°,故①正确;②∵∠D =∠B =60°,∴∠BAE =∠DAF =90°-60°=30°,∴∠EAF =120°-30°-30°=60°,但是AE 不一定等于AF ,故②错误;③若AE =AF ,则21BC ·AE =21CD ·AF , ∴BC =CD ,∴平行四边形ABCD 是菱形,故③正确;④若平行四边形ABCD 是菱形,则BC =CD , ∴21BC ·AE =21CD ·AF , ∴AE =AF ,故④正确;故答案为①③④.17.【答案】2n +1【解析】∵∠MON =45°,∴△OA 1B 1是等腰直角三角形,∵OA 1=1,∴正方形A 1B 1C 1A 2的边长为1,∵B 1C 1∥OA 2,∴∠B 2B 1C 1=∠MON =45°,∴△B 1C 1B 2是等腰直角三角形,∴正方形A 2B 2C 2A 3的边长为1+1=2,同理,第3个正方形A 3B 3C 3A 4的边长为2+2=22,其周长为4×22=24, 第4个正方形A 4B 4C 4A 5的边长为4+4=23,其周长为4×23=25, 第5个正方形A 5B 5C 5A 6的边长为8+8=24,其周长为4×24=26, 则第n 个正方形的周长Cn =2n +1.18.【答案】正方形 8【解析】如图,作AB 平行于小正方形的一边,延长小正方形的另一边与大正方形的一边交于B 点,∴△ABC 为直角边长为8 cm 的等腰直角三角形,∴AB =AC =8,∴阴影正方形的边长=AB =8cm.19.【答案】证明 ∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =OC ,∴∠OAE =∠OCF ,在△OAE 和△OCF 中,∴△AOE ≌△COF (ASA),∴AE =CF .【解析】由四边形ABCD 是平行四边形,可得AB ∥CD ,OA =OC ,继而证得△AOE ≌△COF ,则可证得结论.20.【答案】证明 如图,取AB 的中点G ,连接MG 、NG ,∵M 、N 分别为AF 、BE 的中点,∴NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF , ∵CE =CF ,∠C =90°,∴AE =BF ,∠MGN =∠C =90°,∴MG =NG ,∴△MNG 是等腰直角三角形,∴NG =MN ,∴AE =2NG =×2MN =MN , 即AE =MN .【解析】取AB 的中点G ,连接MG 、NG ,根据三角形的中位线平行于第三边并且等于第三边的一半可得NG =21AE ,NG ∥AE ,MG =21BF ,MG ∥BF ,再求出AE =BF ,∠MGN =90°,判断出△MNG 是等腰直角三角形,根据等腰直角三角形的性质可得NG =MN ,再表示出AE 即可得证.21.【答案】证明 ∵AB =AC ,∴∠B =∠C ,∵DE ⊥AB ,FD ⊥BC ,∴∠BED =∠FDC =90°,∴∠1+∠B =90°,∠3+∠C =90°,∴∠1=∠3,∵G 是直角三角形FDC 的斜边中点,∴GD =GF ,∴∠2=∠3,∴∠1=∠2,∵∠FDC =∠2+∠4=90°,∴∠1+∠4=90°,∴∠2+∠FDE =90°,∴GD ⊥DE .【解析】由∠1+∠EDF =90°可知,只要证明∠1=∠3,∠2=∠3,推出∠1=∠2即可解决问题.22.【答案】解 根据题意得:CQ =2t ,AP =4t ,则BP =24-4t ,∵四边形ABCD 是矩形,∴∠B =∠C =90°,CD ∥AB ,∴只有CQ =BP 时,四边形QPBC 是矩形,即2t =24-4t ,解得t =4,答:当t =4 s 时,四边形QPBC 是矩形.【解析】求出CQ =2t ,AP =4t ,BP =24-4t ,由已知推出∠B =∠C =90°,CD ∥AB ,推出CQ =BP 时,四边形QPBC 是矩形,得出方程2t =24-4t ,求出即可.23.【答案】证明 ∵四边形ABCD 是菱形,∴AD =CD ,∵点E 、F 分别为边CD 、AD 的中点,∴AD =2DF ,CD =2DE ,∴DE =DF ,在△ADE 和△CDF 中,∴△ADE ≌△CDF (SAS).【解析】由菱形的性质得出AD =CD ,由中点的定义证出DE =DF ,由SAS 证明△ADE ≌△CDF 即可.24.【答案】(1)证明 ∵四边形ABCD 是平行四边形,∴AD =BC ,在Rt △ABC 中,∠BAC =90°,点E 是BC 边的中点,∴AE =21BC =CE ,同理,AF =21AD =CF , ∴AE =CE =AF =CF ,∴四边形AECF 是菱形;(2)解 连接EF 交AC 于点O ,如图所示:在Rt △ABC 中,∠BAC =90°,∠B =30°,BC =10,∴AC =21BC =5,AB =AC =5,∵四边形AECF 是菱形,∴AC ⊥EF ,OA =OC ,∴OE 是△ABC 的中位线,∴OE =21AB =,∴EF =5, ∴菱形AECF 的面积=21AC ·EF =21×5×5=.【解析】(1)由平行四边形的性质得出AD =BC ,由直角三角形斜边上的中线性质得出AE =21BC =CE ,AF =21AD =CF ,得出AE =CE =AF =CF ,即可得出结论; (2)连接EF 交AC 于点O ,解直角三角形求出AC 、AB ,由三角形中位线定理求出OE ,得出EF ,菱形AECF 的面积=21AC ·EF ,即可得出结果. 25.【答案】(1)证明 ∵四边形ABCD 是正方形,∴AD =AB ,∠D =∠ABC =90°,而F 是CB 的延长线上的点,∴∠ABF =90°,在△ADE 和△ABF 中,∴△ADE ≌△ABF (SAS);(2)解 ∵BC =8,∴AD =8,在Rt △ADE 中,DE =6,AD =8,∴AE ==10, ∵△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到,∴AE =AF ,∠EAF =90°,∴△AEF 的面积=21AE 2=21×100=50. 【解析】(1)根据正方形的性质得AD =AB ,∠D =∠ABC =90°,然后利用“SAS”易证得△ADE ≌△ABF ;(2)先利用勾股定理可计算出AE =10,再根据△ABF 可以由△ADE 绕旋转中心A 点,按顺时针方向旋转90°得到AE =AF ,∠EAF =90°,然后根据直角三角形的面积公式计算即可.26.【答案】(1)证明 ∵AB =AC ,AD ⊥BC ,垂足为点D ,∴∠CAD =21∠BAC . ∵AN 是△ABC 外角∠CAM 的平分线,∴∠CAE =21∠CAM . ∵∠BAC 与∠CAM 是邻补角,∴∠BAC +∠CAM =180°,∴∠CAD +∠CAE =21(∠BAC +∠CAM )=90°. ∵AD ⊥BC ,CE ⊥AN ,∴∠ADC =∠CEA =90°,∴四边形ADCE 为矩形;(2)解 ∠BAC =90°且AB =AC 时,四边形ADCE 是一个正方形,证明:∵∠BAC =90°且AB =AC ,AD ⊥BC ,∴∠CAD =21∠BAC =45°,∠ADC =90°, ∴∠ACD =∠CAD =45°,∴AD =CD .∵四边形ADCE 为矩形,∴四边形ADCE 为正方形;(3)解 由勾股定理,得=AB ,AD =CD , 即AD =2,AD =2,正方形ADCE 周长4AD =4×2=8. 【解析】(1)根据等腰三角形的性质,可得∠CAD =21∠BAC ,根据等式的性质,可得∠CAD +∠CAE =21(∠BAC +∠CAM )=90°,根据垂线的定义,可得∠ADC =∠CEA ,根据矩形的判定,可得答案;(2)根据等腰直角三角形的性质,可得AD 与CD 的关系,根据正方形的判定,可得答案;(3)根据勾股定理,可得AD 的长,根据正方形周长公式,可得答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019-2020学年八年级下册数学基础知识质量检测
一.选择题(每小题3分,共18分)
1.直角三角形三边的长分别为3,4,则x 可能取的值是( ) A. 5 B.
7 C. 5或7 D 不能确定
2.下列等式一定成立的是( ) A.
9+4=5 B.
2363=⨯
C.416±=
D.2)2(2=--
3. 下列性质中,平行四边形不一定具备的是( )
A.对边相等
B. 对角相等
C. 对角线互相平分 D 是轴对称图形 4.下列关系中,y 不是x 的函数的是( ) A.x y 35-= B.12-=x y C. x y 5=
D.82+=x y
5.如图所示,在菱形ABCD 中,E,F 分别是AB,AC 的中点,如果EF=2,那么ABCD 的周长是( )
A.4
B. 8
C. 12
D.16 6.若22=+b a ,2=ab ,则22b a +的值为( ) A. 6 B. 4 C. 23 D.32 二.填空题(每小题3分,共18分)
7.若式子1-x ,有意则x 的取值范围是 8.如图,在▱ABCD 中,CM ⊥AD 于点M,CN ⊥AB 于点N,若∠B =45°,则∠MCN=
9.如右图字母A 所代表的正方形的面积是
10.在四边形ABCD 中,AD//BC ,要使四边形ABCD 成为平行四边形还需满足的条件是 (只需填一个你认为合适的条件即可)
11.某弹簧的自然长度为3cm ,在弹性限度内,所挂物体的质量
x 每增加1kg ,弹簧长度y 增加0.5cm ,则y =
其中的变量是 ,常量是
12.如图,在平面直角坐标系中,矩形OABC 的顶点,A ,C 的坐标分别是(10,0)(0,4),点D 是OA 的中点,点P 在BC 上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 三.解答题(每小题6分,共30分) 13.计算(1)
(
)()
5122048--+ (2))273(3+
14. 在Rt △ABC 中,∠ο90=c (1)若AC=6 BC=8,求AB 的长 (2)若AC=5 AB=13,求BC 的长
15.如图所示,在矩形ABCD 中,两条对角线AC,BD 相交于点O ,∠ACD=ο30,AB=4
(1)判断△AOD 的形状 (2)求对角线AC,BD 的长
学校 姓名 班级 座号
16.如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,若△ABC的三个顶点都在格点上,且AB,BC,AC三边
的长分别为5,10,13
请在正方形网格中画出一个符合条件的格点△ABC
17.请在下列四个关系中,选取两个恰当的关系作为条件,推出四边形ABCD是平行四边形,并给以证明(写出一种即可)
①AD//BC,②AD=CD,③∠A=∠C,④∠B+∠C=180
已知:在四边形中ABCD中,,求证:四边形ABCD 是平行四边形
四.解答题(每小题8分,共32分)
18.如图,点E,E,G,H分别是AB,BC,CD,DA的中点,求证:四边形EFGH是平行四边形19.实数b
a,在数轴上对应点A,B的位置如图,
化简2
2)
(b
a
a
b
a-
-
-
+
20.如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.
(1)求证:BD=EC
(2)若∠E=ο
50,求∠BAO的大小
21.如图是一个零件的示意图,测量AB=4cm,BC=3cm,CD=12cm,AD=13cm,∠ABC=ο
90,根据这些条件,你能求出∠ACD的度数吗?试说明理由.
五.解答题(第22题10分,第23题12分,共22分)
22.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE. (1)求证:CE=CF
(2)若点G在AD上,且∠GCE=
45,则GE=BE+GD成立吗?为什么?
23.如图①,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC垂足为E,沿AE剪下△ABE,将它平移至△DCE´的位置,拼成四边形AEE´D,则四边形AEE´D的形状为()
A.平行四边形
B.菱形
C.矩形
D.正方形
(2)如图②,在(1)中的四边形纸AEE´D中,在EE´上取一点F,使EF=4,剪下△AEF,将它平移至△DE´F´的位置,拼成四边形AFF´D.
①求证:四边形AFF´D是菱形
②求四边形AFF´D的两条对角线的长
①②。

相关文档
最新文档