2019年黑龙江省大庆七年级上册期末数学试题(有答案)
黑龙江省大庆市2019-2020学年数学七上期末考试试题
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列几何体中,其面既有平面又有曲面的有( )A.1个B.2个C.3个D.4个 2.若∠β=25°31',则∠β的余角等于( ) A.64°29'B.64°69'C.154°29'D.154°69' 3.甲从点A 出发沿北偏东35°方向走到点B ,乙从点A 出发沿南偏西20°方向走到点C ,则∠BAC 等于 ( )A.15°B.55°C.125°D.165°4.一列长为150米的火车,以每秒15米的速度通过600米的隧道,从火车进入隧道口算起,这列火车完全通过隧道所需要的时间是( )A.30秒B.40秒C.50秒D.60秒5.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?若设有x 个人,则可列方程是( )A .3(2)29x x +=-B .3(2)29x x -=+C .9232x x -+=D .9232x x +-= 6.某市对城区主干道进行绿化,计划把某段道路的一侧全部栽上桂花树,要求这一侧路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔4米栽1棵,则树苗缺18棵;如果每隔6米栽1棵,则树苗多了4棵,设原有树苗x 棵,则根据题意列出方程正确的是( )A .4(x +18)=6(x -4)B .4(x +18-1)=6(x -4-1)C .4(x -18-1)=6(x +4-1)D .4(x +18+1)=6(x -4+1)7.多项式2x 3-8x 2+x-1与多项式3x 3+2mx 2-5x+3的和不含二次项,则m 为( )A .2B .-2C .4D .-4 8.下列算式中,计算结果为a 3b 3的是( ) A .ab+ab+abB .3abC .ab•ab•abD .a•b 3 9.下列计算正确的是( ) A.a 5+a 5=a 10B.a 6×a 4=a 24C.(a 2)3=a 5D.(﹣a )2÷(﹣a 2)=﹣1 10.在-(-8),|-1|,-|0|,(-2)3这四个数中非负数共有( )个A .4B .3C .2D .111.a ,b ,c 三个数在数轴上的位置如图所示,则这三个数中绝对值最大的是( )A.aB.bC.cD.无法确定12.计算(﹣9)﹣(﹣3)的结果是( )A .﹣12B .﹣6C .+6D .12二、填空题13.已知线段AC =10m ,BC =6m ,且它们在同一条直线上,点M 、N 分别为线段AC 和BC 的中点,则线段MN 的长为_____14.将一个直角三角尺AOB 绕直角顶点O 旋转到如图所示的位置,若∠AOD =110°,则旋转角的角度是____°.15.已知关于x 的一元一次方程1x-3=4x+3b 2017的解为x=4,那么关于y 的一元一次方程1y-1-3=4y-1+3b 2017()()的解y=____.16.为数轴上两点,点表示的数为-20,点所表示的数为40.现有一只电子蚂蚁从点出发,以4个单位每秒的速度向左运动.当时,运动时间等于__________. 17.单项式1325m n x y ---与24yx 的和仍是单项式,则n m =______. 18.单项式﹣2x 2y 的系数是_____,次数是_____.19.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.20.1﹣|﹣3|=________.三、解答题21.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,小张出发必过小李家.(1)若两人同时出发,小张车速为20千米,小李车速为15千米,经过多少小时能相遇?(2)若小李的车速为10千米,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?22.如图所示,是一列用若干根火柴棒摆成的由正方形组成的图案.(1)完成下表的填空:(2)某同学用若干根火柴棒按上图呈现的规律摆图案,摆完了第1个,第2个,…,第n 个图案后剩下了69根火柴棒,若要摆完第n+1个和第n+2个图案刚好差2根火柴棒.问最后能摆成的图案是哪二个图案?23.()1如图1,射线OC 在AOB ∠的内部,OM 平分AOC ∠,ON 平分BOC ∠,若110AOB ∠=,求MON ∠的度数;()2射线OC ,OD 在AOB ∠的内部,OM 平分AOC ∠,ON 平分BOD ∠,若100AOB ∠=,20COD ∠=,求MON ∠的度数;()3在()2中,AOB m ∠=,COD n∠=,其他条件不变,请用含m ,n 的代数式表示MON 的度数(不用说理).24.如图,直线 AB ,CD 相交于点O ,OE 平分∠AOD ,OF ⊥OC .(1)图中∠AOF 的余角是 (把符合条件的角都填出来);(2)如果∠AOC=130°36′,那么根据 ,可得∠BOD= °;(3)如果∠1与∠3的度数之比为3:4,求∠EOC 和∠2的度数.25.计算与化简:(1)(-9)-(-7)+(-6)-(+4)-(-5)(2)42211(2)()1()0.25345-÷-+⨯-+(3)222221382(33)(3)3535x x xy y x xy y -+-+++ 26.先化简,再求值:2(﹣3xy+52x 2)+5(2xy ﹣x 2),其中x =﹣2,y =12. 27.已知|a|=2,|b|=7,且a <b ,求a ﹣b .28.计算: (1)(3)74--+-- (2) 211()(6)5()32-⨯-+÷-【参考答案】***一、选择题1.B2.A3.D4.C5.C6.B7.C8.C9.D10.B11.C12.B二、填空题13.2m或8m14.20°15.516.10或3017.918.﹣2 319.620.﹣2三、解答题21.(1)两人经过两个小时后相遇;(2)小张的车速为18千米每小时.22.(1)13,16,19,3n+1;(2)这位同学最后摆的图案是第11个和第12个图案.23.(1)55°;(2)60°;(3)1()2MON m n ∠=+24.(1)∠AOD,∠COB;(2)对顶角相等,130.6°;(3)∠EOC=153°,∠2=54°25.(1)-7;(2)36;(3)y2;26.4xy,-4.27.-5或-928.(1)6;(2)22.。
大庆市七年级数学上册期末测试卷及答案
大庆市七年级数学上册期末测试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.2019年6月21日甬台温高速温岭联络线工程初步设计通过,本项目为沿海高速和甬台温高速公路之间的主要联络通道,总投资1289000000元,这个数据用科学记数法表示为( ) A .0.1289×1011 B .1.289×1010 C .1.289×109D .1289×1073.下列分式中,与2x yx y ---的值相等的是()A .2x y y x+-B .2x y x y+-C .2x y x y--D .2x y y x-+4.已知单项式2x 3y 1+2m 与3x n +1y 3的和是单项式,则m ﹣n 的值是( ) A .3 B .﹣3 C .1 D .﹣1 5.计算:2.5°=( )A .15′B .25′C .150′D .250′6.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cm B .2cm C .8cm 或2cm D .以上答案不对 7.若-4x 2y 和-23x m y n 是同类项,则m ,n 的值分别是( ) A .m=2,n=1 B .m=2,n=0 C .m=4,n=1 D .m=4,n=0 8.化简(2x -3y )-3(4x -2y )的结果为( ) A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y9.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.2019年3月15日,中山市统计局发布2018年统计数据,我市常住人口达3 310 000人.数据3 310 000用科学记数法表示为( ) A .3.31×105 B .33.1×105 C .3.31×106 D .3.31×107 11.已知105A ∠=︒,则A ∠的补角等于( )A .105︒B .75︒C .115︒D .95︒12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有( )A .45人B .120人C .135人D .165人二、填空题13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________. 14.把5,5,35按从小到大的顺序排列为______.15.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.16.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.17.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.18.如图,某海域有三个小岛A,B,O,在小岛O 处观测到小岛A 在它北偏东61°的方向上,观测到小岛B 在它南偏东38°的方向上,则∠AOB 的度数是__________°.19.化简:2x+1﹣(x+1)=_____.20.若x 、y 为有理数,且|x +2|+(y ﹣2)2=0,则(x y)2019的值为_____. 21.小康家里养了8头猪,质量分别为:104,98.5,96,91.8,102.5,100.7,103,95.5(单位:kg ),每头猪超过100kg 的千克数记作正数,不足100kg 的千克数记作负数.那么98.5对应的数记为_____.22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.23.通常山的高度每升高100米,气温下降0.6C ︒,如地面气温是4C -︒,那么高度是2400米高的山上的气温是____________________.24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题25.已知数轴上,点A 和点B 分别位于原点O 两侧,AB=14,点A 对应的数为a ,点B 对应的数为b.(1) 若b =-4,则a 的值为__________. (2) 若OA =3OB ,求a 的值.(3) 点C 为数轴上一点,对应的数为c .若O 为AC 的中点,OB =3BC ,直接写出所有满足条件的c 的值.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n 的式子表示第n 个图的钢管总数. (分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S 表示钢管总数) (解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________ (3)用含n 的式子列式,并计算第n 个图的钢管总数.28.已知:如图数轴上两点A 、B 所对应的数分别为-3、1,点P 在数轴上从点A 出发以每秒钟2个单位长度的速度向右运动,点Q 在数轴上从点B 出发以每秒钟1个单位长度的速度向左运动,设点P 的运动时间为t 秒.(1)若点P 和点Q 同时出发,求点P 和点Q 相遇时的位置所对应的数;(2)若点P 比点Q 迟1秒钟出发,问点P 出发几秒后,点P 和点Q 刚好相距1个单位长度;(3)在(2)的条件下,当点P 和点Q 刚好相距1个单位长度时,数轴上是否存在一个点C ,使其到点A 、点P 和点Q 这三点的距离和最小,若存在,直接写出点C 所对应的数,若不存在,试说明理由.29.如图,12cm AB =,点C 是线段AB 上的一点,2BC AC =.动点P 从点A 出发,以3cm /s 的速度向右运动,到达点B 后立即返回,以3cm /s 的速度向左运动;动点Q 从点C 出发,以1cm/s 的速度向右运动. 设它们同时出发,运动时间为s t . 当点P 与点Q 第二次重合时,P Q 、两点停止运动. (1)求AC ,BC ;(2)当t 为何值时,AP PQ =; (3)当t 为何值时,P 与Q 第一次相遇; (4)当t 为何值时,1cm PQ =.30.点A 在数轴上对应的数为﹣3,点B 对应的数为2. (1)如图1点C 在数轴上对应的数为x ,且x 是方程2x +1=12x ﹣5的解,在数轴上是否存在点P 使PA +PB =12BC +AB ?若存在,求出点P 对应的数;若不存在,说明理由;(2)如图2,若P 点是B 点右侧一点,PA 的中点为M ,N 为PB 的三等分点且靠近于P 点,当P 在B 的右侧运动时,有两个结论:①PM ﹣34BN 的值不变;②13PM 24+ BN 的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.阅读下列材料,并解决有关问题:我们知道,(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,现在我们可以用这一结论来化简含有绝对值的式子,例如化简式子|1||2|x x ++-时,可令10x +=和20x -=,分别求得1x =-,2x =(称1-、2分别为|1|x +与|2|x -的零点值).在有理数范围内,零点值1x =-和2x =可将全体有理数不重复且不遗漏地分成如下三种情况:(1)1x <-;(2)1-≤2x <;(3)x ≥2.从而化简代数式|1||2|x x ++-可分为以下3种情况:(1)当1x <-时,原式()()1221x x x =-+--=-+; (2)当1-≤2x <时,原式()()123x x =+--=; (3)当x ≥2时,原式()()1221x x x =++-=-综上所述:原式21(1)3(12)21(2)x x x x x -+<-⎧⎪=-≤<⎨⎪-≥⎩通过以上阅读,请你类比解决以下问题:(1)填空:|2|x +与|4|x -的零点值分别为 ; (2)化简式子324x x -++.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:12 8900 0000元,这个数据用科学记数法表示为1.289×109.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.A解析:A【解析】【分析】根据分式的基本性质即可求出答案.【详解】解:原式=22x y x yx y y x++-=--, 故选:A . 【点睛】本题考查分式的基本性质,解题的关键熟练运用分式的基本性质,本题属于基础题型.4.D解析:D 【解析】 【分析】根据同类项的概念,首先求出m 与n 的值,然后求出m n -的值. 【详解】 解:单项式3122mx y+与133n xy +的和是单项式,3122m x y +∴与133n x y +是同类项,则13123n m +=⎧⎨+=⎩∴12m n =⎧⎨=⎩, 121m n ∴-=-=-故选:D . 【点睛】本题主要考查同类项,掌握同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,从而得出m ,n 的值是解题的关键.5.C解析:C 【解析】 【分析】根据“1度=60分,即1°=60′”解答. 【详解】解:2.5°=2.5×60′=150′. 故选:C . 【点睛】考查了度分秒的换算,度、分、秒之间是60进制,将高级单位化为低级单位时,乘以60,反之,将低级单位转化为高级单位时除以60.6.C解析:C 【解析】 【分析】根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC的长度即可.【详解】解:当点C在线段AB上时,如图,∵AC=AB−BC,又∵AB=5,BC=3,∴AC=5−3=2;②当点C在线段AB的延长线上时,如图,∵AC=AB+BC,又∵AB=5,BC=3,∴AC=5+3=8.综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.7.A解析:A【解析】根据同类项的相同字母的指数相同可直接得出答案.解:由题意得:m=2,n=1.故选A.8.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x﹣3y﹣12x+6y=﹣10x+3y.故选B.点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.9.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.10.C解析:C【解析】【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【详解】解:3310000=3.31×106.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.故答案为两点确定一条直线.解析:两点确定一条直线.【解析】将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线. 故答案为两点确定一条直线.14.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 15.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键16.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.17.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.18.81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,解析:81【解析】【分析】根据方位角的表示可知,∠AOB=180°-61°-38°计算即可得出结果.【详解】根据题意可知,OA表示北偏东61°方向的一条射线,OB表示南偏东38°方向的一条射线,∴∠AOB=180°-61°-38°=81°,故答案为:81.【点睛】本题考查了方位角及其计算,掌握方位角的概念是解题的关键.19.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.20.﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,()2019=()201解析:﹣1【解析】【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【详解】由题意得:x+2=0,y﹣2=0,解得:x=﹣2,y=2,所以,(xy)2019=(22)2019=(﹣1)2019=﹣1.故答案为:﹣1.【点睛】本题考查了非负数的性质.解答本题的关键是掌握非负数的性质:几个非负数的和为0时,这几个非负数都为0.21.5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.解析:5.【解析】【分析】利用有理数的减法运算即可求得答案.【详解】解:每头猪超过100kg的千克数记作正数,不足100kg的千克数记作负数.那么98.5对应的数记为﹣1.5.故答案为:﹣1.5.【点睛】本题考查了“正数”和“负数”..解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.依据这一点可以简化数的求和计算.22.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.23.【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是-︒解析:18.4C【解析】【分析】从地面到高山上高度升高了2400米,用升高的高度除以100再乘以0.6得出下降的温度,再用地面的气温减去此值即可.【详解】解:由题意可得,高度是2400米高的山上的气温是:-4-2400÷100×0.6=-4-14.4=-18.4℃,故答案为:-18.4℃.【点睛】本题考查有理数的混合运算,解答本题的关键是根据题意列出正确的算式.24.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题25.(1)10;(2)212±;(3)288.5±±,【解析】【分析】(1)根据题意画出数轴,由已知条件得出AB=14,OB=4,则OA=10,得出a的值为10.(2)分两种情况,点A在原点的右侧时,设OB=m,列一元一次方程求解,进一步得出OA的长度,从而得出a的值.同理可求出当点A在原点的左侧时,a的值.(3)画数轴,结合数轴分四种情况讨论计算即可.【详解】(1)解:若b=-4,则a的值为 10(2)解:当A在原点O的右侧时(如图):设OB=m,列方程得:m+3m=14,解这个方程得,7m2 =,所以,OA=212,点A在原点O的右侧,a的值为212.当A在原点的左侧时(如图),a=-21 2综上,a 的值为±212. (3)解:当点A 在原点的右侧,点B 在点C 的左侧时(如图), c=-285.当点A 在原点的右侧,点B 在点C 的右侧时(如图), c=-8.当点A 在原点的左侧,点B 在点C 的右侧时,图略,c=285. 当点A 在原点的左侧,点B 在点C 的左侧时,图略,c=8. 综上,点c 的值为:±8,±285. 【点睛】本题考查的知识点是通过画数轴,找出数轴上各线段间的数量关系并用一元一次方程来求解,需要注意的是分情况讨论时要考虑全面,此题充分锻炼了学生动手操作能力以及利用数行结合解决问题的能力.26.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠ 160120=︒-︒40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON ═12(360°-∠AOB )═12×240°=120°, ∵∠MOI=3∠POI ,∴180°-3t=3(60°-61202t -)或180°-3t=3(61202t --60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.27.(1)3456;45678S S=+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n项的钢管数.【详解】(1)3456;45678S S=+++=++++(2)方法不唯一,例如:12S=+1233S=+++123444S=+++++12345555S=+++++++(3)方法不唯一,例如:()()12 (2)S n n n n=++++++()()()()=.....12.....1112n n n nn n n n+++++++=+++()312n n=+【点睛】此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.28.(1)13-;(2)P出发23秒或43秒;(3)见解析.【解析】【分析】(1)由题意可知运动t秒时P点表示的数为-3+2t,Q点表示的数为1-t,若P、Q相遇,则P、Q两点表示的数相等,由此可得关于t的方程,解方程即可求得答案;(2)由点P比点Q迟1秒钟出发,则点Q运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-, 综上所述,点C 所表示的数分别为-53和-43.本题考查了数轴上的动点问题,一元一次方程的应用,数轴上两点间的距离,正确理解数轴上两点间的距离,从中找到等量关系列出方程是解题的关键.本题也考查了分类讨论思想.29.(1)AC=4cm, BC=8cm ;(2)当45t =时,AP PQ =;(3)当2t =时,P 与Q 第一次相遇;(4)35191cm.224t PQ =当为,,时, 【解析】【分析】(1)由于AB=12cm ,点C 是线段AB 上的一点,BC=2AC ,则AC+BC=3AC=AB=12cm ,依此即可求解;(2)分别表示出AP 、PQ ,然后根据等量关系AP=PQ 列出方程求解即可;(3)当P 与Q 第一次相遇时由AP AC CQ =+得到关于t 的方程,求解即可; (4)分相遇前、相遇后以及到达B 点返回后相距1cm 四种情况列出方程求解即可.【详解】(1)AC=4cm, BC=8cm.(2) 当AP PQ =时,AP 3t,PQ AC AP CQ 43t t ==-+=-+,即3t 43t t =-+,解得4t 5=. 所以当4t 5=时,AP PQ =. (3) 当P 与Q 第一次相遇时,AP AC CQ =+,即3t 4t =+,解得t 2=.所以当t 2=时,P 与Q 第一次相遇.(4)()()P,Q 1cm,4t 3t 13t 4t 1+-=-+=因为点相距的路程为所以或,35t t 22解得或==, P B P,Q 1cm 当到达点后时立即返回,点相距的路程为,193t 4t 1122,t 4+++=⨯=则解得, 3519t PQ 1cm.224所以当为,,时,= 【点睛】此题考查一元一次方程的实际运用,掌握行程问题中的基本数量关系以及分类讨论思想是解决问题的关键.30.(1)存在满足条件的点P ,对应的数为﹣92和72;(2)正确的结论是:PM ﹣34BN 的值不变,且值为2.5.【解析】(1)先利用数轴上两点间的距离公式确定出AB的长,然后求得方程的解,得到C表示的点,由此求得12BC+AB=8设点P在数轴上对应的数是a,分①当点P在点a的左侧时(a<﹣3)、②当点P在线段AB上时(﹣3≤a≤2)和③当点P在点B的右侧时(a>2)三种情况求点P所表示的数即可;(2)设P点所表示的数为n,就有PA=n+3,PB=n﹣2,根据已知条件表示出PM、BN的长,再分别代入①PM﹣34BN和②12PM+34BN求出其值即可解答.【详解】(1)∵点A在数轴上对应的数为﹣3,点B对应的数为2,∴AB=5.解方程2x+1=12x﹣5得x=﹣4.所以BC=2﹣(﹣4)=6.所以.设存在点P满足条件,且点P在数轴上对应的数为a,①当点P在点a的左侧时,a<﹣3,PA=﹣3﹣a,PB=2﹣a,所以AP+PB=﹣2a﹣1=8,解得a=﹣,﹣<﹣3满足条件;②当点P在线段AB上时,﹣3≤a≤2,PA=a﹣(﹣3)=a+3,PB=2﹣a,所以PA+PB=a+3+2﹣a=5≠8,不满足条件;③当点P在点B的右侧时,a>2,PA=a﹣(﹣3)=a+3,PB=a﹣2.,所以PA+PB=a+3+a﹣2=2a+1=8,解得:a=,>2,所以,存在满足条件的点P,对应的数为﹣和.(2)设P点所表示的数为n,∴PA=n+3,PB=n﹣2.∵PA的中点为M,∴PM=12PA=.N为PB的三等分点且靠近于P点,∴BN=PB=×(n﹣2).∴PM﹣34BN=﹣34××(n﹣2),=(不变).②12PM +34BN =+34××(n ﹣2)=34n ﹣(随P 点的变化而变化). ∴正确的结论是:PM ﹣BN 的值不变,且值为2.5.【点睛】本题考查了一元一次方程的解,数轴的运用,数轴上任意两点间的距离公式的运用,去绝对值的运用,解答时了灵活运用两点间的距离公式求解是关键.31.(1) AB =15,BC =20;(2) 点N 移动15秒时,点N 追上点M;(3) BC -AB 的值不会随着时间的变化而改变,理由见解析【解析】【分析】(1)根据数轴上点的位置求出AB 与BC 的长即可,(2)不变,理由为:经过t 秒后,A 、B 、C 三点所对应的数分别是-24-t ,-10+3t ,10+7t ,表示出BC ,AB ,求出BC-AB 即可做出判断,(3)经过t 秒后,表示P 、Q 两点所对应的数,根据题意列出关于t 的方程,求出方程的解得到t 的值,分三种情况考虑,分别求出满足题意t 的值即可.【详解】解:(1)AB =15,BC =20,(2)设点N 移动x 秒时,点N 追上点M ,由题意得:15322x x ⎛⎫=+ ⎪⎝⎭, 解得15x =,答:点N 移动15秒时,点N 追上点M .(3)设运动时间是y 秒,那么运动后A 、B 、C 三点表示的数分别是25y --、103y -+、107y +,∴BC ()()107103204y y y =+--+=+,AB ()()10325154y y y =-+---=+, ∴BC -AB ()()2041545y y =+-+=,∴BC -AB 的值不会随着时间的变化而改变.【点睛】本题主要考查了整式的加减,数轴,以及两点间的距离,解决本题的关键是要熟练掌握行程问题中等量关系和数轴上点,32.(1) 2x =-和4x = ;(2) 35(4)11(43)35(3)x x x x x x --<-⎧⎪+-≤<⎨⎪+≥⎩【解析】【分析】(1)令x +2=0和x -4=0,求出x 的值即可得出|x +2|和|x -4|的零点值,(2)零点值x =3和x =-4可将全体实数分成不重复且不遗漏的如下3种情况:x <-4、-4≤x <3和x ≥3.分该三种情况找出324x x -++的值即可.【详解】解:(1)2x =-和4x =,(2)由30x -=得3,x =由40x +=得4x =-,①当4x <-时,原式()()32435x x x =---+=--,②当4-≤3x <时,原式()()32411x x x =--++=+,③当x ≥3时,原式()()32435x x x =-++=+,综上所述:原式()35(4)11(43)353x x x x x x ⎧--<-⎪=+-≤<⎨⎪+≥⎩, 【点睛】本题主要考查了绝对值化简方法,解决本题的关键是要熟练掌握绝对值化简方法.。
黑龙江省大庆市2019届数学七上期末考试试题
黑龙江省大庆市2019届数学七上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.下列关于角的说法正确的是( ) A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关 C.延长一个角的两边D.角的两边是射线,所以角不可度量2.下列几何体是棱锥的是( )A. B. C.D.3.若∠A ,∠B 互为补角,且∠A <∠B ,则∠A 的余角是( ) A.12(∠A+∠B ) B.12∠B C.12(∠B ﹣∠A ) D.12∠A 4.“某幼儿园给小朋友分苹果,若每个小朋友分3个则剩1个;若每个小朋友分4个则少2个,问苹果有多少个?”若设共有x 个苹果,则列出的方程是( ) A.3x 14x 2+=-B.3x 14x 2-=+C.x 1x 234-+= D.x 1x 234+-= 5.一件标价为600元的上衣,按8折销售仍可获利20元,设这件上衣的成本价为x 元,根据题意,下面所列的方程正确的是( ) A .600×8x -=20 B .600×0.8x +=20 C .600×8x +=20D .600×0.8x -=206.给出如下结论:①单项式-232x y的系数为-32,次数为2;②当x =5,y =4时,代数式x 2-y 2的值为1;③化简(x +14)-2(x -14)的结果是-x +34;④若单项式57ax 2y n +1与-75ax m y 4的差仍是单项式,则m +n =5.其中正确的结论有( ) A.1个B.2个C.3个D.4个7.若多项式5x 2y |m|14-(m+1)y 2﹣3是三次三项式,则m 等于( )A.﹣1B.0C.1D.2 8.已知a 2+2a -3=0,则代数式2a 2+4a -3的值是( ) A .-3B .0C .3D .69.下列结论正确的是( ) A .单项式223ab c 的次数是4B .单项式22πm n5-的系数是25-C .多项式2x y -的次数是3D .多项式325x 2x 1-+中,第二项是22x 10.下列说法错误的是( ) A.若a b =,则a b =或a b =-。
黑龙江省大庆市七年级上学期数学期末考试试卷
黑龙江省大庆市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)因为× =1,所以()。
A . 是倒数B . 和都是倒数C . 是倒数D . 和互为倒数2. (2分)计算(-25)-(-16)+2的结果是()A . 7B . -7C . 8D . -83. (2分)单项式与3x2y是同类项,则a-b的值为()A . 2B . 0C . -2D . 14. (2分) (2019七上·秦淮期末) 现实生活中“为何有人乱穿马路,却不愿从天桥或斑马线通过?”,请用数学知识解释图中这一现象,其原因为().A . 两点之间线段的长度,叫做这两点之间的距离B . 过一点有无数条直线C . 两点之间线段最短D . 两点确定一条直线5. (2分)下列运算正确的是()A . ﹣22=4B . (﹣2)3=﹣6C .D .6. (2分) (2018七上·西城期末) 下列各式进行的变形中,不正确的是()A . 若3a =2b,则3a +2 =2b +2B . 若3a =2b,则3a -5 =2b- 5C . 若3a =2b,则 9a=4bD . 若3a =2b,则7. (2分)在直线m上顺次取A,B,C三点,使AB=10cm,BC=4cm,如果点O是线段AC的中点,则线段OB 的长为()A . 3cmB . 7cmC . 3cm或7cmD . 5cm或2cm8. (2分)点C在∠AOB内部,现有四个等式∠COA=∠BOC,∠BOC= ∠AOB,∠AOB=2∠COA,∠AOB=2∠AOC,其中能表示OC是角平分线的等式的个数为()A . 1B . 2C . 3D . 49. (2分) (2019八下·淮安月考) 以下说法合理的是:()A . “打开电视,正在播放新闻节日”是必然事件B . “抛一枚硬币,正面朝上的概率为”表示每抛两次就有一次正面朝上C . “抛掷一枚均匀的骰子,出现点数6的概率是”表示随着抛掷次数的增加“出现点数6”这一事件发生的频率稳定在附近D . 为了解某品牌火腿的质量,选择全面检测10. (2分) (2019七上·盐津月考) 在解方程=1时,去分母正确的是()A . 3(x﹣1)﹣2(2+3x)=1B . 3(x﹣1)+2(2x+3)=1C . 3(x﹣1)+2(2+3x)=6D . 3(x﹣1)﹣2(2x+3)=611. (2分) (2019七上·双城期末) 两个角大小的比为7:3,它们的差是72°,则这两个角的数量关系是()A . 相等B . 互补C . 互余D . 无法确定12. (2分) (2019·西安模拟) 下列选项中,下边的平面图形能够折成旁边封闭的立体图形的是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分)(2019·绥化) 某年一月份,哈尔滨市的平均气温约为-20℃,绥化市的平均气温约为-23℃,则两地的温差为 ________ ℃.14. (1分) (2019七上·栾川期末) 若,则的补角为________.15. (1分)多项式________ 与m2+m﹣2的和是m2﹣2m.16. (1分)(2020·衢州) 一元一次方程2x+1=3的解是x=________。
【名校名卷】黑龙江省大庆市2019年数学七上期末考试试题
黑龙江省大庆市2019年数学七上期末考试试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.在海上,灯塔位于一艘船的北偏东40度方向,那么这艘船位于这个灯塔的( )A.南偏西40度方向B.南偏西50度方向C.北偏东50度方向D.北偏东40度方向2.如果从A 看B 的方向为北偏东25,那么从B 看A 的方向为( )A.南偏东65°B.南偏西65°C.南偏东25°D.南偏西25°3.两根木条,一根长20cm ,另一根长24cm ,将它们一端重合且放在同一条直线上,此时两根木条的中点之间的距离为( )A.2cmB.4cmC.2cm 或22cmD.4cm 或44cm4.某书店把一本新书按标价的八折出售,仍获利20%,若该书进价为20元,则标价( )A .24元B .26元C .28元D .30元5.如果式子32x -与-7互为相反数,则x 的值为( )A.5B.-5C.3D.-3 6.方程114x x --=-去分母正确的是( ). A .x-1-x=-1 B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-1 7.下列各式中,与xy 2是同类项的是( ) A .-2xy 2 B .2x 2y C .xy D .x 2y 28.a 是不为1的有理数,我们把11a-称为a 的差倒数,如:2的差倒数是1112=--,1-的差倒数是111(1)2=--,已知13a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,以此类推,则2019(a = )A.3B.23C.12-D.无法确定9.下列计算正确的是( )A .x 2+x 2=x 4B .(x ﹣y)2=x 2﹣y 2C .(﹣x)2•x 3=x 5D .(x 2y)3=x 6y10.下列各数中互为相反数的是( )A .+(—5)与—5B .—(+5)与—5C .—(—5)与+(—5)D .—(+5)与—|—5|11.大象是世界上最大的陆栖动物,它的体重可达到好几吨,下面哪个动物的体重相当于它的百万分之一( )A .啄木鸟B .蚂蚁C .蜜蜂D .公鸡12.如果||a a =-,下列成立的是( ).A.0a <B.0a >C.0a ≤D.0a ≥二、填空题13.下列说法:①若a 与b 互为相反数,则a+b=0;②若ab=1,则a 与b 互为倒数;③两点之间,直线最短;④若∠α+∠β=90°,且β与γ互余,则∠α与∠γ互余;⑤若∠α为锐角,且∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ=90°.其中正确的有________.(填序号)14.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为_____.15.小华以8折的优惠价钱买了一双鞋子,比不打折时节省了20元,则他买这双鞋子实际花了_____ 元.16.化简:2(-a b )-(23a b +)= ____________.17.设11,12,21,13,22,31,…,1k ,21k -,32k -,…,1k ,…,在这列数中,第50个数是__________.18.如图是一个简单的数值运算程序,当输入x 的值为-3时,则输出的数值为_______.19.规定一种运算“*”,a*b=a –2b ,则方程x*3=2*3的解为__________.20.-2×|-12| =_____. 三、解答题21.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD .(1)若∠AOC=70°,∠DOF=90°,求∠EOF 的度数;(2)若OF 平分∠COE ,∠BOF=15°,若设∠AOE=x°.①用含x 的代数式表示∠EOF;②求∠AOC 的度数.22.如图,点O 为原点,A ,B 为数轴上两点,AB=15,且OA :OB=2(1)A ,B 对应的数分别为 , .(2)点A ,B 分别以2个单位/秒和5个单位/秒的速度相向而行,则几秒后A ,B 相距1个单位长度?(3)点AB 以(2)中的速度同时向右运动,点P 从原点O 以4个单位秒的速度向右运动,是否存在常数m ,使得3AP+2PB ﹣mOP 为定值?若存在,请求出m 值以及这个定值;若不存在,请说明理由.23.为了鼓励市民节约用水,某市水费实行阶梯式计量水价.每户每月用水量不超过25吨,收费标准为每吨a 元;若每户每月用水量超过25吨时,其中前25吨还是每吨a 元,超出的部分收费标准为每吨b 元.下表是小明家一至四月份用水量和缴纳水费情况.根据表格提供的数据,回答:(1)a = ;b = ;(2)若小明家五月份用水32吨,则应缴水费 元;(3)若小明家六月份应缴水费102.5元,则六月份他们家的用水量是多少吨?24.先化简,再求值:8a 2﹣10ab+2b 2﹣(2a 2﹣10ab+8b 2),其中a=12,b=﹣13. 25.如图所示,一幅地图上有A ,B ,C 三地,地图被墨迹污染,C 地具体位置看不清楚了,但知道C 地在A 地的北偏东30°方向,在B 地的南偏东45°方向,你能确定C 地位置吗?26.先化简,再求值.()()22222a b ab 3a b l 2ab 1---++,其中a 1=,b 2=.27.去年某地高新技术产品进出口总额为5287.8万美元,比上年增长30%,如果今年仍按此比例增长,那么今年该地高新技术产品进出口总额可达到多少万美元(结果精确到万位)?28.计算:(π﹣2016)0+(13)﹣1×|﹣3|.【参考答案】***一、选择题1.A2.D3.C4.D5.C6.C7.A8.B9.C10.C11.C12.C二、填空题13.①②⑤14.100°15.8016. SKIPIF 1 < 05b 解析:-5b17. SKIPIF 1 < 0; 解析:56; 18.﹣119.x=220.-1三、解答题21.(1)55°;(2)①∠FOE=12x;②100°. 22.﹣10 523.(1) 2a =;3b =;(2)71;(3)42.524.6a 2﹣6b 2,56. 25.画图见解析.26.227.今年该地高新技术产品进出口总额可达到1×104万美元28.-2。
大庆市七年级上册数学期末试卷(带答案)-百度文库
大庆市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .3.如图,C 为射线AB 上一点,AB =30,AC 比BC 的14多5,P ,Q 两点分别从A ,B 两点同时出发.分别以2单位/秒和1单位/秒的速度在射线AB 上沿AB 方向运动,运动时间为t 秒,M 为BP 的中点,N 为QM 的中点,以下结论:①BC =2AC ;②AB =4NQ ;③当PB =12BQ 时,t =12,其中正确结论的个数是( )A .0B .1C .2D .3 4.一个角是这个角的余角的2倍,则这个角的度数是( )A .30B .45︒C .60︒D .75︒5.如图,直线AB 与直线CD 相交于点O ,40BOD ∠=︒ ,若过点O 作OE AB ⊥,则COE ∠的度数为( )A .50︒B .130︒C .50︒或90︒D .50︒或130︒6.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π7.按一定规律排列的单项式:x 3,-x 5,x 7,-x 9,x 11,……第n 个单项式是( ) A .(-1)n -1x 2n -1 B .(-1)n x 2n -1 C .(-1)n -1x 2n +1D .(-1)n x 2n +18.方程3x ﹣1=0的解是( ) A .x =﹣3B .x =3C .x =﹣13D .x =139.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠410.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山11.A 、B 两地相距450千米,甲乙两车分别从A 、B 两地同时出发,相向而行,已知甲车的速度为120千米/小时,乙车的速度为80千米/小时,经过t 小时,两车相距50千米,则t 的值为( ) A .2或2.5 B .2或10C .2.5D .212.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -二、填空题13.若1x =-是关于x 的方程220x a b -+=的解,则代数式241a b -+的值是___________.14.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).15.如图,∠AOB=∠COD=90°,∠AOD=140°,则∠BOC=_______.16.﹣225ab π是_____次单项式,系数是_____.17.当x= 时,多项式3(2-x )和2(3+x )的值相等.18.已知一个角的补角是它余角的3倍,则这个角的度数为_____.19.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.20.定义:从一个角的顶点出发,把这个角分成1: 2 的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条.如图,90AOB ︒∠=,OC 、OD 是∠AOB 的两条三分线,以O 为中心,将∠COD 顺时针最少旋转__________ ,OA 恰好是∠COD 的三等分线.21.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.22.单项式()26a bc -的系数为______,次数为______.23.如图,直线AB 、CD 相交于O ,∠COE 是直角,∠1=44°,则∠2=______.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、压轴题25.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.26.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.27.如图1,已知面积为12的长方形ABCD ,一边AB 在数轴上。
黑龙江省大庆市七年级上学期数学期末考试试卷
黑龙江省大庆市七年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2019七上·椒江期末) 2的相反数是().A .B .C . -2D . 22. (3分) (2018八上·东台月考) 下列四个实数中是无理数是()A . 0B . πC .D .3. (3分)(2018·铜仁模拟) 天安门广场是当今世界上最大的城市广场,面积达440 000平方米,将440 000用科学记数法表示应为()A . 4.4×105B . 4.4×104C . 44×104D . 0.44×1064. (3分) (2020七上·柯桥月考) 在-(-2),- |-2| ,(-2)2 ,-22这4个数中,属于负数的个数是()A . 1B . 2C . 3D . 45. (3分) (2016七上·下城期中) 有长为l的篱笆,利用他和房屋的一面墙围成如图形状的长方形园子,园子的宽为t,则所围成的园子面积为()A . (l﹣)tB . (l﹣t)tC . (﹣t)tD . (l﹣2t)t6. (3分)下列说法错误的是()A . 两点之间的所有连线中,线段最短B . 经过一点有且只有一条直线与已知直线平行C . 如果两条直线都与第三条直线平行,那么这两条直线也互相平行D . 经过一点有且只有一条直线与已知直线垂直7. (3分)已知线段AB,在AB的延长线上取一点C,使AC=2BC,在AB的反向延长线上取一点D,使DA=2AB,那么线段AC是线段DB的()A .B .C .D .8. (3分)如图,如果∠AOB=∠COD=90°,那么∠1=∠2,这是根据()A . 直角都相等B . 等角的余角相等C . 同角的余角相等D . 同角的补角相等9. (3分)已知m2+m﹣1=0,那么代数式m3+2m2﹣2001的值是()A . 2000B . ﹣2000C . 2001D . ﹣200110. (3分) (2020七上·吴兴期末) “幻方”最早记载于春秋时期的《大戴礼》中,现将1、2、3、4、5、7、8、9这8个数字填入如图1所示的“幻方”中,使得每个三角形的三个顶点上的数字之和都与中间正方形四个顶点上的数字之和相等.现有如图2所示的“幻方”,则(x-y)m-n的值是()A . -27B . -1C . 8D . 16二、填空题(每小题3分,共18分) (共6题;共18分)11. (3分) (2019八上·北碚期末) 若+1的值在两个整数a与a+1之间,则a=________.12. (3分) (2019七上·西岗期末) 一个角的补角等于它的余角的3倍,则这个角的度数为________.13. (3分) (2016七上·凤庆期中) 若x=﹣3是方程k(x+4)﹣2k﹣x=5的解,则k的值是________.14. (3分) (2018七上·忻城期中) 如果 3x3ym+1与﹣5xn-2y2是同类项,则m﹣n的值等于________.15. (3分)公元前1700年的古埃及纸草书中,记载着一个数学问题:“它的全部,加上它的七分之一,其和等于19.”此问题中“它”的值为________ .16. (3分) (2020七上·温州期末) 如图,一个桌球游戏的长方形桌面ABCD中,AD=2m。
2019年黑龙江省大庆七年级上期末数学试卷(有答案)
黑龙江省大庆七年级(上)期末数学试卷一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣abc的次数是1D.多项式9m2﹣5mn﹣17的次数是42.将(3+2)﹣2(2﹣1)去括号正确的是()A.3+2﹣2+1B.3+2﹣4+1C.3+2﹣4﹣2D.3+2﹣4+23.若=﹣3是方程2(﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣124.单项式m﹣1y3与4y n的和是单项式,则n m的值是()A.3B.6C.8D.95.一个数加上﹣12等于﹣5,则这个数是()A.17B.7C.﹣17D.﹣76.立方是它本身的数是()A.1B.0C.﹣1D.1,﹣1,07.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×10128.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是℃.14.绝对值大于1而小于5的整数的和是.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为.16.已知A=22﹣1,B=3﹣22,则B﹣2A=.17.如果单项式2y n+2与单项式ab7的次数相等,则n的值为.18.若4﹣1与7﹣2的值互为相反数,则=.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)32﹣〔7﹣(4﹣3)﹣22〕21.(10分)解方程:(1)4﹣4(﹣3)=2(9﹣)(2).22.(12分)先化简再求值(1)3(2﹣2﹣1)﹣4(3﹣2)+2(﹣1);其中=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.黑龙江省大庆七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣abc的次数是1D.多项式9m2﹣5mn﹣17的次数是4【分析】根据单项式,单项式的系数和次数以及多项式的次数的定义作答.【解答】解:A、a是单项式是正确的;B、2πr2的系数是2π,故选项错误;C、﹣abc的次数是3,故选项错误;D、多项式9m2﹣5mn﹣17的次数是2,故选项错误.故选:A.【点评】此题考查了单项式以及多项式,数字与字母的积叫做单项式,单独的一个数字或字母也叫单项式,单项式不含加减运算.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.确定多项式的次数,就是确定多项式中次数最高的项的次数.2.将(3+2)﹣2(2﹣1)去括号正确的是()A.3+2﹣2+1B.3+2﹣4+1C.3+2﹣4﹣2D.3+2﹣4+2【分析】根据去括号法则解答.【解答】解:(3+2)﹣2(2﹣1)=3+2﹣4+2.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.3.若=﹣3是方程2(﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣12【分析】把=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.【点评】本题考查了方程的解的定理,理解定义是关键.4.单项式m﹣1y3与4y n的和是单项式,则n m的值是()A.3B.6C.8D.9【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵m﹣1y3与4y n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选:D.【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m、n的值.5.一个数加上﹣12等于﹣5,则这个数是()A.17B.7C.﹣17D.﹣7【分析】本题是有理数的运算与方程的结合试题,根据题意列出算式,然后根据算法计算即可.【解答】解:设这个数为,由题意可知+(﹣12)=﹣5,解得=7.所以这个数是7.故选:B.【点评】此类文字题只要审清题意正确列出算式,然后利用有理数的运算法则可求.6.立方是它本身的数是()A.1B.0C.﹣1D.1,﹣1,0【分析】根据立方的意义,可得答案.【解答】解:立方是它本身的数是﹣1,0,1,故选:D.【点评】本题考查了乘方,利用乘方的意义是解题关键.7.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将403,200,000,000用科学记数法可表示为4.032×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.【点评】本题考查了根据精确度取近似数,精确度可以是“十分位(0.1)、百分位(0.01)、千分位(0.0010”等,按四舍五入取近似数,只看精确度的后一位数.9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为元,由题意得:330×0.8﹣=10%,解得:=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元【分析】分别算出盈利衣服的成本和亏损衣服的成本,让两个售价相加减去两个成本的和,若得到是正数,即为盈利,反之亏本.【解答】解:设赢利60%的衣服的成本为元,则×(1+60%)=80,解得=50,设亏损20%的衣服的成本为y元,y×(1﹣20%)=80,解得y=100元,∴总成本为100+50=150元,∴2×80﹣150=10,∴这次买卖中他是盈利10元.故选:B.【点评】此题考查一元一次方程在实际问题中的应用,得到两件衣服的成本是解决本题的突破点.11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后有个侧面重叠,而且上边没有面,不能折成正方体;B、折叠后缺少上底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一下面,所以也不能折叠成一个正方体.故选:C.【点评】本题考查了展开图折叠成几何体,注意正方体的展开图中每个面都有对面.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.【分析】利用从正面看到的图叫做主视图,根据图中正方体摆放的位置判定则可.【解答】解:从正面看,主视图有2列,正方体的数量分别是2、1.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是3℃.【分析】上升7℃即是比原的温度高了7℃,所以把原的温度加上7℃即可得出结论.【解答】解:∵温度从﹣4℃上升7℃,∴﹣4+7=3℃.故答案为3.【点评】本题考查了正负号的意义:上升为正,下降为负;在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.绝对值大于1而小于5的整数的和是0.【分析】找出绝对值大于1而小于5的整数,求出之和即可.【解答】解:绝对值大于1而小于5的整数有﹣2,﹣3,﹣4,2,3,4,之和为0.故答案为:0.【点评】此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为﹣1.【分析】利用倒数及相反数的定义求出a+b与cd的值,代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,则原式=0+1﹣2=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.16.已知A=22﹣1,B=3﹣22,则B﹣2A=﹣62+5.【分析】将A和B的式子代入可得B﹣2A=3﹣22﹣2(22﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣22﹣2(22﹣1),=3﹣22﹣42+2=﹣62+5.故答案为﹣62+5.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.如果单项式2y n+2与单项式ab7的次数相等,则n的值为4.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式2y n+2与单项式ab7的次数相等,∴2+n+2=1+7,解得n=4.故答案为:4.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.18.若4﹣1与7﹣2的值互为相反数,则=﹣3.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到的值.【解答】解:根据题意得:4﹣1+7﹣2=0,移项合并得:2=﹣6,解得:=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)【分析】(1)减法统一成加法,再根据加法结合律已经结合律即可解决问题;(2)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+2+7﹣2.75=﹣3+7+2﹣2.75=4+0=4(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)解:原式=﹣9﹣8﹣16÷(﹣8)=﹣9﹣8+2=﹣17+2=﹣15【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)32﹣〔7﹣(4﹣3)﹣22〕【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=(5a2﹣8a2)+(2a+32a)﹣(1+12)=﹣3a2+34a ﹣13;(2)原式=32﹣(7﹣4+3﹣22)=32﹣7+4﹣3+22=(32+22)﹣(7﹣4)﹣3=52﹣3﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(10分)解方程:(1)4﹣4(﹣3)=2(9﹣)(2).【分析】(1)依据去括号、移项、合并同类项、系数化为1等步骤求解即可;(2)依据去分母、去括号、移项、合并同类项、系数化为1等步骤求解即可.【解答】解:(1)4﹣4+12=18﹣2,﹣4+2=18﹣4﹣12,﹣2=2,=﹣1.(2)2(2+1)﹣(5﹣1)=6,4+2﹣5+1=6,4﹣5=6﹣2﹣1﹣=3,=﹣3.【点评】本题主要考查的是解一元一次方程,熟练掌握解一元一次方程的步骤和方法是解题的关键.22.(12分)先化简再求值(1)3(2﹣2﹣1)﹣4(3﹣2)+2(﹣1);其中=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.【分析】(1)去括号、合并同类项后即可化简原式,再将、y的值代入计算.(2)去括号、合并同类项后即可化简原式,再将、y的值代入计算.【解答】解:(1)原式=32﹣6﹣3﹣12+8+2﹣2=32﹣(6+12﹣2)+(﹣3+8﹣2)=32﹣16+3,当=﹣3时原式=3×(﹣3)2﹣16×(﹣3)+3=78;(2)原式=2a2﹣(ab﹣2a2+8ab)﹣ab=2a2﹣ab+2a2﹣8ab﹣ab=(2a2+2a2)﹣(ab+8ab+ab)=4a2﹣9ab当a=1,b=时原式=4×12﹣9×1×=1【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.【分析】(1)可设这项工程的工程总量为1,则甲乙的工作效率为:、,则甲乙合作的效率为:+,依等量关系,可求出两队同时施工所需的天数;(2)依施工所需费用=每天的施工费×施工所需天数为等量关系列出算式分别计算所需费用,求出施工费用最少的那个方案.【解答】解:(1)设需要天完工,由题意得+=1,解得:=12,答:如果两队从管道两端同时施工,需要12天完工;(2)由乙队单独施工花钱少,理由:甲单独施工需付费:200×30=6000(元),乙单独施工需付费:280×20=5600(元),两队同时施工需付费:(200+280)×12=5760(元),因为5600<5760<6000,所以由乙队单独施工花钱少.【点评】本题主要考查的一元一次方程,关键在于根据题意找出等量关系,列出方程求解.。
大庆市七年级数学上册期末测试卷及答案
大庆市七年级数学上册期末测试卷及答案一、选择题1.在数3,﹣3,13,13-中,最小的数为( ) A .﹣3B .13C .13-D .32.若34(0)x y y =≠,则( ) A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 3.将连续的奇数1、3、5、7、…、,按一定规律排成如表:图中的T 字框框住了四个数字,若将T 字框上下左右移动,按同样的方式可框住另外的四个数, 若将T 字框上下左右移动,则框住的四个数的和不可能得到的数是( ) A .22B .70C .182D .2064.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a >bB .﹣ab <0C .|a |<|b |D .a <﹣b 5.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30B .45︒C .60︒D .75︒6.有一个数值转换器,流程如下:当输入x 的值为64时,输出y 的值是( ) A .2B .2C 2D 327.如果﹣2xy n+2与 3x 3m-2y 是同类项,则|n ﹣4m|的值是( ) A .3 B .4 C .5 D .68.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是( )A.2 B.8 C.6 D.0 9.在下边图形中,不是如图立体图形的视图是()A.B.C.D.10.下列各组数中,互为相反数的是( )A.2与12B.2(1)-与1 C.2与-2 D.-1与21-11.下列调查中,调查方式选择正确的是( )A.为了了解1 000个灯泡的使用寿命,选择全面调查B.为了了解某公园全年的游客流量,选择抽样调查C.为了了解生产的一批炮弹的杀伤半径,选择全面调查D.为了了解一批袋装食品是否含有防腐剂,选择全面调查12.a,b,c三个数在数轴上的位置如图所示,则下列结论中错误的是()A.a+b<0 B.a+c<0 C.a-b>0 D.b-c<013.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人14.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+115.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了( ) A .40分钟B .42分钟C .44分钟D .46分钟二、填空题16.若|x |=3,|y |=2,则|x +y |=_____.17.如图,线段AB 被点C ,D 分成2:4:7三部分,M ,N 分别是AC ,DB 的中点,若MN=17cm ,则BD=__________cm.18.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 . 19.如图,点C 在线段AB 的延长线上,BC =2AB ,点D 是线段AC 的中点,AB =4,则BD 长度是_____.20.如图,数轴上点A 与点B 表示的数互为相反数,且AB =4则点A 表示的数为______.21.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
大庆市数学七年级上学期期末数学试题
大庆市数学七年级上学期期末数学试题一、选择题1.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D .2.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30 B .45︒ C .60︒ D .75︒ 3.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )A .10-B .10C .5-D .54.已知关于x 的方程mx+3=2(m ﹣x )的解满足(x+3)2=4,则m 的值是( ) A .13或﹣1 B .1或﹣1 C .13或73D .5或735.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 6.已知:有公共端点的四条射线OA ,OB ,OC ,OD ,若点()1P O ,2P ,3P ⋯,如图所示排列,根据这个规律,点2014P 落在( )A .射线OA 上B .射线OB 上C .射线OC 上D .射线OD 上7.已知一个两位数,个位数字为b ,十位数字比个位数字大a ,若将十位数字和个位数字对调,得到一个新的两位数,则原两位数与新两位数之差为( )A .9a 9b -B .9b 9a -C .9aD .9a - 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1) B .(3,3) C .(2,3) D .(3,2) 9.用代数式表示“a 的3倍与b 的差的平方”,正确的是( ) A .3(a ﹣b )2B .(3a ﹣b )2C .3a ﹣b 2D .(a ﹣3b )210.有理数a 、b 在数轴上的位置如图所示,则下列结论中正确的是( )A .a+b >0B .ab >0C .a ﹣b <oD .a÷b >011.下列各组数中,互为相反数的是( ) A .2与12B .2(1)-与1C .2与-2D .-1与21-12.若2m ab -与162n a b -是同类项,则m n +=( ) A .3B .4C .5D .7二、填空题13.甲、乙两地海拔高度分别为20米和﹣9米,那么甲地比乙地高_____米. 14.多项式2x 3﹣x 2y 2﹣1是_____次_____项式.15.一个商店把某件商品按进价提高20%作为定价,可是总卖不出去;后来按定价减价20%出售,很快卖掉,结果这次生意亏了4元.那么这件商品的进价是________元. 16.将一个含有30°角的直角三角板如图所示放置.其中,含30°角的顶点落在直线a 上,含90°角的顶点落在直线b 上.若//221a b ∠=∠,;,则1∠=__________°.17.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.18.已知a ,b 是正整数,且a 5b <<,则22a b -的最大值是______. 19.计算7a 2b ﹣5ba 2=_____.20.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.21.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 22.已知代数式235x -与233x -互为相反数,则x 的值是_______. 23.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.三、解答题25.当x 取何值时,式子13x -的值比x+12的值大﹣1? 26.计算:(1)23(1)27|2|-+-+- (2)2311(6)()232-⨯--27.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由. (2)当,140A C ︒∠=∠∠=时,求D ∠的度数.28.如图,直线AB 、CD 、MN 相交于O ,∠DOB=60°,BO ⊥FO ,OM 平分∠DOF . (1)求∠MOF 的度数; (2)求∠AON 的度数;(3)请直接写出图中所有与∠AON 互余的角.29.如图,数轴上的点A ,B ,C ,D ,E 对应的数分别为a ,b ,c ,d ,e ,(1)化简:|a ﹣c |﹣2|b ﹣a |﹣|b ﹣c |;(2)若这五个点满足每相邻两个点之间的距离都相等,且|a |=|e |,|b |=3,直接写出b ﹣e 的值.30.如图,在数轴上点A 表示的数a 、点B 表示数b ,a 、b 满足|a ﹣30|+(b+6)2=0.点O 是数轴原点.(1)点A 表示的数为 ,点B 表示的数为 ,线段AB 的长为 .(2)若点A 与点C 之间的距离表示为AC ,点B 与点C 之间的距离表示为BC ,请在数轴上找一点C ,使AC=2BC ,则点C 在数轴上表示的数为 .(3)现有动点P 、Q 都从B 点出发,点P 以每秒1个单位长度的速度向终点A 移动;当点P 移动到O 点时,点Q 才从B 点出发,并以每秒3个单位长度的速度向右移动,且当点P 到达A 点时,点Q 就停止移动,设点P 移动的时间为t 秒,问:当t 为多少时,P 、Q 两点相距4个单位长度?四、压轴题31.某商场在黄金周促销期间规定:商场内所有商品按标价的50%打折出售;同时,当顾客在该商场消费打折后的金额满一定数额,还可按如下方案抵扣相应金额:说明:[)a,b 表示在范围a b ~中,可以取到a ,不能取到b .根据上述促销方法,顾客在该商场购物可以获得双重优惠:打折优惠与抵扣优惠. 例如:购买标价为900元的商品,则打折后消费金额为450元,获得的抵扣金额为30元,总优惠额为:()900150%30480⨯-+=元,实际付款420元.(购买商品得到的优惠率100%)=⨯购买商品获得的总优惠额商品的标价,请问:()1购买一件标价为500元的商品,顾客的实际付款是多少元? ()2购买一件商品,实际付款375元,那么它的标价为多少元?()3请直接写出,当顾客购买标价为______元的商品,可以得到最高优惠率为______.32.(1)探究:哪些特殊的角可以用一副三角板画出?在①135︒,②120︒,③75︒,④25︒中,小明同学利用一副三角板画不出来的特殊角是_________;(填序号)(2)在探究过程中,爱动脑筋的小明想起了图形的运动方式有多种.如图,他先用三角板画出了直线EF ,然后将一副三角板拼接在一起,其中45角(AOB ∠)的顶点与60角(COD ∠)的顶点互相重合,且边OA 、OC 都在直线EF 上.固定三角板COD 不动,将三角板AOB 绕点O 按顺时针方向旋转一个角度α,当边OB 与射线OF 第一次重合时停止.①当OB 平分EOD ∠时,求旋转角度α;②是否存在2BOC AOD ∠=∠?若存在,求旋转角度α;若不存在,请说明理由. 33.已知线段30AB cm =(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.2.C解析:C【解析】【分析】设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.【详解】解:根据题意列方程的:2(90°-α)=α,解得:α=60°.故选:C.【点睛】本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).3.D解析:D【解析】【分析】根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】解:∵方程2k-3x=4与x-2=0的解相同,∴x=2,把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.故选:D.【点睛】本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.4.A解析:A【解析】【分析】先求出方程的解,把x的值代入方程得出关于m的方程,求出方程的解即可.【详解】解:(x+3)2=4,x﹣3=±2,解得:x=5或1,把x=5代入方程mx+3=2(m﹣x)得:5m+3=2(m﹣5),解得:m=13,把x=﹣1代入方程mx+3=2(m﹣x)得:﹣m+3=2(1+m),解得:m=﹣1,故选:A.【点睛】本题考查了解一元一次方程的解的应用,能得出关于m的方程是解此题的关键.5.B解析:B【解析】【分析】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,根据两车同时从A地出发到B地,乙车比甲车早到30分钟,列出方程即可得.【详解】甲车平均速度为4x千米/小时,则乙车平均速度为5x千米/小时,由题意得160 4x -1605x=12,故选B.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键. 6.A解析:A【解析】【分析】根据图形可以发现点的变化规律,从而可以得到点2014P落在哪条射线上.【详解】解:由图可得,1P 到5P 顺时针,5P 到9P 逆时针,()2014182515-÷=⋯,∴点2014P 落在OA 上,故选A . 【点睛】本题考查图形的变化类,解答本题的关键是明确题意,利用数形结合的思想解答.7.C解析:C 【解析】 【分析】分别表示出愿两位数和新两位数,进而得出答案. 【详解】解:由题意可得,原数为:()10a b b ++; 新数为:10b a b ++,故原两位数与新两位数之差为:()()10a b b 10b a b 9a ++-++=. 故选C . 【点睛】本题考查列代数式,正确理解题意得出代数式是解题关键.8.C解析:C 【解析】 【分析】根据数对(1,2)表示教室里第1列第2排的位置,可知第一个数字表示列,第二个数字表示排,由此即可求得答案. 【详解】∵(1,2)表示教室里第1列第2排的位置, ∴教室里第2列第3排的位置表示为(2,3), 故选C. 【点睛】本题考查了数对表示位置的方法的灵活应用,分析出数对表示的意义是解题的关键.9.B解析:B 【解析】用代数式表示“a 的3倍与b 的差的平方”结果是:2(3)a b -.故选B.10.C解析:C【分析】利用数轴先判断出a 、b 的正负情况以及它们绝对值的大小,然后再进行比较即可. 【详解】解:由a 、b 在数轴上的位置可知:a <0,b >0,且|a |>|b |, ∴a +b <0,ab <0,a ﹣b <0,a ÷b <0. 故选:C .11.C解析:C 【解析】 【分析】根据相反数的定义进行判断即可. 【详解】A. 2的相反数是-2,所以2与12不是相反数,不符合题意; B. 2(1)=1-,1的相反数是-1,所以2(1)-与1不是相反数,不符合题意; C. 2与-2互为相反数,符合题意;D. 211=--,所以-1与21-不是相反数,不符合题意; 故选:C . 【点睛】本题考查了相反数的判断与乘方计算,熟记相反数的定义是解题的关键.12.C解析:C 【解析】 【分析】根据同类项的概念求得m 、n 的值,代入m n +即可. 【详解】解:∵2m ab -与162n a b -是同类项, ∴2m=6,n-1=1, ∴m=3,n=2, 则325m n +=+=. 故选:C . 【点睛】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.二、填空题13.【解析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是解析:【解析】【分析】根据题意可得20﹣(﹣9),再根据有理数的减法法则进行计算即可.【详解】解:20﹣(﹣9)=20+9=29,故答案为:29.【点睛】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数.14.四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2解析:四三【解析】【分析】找到多项式中的单项式的最高次数即为多项式的最高次数,有几个单项式即为几项式.【详解】解:次数最高的项为﹣x2y2,次数为4,一共有3个项,所以多项式2x3﹣x2y2﹣1是四次三项式.故答案为:四,三.【点睛】此题主要考查了多项式的定义.解题的关键是理解多项式的定义,用到的知识点为:多项式的次数由组成多项式的单项式的最高次数决定;组成多项式的单项式叫做多项式的项,有几项就是几项式.15.100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;解析:100【解析】根据题意可得关于x的方程,求解可得商品的进价.解:根据题意:设未知进价为x,可得:x•(1+20%)•(1-20%)=96解得:x=100;16.20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.解析:20【解析】【分析】根据平行线的性质得到∠3=∠1+∠CAB,根据直角三角形的性质得到∠3=90°−∠2,然后计算即可.【详解】解:如图,∵∠ACB=90°,∴∠2+∠3=90°.∴∠3=90°−∠2.∵a∥b,∠2=2∠1,∴∠3=∠1+∠CAB,∴∠1+30°=90°−2∠1,∴∠1=20°.故答案为:20.【点睛】此题考查平行线的性质,关键是根据平行线的性质和直角三角形的性质得到角之间的关系.17.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式18.-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】解:,,,,则原式,故答案为【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.解析:-5【解析】【分析】根据题意确定出a的最大值,b的最小值,即可求出所求.【详解】<<,解:459∴<<,23=,∴=,b3a2=-=-,则原式495-故答案为5【点睛】本题考查估算无理数的大小,熟练掌握估算的方法是解本题的关键.19.2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.20.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.21.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.22.【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵与互为相反数∴解得:【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键解析:27 8【解析】【分析】根据互为相反数的两个数之和为0,建立方程求解即可.【详解】∵235x-与233x-互为相反数∴23230 53-⎛⎫+-=⎪⎝⎭xx解得:278 x=【点睛】本题考查了相反数的性质和解一元一次方程,熟记相反数的性质建立方程是解题的关键.23.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.24.-7【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表解析:-7【解析】【分析】先根据题意求出a的值,再依此求出b的值.【详解】解:根据题意得:a=32-(-2)=11,则b=(-2)2-11=-7.故答案为:-7.【点睛】本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a和b是解决问题的关键.三、解答题25.25.【解析】【分析】根据题意列出方程,求出方程的解即可得到结果.【详解】根据题意得:x11x132-⎛⎫-+=-⎪⎝⎭,即x11x132---=-,去分母得到:2(x﹣1)﹣6x﹣3=﹣6,去括号得:2x﹣2﹣6x﹣3=﹣6,移项合并得:﹣4x=﹣1,解得:x=0.25,则x=0.25时,13x-的值比12x+的值大﹣1.【点睛】本题考查了解一元一次方程的应用,能根据题意列出方程,进行解答是解题的关键.26.(1)0;(2)-14【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)AD//BC ,理由见解析;(2)80︒【解析】【分析】(1)根据BE 平分∠ABC 可得∠2=∠CBE ,再根据∠1=∠2,可得∠1=∠CBE ,可判断AD 与BC 平行;(2)根据∠1=40°,可得∠EBC =∠2=∠1=40°,由此可以求出∠C =∠A =100°,再根据四边形的内角和求得∠D =80°.【详解】解:(1)AD//BC ,理由:∵BE 平分∠ABC∴∠2=∠CBE∵∠1=∠2∴∠1=∠CBE∴AD//BC (内错角相等,两直线平行) ;(2)∵∠1=40°,∴∠EBC =∠2=40°,∴∠A =180°−∠1−∠2=100°,∵∠A =∠C ,∴∠C =∠A =100°,∴∠D =360°−∠A−∠2−∠EBC−∠C =360°−100°−40°−40°−100°=80°.【点睛】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.28.(1)15°;(2)75 ;(3)∠CON、∠DOM、∠MOF.【解析】【分析】(1)根据∠DOF=∠BOF-∠DOB,首先求得∠DOF的度数,然后根据角平分线的定义求解;(2)首先求得∠BOM的度数,然后根据对顶角相等即可求解;(3)根据∠MOF=∠MOF=15°,∠AON=∠BOM=75°,据此即可写出.【详解】(1)∵∠DOB=60°,BO⊥FO,∴∠DOF=∠BOF-∠DOB=90°-60°=30°,又∵OM平分∠DOF,∴∠MOF=12∠DOF=15°;(2)∵∠BOM=∠MOF+∠DOB=15°+60°=75°,∴∠AON=∠BOM=75°;(3)与∠AON互余的角有:∠CON、∠DOM、∠MOF.【点睛】本题考查了角的平分线的定义,以及对顶角相等,正确理解角平分线的定义是关键.29.(1)a﹣b+c﹣d;(2)-9【解析】【分析】(1)由数轴可得a<b<c<d<e,然后可得a﹣c<0,b﹣a>0,b﹣d<0并去掉绝对值最后合并同类项即可;(2)先确定b、e的值,然后再代入求值即可.【详解】解:(1)从数轴可知:a<b<c<d<e,∴a﹣c<0,b﹣a>0,b﹣d<0,原式=|a﹣c|﹣2|b﹣a|﹣|b﹣d|=﹣a+c﹣2(b﹣a)﹣(d﹣b)=﹣a+c﹣2b+2a﹣d+b=a﹣b+c﹣d;(2)∵|a|=|e|,∴a、e互为相反数,∵|b|=3,这五个点满足每相邻两个点之间的距离都相等,∴b=﹣3,e=6,∴b﹣e=﹣3﹣6=﹣9.【点睛】本题考查了数轴、绝对值、相反数、有理数的大小比较等知识点,通过数轴确定a<b<c <d<e是解此题的关键.30.(1)30,﹣6, 36;(2)6或﹣42;(3)当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.【解析】【分析】(1)根据偶次方以及绝对值的非负性即可求出a、b的值,可得点A表示的数,点B表示的数,再根据两点间的距离公式可求线段AB的长;(2)分两种情况:点C在线段AB上,点C在射线AB上,进行讨论即可求解;(3)分0<t≤6、6<x≤9和9<t≤30三种情况考虑,根据两点间的距离公式结合PQ=4即可得出关于t的一元一次方程,解之即可得出结论.【详解】(1)∵|a﹣30|+(b+6)2=0,∴a﹣30=0,b+6=0,解得a=30,b=﹣6,AB=30﹣(﹣6)=36.故点A表示的数为30,点B表示的数为﹣6,线段AB的长为36.(2)点C在线段AB上,∵AC=2BC,∴AC=36×212+=24,点C在数轴上表示的数为30﹣24=6;点C在射线AB上,∵AC=2BC,∴AC=36×2=72,点C在数轴上表示的数为30﹣72=﹣42.故点C在数轴上表示的数为6或﹣42;(3)经过t秒后,点P表示的数为t﹣6,点Q表示的数为6(06){3(6)6(636)tt t-<≤--<≤,(i)当0<t≤6时,点Q还在点A处,∴PQ=t﹣6﹣(﹣6)=t=4;(ii)当6<x≤9时,点P在点Q的右侧,∴(t﹣6)﹣[3(t﹣6)﹣6]=4,解得:t=7;(iii)当9<t≤30时,点P在点Q的左侧,∴3(t﹣6)﹣6﹣(t﹣6)=4,解得:t=11.综上所述:当t为4秒、7秒和11秒时,P、Q两点相距4个单位长度.故答案为:30,﹣6,36;6或﹣42.【点睛】本题考查了一元一次方程的应用、数轴、两点间的距离公式、绝对值以及偶次方的非负性,根据两点间的距离公式结合点之间的关系列出一元一次方程是解题的关键.四、压轴题31.(1)230元;(2) 790元或者810元;(3) 400,55%.【解析】【分析】()1可对照表格计算,500元的商品打折后为250元,再享受20元抵扣金额,即可得出实际付款;()2实际付款375元时,应考虑到20037520400≤+<与40037530600≤+<这两种情况的存在,所以分这两种情况讨论;()3根据优惠率的定义表示出四个范围的数据,进行比较即可得结果.【详解】解:()1由题意可得:顾客的实际付款()500500150%20230⎡⎤=-⨯-+=⎣⎦故购买一件标价为500元的商品,顾客的实际付款是230元.()2设商品标价为x 元.20037520400≤+<与40037530600≤+<两种情况都成立,于是分类讨论①抵扣金额为20元时,1x 203752-=,则x 790= ②抵扣金额为30元时,1x 303752-=,则x 810= 故当实际付款375元,那么它的标价为790元或者810元.()3设商品标价为x 元,抵扣金额为b 元,则 优惠率1x b 1b 2100%x 2x+=⨯=+ 为了得到最高优惠率,则在每一范围内x 均取最小值,可以得到2030405040080012001600>>> ∴当商品标价为400元时,享受到最高的优惠率1155%220=+= 故答案为400,55%【点睛】本题考查的是日常生活中的打折销售问题,运用一元一次方程解决问题时要抓住未知量,明确等量关系列出方程是关键.32.(1)④;(2)①15α=︒;②当105α=,125α=时,存在2BOC AOD ∠=∠.【解析】【分析】(1)根据一副三角板中的特殊角,运用角的和与差的计算,只要是15°的倍数的角都可以画出来;(2)①根据已知条件得到∠EOD=180°-∠COD=180°-60°=120°,根据角平分线的定义得到∠EOB=12∠EOD=12×120°=60°,于是得到结论; ②当OA 在OD 的左侧时,当OA 在OD 的右侧时,根据角的和差列方程即可得到结论.【详解】解:(1)∵135°=90°+45°,120°=90°+30°,75°=30°+45°,∴只有25°不能写成90°、60°、45°、30°的和或差,故画不出;故选④;(2)①因为COD 60∠=,所以EOD 180COD 18060120∠∠=-=-=.因为OB 平分EOD ∠, 所以11EOB EOD 1206022∠∠==⨯=. 因为AOB 45∠=,所以αEOB AOB 604515∠∠=-=-=.②当OA 在OD 左侧时,则AOD 120α∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2120α-=-.解得α105=.当OA 在OD 右侧时,则AOD α120∠=-,BOC 135α∠=-.因为BOC 2AOD ∠∠=,所以()135α2α120-=-.解得α125=.综合知,当α105=,α125=时,存在BOC 2AOD ∠∠=.【点睛】本题考查角的计算,角平分线的定义,正确的理解题意并分类讨论是解题关键.33.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .【解析】【分析】(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.【详解】解:(1)设经过ts 后,点P Q 、相遇.依题意,有2330t t +=,解得:6t =.答:经过6秒钟后,点P Q 、相遇;(2)设经过xs ,P Q 、两点相距10cm ,由题意得231030x x ++=或231030x x +-=,解得:4x =或8x =.答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;(3)点P Q 、只能在直线AB 上相遇,则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;或10306y =-,解得 2.4y =,答:点Q 的速度为7/cm s 或2.4/cm s .【点睛】本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.。
黑龙江省大庆市七年级上学期期末数学试题
黑龙江省大庆市七年级上学期期末数学试题姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分) (2019七上·岑溪期中) ﹣2的相反数是()A .B . 2C .D . ﹣22. (2分) (2019九下·柳州模拟) 2019年某市政府工作报告指出,2018年某市经济稳中有进,全年工业生产总值达到5207亿元,稳居全区第一,5207亿用科学记数法表示为()A . 0.5207×1012B . 5.207×1011C . 52.07×1011D . 5.207×10103. (2分) (2019七上·水城月考) 圆柱的侧面展开图是()A . 等腰三角形B . 等腰梯形C . 扇形D . 矩形4. (2分)下列各数中,是负数的是()。
A . -(-3)B . -|-3|C . (-3)2D . |-3|5. (2分)(2019·株洲) 下列各式中,与3x2y3是同类项的是()A .B .C .D .6. (2分) (2019八下·宜兴期中) 下列调查中,适合采用抽样调查的是()A . 对乘坐高铁的乘客进行安检B . 调意本班学装的身高C . 为保证某种新研发的战斗机试飞成功,对其零部件进行检查D . 调查一批英雄牌钢笔的使用寿命7. (2分)要使方程ax=a的解为x=1,则()A . a为任意有理数B . a>0C . a<0D . a≠08. (2分)一个商店把iPad按标价的九折出售,仍可获利20%,若该iPad的进价是2400元,则ipad标价是()A . 3200元B . 3429元C . 2667元D . 3168元9. (2分) (2019七上·句容期末) 下列生活实例中,数学原理解释错误的一项是()A . 从一条河向一个村庄引一条最短的水渠,其中数学原理是:在同一平面内,过一点有且只有一条直线垂直于已知直线B . 两个村庄之间修一条最短的公路,其中的数学原理是:两点之间线段最短C . 把一个木条固定到墙上需要两颗钉子,其中的数学原理是:两点确定一条直线D . 从一个货站向一条高速路修一条最短的公路,其中的数学原理是:连结直线外一点与直线上各点的所有线段中,垂线段最短10. (2分) (2019七上·桂林期末) 在数轴上表示3,-2,1,-4这四个数的点,最左边的点表示的数是()A . 3B . -2C . 1D . -411. (2分) (2019九上·重庆开学考) 如图是一组按照某种规律摆放的图形,第1个图中有3条线段,第二个图中有8条线段,第三个图中有15条线,则第6个图中线段的条数是()A . 35B . 48C . 63D . 6512. (2分)已知a=1,b= -2,则代数式a3b2+1的值是()A . 2B . -2C . 1D . -1二、填空题 (共4题;共4分)13. (1分) (2018七上·无锡期中) 若某次数学考试标准成绩定为85分,规定高于标准记为正,两位学生的成绩分别记作:+9分和-3分,则第一位学生的实际得分为________分。
每日一学:黑龙江省大庆市大庆中学2018-2019学年七年级上学期数学期末考试试卷_压轴题解答
(1) 如果两队从管道两端同时施工,需要多少天完工?
(2) 又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是
由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.
考点: 一元一次方程的实际应用-工程问题;
每日一学:黑龙江省大庆市大庆中学2018-2019学年七年级上学 江 省 大 庆 市 大 庆 中 学 2018-2019学 年 七 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题
~~ 第1题 ~~
(2019大庆.七上期末) 列一元一次方程解应用题: 某管道由甲、乙两工程队单独施工分别需要30天、20天.
答案
~~ 第2题 ~~ (2019惠城.七上期末) 若4x﹣1与7﹣2x的值互为相反数,则x=________. ~~ 第3题 ~~ (2019大庆.七上期末) 如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是( )
A. B. C. D.
黑 龙 江 省 大 庆 市 大 庆 中 学 2018-2019学 年 七 年 级 上 学 期 数 学 期 末 考 试 试 卷 _压 轴 题 解 答
~~ 第1题 ~~
答案:
解析:
~~ 第2题 ~~
答案: 解析:
~~ 第3题 ~~
答案:C
解析:
大庆市七年级上册数学期末试卷(带答案)-百度文库
大庆市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.若34(0)x y y =≠,则( )A .34y 0x +=B .8-6y=0xC .3+4x y y x =+D .43x y = 2.﹣3的相反数是( ) A .13-B .13C .3-D .33.若多项式229x mx ++是完全平方式,则常数m 的值为() A .3B .-3C .±3D .+64.一根绳子弯曲成如图①所示的形状.当用剪刀像图②那样沿虚线a 把绳子剪断时,绳子被剪为5段;当用剪刀像图③那样沿虚线b (b ∥a )把绳子再剪一次时,绳子就被剪为9段.若用剪刀在虚线a 、b 之间把绳子再剪(n ﹣2)次(剪刀的方向与a 平行),这样一共剪n 次时绳子的段数是( )A .4n+1B .4n+2C .4n+3D .4n+5 5.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1B .﹣1C .3D .﹣36.以下调查方式比较合理的是( )A .为了解一沓钞票中有没有假钞,采用抽样调查的方式B .为了解全区七年级学生节约用水的情况,采用抽样调查的方式C .为了解某省中学生爱好足球的情况,采用普查的方式D .为了解某市市民每天丢弃塑料袋数量的情况,采用普查的方式 7.如果a ﹣3b =2,那么2a ﹣6b 的值是( ) A .4B .﹣4C .1D .﹣18.﹣3的相反数是( ) A .13-B .13C .3-D .39.下列式子中,是一元一次方程的是( ) A .3x+1=4x B .x+2>1 C .x 2-9=0 D .2x -3y=010.若OC 是∠AOB 内部的一条射线,则下列式子中,不能表示“OC 是∠AOB 的平分线”的是( ) A .∠AOC=∠BOC B .∠AOB=2∠BOC C .∠AOC=12∠AOB D .∠AOC+∠BOC=∠AOB11.下列调查中,最适合采用全面调查(普查)的是( )A.对广州市某校七(1)班同学的视力情况的调查B.对广州市市民知晓“礼让行人”交通新规情况的调查C.对广州市中学生观看电影《厉害了,我的国》情况的调查D.对广州市中学生每周课外阅读时间情况的调查12.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱13.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.314.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()A.15°B.25°C.35°D.45°15.下列各数中,比73-小的数是()A.3-B.2-C.0D.1-二、填空题16.一个角的余角等于这个角的13,这个角的度数为________.17.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.18.甲乙两个足够大的油桶各装有一定量的油,先把甲桶中的油的一半给乙桶,然后把乙桶中的油倒出18给甲桶,若最终两个油桶装有的油体积相等,则原来甲桶中的油是乙桶中油的______倍。
大庆市七年级上册数学期末试题及答案解答
大庆市七年级上册数学期末试题及答案解答一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( ) A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.直线3l 与12,l l 相交得如图所示的5个角,其中互为对顶角的是( )A .3∠和5∠B .3∠和4∠C .1∠和5∠D .1∠和4∠3.一项工程,甲独做需10天完成,乙单独做需15天完成,两人合作4天后,剩下的部分由乙独做全部完成,设乙独做x 天,由题意得方程( ) A .410 +415x -=1 B .410 +415x +=1 C .410x + +415=1 D .410x + +15x=1 4.A 、B 两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A 地出发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米/小时,则所列方程是( ) A .1601603045x x-= B .1601601452x x -= C .1601601542x x -= D .1601603045x x+= 5.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( ) A .a >ab >ab 2 B .ab >ab 2>a C .ab >a >ab 2 D .ab <a <ab 2 6.已知关于x 的方程ax ﹣2=x 的解为x =﹣1,则a 的值为( ) A .1 B .﹣1C .3D .﹣37.已知点、、A B C 在一条直线上,线段5AB cm =,3BC cm =,那么线段AC 的长为( ) A .8cmB .2cmC .8cm 或2cmD .以上答案不对8.按如图所示图形中的虚线折叠可以围成一个棱柱的是( )A .B .C .D .9.下列各数中,有理数是( )A B .πC .3.14D10.若a<b,则下列式子一定成立的是( ) A .a+c>b+cB .a-c<b-cC .ac<bcD .a b c c< 11.如果韩江的水位升高0.6m 时水位变化记作0.6m +,那么水位下降0.8m 时水位变化记作( ) A .0mB .0.8mC .0.8m -D .0.5m -12.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( ) A .180元B .200元C .225元D .259.2元二、填空题13.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____. 14.已知a ,m ,n 均为有理数,且满足5,3a m n a -=-=,那么m n -的值为 ______________.15. 已知线段AB =8 cm ,在直线AB 上画线段BC ,使得BC =6 cm ,则线段AC =________cm.16.写出一个比4大的无理数:____________. 17.﹣213的倒数为_____,﹣213的相反数是_____. 18.在日常生活中如取款、上网等都需要密码,有一种用“因式分解法”产生的密码,方便记忆,原理是对于多项44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =时,则各个因式的值是:()18x y +=,()0x y -=,()22162x y +=,于是就可以把“180162”作为一个六位数的密码,对于多项式324x xy -,取36x =,16y =时,用上述方法产生的密码是________ (写出一个即可). 19.请先阅读,再计算: 因为:111122=-⨯,1112323=-⨯,1113434=-⨯,…,111910910=-⨯, 所以:1111122334910++++⨯⨯⨯⨯ 1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭11111111911223349101010=-+-+-++-=-= 则111110010110110210210320192020++++=⨯⨯⨯⨯_________.20.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________. 21.五边形从某一个顶点出发可以引_____条对角线.22.如图,将△ABE 向右平移3cm 得到△DCF,若BE=8cm ,则CE=______cm.23.若关于x 的方程2x +a ﹣4=0的解是x =﹣2,则a =____. 24.观察“田”字中各数之间的关系:则c 的值为____________________.三、压轴题25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、2Q 、3Q 的位置如图2所示.解决如下问题:(1)如果4t =,那么线段13Q Q =______;(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.26.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”. 请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______;(3)若点E在数轴上(不与A、B重合),满足BE=12AE,且此时点E为点A、B的“n节点”,求n的值.27.已知数轴上有A、B、C三个点对应的数分别是a、b、c,且满足|a+24|+|b+10|+(c-10)2=0;动点P从A出发,以每秒1个单位的速度向终点C移动,设移动时间为t秒.(1)求a、b、c的值;(2)若点P到A点距离是到B点距离的2倍,求点P的对应的数;(3)当点P运动到B点时,点Q从A点出发,以每秒2个单位的速度向C点运动,Q点到达C点后.再立即以同样的速度返回,运动到终点A,在点Q开始运动后第几秒时,P、Q两点之间的距离为8?请说明理由.28.如图,已知数轴上点A表示的数为6,B是数轴上在A左侧的一点,且A,B两点间的距离为10.动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t(t >0)秒,数轴上点B表示的数是,点P表示的数是(用含t的代数式表示);(2)若点P、Q同时出发,求:①当点P运动多少秒时,点P与点Q相遇?②当点P运动多少秒时,点P与点Q间的距离为8个单位长度?29.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.(1)若点C是线段AB的中点,求线段CO的长.(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,①当x=__________秒时,PQ=1cm;②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?30.点A在数轴上对应的数为﹣3,点B对应的数为2.(1)如图1点C在数轴上对应的数为x,且x是方程2x+1=12x﹣5的解,在数轴上是否存在点P使PA+PB=12BC+AB?若存在,求出点P对应的数;若不存在,说明理由;(2)如图2,若P点是B点右侧一点,PA的中点为M,N为PB的三等分点且靠近于P点,当P在B的右侧运动时,有两个结论:①PM﹣34BN的值不变;②13PM24BN的值不变,其中只有一个结论正确,请判断正确的结论,并求出其值31.问题一:如图1,已知A,C两点之间的距离为16 cm,甲,乙两点分别从相距3cm的A,B两点同时出发到C点,若甲的速度为8 cm/s,乙的速度为6 cm/s,设乙运动时间为x(s),甲乙两点之间距离为y(cm).(1)当甲追上乙时,x = .(2)请用含x的代数式表示y.当甲追上乙前,y= ;当甲追上乙后,甲到达C之前,y= ;当甲到达C之后,乙到达C之前,y= .问题二:如图2,若将上述线段AC弯曲后视作钟表外围的一部分,线段AB正好对应钟表上的弧AB(1小时的间隔),易知∠AOB=30°.(1)分针OD指向圆周上的点的速度为每分钟转动 cm;时针OE指向圆周上的点的速度为每分钟转动 cm.(2)若从4:00起计时,求几分钟后分针与时针第一次重合.32.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D 【解析】 【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元. 【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元. 故选D . 【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.A解析:A 【解析】 【分析】两条直线相交后所得的有公共顶点,且两边互为反向延长线的两个角互为对顶角,据此逐一判断即可. 【详解】A.3∠和5∠只有一个公共顶点,且两边互为反向延长线,是对顶角,符合题意,B.3∠和4∠两边不是互为反向延长线,不是对顶角,不符合题意,C.1∠和5∠没有公共顶点,不是对顶角,不符合题意,D.1∠和4∠没有公共顶点,不是对顶角,不符合题意, 故选:A. 【点睛】本题考查对顶角,两条直线相交后所得的有公共顶点且两边互为反向延长线的两个角叫做对顶角;熟练掌握对顶角的定义是解题关键.3.B解析:B 【解析】 【分析】直接利用总工作量为1,分别表示出两人完成的工作量进而得出方程即可. 【详解】设乙独做x 天,由题意得方程:410+415x +=1. 故选B .【点睛】本题主要考查了由实际问题抽象出一元一次方程,正确表示出两人完成的工作量是解题的关键.4.B解析:B 【解析】 【分析】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,根据两车同时从A 地出发到B 地,乙车比甲车早到30分钟,列出方程即可得. 【详解】甲车平均速度为4x 千米/小时,则乙车平均速度为5x 千米/小时,由题意得1604x -1605x =12, 故选B. 【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.5.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可. 解:∵a <0,b <0, ∴ab >0,又∵-1<b <0,ab >0, ∴ab 2<0. ∵-1<b <0, ∴0<b 2<1, ∴ab 2>a , ∴a <ab 2<ab . 故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.6.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.7.C解析:C 【解析】 【分析】根据题意分两种情况讨论:①当点C 在线段AB 上时,②当点C 在线段AB 的延长线上时,分别根据线段的和差求出AC 的长度即可. 【详解】解:当点C 在线段AB 上时,如图,∵AC=AB−BC , 又∵AB=5,BC=3, ∴AC=5−3=2;②当点C 在线段AB 的延长线上时,如图,∵AC=AB+BC , 又∵AB=5,BC=3, ∴AC=5+3=8. 综上可得:AC=2或8.故选C.【点睛】本题考查两点间的距离,解答本题的关键是明确题意,利用分类讨论的数学思想解答.8.C解析:C【解析】【分析】利用棱柱的展开图中两底面的位置对A、D进行判断;根据侧面的个数与底面多边形的边数相同对B、C进行判断.【详解】棱柱的两个底面展开后在侧面展开图相对的两边上,所以A、D选项错误;当底面为三角形时,则棱柱有三个侧面,所以B选项错误,C选项正确.故选:C.【点睛】本题考查了棱柱的展开图:通过结合立体图形与平面图形的相互转化,去理解和掌握几何体的展开图,要注意多从实物出发,然后再从给定的图形中辨认它们能否折叠成给定的立体图形.9.C解析:C【解析】【分析】根据有理数及无理数的概念逐一进行分析即可得.【详解】B. 是无理数,故不符合题意;C. 3.14是有理数,故符合题意;D.故选C.【点睛】本题考查了有理数与无理数,熟练掌握有理数与无理数的概念是解题的关键.10.B解析:B【解析】【分析】根据不等式的基本性质逐一进行分析判断即可.【详解】A.由a<b,两边同时加上c,可得 a+c<b+c,故A选项错误,不符合题意;B. 由a<b,两边同时减去c,得a-c<b-c,故B选项正确,符合题意;C. 由a<b,当c>0时,ac<bc,当c<0时,ac<bc,当c=0时,ac=bc,故C选项错误,不符合题意;D.由 a<b,当a>0,c≠0时,a bc c<,当a<0时,a bc c>,故D选项错误,故选B.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键.11.C解析:C【解析】【分析】首先根据题意,明确“正”和“负”所表示的意义,再根据题意作答即可.【详解】解∵水位升高0.6m时水位变化记作0.6m+,∴水位下降0.8m时水位变化记作0.8m-,故选:C.【点睛】本题考查正数和负数,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.12.A解析:A【解析】【分析】设这种商品每件进价为x元,根据题中的等量关系列方程求解.【详解】设这种商品每件进价为x元,则根据题意可列方程270×0.8-x=0.2x,解得x=180.故选A.【点睛】本题主要考查一元一次方程的应用,解题的关键是确定未知数,根据题中的等量关系列出正确的方程.二、填空题13.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.14.2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n解析:2或8.【解析】【分析】根据绝对值的性质去掉绝对值符号,分类讨论解题即可【详解】∵|a-m|=5,|n-a|=3∴a−m=5或者a−m=-5;n−a=3或者n−a=-3当a−m=5,n−a=3时,|m-n|=8;当a−m=5,n−a=-3时,|m-n|=2;当a−m=-5,n−a=3时,|m-n|=2;当a−m=-5,n−a=-3时,|m-n|=8故本题答案应为:2或8【点睛】绝对值的性质是本题的考点,熟练掌握其性质、分类讨论是解题的关键15.2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8解析:2或14【解析】【分析】由题意分两种情况讨论:点C在线段AB上,点C在线段AB的延长线上,根据线段的和差,可得答案.【详解】解:当点C在线段AB上时,由线段的和差,得AC=AB-BC=8-6=2cm;当点C在线段AB的延长线上时,由线段的和差,得AC=AB+BC=8+6=14cm;故答案为2或14.点睛:本题考查了两点间的距离,分类讨论是解题关键,不能遗漏.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.﹣ 2【解析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣2的倒数为﹣,﹣2的相反数是2.【点睛】本题考查的是相反数和倒数,解析:﹣37213【解析】【分析】根据乘积是1的两数互为倒数;只有符号不同的两个数叫做互为相反数可得答案.【详解】﹣213的倒数为﹣37,﹣213的相反数是213.【点睛】本题考查的是相反数和倒数,熟练掌握两者的性质是解题的关键.18.36684或36468或68364或68436或43668或46836等(写出一个即可) 【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】=x(解析:36684或36468或68364或68436或43668或46836等(写出一个即可)【解析】【分析】首先对多项式进行因式分解,然后把字母的值代入求得各个因式,从而写出密码【详解】324x xy=x(x+2y)(x-2y).当x=36,y=16时,x+2y=36+32=68x-2y=36-32=4.则密码是36684或36468或68364或68436或43668或46836故答案为36684或36468或68364或68436或43668或46836【点睛】此题考查因式分解的应用,解题关键在于把字母的值代入19.【解析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】解:故答案为【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的 解析:242525【解析】【分析】根据给出的例子找出规律,然后依据规律列出式子解决即可.【详解】 解:111110010110110210210320192020++++⨯⨯⨯⨯ 1111111110010110110210210320192020⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 1111111110010110110210210320192020-+-+-++-= 9610100242525== 故答案为242525【点睛】本题考查了规律计算,解决本题的关键是正确理解题意,能够根据题意找到式子间存在的规律,利用规律将所求算式进行化简计算. 20.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【解析】【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键.21.2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记解析:2【解析】【分析】从n边形的一个顶点出发有(n−3)条对角线,代入求出即可.【详解】解:从五边形的一个顶点出发有5﹣3=2条对角线,故答案为2.【点睛】本题考查了多边形的对角线,熟记知识点(从n边形的一个顶点出发有(n−3)条对角线)是解此题的关键.22.5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案. 【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴C解析:5【解析】【分析】根据平移的性质可得BC=3cm,继而由BE=8cm,CE=BE-BC即可求得答案.【详解】∵△ABE向右平移3cm得到△DCF,∴BC=3cm,∵BE=8cm,∴CE=BE-BC=8-3=5cm,故答案为:5.【点睛】本题考查了平移的性质,熟练掌握对应点间的距离等于平移距离的性质是解题的关键.23.8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一解析:8【解析】【分析】把x=﹣2代入方程2x+a﹣4=0求解即可.【详解】把x=﹣2代入方程2x+a﹣4=0,得2×(﹣2)+a﹣4=0,解得:a=8.故答案为:8.【点睛】本题考查了一元一次方程的解,解答本题的关键是把x=﹣2代入方程2x+a﹣4=0求解.24.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a =28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b =15+a =271,右上角的数字正好是右下角数字减1,所以c =b -1=270.故答案为:270.【点睛】本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
大庆市初中统考2019年七年级上学期数学期末教学质量检测试题(模拟卷一)
大庆市初中统考2019年七年级上学期数学期末教学质量检测试题(模拟卷一)一、选择题1.如图,C、D是线段AB上两点,若BC=3cm,BD=5cm,且D是AC的中点,则AC的长为()A.2cm B.4cm C.8cm D.13cm2.甲乙两人各用一张正方形的纸片ABCD折出一个45°的角(如图),两人做法如下:甲:将纸片沿对角线AC折叠,使B点落在D点上,则∠1=45°.乙:将纸片沿AM、AN折叠,分别使B、D落在对角线AC上的一点P,则∠MAN=45°.对于两人的做法,下列判断正确的是()A.甲乙都对B.甲对乙错C.甲错乙对D.甲乙都错3.如图,是一个正方体纸盒的展开图,若在其中的三个正方形A.B.C分别填上适当的数,使它们折成正方体后相对的面上的两个数互为相反数,则填入正方形A.B.C的三个数依次为()A.1,﹣2,0B.0,﹣2,1C.﹣2,0,1D.﹣2,1,04.方程2x-3y=7,用含x的代数式表示y为()A.y=13(7-2x) B.y=13(2x-7) C.x=12(7+3y) D.x=12(7-3y)5.下列每组单项式中是同类项的是()A.2xy与﹣13yx B.3x2y与﹣2xy2C.12x-与﹣2xy D.xy与yz6.下列计算正确的是()A.a5+a2=a7B.2a2﹣a2=2 C.a3•a2=a6D.(a2)3=a6 7.下列方程中,以x=-1为解的方程是()A.13222xx+=- B.7(x-1)=0C.4x-7=5x+7D.13x=-38.下列代数式中:①3x2-1;②xyz;③12b;④32x y+,单项式的是()A.①B.②C.③D.④9.下列计算中正确的是()A.-3-3=0B.(-2)×(-5)=-10C.5÷15=1 D.-2+2=010.有理数a 、b 在数轴上的对应点如图所示,则( )A.0a b +=B.0a b +>C.0a b ->D.0a b -< 11.下列四个数23,0,-7,()21-中,负数是( ) A.23B.0C.-7D.()2 1- 12.将方程去分母,得( )A.B.C.D.二、填空题 13.如图是一个正方体的表面展开图,若正方体中相对的面上的数互为相反数,则2x ﹣y 的值为_____.14.如果和互补,且,下列表达式:①;②;③;④中,能表示的余角的式子是__________.(请把所有正确的序号填在横线上) 15.跑得快的马每天走240里,跑得慢的马每天走150里,若慢马先走12天,则快马经过____天可以追上慢马. 16.若11x y =⎧⎨=-⎩是方程2kx y -=的一组解,则k =__________. 17.若单项式6256n x y -与4x m y 4的和是一个单项式,则m ﹣n =_____. 18.去括号合并:(3)3(3)a b a b --+=_________.19.若|a+3|=0,则a=______.20.比较大小: -2__-3 (用”<, >或=”连接).三、解答题21.如果两个角的差的绝对值等于90°,就称这两个角互为垂角,例如:∠1=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1和∠2互为垂角,(本题中所有角都是指大于0°且小于180°的角)(1)如图1所示,O 为直线AB 上一点,OC ⊥AB ,OE ⊥OD ,图中哪些角互为垂角?(写出所有情况)(2)如图2所示,O 为直线AB 上一点,∠AOC =60°,将∠AOC 绕点O 顺时针旋转n°(0°<n <120),OA 旋转得到OA′,OC 旋转得到OC′,当n 为何值时,∠AOC′与∠BOA′互为垂角?22.已知数轴上点A 、点B 对应的数分别为4-、6.()1A 、B 两点的距离是______;()2当AB 2BC =时,求出数轴上点C 表示的有理数;()3一元一次方解应用题:点D 以每秒4个单位长度的速度从点B 出发沿数轴向左运动,点E 以每秒3个单位长度的速度从点A 出发沿数轴向右运动,点F 从原点出发沿数轴运动,点D 、点E 、点F 同时出发,t 秒后点D 、点E 相距1个单位长度,此时点D 、点F 重合,求出点F 的速度及方向.23.我们已经学习了角平分线的概念,那么你会用它解决有关问题吗?(1)如图①所示,将长方形笔记本活页纸片的一角折过去,使角的顶点A 落在A'处,BC 为折痕.若∠ACB=35°,求∠A'CD 的度数;(2)在(1)条件下,如果将它的另一个角也斜折过去,并使CD 边与CA'重合,折痕为CE,如图②所示,求∠1和∠BCE 的度数;(3)如果在图②中改变∠ACB 的大小,则CA'的位置也随之改变,那么(2)中∠BCE 的大小会不会改变?请说明理由.① ②24.有这样一道题:“先化简,再求值:222(324)2()x x x x x -+---,其中100x =”甲同学做题时把100x =错抄成了10x =,乙同学没抄错,但他们做出来的结果却一样,你能说明这是为什么吗?并求出这个结果.25.先化简,再求值4xy ﹣(2x 2+5xy )+2(x 2+y 2),其中x =﹣2,y =12 26.计算:(1)4+(﹣2)2×2﹣(﹣36)÷4(2)﹣72+2×(﹣3)2+(﹣6)÷(﹣13)2 27.计算 ①146842213⎛⎫-⨯-÷-+ ⎪⎝⎭ ②42211(2)(2)5()0.25326-÷-+⨯-- 28.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少3尺.这根绳子有多长?环绕大树一周要多少尺?【参考答案】***一、选择题二、填空题13.-314.①②④15.2016.117.418.-10 SKIPIF 1 < 0解析:-10b19.﹣3.20.>三、解答题21.(1)互为垂角的角有4对:∠EOB 与∠DOB ,∠EOB 与∠EOC ,∠AOD 与∠COD ,∠AOD 与∠AOE ;(2)当n =15°或n =105°,∠AOC′与∠BOA′互为垂角.22.(1) A 、B 两点的距离是 10;(2) 数轴上点C 表示的有理数是1或11;(3) 点F 的速度是445个单位长度/秒23.(1) 110°;(2) 90°;(3)∠BCE 的大小不会改变,90°.24.说明见解析.25.12. 26.(1)21;(2)﹣85. 27.①6 ; ②1312 28.这根绳子有25尺长,环绕大树一周要7尺.。
黑龙江省大庆市2019年七年级上学期数学期末学业水平测试试题(模拟卷四)
黑龙江省大庆市2019年七年级上学期数学期末学业水平测试试题(模拟卷四)一、选择题1.如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.如果∠AOB =50°,∠COE =60°,则下列结论错误的是( )A.∠AOE =110°B.∠BOD =80°C.∠BOC =50°D.∠DOE =30° 2.下列说法中,正确的是( )A.两条射线组成的图形叫做角B.直线L 经过点A ,那么点A 在直线L 上C.把一个角分成两个角的射线叫角的平分线D.若AB =BC ,则点B 是线段AC 的中点3.已知某种商品的原出售价为204元,即使促销降价20%仍有20%的利润,则该商品的进货价为( )A .136元B .135元C .134元D .133元4.运动会上,七年级(1)班的小王、小张、小李三人一起进行百米赛跑(假定三人均为匀速直线运动).如果当小李到达终点时,小张距终点还有4米,小王距终点还有12米.那么当小张到达终点时,小王距终点还有几米?A.8米B.183米C.6米D.293 5.单项式253x y π-的次数是( )A.6B.7C.5D.2 6.若x=-3是方程2(x-m )=6的解,则m 的值为( )A.6B.6-C.12D.12- 7.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m ,宽为n )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A.4nB.4mC.()2m n +D.()4m n -8.把正方形按如图所示的规律拼图案,其中第①个图案中有1个正方形,第②个图案中有5个正方形,第③个图案中有9个正方形…按此规律排列下去,则第⑧个图案中正方形的个数为( )A .25B .29C .33D .379.在下列数:+3,+(﹣2.1)、﹣12、π、0、﹣|﹣9|中,正数有( ) A .1个 B .2个 C .3个 D .4个10.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则50!48! 的值为( ) A.5048 B.49! C.2450 D.2!11.-2017的相反数是( )A.-2017B.2017C.12017D.12017- 12.在海上,灯塔位于一艘船的北偏东40°方向,那么这艘船位于这个灯塔的( ).A .南偏西50° 方向B .南偏西40°方向C .北偏东50°方向D .北偏东40°方向二、填空题13.已知点A 在O 的北偏西60°方向,点B 在点O 的南偏东40°方向,则∠AOB 的度数为_____14.将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠COB =_____度.15.若关于3x =-是关于x 的方程1(0)mx n m -=≠的解,则关于x 的方程(21)10(0)m x n m +--=≠的解为__________.16.我们见过的足球大多是由许多小黑白块的牛皮缝合而成的.初一年级的李强和王开两位同学,在踢足球的休息之余研究足球的黑白块的块数.结果发现黑块均呈五边形,白块呈六边形.由于球体上黑白相间,李强好不容易数清了黑块共12块,王开数白块时不是重复,就是遗漏,无法数清白块的块数,请你利用数学知识帮助他们求出白块的块数为_____块.17.如图,用相同的小正方形按照某种规律进行摆放.根据图中小正方形的排列规律,猜想第n 个图中小正方形的个数为___________(用含n 的式子表示)18.写出3x 3y 2的一个同类项_____.19.计算(a+3a+5a+…+2009a)﹣(2a+4a+6a+…+2010a)=________.20.1﹣|﹣3|=________.三、解答题21.如图所示,点C、D为线段AB的三等分点,点E为线段AC的中点,若ED=9,求线段AB的长度.22.某中学库存若干套桌椅,准备修理后支援贫困山区学校。
黑龙江省大庆2018-2019学年七年级上期末数学试卷(含答案解析)
2017-2018学年黑龙江省大庆七年级(上)期末数学试卷一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣abc的次数是1D.多项式9m2﹣5mn﹣17的次数是42.将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1B.3x+2﹣4x+1C.3x+2﹣4x﹣2D.3x+2﹣4x+23.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣124.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3B.6C.8D.95.一个数加上﹣12等于﹣5,则这个数是()A.17B.7C.﹣17D.﹣76.立方是它本身的数是()A.1B.0C.﹣1D.1,﹣1,07.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×10128.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是℃.14.绝对值大于1而小于5的整数的和是.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为.16.已知A=2x2﹣1,B=3﹣2x2,则B﹣2A=.17.如果单项式x2y n+2与单项式ab7的次数相等,则n的值为.18.若4x﹣1与7﹣2x的值互为相反数,则x=.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)3x2﹣〔7x﹣(4x﹣3)﹣2x2〕21.(10分)解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).22.(12分)先化简再求值(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.2017-2018学年黑龙江省大庆七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣abc的次数是1D.多项式9m2﹣5mn﹣17的次数是4【分析】根据单项式,单项式的系数和次数以及多项式的次数的定义作答.【解答】解:A、a是单项式是正确的;B、2πr2的系数是2π,故选项错误;C、﹣abc的次数是3,故选项错误;D、多项式9m2﹣5mn﹣17的次数是2,故选项错误.故选:A.【点评】此题考查了单项式以及多项式,数字与字母的积叫做单项式,单独的一个数字或字母也叫单项式,单项式不含加减运算.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.确定多项式的次数,就是确定多项式中次数最高的项的次数.2.将(3x+2)﹣2(2x﹣1)去括号正确的是()A.3x+2﹣2x+1B.3x+2﹣4x+1C.3x+2﹣4x﹣2D.3x+2﹣4x+2【分析】根据去括号法则解答.【解答】解:(3x+2)﹣2(2x﹣1)=3x+2﹣4x+2.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.3.若x=﹣3是方程2(x﹣m)=6的解,则m的值为()A.6B.﹣6C.12D.﹣12【分析】把x=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把x=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.【点评】本题考查了方程的解的定理,理解定义是关键.4.单项式x m﹣1y3与4xy n的和是单项式,则n m的值是()A.3B.6C.8D.9【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵x m﹣1y3与4xy n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选:D.【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m、n的值.5.一个数加上﹣12等于﹣5,则这个数是()A.17B.7C.﹣17D.﹣7【分析】本题是有理数的运算与方程的结合试题,根据题意列出算式,然后根据算法计算即可.【解答】解:设这个数为x,由题意可知x+(﹣12)=﹣5,解得x=7.所以这个数是7.故选:B.【点评】此类文字题只要审清题意正确列出算式,然后利用有理数的运算法则可求.6.立方是它本身的数是()A.1B.0C.﹣1D.1,﹣1,0【分析】根据立方的意义,可得答案.【解答】解:立方是它本身的数是﹣1,0,1,故选:D.【点评】本题考查了乘方,利用乘方的意义是解题关键.7.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将403,200,000,000用科学记数法可表示为4.032×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.【点评】本题考查了根据精确度取近似数,精确度可以是“十分位(0.1)、百分位(0.01)、千分位(0.0010”等,按四舍五入取近似数,只看精确度的后一位数.9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元【分析】分别算出盈利衣服的成本和亏损衣服的成本,让两个售价相加减去两个成本的和,若得到是正数,即为盈利,反之亏本.【解答】解:设赢利60%的衣服的成本为x元,则x×(1+60%)=80,解得x=50,设亏损20%的衣服的成本为y元,y×(1﹣20%)=80,解得y=100元,∴总成本为100+50=150元,∴2×80﹣150=10,∴这次买卖中他是盈利10元.故选:B.【点评】此题考查一元一次方程在实际问题中的应用,得到两件衣服的成本是解决本题的突破点.11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后有个侧面重叠,而且上边没有面,不能折成正方体;B、折叠后缺少上底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一下面,所以也不能折叠成一个正方体.故选:C.【点评】本题考查了展开图折叠成几何体,注意正方体的展开图中每个面都有对面.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.【分析】利用从正面看到的图叫做主视图,根据图中正方体摆放的位置判定则可.【解答】解:从正面看,主视图有2列,正方体的数量分别是2、1.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是3℃.【分析】上升7℃即是比原来的温度高了7℃,所以把原来的温度加上7℃即可得出结论.【解答】解:∵温度从﹣4℃上升7℃,∴﹣4+7=3℃.故答案为3.【点评】本题考查了正负号的意义:上升为正,下降为负;在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.绝对值大于1而小于5的整数的和是0.【分析】找出绝对值大于1而小于5的整数,求出之和即可.【解答】解:绝对值大于1而小于5的整数有﹣2,﹣3,﹣4,2,3,4,之和为0.故答案为:0.【点评】此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为﹣1.【分析】利用倒数及相反数的定义求出a+b与cd的值,代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,则原式=0+1﹣2=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.16.已知A=2x2﹣1,B=3﹣2x2,则B﹣2A=﹣6x2+5.【分析】将A和B的式子代入可得B﹣2A=3﹣2x2﹣2(2x2﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣2x2﹣2(2x2﹣1),=3﹣2x2﹣4x2+2=﹣6x2+5.故答案为﹣6x2+5.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.如果单项式x2y n+2与单项式ab7的次数相等,则n的值为4.【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式x2y n+2与单项式ab7的次数相等,∴2+n+2=1+7,解得n=4.故答案为:4.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.18.若4x﹣1与7﹣2x的值互为相反数,则x=﹣3.【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:4x﹣1+7﹣2x=0,移项合并得:2x=﹣6,解得:x=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)【分析】(1)减法统一成加法,再根据加法结合律已经结合律即可解决问题;(2)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+2+7﹣2.75=﹣3+7+2﹣2.75=4+0=4(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)解:原式=﹣9﹣8﹣16÷(﹣8)=﹣9﹣8+2=﹣17+2=﹣15【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)3x2﹣〔7x﹣(4x﹣3)﹣2x2〕【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=(5a2﹣8a2)+(2a+32a)﹣(1+12)=﹣3a2+34a ﹣13;(2)原式=3x2﹣(7x﹣4x+3﹣2x2)=3x2﹣7x+4x﹣3+2x2=(3x2+2x2)﹣(7x﹣4x)﹣3=5x2﹣3x ﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(10分)解方程:(1)4﹣4(x﹣3)=2(9﹣x)(2).【分析】(1)依据去括号、移项、合并同类项、系数化为1等步骤求解即可;(2)依据去分母、去括号、移项、合并同类项、系数化为1等步骤求解即可.【解答】解:(1)4﹣4x+12=18﹣2x,﹣4x+2x=18﹣4﹣12,﹣2x=2,x=﹣1.(2)2(2x+1)﹣(5x﹣1)=6,4x+2﹣5x+1=6,4x﹣5x=6﹣2﹣1﹣x=3,x=﹣3.【点评】本题主要考查的是解一元一次方程,熟练掌握解一元一次方程的步骤和方法是解题的关键.22.(12分)先化简再求值(1)3(x2﹣2x﹣1)﹣4(3x﹣2)+2(x﹣1);其中x=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.【分析】(1)去括号、合并同类项后即可化简原式,再将x、y的值代入计算.(2)去括号、合并同类项后即可化简原式,再将x、y的值代入计算.【解答】解:(1)原式=3x2﹣6x﹣3﹣12x+8+2x﹣2=3x2﹣(6x+12x﹣2x)+(﹣3+8﹣2)=3x2﹣16x+3,当x=﹣3时原式=3×(﹣3)2﹣16×(﹣3)+3=78;(2)原式=2a2﹣(ab﹣2a2+8ab)﹣ab=2a2﹣ab+2a2﹣8ab﹣ab=(2a2+2a2)﹣(ab+8ab+ab)=4a2﹣9ab当a=1,b=时原式=4×12﹣9×1×=1【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.【分析】(1)可设这项工程的工程总量为1,则甲乙的工作效率为:、,则甲乙合作的效率为:+,依等量关系,可求出两队同时施工所需的天数;(2)依施工所需费用=每天的施工费×施工所需天数为等量关系列出算式分别计算所需费用,求出施工费用最少的那个方案.【解答】解:(1)设需要x天完工,由题意得x+x=1,解得:x=12,答:如果两队从管道两端同时施工,需要12天完工;(2)由乙队单独施工花钱少,理由:甲单独施工需付费:200×30=6000(元),乙单独施工需付费:280×20=5600(元),两队同时施工需付费:(200+280)×12=5760(元),因为5600<5760<6000,所以由乙队单独施工花钱少.【点评】本题主要考查的一元一次方程,关键在于根据题意找出等量关系,列出方程求解.。
黑龙江省大庆市2019年七年级上学期数学期末学业水平测试试题(模拟卷三)
黑龙江省大庆市2019年七年级上学期数学期末学业水平测试试题(模拟卷三)一、选择题1.下列几何体中,其面既有平面又有曲面的有()A.1个B.2个C.3个D.4个2.如图所示的四条射线中,表示南偏西60°的是()A.射线OAB.射线OBC.射线OCD.射线OD3.如图,一副三角尺按不同的位置摆放,摆放位置中∠α=∠β的图形有()A.1个B.2个C.3个D.4个4.下列方程的变形中,正确的是()A.由3+x=5,得x=5+3B.由3x﹣(1+x)=0,得3x﹣1﹣x=0C.由12y=,得y=2D.由7x=﹣4,得74 x=-5.在如图所示的2018年1月份的月历表中,任意框出表中竖列上三个相邻的数,这三个数的和可能是( )A.23 B.51 C.65 D.756.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了()天.A.10B.20C.30D.257.已知﹣25a 2m b 和7b 3﹣n a 4是同类项,则m+n 的值是( )A .2B .3C .4D .68.下列各式子中与 2m 2 n 是同类项的是( )A .-2mnB .3m 2nC .3m 2n 2D .-mn 29.下列说法错误的是( )A .5y 4是四次单项式B .5是单项式C .243a b 的系数是13D .3a 2+2a 2b ﹣4b 2是二次三项式10.若∣a ∣=2,则a 的值是( )A.−2B.2C.12D.±211.若正整数x 、y 满足(25)(25)25x y --=,则x y +等于A.18或10B.18C.10D.2612.如图,数轴上每个刻度为1个单位长,则 A ,B 分别对应数 a ,b ,且b-2a=7,那么数轴上原点的位置在( )A.A 点B.B 点C.C 点D.D 点二、填空题13.如图,直线SN 与直线WE 相交于点O ,射线ON 表示正北方向,射线OE 表示正东方向,已知射线OB 的方向是南偏东60,射线OC 在NOE ∠内,且NOC ∠与BOS ∠互余,射线OA 平分BON ∠,图中与COA ∠互余的角是______.14.如图,已知∠MOQ 是直角,∠QON 是锐角,OR 平分∠QON ,OP 平分∠MON ,则∠POR 的度数为_____.15.若方程(a ﹣3)x |a|﹣2﹣7=0是一个一元一次方程,则a 等于_____.16.在长方形ABCD 中,BC=17cm ,现将5个相同的小长方形(阴影部分)按照如图方式放置其中,则小长方形的宽AE 的长为______cm .17.有理数a 、b 、c 在数轴上的位置如图,则a c c b a b ++--+=______.18.如图是一个圆,一只电子跳蚤在标有五个数字的点上跳跃,若它停在奇数点上,则下一次沿顺时针方向跳两个点;若停在偶数点上,则下一次沿逆时针方向跳一个点,若跳蚤从2这点开始跳,则经2017次跳后它停在数____对应的点上.19.若|a+3|=0,则a=______.20.计算:(﹣3)×(﹣4)=________ . 三、解答题21.如图,直线AB ,CD ,EF 相交于点O ,∠AOE :∠AOD=1:3,∠COB :∠DOF=3:4,求∠DOE 的度数.22.一件工作,甲单独完成需5小时,乙单独完成需3小时,先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需多少小时完成任务?23.为实施“学讲计划”,某班学生计划分成若干个学习小组,若每组5人,则多出4人,若每组6人,则有一组只有2人,该班共有多少名学生?24.如图,已知O 为直线AD 上一点,∠AOC 与∠AOB 互补,OM 、ON 分别是∠AOC 、∠AOB 的平分线,∠MON =56°.⑴ ∠COD 与∠AOB 相等吗?请说明理由; ⑵ 求∠BOC 的度数; ⑶ 求∠AOB 与∠AOC 的度数.25.观察下列等式,探究其中规律. 第1个等式:311=;第2个等式:3312(12)(24)9+=+++=第3个等式:333123(123)(246)(369)36++=++++++++= ……(1)第4个等式:33331234+++= (直接填写结果); (2)根据以上规律请计算:3333331234510++++++;(3)通过以上规律请猜想写出:333331234a +++++= (直接填写结果).26.一辆出租车从A 地出发,在一条东西走向的街道上往返,每次行驶的路程(记向东为正)记录如下(x>6且x <14,单位:km):(2)求经过连续4次行驶后,这辆出租车所在的位置(结果可用x 表示); (3)这辆出租车一共行驶了多少路程(结果用x 表示)?27.已知|5﹣2x|+(5﹣y )2=0,x ,y 分别是方程ax ﹣1=0和2y ﹣b+1=0的解,求代数式(5a ﹣4)2011(b﹣1102)2012的值. 28.计算题:(1)(45)(9)(3)-÷-⨯- ; (2)334124(2)4-⨯+-÷- .【参考答案】*** 一、选择题13.SKIPIF 1 < 0 、SKIPIF 1 < 0、 SKIPIF 1 < 0、SKIPIF 1 < 0解析:BOC ∠、NOA ∠、AOB ∠、COE ∠ 14.45° 15.-3 16.3 17. 18.1 19.﹣3. 20.12 三、解答题 21.∠DOE=90°.22.先由甲,乙两人合做1小时,再由乙单独完成剩余任务,共需125小时完成任务.23.4424.(1)∠COD=∠AOB.理由见解析;(2)∠BOC=112°;(3)∠AOC=146°.25.(1)100;(2)3025;(3)22 (1)4a a+;26.(1)第一次是向东,第二次是向西,第三次是向东,第四次是向西;(2)这辆出租车所在的位置是向东(7﹣12x)km;(3)这辆出租车一共行驶了(7172x-)km的路程.27.12 -.28.(1)-15;(2)2。
大庆市七年级上册数学期末试卷(带答案)-百度文库
大庆市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.在数3,﹣3,13,13-中,最小的数为()A.﹣3 B.13C.13-D.32.下列方程是一元一次方程的是()A.213+x=5x B.x2+1=3x C.32y=y+2 D.2x﹣3y=13.如果﹣2xy n+2与 3x3m-2y 是同类项,则|n﹣4m|的值是()A.3 B.4 C.5 D.64.计算:31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…,归纳各计算结果中的个位数字的规律,猜测32018﹣1的个位数字是()A.2 B.8 C.6 D.05.如图,∠AOD=84°,∠AOB=18°,OB平分∠AOC,则∠COD的度数是()A.48°B.42°C.36°D.33°6.方程3x﹣1=0的解是()A.x=﹣3 B.x=3 C.x=﹣13D.x=137.如果a﹣3b=2,那么2a﹣6b的值是()A.4 B.﹣4 C.1 D.﹣1 8.一个几何体的表面展开图如图所示,则这个几何体是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱9.如果代数式﹣3a2m b与ab是同类项,那么m的值是( )A.0 B.1 C.12D.310.下列变形中,不正确的是( )A.若x=y,则x+3=y+3 B.若-2x=-2y,则x=yC .若x y m m=,则x y = D .若x y =,则x y m m = 11.已知105A ∠=︒,则A ∠的补角等于( ) A .105︒ B .75︒ C .115︒D .95︒ 12.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上B .BC 上 C .CD 上 D .AD 上二、填空题13.在数轴上,若A 点表示数﹣1,点B 表示数2,A 、B 两点之间的距离为 .14.根据下列图示的对话,则代数式2a +2b ﹣3c +2m 的值是_____.15.当a=_____时,分式13a a --的值为0. 16.计算:()222a -=____;()2323x x ⋅-=_____.17.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.在数轴上,与表示-3的点的距离为4的点所表示的数为__________________.20.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.21.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.22.一个水库的水位变化情况记录:如果把水位上升5cm 记作+5cm ,那么水位下降3cm 时水位变化记作_____.23.线段AB=2cm ,延长AB 至点C ,使BC=2AB ,则AC=_____________cm.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.化简代数式,22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭,并求当24,=3a b =-时该代数式的值.26.先化简,再求值: 22212144x x x x--+--,其中5x =. 27.某校为了解七年级学生体育测试情况,在七年级各班随机抽取了部分学生的体育测试成绩,按,,,A B C D 四个等级进行统计(说明:A 级:90分~100分;B 级:75分~89分;C 级:60分~74分;D 级:60分以下),并将统计结果绘制成两个不完整的统计图,请你结合统计图中所给信息解答下列问题:(1)学校在七年级各班共随机调查了________名学生;(2)在扇形统计图中,D 级所在的扇形圆心角的度数是_________;(3)请把条形统计图补充完整;(4)若该校七年级有500名学生,请根据统计结果估计全校七年级体育测试中A 级学生约有多少名?28.计算:|﹣2|+(﹣1)2019+19×(﹣3)2 29.如图,O 为直线AB 上的一点,∠AOC =48°24′,OD 平分∠AOC ,∠DOE =90°. (1)求∠BOD 的度数;(2)OE 是∠BOC 的平分线吗?为什么?30.计算:﹣0.52+14﹣|22﹣4| 四、压轴题31.借助一副三角板,可以得到一些平面图形(1)如图1,∠AOC = 度.由射线OA ,OB ,OC 组成的所有小于平角的和是多少度?(2)如图2,∠1的度数比∠2度数的3倍还多30°,求∠2的度数;(3)利用图3,反向延长射线OA 到M ,OE 平分∠BOM ,OF 平分∠COM ,请按题意补全图(3),并求出∠EOF 的度数.32.综合试一试(1)下列整数可写成三个非0整数的立方和:45=_____;2=______.(2)对于有理数a ,b ,规定一种运算:2a b a ab ⊗=-.如2121121⊗=-⨯=-,则计算()()532-⊗⊗-=⎡⎤⎣⎦______.(3)a 是不为1的有理数,我们把11a-称为a 的差倒数.如:2的差倒数是1112=--,1-的差倒数是()11112=--.已知12a =,2a 是1a 的差倒数,3a 是2a 的差倒数,4a 是3a 的差倒数,……,以此类推,122500a a a ++⋅⋅⋅+=______.(4)10位裁判给一位运动员打分,每个人给的分数都是整数,去掉一个最高分,再去掉一个最低分,其余得分的平均数为该运动员的得分.若用四舍五入取近似值的方法精确到十分位,该运动员得9.4分,如果精确到百分位,该运动员得分应当是_____分.(5)在数1.2.3...2019前添加“+”,“-”并依次计算,所得结果可能的最小非负数是______(6)早上8点钟,甲、乙、丙三人从东往西直行,乙在甲前400米,丙在乙前400米,甲、乙、丙三人速度分别为120米/分钟、100米/分钟、90米/分钟,问:______分钟后甲和乙、丙的距离相等.33.已知:∠AOB 是一个直角,作射线OC ,再分别作∠AOC 和∠BOC 的平分线OD 、OE .(1)如图①,当∠BOC=70°时,求∠DOE 的度数;(2)如图②,若射线OC 在∠AOB 内部绕O 点旋转,当∠BOC=α时,求∠DOE 的度数.(3)如图③,当射线OC 在∠AOB 外绕O 点旋转时,画出图形,直接写出∠DOE 的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:∵3>13>13->﹣3,∴在数3,﹣3,13,13-中,最小的数为﹣3.故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.A解析:A【解析】【分析】只含有一个未知数(元),并且未知数的指数是1次的整式方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).据此可得出正确答案.【详解】解:A、213x=5x符合一元一次方程的定义;B、x2+1=3x未知数x的最高次数为2,不是一元一次方程;C、32y=y+2中等号左边不是整式,不是一元一次方程;D、2x﹣3y=1含有2个未知数,不是一元一次方程;故选:A.【点睛】解题的关键是根据一元一次方程的定义,未知数x的次数是1这个条件.此类题目可严格按照定义解题.3.C解析:C【解析】【分析】同类项要求相同字母上的次数相同,由此求出m,n,代入即可求解.【详解】解:∵﹣2xy n+2与 3x3m-2y 是同类项,∴3m-2=1,n+2=1,解得:m=1,n=-1,∴|n﹣4m|=|-1-4|=5,故选C.【点睛】本题考查了同类项的概念,属于简单题,熟悉概念和列等式是解题关键.4.B解析:B【解析】【分析】由31﹣1=2,32﹣1=8,33﹣1=26,34﹣1=80,35﹣1=242,…得出末尾数字以2,8,6,0四个数字不断循环出现,由此用2018除以4看得出的余数确定个位数字即可.【详解】∵2018÷4=504…2,∴32018﹣1的个位数字是8,故选B.【点睛】本题考查了尾数的特征,关键是能根据题意得出个位数字循环的规律是解决问题的关键.5.A解析:A【解析】首先根据角平分线的定义得出2AOC AOB ∠=∠,求出AOC ∠的度数,然后根据角的和差运算得出COD AOD AOC ∠=∠-∠,得出结果.【详解】解:OB 平分AOC ∠,18AOB ∠=︒,236AOC AOB ∴∠=∠=︒,又84AOD ∠=︒, 843648COD AOD AOC ∴∠=∠-∠=︒-︒=︒.故选:A .【点睛】本题考查了角平分线的定义.根据角平分线定义得出所求角与已知角的关系转化求解.6.D解析:D【解析】【分析】方程移项,把x 系数化为1,即可求出解.【详解】解:方程3x ﹣1=0,移项得:3x =1,解得:x =13, 故选:D .【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.7.A解析:A【解析】【分析】将a ﹣3b =2整体代入即可求出所求的结果.【详解】解:当a ﹣3b =2时,∴2a ﹣6b=2(a ﹣3b )=4,故选:A .【点睛】本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.8.A解析:A试题分析:根据四棱锥的侧面展开图得出答案.试题解析:如图所示:这个几何体是四棱锥.故选A.考点:几何体的展开图.9.C解析:C【解析】【分析】根据同类项的定义得出2m=1,求出即可.【详解】解:∵单项式-3a 2m b 与ab 是同类项,∴2m=1,∴m=12, 故选C .【点睛】本题考查了同类项的定义,能熟记同类项的定义是解此题的关键,所含字母相同,并且相同字母的指数也分别相同的项,叫同类项.10.D解析:D【解析】【分析】等式两边同时加减一个数,同时乘除一个不为0的数,等式依然成立,根据此性质判断即可.【详解】A. x=y 两边同时加3,可得到x+3=y+3,故A 选项正确;B. -2x=-2y 两边同时除以-2,可得到x=y ,故B 选项正确;C. 等式x y m m=中,m ≠0,两边同时乘以m 得x y =,故C 选项正确; D. 当m=0时,x y =两边同除以m 无意义,则x y m m =不成立,故D 选项错误; 故选:D .【点睛】本题考查等式的变形,熟记等式的基本性质是解题的关键.11.B解析:B【解析】【分析】由题意直接根据互补两角之和为180°求解即可.【详解】解:∵∠A=105°,∴∠A的补角=180°-105°=75°.故选:B.【点睛】本题考查补角的知识,属于基础题,掌握互补两角之和为180°是关键.12.D解析:D【解析】【分析】根据题意列一元一次方程,然后四个循环为一次即可求得结论.【详解】解:设乙走x秒第一次追上甲.根据题意,得5x-x=4解得x=1.∴乙走1秒第一次追上甲,则乙在第1次追上甲时的位置是AB上;设乙再走y秒第二次追上甲.根据题意,得5y-y=8,解得y=2.∴乙再走2秒第二次追上甲,则乙在第2次追上甲时的位置是BC上;同理:∴乙再走2秒第三次次追上甲,则乙在第3次追上甲时的位置是CD上;∴乙再走2秒第四次追上甲,则乙在第4次追上甲时的位置是DA上;乙在第5次追上甲时的位置又回到AB上;∴2020÷4=505∴乙在第2020次追上甲时的位置是AD上.故选:D.【点睛】本题考查了一元一次方程的应用,解决本题的关键是寻找规律确定位置.二、填空题13.3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.解析:3【解析】试题分析:用数轴上右边的点表示的数减去左边的点表示的数即可得到两点之间的距离.解:2﹣(﹣1)=3.故答案为3考点:数轴.14.﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣,m=2或﹣2,当m=2时,原式=2(a+b)解析:﹣3或5.【解析】【分析】根据相反数,倒数,以及绝对值的代数意义求出各自的值,代入计算即可求出值.【详解】解:根据题意得:a+b=0,c=﹣13,m=2或﹣2,当m=2时,原式=2(a+b)﹣3c+2m=1+4=5;当m=﹣2时,原式=2(a+b)﹣3c+2m=1﹣4=﹣3,综上,代数式的值为﹣3或5,故答案为:﹣3或5.【点睛】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.15.1【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a=1,故答案为:1.【点睛】此题主要考查了分式【解析】【分析】根据分式值为零的条件可得a−1=0,且a−3≠0,求解即可.【详解】解:由题意得:a−1=0,且a−3≠0,解得:a =1,故答案为:1.【点睛】此题主要考查了分式值为零的条件,关键是掌握分式值为零的条件是分子等于零且分母不等于零.注意:“分母不为零”这个条件不能少.16.【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键 解析:44a 56x -【解析】【分析】根据幂的乘方与积的乘方、单项式乘法的运算方法,即可解答【详解】()222a -=44a ()2323x x ⋅-=56x -【点睛】此题考查幂的乘方与积的乘方、单项式乘法,掌握运算法则是解题关键17.【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解析:62.0510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000205=62.0510-⨯故答案为62.0510-⨯【点睛】此题考查科学记数法,难度不大18.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键19.1或-7【解析】【分析】设这个数为x ,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x 即可.【详解】设这个数为x ,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解解析:1或-7【分析】设这个数为x,利用数轴上两点间的距离公式可得|x-(-3)|=4,解出x即可.【详解】设这个数为x,由题意得|x-(-3)|=4,所以x+3=4或x+3=-4,解得x=1或-7.【点睛】本题考查数轴的应用,使用两点间的距离公式列出方程是解题的关键. 20.4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的解析:4【解析】【分析】根据题中所给的定义进行计算即可【详解】∵32=9,记作(3,9)=2,(−2)4=16,∴(−2,16)=4.【点睛】本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂. 21.4【解析】【分析】由题意可得,求解即可.【详解】解:解得故答案为:4本题属于新定义题型,正确理解{m}和[m]的含义是解题的关键.解析:4【解析】【分析】由题意可得{}[]1,x x x x =+=,求解即可.【详解】解:{}[]323(1)25323x x x x x +=++=+=解得4x =故答案为:4【点睛】本题属于新定义题型,正确理解{m }和[m ]的含义是解题的关键. 22.﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3c m .故答案为:﹣3解析:﹣3cm【解析】【分析】首先审清题意,明确“正”和“负”所表示的意义,再根据题意作答.【详解】解:因为上升记为+,所以下降记为﹣,所以水位下降3cm 时水位变化记作﹣3cm . 故答案为:﹣3cm .【点睛】此题主要考查有理数的应用,解题的关键是熟知有理数的意义.23.6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm ,BC=2AB ,∴BC=4cm ,∴AC=AB+BC=6cm.故答案为:6.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.221122a ab b -+-,值为:799- 【解析】【分析】 根据题意先进行化简,然后把24,=3a b =-分别代入化简后的式子,得出最终结果即可. 【详解】解:22221372422a ab b a ab b ⎛⎫⎛⎫----- ⎪ ⎪⎝⎭⎝⎭=222273222a ab b a ab b ---++ =22122a ab b -+-, 然后把24,=3a b =-代入上式得: 221122a ab b -+- 1124=16+42239⎛⎫-⨯⨯⨯-- ⎪⎝⎭ =44839--- =799-. 故答案为:221122a ab b -+-,值为:799-. 【点睛】本题考查化简求值,解题关键在于对整式加减的理解.26.2x x +;57. 【解析】【分析】 直接利用分式的加减运算法则化简,然后代入求值,进而得出答案.【详解】解: 原式221214x x x --+=-222(2)4(2)(2)2x x x x x x x x x --===-+-+; 当x=5时,原式=57. 【点睛】 此题主要考查了分式的化简求值,正确掌握分式的加减运算法则是解题关键.27.(1)50;(2)36°;(3)作图见解析;(4)100名.【解析】【分析】(1)根据条形统计图和扇形统计图的对应关系,用条形统计图中某一类的频数除以扇形统计图中该类所占百分比即可解决.(2)用单位1减掉A 、B 、C 所占的百分比,得出D 项所占的百分比,然后与360°相乘即可解决.(3)用总数减去A 、B 、C 的频数,得出D 项的频数,然后画出条形统计图即可.(4)用七年级所有学生乘A 项所占的百分比,即可解决.【详解】(1)10÷20%=50;(2)()360146%24%20%36010%36︒⨯---=︒⨯=︒;(3)D 项的人数:50-10-23-12=5.补全条形统计图如图所示.(4)因为500×20%=100(名).所以估计全校七年级体育测试中A 级学生人数约为100名.【点睛】本题考查了条形图和扇形统计图结合题型,解决本题的关键是正确理解题意,熟练掌握扇形统计图和条形图的各类量的对应关系.28.2【解析】【分析】直接利用绝对值的性质以及有理数的混合运算法则计算得出答案.【详解】解:原式12199=-+⨯ 11=+2=.【点睛】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.29.(1)155°48′;(2)OE 是∠BOC 的平分线,理由详见解析【解析】【分析】(1)利用角平分线的性质得出11224122AOC ∠=∠=∠=︒',由∠BOD 与1∠互为邻补角即可求得答案;(2)分别求出3∠、4∠的度数,结合角平分线的定义得出答案.【详解】解:(1)4824AOC ∠=︒',OD 平分AOC ,11224122AOC ∴∠=∠=∠=︒', 1801180241215548BOD ∴∠=︒-∠=︒-︒'=︒';(2)OE 是BOC ∠的平分线.理由如下:2390DOE ∠=∠+∠=︒,22412∠=︒',39024126548∴∠=︒-︒'=︒',415548BOD DOE ∠=∠+∠=︒',415548906548∴∠=︒'-︒=︒',346548∴∠=∠=︒',OE ∴是BOC ∠的平分线.【点睛】此题主要考查了角平分线的定义,正确得出各角的度数是解题关键.30.【解析】【分析】先算乘方,后算加减;同级运算,应按从左到右的顺序进行计算;如果有绝对值,要先做绝对值内的运算.【详解】2210.5244-+-- 10.25444=-+-- 10.2504=-+- =0.【点睛】本题考查了有理数的混合运算,掌握有理数的混合运算是解题的关键. 四、压轴题31.(1)75°,150°;(2)15°;(3)15°.【解析】【分析】(1)根据三角板的特殊性角的度数,求出∠AOC 即可,把∠AOC 、∠BOC 、∠AOB 相加即可求出射线OA ,OB ,OC 组成的所有小于平角的和;(2)依题意设∠2=x ,列等式,解方程求出即可;(3)依据题意求出∠BOM ,∠COM ,再根据角平分线的性质得出∠MOE ,∠MOF ,即可求出∠EOF .【详解】解:(1)∵∠BOC =30°,∠AOB =45°,∴∠AOC =75°,∴∠AOC+∠BOC+∠AOB=150°;答:由射线OA,OB,OC组成的所有小于平角的和是150°;故答案为:75;(2)设∠2=x,则∠1=3x+30°,∵∠1+∠2=90°,∴x+3x+30°=90°,∴x=15°,∴∠2=15°,答:∠2的度数是15°;(3)如图所示,∵∠BOM=180°﹣45°=135°,∠COM=180°﹣15°=165°,∵OE为∠BOM的平分线,OF为∠COM的平分线,∴∠MOF=12∠COM=82.5°,∠MOE=12∠MOB=67.5°,∴∠EOF=∠MOF﹣∠MOE=15°.【点睛】本题主要考查了三角板各角的度数、角平分线的性质及列方程解方程在几何中的应用,熟记概念是解题的关键.32.(1)23+(-3)3+43,73+(-5)3+(-6)3;(2)100;(3)25032;(4)9.38;(5)0;(6)24或40【解析】【分析】(1)把45分解为2、-3、4三个整数的立方和,2分解为7、-5、-6三个整数的立方和即可的答案;(2)按照新运算法则,根据有理数混合运算法则计算即可得答案;(3)根据差倒数的定义计算出前几项的值,得出规律,计算即可得答案;(4)根据精确到十分位得9.4分可知平均分在9.35到9.44之间,可求出总分的取值范围,根据裁判打分是整数即可求出8个裁判给出的总分,再计算出平均分,精确到百分位即可;(5)由1+2-3=0,连续4个自然数通过加减运算可得0,列式计算即可得答案;(6)根据题意得要使甲和乙、甲和丙的距离相等就可以得出甲在乙、丙之间,设x分钟后甲和乙、甲和丙的距离相等,就有甲走的路程-乙走的路程-400=丙走的路程+800-甲走的路程建立方程求出其解,就可以得出结论.当乙追上丙时,甲和乙、丙的距离相等,求出乙追上丙的时间即可.综上即可的答案.【详解】(1)45=23+(-3)3+43,2=73+(-5)3+(-6)3,故答案为23+(-3)3+43,73+(-5)3+(-6)3(2)∵2a b a ab ⊗=-,∴()()532-⊗⊗-=⎡⎤⎣⎦(-5)⊗[32-3×(-2)]=(-5)⊗15=(-5)2-(-5)×15=100.(3)∵a 1=2,∴a 2=1112=--, a 3=11(1)--=12, 412112a ==-a 5=-1…… ∴从a 1开始,每3个数一循环,∵2500÷3=833……1,∴a 2500=a 1=2,∴122500a a a ++⋅⋅⋅+=833×(2-1+12)+2=25032. (4)∵10个裁判打分,去掉一个最高分,再去掉一个最低分, ∴平均分为中间8个分数的平均分,∵平均分精确到十分位的为9.4,∴平均分在9.35至9.44之间,9.35×8=74.8,9.44×8=75.52,∴8个裁判所给的总分在74.8至75.52之间,∵打分都是整数,∴总分也是整数,∴总分为75,∴平均分为75÷8=9.375,∴精确到百分位是9.38.故答案为9.38(5)2019÷4=504……3,∵1+2-3=0,4-5-6+7=0,8-9-10+11=0,……∴(1+2-3)+(4-5-6+7)+……+(2016-2017-2018+2019)=0∴所得结果可能的最小非负数是0,故答案为0(6)设x 分钟后甲和乙、丙的距离相等,∵乙在甲前400米,丙在乙前400米,速度分别为120米/分钟、100米/分钟、90米/分钟,∴120x-400-100x=90x+800-120x解得:x=24.∵当乙追上丙时,甲和乙、丙的距离相等,∴400÷(100-90)=40(分钟)∴24分钟或40分钟时甲和乙、丙的距离相等.故答案为24或40.【点睛】本题考查数字类的变化规律、有理数的混合运算、近似数及一元一次方程的应用,熟练掌握相关知识是解题关键.33.(1)45°;(2)45°;(3)45°或135°.【解析】【分析】(1)由∠BOC的度数求出∠AOC的度数,利用角平分线定义求出∠COD与∠COE的度数,相加即可求出∠DOE的度数;(2)∠DOE度数不变,理由为:利用角平分线定义得到∠COD为∠AOC的一半,∠COE为∠COB的一半,而∠DOE=∠COD+∠COE,即可求出∠DOE度数为45度;(3)分两种情况考虑,同理如图3,则∠DOE为45°;如图4,则∠DOE为135°.【详解】(1)如图,∠AOC=90°﹣∠BOC=20°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=10°,∠COE=12∠BOC=35°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=12∠AOC+12∠COB=12(∠AOC+∠COB)=12∠AOB=45°;(3)∠DOE的大小发生变化情况为:如图③,则∠DOE为45°;如图④,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD﹣∠COE=12(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=12∠AOC,∠COE=12∠BOC,∴∠DOE=∠COD+∠COE=12(∠AOC+∠BOC)=12×270°=135°.【点睛】此题主要考查了角平分线的性质以及角的有关计算,正确作图,熟记角的特点与角平分线的定义是解决此题的关键.。
大庆市七年级上册数学期末试卷(带答案)-百度文库
大庆市七年级上册数学期末试卷(带答案)-百度文库一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 2.以下选项中比-2小的是( )A .0B .1C .-1.5D .-2.5 3.晚上七点刚过,小强开始做数学作业,一看钟,发现此时时针和分针在同一直线上;做完数学作业八点不到,此时时针和分针又在同一直线上,则小强做数学作业花了多少时间( )A .30分钟B .35分钟C .42011分钟D .36011分钟 4.底面半径为r ,高为h 的圆柱的体积为2r h π,单项式2r h π的系数和次数分别是( ) A .π,3B .π,2C .1,4D .1,3 5.对于方程12132x x +-=,去分母后得到的方程是( ) A .112x x -=+ B .63(12)x x -=+ C .233(12)x x -=+ D .263(12)x x -=+ 6.96.已知a <0,-1<b <0,则a ,ab ,ab 2之间的大小关系是( )A .a >ab >ab 2B .ab >ab 2>aC .ab >a >ab 2D .ab <a <ab 27.化简(2x -3y )-3(4x -2y )的结果为( )A .-10x -3yB .-10x +3yC .10x -9yD .10x +9y8.下列调查中,最适合采用全面调查(普查)的是( )A .对广州市某校七(1)班同学的视力情况的调查B .对广州市市民知晓“礼让行人”交通新规情况的调查C .对广州市中学生观看电影《厉害了,我的国》情况的调查D .对广州市中学生每周课外阅读时间情况的调查9.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 10.如图是一个正方体的平面展开图,把展开图折叠成正方体后,“美”字一面相对面上的字是( )A .设B .和C .中D .山 11.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b == 12.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD∠的度数为( )A .100B .120C .135D .150二、填空题13.已知x =3是方程(1)21343x m x -++=的解,则m 的值为_____. 14.写出一个比4大的无理数:____________. 15.已知m ﹣2n =2,则2(2n ﹣m )3﹣3m+6n =_____.16.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.17.16的算术平方根是 .18.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.19.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.20.小何买了5本笔记本,10支圆珠笔,设笔记本的单价为a 元,圆珠笔的单价为b 元,则小何共花费_____元(用含a ,b 的代数式表示).21.计算7a 2b ﹣5ba 2=_____.22.观察“田”字中各数之间的关系:则c 的值为____________________.23.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n 个图案有2019个黑棋子,则n=______.24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.解方程:(1)312x +=-(2)62123x x --=- 26.如图所示,OE 和OD 分别是∠AOB 和∠BOC 的平分线,且∠AOB =90°,∠EOD =67.5°的度数.(1)求∠BOD 的度数;(2)∠AOE 与∠BOC 互余吗?请说明理由.27.计算(1)()22315a a a a +⋅-⋅. (2)()2232246()x y x y xy -÷.28.计算与解方程:(1)﹣32+(﹣3)2+3×(﹣2)+|﹣4|;(2)12°24′17″×4﹣30°27′8″;(3)421123x x -+-=. 29.如图,射线OM 上有三点A 、B 、C ,满足OA=20cm ,AB=60cm ,BC=10cm ,点P 从点O 出发,沿OM 方向以1cm/秒的速度匀速运动,点Q 从点C 出发在线段CO 上向点O 匀速运动,两点同时出发,当点Q 运动到点O 时,点P 、Q 停止运动.(1)若点Q 运动速度为2cm/秒,经过多长时间P 、Q 两点相遇?(2)当P 在线段AB 上且PA=3PB 时,点Q 运动到的位置恰好是线段AB 的三等分点,求点Q 的运动速度;30.请根据图中提供的暖瓶和水杯的售价信息,回答下列问题:(1)一个暖瓶与一个水杯的售价分别是多少元?(2)甲、乙两家商场同时出售同样的暖瓶和水杯,在新年期间,两家商场都在搞促销活动.甲商场规定:这两种商品都打8.5折;乙商场规定:两种商品都不打折,但买一个暖瓶赠送一个水杯.若某单位想要买4个暖瓶和16个水杯,请问这个单位选择哪家商场购买更合算,并说明理由.四、压轴题31.已知数轴上两点A 、B ,其中A 表示的数为-2,B 表示的数为2,若在数轴上存在一点C ,使得AC+BC=n ,则称点C 叫做点A 、B 的“n 节点”.例如图1所示:若点C 表示的数为0,有AC+BC=2+2=4,则称点C 为点A 、B 的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值;(2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.已知∠AOB 和∠AOC 是同一个平面内的两个角,OD 是∠BOC 的平分线.(1)若∠AOB=50°,∠AOC=70°,如图(1),图(2),求∠AOD 的度数;(2)若∠AOB=m 度,∠AOC=n 度,其中090090180m n m n <<,<<,< 且m n <,求∠AOD 的度数(结果用含m n 、的代数式表示),请画出图形,直接写出答案.33.如图,己知数轴上点A 表示的数为8,B 是数轴上一点,且AB=22.动点P 从点A 出发,以每秒4个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数____,点P表示的数____(用含t的代数式表示);(2)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(列一元一次方程解应用题)(3)若动点Q从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问秒时P、Q之间的距离恰好等于2(直接写出答案)(4)思考在点P的运动过程中,若M为AP的中点,N为PB的中点.线段MN的长度是否发生变化?若变化,请说明理由;若不变,请你画出图形,并求出线段MN的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D【解析】【分析】根据有理数比较大小法则:负数的绝对值越大反而越小可得答案.【详解】根据题意可得:2.52 1.501-<-<-<<,故答案为:D.【点睛】本题考查的是有理数的大小比较,解题关键在于负数的绝对值越大值越小.3.D解析:D【解析】【分析】由题意知,开始写作业时,分针和时针组成一平角,写完作业时,分针和时针重合.设小强做数学作业花了x分钟,根据分针追上时针时多转了180°列方程求解即可.【详解】分针速度:30度÷5分=6度/分;时针速度:30度÷60分=0.5度/分.设小强做数学作业花了x分钟,由题意得6x-0.5x=180,解之得x= 360 11.故选D.【点睛】本题考查了一元一次方程的应用---追击问题,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.4.A解析:A【解析】【分析】由题意根据单项式系数和次数的确定方法即可求出答案得到选项.【详解】解:单项式2r hπ的系数和次数分别是π,3;故选:A.【点睛】本题考查单项式定义,解题的关键是理解单项式系数和次数的确定方法,本题属于基础题型.5.D解析:D【解析】【分析】方程两边同乘以6即可求解.【详解】12132x x +-=, 方程两边同乘以6可得,2x-6=3(1+2x ).故选D.【点睛】本题考查了一元一次方程的解法—去分母,方程两边同乘以各分母的最小公倍数是去分母的基本方法.6.B解析:B【解析】先根据同号得正的原则判断出ab 的符号,再根据不等式的基本性质判断出ab 2及a 的符号及大小即可.解:∵a <0,b <0,∴ab >0,又∵-1<b <0,ab >0,∴ab 2<0.∵-1<b <0,∴0<b 2<1,∴ab 2>a ,∴a <ab 2<ab .故选B本题涉及到有理数的乘法及不等式的基本性质,属中学阶段的基础题目.7.B解析:B【解析】分析:先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.详解:原式=2x ﹣3y ﹣12x +6y=﹣10x +3y .故选B .点睛:本题考查了整式的加减、去括号法则两个考点.解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.8.A解析:A【解析】【分析】根据普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断即可.【详解】A. 对广州市某校七(1)班同学的视力情况的调查,适合全面调查,符合题意;B. 对广州市市民知晓“礼让行人”交通新规情况的调查,适合抽样调查,故不符合题意;C. 对广州市中学生观看电影《厉害了,我的国》情况的调查,适合抽样调查,故不符合题意;D. 对广州市中学生每周课外阅读时间情况的调查,适合抽样调查,故不符合题意,故选A.【点睛】本题考查的是抽样调查与全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大的调查,应选用抽样调查,对于精确度要求高的调查,事关重大的调查往往先用普查的方式.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.A解析:A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“美”与“设”是相对面,“和”与“中”是相对面,“建”与“山”是相对面.故选:A.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.11.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB平分∠COD,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C.【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.14.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.15.-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3解析:-22【解析】【分析】将m﹣2n=2代入原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)计算可得.【详解】解:当m﹣2n=2时,原式=2[﹣(m﹣2n)]3﹣3(m﹣2n)=2×(﹣2)3﹣3×2=﹣16﹣6=﹣22,故答案为:﹣22.【点睛】本题主要考查代数式的求值,解题的关键是掌握整体代入思想的运用.16.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式17.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为4 18.【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:,故答案为:.【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.解析:5()-a b【解析】【分析】根据合并同类项,系数相加,字母及指数不变,可得答案.【详解】解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,故答案为:5()-a b .【点睛】本题考查合并同类项,熟记合并同类项的法则是解题的关键.19.(4n+1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=解析:(4n +1)【解析】【分析】由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.【详解】∵图①中火柴数量为5=1+4×1,图②中火柴数量为9=1+4×2,图③中火柴数量为13=1+4×3,……∴摆第n 个图案需要火柴棒(4n+1)根,故答案为(4n+1).【点睛】本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.20.(5a+10b ).【解析】【分析】由题意得等量关系:小何总花费本笔记本的花费支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:,故答案为:.【点睛】此题主要考查了列代数解析:(5a +10b ).【解析】【分析】由题意得等量关系:小何总花费5=本笔记本的花费10+支圆珠笔的花费,再代入相应数据可得答案.【详解】解:小何总花费:510a b +,故答案为:(510)a b +.【点睛】此题主要考查了列代数式,关键是正确理解题意,找出题目中的数量关系.21.2a2b【分析】根据合并同类项法则化简即可.【详解】故答案为:【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.解析:2a2b【解析】【分析】根据合并同类项法则化简即可.【详解】()22227a b5ba=75a b=2a b﹣﹣.2a b故答案为:2【点睛】本题考查了合并同类项,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.22.【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数解析:270【解析】【分析】依次观察每个“田”中相同位置的数字,即可找到数字变化规律,再观察同一个“田”中各个位置的数字数量关系即可.【详解】解:经过观察每个“田”左上角数字依此是1,3,5,7等奇数,此位置数为15时,恰好是第8个奇数,即此“田”字为第8个.观察每个“田”字左下角数据,可以发现,规律是2,22,23,24等,则第8数为a=28.观察右下角的数字可得右下角的数字正好是左上角和左下角两个数字的和,所以b=15+a=271,右上角的数字正好是右下角数字减1,所以c=b-1=270.故答案为:270.本题以探究数字规律为背景,考查学生的数感.解题时注意把同等位置的数字变化规律,用代数式表示出来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大庆七年级(上)期末数学试卷一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣ abc的次数是1D.多项式9m2﹣5mn﹣17的次数是42.将(3+2)﹣2(2﹣1)去括号正确的是()A.3+2﹣2+1 B.3+2﹣4+1 C.3+2﹣4﹣2 D.3+2﹣4+23.若=﹣3是方程2(﹣m)=6的解,则m的值为()A.6 B.﹣6 C.12 D.﹣124.单项式m﹣1y3与4y n的和是单项式,则n m的值是()A.3 B.6 C.8 D.95.一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣76.立方是它本身的数是()A.1 B.0 C.﹣1 D.1,﹣1,07.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×10128.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是℃.14.绝对值大于1而小于5的整数的和是.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为.16.已知A=22﹣1,B=3﹣22,则B﹣2A=.17.如果单项式2y n+2与单项式ab7的次数相等,则n的值为.18.若4﹣1与7﹣2的值互为相反数,则=.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)32﹣〔7﹣(4﹣3)﹣22〕21.(10分)解方程:(1)4﹣4(﹣3)=2(9﹣)(2).22.(12分)先化简再求值(1)3(2﹣2﹣1)﹣4(3﹣2)+2(﹣1);其中=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.黑龙江省大庆七年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分共36分)1.下列说法中正确的是()A.a是单项式B.2πr2的系数是2C.﹣ abc的次数是1D.多项式9m2﹣5mn﹣17的次数是4【分析】根据单项式,单项式的系数和次数以及多项式的次数的定义作答.【解答】解:A、a是单项式是正确的;B、2πr2的系数是2π,故选项错误;C、﹣abc的次数是3,故选项错误;D、多项式9m2﹣5mn﹣17的次数是2,故选项错误.故选:A.【点评】此题考查了单项式以及多项式,数字与字母的积叫做单项式,单独的一个数字或字母也叫单项式,单项式不含加减运算.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.确定多项式的次数,就是确定多项式中次数最高的项的次数.2.将(3+2)﹣2(2﹣1)去括号正确的是()A.3+2﹣2+1 B.3+2﹣4+1 C.3+2﹣4﹣2 D.3+2﹣4+2【分析】根据去括号法则解答.【解答】解:(3+2)﹣2(2﹣1)=3+2﹣4+2.故选:D.【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是“+”,去括号后,括号里的各项都不改变符号;括号前是“﹣”,去括号后,括号里的各项都改变符号.顺序为先大后小.3.若=﹣3是方程2(﹣m)=6的解,则m的值为()A.6 B.﹣6 C.12 D.﹣12【分析】把=﹣3,代入方程得到一个关于m的方程,即可求解.【解答】解:把=﹣3代入方程得:2(﹣3﹣m)=6,解得:m=﹣6.故选:B.【点评】本题考查了方程的解的定理,理解定义是关键.4.单项式m﹣1y3与4y n的和是单项式,则n m的值是()A.3 B.6 C.8 D.9【分析】根据已知得出两单项式是同类项,得出m﹣1=1,n=3,求出m、n后代入即可.【解答】解:∵m﹣1y3与4y n的和是单项式,∴m﹣1=1,n=3,∴m=2,∴n m=32=9故选:D.【点评】本题考查了合并同类项和负整数指数幂的应用,关键是求出m、n的值.5.一个数加上﹣12等于﹣5,则这个数是()A.17 B.7 C.﹣17 D.﹣7【分析】本题是有理数的运算与方程的结合试题,根据题意列出算式,然后根据算法计算即可.【解答】解:设这个数为,由题意可知+(﹣12)=﹣5,解得=7.所以这个数是7.故选:B.【点评】此类文字题只要审清题意正确列出算式,然后利用有理数的运算法则可求.6.立方是它本身的数是()A.1 B.0 C.﹣1 D.1,﹣1,0【分析】根据立方的意义,可得答案.【解答】解:立方是它本身的数是﹣1,0,1,故选:D.【点评】本题考查了乘方,利用乘方的意义是解题关键.7.我国研制的“曙光3000服务器”,它的峰值计算速度达到403 200 000 000次/秒,用科学记数法可表示为()A.4032×108B.403.2×109C.4.032×1011D.0.4032×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将403,200,000,000用科学记数法可表示为4.032×1011.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.用四舍五入法按要求对0.05019分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确到百分位)C.0.05(精确到千分位)D.0.0502(精确到0.0001)【分析】A、精确到0.1就是保留小数点后一位,因为小数点后第二位是5,进一得0.1;B、精确到百分位,就是保留小数点后两位,因为小数点后第三位是0,舍,得0.05;C、精确到千分位,就是保留小数点后三位,因为小数点后第四位是1,舍,得0.050;D、精确到0.0001,就是保留小数点后四位,因为小数点后第五位是9,进一,得0.0502;【解答】解:A、0.05019≈0.1(精确到0.1),所以此选项正确;B、0.05019≈0.05(精确到百分位),所以此选项正确;C、0.05019≈0.050(精确到千分位),所以此选项错误;D、0.05019≈0.0502(精确到0.0001),所以此选项正确;本题选择错误的,故选C.【点评】本题考查了根据精确度取近似数,精确度可以是“十分位(0.1)、百分位(0.01)、千分位(0.0010”等,按四舍五入取近似数,只看精确度的后一位数.9.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【分析】设这种商品每件的进价为元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为元,由题意得:330×0.8﹣=10%,解得:=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.10.某商贩在一次买卖中,同时卖出两件上衣,每件都以80元出售,若按成本计算,其中一件赢利60%,另一件亏本20%,在这次买卖中,该商贩()A.不盈不亏B.盈利10元C.亏损10元D.盈利50元【分析】分别算出盈利衣服的成本和亏损衣服的成本,让两个售价相加减去两个成本的和,若得到是正数,即为盈利,反之亏本.【解答】解:设赢利60%的衣服的成本为元,则×(1+60%)=80,解得=50,设亏损20%的衣服的成本为y元,y×(1﹣20%)=80,解得y=100元,∴总成本为100+50=150元,∴2×80﹣150=10,∴这次买卖中他是盈利10元.故选:B.【点评】此题考查一元一次方程在实际问题中的应用,得到两件衣服的成本是解决本题的突破点.11.下面的四个图形中,每个图形均由六个相同的小正方形组成,折叠后能围成正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的展开图解题.【解答】解:A、折叠后有个侧面重叠,而且上边没有面,不能折成正方体;B、折叠后缺少上底面,故不能折叠成一个正方体;C、可以折叠成一个正方体;D、折叠后有两个面重合,缺少一下面,所以也不能折叠成一个正方体.故选:C.【点评】本题考查了展开图折叠成几何体,注意正方体的展开图中每个面都有对面.12.如图是由5个大小相同的正方体组成的几何体,从正面看到的形状图是()A.B.C.D.【分析】利用从正面看到的图叫做主视图,根据图中正方体摆放的位置判定则可.【解答】解:从正面看,主视图有2列,正方体的数量分别是2、1.故选:C.【点评】此题主要考查了简单组合体的三视图,正确把握观察角度得出正确视图是解题关键.二、填空题:(每小题3分共18分)13.温度由﹣4℃上升7℃,达到的温度是 3 ℃.【分析】上升7℃即是比原的温度高了7℃,所以把原的温度加上7℃即可得出结论.【解答】解:∵温度从﹣4℃上升7℃,∴﹣4+7=3℃.故答案为3.【点评】本题考查了正负号的意义:上升为正,下降为负;在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0,从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.绝对值大于1而小于5的整数的和是0 .【分析】找出绝对值大于1而小于5的整数,求出之和即可.【解答】解:绝对值大于1而小于5的整数有﹣2,﹣3,﹣4,2,3,4,之和为0.故答案为:0.【点评】此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.15.若a、b互为相反数,c、d互为倒数,则代数式(a+b)2+cd﹣2的值为﹣1 .【分析】利用倒数及相反数的定义求出a+b与cd的值,代入计算即可求出值.【解答】解:根据题意得:a+b=0,cd=1,则原式=0+1﹣2=﹣1.故答案为:﹣1.【点评】此题考查了代数式求值,相反数,以及倒数,熟练掌握各自的定义是解本题的关键.16.已知A=22﹣1,B=3﹣22,则B﹣2A=﹣62+5 .【分析】将A和B的式子代入可得B﹣2A=3﹣22﹣2(22﹣1),去括号合并可得出答案.【解答】解:由题意得:B﹣2A=3﹣22﹣2(22﹣1),=3﹣22﹣42+2=﹣62+5.故答案为﹣62+5.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.17.如果单项式2y n+2与单项式ab7的次数相等,则n的值为 4 .【分析】根据单项式次数的定义进行解答即可.【解答】解:∵单项式2y n+2与单项式ab7的次数相等,∴2+n+2=1+7,解得n=4.故答案为:4.【点评】本题考查的是单项式,熟知一个单项式中所有字母的指数的和叫做单项式的次数是解答此题的关键.18.若4﹣1与7﹣2的值互为相反数,则=﹣3 .【分析】利用互为相反数两数之和为0列出方程,求出方程的解即可得到的值.【解答】解:根据题意得:4﹣1+7﹣2=0,移项合并得:2=﹣6,解得:=﹣3,故答案为:﹣3【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.三、解答题(共5小题,满分46分)19.(8分)计算题:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)【分析】(1)减法统一成加法,再根据加法结合律已经结合律即可解决问题;(2)先算乘方,再算乘除,最后算加减即可;【解答】解:(1)(﹣3)﹣(﹣2)﹣(﹣7)﹣(+2.75)=﹣3+2+7﹣2.75=﹣3+7+2﹣2.75=4+0=4(2)﹣32+5×(﹣)﹣(﹣4)2÷(﹣8)解:原式=﹣9﹣8﹣16÷(﹣8)=﹣9﹣8+2=﹣17+2=﹣15【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键,记住先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.20.(8分)化简题:(1)(5a2+2a﹣1)﹣4(3﹣8a+2a2)(2)32﹣〔7﹣(4﹣3)﹣22〕【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并即可得到结果.【解答】解:(1)原式=5a2+2a﹣1﹣12+32a﹣8a2=(5a2﹣8a2)+( 2a+32a)﹣(1+12)=﹣3a2+34a﹣13;(2)原式=32﹣(7﹣4+3﹣22)=32﹣7+4﹣3+22=(32+22)﹣(7﹣4)﹣3=52﹣3﹣3.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.21.(10分)解方程:(1)4﹣4(﹣3)=2(9﹣)(2).【分析】(1)依据去括号、移项、合并同类项、系数化为1等步骤求解即可;(2)依据去分母、去括号、移项、合并同类项、系数化为1等步骤求解即可.【解答】解:(1)4﹣4+12=18﹣2,﹣4+2=18﹣4﹣12,﹣2=2,=﹣1.(2)2(2+1)﹣(5﹣1)=6,4+2﹣5+1=6,4﹣5=6﹣2﹣1﹣=3,=﹣3.【点评】本题主要考查的是解一元一次方程,熟练掌握解一元一次方程的步骤和方法是解题的关键.22.(12分)先化简再求值(1)3(2﹣2﹣1)﹣4(3﹣2)+2(﹣1);其中=﹣3(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab;其中a=1,b=.【分析】(1)去括号、合并同类项后即可化简原式,再将、y的值代入计算.(2)去括号、合并同类项后即可化简原式,再将、y的值代入计算.【解答】解:(1)原式=32﹣6﹣3﹣12+8+2﹣2=32﹣(6+12﹣2)+(﹣3+8﹣2)=32﹣16+3,当=﹣3时原式=3×(﹣3)2﹣16×(﹣3)+3=78;(2)原式=2a2﹣(ab﹣2a2+8ab)﹣ab=2a2﹣ab+2a2﹣8ab﹣ab=(2a2+2a2)﹣(ab+8ab+ab)=4a2﹣9ab当a=1,b=时原式=4×12﹣9×1×=1【点评】本题主要考查整数的化简求值,解题的关键是熟练掌握整式的混合运算顺序和运算法则.23.(8分)列一元一次方程解应用题:某管道由甲、乙两工程队单独施工分别需要30天、20天.(1)如果两队从管道两端同时施工,需要多少天完工?(2)又知甲队单独施工每天需付200元施工费,乙队单独施工每天需付280元施工费,那么是由甲队单独施工,还是由乙队单独施工,还是由两队同时施工?请你按照少花钱多办事的原则,设计一个方案,并通过计算说明理由.【分析】(1)可设这项工程的工程总量为1,则甲乙的工作效率为:、,则甲乙合作的效率为:+,依等量关系,可求出两队同时施工所需的天数;(2)依施工所需费用=每天的施工费×施工所需天数为等量关系列出算式分别计算所需费用,求出施工费用最少的那个方案.【解答】解:(1)设需要天完工,由题意得+=1,解得:=12,答:如果两队从管道两端同时施工,需要12天完工;(2)由乙队单独施工花钱少,理由:甲单独施工需付费:200×30=6000(元),乙单独施工需付费:280×20=5600(元),两队同时施工需付费:(200+280)×12=5760(元),因为5600<5760<6000,所以由乙队单独施工花钱少.【点评】本题主要考查的一元一次方程,关键在于根据题意找出等量关系,列出方程求解.。