力学讲解

合集下载

1《静力学》内容讲解

1《静力学》内容讲解

第一章静力学【竞赛知识要点】重心共点力作用下物体的平衡物体平衡的种类力矩刚体的平衡流体静力学(静止流体中的压强)【内容讲解】一.物体的重心1.常见物体的重心:质量均匀分布的三角板的重心在其三条中线的交点;质量均匀分布的半径R的半球体的重心在其对称轴上距球心3R/8处;质量均匀分布的高为h的圆锥体的重心在其对称轴上距顶点为3h/4处。

2.重心:在xyz 三维坐标系中,将质量为m的物体划分为质点m1、m2、m3……m n.设重心坐标为(x0,y0,z0),各质点坐标为(x1,y1,z1),(x2,y2,z2)……(x n,y n,z n).那么:mx0=∑m i x i my0=∑m i y i mz0=∑m i z i【例题】1、(1)有一质量均匀分布、厚度均匀的直角三角板ABC,∠A=30°∠B=90°,该三角板水平放置,被A、B、C三点下方的三个支点支撑着,三角板静止时,A、B、C三点受的支持力各是N A、N B、N C,则三力的大小关系是.(2)半径为R的均匀球体,球心为O点,今在此球内挖去一半径为0.5R的小球,且小球恰与大球面内切,则挖去小球后的剩余部分的重心距O点距离为.2、如图所示,质量分布均匀、厚度均匀的梯形板ABCD,CD=2AB,求该梯形的重心位置。

3、在质量分布均匀、厚度均匀的等腰直角三角形ABC(角C为直角)上,切去一等腰三角形APB,如图所示。

如果剩余部分的重心恰在P点,试证明:△APB的腰长与底边长的比为5:4.4、(1)质量分别为m,2m,3m……nm的一系列小球(可视为质点),用长均为L的细绳相连,并用长也是L的细绳悬于天花板上,如图所示。

求总重心的位置5、如图所示,质量均匀分布的三根细杆围成三角形ABC,试用作图法作出其重心的位置。

6、如图所示,半径为R圆心角为θ的一段质量均匀分布的圆弧,求其重心位置。

7、论证质量均匀分布的三角形板的重心在三条中线的交点上8、求半径为R的厚薄均匀的半圆形薄板的重心9、均匀半球体的重心问题10、均匀圆锥体的重心11、如图所示,有一固定的半径为R 的光滑半球体,将一长度恰好等于R 21、质量为m 的均匀链条搭在球体上,其一端恰在球体的顶点上,并用水平拉力拉住链条使之静止,求拉力的大小。

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解位移法是结构力学中常用的一种分析方法,通过计算结构的位移来求解结构的内力、应力和变形等问题。

它的基本思想是建立结构的位移与应力之间的关系,并利用位移方程和边界条件,求解结构的位移分布,进而获得结构内力、应力和变形等信息。

1.位移概念:结构的位移是指结构中各点相对于参考点的位置变化量。

通常用向量形式表示,位移向量包含所有结构节点的位移分量。

位移分量包括两个方向的位移:横向位移和纵向位移。

横向位移是结构在水平方向上的位置变化,纵向位移是结构在垂直方向上的位置变化。

2.位移分布方程:位移分布方程是描述结构位移与应力之间关系的基本方程。

根据结构的力学特性和边界条件,可以建立位移方程。

一般情况下,位移方程包含多个线性方程,通过求解这些方程组,可以得到结构的位移分布。

常用的位移分布方程包括静平衡方程、变形方程和边界条件等。

3.静平衡方程:静平衡方程是结构力学中最基本的方程之一,它描述结构受力平衡的条件。

根据牛顿第二定律,结构的受力和位移之间存在其中一种关系。

通过建立结构受力平衡的方程,可以获得结构的位移分布。

4.变形方程:变形方程是位移法分析中的重要概念,它用来描述结构的变形与应力之间的关系。

根据结构力学理论,结构受到外力作用时,会发生形变,形成内力和应力。

通过建立变形方程,可以求解结构内力和应力分布。

5.边界条件:边界条件是位移法中必须考虑的条件,它是解决位移方程的关键因素。

边界条件主要包括结构的支座约束条件和结构受力边界条件。

支座约束条件指明结构的一些节点固定或受到特定的位移限制,受力边界条件指明结构的一些部分受到特定的外力或力矩作用。

6.内力和应力计算:通过求解结构的位移分布,可以计算得到结构的内力和应力。

内力是指结构中各点所受的力的大小和方向,包括轴力、剪力和弯矩等。

应力是指结构内部各点处的应力大小和方向,包括正应力和剪应力等。

7.变形计算:位移法可以用来计算结构的变形情况,包括横向变形和纵向变形。

(完整版)高中物理力学讲解与归纳

(完整版)高中物理力学讲解与归纳

(完整版)高中物理力学讲解与归纳引言物理力学作为物理学的一个重要分支,研究物体的运动和相互作用。

高中物理力学作为中学阶段的学科,是建立基础物理知识的重要一环。

本文将对高中物理力学的重要内容进行讲解与归纳。

第一部分:运动学运动学研究物体在空间中的运动,包括位置、速度、加速度等概念。

具体内容如下:1. 位置位置是物体在空间中所处的位置,可以通过坐标来描述。

2. 位移位移是物体从一个位置到另一个位置的变化量,用矢量表示。

3. 速度速度是物体单位时间内位移的变化量,是位移的导数。

速度可以分为平均速度和瞬时速度两种。

4. 加速度加速度是物体单位时间内速度的变化量,是速度的导数。

加速度可以分为平均加速度和瞬时加速度两种。

第二部分:动力学动力学研究物体的运动原因和运动规律,包括力、质量、牛顿三定律等概念。

具体内容如下:1. 力力是物体相互作用的结果,可以改变物体的运动状态。

力的大小用牛顿为单位。

2. 质量质量是物体所具有的物质量度,是衡量物体惯性大小的一种物理量。

3. 牛顿三定律牛顿三定律是描述物体运动规律的基本原理,分别是惯性定律、动量定律和作用反作用定律。

第三部分:万有引力万有引力是物体之间的一种特殊相互作用,可以解释天体运动和地球上物体的运动。

具体内容如下:1. 引力定律引力定律是描述万有引力的定律,它说明了两个物体之间引力的大小与质量和距离的关系。

2. 地球上物体的自由落体地球上的物体在没有其他力作用下,会以一定的加速度自由落体。

自由落体过程中,物体的速度和位移会随时间变化。

结论高中物理力学作为物理学的重要分支,研究物体的运动和相互作用,具有重要的科学意义和实际应用价值。

通过对运动学、动力学和万有引力的讲解与归纳,可以帮助学生更好地理解和应用物理力学知识,为今后的研究打下坚实基础。

以上是对高中物理力学的讲解与归纳,希望对大家有所帮助!。

牛顿的三大定律讲解牛顿力学的基本原理

牛顿的三大定律讲解牛顿力学的基本原理

牛顿的三大定律讲解牛顿力学的基本原理牛顿力学是经典力学的基础,由英国物理学家艾萨克·牛顿于17世纪末提出。

牛顿力学描述了物体运动的基本规律,其中最为重要的便是牛顿的三大定律。

本文将对牛顿的三大定律进行详细讲解,以帮助读者更好地理解牛顿力学的基本原理。

第一定律:惯性定律牛顿的第一定律也被称为惯性定律,它阐述了物体运动的基本原理。

按照牛顿的第一定律,物体如果不受到外力作用,将保持静止或匀速直线运动的状态。

这就是所谓的惯性。

例如,如果一个小车没有外力作用于它,它将继续保持静止;如果有一个外力作用于小车,它将以相应的加速度运动。

简而言之,物体的运动状态取决于作用在它上面的力。

第二定律:动力定律牛顿的第二定律被称为动力定律。

它描述了物体运动状态的改变与施加在物体上的力之间的关系。

牛顿的第二定律可以用以下公式表示:F = ma,其中F代表物体所受合力,m代表物体的质量,a代表物体的加速度。

根据这个公式,我们可以得出结论:当一个物体所受合力增大时,加速度也会增大;当物体质量增大时,同样的力作用下,它的加速度会减小。

第三定律:作用-反作用定律牛顿的第三定律被称为作用-反作用定律。

它表明任何施加在一个物体上的力都将有一个大小相等、方向相反的反作用力作用于施力物体上。

换句话说,对于任何作用力都存在一个相互作用力,且两个力的大小相等、方向相反。

例如,当我们站在滑板上并用脚推动滑板,滑板向前移动的同时也会用相等的反向力推动我们向后移动。

因此,作用力和反作用力总是同时出现,大小相等、方向相反。

通过牛顿的三大定律,我们可以更好地理解物体运动的规律。

这些定律不仅适用于地面上的物体,也适用于天体运动。

例如,行星围绕太阳的运动即可由这些定律解释。

总之,牛顿的三大定律为我们提供了一种对物体运动的基本描述和解释,是牛顿力学的核心。

除了三大定律外,牛顿还提出了重力定律。

根据牛顿的重力定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。

力学竞赛知识点总结

力学竞赛知识点总结

力学竞赛知识点总结力学是物理学的一个重要分支,研究物体在外力作用下的运动和形变规律。

力学属于理论物理学的范畴,具有非常重要的理论和实际意义。

在力学竞赛中,学生需要掌握一定的力学知识和解题技巧,才能取得优异的成绩。

本文将对力学竞赛中常见的知识点进行总结和详细讲解,希望能够帮助读者更好地理解力学知识点和提高解题能力。

1. 平抛运动平抛运动是力学中的一个重要概念,指物体在水平方向上具有初速度的情况下,受到重力的影响向上做抛体运动的过程。

平抛运动的关键是要理解水平和竖直方向的运动是相互独立的,即水平方向的速度不受竖直方向速度的影响,竖直方向的速度也不受水平方向速度的影响。

在力学竞赛中,平抛运动题目一般包括求抛体的飞行时间、最大高度、最大水平距离等问题,解题时需要根据抛体运动的基本方程进行计算,注意水平和竖直方向的速度、加速度以及运动时间的关系,从而得出正确的结论。

2. 牛顿运动定律牛顿运动定律是力学领域中的基本定律,包括牛顿第一定律、牛顿第二定律和牛顿第三定律。

牛顿第一定律指物体要么静止,要么以恒定速度直线运动,只要不受外力作用,物体就会保持原来的状态。

牛顿第二定律指出力是物体的质量和加速度的乘积,即F=ma。

牛顿第三定律指对于每一个力的作用都有一个等大的相反方向的反作用力。

在力学竞赛中,牛顿运动定律经常出现在题目中,要求学生根据物体的受力情况和运动状态进行分析和计算。

需要掌握牛顿定律的精髓,并且能够灵活应用,解决各种不同情景下的力学问题。

3. 动量和动量守恒动量是力学中另一个重要的物理量,定义为物体的质量乘以速度,即p=mv。

动量守恒定律指在没有外力作用的情况下,系统的总动量保持不变。

在力学竞赛中,动量守恒定律经常出现在碰撞、爆炸等问题中,需要学生根据碰撞前后动量守恒的原理进行计算和分析。

4. 动能和动能定理动能是物体由于运动而具有的能量,是一个基本的物理量。

动能定理指出物体的动能等于其质量乘以速度的平方再乘以1/2,即K=1/2mv^2。

初中物理教案力学基础知识的引入与讲解

初中物理教案力学基础知识的引入与讲解

初中物理教案力学基础知识的引入与讲解初中物理教案:力学基础知识的引入与讲解引言:力学是物理学的重要分支,是研究物体运动和变形的学科。

对初中学生来说,力学是一个全新的领域,因此在教学中需要引入基础知识,帮助学生理解物体的力学性质和运动规律。

本教案将介绍力学基础知识的引入与讲解的方法和步骤,以帮助初中生建立起对力学的初步概念和理解。

一、力学基础知识的引入1. 引起学生兴趣在引入力学的基础知识时,可以通过以生活中常见和感兴趣的事件或问题为例,引发学生的好奇心和思考欲望,激发他们对力学的兴趣。

例如,可以提出一个问题:“为什么乒乓球拍上有海绵?”或者展示一个有关运动的有趣视频片段,让学生产生疑问和思考。

2. 展示实物和现象为了帮助学生更好地理解力学的基础知识,可以利用实物和现象进行展示和演示。

例如,可以展示一个简单的弹簧,向学生解释弹簧的弹性和弹力,通过让学生触摸弹簧、拉伸弹簧等方式,让他们亲身体验弹簧的特性,从而引入弹力的概念。

3. 提出问题和讨论引导学生通过提出问题和进行讨论,来激发他们对力学基础知识的思考。

可以提出一些简单的问题,例如:“为什么我们需要用手推门才能打开?”或者“什么是摩擦力?”通过让学生展开思考和讨论,引导他们逐步理解力学中的一些基本概念和原理。

二、力学基础知识的讲解1. 力的概念和特性在引入力学的基础知识后,可以依次讲解力的概念和特性。

首先,通过示意图和具体实例,向学生介绍力的概念,即物体之间相互作用的结果。

然后,讲解力的大小、方向和作用点的特性,并利用图示演示和实际运动的例子,加深学生对力的理解。

2. 牛顿第一定律:惯性定律在讲解牛顿第一定律时,可以先简要介绍牛顿的三大定律,然后重点讲解第一定律,即惯性定律。

可以通过实验演示和实际例子来证明和解释惯性定律,加深学生对其的理解。

同时,可以引导学生进行小组讨论,探讨与惯性定律相关的日常生活中的现象和事件。

3. 牛顿第二定律:加速度定律在讲解牛顿第二定律时,可以首先观察一些物体的运动,引导学生发现并思考运动的规律。

高中物理静力学

高中物理静力学

高中物理静力学静力学(一)一、一周内容概述这周的主要内容是复习静力学,包括三种基本力和受力分析。

我们把重点掌握三种基本力的概念,大小,方向以及存在的条件,熟练掌握对物体的受力分析的方法,这是我们高中力学里面的基础。

二、重难点知识讲解(一)力1、概念:力是物体对物体的作用。

(1)同时存在受力物体和施力物体。

(2)力学中的研究对象是受力物体。

2、作用效果:使物体发生形变或改变物体的运动状态(即使物体产物加速度)。

(1)即使很小的力作用在物体上,也会使物体发生形变,只不过有时形变很小,不能直接观察到(这一点对于理解弹力很有帮助)。

(2)力是使物体运动状态发生改变的原因,而不是维持物体运动状态的原因。

(3)物体的运动状态的改变指速度的大小、方向之一或同时发生变化。

3、矢量性:既有大小又有方向。

(1)大小:弹簧秤称量,单位是牛顿(N)。

(2)方向:力作用的方向。

(3)力的图示法表示力的三要素——大小、方向、作用点。

注意:物理量有两类,矢量和标量。

标量只有大小没有方向。

两类物理量的最主要的区别是它们的运算法则,标量的运算法则是代数加减法,而矢量的运算法则是平行四边形定则。

力的矢量性是力概念的一大难点。

4、分类(1)按性质分,可分为万有引力(重力)、弹力、摩擦力、分子力、电磁力、核力等。

(2)按效果分,可分为压力、支持力、动力、阻力、向心力、回复力等。

(3)按作用方式分,可分为场力和接触力。

万有引力(重力)、电磁力均属于场力,弹力、摩擦力均属于接触力。

(4)按研究对象分,可分为外力和内力。

5、关于力的基本特性在研究与力相关的物理现象时,应该把握住力概念的如下基本特性。

(1)物质性:由于力是物体对物体的作用,所以力概念是不能脱离物体而独立存在的,任意一个力必然与两个物体密切相关,一个是其施力物体,另一个是其受力物体。

把握住力的物质性特征,就可以通过对形象的物体的研究而达到了解抽象的力的概念之目的。

(2)矢量性:作为量化力的概念的物理量,力不仅有大小,而且有方向,在相关的运算中所遵从的是平行四边形定则,也就是说,力是矢量。

高中物理力学的知识点总结

高中物理力学的知识点总结

高中物理力学的知识点总结高中物理力学的知识11.力的作用、分类及图示⑴力是物体对物体的作用,其特点有一下三点:①成对出现,力不能离开物体而独立存在;②力能改变物体的运动状态(产生加速度)和引起形变;③力是矢量,力的大小、方向、作用点是力的三要素。

⑵力的分类:①按力的性质分类;②按力的效果分类。

⑶力的图示:画图的几个关键点①作用点,即物体的受力点;②力的方向,在线的末端用箭头标出;③选定标度,并按大小结合标度分段。

2.重力⑴产生:①由于地球吸引而产生(但不等于万有引力)。

②方向竖直向下。

③作用点在重心。

⑵大小:①G=mg,在地球上不同地点g不同。

②重力的大小可用弹簧秤测出。

⑶重心:①质量分布均匀的有规则形状物体的重心,在它的几何中心。

②质量分布不均匀或不规则形状物体的重心,除与物体的形状有关外,还与质量的分布有关。

③重心可用悬挂法测定。

④物体的重心不一定在物体上。

3.弹力⑴产生:①物体直接接触且产生弹性形变时产生。

②压力或支持力的方向垂直于支持面而指向被压或被支持的物体;③绳的拉力方向沿着绳而指向绳收缩的方向。

有接触的物体间不一定有弹力,弹力是否存在可用假设法判断,即假设弹力存在,通过分析物体的合力和运动状态判断。

⑵胡克定律:在弹性限度内,F=KX,X-是弹簧的伸长量或缩短量。

4.摩擦力⑴静摩擦力:①物接触、相互挤压(即存在弹力)、有相对运动趋势且相对静止时产生。

②方向与接触切,且与相对运动趋势方向相反。

③除最大静摩擦力外,静摩擦力没有一定的计算式,只能根据物体的运动状态按力的平衡或F=ma求。

判断它的方向可采用“假设法”,即如无静摩擦力时物体发生怎样的相对运动。

⑵滑动摩擦力:①物接触、相互挤压且在粗糙面上有相对运动时产生。

②方向与接触面相切且与相对运动方向相反(不一定与物的运动方向相反)②大小f=μFN。

(FN不一定等于重力)。

滑动摩擦力阻碍物体间的相对运动,但不一定阻碍物体的运动。

摩擦力既可能起动力作用,也可能起阻力作用。

力学1-4复习和习题讲解

力学1-4复习和习题讲解

坐标原点,则该质点任意时刻的位矢是____.
解: 依题意,有 a F t i 4ti dv
m 0.25
dt
分离积
分变量

v
dv
2j
t
4t i
dt
v 2t 2 i 2 j
0
再由 v dr dr vdt dt
量大小为_m__v_d____。
分析: L r mv L rmv sin(r ,v )
mvr sin
mθ v
d θ•
r
o
mvd
11. (学习指导p27. 35 ) 质点P的质量为2kg,位移矢量为r ,
速度为v ,它受到力 F 的作用,这三个矢量均在Oxy面内,
且r =3.0m , v=4.0m/s , F=2N , 则该质点对原点O的角动
1
v5 m
5
5m(5
2t )dt
(25 5t 2)5

0
0
0
5.(学习指导p24. 16) 如图所示,光滑平面上有一个运动物体P,在P的 正前方有一个连有弹簧和挡板M的静止物体Q, 弹簧和挡板的质量不计, P与Q质量相同。物体P 与Q碰撞后P停止, Q以碰前P的速度运动。在此 碰撞过程中,弹簧压缩量最大的时刻是( )
(1)串联后总的劲度系数k满足: (2)并联后总的劲度系数k满足:
11 1
k k1 k2 k k1 k2
k1
k2
F
(1)
k1

k2
F
(2)
解(1) 串联时,两弹簧受力相等,均为F;伸长分 别为x1、x2.则总伸长x=x1+x2.
∴有 F=k1x1=k2x2

牛顿力 定义-概述说明以及解释

牛顿力 定义-概述说明以及解释

牛顿力定义-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对牛顿力的基本概念和重要性进行介绍,以及牛顿力对物体运动以及力学研究的重要作用进行说明。

牛顿力是由英国物理学家伊萨克·牛顿在17世纪发现并系统阐述的基本物理概念之一。

它是指物体之间相互作用产生的力量,是我们理解和描述物体运动及力学规律的基础。

通过研究牛顿力,我们可以深入了解物体在各种情况下的受力情况以及运动状态。

牛顿力的研究对于现代物理学和工程学的发展具有重要的意义。

它不仅为我们解释了天体运动和地球物理现象,例如行星绕太阳公转、落体运动以及运动物体的加速度等提供了理论基础,还为力学工程设计和运动控制提供了关键的思路和方法。

牛顿力学成为工程学科、天文学科和物理学的重要基石之一,为我们揭示了自然界中事物的运动规律。

在文章的后续部分,我们将进一步探讨牛顿力的定义以及其相关的定律,包括牛顿第一定律和牛顿第二定律。

通过这些定律,我们可以更加深入地理解牛顿力的本质和运作机制,并通过实例和应用来说明其重要性和实用性。

同时,我们还将对牛顿力学的研究未来发展方向进行展望,以期进一步推动物理学领域的发展和创新。

总之,本文将系统地介绍牛顿力的定义及其相关的定律,探讨其在物体运动和力学研究中的重要地位。

通过文章的阅读,读者将能够深入了解牛顿力的基本概念、作用及其在科学和工程中的广泛应用。

1.2 文章结构文章结构部分的内容可以按照以下方式撰写:文章结构:本文将围绕牛顿力这一主题展开讨论,文章共分为三个部分。

首先,在引言部分,将对文章的概述进行介绍,简要说明本文的结构和目的,并给出总结。

其次,在正文部分,将详细讲解牛顿力的定义以及牛顿力学的两个重要定律,即牛顿第一定律和牛顿第二定律。

最后,在结论部分,将对牛顿力的定义和定律进行总结,并讨论其在实际应用中的意义。

此外,还将展望牛顿力研究的未来发展方向。

通过以上结构的安排,本文将全面介绍牛顿力的定义和定律,并探讨其在实际应用中的意义。

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解

位移法结构力学知识点概念讲解1.结构位移:结构在受力作用下会发生形变,而位移描述了结构各点之间的距离变化。

位移可以分为水平位移和竖向位移,用于表示结构在水平和竖直方向的变形情况。

2.自由度:结构的自由度是指结构中可以自由变动的独立变量的个数。

自由度越多,结构描述和计算的精度越高。

常见的自由度有平动自由度和转动自由度,平动自由度用于描述结构的水平位移,而转动自由度用于描述结构的转动变形。

3.约束条件:结构中存在的各种约束条件限制了结构的自由度。

约束条件是指结构中一些部分的位移受到限制,不能随意变动。

常见的约束条件有支座和铰链等,它们可以限制结构的平动和转动自由度。

4.单元:位移法将结构划分为若干个单元,每个单元由一组节点和单元内部的位移函数组成。

节点是指结构中的一些特定点,单元内部的位移函数用于描述该单元内部各处的位移情况。

6.节点位移:节点位移是指结构中各个节点的位移,它通过节点的约束条件和单元的位移函数之间的关系得到。

节点位移是位移法计算的核心内容,通过计算节点位移可以得到结构的变形和位移分布。

7.应变:结构在荷载作用下会发生应变,应变描述了结构内部各点的变形情况。

应变是位移的导数,可以通过位移的一阶导数来表示。

应变的计算是位移法中重要的步骤之一8.应力:结构在荷载作用下会发生应力,应力描述了结构各点的受力情况。

应力是力和单位面积的比值,可以通过应变和材料的本构关系得到。

应力的计算是位移法中重要的步骤之一通过以上的概念和知识点,位移法可以对不同类型的结构进行分析和计算。

它是结构力学中常用的方法之一,通过假设结构的位移函数和节点之间的位移关系,得到了结构的变形和位移的近似解。

在实际工程中,位移法广泛应用于桥梁、建筑物和各种结构的设计和分析中,具有重要的理论和实践意义。

理论力学教程 (周衍柏)(第四版)

理论力学教程 (周衍柏)(第四版)

理论力学教程 (周衍柏)(第四版)介绍《理论力学教程 (周衍柏)(第四版)》是一本经典的力学教材,由著名力学学者周衍柏编写。

本教程系统讲解了理论力学的基本概念、原理和方法,是理论力学领域的入门教材。

本文档将对该教程的主要内容进行介绍,并以Markdown文本格式输出。

第一章:基本概念1.1 力学的研究对象力学是研究物体运动规律的科学,它将物体分为质点和刚体两个研究对象。

质点被简化为没有具体形状和大小的点,刚体则具有固有形状和大小。

1.2 运动的描述运动可以通过位置、速度和加速度等量来描述。

位置是描述物体在空间中的位置关系,速度是位置随时间的变化率,加速度是速度随时间的变化率。

1.3 牛顿力学的三大定律牛顿力学的三大基本定律为惯性定律、动量定律和作用反作用定律。

惯性定律描述了物体在无外力作用下保持匀速直线运动的性质,动量定律描述了物体受力作用下速度发生变化的规律,作用反作用定律描述了力的相互作用导致的物体运动规律。

第二章:质点运动学2.1 一维直线运动一维直线运动是质点只沿一条直线方向运动的情况。

可以通过物体的位移、速度和加速度来描述其一维直线运动规律。

2.2 二维平面运动二维平面运动是质点在平面内任意方向上运动的情况。

可以通过物体的平面位置、速度和加速度来描述其二维平面运动规律。

2.3 相对运动相对运动是指两个运动物体相对于彼此的运动情况。

可以通过相对速度来描述两个物体之间的相对运动规律。

第三章:质点动力学3.1 牛顿第二定律牛顿第二定律描述了质点受力作用下速度的变化规律,即力等于质量乘以加速度。

3.2 动量定理动量定理描述了质点受力作用下动量的变化规律,即力是动量随时间的变化率。

3.3 机械能守恒定律机械能守恒定律适用于只受重力和弹性力作用的质点,描述了质点机械能(动能和势能之和)在运动过程中的守恒性质。

第四章:刚体静力学4.1 刚体的概念刚体是指形状和大小在运动过程中保持不变的物体。

刚体静力学研究的是刚体受力平衡时的性质和规律。

大一力学角动量的知识点

大一力学角动量的知识点

大一力学角动量的知识点角动量是物体运动中的一个重要物理量,它与物体的质量和速度有关。

在大一力学学习中,我们会接触到一些与角动量相关的知识点,本文将对这些知识点进行讲解。

1. 角动量的定义角动量(Angular Momentum)是物体绕某一轴旋转时所具有的物理量。

对于质点,其角动量L定义为质点的质量m与质点的径向距离r乘以质点的速度v在垂直于质点运动平面上的投影,即L = mvr。

其中,v是质点的速度,r是质点到轴线的距离。

2. 角动量守恒定律在没有外力作用的情况下,系统的总角动量守恒。

这意味着当一物体的角动量发生变化时,其他物体的角动量也会发生相应的变化,但总的角动量保持不变。

3. 角动量定理角动量定理描述了角动量的变化与作用力之间的关系。

根据角动量定理,物体所受的净外力产生的角动量变化率等于净外力对物体的力矩(Torque)。

即dL/dt = τ,其中τ是作用在物体上的力矩。

4. 角动量守恒的应用角动量守恒定律被广泛应用于物理学的不同领域。

在自然界中,许多现象和实验都可以通过角动量守恒来解释。

例如,当滑轮系统中的绳子拉动产生一个力矩时,滑轮上各质点的角动量随之改变,但总的角动量保持不变。

又如,当一个旋转的冰艇收缩时,由于角动量守恒,冰艇的旋转速度会变大。

5. 角动量与转动惯量转动惯量(Moment of Inertia)是描述物体绕轴旋转惯性的物理量。

对于质点而言,转动惯量I等于质点的质量m乘以质点到轴线的距离的平方,即I = mr^2。

角动量L和转动惯量I之间的关系是L = Iω,其中ω是物体绕轴旋转的角速度。

6. 角动量与角加速度根据牛顿第二定律和角动量定理,可以推导出角动量与角加速度之间的关系。

对于经过一段时间Δt的力矩作用,角动量的变化量ΔL = τΔt。

而角动量的变化量ΔL还可以表示为ΔL = IΔω。

将上述两个等式联立,可以得到IΔω = τΔt。

令Δt趋近于0,可以得到Iα = τ,其中α是角加速度。

力学公式总结

力学公式总结

力学公式总结力学是物理学的一个重要分支,研究物体在外界作用下的运动和力的关系。

在力学研究中,有许多核心的公式被广泛使用。

本文档将总结一些常见的力学公式,并提供其含义和应用场景。

1. 牛顿第一定律牛顿第一定律又被称为惯性定律,它规定如果没有外力作用于物体,物体将保持匀速直线运动或静止状态。

公式:F = 0应用:在没有外力的情况下,物体的加速度为零,速度保持不变。

2. 牛顿第二定律牛顿第二定律描述了物体在外力作用下的加速度与所受力的关系。

公式:F = ma其中,F为作用于物体的力,m为物体的质量,a为物体的加速度。

应用:通过测量物体的质量和所受力,可以计算出物体的加速度。

3. 牛顿第三定律牛顿第三定律也被称为作用反作用定律,它规定对于任意两个物体,彼此之间的作用力大小相等、方向相反。

公式:F₁ = -F₂其中,F₁和F₂分别表示两个物体之间的作用力。

应用:当物体受到外界力的作用时,会对其他物体产生相等大小、方向相反的力。

4. 动能公式动能是物体运动时拥有的能量,它与物体的质量和速度有关。

公式:K = (1/2)mv²其中,K为动能,m为物体的质量,v为物体的速度。

应用:可以通过测量物体的质量和速度,计算出物体的动能。

5. 动量定理动量定理描述了物体受到外力作用时动量的变化。

公式:FΔt = Δp = mΔv其中,F为作用力,Δt为作用时间,Δp为动量的变化量,m为物体的质量,Δv为速度的变化量。

应用:可以通过测量作用力、作用时间和物体质量,计算出物体的动量变化量。

6. 弹力公式弹力是一种恢复性力,当物体受到压缩、拉伸或弯曲时产生。

公式:F = kΔx其中,F为弹力,k为弹簧常数,Δx为物体弹性变形的位移量。

应用:通过测量弹簧常数和物体弹性变形的位移量,可以计算出物体所受的弹力。

7. 万有引力定律万有引力定律描述了两个物体之间的引力大小与它们的质量和距离的关系。

公式:F = G(m₁m₂/r²)其中,F为引力,G为万有引力常数,m₁和m₂为两个物体的质量,r为两个物体之间的距离。

工程力学概述和例题讲解

工程力学概述和例题讲解
▲ 静力学基础(静力学理论基础,物体受力分析) ▲ 力系的简化(各种力系的简化过程) ▲ 力系的平衡(各种力系的平衡条件及应用) ▲ 应用问题--桁架与摩擦(考虑摩擦的平衡)
静力学基本内容
静力学——研究物体受力及平衡规律。(只研究“力”) Statics
刚体、刚体系
建筑结构静 力计算
静力学基本概念
空气动力学,水动力学 一般力学——研究经典力学的一般原理
静力学,理论力学,振动力学
绪论
本课程特点 第一门技术基础课——基础课与专业基础课之间
前面基础 课:数学、 物理
工程 力学
后续力学课:固体力学、 结构力学、弹性力学、 塑性力学、流体力学等
专业基 础课
专 业 课
① 概念性强、 逻辑严密、 理论系统;
1静.2力.3 学公公理3理
公理3
加减平衡力系公理: 在已知力系上加或减去任意平衡力系,并不改变 原力系对刚体的作用。 此公理是研究力系等效的重要依据。
推理1 力的可传性: 作用在刚体上某点的力,可沿其作用线移动,而 不改变它对刚体的作用。
力对刚体的三要素: 1)大小; 2)方向; 3)作用线。
在此,力是有固定作用线的滑动矢量。
等效力系:如果两力系对物体的作用效应相同,则称它们为 等效力系,简称等效。
力系简化:用一简单力系等效替换一个复杂力系,称为力系 的简化。
合力与分力:若某力系与一个力等效,则称此力为该力系的合 力;而该力系的各力成为此力的分力。
静力学基本概念
1.1.2 刚体的概念 刚体:是指在力的作用下不变形的物体,即在力的作用下其
力对点之矩矢在通过该点的某轴上的投影等于力对该轴之矩。
4)合力矩定理
F RF 1F 2F n M Moz((FFRR))

专题6.1 力学实验通性通法讲解(解析版)

专题6.1 力学实验通性通法讲解(解析版)

第六部分实验优化指导专题6.1 力学实验通性通法讲解目录一.力学实验通性通法 (1)(一)把力测出来 (1)(二)让物体动起来 (1)(三)把速度测出来 (2)(四)把加速度测出来 (2)二.以“本”为本/教材基础实验再回首 (3)实验一纸带和光电门类实验 (3)实验二弹簧、橡皮条、碰撞类实验 (12)三.专题强化训练 (20)【概述】物理力学部分的实验共有八个,包括测量做直线运动物体的瞬时速度,探究弹簧弹力与形变量的关系,探究两个互成角度的力的合成规律,探究加速度与物体受力、物体质量的关系,验证机械能守恒定律,探究平抛运动的特点,探究向心力大小与半径、角速度、质量的关系,验证动量守恒定律,这些实验都离不开力、长度、加速度的测量,离不开让物体运动起来。

将具有相同点的实验进行分类归纳,有利于考生化繁为简、化厚为薄、总结规律,把握内核巧迁移。

一.力学实验通性通法(一)把力测出来方法仪器器材相关实验基本法测力计、力传感器探究两个互成角度的力的合成规律等平衡法测力计、天平探究弹簧弹力与形变量的关系等替代法天平探究加速度与物体受力、物体质量的关系方法操作相关实验牵引法重物拉线跨过定滑轮牵引小车或滑块在轨道上运动测量做直线运动物体的瞬时速度,探究加速度与物体受力、物体质量的关系等弹射法物体在压缩的弹簧作用下由静止射出验证机械能守恒定律等落体法重物自由落体验证机械能守恒定律,测量重力加速度等自滑法物体由静止无初速度释放后探究平抛运动的特点,验证动沿斜面下滑量守恒定律等(三)把速度测出来方法主要仪器器材操作相关实验纸带法交流电源、打点计时器、刻度尺测出计数点间距,由打出某点前后两点时间内的平均速度替代打出该点时的速度测量做直线运动物体的瞬时速度,探究加速度与物体受力、物体质量的关系,验证机械能守恒定律,验证动量守恒定律等光电门法光电门、螺旋测微器或游标卡尺测出遮光条的宽度及遮光时间,由遮光时间内的平均速度代替物体经过光电门时的速度平抛法竖直平面内末端水平的倾斜或弧形轨道、刻度尺测出物体离开轨道末端后平抛运动的高度与射程,由平抛运动规律计算初速度验证动量守恒定律等弹簧、刻度尺、天平探究弹性势能等圆周法竖直平面内的圆弧轨道、力传感器、天平等力传感器测出物体经过轨道最低点时对轨道的压力,由牛顿运动定律计算物体经过最低点时的速度验证机械能守恒定律等反过来由机械能守恒定律或动能定理计算最低点的速度探究向心力大小与半径、角速度、质量的关系等方法原理与操作相关实验公式法利用纸带或频闪照片,以最常见的6段位移为例,逐差法计算加速度的公式为a=(x4+x5+x6)-(x1+x2+x3)9T2研究匀变速直线运动,探究加速度与物体受力、物体质量的关系,测量重力加速度等由物体运动轨道上的两光电门分别测出两个时刻的速度及对应位移,根据v2-v02=2ax计算加速度图像法算出选定计数点的速度,建立v­t图像,由图像斜率计算加速度根据xt=v0+12at建立xt­t图像,由图像斜率计算加速度,但要注意,加速度等于图像斜率的2倍,此外纵轴截距表示初速度实验一纸带和光电门类实验【谨记要点】1.涉及的实验(1)研究匀变速直线运动。

第二章力学基础知识讲解

第二章力学基础知识讲解

第二章力学基础知识学习力学基础知识的目的在于了解吊索具的受力特点,掌握简单静力计算方法。

第一节力的性质一、力的概念力的概念是人们在长期的生活和生产实践中经过观察和分析,逐步形成和建立的。

当人们用手握、拉、掷、举物体时,由于肌肉紧张而感受到力的作用。

这种作用广泛地存在于人与物及物与物之间。

人们从大量的实践中,形成力的科学概念,即力是物体间相互的机械作用。

这种作用一是使物体的机械运动状态发生变化,称为力的外效应,例如用手推小车,小车受了“力”的作用,由静止开始运动;另一个是使物体产生变形,称为力的内效应,例如用锤子敲打会使烧红的铁块变形。

二、物体重力物体所受的重力是由于地球的吸引而产生的。

重力的方向总是竖直向下的,物体所受重力大小C和物体的质量m成正比,用关系式G=mg表示。

通常,在地球表面附近,f取值为9.8N/kg,表示质量为lkg的物体受到的重力为9.8N。

在已知物体的质量时,重力的大小可以根据上述的公式计算出来。

例:起吊一质量为5×103kg的物体,其重力为多少?解:根据公式:G=mg=5×103×9.8=49×103 (N)答:物体所受重力为49×103N。

在国际单位制中,力的单位是牛顿,简称“牛”,符号是“N”。

在工程中常冠以词头“kN”、“dan”,读作“千牛”、“十牛”。

与以前工程单位制采用的“公斤力(kgf)”的换算关系:1公斤力(kgf)=9.8牛(N)≈10牛(N)三、力的三要素实践证明,力作用在物体上所产生的效果,不但与力的大小和方向有关,而且与力的作用点有关。

我们把力的大小、方向和作用点称为力的三要素。

改变三要素中任何一个时,力对物体的作用效果也随之改变。

例如用手推一物体,如图2—1所示,若力的大小不同,或施力的作用点不同,或施力的方向不同都会对物体产生不同的作用效果。

图2—1 力的作用在力学中,把具有大小和方向的量称为矢量。

物理力学理论讲解

物理力学理论讲解

物理力学理论讲解教案主题:物理力学理论讲解教学目标:1. 理解力学的基本概念和原理;2. 掌握力学中常见的力的分类与表示方法;3. 了解牛顿运动定律及其应用;4. 能够运用力学原理解决简单的力学问题。

教学重点:1. 力学的基本概念和原理;2. 牛顿运动定律及其应用。

教学难点:1. 力学原理的理解和应用;2. 如何解决力学问题。

教学准备:1. 教师准备:学科课本、教学PPT、示范实验器材;2. 学生准备:学习纸、铅笔、课本、笔记本等。

教学过程:一、导入(引出力学概念,激发学生学习兴趣,5分钟)通过一个力学实例引出力的概念,例如:手扔物体的运动轨迹,引导学生思考物体运动的原因和规律。

二、内容讲解(分节论述力学知识,30分钟)1. 力的定义及分类a. 力的概念:作用于物体的推、拉或阻碍物体运动的物理量;b. 力的分类:接触力、重力、弹力、摩擦力等;c. 力的表示方法:矢量、单位等。

2. 牛顿运动定律a. 第一定律:惯性定律;b. 第二定律:力的联系;c. 第三定律:作用力与反作用力。

3. 力学原理的应用a. 重力的应用:物体自由落体、斜抛运动等;b. 摩擦力的应用:物体在斜面上的运动等;c. 弹力的应用:弹簧振子的运动等。

三、示范实验(通过实验加深学生对力学知识的理解,15分钟)通过展示实验器材和进行示范实验,让学生亲自操作,观察和记录实验现象,进一步巩固力学原理的应用。

四、课堂练习(提供一些简单的问题供学生小组合作讨论,15分钟)将学生分成小组,发放练习题,要求学生通过小组合作解答问题,加深对力学原理的理解和运用。

教师应及时给予指导和纠正。

五、知识总结(15分钟)通过师生互动,对本节课所学的力学知识进行总结和归纳,激励学生记忆和理解力学的基本原理和应用。

六、作业布置(5分钟)布置适当的课后作业,要求学生运用所学的力学知识解决相关问题,并督促学生按时完成。

教学反思:本节课采用了多种教学方式,包括讲解、示范实验和小组合作讨论,旨在提高学生的学习兴趣和参与度。

大学物理力学ppt课件

大学物理力学ppt课件

02
非线性物理力学的研究对象与 方法
03
非线性物理力学的应用领域与 发展趋势
混沌现象与分形几何在物理力学中应用
01
02
03
混沌现象的基本概念与 原理
分形几何在物理力学中 的应用
混沌现象与分形几何在 物理力学中的联系与区

量子物理力学发展前沿
量子物理力学的基本概念与原理 量子物理力学的研究对象与方法 量子物理力学的发展前沿与未来趋势
E=mc^2,表示物体的能量与其质量成正比,其中c为光速。
02
能量与质量的等价性
质能方程揭示了能量与质量的等价性,即能量可以转化为质量,质量也
可以转化为能量。
03
核反应中的质量亏损与能量释放
在核反应中,反应前后的质量差乘以光速的平方即为释放的能量。
广义相对论简介
01
等效原理
在局部区域内,无法 区分均匀引力场和加 速参照系中的物理效 应。
感谢观看
02
时空弯曲
物质的存在会导致时 空的弯曲,物体的运 动轨迹受弯曲时空的 影响。
03
引力波
加速运动的物体会辐 射引力波,引力波是 时空弯曲中的涟漪效 应。
04
黑洞与宇宙学
广义相对论预言了黑 洞的存在,并为宇宙 学提供了理论框架。
06
现代物理力学进展与应用
Chapter
非线性物理力学概述
01
非线性物理力学的基本概念与 原理
应用场景
解释飞机升力、喷雾器原理、虹吸现象等。
注意事项
仅适用于不可压缩、无粘性的理想流体,且流动必须是定常的。
黏性现象与斯托克斯定律
01
黏性现象
流体内部由于分子间相互作用而 产生的内摩擦力,表现为流动阻 力。
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2-3力矩转动定律转动惯量
求摩擦力对y 轴的力矩

在定轴转动中,力矩可用代数值进行计算
例如
2. 刚体对定轴的转动定律
在国际单位中k = 1
刚体的转动定律
讨论
(2) 力矩相同,若转动惯量不同,产生的角加速度不同
(3) 与牛顿定律比较:
3. 转动惯量
刚体绕给定轴的转动惯量J 等于刚体中每个质元的质量与该质元到转轴距离的平方的乘积之总和。

定义式质量不连续分布
质量连续分布
物理意义
转动惯量是描述刚体在转动中的惯性大小的物理量。

它与刚体的形状、质量分布以及转轴的位置有关。

计算转动惯量的三个要素:
(1)总质量;(2)质量分布;(3)转轴的位置
(1) J 与刚体的总质量有关
例如两根等长的细木棒和细铁棒绕端点轴转动惯量
(2) J 与质量分布有关
例如圆环绕中心轴旋转的转动惯量
例如圆盘绕中心轴旋转的转动惯量
(3) J 与转轴的位置有关
4 平行轴定理
例均匀细棒的转动惯量
(2) (薄板)垂直轴定理
x,y 轴在薄板内;
z 轴垂直薄板。

例如求对圆盘的一条直径的转动惯量
已知
(3) 几种刚体的转动惯量
下面给出了一些常见刚体的转动惯量。

请注意在转动惯量的计算中,转轴位置的重要性。

5. 转动定律的应用举例
例一轻绳绕在半径r =20 cm 的飞轮边缘,
在绳端施以F=98 N 的拉力,飞轮的转动惯量
J=0.5 kg·m2,飞轮与转轴间的摩擦不计,
(见图)
求(1) 飞轮的角加速度
(2) 如以重量P =98 N的物体挂在绳端,试计算飞轮的角加速度
例一根长为l ,质量为m 的均匀细直棒,可绕轴O 在竖直

面内转动,初始时它
在水平位置
解取一质元
重力对整个棒的合力矩等于重力全部集中于质心所产生的力矩
对一有限过程
从上式看到:外力对刚体所作的功等于合力矩对角位移的积分,它是力做的功在刚体转动中的特殊表现形式。

讨论
(1) 合力矩的功
(2) 力矩的功就是力的功。

(3) 内力矩作功之和为零
3. 转动动能定理——力矩功的效果
对于一有限过程
绕定轴转动刚体在任一过程中动能的增量,等于在该过程中作用在刚体上所有外力所作功的总和。

这就是绕定轴转动刚体的——动能定理
对于包括刚体的系统,功能原理和机械能守恒定律仍成立:
系统外力所作的功与系统非保守内力所作的功之和等于系统机械能的增量。

如果只有保守内力做功,系统的机械能也守恒。

例一根长为l ,质量为m 的均匀细直棒,可绕轴O 在竖直平
面内转动,初始时它在水平位置

由动能定理
此题也可用机械能守恒定律方便求解。

相关文档
最新文档