八年级数学平行四边形的重点、难点典型例题
八年级初二数学平行四边形知识归纳总结及答案
八年级初二数学平行四边形知识归纳总结及答案一、选择题1.如图所示,E 为正方形ABCD 的边BC 延长线上一点,且CE =AC ,AE 交CD 于点F ,那么∠AFC 的度数为( )A .112.5°B .125°C .135°D .150°2.如图,把正方形ABCD 沿对边中点所在的直线对折后展开,折痕为,MN 再过点B 折叠纸片,使点A 格在MN 上的点F 处,折痕为,BE 若AB 长为2,则EN 的长为(( )A .233-B .322-C .2 D .233.如图,菱形ABCD 中,60BAD ∠=︒,AC 与BD 交于O ,E 为CD 延长线上的一点,且CD DE =,连结BE 分别交AC ,AD 于点F ,G ,连结OG 则下列结论:①12OG AB =;②与EGD ∆全等的三角形共有5个;③ABF S S ∆>四边形ODGF ;④由点A ,B ,D ,E 构成的四边形是菱形.其中正确的是( )A .①④B .①③④C .①②③D .②③④4.如图,在平行四边形ABCD 中,120C ∠=︒,4=AD ,2AB =,点E 是折线BC CD DA --上的一个动点(不与A 、B 重合).则ABE △的面积的最大值是( )A .32B .1C .32D .235.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .43B .75C .2D .52-6.如图,在正方形ABCD 外侧,作等边三角形ADE ,AC ,BE 相交于点F ,则∠CBF 为( )A .75°B .60°C .55°D .45°7.下列命题中,真命题的个数有( ) ①对角线相等的四边形是矩形; ②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形. A .3个B .2个C .1个D .0个8.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为1S 、2S 、3S ,若1S =3,3S =8,则2S 的值为( )A .22B .24C .44D .489.如图,四边形ABCD 为平行四边形,D ∠为锐角,BAD ∠的平分线AE 交CD 于点F ,交BC 的延长线于点E ,且AF FE =.若25AB =,ABCD 面积为300,则AF 的长度为( )A .30B .15C .40D .2010.如图,点,,A B E 在同一条直线上,正方形ABCD 、正方形BEFC 的边长分别为23,、H 为线段DF 的中点,则BH 的长为( )A .212 B .26 C .332D .292二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.13.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.14.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).15.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .16.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).17.如图,长方形ABCD 中,26AD =,12AB =,点Q 是BC 的中点,点P 在AD 边上运动,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为______,18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AFn BC=,ECm BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.三、解答题21.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上. (1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EMFN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CFBF的值为_______(结果用含n 的式子表示).22.如图1,ABC ∆是以ACB ∠为直角的直角三角形,分别以AB ,BC 为边向外作正方形ABFG ,BCED ,连结AD ,CF ,AD 与CF 交于点M ,AB 与CF 交于点N .(1)求证:ABD FBC ∆≅∆;(2)如图2,在图1基础上连接AF 和FD ,若6AD =,求四边形ACDF 的面积. 23.在一次数学探究活动中,小明对对角线互相垂直的四边形进行了探究,得出了如下结论:如图1,四边形ABCD 的对角线AC 与BD 相交于点O ,AC BD ⊥,则2222AB CD AD BC +=+.(1)请帮助小明证明这一结论;(2)根据小明的探究,老师又给出了如下的问题:如图2,分别以Rt ACB 的直角边AC 和斜边AB 为边向外作正ACFG 和正方形ABDE ,连结CE 、BG 、GE .已知4AC =,5AB =,求GE 的长,请你帮助小明解决这一问题.24.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC 、CF 为邻边作平行四边形ECFG .(1)求证:四边形ECFG 是菱形;(2)连结BD 、CG ,若120ABC ∠=︒,则BDG ∆是等边三角形吗?为什么? (3)若90ABC ∠=︒,10AB =,24AD =,M 是EF 的中点,求DM 的长. 25.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F . (1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想; (3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.26.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上.(1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.27.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DCAE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O .(1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B,连接AB.(1)求出直线BC的解析式;(2)若动点M从点C出发,沿线段CB以每分钟10个单位的速度运动,过M作//MN AB 交y轴于N,连接AN.设运动时间为t分钟,当四边形ABMN为平行四边形时,求t的值. (3)P为直线BC上一点,在坐标平面内是否存在一点Q,使得以O、B、P、Q为顶点的四边形为菱形,若存在,求出此时Q的坐标;若不存在,请说明理由.29.在四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正方形,且EF⊥GH,易知S△BOE=S△AOG,又因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正方形ABCD;(2)类比探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(用含a、b、m的代数式表示);(3)拓展迁移:如图③,若四边形ABCD是平行四边形,且S四边形AEOG=14S▱ABCD,若AB=3,AD=5,BE=1,则AG=.30.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG517DE的长.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据等边对等角的性质可得∠E=∠CAE,然后根据正方形的对角线平分一组对角以及三角形的一个外角等于与它不相邻的两个内角的和列式求出∠E=22.5°,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:∵CE=AC,∴∠E=∠CAE,∵AC是正方形ABCD的对角线,∴∠ACB=45°,∴∠E+∠CAE=45°,∴∠E=12×45°=22.5°,在△CEF中,∠AFC=∠E+∠ECF=22.5°+90°=112.5°.故答案为:A.【点睛】本题考查了正方形的性质,等腰三角形的性质,主要利用了正方形的对角线平分一组对角,等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.2.A解析:A【分析】根据翻转变换的性质求出BM、BF,根据勾股定理计算求出FM的值;再在Rt△NEF中,运用勾股定理列方程求解,即可得到EN 的长.【详解】∵四边形ABCD 为正方形,AB=2,过点B 折叠纸片,使点A 落在MN 上的点F 处,∴FB=AB=2,BM=12BC=1,BF=BA=2,∠BMF=90°, 则在Rt △BMF 中,FM ==∴2FN MN FM =-=-设AE=FE=x ,则EN=1x -,∵Rt △EFN 中,222NE NF EF +=,∴()(22212x x -+=,解得:4x =-∴EN=13x -=.故选:A .【点睛】本题考查了翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.3.A解析:A【分析】连结AE ,可说明四边形ABDE 是平行四边形,即G 是BE 的中点;由有题意的可得O 是BD 的中点,即可判定①;运用菱形和平行四边形的性质寻找判定全等三角形的条件,找出与其全等的三角形即可判定②;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD∽△ABD,△ABF∽△OGF,由相似三角形的性质和面积关系得出S 四边形0DGF =S △ABF .即可判定③;先说明△ABD 是等边三角形,则BD=AB,即可判定④.【详解】解:如图:连结AE .DE CD AB ==,//CD AB ,∴四边形ABDE 是平行四边形,G ∴是BE 的中点,∵O 是BD 的中点1122OG DE AB ∴==,①正确; 有BGA ∆,BGD ∆,AOD ∆,COD ∆,COB ∆,AOB ∆,共6个,②错误; ∵OB=OD ,AG=DG ,∴OG 是△ABD 的中位线,∴OG//AB,OG=12AB , ∴△GOD∽△ABD,△ABF∽△OGF,∵△GOD 的面积=14△ABD 的面积,△ABF 的面积=△OGF 的面积的4倍,AF:OF=2:1, ∴△AFG 的面积=△OGF 的面积的2倍,又∵△GOD 的面积=△A0G 的面积=△B0G 的面积, .∴=ABF S S ∆四边形ODGF ;不正确;③错误;60AB AD BAD =⎧⎨∠=︒⎩ ABD ∴∆是等边三角形.BD AB ∴=,ABDE ∴是菱形,④正确.故答案为A .【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形中位线定理、相似三角形的判定与性质等知识;考查知识点较多、难道较大,解题的关键在于对所学知识的灵活应用.4.D解析:D【分析】分三种情况讨论:①当点E 在BC 上时,高一定,底边BE 最大时面积最大;②当E 在CD 上时,△ABE 的面积不变;③当E 在AD 上时,E 与D 重合时,△ABE 的面积最大,根据三角形的面积公式可得结论.【详解】解:分三种情况:①当点E 在BC 上时,E 与C 重合时,△ABE 的面积最大,如图1,过A 作AF ⊥BC 于F ,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠C+∠B=180°,∵∠C=120°,∴∠B=60°,Rt△ABF中,∠BAF=30°,∴BF=12AB=1,AF=3,∴此时△ABE的最大面积为:12×4×3=23;②当E在CD上时,如图2,此时,△ABE的面积=12S▱ABCD=12×4×3=23;③当E在AD上时,E与D重合时,△ABE的面积最大,此时,△ABE的面积=23,综上,△ABE的面积的最大值是23;故选:D.【点睛】本题考查平行四边形的性质,三角形的面积,含30°的直角三角形的性质以及勾股定理等知识,解题的关键是学会添加常用辅助线,并运用分类讨论的思想解决问题.5.C解析:C【分析】延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH的长.【详解】解:如图,延长BG交CH于点E,在△ABG和△CDH中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩,∴△ABG ≌△CDH (SSS ),AG 2+BG 2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE -BG=4-3=1,同理可得:HE=1,在Rt △GHE 中,=故选:C.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.6.A解析:A【分析】根据正方形的性质及等边三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC ,进而得出∠CBF .【详解】解:∵四边形ABCD 是正方形,∴AB=AD ,又∵△ADE 是等边三角形,∴AE=AD=DE ,∠DAE=60°,∴AB=AE ,∴∠ABE=∠AEB ,∠BAE=90°+60°=150°,∴∠ABE=(180°-150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.∴∠BFA=180°-60°=120°,∴∠CBF=180°-∠BCA-∠BFC=180°-45°-60=75°,故选:A.【点睛】本题主要是考查正方形的性质和等边三角形的性质,解本题的关键是求出∠ABE=15°.7.C解析:C【分析】正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.【详解】①对角线相等且互相平分的四边形是矩形,故该项错误;②四条边相等的四边形是菱形,故该项错误;③一组对边平行且相等的四边形是平行四边形,故该项正确;故选:C.【点睛】此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键. 8.C解析:C【分析】根据已知条件得到AB=3,CD=22,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=22,由已知条件得到∠BAE=90°,根据勾股定理得到BE=22,于是得到结论.AB AE【详解】∵S1=3,S3=8∴AB=3,CD=22过A作AE∥CD交BC于E则∠AEB=∠DCB∵AD∥BC∴四边形AECD是平行四边形∴CE =AD ,AE =CD=∵∠ABC +∠DCB =90°∴∠AEB +∠ABC =90°∴∠BAE =90°∴BE=∵BC =2AD∴BC =2BE=∴S 2=(244=故选:C .【点睛】本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键. 9.B解析:B【分析】由题意先根据ASA 证明△ADF ≌△ECF ,推出300ABE ABCD S S ==,再证明BE=AB=25,根据等腰三角形三线合一的性质得出BF ⊥AE .设AF=x ,BF=y ,由∠ABF <∠BAF 可得x <y ,进而根据勾股定理以及△ABE 的面积为300列出方程组并解出即可.【详解】解:∵四边形ABCD 为平行四边形,∴AD//BC 即AD//BE ,AB//CD ,∴∠DAF=∠E .在△ADF 与△ECF 中,DAF E AF EFAFD EFC ⎧⎪⎨⎪∠∠∠⎩∠===, ∴△ADF ≌△ECF (ASA ),∴ADF ECF S S =△△,∴300ABE ABCD S S ==.∵AE 平分∠BAD ,∴∠BAE=∠DAF ,∵∠DAF=∠E ,∴∠BAE=∠E ,∴BE=AB=25,∵AF=FE ,∴BF ⊥AE .设AF=x,BF=y,∵∠D为锐角,∴∠DAB=180°-∠D是钝角,∴∠D<∠DAB,∴1 2∠ABC<12∠DAB,∴∠ABF<∠BAF,∴AF<BF,x<y.则有22222520013x yx y⎧+⎪⎨⎪⎩==,解得:1520xy⎧⎨⎩==或2015xy==(舍去),即AF=15.故选:B.【点睛】本题考查平行四边形的性质以及全等三角形的判定与性质和等腰三角形的性质和勾股定理等知识.由题意证明出300ABE ABCDS S==以及BF⊥AE是解题的关键.10.B解析:B【分析】连接BD、BF,由正方形的性质可得:∠CBD=∠FBG=45°,∠DBF=90°,再应用勾股定理求BD、BF和DF,最后应用“直角三角形斜边上中线等于斜边一半”可求得BH.【详解】如图,连接BD、BF,∵四边形ABCD和四边形BEFG都是正方形,∴AB=AD=2,BE=EF=3,∠A=∠E=90°,∠ABD=∠CBD=∠EBF=∠FBG=45°,∴∠DBF=90°,2,2,∴在Rt△BDF中,22BD BF+()()22223226+=,∵H为线段DF的中点,∴BH=12DF=262.故选B.【点睛】本题考查了正方形的性质、等腰直角三角形边的关系、勾股定理、直角三角形性质等,解题关键添加辅助线构造直角三角形.二、填空题11.2【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.12.42【分析】首先由对边分别平行可判断四边形ABCD 为平行四边形,连接AC 和BD ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,通过证明△ADF ≌△ABC 来证明四边形ABCD 为菱形,从而得到AC 与BD 相互垂直平分,再利用勾股定理求得BD 长度.【详解】解:连接AC 和BD ,其交点为O ,过A 点分别作DC 和BC 的垂线,垂足分别为F 和E ,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同, ∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:2【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.13102【分析】连结AC ,取OC 中点M ,连结 MB ,MG ,则MB ,MG 为定长,利用两点之间线段最短解决问题即可.【详解】连接AC ,交EF 于O ,∵AD ∥BC ,∴∠EAO =∠FCO ,∠AEO =∠CFO ,∵AE =CF ,∴△AEO ≌△CFO (ASA ),∴OA =OC ,∴O 是正方形的中心,∵AB =BC =4,∴AC =2OC =2,取OC 中点M ,连结 MB ,MG ,过点M 作MH ⊥BC 于H ,∵MC =12OC 2, ∴MH =CH =1,∴BH =4−1=3,由勾股定理可得MB 2231 10在Rt △GOC 中,M 是OC 的中点,则MG =12OC 2 ∵BG≥BM−MG 102,当B ,M ,G 三点共线时,BG 102, 102.【点睛】本题主要考查了正方形的性质,根据正方形的性质得出当E ,F 运动到AD ,BC 的中点时,MG 最小是解决本题的关键.14.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得2a ,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中 AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC ×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC , 由勾股定理得AE=22AB BE +=52a , 设DG=x ,则CG=a-x ,FG=x , EG=2a +x , ∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.15.101-【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.16.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt △AFP 中,AF 一定大于AP ,故①错误;∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE ,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD 是菱形,∴∠BAD=∠CBD=12∠ABE=36°, ∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF .故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD ,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE 的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.17.6.5或8或18【分析】根据题意分BP QP =、BQ QP =两种情况分别讨论,再结合勾股定理求解即可.【详解】解:∵四边形ABCD 是矩形,26AD =,点Q 是BC 的中点∴13BQ =∴①当BP QP =时,过点P 作PM BQ ⊥交BQ 于点M ,如图,则 6.5BM MQ ==,且四边形ABMP 为矩形∴ 6.5AP BM ==②当BQ QP =时,以点Q 为圆心,BQ 为半径作圆,与AD 交于P '、P ''两点,如图,过Q 作QN P P '''⊥,交P P '''于点N ,则可知P N P N '''=∵在Rt P NQ ',13P Q '=,12NQ AB == ∴222213125P N P Q NQ ''=-=-=同理,在Rt P NQ ''中,5P N ''= ∴2655822AD P N P N AP '''----'===,85518AP AP P N P N ''''''=++=++= 即P '、P ''为满足条件的P 点的位置∴8AP =或18∴综上所述,当BPQ 是以QP 为腰的等腰三角形时,AP 的长为6.5或8或18. 故答案是:6.5或8或18【点睛】本题考查了矩形的性质、等腰三角形的性质以及勾股定理等知识,根据等腰三角形的性质进行分类讨论是一个难点,也是解题的关键.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键.19.①②③⑤【分析】根据三角形中位线定理得到EF =12AB ,EF ∥AB ,根据直角三角形的性质得到DF =12AC ,根据三角形内角和定理、勾股定理计算即可判断.【详解】∵E ,F 分别是BC ,AC 的中点,∴EF=12AB,EF∥AB,∵∠ADC=90°,∠CAD=45°,∴∠ACD=45°,∴∠BAC=∠ACD,∴AB∥CD,∴EF∥CD,故①正确;∵∠ADC=90°,F是AC的中点,∴DF=CF=12 AC,∵AB=AC,EF=12 AB,∴EF=DF,故②正确;∵∠CAD=∠ACD=45°,点F是AC中点,∴△ACD是等腰直角三角形,DF⊥AC,∠FDC=45°,∴∠DFC=90°,∵EF//AB,∴∠EFC=∠BAC=45°,∠FEC=∠B=67.5°,∴∠EFD=∠EFC+∠DFC=135°,∴∠FED=∠FDE=22.5°,∵∠FDC=45°,∴∠CDE=∠FDC-∠FDE=22.5°,∴∠FDE=∠CDE,∴DE平分∠FDC,故③正确;∵AB=AC,∠CAB=45°,∴∠B=∠ACB=67.5°,∴∠DEC=∠FEC﹣∠FED=45°,故④错误;∵△ACD是等腰直角三角形,∴AC2=2CD2,∴CD,∵AB=AC,∴AB CD,故⑤正确;故答案为:①②③⑤.【点睛】本题考查的是三角形中位线定理,等腰三角形的判定与性质,直角三角形的性质,平行线的性质,勾股定理等知识.掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.20.2或3.5【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案.【详解】如图,∵E 是BC 的中点,∴BE=CE= 12BC=9, ①当Q 运动到E 和B 之间,则得:3t ﹣9=5﹣t ,解得:t=3.5;②当Q 运动到E 和C 之间,则得:9﹣3t=5﹣t ,解得:t=2,∴当运动时间t 为2秒或3.5秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形.【点睛】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用.三、解答题21.(1)①见解析;②AG FB AE =+,证明见解析;(221n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD是矩形,n=1,∴AD=AB,∴四边形ABCD是正方形,∴∠DAB=∠B=90°,∵AF⊥DE,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF,∴△ADE≌△BAF(ASA),∴AE=BF;②结论:AG=BF+AE.理由:如图2中,过点A作AK⊥HD交BC于点K,由(1)可知AE=BK,∵AH=AD,AK⊥HD,∴∠HAK=∠DAK,∵AD∥BC,∴∠DAK=∠AKG,∴∠HAK=∠AKG,∴AG=GK,∵GK=GB+BK=BF+AE,∴AG=BF+AE;(2)如图3中,设AB=a,AD=na,当ME 的值最大时,NF 的值最小时,ME NF 的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值=()222na 1a n +=+•a ,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a n +⋅=21n +, 故答案为:21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2,∴2142n x k n +=⋅,∴221441 422nnCF kn k kn n+-=-⋅=⋅,241222n kBF kn kn n-=-⋅=,∴22412412nkCF nnkBFn-⋅==-,故答案为:241n-.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.22.(1)详见解析;(2)18【分析】(1)根据正方形的性质得出BC=BD,AB=BF,∠CBD=∠ABF=90°,求出∠ABD=∠CBF,根据全等三角形的判定得出即可;(2)根据全等三角形的性质得出∠BAD=∠BFC,AD=FC=6,求出AD⊥CF,根据三角形的面积求出即可.【详解】解:(1)四边形ABFG、BCED是正方形,AB FB∴=,CB DB=,90ABF CBD∠=∠=︒,ABF ABC CBD ABC∴∠+∠=∠+∠,即ABD CBF∠=∠在ABD∆和FBC∆中,AB FBABD CBFDB CB=⎧⎪∠=∠⎨⎪=⎩()ABD FBC SAS∴∆≅∆;图1 图2(2)ABD FBC∆≅∆,BAD BFC∴∠=∠,6AD FC==,180AMF BAD CNA∴∠=︒-∠-∠180()BFC BNF=︒-∠+∠1809090=︒-︒=︒AD CF ∴⊥-ACD ACF DFM ACM ACDF S S S S S ∆∆∆∆∴=++四边形 11112222AD CM CF AM DM FM AM CM =⋅+⋅+⋅-⋅ 1133(6)(6)1822CM AM AM CM AM CM =++---⋅= 【点睛】本题考查了正方形的性质,全等三角形的性质和判定,三角形的面积等知识点,能求出△ABD ≌△FBC 是解此题的关键.23.(1)证明见解析;(2)73.【分析】(1)由题意根据勾股定理分别表示出2222,AB CD AD BC ++进行分析求证即可;(2)根据题意连接CG 、BE ,证明△GAB ≌△CAE ,进而得BG ⊥CE ,再根据(1)的结论进行分析即可求出答案.【详解】解:(1)∵AC ⊥BD ,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,222222AD BC AO DO BO CO +=+++,222222AB CD AO BO CO DO +=+++,∴2222AD BC AB CD +=+;(2)连接CG 、BE ,如图2,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC ,即∠GAB=∠CAE ,在△GAB 和△CAE 中,AG AC GAB CAE AB AE =⎧⎪∠=∠⎨⎪=⎩,∴△GAB ≌△CAE (SAS ),∴∠ABG=∠AEC ,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE ⊥BG ,由(1)得,2222CG BE CB GE +=+,∵AC=4,AB=5,∴BC=3,,,∴222273GE CG BE CB =+-=,∴【点睛】本题考查的是正方形的性质、全等三角形的判定和性质、垂直的定义、勾股定理的应用,熟练并正确理解全等三角形的判定和性质以及灵活运用勾股定理是解题的关键.24.(1)详见解析;(2)是,详见解析;(3)【分析】(1)平行四边形的性质可得AD ∥BC ,AB ∥CD ,再根据平行线的性质证明∠CEF=∠CFE ,根据等角对等边可得CE=CF ,再有条件四边形ECFG 是平行四边形,可得四边形ECFG 为菱形,即可解决问题;(2)先判断出∠BEG=120°=∠DCG ,再判断出AB=BE ,进而得出BE=CD ,即可判断出△BEG ≌△DCG (SAS ),再判断出∠CGE=60°,进而得出△BDG 是等边三角形,即可得出结论;(3)首先证明四边形ECFG 为正方形,再证明△BME ≌△DMC 可得DM=BM ,∠DMC=∠BME ,再根据∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°可得到△BDM 是等腰直角三角形,由等腰直角三角形的性质即可得到结论.【详解】(1)证明:∵AF 平分∠BAD ,∴∠BAF=∠DAF ,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AB ∥CD ,∴∠DAF=∠CEF ,∠BAF=∠CFE ,∴∠CEF=∠CFE ,∴CE=CF ,又∵四边形ECFG 是平行四边形,∴四边形ECFG 为菱形;(2)∵四边形ABCD 是平行四边形,∴AB ∥DC ,AB=DC ,AD ∥BC ,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF 是菱形,∴CE=GE,∠BCG=12∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△BEG≌△DCG(SAS),∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,。
最新北师大版八年级数学下册-第六章 平行四边形-《平行四边形的性质》典型例题
《平行四边形的性质》典型例题例1 一个平行四边形的一个内角是它邻角的3倍,那么这个平行四边形的四个内角各是多少度?例2 已知:如图,ABCD 的周长为60cm ,对角线AC 、BD 相交于点O ,AOB ∆的周长比BOC ∆的周长多8cm ,求这个平行四边形各边的长.例3 已知:如图,在ABCD 中,BD AC 、交于点O ,过O 点作EF 交AB 、CD 于E 、F ,那么OE 、OF 是否相等,说明理由.例4 已知:如图,点E 在矩形ABCD 的边BC 上,且DE AF AD DE ⊥=,,垂足为F 。
求证:.DC AF =例5 O 是ABCD 对角线的交点,OBC ∆的周长为59,38=BD ,24=AC ,则=AD ________,若OBC ∆与OAB ∆的周长之差为15,则=AB ______,ABCD 的周长=______.例6 已知:如图,ABCD 的周长是cm 36,由钝角顶点D 向AB ,BC 引两条高DE ,DF ,且cm DE 34=,cm DF 35=. 求这个平行四边形的面积.例7 如图,已知:ABCD 中,BC AE ⊥于E ,CD AF ⊥于F ,若︒=∠60EAF ,cm BE 2=,cm FD 3=.求:AB 、BC 的长和ABCD 的面积.参考答案例1 分析 根据平行四边形的对角相等,邻角互补可以求出四个内角的度数. 解 设平行四边形的一个内角的度数为x ,则它的邻角的度数为3x ,根据题意,得1803=+x x ,解得45=x ,∴.1353=x∴这个平行四边形的四个内角的度数分别为45°,135°,45°,135°.例2 分析 由平行四边形对边相等,可知=+BC AB 平行四边形周长的一半=30cm ,又由AOB ∆的周长比BOC ∆的周长多8cm ,可知8=-BC AB cm ,由此两式,可求得各边的长.解 ∵四边形ABCD 为平行四边形,∴.,,OO AO BC AD CD AB ===60=+++BC AD CD AB ,∴.30=+BC AB8)(=++-++OC BC OB OB AB AO ,∴.8=-BC AB∴.11,19====AD BC CD AB答:这个平行四边形各边长分别为19cm ,11cm ,19cm ,11cm .说明:学习本题可以得出两个结论:(1)平行四边形两邻边之和等于平行四边形周长的一半.(2)平行四边形被对角线分成四个小三角形,相邻两个三角形周长之差等于邻边之差.例3 分析 观察图形,DOF BOE CFO AEO CDO ABO ∆≅∆∆≅∆∆≅∆,,,从而可说明.OF OE =证明 在ABCD 中,BD AC 、 交于O ,∴.OC AO =CD AB // ,∴CFO AEO FCO EAO ∠=∠∠=∠,,∴)(AAS CFO AEO ∆≅∆,∴.OF OE =例4 分析 观察图形,AFD ∆与DCE ∆都是直角三角形,且锐角DEC ADF ∠=∠,斜边DE AD =,因此这两个直角三角形全等。
八年级初二数学 平行四边形知识点及练习题及解析
八年级初二数学 平行四边形知识点及练习题及解析一、解答题1.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.2.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .3.综合与探究(1)如图1,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF BE =.CE 和CF 之间有怎样的关系.请说明理由.(2)如图2,在正方形ABCD 中,E 是AB 上一点,G 是AD 上一点,如果45GCE ∠=︒,请你利用(1)的结论证明:GE BE CD =+.(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3在直角梯形ABCD 中,//()AD BC BC AD >,90B ∠=︒,12AB BC ==,E 是AB 上一点,且45DCE ∠=︒,4BE =,求DE 的长.4.已知:在ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C 重合).以AD为边作正方形ADEF,连接CF.(1)如图1,当点D在线段BC上时,BD与CF的位置关系为__________;CF、BC、CD三条线段之间的数量关系____________________.(2)如图2,当点D在线段BC的延长线上时,其它条件不变,请你写出CF、BC、CD三条线段之间的数量关系并加以证明;(3)如图3,当点D在线段BC的反向延长线上时,且点A、F分别在直线BC的两侧,其它条件不变:①请直接写出CF、BC、CD三条线段之间的关系.△的形状,并说明理②若连接正方形对角线AE、DF,交点为O,连接OC,探究AOC由.5.如图①,已知正方形ABCD中,E,F分别是边AD,CD上的点(点E,F不与端点重合),且AE=DF,BE,AF交于点P,过点C作CH⊥BE交BE于点H.(1)求证:AF∥CH;(2)若3,AE=2,试求线段PH的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 6.在正方形ABCD 中,点E 是CD 边上任意一点,连接,AE 过点B 作BF AE ⊥于F ,交AD 于H .()1如图1,过点D 作DG AE ⊥于G .求证:BF DG FG -=;()2如图2,点E 为CD 的中点,连接DF ,试判断,,DF FH EF 存在什么数量关系并说明理由;()3如图3,1AB =,连接EH ,点Р为EH 的中点,在点E 从点D 运动到点C 的过程中,点Р随之运动,请直接写出点Р运动的路径长.7.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).8.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).9.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).10.如图,在正方形ABCD 中,点E 、F 是正方形内两点,BE DF ∥,EF BE ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:(1)在图1中,连接BD ,且BE DF =①求证:EF 与BD 互相平分;②求证:222()2BE DF EF AB ++=;(2)在图2中,当BE DF ≠,其它条件不变时,222()2BE DF EF AB ++=是否成立?若成立,请证明:若不成立,请说明理由.(3)在图3中,当4AB =,135DPB ∠=︒,2246B BP PD +=时,求PD 之长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)见解析;(2)四边形EGCF 为平行四边形,理由见解析;(3)AC=2AB .【分析】(1)根据平行四边形的性质得到OE=OF 即可证得结论;(2)利用AOE COF ∆≅∆得到∠EAO=∠FCO ,AE=CF ,由此推出AE ∥CF ,EG=CF 即可证得四边形EGCF 是平行四边形;(3)AC=2AB ,根据平行四边形的性质推出AB=AO ,利用点E 是OB 的中点,得到AG ⊥OB ,即可得到四边形EGCF 是矩形.【详解】(1)四边形ABCD 为平行四边形,OA OC ∴=,OB OD =,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;(3)当AC=2AB 时,四边形EGCF 是矩形.∵AC=2AB ,AC=2AO ,∴AB=AO ,∵点E 是OB 的中点,∴AG ⊥OB ,∴∠GEF=90°,∴四边形EGCF 是矩形.故答案为:AC=2AB .【点睛】此题考查了平行四边形的判定及性质,三角形全等的判定及性质,矩形的判定定理,等腰三角形的三线合一的性质,熟练掌握各知识点并运用解题是关键.2.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC=180°﹣∠DCE﹣∠CDE=50°;(2)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠BAE=∠BCD,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.3.(1)CE=CF且CE⊥CF,理由见解析;(2)见解析;(3)10【分析】(1)根据正方形的性质,可证明△CBE≌△CDF(SAS),从而得出CE=CF,∠BCE=∠DCF,再利用余角的性质得到CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,由△BEC≌△DFC,可得∠BCE=∠DCF,即可求∠GCF=∠GCE=45°,且GC=GC,EC=CF可证△ECG≌△GCF(SAS),则结论可求.(3)过点C作CF⊥AD于F,可证四边形ABCF是正方形,根据(2)的结论可得DE=DF+BE=4+DF,根据勾股定理列方程可求DF的长,即可得出DE.【详解】解:(1)CE=CF且CE⊥CF,证明:如图1,∵四边形ABCD是正方形,∴BC=CD,∠B=∠CDF=90°,又∵BE=DF,∴△CBE≌△CDF(SAS),∴CE=CF,∠BCE=∠DCF,∵∠BCD=∠BCE+∠ECD=90°,∴∠ECD+∠DCF=90°,即CE⊥CF;(2)延长AD至M,使DM=BE,连接CM,∵∠GCE=45°,∴∠BCE+∠GCD=45°,∵△BEC≌△DFC,∴∠BCE=∠DCF,∴∠DCF+∠GCD=45°,即∠GCF=45°,∴∠GCE=∠GCF,且GC=GC,CE=CF,∴△GCE≌△GCF(SAS),∴GE=GF,∴GE=GD+DF=BE+GD;(3)如图:过点C作CF⊥AD于F,∵AD∥BC,∠B=90°,∴∠A=90°,∵∠A=∠B=90°,FC⊥AD,∴四边形ABCF是矩形,且AB=BC=12,∴四边形ABCF是正方形,∴AF=12,由(2)可得DE=DF+BE,∴DE=4+DF,在△ADE中,AE2+DA2=DE2.∴(12-4)2+(12-DF)2=(4+DF)2.∴DF=6,∴DE=4+6=10.【点睛】本题是四边形综合题,考查了正方形的性质,勾股定理,全等三角形的判定与性质,四边形的面积,熟练掌握正方形的性质是解题的关键.4.(1)BD⊥CF,CF=BC-CD;(2)CF=BC+CD,见解析;(3)①CF=CD−BC,②等腰三角形,见解析【分析】(1)先说明△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得CF⊥BD、CF=BD,又 BD+CD=BC, CF=BC-CD;(2)先利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF-CD=BC;(3)①与(2)同理可得BD=CF,然后结合图形可得CF=CD-BC;②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明△BAD≌△CAF,得∠ACF=∠ABD,求出∠FCD=90°,然后根据直角三角形斜边上的中线等于斜边的一半求出OC=12DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC是等腰三角形.【详解】(1)解:∵∠B4C=90°,AB=AC∴∠ABC=∠ACB=45°∵四边形ADEF是正方形∴AD=AF,∠DAF=90°∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∠ABD=∠ACF=45°∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC ∵BD+CD=BC∴CF+CD=BC;故答案为:BD⊥CF,CF=BC-CD;(2)证明:∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAD=∠BAC+∠DAC,∠CAF=∠DAF+∠DAC,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴BD=CF,∵BD=BC+CD,∴CF=BC+CD;(3)①与(2)同理可得,BD=CF,所以,CF=CD−BC;②∵∠BAC=90°,AB=AC,∴∠ABC=∠ACB=45°,则∠ABD=180∘−45°=135°,∵四边形ADEF是正方形,∴AD=AF,∠DAF=90°,∵∠BAC=∠BAF+∠CAF=90°,∠DAF=∠BAD+∠BAF=90°,∴∠BAD=∠CAF,在△BAD和△CAF中,AB=AC,∠BAD=∠CAF,AD=AF,∴△BAD≌△CAF(SAS),∴∠ACF=∠ABD=180°−45°=135°,∴∠FCD=∠ACF−∠ACB=90°,则△FCD为直角三角形,∵正方形ADEF中,O为DF中点,∴OC=1DF,2∵在正方形ADEF 中,OA=12AE ,AE=DF , ∴OC=OA ,∴△AOC 是等腰三角形.【点睛】 本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.5.(1)见解析;(2)3)CP PQ =4. 【分析】(1)先证△ABE ≌△DAF ,然后通过角度转化,可得AF ⊥BE ,从而证平行;(2)先在Rt △ABE 中利用勾股定理求得BE 的长,在利用△ABE 的面积,求得AP 的长,最后利用PH=BP -BH 求得PH 的长;(3)设QP=a ,CP=b ,可推导出在Rt △APE 中,QE=QA=QP ,然后分别用a 、b 表示CP 和PQ 代入可求得.【详解】(1)证明:在正方形ABCD 中,AB=DA ,∠EAB=∠D=90°又∵AE=DF∴△ABE ≌△DAF(SAS)∴∠ABE=∠DAF又∵∠DAF+∠FAB=∠EAB=90°∴∠ABE+∠FAB=90°∴∠APB=90°∴AF ⊥BE又∵CH ⊥BE∴AF ∥CH(2)解:在正方形ABCD 中,∠EAB=90°,, AE= 2∴=从而由S △ABE = 12 AB·AE= 12 BE·AP 得:∴在Rt △ABP 中,= =3又容易得:△ABP ≌△BCH ∴∴(3)解:在正方形ABCD 中,AB=BC ,AD ∥BC∵CH ⊥BP ,PH=BH∴CP=BC∴∠CBP-=∠CPB而∠CPB=∠QPE ∠CBP=∠QEP∴∠QPE=∠QEP∴在Rt △APE 中 ∠QAP=∠QPA∴QE=QP=QA在四边形QABC 中,设QP=a CP=b则AB=BC=b , AQ=a ,QC=a+b∴b²+(b-a)2=(a+b)2∴b²=4ab 即b=4a 即 a CP b PQ =4. 【点睛】本题考查正方形的性质、全等的证明、勾股定理的应用和直角三角形斜边中线的性质,第(3)问的解题关键是推导得出QE=QA=QP .6.(1)见解析;(2)FH+FE=2DF ,理由见解析;(3)22【分析】(1)如图1中,证明△AFB ≌△DGA (AAS )可得结论.(2)结论:FH+FE=2DF .如图2中,过点D 作DK ⊥AE 于K ,DJ ⊥BF 交BF 的延长线于J ,证明四边形DKFJ 是正方形,可得结论.(3)如图3中,取AD 的中点J ,连接PJ ,延长JP 交CD 于R ,过点P 作PT ⊥CD 于T ,PK ⊥AD 于K .设PT=b .证明△KPJ 是等腰直角三角形,推出点P 在线段JR 上运动,求出JR 即可解决问题.【详解】解:(1)如图1中,∵四边形ABCD 是正方形,∴AB=AD ,∠BAD=90°,∵DG ⊥AE ,AE ⊥BH ,∴∠AFB=∠DGH=90°,∴∠FAB+∠DAG=90°,∠DAG+∠ADG=90°,∴∠BAF=∠ADG ,∴△AFB≌△DGA(AAS),∴AF=DG,BF=AG,∴BF-DG=AG-AF=FG.(2)结论:FH+FE=2DF.理由:如图2中,过点D作DK⊥AE于K,DJ⊥BF交BF的延长线于J,∵四边形ABCD是正方形,∴∠BAD=∠ADE=90°,AB=AD,∵AE⊥BH,∴∠AFB=90°,∴∠DAE+∠EAB=90°,∠EAB+∠ABH=90°,∴∠DAE=∠ABH,∴△ABH≌△DAE(ASA),∴AH=AE,∵DE=EC=12CD,CD=AD,∴AH=DH,∴DE=DH,∵DJ⊥BJ,DK⊥AE,∴∠J=∠DKE=∠KFJ=90°,∴四边形DKFJ是矩形,∴∠JDK=∠ADC=90°,∴∠JDH=∠KDE,∵∠J=∠DKE=90°,∴△DJH≌△DKE(AAS),∴DJ=DK,JH=EK,∴四边形DKFJ是正方形,∴FK=FJ=DK=DJ,∴2FJ,∴2DF;(3)如图3中,取AD的中点J,连接PJ,延长JP交CD于R,过点P作PT⊥CD于T,PK⊥AD于K.设PT=b.∵△ABH ≌△DAE ,∴AH=DE ,∵∠EDH=90°,HP=PE ,∴PD=PH=PE ,∵PK ⊥DH ,PT ⊥DE ,∴∠PKD=∠KDT=∠PTD=90°,∴四边形PTDK 是矩形,∴PT=DK=b ,PK=DT ,∵PH=PD=PE ,PK ⊥DH ,PT ⊥DE ,∴DH=2DK=2b ,DE=2DT ,∴AH=DE=1-2b ,∴PK=12DE=12-b , JK=DJ-DK=12-b , ∴PK=KJ ,∵∠PKJ=90°,∴∠KJP=45°,∴点P 在线段JR 上运动,∵2DJ=22, ∴点P 的运动轨迹的长为22. 【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轨迹等知识,解题的关键是正确寻找全等三角形解决问题,学会利用参数解决问题,属于中考压轴题.7.(1)214t ;(2)22t =;(3)存在,如图2(见解析),当AHQ HBM ≅时,22t =3(见解析),当ADE AHE ≅时,32t =4(见解析),当EGQ HBF ≅时,722t =【分析】(1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、角平分线的定义可得45HAQ ∠=︒,从而可得AQH 是等腰直角三角形,然后根据等腰直角三角形的性质可得AH 的长,最后根据等腰直角三角形的面积公式即可得;(2)先根据平行四边形的性质可得//HQ MP ,从而可得//HQ BP ,再根据三角形中位线定理可得HQ 是ABP △的中位线,从而可得122AH AB ==,然后与(1)所求的2AH =建立等式求解即可得; (3)分①当点H 是AB 的中点时,AHQ HBM ≅;②当点Q 与点E 重合时,ADE AHE ≅;③当EG HB =时,EGQ HBF ≅三种情况,分别求解即可得.【详解】(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==, 四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=︒,AE ∵是BAD ∠的角平分线,1452HAQ DAE BAD ∴∠=∠=∠=︒, QH AB ⊥,AQH ∴是等腰直角三角形,22AH HQ AQ t ∴===, 则AQH 的面积为21124AH HQ t ⋅=; (2)如图1,四边形PQHM 是平行四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===,由(1)知,2AH =,则222t=,解得22t =;(3)由题意,有以下三种情况:①如图2,当点H是AB的中点时,则AH HB=,四边形PQHM是平行四边形,//HM PQ∴,HAQ BHM∴∠=∠,在AHQ和HBM△中,90HAQ BHMAH HBAHQ HBM∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()AHQ HBM ASA∴≅,由(2)可知,此时22t=;②如图3,当点Q与点E重合时,在ADE和AHE中,9045D AHEDAE HAEAE AE∠=∠=︒⎧⎪∠=∠=︒⎨⎪=⎩,()ADE AHE AAS∴≅,3AD AH ∴==, 则232t =, 解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平行四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=︒=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EGQ HBF ASA ∴≅,2,42AH AB ==, 24HB AB AH ∴=-=, 在Rt ADE △中,45,3DAE AD ∠=︒=,Rt ADE ∴是等腰直角三角形,232AE ==32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=︒,Rt GEQ ∴是等腰直角三角形,22622t EG EQ -==, 则由EG HB =得:262422t t -=-, 解得722t =综上,如图2,当AHQ HBM ≅时,22t =;如图3,当ADE AHE ≅时,32t =4,当EGQ HBF ≅时,722t =【点睛】 本题考查了矩形的性质、三角形中位线定理、三角形全等的判定定理与性质、等腰直角三角形的判定与性质等知识点,较难的是题(3),依据题意,正确分三种情况讨论并画出图形是解题关键.8.(1)见解析;(2)7PA =4217BH 3)①(423,23)M +2635 【分析】(1)利用直角三角形斜边中线的性质可得DO=DA ,推出∠AEO=60°,进一步得出BC ∥AE ,CO ∥AB ,可得结论;(2)先计算出OA=43PB=23AP=7,再利用面积法计算BH 即可;(3)①求出直线PM 的解析式为3,再利用两点间的距离公式计算即可; ②易得直线BC 的解析式为y=3,联立直线BC 和直线PM 的解析式成方程组,求得点G 的坐标,再利用三角形面积公式计算.【详解】(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴AD=12OB ,OD=BD=12OB , ∴DO=DA , ∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC 为等边三角形,∴∠BCO=∠AEO=60°,∴BC∥AE,∵∠BAO=∠COA=90°,∴CO∥AB,∴四边形ABCE是平行四边形;(2)解:在Rt△AOB中,∠AOB=30°,OB=8,∴AB=4,∴OA=∵四边形ABCE是平行四边形,∴PB=PE,PC=PA,∴PB=∴PC PA===∴1122ABCS AC BH AB BE∆=⋅⋅=⋅⋅,即114 22BH⨯=⨯⨯∴BH(3)①∵C(0,4),设直线AC的解析式为y=kx+4,∵P(0),∴0=,解得,k=3-,∴y=3-x+4,∵∠APM=90°,∴直线PM的解析式为,∵P(0),∴,解得,m=-3,∴直线PM的解析式为,设M(x),∵AP=∴(x-2+(2x-3)2=(2, 化简得,x 2x-4=0,解得,x 1=4,x 2=4(不合题意舍去),当x=4时,y=2×(4)-3= ∴M(4,故答案为:(4,②∵(0,4),C B∴直线BC的解析式为:43y x =-+,联立3243y x y x ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得65x y ⎧=⎪⎪⎨⎪=⎪⎩,∴6)5G ,161=4252PBG PBA S S S ∆∆∴+=⨯+⨯=阴 【点睛】本题考查的是平行四边形的判定,等边三角形的性质,两点间的距离,正方形的性质,矩形的性质,一次函数的图象和性质,掌握相关的判定定理和性质定理是解题的关键.9.(1)见解析;(2)120;(3)90;(4)72;(5)360n . 【分析】(1)利用等边三角形的性质得到BC=AC ,∠ACB=∠ABC ,从而得到△ACN ≌△CBM. (2)利用全等三角形的性质得到∠CAN=∠BCM ,再利用三角形的外角等于与它不相邻的两个内角的和,即可求解.(3)利用正方形(或正五边形)的性质得到BC=DC ,∠ABC=∠BCD ,从而判断出△DCN ≌△CBM ,再利用全等三角形的性质得到∠CDN=∠BCM ,再利用内角和定理即可得到答案.(4)由(3)的方法即可得到答案.(5)利用正三边形,正四边形,正五边形,分别求出∠CPN 的度数与边数的关系式,即可得到答案.【详解】(1)∵△ABC 是等边三角形,∴BC=AC ,∠ACB=∠BAC=∠ABC=60︒,∴∠ACN=∠CBM=120︒,在△CAN 和△CBM 中,CN BM ACN CBM AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACN ≌△CBM.(2)∵△ACN ≌△CBM.∴∠CAN=∠BCM ,∵∠ABC=∠BMC+∠BCM ,∠BAN=∠BAC+∠CAN ,∴∠CPN=∠BMC+∠BAN=∠BMC+∠BAC+∠CAN=∠BMC+∠BAC+∠BCM=∠ABC+∠BAC=60︒+60︒,=120︒,故答案为:120.(3)将等边三角形换成正方形,∵四边形ABCD 是正方形,∴BC=DC ,∠ABC=∠BCD=90︒,∴∠MBC=∠DCN=90︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠CDN=∠BCM ,∵∠BCM=∠PCN ,∴∠CDN=∠PCN ,在Rt △DCN 中,∠CDN+∠CND=90︒,∴∠PCN+∠CND=90︒,∴∠CPN=90︒,故答案为:90.(4)将等边三角形换成正五边形,∴∠ABC=∠DCB=108︒,∴∠MBC=∠DCN=72︒,在△DCN 和△CBM 中,DC BC DCN MBC CN BM =⎧⎪∠=∠⎨⎪=⎩,∴△DCN ≌△CBM ,∴∠BMC=∠CND ,∠BCM=∠CDN ,∵∠BCM=∠PCN ,∴∠CND=∠PCN ,在△CDN 中,∠CDN+∠CND=∠BCD=108︒,∴∠CPN=180︒-(∠CND+∠PCN)=180︒-(∠CND+∠CDN)=180︒-108︒,=72︒,故答案为:72.(5)正三边形时,∠CPN=120︒=3603, 正四边形时,∠CPN=90︒=3604, 正五边形时,∠CPN=72︒=3605, 正n 边形时,∠CPN=360n , 故答案为:360n. 【点睛】此题考查正多边形的性质,三角形全等的判定及性质,图形在发生变化但是解题的思路是不变的,依据此特点进行解题是解此题的关键.10.(1)①详见解析;②详见解析;(2)当BE ≠DF 时,(BE +DF )2+EF 2=2AB 2仍然成立,理由详见解析;(3)PD =-【分析】(1)①连接ED 、BF ,证明四边形BEDF 是平行四边形,根据平行四边形的性质证明;②根据正方形的性质、勾股定理证明;(2)过D 作DM ⊥BE 交BE 的延长线于M ,连接BD ,证明四边形EFDM 是矩形,得到EM=DF ,DM=EF ,∠BMD=90°,根据勾股定理计算;(3)过P 作PE ⊥PD ,过B 作BELPE 于E ,根据(2)的结论求出PE ,结合图形解答.【详解】(1)证明:①连接ED、BF,∵BE∥DF,BE=DF,∴四边形BEDF是平行四边形,∴BD、EF互相平分;②设BD交EF于点O,则OB=OD=12BD,OE=OF=12EF.∵EF⊥BE,∴∠BEF=90°.在Rt△BEO中,BE2+OE2=OB2.∴(BE+DF)2+EF2=(2BE)2+(2OE)2=4(BE2+OE2)=4OB2=(2OB)2=BD2.在正方形ABCD中,AB=AD,BD2=AB2+AD2=2AB2.∴(BE+DF)2+EF2=2AB2;(2)解:当BE≠DF时,(BE+DF)2+EF2=2AB2仍然成立,理由如下:如图2,过D作DM⊥BE交BE的延长线于M,连接BD.∵BE∥DF,EF⊥BE,∴EF⊥DF,∴四边形EFDM是矩形,∴EM=DF,DM=EF,∠BMD=90°,在Rt△BDM中,BM2+DM2=BD2,∴(BE+EM)2+DM2=BD2.即(BE+DF)2+EF2=2AB2;(3)解:过P作PE⊥PD,过B作BE⊥PE于E,则由上述结论知,(BE+PD)2+PE2=2AB2.∵∠DPB=135°,∴∠BPE=45°,∴∠PBE=45°,∴BE=PE.∴△PBE是等腰直角三角形,∴BP BE,+2PD=,∴2BE+2PD=,即BE+PD=,∵AB=4,∴()2+PE2=2×42,解得,PE=∴BE=∴PD=﹣.【点睛】本题考查的是正方形的性质、等腰直角三角形的性质以及勾股定理的应用,正确作出辅助性、掌握正方形的性质是解题的关键.。
八年级初二数学 平行四边形知识点-+典型题含答案
一、选择题1.如图,在△ABC中,AB=6,AC=8,BC=10,P为边BC上一动点(且点P不与点B、C重合),PE⊥AB于E,PF⊥AC于F,M为EF中点.设AM的长为x,则x的取值范围是()A.4≥x>2.4 B.4≥x≥2.4C.4>x>2.4 D.4>x≥2.42.如图,正方形ABCD中,AB=12,点E在边CD上,且CD=3DE,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=28.8.其中正确结论的个数是()A.4 B.3 C.2 D.13.如图,在▭ABCD中,AB=4,BC=6,∠ABC=60°,点P为▭ABCD内一点,点Q在BC边上,则PA+PD+PQ的最小值为( )A.3719++B.6+23C.53D.104.如图,在菱形ABCD中,AB=5cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB.CB方向向点B匀速移动(到点B为止),点E的速度为1c m/s,点F的速度为2c m/s,经过t秒△DEF为等边三角形,则t的值为()A.34B.43C.32D.535.如图,在四边形ABCD中,AB∥CD,∠C=90°,AB=8,AD=CD=5,点M为BC上异于B、C的一定点,点N为AB上的一动点,E、F分别为DM、MN的中点,当N从A到B的运动过程中,线段EF扫过图形的面积为 ( )A .4B .4.5C .5D .66.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .27.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF += B .121355PE PF <+< C .5PE PF += D .34PE PF <+< 8.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A .3B .23C .178D .549.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .20171210.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .4二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,正方形ABCD 的对角线相交于点O ,对角线长为1cm ,过点O 任作一条直线分别交AD ,BC 于E ,F ,则阴影部分的面积是_____.14.如图,以Rt ABC 的斜边AB 为一边,在AB 的右侧作正方形ABED ,正方形对角线交于点O ,连接CO ,如果AC=4,CO=62,那么BC=______.15.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.16.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.17.菱形OBCD在平面直角坐标系中的位置如图所示,顶点B(23,0),∠DOB=60°,点P是对角线OC上一个动点,E(0,-1),则EP十BP的最小值为__________.18.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.19.如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C恰落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,有下列结论:①∠EBG=45°;②S△ABG=32S△FGH;③△DEF∽△ABG;④AG+DF=FG.其中正确的是_____.(把所有正确结论的序号都选上)20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在Rt ABC ∆中,090BAC ∠=,D 是BC 的中点,E 是AD 的中点,过点A 作//BC AF 交BE 的延长线于点F(1)求证:四边形ADCF 是菱形(2)若4,5AC AB ==,求菱形ADCF 的面积22.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF .(1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB =3,BC =23.①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.24.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.25.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.26.已知:如下图,ABC 和BCD 中,90BAC BDC ∠=∠=,E 为BC 的中点,连接DE AE 、.若DC AE ,在DC 上取一点F ,使得DF DE =,连接EF 交AD 于O . (1)求证:EF DA ⊥.(2)若4,23BC AD ==,求EF 的长.27.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.28.如图,在矩形 ABCD 中, AB =16 , BC =18 ,点 E 在边 AB 上,点 F 是边 BC 上不与点 B 、C 重合的一个动点,把△EBF 沿 EF 折叠,点B 落在点 B' 处.(I)若 AE =0 时,且点 B' 恰好落在 AD 边上,请直接写出 DB' 的长;(II)若 AE =3 时, 且△CDB' 是以 DB' 为腰的等腰三角形,试求 DB' 的长;(III)若AE =8时,且点 B' 落在矩形内部(不含边长),试直接写出 DB' 的取值范围.29.(问题情境)在△ABC 中,AB=AC ,点P 为BC 所在直线上的任一点,过点P 作PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,过点C 作CF ⊥AB ,垂足为F .当P 在BC 边上时(如图1),求证:PD+PE=CF .图① 图② 图③证明思路是:如图2,连接AP ,由△ABP 与△ACP 面积之和等于△ABC 的面积可以证得:PD+PE=CF .(不要证明)(变式探究)当点P 在CB 延长线上时,其余条件不变(如图3).试探索PD 、PE 、CF 之间的数量关系并说明理由.请运用上述解答中所积累的经验和方法完成下列两题:(结论运用)如图4,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C′处,点P 为折痕EF 上的任一点,过点P 作PG ⊥BE 、PH ⊥BC ,垂足分别为G 、H ,若AD=8,CF=3,求PG+PH 的值;(迁移拓展)在直角坐标系中.直线l 1:y=443x -+与直线l 2:y=2x+4相交于点A ,直线l 1、l 2与x 轴分别交于点B 、点C .点P 是直线l 2上一个动点,若点P 到直线l 1的距离为1.求点P 的坐标.30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据勾股定理的逆定理求出△ABC 是直角三角形,得出四边形AEPF 是矩形,求出AM=12EF=12AP ,求出AP≥4.8,即可得出答案. 【详解】解:连接AP.∵AB=6,AC=8,BC=10,∴AB2+AC2=36+64=100,BC2=100,∴AB2+AC2=BC2,∴∠BAC=90°,∵PE⊥AB,PF⊥AC,∴∠AEP=∠AFP=∠BAC=90°,∴四边形AEPF是矩形,∴AP=EF,∵∠BAC=90°,M为EF中点,∴AM=12EF=12AP,当AP⊥BC时,AP值最小,此时S△BAC=12×6×8=12×10×AP,AP=4.8,即AP的范围是AP≥4.8,∴2AM≥4.8,∴AM的范围是AM≥2.4(即x≥2.4).∵P为边BC上一动点,当P和C重合时,AM=4,∵P和B、C不重合,∴x<4,综上所述,x的取值范围是:2.4≤x<4.故选:D.【点睛】本题考查了垂线段最短,三角形面积,勾股定理的逆定理,矩形的判定的应用,直角三角形的性质,关键是求出AP的范围和得出AM=12 AP.2.B解析:B【分析】由正方形的性质和折叠的性质得出AB=AF,∠AFG=90°,由HL证明Rt△ABG≌Rt△AFG,得出①正确;设BG=FG=x,则CG=12﹣x.由勾股定理得出方程,解方程求出BG,得出GC,即可得出②正确;由全等三角形的性质和三角形内角和定理得出∠AGB=∠GCF,得出AG∥CF,即可得出③正确;通过计算三角形的面积得出④错误;即可得出结果.【详解】①正确.理由如下:∵四边形ABCD是正方形,∴AB=BC=CD=AD=12,∠B=∠GCE=∠D=90°,由折叠的性质得:AF=AD,∠AFE=∠D=90°,∴∠AFG=90°,AB=AF.在Rt△ABG和Rt△AFG中,AG AGAB AF=⎧⎨=⎩,∴Rt△ABG≌Rt△AFG(HL);②正确.理由如下:由题意得:EF=DE=13CD=4,设BG=FG=x,则CG=12﹣x.在直角△ECG中,根据勾股定理,得(12﹣x)2+82=(x+4)2,解得:x=6,∴BG=6,∴GC=12﹣6=6,∴BG=GC;③正确.理由如下:∵CG=BG,BG=GF,∴CG=GF,∴△FGC是等腰三角形,∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GC F=2∠GFC=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF;④错误.理由如下:∵S△GCE=12GC•CE=12×6×8=24.∵GF=6,EF=4,△GFC和△FCE等高,∴S△GFC:S△FCE=3:2,∴S△GFC=35×24=725≠28.8.故④不正确,∴正确的有①②③.故选B.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识;本题综合性强,有一定的难度.3.C解析:C【分析】如下图,将△APD绕点A逆时针旋转60°至△AFE处,通过边长转换,可将PA+PD+PQ转化为PF+EF+PQ的形式,再利根据两点之间线段最短,得出最小值.【详解】如下图,将△APD绕点A逆时针旋转60°至△AFE处,连接FP,过点E作BC的垂线,交BC于点G,AD于点H,过点A作BC的垂线,交BC于点K∵△AFE是△APD绕点A逆时针旋转60°得到∴∠FAP=60°,∠EAD=60°,AF=AP,EF=PD∴△APF是等边三角形,∴AP=PF∴PA+PD+PQ=PF+FE+PQ≥EG∵四边形ABCD是平行四边形,BC=6∴AE=AD=BC=6,AD∥BC∴在Rt△AHE中,AH=3,3∵HG⊥BC,AK⊥BC,AD∥BC∴AK⊥AD,GH⊥AD,∴AK=HG∵∠ABC=60°,AB=4∴在Rt△ABK中,BK=2,3∴3=∴32353故选:C【点睛】本题考查最值问题,解题关键是旋转△APD,将PA+PD+PQ转化为PF+EF+PQ的形式.4.D解析:D【分析】由题意知道AE=t,CF=2t,连接BD,证明△DEB≌△DFC,得到EB=FC=2t,进而AB=AE+EB=3t=5,进而求出t的值.【详解】解:连接DB,如下图所示,∵四边形ABCD 为菱形,且∠ADC=120°, ∴∠CDB=60°∴△CDB 为等边三角形,∴DB=DC又∵△DEF 为等边三角形,∴∠EDF=60°,DE=DF ∴∠CDB=∠EDF∴∠CDB-∠BDF=∠EDF-∠BDF ∴∠CDF=∠BDE 在△EDB 和△FDC 中:=⎧⎪∠=∠⎨⎪=⎩DE DF EDB FDC DB DC ,∴△EDB ≌△FDC(SAS) ∴FC=BE=2t∴AB=AE+EB=t+2t=3t=5 ∴t=53. 故答案为:D. 【点睛】本题考查了三角形全等、菱形的性质等相关知识,关键是能想到连接BD 后证明三角形全等,本题是动点问题,将线段长用t 的代数式表示,化动为静.5.A解析:A 【分析】取MB 的中点P ,连接FP ,EP ,DN ,由中位线的性质,可得当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP ,求出当点N 与点A 重合时,FP 的值,以及FP 上的高,进而即可求解. 【详解】取MB 的中点P ,连接FP ,EP ,DN ,∵FP 是∆MNB 的中位线,EF 是∆DMN 的中位线,∴FP ∥BN ,FP=12BN ,EF ∥DN ,EF=12DN , ∴当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP .∴当点N 与点A 重合时,FP=12BN =12BA =4, 过点D 作DQ ⊥AB 于点Q ,∵AB ∥CD ,∠C =90°,AB =8,AD =CD =5, ∴AQ=8-5=3, ∴DQ=2222534AD AQ -=-=,∴当点N 与点Q 重合时,EF=11222DN DQ ==,EF ∥DQ ,即:EF ⊥AB ,即:EF ⊥FP , ∴∆EFP 中,FP 上的高=2,∴当N 从A 到B 的运动过程中,线段EF 扫过图形的面积=12×4×2=4. 故选A .【点睛】本题主要考查中位线的性质定理,勾股定理以及三角形的面积公式,添加合适的辅助线,构造三角形以及三角形的中位线,是解题的关键.6.B解析:B 【分析】①③利用正方形的性质、翻折不变性即可解决问题; ②构造全等三角形即可解决问题;④如图2,过B 作BQ ⊥PH ,垂足为Q .证明△ABP ≌△QBP (AAS ),以及△BCH ≌△BQH 即可判断;⑤利用特殊位置,判定结论即可; 【详解】解:根据翻折不变性可知:PE =BE ,故①正确; ∴∠EBP =∠EPB . 又∵∠EPH =∠EBC =90°, ∴∠EPH−∠EPB =∠EBC−∠EBP . 即∠PBC =∠BPH .又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB=∠BPH,在△ABP和△QBP中,∠APB=∠BPH,∠A=∠BQP,BP=BP,∴△ABP≌△QBP(AAS).∴AP=QP,AB=BQ.又∵AB=BC,∴BC=BQ.又∵∠C=∠BQH=90°,BH=BH,∴△BCH≌△BQH(HL)∴QH=HC,∴PH=PQ+QH=AP+HC,故④正确;当点P与A重合时,显然MH>MF,故⑤错误,故选:B.【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.7.A解析:A【分析】设AC、BD交于点O,连接OP,根据矩形的性质及勾股定理求出OA=OD=2.5,再求出△AOD的面积,根据面积关系即可求出答案.【详解】设AC 、BD 交于点O ,连接OP , ∵3, 4AB AD ==, ∴BD=AC=5, ∴OA=OD=2.5, ∵1134344AODABCD S S ==⨯⨯=矩形, ∴3AOPDOPSS+=,∵PE AC ⊥于E ,PF BD ⊥于F , ∴112.5 2.5322PE PF ⨯+⨯=, 15()322PE PF ⨯+=, ∴125PE PF +=, 故选:A.【点睛】此题考查矩形的性质,勾股定理,根据矩形的性质求出△AOD 的面积是解题的关键.8.D解析:D 【分析】连接BE ,根据折叠的性质证明△ABE ≌△A GE ',得到BE=EG ,根据点G 是AD 的中点,AD=4得到AE=2-EG=2-BE ,再根据勾股定理即可求出BE 得到EG. 【详解】 连接BE ,由折叠得:AE A E '=,A A '∠=∠=90°,AB A G '=, ∴△ABE ≌△A GE ', ∴BE=EG,∵点G 是AD 的中点,AD=4, ∴AG=2,即AE+EG=2, ∴AE=2-EG=2-BE ,在Rt △ABE 中,222BE AE AB =+,∴ 222(2)1BE BE =-+,∴EG=5BE 4=,故选:D.【点睛】此题考查折叠的性质,勾股定理,三角形全等的判定及性质,利用折叠证明三角形全等,目的是证得EG=BE ,由此利用勾股定理解题.9.A解析:A 【分析】由三角形的中位线定理得:22B C ,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12,所以△222A B C 的周长等于△111A B C 的周长的一半,以此类推可求出结论. 【详解】 解:△111A B C 中,114A B =,115AC =,117B C =,∴△111A B C 的周长是16,2A ,2B ,2C 分别是边11B C ,11A C ,11A B 的中点,22B C ∴,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12, ⋯,以此类推,则△444A B C 的周长是311622⨯=; ∴△n n n A B C 的周长是4122n -, 当2019n =时,第2019个三角形的周长42019120142122-==故选:A . 【点睛】本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.10.C解析:C 【分析】作点B 关于对角线AC 的对称点,该对称点与D 重合,连接DM ,则PB 与PM 之和的最小值为DM 的长;由菱形的面积可求出BD=4,由题意可证△BCD 是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423-CD CM-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.二、填空题11.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,5考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=22×(2+1)=322, 当AC=2,CP=CB=5时,OC=22×(2+5)=722, ∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=722-322=22. 故答案为22. 点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13.218cm 【分析】根据正方形的性质可以证明△AEO ≌CFO ,就可以得出S △AEO =S △CFO ,就可以求出△AOD 面积等于正方形面积的14,根据正方形的面积就可以求出结论. 【详解】解:如图:∵正方形ABCD 的对角线相交于点O ,∴△AEO 与△CFO 关于O 点成中心对称,∴△AEO ≌CFO ,∴S △AEO =S △CFO ,∴S △AOD =S △DEO +S △CFO ,∵对角线长为1cm ,∴S 正方形ABCD =1112⨯⨯=12cm 2, ∴S △AOD =18cm 2, ∴阴影部分的面积为18cm 2. 故答案为:18cm 2. 【点睛】 本题考查了正方形的性质的运用,全等三角形的判定及性质的运用正方形的面积及三角形的面积公式的运用,在解答时证明△AEO ≌CFO 是关键.14.8【分析】通过作辅助线使得△CAO ≌△GBO ,证明△COG 为等腰直角三角形,利用勾股定理求出CG 后,即可求出BC 的长.【详解】如图,延长CB 到点G ,使BG=AC .∵根据题意,四边形ABED 为正方形,∴∠4=∠5=45°,∠EBA=90°,∴∠1+∠2=90°又∵三角形BCA 为直角三角形,AB 为斜边,∴∠2+∠3=90°∴∠1=∠3∴∠1+∠5=∠3+∠4,故∠CAO =∠GBO ,在△CAO 和△GBO 中,CA GB CAO GBO AO BO =⎧⎪∠=∠⎨⎪=⎩故△CAO ≌△GBO ,∴CO =GO=627=∠6,∵∠7+∠8=90°,∴∠6+∠8=90°,∴三角形COG 为等腰直角三角形,∴()()2222=6262CO GO ++, ∵CG=CB+BG ,∴CB=CG -BG=12-4=8,故答案为8.【点睛】本题主要考查正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质,根据题意建立正确的辅助线以及掌握正方形的性质,等腰三角形的判定和性质,勾股定理,全等三角形的判定和性质是解答本题的关键.15.3013≤AM<6【分析】由勾股定理得BC=13从而得到点A到BC的距离, M为EF中点,所以AM=12EF,继而求得AM的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A到BC的距离为AC512BC13AB⨯⨯==6013,所以AM的最小值为6013÷2=3013,因为M为EF中点,所以AM=12EF,当E越接近A,F越接近C时,EF越大,所以EF<AC,则AM<6,所以3013≤AM<6,故答案为3013≤AM<6.16【分析】如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.证明BE=DT,BD=DW,把问题转化为求DT+DW的最小值.【详解】解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+AD,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=12CW=32,3332,∴TK=1+3+32=112,∴2222113322TK WK⎛⎫⎛⎫+=+ ⎪⎪ ⎪⎝⎭⎝⎭37∴DB+BE=DB+DT=DW+DT≥TW,∴37∴BD+BE37,37.【点睛】本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.1719【分析】先根据菱形的性质可得OC垂直平分BD,从而可得=DP BP,再根据两点之间线段最短可得EP BP+的最小值为DE,然后利用等边三角形的判定与性质求出点D的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP 、DP 、EP 、DE 、BD ,过点D 作DA OB ⊥于点A , (23,0)B , 23OB ∴=,四边形ABCD 是菱形,OC ∴垂直平分BD ,23OB OD ==,点P 是对角线OC 上的点,DP BP ∴=,EP BP EP DP ∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥,132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.18.5【分析】取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.【详解】如图1,取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM=12AB=5.同理ON=5.∵正方形DGFE,N为DE中点,DE=10,∴222210555NG DN DG++===.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=12∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.19.①②④.【分析】利用折叠性质得∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,则可得到∠EBG=12∠ABC,于是可对①进行判断;在Rt△ABF中利用勾股定理计算出AF=8,则DF=AD-AF=2,设AG=x,则GH=x,GF=8-x,HF=BF-BH=4,利用勾股定理得到x2+42=(8-x)2,解得x=3,所以AG=3,GF=5,于是可对②④进行判断;接着证明△ABF∽△DFE,利用相似比得到43DE AFDF AB==,而623ABAG==,所以AB DEAG DF≠,所以△DEF与△ABG不相似,于是可对③进行判断.【详解】解:∵△BCE沿BE折叠,点C恰落在边AD上的点F处;点G在AF上,将△ABG沿BG折叠,点A恰落在线段BF上的点H处,∴∠CBE=∠FBE,∠ABG=∠FBG,BF=BC=10,BH=BA=6,AG=GH,∴∠EBG=∠EBF+∠FBG=12∠CBF+12∠ABF=12∠ABC=45°,所以①正确;在Rt△ABF中,AF=8,∴DF=AD﹣AF=10﹣8=2,设AG=x,则GH=x,GF=8﹣x,HF=BF﹣BH=10﹣6=4,在Rt△GFH中,∵GH2+HF2=GF2,∴x2+42=(8﹣x)2,解得x=3,∴GF=5,∴AG+DF=FG=5,所以④正确;∵△BCE沿BE折叠,点C恰落在边AD上的点F处,∴∠BFE=∠C=90°,∴∠EFD+∠AFB=90°,而∠AFB+∠ABF=90°,∴∠ABF=∠EFD,∴△ABF∽△DFE,∴ABDF=AFDE,∴DEDF=AFAB=86=43,而ABAG=63=2,∴ABAG≠DEDF,∴△DEF与△ABG不相似;所以③错误.∵S△ABG=12×6×3=9,S△GHF=12×3×4=6,∴S△ABG=32S△FGH,所以②正确.故答案是:①②④.【点睛】本题考查了三角形相似的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用;在利用相似三角形的性质时,主要利用相似比计算线段的长.也考查了折叠和矩形的性质.202a 321a - 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE , ∵2AE 22a a == ∴AB 2a =.(2)结合(1)可知,AE AM 2a ==, ∴FM 2a a =-,∵EC=3BM , ∴1BM 2FM = ∴2BM 2a a -= ∴2321AB 2a a a --=+=. 2a ;3212a . 【点睛】本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)见解析(2)10【分析】(1)先证明AFE DBE ∆≅∆,得到AF DB =,AF CD =,再证明四边形ADCF 是平行四边形,再根据“直角三角形斜边上的中线等于斜边的一半”得到12AD DC BC ==,即可证明四边形ADCF 是菱形。
初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。
3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形;⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。
C 6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形; ⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。
8菱形的定义:有一组邻边相等的平行四边形。
9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角S菱形=1/2 x ab (a、b为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形12正方形判定定理:⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形+菱形二正方形)常考题:一•选择题(共14小题)1 •矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C•对角线互相平分D•两组对角分别相等2 •平行四边形ABCD中,AC BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()第1页(共41页)A. AB=BC B . AC=BD C. AC 丄 BD D . AB 丄 BD3.如图,已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB=BC 寸,它是菱形B .当AC 丄BD 时,它是菱形C.当/ ABC=90时,它是矩形D.当AC=BD 时,它是正方形4. 顺次连接任意四边形四边中点所得的四边形一定是( )A .平行四边形B.矩形 C .菱形 D .正方形5. 在平面直角坐标系中,平行四边形 ABCD 的顶点A ,B, D 的坐标分别是(0, 0),(5, 0),(2, 3),则顶点C 的坐标是( )(7, 3) D. (8, 2) AC 与BD 相交于点O , AB 丄AC,若AB=4, AC=6,则117. 如图,把矩形ABCD 沿 EF 翻折,点B 恰好落在AD 边的B 处,若AE=2, DE=6, / EFB=60,则矩形ABCD 的面积是(AB 的垂直平分线交对角线AC 于点F , )A . (3,7) B. (5,3) C.6.如图,?ABCD 的对角线D. 16/38. 如图,在菱形ABCD中,/ BAD=80, 垂足为E,连接DF,则/ CDF等于(A. 50°B. 60°C. 70°D. 809. 如图,在?ABCD 中,用直尺和圆规作/ BAD 的平分线AG交BC 于点E.若BF=6, AB=5,贝U AE 的长为( )A. 14B. 15C. 16 D . 1711. 如图,在平行四边形 ABCD 中,AB=4,Z BAD 的平分线与BC 的延长线交于 点E ,与DC 交于点F ,且点F 为边DC 的中点,DG 丄AE,垂足为G,若DG=1, 则AE 的边长为( )A. 2 二B. 4 二C. 4 D . 812. 如图,边长为6的大正方形中有两个小正方形, 若两个小正方形的面积分别 为S, 则0+Q 的值为( )13.如图,正方形 ABCD 的边长为4,点E 在对角10/ B=60°, AB=4,则以AC 为边长的正方形 ACEF 的周D . 19长为( )18线BD上,且/ BAE=22.5, EF 丄AB,垂足为F,则EF的长为()A. 1B. 「C. 4 - 2「D. 3 - - 414•如图,在正方形ABCD的外侧,作等边三角形ADE, AC BE相交于点F,则二.填空题(共13小题)15. __________________________________________________________ 已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为 __________________ c m2.o16. 如图,在?ABCD中,BE平分/ ABC, BC=6DE=2则?ABCD的周长等于____17. _______________________________________________________ 如图,?ABCD的对角线AC, BD相交于点0,点E, F分别是线段AO,BO 的中点,若AC+BD=24厘米,△ 0AB的周长是18厘米,则EF= _______________ 厘米. 18. ____________________________________________________ 如图,矩形ABCD的对角线AC和BD相交于点0,过点0的直线分别交AD 和BC于点E、F, AB=2, BC=3则图中阴影部分的面积为 _______________________________ .E DB F C19. 如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A, B的坐标分别为(-3, 0), (2, 0),点D在y轴上,则点C 的坐标是20•如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若/ CBF=20, 则/AED等于度.21.如图,?ABCD中,/ ABC=60, E F分别在CD和BC的延长线上,AE// BD, EF丄BC, EF="i,贝U AB 的长是_______ .22.如图所示,菱形ABCD的边长为4,且AE±BC于E, AF丄CD于F,Z B=60°, 则菱形的面积为__________ .23 .如图,D 是厶ABC内一点,BD丄CD, AD=6, BD=4, CD=3, E、F、G、H 分别是AB AC CD BD的中点,则四边形EFGH的周长是_____________ .24. ________________________ 如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A (10, 0), C (0, 4), D为OA的中点,P为BC边上一点.若△ POD为等腰三角形,则所有满足条件的点P的坐标为.C B第6页(共41页)25. 如图,已知△ ABC 的三个顶点的坐标分别为 A (- 2, 0), B ( - 1, 2), C (2,D 的坐标 _______26. __________________________________________________________ 如图,在菱形 ABCD 中,AB=4cm,/ ADC=120,点E 、F 同时由A 、C 两点 出发,分别沿AB 、CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm/s , 点F 的速度为2cm/s ,经过t 秒厶DEF 为等边三角形,则t 的值为 _____________________________ .27. 如图,四边形 ABCD 中, / A=90°, AB=3 二,AD=3,点 M , N 分别为线段 BC, AB 上的动点(含端点,但点 M 不与点B 重合),点E , F 分别为DM , MN 的中 点,则EF 长度的最大值为 __________. 三.解答题(共13小题) 28. 如图,已知:AB// CD, BEX AD ,垂足为点 E, CF 丄AD ,垂足为点 F ,并且AE=DF求证:四边形BECF 是平行四边形.0).请直接写出以A , B, C 为顶点的平行四边形的第四个顶点 C A X B29. 已知:如图,在△ ABC中,AB=AC AD丄BC,垂足为点D, AN是厶ABC外角/CAM的平分线,CEL AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当厶ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30. 如图,分别以Rt A ABC的直角边AC及斜边AB向外作等边△ ACD及等边△ABE 已知/ BAC=30, EF L AB,垂足为F,连接DF.(1)试说明AC=EF31. 如图,矩形ABCD中, AC与BD交于点O, BE L AC, CF L BD,垂足分别为E, F. 求证:BE=CF32. 如图,在△ ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当厶ABC满足什么条件时,四边形AFBD是矩形?并说明理由.B D C33. 如图,在△ ABC中,D、E分别是AB AC的中点,BE=2DE延长DE到点F, 使得EF=BE连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4 / BCF=120,求菱形BCFE的面积.34. 如图,在正方形ABCD中, E是AB上一点,F是AD延长线上一点,且DF=BE则GE=BEGD成立吗?为什么?(1)求证:CE=CF35. 如图,在△ ABC中,点0是AC边上的一个动点,过点0作直线MN // BC, 设MN交/ BCA的角平分线于点E,交/ BCA的外角平分线于点F.(1)求证:EO=F0(2)当点0运动到何处时,四边形AECF是矩形?并证明你的结论.36. 如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC CD DA 上, AE=CG AH=CF 且EG平分/ HEF 求证:(AEH^A CGF(2)四边形EFGH是菱形.HEG37. 如图,四边形ABCD 中,AD// BC, BA 丄AD, BC=DC BEL CD 于点E. (1) 求证:△ ABMA EBD(2) 过点E作EF// DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38. 如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB(1)求证:△ BCP^A DCP(2)求证:/ DPE=/ ABC(3)把正方形ABCD改为菱形,其它条件不变(如图②),若/ ABC=58,贝CDPE= ____ 度.图①圏②39. 在数学活动课中,小辉将边长为•:和3的两个正方形放置在直线I上,如图1,他连结AD、CF,经测量发现AD=CF(1)他将正方形ODEF绕0点逆时针旋转一定的角度,如图2,试判断AD与CF第14页(共41页)还相等吗?说明你的理由;(2)他将正方形ODEF绕0点逆时针旋转,使点E旋转至直线I上,如图3,请你求出CF的长.F图140. 数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC 的中点./ AEF=90°,且EF交正方形外角/ DCG的平分线CF于点F,求证:AE=EF图1 图2经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC 易证△AME^A ECF 所以AE=EF在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把点E是边BC的中点”改为点E是边BC上(除B,C外)的任意一点”其它条件不变,那么结论“AE=E«然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“ AE=Ef5然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提咼难题压轴题练习(含答案解析)参考答案与试题解析一•选择题(共14小题)1. (2013?宜宾)矩形具有而菱形不具有的性质是()A、两组对边分别平行B.对角线相等C•对角线互相平分D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2. (2014?可池)平行四边形ABCD中,AC BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A、AB=BC B. AC=BD C. AC丄BD D. AB丄BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3. (2008?扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()卫---------------- nA.当AB=BC时,它是菱形B.当AC丄BD时,它是菱形C.当/ ABC=90时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC寸,它是菱形,故A选项正确;B、t四边形ABCD是平行四边形,二BO=OD, T AC丄BD,:AB^Bb+AO2,AD2=DO2+AO2,A AB=AD,二四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4. (2011?张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B•矩形C•菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD, E、F、G、H分别是各边中点.•••在△ ABD 中,E、H 是AB、AD 中点,••• EH// BD, EH= BD.2•••在△ BCD中,G、F是DC、BC中点,••• GF/ BD, GF= BD,2••• EH=GF EH// GF,•••四边形EFGH为平行四边形.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5. (2006?南京)在平面直角坐标系中,平行四边形ABCD的顶点A, B, D的坐标分别是(0, 0), (5, 0), (2, 3),则顶点C的坐标是()C. (7, 3)D. (8, 2)【分析】因为D点坐标为(2, 3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7, 3).【解答】解:已知A, B, D三点的坐标分别是(0, 0), (5, 0), (2, 3), ••• AB在x轴上,•••点C与点D的纵坐标相等,都为3,又T D点相对于A点横坐标移动了 2 -0=2,• C点横坐标为2+5=7,•即顶点C的坐标(7, 3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6. (2014?河南)如图,?ABCD的对角线AC与BD相交于点O, AB丄AC,若AB=4, AC=6,贝U BD的长是()A. 8B. 9C. 10D. 11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长. 【解答】解::?ABCD的对角线AC与BD相交于点O,•BO=DO AO=CO••• AB丄AC, AB=4, AC=6,•B°=-;〜_=5,•BD=2BO=10故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7. (2013?南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B处,若AE=2, DE=6, / EFB=60 ,则矩形ABCD的面积是()A. 12B. 24C. 12 ;D. 16 :【分析】在矩形ABCD中根据AD// BC得出/ DEF=Z EFB=60,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B'处,所以/ EFB W DEF=60, / B=Z A B' F=90Z A=Z A =90° AE=A E=2 AB=A B 在厶EFB 中可知/ DEF= EFB= EB卩=6故厶EFB是等边三角形,由此可得出/ A B' E=960°30°根据直角三角形的性质得出A B' =AB=2然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,••• AD// BC,•••/ DEF=/ EFB=60,•••把矩形ABCD沿EF翻折点B恰好落在AD边的B处,•••/ DEF=/ EFB=60, / B=/ A B' F=90/ A=/ A =90° AE=A E=2AB=A ,在厶EFB中,v/ DEF=/ EFB=/ EB F=60°•••△ EFB是等边三角形,Rt A A E中,v/ A B' E=9060°=30°,••• B E=2A 而A E=2••• B' E=4••• A B' =2,g卩AB=2 二,v AE=2 DE=6••• AD=AE^DE=26=8, _ _•••矩形ABCD的面积=AB?AD=2= X 8=16 二.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补, 两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8. (2013?扬州)如图,在菱形ABCD中,/ BAD=80 , AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则/ CDF等于()A. 50°B. 60°C. 70°D. 80°【分析】连接BF,根据菱形的对角线平分一组对角求出/ BAC, / BCF=/ DCF, 四条边都相等可得BC=DC再根据菱形的邻角互补求出/ ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF根据等边对等角求出/ ABF=/ BAC,从而求出/ CBF再利用边角边”证明A BCF和A DCF全等,根据全等三角形对应角相等可得/ CDF/ CBF【解答】解:如图,连接BF,在菱形ABCD 中,/ / BAC=- / BAD寺X 80°=40°, / BCF/ DCF, BC=DC/ ABC=180-/ BAD=180 - 80°100°,••• EF是线段AB的垂直平分线,••• AF=BF / ABF=/ BAC=40,•••/ CBF/ ABC- / ABF=100 - 40°60°,•••在△ BCF 和ADCF 中,'BC=DCZBCF=ZDCF,.OF二CF•••△ BCF^A DCF( SAS ,•••/ CDF=/ CBF=60.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9. (2015?可南)如图,在?ABCD中,用直尺和圆规作/ BAD的平分线AG交BC 于点E.若BF=6, AB=5,贝U AE的长为()A. 4B. 6C. 8D. 10【分析】由基本作图得到AB=AF,加上AO平分/ BAD,则根据等腰三角形的性质得到AO丄BF, BO=FO= BF=3再根据平行四边形的性质得AF// BE,所以/仁 / 3,于是得到/ 2=/ 3,根据等腰三角形的判定得AB=EB然后再根据等腰三角形的性质得到AO=OE最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF, AE与BF交于点O,如图,••• AB=AF AO 平分/ BAD,••• AO丄BF, BO=FO= BF=32•••四边形ABCD为平行四边形,••• AF/ BE,•••/仁/ 3 ,•••/ 2=/ 3 ,• AB=EB而BO丄AE,••• AO=OE在Rt A AO B 中,AO=.卜..二=j M4, ••• AE=2AO=8 故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10. (2013?凉山州)如图,菱形ABCD中,/ B=60°, AB=4,则以AC为边长的正方形ACEF勺周长为()A. 14B. 15C. 16D. 17【分析】根据菱形得出AB=BC得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4求出即可.【解答】解:•••四边形ABCD是菱形,••• AB=BCvZ B=60°,•••△ ABC是等边三角形,••• AC=AB=4•••正方形ACEF的周长是AC+CE F EF+AF=4X 4=16 , 故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11. (2013?泰安)如图,在平行四边形ABCD中,AB=4, Z BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG丄AE,垂足为G, 若DG=1,贝U AE的边长为()第23页(共41页)A. 2 7B. 4 二C. 4D. 8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD 与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得至U AD=DF,由F为DC中点,AB=CD求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG 的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF 全等,得出AF=EF即可求出AE的长.【解答】解:TAE为/ DAB的平分线,•••/ DAE=/ BAE,•••DC// AB,•••/ BAE=/ DFA•••/ DAE=/ DFA••• AD=FD又F为DC的中点,••• DF=CF••• AD=DF= D C= AB=2,2 2在RtAADG中,根据勾股定理得:AG=则AF=2AG=2 二,••平行四边形ABCD••• AD// BC,•••/ DAF=/ E,/ ADF=/ ECF在厶ADF和厶ECF中,'ZDAF=ZE“ ZADF=ZECF,HF 二CF•••△ ADF^A ECF( AAS ,••• AF=EF则AE=2AF=4 二.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12. (2013?菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为Si, S2,则S i+Q的值为()第仃页(共41页)18 D. 19 S的边长为3,由ACV^BC,BC=CE匪CD,可得AC=2CDCD=2 EC=匚;然后,分别算出S、5的面积,即可解答.【解答】解:如图,设正方形的边长为x, _根据等腰直角三角形的性质知,AC=:x, x=匚CD, ••• AC=2CD CD晋=2, ••• EC=22+22,即EC^2;二S2 的面积为E&=, 「: _-8;••• S的边长为3, 0的面积为3 X 3=9,Si+S2=8+9=17.故选:B.A C DE考查了学生的读图【点评】本题考查了正方形的性质和等腰直角三角形的性质, 能力.13. (2013?连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且 / BAE=22.5, EF丄AB,垂足为F,贝U EF的长为()A. 1B.匚C. 4 - 2 匚D. 3 匚—4【分析】根据正方形的对角线平分一组对角可得/ ABD=/ ADB=45,再求出/ DAE 的度数,根据三角形的内角和定理求/ AED,从而得到/ DAE=ZAED,再根据等角对等边的性质得到AD=DE然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的莎倍计算即可得解.【解答】解:在正方形ABCD中,/ ABD=/ ADB=45 , •••/ BAE=22.5,• / DAE=90 -/ BAE=90 - 22.5 =67.5 ;在厶 ADE 中,/ AED=180 - 45° 67.5=67.5;•••/ DAE=/ AED,••• AD=DE=4•••正方形的边长为4,••• BD=4 匚,BE=BD- DE=4 ■: - 4,••• EF± AB,/ ABD=45 ,•△ BEF是等月腰直角三角形,•EF= BE= X(4 匚一4)=4- 2 匚.2 2故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14. (2014?畐州)如图,在正方形ABCD的外侧,作等边三角形ADE, AC BE【分析】根据正方形的性质及全等三角形的性质求出/ ABE=15, / BAC=45,再求/ BFC【解答】解:•••四边形ABCD是正方形,•AB=AD,又•••△ ADE是等边三角形,•AE=AD=DE/ DAE=60,•AB=AE•/ ABE=/ AEB / BAE=90+60°=150°,•/ ABE=( 180°- 150° - 2=15°,又•••/ BAC=45,•/ BFC=4°15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出/ ABE=15.二.填空题(共13小题)15. (2008?恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24 cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6X 8-2=24cm2. 故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16. (2015?梅州)如图,在?ABCD 中,BE 平分/ ABC, BC=6 DE=2 则?ABCD 的周长等于20 .【分析】根据四边形ABCD为平行四边形可得AE// BC,根据平行线的性质和角平分线的性质可得出/ ABE=Z AEB继而可得AB=AE然后根据已知可求得结果.【解答】解:•••四边形ABCD为平行四边形,••• AE/ BC, AD=BC AB=CD•••/ AEB=/ EBC••• BE平分/ ABC,•••/ ABE=/ EBC•••/ ABE=/ AEB••• AB=AE••• AE+DE=AD=BC=6••• AE+2=6 ,••• AE=4••• A B=CD=4••• ?ABCD 的周长=4+4+6+6=20 ,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出/ ABE=Z AEB.17. (2013?厦门)如图,?ABCD的对角线AC, BD相交于点O,点E, F分别是线段AO , BO的中点,若AC+BD=24厘米,△ OAB的周长是18厘米,贝U EF= 3 厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是厶OAB的中位线即可得出EF的长度.【解答】解:•••四边形ABCD是平行四边形,•••OA=OC OB=OD又••• AOBD=24 厘米,二OA+OB=12cm,•••△ OAB的周长是18厘米,••• AB=6cm,•••点E, F分别是线段AO, BO的中点,•丘卩是厶OAB的中位线,• EF= AB=3cm.2故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18. (2007?临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2, BC=3则图中阴影部分的面积为 3 .E DB F C【分析】根据矩形是中心对称图形寻找思路:△ AOE^A COF图中阴影部分的面积就是厶BCD的面积.【解答】解:•••四边形ABCD是矩形,•OA=OC / AEO=Z CFO又•••/ AOE=/ COF,在厶AOE和厶COF中,'ZAE0=ZCF0PARC ,L ZA0E=ZC0F•△AOE^A COF,•S AOE=S^COF,•图中阴影部分的面积就是△ BCD的面积.S^BC[= BC X CD= X 2 X 3=3.2 2故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19. (2014?宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A, B,则点C的坐标是(5,4)【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:•••菱形ABCD的顶点A, B的坐标分别为(-3, 0), (2, 0),点D 在y轴上,AB=5,••• D0=4,•••点C的坐标是:(5, 4).故答案为:(5, 4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20. (2015?黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若/ CBF=20,则/ AED等于65 度.【分析】根据正方形的性质得出/ BAE=/ DAE再利用SAS证明△ ABE与厶ADE 全等,再利用三角形的内角和解答即可.【解答】解:•••正方形ABCD,• AB=AD / BAE=/ DAE 在厶ABE与△ ADE中,应二AD* ZBAE^ZDAE,AE=AEt•△ABE^A ADE (SAS ,•/ AEB=/ AED, / ABE=Z ADE,•••/ CBF=20,•/ ABE=70 ,•/ AED=/ AEB=180 - 45°- 70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出/ BAE=/ DAE,再利用全等三角形的判定和性质解答.21. (2013?十堰)如图,?ABCD中,/ ABC=60 , E、F分别在CD和BC的延长线上,AE// BD, EF丄BC, EF=「,贝U AB 的长是 1 .【分析】根据平行四边形性质推出AB=CD AB//CD,得出平行四边形ABDE推出DE=DC=AB根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:•••四边形ABCD是平行四边形,••• AB// DC, AB=CD••• AE// BD,•••四边形ABDE是平行四边形,••• AB=DE=CD即D为CE中点,••• EF丄BC,•••/ EFC=9°••• AB// CD,•••/ DCF=/ A BC=60,•••/ CEF=3°•- EF=「,••• CE==2,cos30••• AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22. (2013?黔西南州)如图所示,菱形ABCD的边长为4,且AE± BC于E, AF 丄CD于F,Z B=60°,则菱形的面积为—墜_.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底X高计算即可.【解答】解:•••菱形ABCD的边长为4,••• AB=BC=4••• AE丄BC于E,Z B=60°,•sinB亠二-,AB 2•AE=2「, _ _•••菱形的面积=4X2二=8故答案为8二.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23. (2013?鞍山)如图,D 是厶ABC内一点,BD丄CD, AD=6, BD=4, CD=3, E、F、G、H分别是AB、AC CD BD的中点,则四边形EFGH的周长是11 .【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG= AD, EF=GH= BC,然后代入数据进行计算2 2即可得解.【解答】解::BD丄CD, BD=4, CD=3二BC= Hr厂「= ■一•:广=5,••• E、F、G、H 分别是AB AC CD BD 的中点,EH=FG= AD, EF=GH= BC,2 2.四边形EFGH的周长=EF+GF+FG+EF=AD H BC,又T AD=6,.四边形EFGH的周长=6+5=11. 故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24. (2015?攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A (10, 0), C (0, 4), D为OA的中点,P为BC边上一点.若△ POD为等腰三角形,则所有满足条件的点P的坐标为(2.5, 4),或(3, 4),或(2, 4), 或(8, 4) .【分析】由矩形的性质得出/ OCB=90, OC=4, BC=OA=10求出OD=AD=5分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:•••四边形OABC是矩形,•••/ OCB=90 , OC=4 BC=OA=10T D为OA的中点,.OD=AD=5①当PO=PD时,点P在OD得垂直平分线上,•••点P的坐标为:(2.5, 4);②当OP=OD时,如图1所示:则OP=OD=5 PC^_42=3,•••点P的坐标为:(3, 4);③当DP=DO时,作PEL OA于E,贝U/ PED=90, DE= - =3;分两种情况:当E在D的左侧时,如图2所示:OE=5- 3=2,•点P的坐标为:(2, 4);当E在D的右侧时,如图3所示:OE=f+3=8,•点P的坐标为:(8, 4);综上所述:点P的坐标为:(2.5, 4),或(3, 4),或(2, 4),或(8, 4); 故答案为:(2.5, 4),或(3, 4),或(2, 4),或(8, 4).<yc p BA0 D E A X闺3闺1【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25. (2013?阜新)如图,已知△ ABC的三个顶点的坐标分别为A (-2, 0), B(-1, 2), C (2 , 0).请直接写出以A , B, C为顶点的平行四边形的第四个顶点D 的坐标(3 , 2)(-5 , 2)(1,二2).【解答】解:如图:以A , B , C 为顶点的平行四边形的第四个顶点 D 的坐标分26. (2014?丹东)如图,在菱形 ABCD 中, AB=4cm,/ ADC=120,点 E 、F 同时 由A 、C 两点出发,分别沿AB CB 方向向点B 匀速移动(到点B 为止),点E 的 速度为1cm/s ,点F 的速度为2cm/s ,经过t 秒厶DEF 为等边三角形,则t 的值为 4 【分析】延长AB 至 M ,使BM=AE,连接FM ,证出△ DAE ^EMF,得到△ BMF 是等边BC, AB, AC 为对角线作平行四边形, 即可求得答案. 别为:(3, 2), (-5, 2), (1,- 2). 故答案为:(3, 2), (- 5, 2), (1,- 2).。
人教八下平行四边形专题知识点常考(典型)题型重难点题型(含详细答案)
平行四边形专题知识点+常考题型+重难点题型(含详细答案)一、目录一、目录 (1)二、基础知识点 (2)1.平行四边形的定义 (2)2.平行四边形的性质 (3)3.平行四边形的判定定理 (7)4.三角形中位线定理 (10)三、重难点题型 (14)1.平行四边形的共性 (14)2.平行四边形间距离的应用 (16)3.与平行四边形有关的计算 (17)4.与平行四边形有关的证明 (19)二、基础知识点1.平行四边形的定义平行四边形:两组对边分别平行的四边形。
平行四边形ABCD记作“□ABCD”注:只要满足对边平行的四边形都是平行四边形。
矩形、菱形、正方形都是特殊的平行四边形例1.如图,□ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:BE=DF.答案:∵四边形ABCD为平行四边形∴AD∥CB,AD=CB∵DE⊥AB,BF⊥CD∴∠DEA=∠CFB∴△ADE≌△CFB∴AE=CF∵DC=AB∴BE=DF例2.在平面直角坐标系中,有A(0,1),B(-1,0),C(1,0)三点,若点D与A,B,C构成平行四边形,求D的坐标。
(3解)答案:如下图,有三种情况,坐标分别为:(0,-1);(2,1);(-2,1)2.平行四边形的性质性质1(边):平行四边形的对边相等(AB=CD,AC=BD)证明:∵∠CAD=∠ADB ∠DAB=∠ADC AD=AD ∴△ACD≌△DBA(ASA)∴AB=CD AC=BD性质2(角):平行四边形对角相等,邻角互补(∠A=∠D,∠C=∠B;∠A+∠C=∠B+∠D=180°)证明:∵△ACD≌△DBA(ASA)又∵∠CAB=∠CAD+∠DAB ∠CDB=∠CDA+∠ADB∴∠CAB=∠CDB∵AB∥CD∴∠B+∠BDC=180°性质3(对角线):平行四边形对角线互相平分(AO=OC;BO=OD)证明:∵AD=BC ∠OAD=∠OCB ∠ODA=∠OBC∴△AOD≌△COB(ASA)∴AO=OC OB=OD注1:平行四边形对角线互相平分,但两对角线不一定相等解析:假设平行四边形对角线相等∴∠OAD=∠ADO=∠OBC=∠OCB∠OAB=∠OBA=∠OCD=∠CDO又∵∠DAB+∠CBA=180°∴∠DAB=∠ABC=∠BCD=∠CDA=90°∴仅在平行四边形的四个角为直角时(即矩形),对角线相等注2:对角线不一定平分角解析:假设平行四边形对角线平分角,则∠ADB=∠BDC ∠ACD=∠ACB ∵∠DCB=∠BAD∴∠ACD=∠CAD又∵OD=OD∴△AOD≌△COD(AAS)∴AD=DC=BC=AB∴仅当平行四边形四条边相等时(即菱形),对角线平分角性质4:平行四边形是中心对称图形,对称中心为对角线交点。
八年级初二数学 平行四边形知识点-+典型题含答案
八年级初二数学 平行四边形知识点-+典型题含答案一、选择题1.如图,E 、F 、G 、H 分别是BD 、BC 、AC 、AD 的中点,且AB =CD .结论:①EG ⊥FH ;②四边形EFGH 是矩形;③HF 平分∠EHG ;④EG 12=BC ;⑤四边形EFGH 的周长等于2AB .其中正确的个数是( )A .1B .2C .3D .42.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④3.如图,在四边形ABCD 中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,多少s 时直线将四边形ABCD 截出一个平行四边形( )A .1B .2C .3D .2或34.如图,将一个矩形纸片ABCD 折叠,使点B 与点D 重合,若3,9,AB BC ==则折痕EF 的长度为( )A 3B .3C 10D 3105.如图,点E 是矩形ABCD 的边AB 的中点,点F 是边CD 上一点,连接ED ,EF ,ED 平分∠AEF ,过点D 作DG ⊥EF 于点M ,交BC 于点G ,连接GE ,GF ,若FG ∥DE,则AB AD 的值是()A .32B .22C .2D .36.下列命题中,真命题的个数有( )①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A .3个B .2个C .1个D .0个7.如图,在正方形ABCD 中,E 为BC 上一点,过点E 作EF ∥CD ,交AD 于F ,交对角线BD 于G ,取DG 的中点H ,连结AH ,EH ,FH .下列结论:①∠EFH =45°;②△AHD ≌△EHF ;③∠AEF +∠HAD =45°; ④若BE EC=2,则1113BEH AHE S S .其中结论正确的是( )A .①②③B .①②④C .②③④D .①②③④8.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412 B .201512 C .201612 D .2017129.如图,在ABCD 中,2,AB AD F =是CD 的中点,作BE AD ⊥于点E ,连接EF BF 、,下列结论:①CBF ABF ∠=∠;②FE FB =;③2EFB S S ∆=四边形DEBC ;④3BFE DEF ∠=∠;其中正确的个数是( )A .1B .2C .3D .410.如图,矩形ABCD 中,O 为AC 的中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO .若60COB ∠=︒,2FO FC ==,则下列结论:①FB OC ⊥;②EOB CMB △≌△;③四边形EBFD 是菱形;④23MB =.其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题11.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.12.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).13.如图,Rt ABE ∆中,90,B AB BE ︒∠==, 将ABE ∆绕点A 逆时针旋转45︒,得到,AHD ∆过D 作DC BE ⊥交BE 的延长线于点C ,连接BH 并延长交DC 于点F ,连接DE 交BF 于点O .下列结论:①DE 平分HDC ∠;②DO OE =; ③CD HF =; ④2BC CF CE -=; ⑤H 是BF 的中点,其中正确的是___________14.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.15.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.在平行四边形 ABCD 中,AE 平分∠BAD 交边 BC 于 E ,DF 平分∠ADC 交边 BC 于 F ,若 AD=11,EF=5,则 AB= ___.20.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.三、解答题21.如图1所示,把一个含45°角的直角三角板ECF 和一个正方形ABCD 摆放在一起,使三角板的直角顶点和正方形的顶点C 重合,点E ,F 分别在正方形的边CB ,CD 上,连接AE 、AF .(1)求证:AE =AF ;(2)取AF 的中点M ,EF 的中点N ,连接MD ,MN .则MD ,MN 的数量关系是 ,MD 、MN 的位置关系是(3)将图2中的直角三角板ECF ,绕点C 旋转180°,如图3所示,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.22.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.23.如图1,在正方形ABCD 中,点M 、N 分别在边BC 、CD 上,AM 、AN 分别交BD 于点P 、Q ,连接CQ 、MQ .且CQ MQ =.(1)求证:QAB QMC ∠=∠(2)求证:90AQM ∠=︒(3)如图2,连接MN ,当2BM =,3CN =,求AMN 的面积图1 图224.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,AE =AD ,作DF ⊥AE 于点F . (1)求证:AB =AF ;(2)连BF 并延长交DE 于G .①EG =DG ;②若EG =1,求矩形ABCD 的面积.25.(解决问题)如图1,在ABC ∆中,10AB AC ==,CG AB ⊥于点G .点P 是BC 边上任意一点,过点P 作PE AB ⊥,PF AC ⊥,垂足分别为点E ,点F .(1)若3PE =,5PF =,则ABP ∆的面积是______,CG =______.(2)猜想线段PE ,PF ,CG 的数量关系,并说明理由.(3)(变式探究)如图2,在ABC ∆中,若10AB AC BC ===,点P 是ABC ∆内任意一点,且PE BC ⊥,PF AC ⊥,PG AB ⊥,垂足分别为点E ,点F ,点G ,求PE PF PG ++的值.(4)(拓展延伸)如图3,将长方形ABCD 沿EF 折叠,使点D 落在点B 上,点C 落在点C '处,点P 为折痕EF 上的任意一点,过点P 作PG BE ⊥,PH BC ⊥,垂足分别为点G ,点H .若8AD =,3CF =,直接写出PG PH +的值.26.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。
八年级数学《平行四边形的识别》重点知识及经典例题
八年级数学《平行四边形的识别》重点知识及经典例题学习目标1.掌握平行四边形识别的四种方法.2.能综合运用平行四边形的性质和识别的方法去解决一些实际问题.学法指导1.平行四边形的定义是识别平行四边形的最基本的方法,要把它和四种识别方法加在一起灵活地运用.2.通过定理的证明,使我们逐步学习分别从题设或结论出发,运用综合法和分析法寻找几何证明思路.3.判断一个命题是否正确,可采用反例法,即举出一个符合题设,但不符合结论的例子.基础知识讲解平行四边形的识别方法1.两组对角分别相等的四边形是平行四边形.2.两组对边分别相等的四边形是平行四边形.3.对角线互相平分的四边形是平行四边形.4.一组对边平行且相等的四边形是平行四边形.5.除以上四种识别方法外,还有一种最基本的识别方法,即两组对边分别平行的四边形为平行四边形,这种方法也叫定义法.重点难点重点:利用平行四边形的识别方法来判断一个四边形是否是平行四边形.难点:五种识别方法的选择是本章的难点,综合应用平行四边形的性质和识别方法来解决实际问题也是本章的难点.易错误区分析1.利用本节内容解题时常犯“错用识别方法”的错误.例如:已知如图12-1-19,所示□ABCD的对角线AC、BD相交于点O,OE上AD于E,OF ⊥BC于F.求证:四边形AECF是平行四边形错证:在△AOE和△COF中∵OE⊥AD,OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE∴四边形AECF是平行四边形错误分析:上面证明由OF=OE,OA=OC不能说明EF与AC互相平分,因为原题设中没有说明E、O、F三点共线,因此先证E、O、F三点共线.正确证:在△AOE和△COF中∵OE⊥AD OF⊥BC ∴∠AEO=∠CFO=90°∵四边形ABCD为平行四边形∴OA=OC,AD∥BC ∴∠EAC=∠ACF∴△AOE≌△COF(AAS)∴OF=OE又∵AD∥BC,OE⊥AD,OF⊥BC∴E、O、F三点共线∴四边形AECF是平行四边形例如:判断命题“一组对边平行,另一组对边相等的四边形是平行四边形”是否正确错解:这个命题正确分析:错解的原因主要是与一组对边平行且相等的识别方法相混淆.正确解法:这个命题不正确,例如:如图12-1-20,作一个□ABCD(其中∠A是锐角)以C为圆心,以CB为半径画弧交AB的延长线于点E,连结CE,则有CD∥AE,AD=CE,显然四边形AECD虽满足命题的条件,但它不是平形四边形.典型例题例1.已知如图12-1-21所示,在□ABCD中,E、F是对角线AC上的两点,且AE=CF,M、N是AB、CD上的点,且BM=DN.求证:四边形MENF是平行四边形.分析:由平行四边形的识别方法按照已知条件应从边入手,由已知及平行四边形可知△AME≌△CNF,则有ME=NF,同理△AMF≌△CNE,则有MF=NE证明:在□ABCD中,AB CD ∴∠1=∠2又∴BM=DN ∴AM=CN且AE=CF ∴△AME≌△CNF(SAS)∴ME=FN 同理可证△AMF≌△CNE ∴MF=NE∴四边形MENF是平行四边形例2.如图12-1-22所示,现有一块等腰直角三角形的铁板,通过切割焊接成一个含有45°角的平行四边形,请你设计一种最简单的方案,并证明你的方案确实得到的是一个符合条件的平行四边形.分析:运用三角形全等,平行四边形的识别方法来解答,在证明时不要忽略证明F,E,D共线.解:取AC、BC的中点E、D连结ED,则沿ED切割下来,如图使点E不变,点C与点A 重合,再焊接上去最简单.证明:在Rt△ABC中∵AC=BC ∴∠B=45°又∵E、D分别为AC、BC的中点∴EC=DC ∴∠CED=∠CDE=45°∴∠AEF=∠CED=45°∴∠AEF+∠AED=∠CED+∠AED=180°∴F、E、D在一条直线上∵∠EAF=∠C=90°∴AF∥CD又∵AF=CD=DB ∴四边形AFDB是平行四边形,且∠B=45°例3.如图12-1-23,在□ABCD的对角线上取两点E、F,且BF=DE,请至少用两种不同的方法证明四边形AECF是平行四边形,并指出哪种方法最简便.分析:可证两组对边分别相等,也可证对角线互相平分.证明方法(一)在△ABF和△CDE中,AB=CD,BF=DE,∠ABF=∠CDE.∴△ABF≌△CDE ∴AF=CE同理可证AE=CF,故四边形AECF是平行四边形方法(二)连AC交BD于O在□ABCD中,OA=OC,OB=OD∵BF=DE ∴OE=OF ∴四边形AECF为平行四边形例4.如果一块木板两边是线段,把两把曲尺的一边紧靠木板边缘,再看木板另一边缘对曲尺另一边上的刻度是否相等,就可以判断木板的两个边缘是否平行,这是为什么?分析:这是一道生活实践题,运用数学知识来解决和分析一些生活实践问题,此题就是运用平行四边形的识别方法来判断两边是否平行.解:如果曲尺的刻度相等,则木板的两个边缘就平行,因为,两把曲尺与木板的两个边缘构成一个四边形,当曲尺的刻度相等,则四边形中就有一组对边平行且相等,所以四边形为平行四边形,则木板的两边缘平行.如果曲尺的刻度不相等,则木板的两个边缘就不平行,因为曲尺与木板边缘构成的四边形不是平行四边形.例5.如图12-1-24,在四边形ABCD中,AD∥BC,AD=24cm,AB=8cm,动点P从A开始沿AD边向D以1cm/秒的速度运动,动点Q从C点开始沿CB边以3cm/秒的速度运动,P、Q分别从点A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t秒,t为何值时四边形PQCD为平行四边形分析:要使四边形PQCD为平行四边形,因为PD∥QC,只要满足PD=QC即可解:∵AD∥BC ∴只要PD=QC时,四边形PQCD就是平行四边形此时有24-t=3t解得t=6 ∴当t=6时,四边形PQCD为平行四边形.创新思维例1.如图12-1-25,△ABC是边长为a的等边三角形,P是△ABC内的任意一点,过点P作EF∥AB交AC,BC于点E、F,作GH∥BC交AB,AC于点G、H,作MN∥AC交AB、BC于M、N,请你猜想EF+GH+MN的值是多少?其值是否随P位置的改变而变化,并证明你的结论分析:把线段EF、MN、GH通过平行四边形或等边三角形,利用相等的线段转移到同一条边AB上.解:EF+GH+MN=2a,EF+GH+MN的值不随P的位置改变而变化.证明:∵△ABC是等边三角形∴∠A=∠B=∠C=60°∵GH∥BC ∴∠AGH=∠B=60°,∠AHG=∠C=60°∵△AGH是等边三角形∴GH=AG=AM+MC……(l)同理可证:△BMN是等边三角形∴MN=MB=MG+GB (2)∵MN∥AC,EF∥AB∴四边形AMPE是平行四边形∴PE=AM同理可证四边形BFPG是平行四边形∴PF=GB∴EF=PE+PF=AM+GB (3)(l)+(2)+(3)得EF+GH+MN=AM+GB+MG+GB+AM+MG=2(AM+MG+GB)=2AB=2a例2.已知如图12-1-26所示,△ABC中,AB=9,AC=10,试求BC边上中线AD的取值范围.分析:求线段的取值范围只有把已知线段和所求线段平移到一个三角形中,由三角形的三边关系来确定线段的取值范围,由题意可知:根据已知三角形ABC求作一个平行四边形即可求得.解:如图所示延长AD至E,使AD=DE,连结BE、CE∵AD=DE BD=DC∴四边形ABEC为平行四边形∴AC=BE=10在△ABE中,AB=9,BE=10∴10-9<AE<1O+9,即1<AE<19∴0.5<AD<9.5例3.如图12-1-27,在□ABCD中MN∥AC且交DA延长线于M,交DC延长线于N,交AB 于P,交BC于Q.(1)请指出图中平行四边形的个数.(2)图中MP与NQ能相等吗?为什么?分析:由AD∥BC可得AM∥QC同理可得PA∥NC解:(1)有3个平行四边形即□AMQC,□APNC,□ABCD(2)MP与NQ能相等因为MQ=AC PN=AC所以MQ=PN因为MP=MQ-PQ QN=PN-PQ所以MP=NQ中考练兵1.不能判定四边形ABCD是平行四边形的条件是()A.AB=CD,AD=BC B.AB∥CD,AB=CDC.AB=CD,AD∥BC D.AB∥CD,AD∥BC解:由平行四边形的识别方法可得A、B、D.都能判定四边形ABCD是平行四边形,因为有一组对边相等,另一组对边平行的四边形不一定是平形四边形,所以选C.2.已知四边形ABCD中AC与BD交于点0,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下4种说法,其中说法正确的是()①如果再加上条件“BC=AD”那么四边形ABCD一定是平行四边形.②如果再加上条件“∠BAD=∠BCD”,则四边形ABCD一定是平行四边形.③如果再加上条件“AO=CO”那么四边形ABCD一定是平行四边形.④如果再加上条件“∠DBA=∠CA B”,则四边形ABCD一定是平行四边形.A.①和②B.①③和④C.②和③D.②③和④分析:关于①由AB∥CD知∠ABD=∠CDB,如果用AD=BC及DB=BD一般地不能得到△ABD≌△CDB或△ACB≌△CAD关于②由AB∥DC知∠ABD=∠CDB,如果∠BAD=∠BCD,再用BD=DB可得△ABD≌△CDB,于是AB=DC,进而AB DC.关于③由AB∥CD知∠OAB=∠OCD,∠OBA=∠ODC,若AO=OC 则△AOB≌△COD于是AB=DC,即AB DC,故可得□ABCD.关于④由∠DBA=∠CAB知OA=OB,又AB∥CD知∠DBA=∠BDC,同理也会有OC=OD且OA不一定等于OC,如图12-1-28所示就是一个反例解:综合上述知②③正确,故选C。
2020年八年级数学下册 平行四边形性质与判定 重难点培优练习(含答案)
2020年八年级数学下册平行四边形性质与判定重难点培优练习一、选择题1.如图,平行四边形ABCD的周长是26cm,对角线AC与BD交于点O,AC⊥AB,E是BC中点,△AOD的周长比△AOB的周长多3cm,则AE的长度为()A.3cm B.4cm C.5cm D.8cm2.如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B. C.1D.3.如图,□ABCD的周长为20cm,AC与BD相交于点O,OE⊥AC交AD于E,则△CDE的周长为()A.6cm B.8cm C.10cm D.12cm4.如图,平行四边形ABCD绕点A逆时针旋转300,得到平行四边形AB′C′D′(点B′与点B是对应点,点C′与点C是对应点,点D′与点D是对应点),点B′恰好落在BC边上,则∠C=()A.155° B.170° C.105° D.145°5.如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=13,点P从点A出发以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动.当四边形PQBC为平行四边形时,运动时间为()A.4s B.3s C.2s D.1s6.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,若BD、AC的和为18cm,CD:DA=2:3,△AOB的周长为13cm,那么BC的长是()A.6cm B.9cm C.3cm D.12cm7.如图,在□ABCD中,BM是∠ABC的平分线交CD于点M,且MC=2,□ABCD的周长是14,则DM等于() A.1 B.2 C.3 D.48.如图,□ABCD的对角线AC,BD相交于O,EF过点O与AD,BC分别相交于E,F,若AB=4,BC=5,OE=1.5,那么四边形EFCD的周长为()A.16B.14C.12D.10二、填空题9.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF= 厘米.10..E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______11.如图,在平行四边形ABCD中,点E在BC边上,且CE:BC=2:3,AC与DE相交于点F,若S=9,△AFD则S△EFC= .12.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_______13.已知平行四边形ABCD的顶点A在第三象限,对角线AC的中点在坐标原点,一边AB与x轴平行且AB=2,若点A的坐标为(a,b),则点D的坐标为.14.如图,在□ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为___________15.如图,□ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.16.如图,第1个图形中一共有1个平行四边形,第2个图形中一共有5个平行四边形,第3个图形中一共有11个平行四边形,…则第n个图形中平行四边形的个数是.三、解答题17.如图所示,在平行四边形ABCD中,过点B作BG∥AC,在BG上取点E,连结DE,交AC的延长线于点F.(1)求证:DF=EF.(2)如果AD=2,∠ADC=60°,AC⊥DC于点C,AC=2CF,求BE的长.18.如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.(1)求证:△ADE≌△BFE;(2)连接EG,判断EG与DF的位置关系并说明理由.19.如图,在□ABCD中,E为BC中点,过点E作EG⊥AB于G,连结DG,延长DC,交GE的延长线于点H.已知BC=10,∠GDH=45°,DG=8.求CD的长.20.如图,已知在等边△ABC中,D、F分别为CB、BA上的点,且CD=BF,以AD为边作等边三角形ADE.求证:(1)△ACD≌△CBF;(2)四边形CDEF为平行四边形.21.如图,已知E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.22.△ABC中,中线BE、CF相交于O,M是BO的中点,N是CO的中点.求证:四边形MNEF是平行四边形.23.如图,在△AB C中,AB=AC,延长BC至点D,使CD=BC,点E在边AC上,以CE,CD为邻边作▱CDFE,过点C作CG∥AB交EF于点G.连结BG,DE.(1)∠ACB与∠GCD有怎样的数量关系?请说明理由;(2)求证:△BCG≌△DCE.参考答案1.B2.D3.C4.A5.B6.A7.C8.C9.答案为:3;10.5111.答案为:4;12.答案为:平行四边形13.D(﹣2﹣a,﹣b),(2﹣a,﹣b).14.答案为:21°.15.答案为:1<a<7.16.答案为:n2+n﹣1.17.解:(1)证明:连结BD交AC于点O.∵四边形ABCD是平行四边形,∴OB=OD.∵BG∥AF,∴DF=EF.(2)∵AC⊥DC,∠ADC=60°,AD=2,∴AC=.∵OF是△DBE的中位线,∴BE=2OF.∵OF=OC+CF,∴BE=2OC+2CF.∵四边形ABCD是平行四边形,∴AC=2OC.∵AC=2CF,∴BE=2AC=2.18.(1)证明:∵AD∥BC,∴∠ADE=∠BFE,∵E为AB的中点,∴AE=BE,在△AED和△BFE中,∴△AED≌△BFE(AAS);(2)EG与DF的位置关系是EG垂直平分DF,理由为:连接EG,∵∠GDF=∠ADE,∠ADE=∠BFE,∴∠GDF=∠BFE,由(1)△AED≌△BFE得:DE=EF,即GE为DF上的中线,∴GE垂直平分DF.19.解:∵四边形ABCD是平行四边形,∴AB∥CD,∵EG⊥AB,∴∠BGE=∠EHC=90°,在RT△DHG中,∠GHD=90°,∠GDH=45°,DG=8,∴DH=GH=8,∵E为BC中点,BC=10,∴BE=EC=5,在△BEG和△CEH中,,∴△BEG≌△CEH,∴GE=HE=GH=4,在RT△EHC中,∵∠H=90°,CE=5,EH=4,∴CH=3,CD=5.20.提示:(1)∵△ABC为等边三角形,∴AC=CB,∠ACD=∠CBF=60°.又∵CD=BF,∴△ACD≌△CBF.(2)∵△ACD≌△CBF,∴AD=CF,∠CAD=∠BCF.∵△AED为等边三角形,∴∠ADE=60°,且AD=DE.∴FC=DE.∵∠EDB+60°=∠BDA=∠CAD+∠ACD=∠BCF+60°,∴∠EDB=∠BCF.∴ED∥FC.∵ED FC,∴四边形CDEF为平行四边形.21.连结BE,CE //且=AB□ABEC BF=FC.□ABCD AO=OC,∴AB=2OF.22.证明:∵BE,CF是△ABC的中线,∴EF∥BC且EF=0.5BC,∵M是BO的中点,N是CO的中点,∴MN∥BC且MN=0.5BC,∴EF∥MN且EF=MN,∴四边形MNEF是平行四边形.23.解:(1)∠ACB=∠GCD.理由如下:∵AB=AC,∴∠ABC=∠ACB.∵CG∥AB,∴∠ABC=∠GCD,∴∠ACB=∠GCD.(2)证明:∵四边形CDFE是平行四边形,∴EF∥CD,∴∠ACB=∠GEC,∠EGC=∠GCD.∵∠ACB=∠GCD,∴∠GEC=∠EGC,∴EC=GC.∵∠GCD=∠ACB,∴∠GCB=∠ECD.∵BC=DC,∴△BCG≌△DCE.。
平行四边形的性质专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.1平行四边形的性质专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022春•南海区校级月考)下面性质中,平行四边形不一定具备的是()A.邻角互补B.邻边相等C.对边平行D.对角线互相平分2.(2022春•隆安县期中)在▱ABCD中,∠B=60°,那么下列各式中成立的是()A.∠A+∠C=180°B.∠D=60°C.∠A=100°D.∠B+∠D=180°3.(2022春•曹妃甸区期末)平行四边形相邻两角中,其中一个角的度数y与另一个角的度数x之间的关系是()A.y=x B.y=90﹣x C.y=180﹣x D.y=180+x4.(2022春•淇滨区校级期末)如图,已知▱ABCD中,对角线AC,BD相交于点O,AD=3,AC=8,BD =4,那么BC的长度为()A.6B.5C.4D.35.(2022春•辉县市期末)在▱ABCD中,AC,BD交于点O,△OAB的周长等于5.5cm,BD=4cm,AB+CD =5cm,则AC的长为()A.3cm B.2.5cm C.2cm D.1.5cm6.(2022春•宁都县期末)将平行四边形ABCD放在平面直角坐标系中,顶点A,B,C的坐标分别是(0,0),(4,0),(5,2),则顶点D的坐标是()A.(4,3)B.(1,3)C.(1,2)D.(4,2)7.(2021秋•平阳县校级月考)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD周长是()A.22B.18C.22或20D.18或228.(2021秋•宁阳县期末)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的长为()A.B.4C.D.89.(2022秋•永嘉县校级月考)在平行四边形ABCD中,五块阴影部分的面积分别为S1,S2,S3,S4,S5,如图所示,则下列选项中的关系正确的是()A.S1+S2+S3=S4+S5B.S2+S3=S1+S4+S5C.S3+S4=S1+S2+S5D.S2+S4=S1+S3+S510.(2022春•鼓楼区校级期中)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,点C(4,0),B(6,2),直线y=2x+1以每秒3个单位的速度向下平移,经过多少秒该直线可将▱OABC的面积平分()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022春•姑苏区校级月考)平行四边形ABCD中,∠B:∠C=3:2,则∠C=°.12.(2022秋•任城区校级月考)▱ABCD中,∠A=45°,BC=,则AB与CD之间的距离是;若AB=3,四边形ABCD的面积是,△ABD的面积是.13.(2022•襄汾县一模)如图,在▱ABCD中,点E在AD上,EC平分∠BED,若∠EBC=30°,BE=10,则四边形ABCD的面积为.14.(2022春•遂溪县期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,若AC=10,BD=6,BC=4,则平行四边形ABCD的面积为.15.(2022秋•九龙坡区校级月考)如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,若▱ABCD的面积为16,且AH:HD=1:3.则图中阴影部分的面积为.16.(2022•景德镇模拟)在▱ABCD中,AB=4,∠ABC,∠BCD的平分线BE,CF分别与直线AD交于点E,F,当点A,D,E,F相邻两点间的距离相等时,BC的长为.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022春•自贡期末)如图,在▱ABCD中,AF∥CE;求证:BE=DF.18.(2022春•新化县期末)如图,在▱ABCD中,对角线AC与BD相交于点O,AC=10,BD=14,CD=5.2,求△AOB的周长.19.(2022春•望城区期末)如图,▱ABCD的对角线AC与BD相交于点O,AC+BD=24,∠ABC=70°,△ABO的周长是20.(1)求∠ADC的度数;(2)求AB的长.20.(2022春•社旗县月考)如图,在平行四边形ABCD中,E为AD上一点,F为BC上一点,EF与对角线BD交于点O.有以下三个条件:①AE=CF;②EO=OF;③O为BD中点.从中选取一个作为题设,余下的两个作为结论,组成一个正确的命题,并加以证明.21.(2021春•玉林期中)如图,在▱ABCD中,点E是CD的中点,点F是BC边上的一点,且EF⊥AE.求证:AE平分∠DAF.李华同学读题后有一个想法,延长FE,AD交于点M,要证AE平分∠DAF,只需证△AMF是等腰三角形即可.请你参考李华的想法,完成此题的证明.22.(2021春•拱墅区校级期中)如图,平行四边形ABCD中,AP,BP分别平分∠DAB和∠CBA,交于DC 边上点P,AD=5.(1)求线段AB的长.(2)若BP=6;求△ABP的周长.23.(2021秋•东平县期末)如图①,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O与AB,CD分别相交于点E,F.(1)求证:BE=DF;(2)若图中的条件都不变,将EF转动到图②的位置,那么上述结论是否成立?说明理由.24.(2022春•成华区校级期中)如图,已知在平行四边形ABCD中,AE⊥BC,垂足为点E,CE=CD,点F为CE的中点,点G是CD上的一点,连接DF、EG、AG.(1)若CF=4,AE=6,求BE的长;(2)若∠CEG=∠AGE,那么:①判断线段AG和EG的数量关系,并说明理由;②求证:∠1=∠2.。
八年级初二数学 平行四边形知识点及练习题及解析
八年级初二数学 平行四边形知识点及练习题及解析一、解答题1.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.2.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 3.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处) ①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 4.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.5.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.6.如图①,已知正方形ABCD 的边长为3,点Q 是AD 边上的一个动点,点A 关于直线BQ 的对称点是点P ,连接QP 、DP 、CP 、BP ,设AQ =x .(1)BP +DP 的最小值是_______,此时x 的值是_______;(2)如图②,若QP 的延长线交CD 边于点M ,并且∠CPD =90°.①求证:点M 是CD 的中点;②求x 的值.(3)若点Q 是射线AD 上的一个动点,请直接写出当△CDP 为等腰三角形时x 的值.7.矩形ABCD 中,AB =3,BC =4.点E ,F 在对角线AC 上,点M ,N 分别在边AD ,BC 上. (1)如图1,若AE =CF =1,M ,N 分别是AD ,BC 的中点.求证:四边形EMFN 为矩形. (2)如图2,若AE =CF =0.5,02AM CN x x ==<<(),且四边形EMFN 为矩形,求x 的值.8.如图,在正方形ABCD 中,点E 是BC 边所在直线上一动点(不与点B 、C 重合),过点B 作BF ⊥DE ,交射线DE 于点F ,连接CF .(1)如图,当点E 在线段BC 上时,∠BDF=α.①按要求补全图形;②∠EBF =______________(用含α的式子表示);③判断线段 BF ,CF ,DF 之间的数量关系,并证明.(2)当点E 在直线BC 上时,直接写出线段BF ,CF ,DF 之间的数量关系,不需证明.9.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 10,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.10.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)AG2=GE2+GF2,理由见解析;(2)3266【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,3,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(3x)2,解得x=624,推出BN=624,再根据BG=BN÷cos30°即可解决问题.【详解】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,3x,在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x 2+(2x+3x )2,解得x=62-, ∴BN=62+, ∴BG=BN÷cos30°=3266+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.2.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.3.(1)①6;②结论://P EC A ;(2)为4和16.【分析】 ()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =, 22221086DE AE AD ∴=-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥, //EC PA ∴. ()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.4.(1)ΔDPM,ΔFPG ;等腰直角;(2)线段PG 与PC 的位置关系是PG ⊥PC ;PG PC =3;(3)213【分析】(1)延长GP 交DC 于点M ,由Р是线段DF 的中点,//DC CF ,可得∠MDP=∠GFP ,DP=FP ,利用ASA 可证明△DPM ≌△FPG ;可得DM=GF ,MP=GP ,根据正方形的性质可得CM=CG ,即可证明△CMG 是等腰直角三角形,即可得答案;(2)如图,延长GP 交DC 于点H ,利用ASA 可证明△GFP ≌△HDP ,可得GP =HP ,GF =HD ,进而根据菱形的性质可证明△CHG 是等腰三角形,根据等腰三角形“三线合一”的性质可得PG ⊥PC ,∠HCP=∠GCP ,由∠ABC=60°可得∠HCG=120°,进而可得∠CGP=30°,根据含30°角的直角三角形的性质及勾股定理即可得答案;(3)利用线段的和差关系可求出图2中CG 的长,由(2)可知∠CGP=30°,根据含30°角的直角三角形的性质即可求出CP 的长;在图3中,延长GP 到N ,使GP=PN ,连接DN 、CN、CG,过N作NK⊥CD,交CD延长线于K,利用SAS可证明△FGP≌△DNP,可得GF=DN,∠GFP=∠NDP,根据角的和差关系可得∠CDN=120°,根据平角的定义可得∠GBC=120°,利用菱形的性质及等量代换可得DN=GB,利用SAS可证明△NDC≌△GBC,可得CN=CG,∠DCN=∠BCG,根据等腰三角形的性质可得PC⊥GN,根据角的和差关系可得∠NCG=120°,进而可得出∠CNP=30°,可得PC=12CG,根据平角的定义可得∠KDN=60°,即可得出∠KND=30°,根据含30°角的直角三角形的性质可得得出KD的长,利用勾股定理可求出KN的长,再利用勾股定理可求出CN的长,根据含30°角的直角三角形的性质即可得出PC的长.【详解】(1)如图,延长GP交DC于点M,∵Р是线段DF的中点,四边形ABCD、BEFG是正方形,点,,A B E在同一条直线上,∴//DC CF,DP=FP,CD=BC,FG=BG,在△DPM和△FPG中,MDP GFP DP FPDPM FPG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△DPM≌△FPG,∴DM=FG,KP=GP,∴CD-DM=BC-BC,即CM=CG,∴△CMG是等腰直角三角形,∴PG⊥PC,PG=PC.故答案为:ΔDPM,ΔFPG;等腰直角(2)猜想:线段PG与PC的位置关系是PG⊥PC;PGPC3.如图,延长GP交DC于点H,∵P是线段DF的中点,∴FP=DP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,CF//BE,CD=CB,GF=GB,∵点A B E、、在一条直线上,∴DC∥GF,∴∠GFP=∠HDP,在△GFP和△HDP中,GFP HDP FP DPGPF HPD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△GFP≌△HDP,∴GP=HP,GF=HD,∴CD-DH=CB-GB,即CG=CH,∴△CHG是等腰三角形.∴PG⊥PC,(三线合一),∠HCP=∠GCP,∵∠ABC=∠BEF=60°,∴∠HCG=120°,∴∠CGP=12(180°-120°)=30°,∴CG=2PC,∴PG=2222(2)3CG PC PC PC PC-=-=,∴PGPC=3.(3)如图2,∵AB=6,BE=2,∴CG=AB-BE=4,由(2)可知∠CGP=30°,PG⊥PC,∴PC=12CG=2,如图3,延长GP到N,使GP=PN,连接DN、CN、CG,过N作NK⊥CD,交CD延长线于K,在△DNP和△FGP中,DP FPNPD GPFPN PG=⎧⎪∠=∠⎨⎪=⎩,∴△DNP≌△FGP,∴DN=GF=BG=BE=2,∠NDP=∠GFP,∵四边形ABCD和四边形BEFG是菱形,∴CD//AB,EF//BC,∵点A、B、G在一条直线上,∴DC∥EF,∴∠CDP=∠EFP,∵∠ABC=∠BEF=60°,∴∠EFG=∠CBG=120°,∴∠NDP+CDP=∠GFP+∠EFP=∠EFG=120°,即∠NDC=120°,∴∠KDN=60°,∠KND=30°,∴KD=12DN=1,NK=223DN KD-=,∴CK=CD+KD=7,∴CN=22CK NK+=213,在△CDN和△CBG中,CD BCCDN CBGND BG=⎧⎪∠=∠⎨⎪=⎩,∴CN=CG,∠DCN=∠BCG,∴PC⊥GN,∠DCN+∠NCB=∠BCG+∠NCB=∠DCB=120°,即∠NCG=120°,∴∠CNP=12(180°-∠NCG)=30°,∴PC=12CN=13.故答案为:213【点睛】本题考查正方形的性质、菱形的性质、等腰直角三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质及勾股定理,正确作出辅助线、熟记30°角所对的直角边等于斜边的一半的性质及全等三角形的判定定理是解题关键.5.(1)四边形ABGE的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD是矩形,可得90A ABC︒∠=∠=,由折叠得:90BGE A︒∠=∠=,根据三个内角是直角可判断四边形ABGE为矩形,由折叠得:AB=BG,根据一组邻边相等的矩形是正方形可判断矩形ABGE为正方形;(2)①如图,连结EF,在矩形ABCD中,AB=DC,AD=BC,∠A=∠C=∠D=90°,由△ABE沿BE折叠后得到△GBE,可得BG=AB,EG=AE=ED,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,∴∠EGF=∠D=90°,Rt △EGF 和Rt △EDF 中,EG ED EF EF=⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL ),∴DF=FG ,∴BF=BG+GF=AB+DF ;②不妨假设AB=DC=a ,则3,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF=a+a-x=2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,即(2a-x)2=(3a)2+x 2, 整理得:x=14a , ∴CF=14a ,DF=a-x=34a , ∴DF=3CF .【点睛】本题主要考查了折叠的性质,正方形的判定,三角形全等的判定,勾股定理等内容,根据图形作出辅助线找出线段的等量关系列出方程是解题的关键.6.(1)32;323-;(2)①见详解;②x=1;(3)△CDP 为等腰三角形时x 的值为:633-或3或633+.【分析】(1)BP+DP 为点B 到D 两段折线的和.由两点间线段最短可知,连接DB ,若P 点落在BD 上,此时和最短,且为32.考虑动点运动,这种情形是存在的,由AQ=x ,则QD=3-x ,PQ=x .又PDQ=45°,所以QD =2PQ ,即3-x=2x .求解可得答案;(2)由已知条件对称分析,AB=BP=BC ,则∠BCP=∠BPC ,由∠BPM=∠BCM=90°,可得∠MPC=∠MCP .那么若有MP=MD ,则结论可证.再分析新条件∠CPD=90°,易得①结论.②求x 的值,通常都是考虑勾股定理,选择直角三角形QDM ,发现QM ,DM ,QD 都可用x 来表示,进而易得方程,求解即可.(3)若△CDP 为等腰三角形,则边CD 比为改等腰三角形的一腰或者底边.又P 点为A 点关于QB 的对称点,则AB=PB ,以点B 为圆心,以AB 的长为半径画弧,则P 点只能在弧AB 上.若CD 为腰,以点C 为圆心,以CD 的长为半径画弧,两弧交点即为使得△CDP 为等腰三角形(CD 为腰)的P 点.若CD 为底边,则作CD 的垂直平分线,其与弧AC 的交点即为使得△CDP 为等腰三角形(CD 为底)的P 点.则如图所示共有三个P 点,那么也共有3个Q 点.作辅助线,利用直角三角形性质求之即可.【详解】解:(1)连接DB ,若P 点落在BD 上,此时BP+DP 最短,如图:由题意,∵正方形ABCD 的边长为3,∴223332BD =+=∴BP +DP 的最小值是32由折叠的性质,PQ AQ x ==,则3QD x =-,∵∠PDQ=45°,∠QPD=90°,∴△QPD 是等腰直角三角形, ∴22QD QP x ==,∴32x x -=,解得:323x =-;故答案为:32;323-;(2)如图所示:①证明:在正方形ABCD 中,有AB=BC ,∠A=∠BCD=90°.∵P 点为A 点关于BQ 的对称点,∴AB=PB ,∠A=∠QPB=90°,∴PB=BC ,∠BPM=∠BCM ,∴∠BPC=∠BCP ,∴∠MPC=∠MPB-∠CPB=∠MCB-∠PCB=∠MCP ,∴MP=MC .在Rt △PDC 中,∵∠PDM=90°-∠PCM , ∠DPM=90°-∠MPC ,∴∠PDM=∠DPM ,∴MP=MD ,∴CM=MP=MD ,即M 为CD 的中点.②解:∵AQ=x ,AD=3,∴QD=3-x ,PQ=x ,CD=3.在Rt △DPC 中,∵M 为CD 的中点,∴DM=QM=CM=32, ∴QM=PQ+PM=x+32,∴(x+32)2=(3−x)2+(32)2,解得:x=1.(3)如图,以点B为圆心,以AB的长为半径画弧,以点C为圆心,以CD的长为半径画弧,两弧分别交于P1,P3.此时△CDP1,△CDP3都为以CD为腰的等腰三角形.作CD的垂直平分线交弧AC于点P2,此时△CDP2以CD为底的等腰三角形.;①讨论P1,如图作辅助线,连接BP1、CP1,作QP1⊥BP1交AD于Q,过点P1,作EF⊥AD 于E,交BC于F.∵△BCP1为等边三角形,正方形ABCD边长为3,∴P1F 33,P1E=333.在四边形ABP1Q中,∵∠ABP1=30°,∴∠AQP1=150°,∴△QEP1为含30°的直角三角形,∴31=9 332.∵AE=32,∴x=AQ=AE-QE=39(33)633 22--=-.②讨论P2,如图作辅助线,连接BP2,AP2,过点P2作QG⊥BP2,交AD于Q,连接BQ,过点P2作EF⊥CD于E,交AB于F.∵EF垂直平分CD,∴EF垂直平分AB,∴AP2=BP2.∵AB=BP2,∴△ABP2为等边三角形.在四边形ABP2Q中,∵∠BAD=∠BP2Q=90°,∠ABP2=60°,∴∠AQG=120°∴∠EP2G=∠DQG=180°-120°=60°,∴P2E=33 3∴EG=9 332,∴DG=DE+GE=3933333 22+=,∴QD=33,∴3③对P3,如图作辅助线,连接BP1,CP1,BP3,CP3,过点P3作BP3⊥QP3,交AD的延长线于Q,连接BQ,过点P1,作EF⊥AD于E,此时P3在EF上,不妨记P3与F重合.∵△BCP 1为等边三角形,△BCP 3为等边三角形,BC=3,∴P 1P 3=33P 1E =3332-, ∴EF =333+. 在四边形ABP 3Q 中∵∠ABF=∠ABC+∠CBP 3=150°,∴∠EQF=30°,∴39332. ∵AE=32, ∴x=AQ=AE+QE=32+9333362=. 综合上述,△CDP 为等腰三角形时x 的值为:633-3633+.【点睛】本题第一问非常基础,难度较低.第二问因为动点的原因,思路不易找到,这里就需要做题时充分分析已知条件,尤其是新给出的条件.其中求边长是勾股定理的重要应用,是很重要的考点.第三问是一个难度非常高的题目,可以利用尺规作图的思想将满足要求的点P 找全.另外求解各个Q 点也是考察三角函数及勾股定理的综合应用,有着极高的难度.7.(1)见详解;(2)72x = 【分析】(1)连接MN ,由勾股定理求出AC=5,证出四边形ABNM 是矩形,得MN=AB=3,证△AME ≌△CNF (SAS ),得出EM=FN ,∠AEM=∠CFN ,证EM ∥FN ,得四边形EMFN 是平行四边形,求出MN=EF ,即可得出结论;(2)连接MN ,作MH ⊥BC 于H ,则MH=AB=3,BH=AM=x ,得HN=BC-BH-CN=4-2x ,由矩形的性质得出MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得出方程,解方程即可.【详解】(1)证明:连接MN ,如图1所示:∵四边形ABCD 是矩形,∴AD ∥BC ,AD=BC ,∠B=90°,∴∠EAM=∠FCN ,2222345AB BC +=+=,∵M ,N 分别是AD ,BC 的中点,∴AM=DM=BN=CN ,AM ∥BN ,∴四边形ABNM 是平行四边形,又∵∠B=90°,∴四边形ABNM 是矩形,∴MN=AB=3,在△AME 和△CNF 中,AM CN EAM FCN AE CF =⎧⎪∠=∠⎨⎪=⎩,∴△AME ≌△CNF (SAS ),∴EM=FN ,∠AEM=∠CFN ,∴∠MEF=∠NFE ,∴EM ∥FN ,∴四边形EMFN 是平行四边形,又∵AE=CF=1,∴EF=AC-AE-CF=3,∴MN=EF ,∴四边形EMFN 为矩形.(2)解:连接MN ,作MH ⊥BC 于H ,如图2所示:则四边形ABHM 是矩形,∴MH=AB=3,BH=AM=x ,∴HN=BC-BH-CN=4-2x ,∵四边形EMFN 为矩形,AE=CF=0.5,∴MN=EF=AC-AE-CF=4,在Rt △MHN 中,由勾股定理得:32+(4-2x )2=42,解得:x=72±, ∵0<x <2,∴x=722-. 【点睛】本题考查了矩形的判定与性质、平行四边形的判定与性质、全等三角形的判定与性质、平行线的判定、勾股定理等知识;熟练掌握矩形的判定与性质和勾股定理是解题的关键.8.(1)①详见解析;②45°-α;③2DF BF CF =+,详见解析;(2)2DF BF CF =,或2BF DF CF =,或2BF DF CF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可;③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出2CF 即可得出结论;(2)分三种情况:①当点E 在线段BC 上时,2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,2CF ,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出2CF ,即可得出结论;③当点E 在线段CB 的延长线上时,2CF ,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出MF=2CF ,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =+.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵ 正方形ABCD ,∴ BC =CD ,∠BDC =∠DBC =45°,∠BCD =90°∴∠CDM =∠CBF =45°-α,∴△CDM ≌△CBF (SAS ).∴ DM =BF , CM =CF ,∠DCM =∠BCF .∴ ∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD =90°,∴ MF 2CF .∴2.DF DM MF BF CF =+=+(2)分三种情况:①当点E 在线段BC 上时,2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,2CF ,理由如下:在BF 上截取BM=DF ,连接CM ,如图3所示,同(1) ③,得:△CBM ≌△CDF (SAS),∴CM=CF , ∠BCM=∠DCF .∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF 是等腰直角三角形,∴MF=2CF , ∴BF=BM+MF=DF+2CF ;③当点E 在线段CB 的延长线上时,BF+DF=2CF ;理由如下:在DF 上截取DM=BF ,连接CM ,如图4所示,同(1)③得:△CDM ≌△CBF ,∴CM=CF ,∠DCM=∠BCF ,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF 是等腰直角三 角形,∴MF=2CF ,即DM+DF=2CF ,∴BF+DF=2CF ;综上所述,当点E 在直线BC 上时,线段BF ,CF ,DF 之间的数导关系为:2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.9.(1)123y x=-+;(2)t=23s时,四边形ABMN是平行四边形;(3)存在,点Q坐标为:618,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【分析】(1)如图1中,作BH⊥x轴于H.证明△COA≌△AHB(AAS),可得BH=OA=1,AH=OC=2,求出点B坐标,再利用待定系数法即可解决问题.(2)利用平行四边形的性质求出点N的坐标,再求出AN,BM,CM即可解决问题.(3)如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,分别求解即可解决问题.【详解】(1)如图1中,作BH⊥x轴于H.∵A(1,0)、C(0,2),∴OA=1,OC=2,∵∠COA=∠CAB=∠AHB=90°,∴∠ACO+∠OAC=90°,∠CAO+∠BAH=90°,∴∠ACO=∠BAH,∵AC=AB,∴△COA≌△AHB(AAS),∴BH=OA=1,AH=OC=2,∴OH=3,∴B (3,1),设直线BC 的解析式为y=kx+b ,则有231b k b =⎧⎨+=⎩, 解得:132k b ⎧=-⎪⎨⎪=⎩,∴123y x =-+; (2)如图2中,∵四边形ABMN 是平行四边形,∴AN ∥BM ,∴直线AN 的解析式为:1133y x =-+, ∴10,3N ⎛⎫ ⎪⎝⎭, ∴103BM AN ==, ∵B (3,1),C (0,2),∴10,∴210CM BC BM =-=∴2102103t ==, ∴t=23s 时,四边形ABMN 是平行四边形; (3)如图3中,如图3中,当OB为菱形的边时,可得菱形OBQP,菱形OBP1Q1.菱形OBP3Q3,连接OQ交BC于E,∵OE⊥BC,∴直线OE的解析式为y=3x,由3123y xy x=⎧⎪⎨=-+⎪⎩,解得:3595xy⎧=⎪⎪⎨⎪=⎪⎩,∴E(35,95),∵OE=OQ,∴Q(65,185),∵OQ1∥BC,∴直线OQ1的解析式为y=-13 x,∵OQ110,设Q1(m,-1m3),∴m2+19m2=10,∴m=±3,可得Q1(3,-1),Q3(-3,1),当OB为菱形的对角线时,可得菱形OP2BQ2,点Q2在线段OB的垂直平分线上,易知线段OB的垂直平分线的解析式为y=-3x+5,由3513y xy x=-+⎧⎪⎨=-⎪⎩,解得:15858xy⎧=⎪⎪⎨⎪=-⎪⎩,∴Q2(158,58-).综上所述,满足条件的点Q坐标为:618 ,55⎛⎫⎪⎝⎭或(3,1)-或(3,1)-或155,88⎛⎫-⎪⎝⎭.【点睛】本题属于一次函数综合题,考查了平行四边形的判定和性质,菱形的判定和性质,一次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.10.(1)(10﹣2t);(2)t=2.5;(3)2.4或2【分析】(1)根据P点的运动速度可得BP的长,再利用BC﹣BP即可得到CP的长;(2)当t=2.5时,△ABP≌△DCP,根据三角形全等的条件可得当BP=CP时,再加上AB =DC,∠B=∠C可证明△ABP≌△DCP;(3)此题主要分两种情况①当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP;②当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,然后分别计算出t的值,进而得到v的值.【详解】解:(1)点P从点B出发,以2cm/秒的速度沿BC向点C运动,点P的运动时间为t秒时,BP=2t,则PC=(10﹣2t)cm;故答案为:(10﹣2t);(2)当t=2.5时,△ABP≌△DCP,∵当t=2.5时,BP=2.5×2=5,∴PC=10﹣5=5,∵在△ABP和△DCP中,90AB DCB CBP CP=⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP≌△DCP(SAS);(3)①如图1,当BA=CQ,PB=PC时,再由∠B=∠C,可得△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5,2t=5,解得:t=2.5,BA=CQ=6,v×2.5=6,解得:v=2.4(秒).②如图2,当BP=CQ,AB=PC时,再由∠B=∠C,可得△ABP≌△PCQ,∵AB=6,∴PC=6,∴BP=10﹣6=4,2t=4,解得:t=2,CQ=BP=4,2v=4,解得:v=2;综上所述:当v=2.4秒或2秒时△ABP与△PQC全等.【点睛】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.。
平行四边形单元整体分类总复习 专题突破八年级数学下学期重难点及章节分类精品讲义
第6讲 平行四边形单元整体分类总复习考点一 多边形的内角和、外角和知识点睛:1. n 边形的内角和为()()31802≥︒⨯-n n ,外角和为360°,反过来,已知一些内、外角的度数或数量关系也能确定多边形的边数2. 对角线公式从n 边形的一个顶点可引出(n-3)条对角线,将n 边形分成(n-2)个三角形,n 边形的对角线共有()23-n n 条 类题训练1.(2022•九龙坡区校级开学)已知一个多边形的每一个内角都比它相邻的外角的4倍多30°,这个多边形是( )A .十边形B .十一边形C .十二边形D .十三边形【分析】设这个多边形为n 边形,根据多边形的内角和公式及外角和定理即可求解.【解答】解:设这个多边形为n 边形,它的外角分别为x 1,x 2,⋯,x n ,则对应的内角分别为4x 1+30°,4x 2+30°,⋯,4x n +30°,根据题意得,x 1+x 2+⋯+x n =360°,(4x 1+30°)+(4x 2+30°)+⋯+(4x n +30°)=(n ﹣2)×180°,∴4×(x 1+x 2+⋯+x n )+30°n =(n ﹣2)×180°,∴4×360°+30°n =(n ﹣2)×180°,∴1440°+30°n =180°n ﹣360°,∴150°n =1800°,∴n =12,故选:C .2.(2021秋•黄冈期末)一个多边形的每个外角都等于40°,那么从这个多边形的一个顶点出发的对角线的条数是( )A .9条B .8条C .7条D .6条【分析】首先计算出多边形的边数,再根据n 边形从一个顶点出发可引出(n ﹣3)条对角线可得答案.【解答】解:多边形的边数:360°÷40°=9,从一个顶点出发可以引对角线的条数:9﹣3=6(条),故选:D .3.(2021秋•海阳市期末)小东在计算多边形的内角和时不小心多计算一个内角,得到的和为1350°,则这个多边形的边数是()A.7B.8C.9D.10【分析】根据多边形的内角和公式(n﹣2)•180°列方程即可得解.【解答】解:设多边形的边数为n,多加的内角度数为α,则(n﹣2)•180°=1350°﹣α,∵0°<α<180°,∴(1350﹣180)÷180<n﹣2<1350÷180,∴6<n−2<7,∵n为正整数,∴n=9,∴这个多边形的边数n的值是9.故选:C.4.(2021秋•丹东期末)如果过一个多边形的一个顶点的对角线有5条,则该多边形是()A.九边形B.八边形C.七边形D.六边形【分析】根据从每一个顶点出发可以作的对角线的总条数为n﹣3计算即可.【解答】解:∵过一个多边形的一个顶点的对角线有5条,∴多边形的边数为5+3=8,故选:B.5.(2021秋•天元区期末)如图,五边形ABCDE是正五边形,若l1∥l2,则∠1﹣∠2的值是()A.36°B.72°C.108°D.144°【分析】由l1∥l2,得∠2=∠BMD.由∠1=∠BMD﹣∠MBC,得∠BMD=∠1﹣∠MBC,那么∠1﹣∠2=∠MBC.欲求∠1﹣∠2,需求∠MBC.由正五边形的性质,得∠MBC=72°,从而解决此题.【解答】解:如图,AB的延长线交l2于点M,∵五边形ABCDE是正五边形,∴正五边形ABCDE的每个外角相等.∴∠MBC==72°.∵l1∥l2,∴∠2=∠BMD,∵∠1=∠BMD+∠MBC,∴∠BMD=∠1﹣∠MBC,∴∠1﹣∠2=∠MBC=72°.故选:B.6.(2021春•浦江县期末)如图,在四边形ABCD中,∠C=110°,与∠BAD,∠ABC相邻的外角都是110°,则∠ADC的外角α的度数是()A.90°B.85°C.80°D.70°【分析】根据多边形外角和为360°,进行求解即可.【解答】解:∵在四边形ABCD中,∠C=110°,∴∠C相邻的外角度数为:180°﹣110°=70°,∴∠α=360°﹣70°﹣110°﹣110°=70°.故选:D.考点二平行四边形的性质知识点睛:1.平行四边形的性质定理∶(1)平行四边形的对边平行且相等.(2)平行四边形的对角相等,邻角互补.(3)平行四边形的对角线互相平分.2.利用平行四边形的性质证明边、角关系时,一定要找准那些对解题有帮助的性质,有时也可以根据结论逆向推理看是否符合那些性质.类题训练1.(2021秋•任城区校级期末)如图,平行四边形ABCD的对角线AC,BD相交于点O,则下列判断错误的是()A.AO=CO B.AD∥BC C.AD=BC D.∠DAC=∠ACD 【分析】根据平行四边形的性质解答即可.【解答】解:∵四边形ABCD是平行四边形,∴AO=OC,故A正确;∴AD∥BC,故B正确;∴AD=BC,故C正确;故选:D.2.(2021秋•鄞州区校级期末)如图,在▱ABCD中,过点C作CE⊥AB,垂足为E,若∠BAD=120°,则∠BCE的度数为()A.30°B.20°C.40°D.35°【分析】由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B+∠BAD=180°,∵∠BAD=120°,∴∠B=60°,∵CE⊥AB,∴∠E=90°,∴∠BCE=90°﹣∠B=90°﹣60°=30°;故选:A.3.(2022春•秀英区校级月考)如图,在▱ABCD中,AD=8,AB=5,AE平分∠BAD交边BC于点E,DF平分∠ADC交边BC于点F,则EF=()A.2B.2.5C.3D.3.5【分析】根据平行线的性质得到∠ADF=∠DFC,由DF平分∠ADC,得到∠ADF=∠CDF,等量代换得到∠DFC=∠FDC,根据等腰三角形的判定得到CF=CD,同理BE=AB,根据已知条件得到四边形ABCD是平行四边形,根据平行四边形的性质得到AB=CD,AD=BC,即可得到结论.【解答】解:在▱ABCD中,∵BC=AD=8,BC∥AD,CD=AB,CD∥AB,∴∠DAE=∠AEB,∠ADF=∠DFC,∵AE平分∠BAD交BC于点E,DF平分∠ADC交BC于点F,∴∠BAE=∠DAE,∠ADF=∠CDF,∴∠BAE=∠AEB,∠CFD=∠CDF,∴AB=BE,CF=CD,∴BC=BE+CF﹣EF=2AB﹣EF=8,∴EF=2;故选:A.4.(2021秋•绵阳期末)如图,在平行四边形OABC中,对角线相交于点E,OA边在x轴上,点O为坐标原点,已知点A(4,0),E(3,1),则点C的坐标为()A.(1,1)B.(1,2)C.(2,1)D.(2,2)【分析】分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,由平行四边形的性质可得CG=2EF,AG=2AF,结合A,E两点坐标可求解CG,OG的长,进而求解C 点坐标.【解答】解:分别过E,C两点作EF⊥x轴,CG⊥x轴,垂足分别为F,G,∴EF∥CG,∵四边形ABCD为平行四边形,∴AE=CE,∴AG=2AF,CG=2EF,∵A(4,0),E(3,1),∴OA=4,OF=3,EF=1,∴AF=OA﹣OF=4﹣3=1,CG=2,∴AG=2,∴OG=OA﹣OG=4﹣2=2,∴C(2,2).故选:D.5.(2022•越秀区校级开学)如图,平行四边形ABCD的对角线AC,BD交于点O,AB=,∠AOB=60°,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+2EF的值为()A.+1B.C.D.【分析】依据含30°角的直角三角形的性质可求解AO=1,BO=2,利用三角形的面积公式计算△ABO的面积,结合平行四边形的性质可得DO=BO=2,S△ADO=S△ABO=,即可得到OE+2EF的值.【解答】解:∵∠BAO=90°,∠AOB=60°,∴∠ABO=30°,∴BO=2AO,∵AB=,∴AO=1,BO=2,∴S△ABO=AO•AB=,∵四边形ABCD为平行四边形,∴DO=BO=2,S△ADO=S△ABO=,∵OF⊥AO,EF⊥OD,∴S△ADO=S△AEO+S△EDO===,即OE+2EF=.故选:B.6.(2021秋•九江期末)在平行四边形ABCD中,对角线AC长为8cm,∠BAC=30°,AB =5cm,则它的面积为.【分析】根据S▱ABCD=2S△ABC,所以求S△ABC可得解.作BE⊥AC于E,在直角三角形ABE中求BE从而计算S△ABC.【解答】解:如图,过B作BE⊥AC于E.在直角三角形ABE中,∠BAC=30°,AB=5cm,∴BE=AB•sin∠CAB=5×=2.5(cm),S△ABC=AC•BE÷2=10(cm2),∴S▱ABCD=2S△ABC=20cm2.故答案为:20cm2.7.(2021秋•鄞州区校级期末)平行四边形ABCD中,对角线AC和BD相交于点O,如果AC=10,BD=6,AB=m,那么m的取值范围是.【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分,即可求得OA与OB的值,然后根据三角形三边关系,即可求得m的取值范围.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC=AC=×10=5,OB=OD=BD=×6=3,∵OA﹣OB<AB<OA+OB,∴5﹣3<m<5+3,∴m的取值范围是:2<m<8.故答案为:2<m<8.8.(2021秋•桓台县期末)如图,平行四边形ABCD中,对角线AC、BD相交于点O,若AB=2,BC=3,∠ABC=60°,则图中阴影部分的面积是.【分析】作AM⊥BC于M,如图所示:根据直角三角形的性质得到BM=AB=×2=1,根据勾股定理得到AM===,得到S平行四边形ABCD=BC•AM =3,根据平行四边形的性质得到AD∥BC,BO=DO,根据全等三角形的性质得到S=S△DOF,于是得到结论.△BOE【解答】解:作AM⊥BC于M,如图所示:则∠AMB=90°,∵∠ABC=60°,∴∠BAM=30°,∴BM=AB=×2=1,在Rt△ABM中,AB2=AM2+BM2,∴AM===,∴S平行四边形ABCD=BC•AM=3,∵四边形ABCD是平行四边形,∴AD∥BC,BO=DO,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴S△BOE=S△DOF,∴图中阴影部分的面积=▱ABCD的面积=,故答案为:.9.(2022•海曙区校级开学)如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点.(1)求证:AF=CE;(2)若四边形AECF的周长为10,AF=3,AB=2,求平行四边形ABCD的周长.【分析】(1)根据平行四边形ABCD的对边平行得出AD∥BC,又AE=CF,利用有一组对边平行且相等的四边形为平行四边形证得四边形AECF为平行四边形,然后根据平行四边形的对边相等证得结论;(2)根据平行四边形的性质和平行四边形的周长公式即可得到结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵点E,F分别是边AD,BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形,∴AF=CE;(2)解:∵四边形AECF的周长为10,AF=3,∴AE+CF=10﹣2×3=4,∵点E,F分别是边AD,BC的中点,∴AD+BC=2(AE+CF)=8,∵AB=2,∴平行四边形ABCD的周长=8+2×2=12.10.(2021秋•海曙区校级期末)如图,在平行四边形ABCD中,点F是AD中点,连接CF 并延长交BA的延长线于点E.(1)求证:AB=AE.(2)若BC=2AE,∠E=31°,求∠DAB的度数.【分析】(1)由题意易得AB=CD,AB∥CD,进而易证△AFE≌△DFC,则有CD=AE,然后问题可求证;(2)由(1)及题意易得AF=AE,则∠AFE=∠E=31°,然后根据三角形外角的性质可求解.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,BC=AD,∴∠E=∠DCF,∵点F是AD中点,∴AF=DF,∵∠EF A=∠CFD,∴△AFE≌△DFC(AAS),∴CD=AE,∴AB=AE;(2)解:由(1)可得AF=DF,BC=AD,∵BC=2AE,∴AE=AF,∵∠E=31°,∴∠AFE=∠E=31°,∴∠DAB=2∠E=62°.11.(2021秋•桓台县期末)已知,如图在▱ABCD中,对角线AC和BD相交于点O,点E,F分别在OD,BO上,且OE=OF,连接AE,CF.(1)求证:△ADE≌△CBF;(2)延长AE交CD于点G,延长CF交AB于点H.求证:AH=CG.【分析】(1)根据四边形ABCD是平行四边形,得AD=BC,AD∥BC,BO=DO,可证∠ADE=∠CBF,DE=BF,然后通过SAS即可证得△ADE≌△CBF;(2)证出四边形AHCG是平行四边形,由平行四边形的性质可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,BO=DO,∴∠ADE=∠CBF,∵OE=OF,∴DE=BF,在△ADE和△CBF中,,∴△ADE≌△CBF(SAS);(2)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAC=∠BCA,∵△ADE≌△CBF,∴∠DAE=∠BCF,∴∠EAO=∠FCO,∴AG∥HC,∵AH∥CG,∴四边形AHCG是平行四边形,∴AH=CG.考点三平行四边形的判定知识点睛:1.平行四边形的判定方法:(1)两组对边分别平行的四边形是平行四边形。
期末难点特训(三)与平行四边形有关的压轴题-【微专题】八年级数学下册常考点微专题提分精练
八下期末难点特训(三)与平行四边形有关的压轴题1. (1)问题背景:如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,BE =DF ,M 为AF 的中点,求证:①∠BAE =∠DAF ;②AE =2DM .(2)变式关联:如图2,点E 在正方形ABCD 内,点F 在直线BC 的上方,BE =DF ,BE ⊥DF ,M 为AF 的中点,求证:①CE ⊥CF ;②AE =2DM .(3)拓展应用:如图3,正方形ABCD 的边长为2,E 在线段BC 上,F 在线段BD 上,BE =DF ,直接写出()2AE AF +的最小值.2. 已知:正方形ABCD 中,点E 在对角线BD 上,连接CE ,作EF CE ⊥交AB 于点F .(1)如图(1),求证:CE EF =;(2)如图(2),作EM BD ⊥交AD 于点M ,连接BM ,求证:BM =;(3)如图(3),延长CE 交DA 于点N ,若BE =6AN =,则CE =_________.3. 已知,在菱形ABCD 中,120ABC ∠=︒,6AB =,E 、F 分别为AD 、CD 上一点.(1)如图1,若60EBF ∠=︒,求证:AE DF =;(2)如图2,E 为AD 中点,1DF =,线段EG 交BC 于G ,FH 交AB 于H ,60EOF ∠=︒,若BH x =,CG y =.①求y 与x 之间的函数关系式;②若6x y +=,则HF =______.4. (1)问题背景:如图1,E 是正方形ABCD 的边AD 上的一点,过点C 作CB CD ⊥交AB 的延长线于F 求证:CE CF =;(2)尝试探究:如图2,在(1)的条件下,连接DB 、EF 交于M ,请探究DM 、BM 与BF 之间的数量关系,并证明你的结论.(3)拓展应用:如图3,在(2)的条件下,DB 和CE 交于点N ,连接CM 并延长交AB 于点P ,已知DE =,15DME ∠=︒,直接写出PB 的长________.5. 正方形ABCD 的边长为4.(1)如图1,点E 在AB 上,连接DE ,作AF D E ⊥于点F ,CG DE ⊥于点G .①求证:DF CG =;②如图2,对角线AC ,BD 交于点O ,连接OF ,若3AE =,求OF 的长;(2)如图3,点K 在CB 的延长线上,2BK =,点N 在BC 的延长线上,4CN =,点P 在BC 上,连接AP ,在AP 的右侧作PQ AP ⊥,PQ AP =,连接KQ .点P 从点B 沿BN 方向运动,当点P 运动到BC 中点时,设KQ 的中点为1M ,当点P 运动到N 点时,设KQ 的中点为2M ,直接写出12M M 的长为________.6. 如图,已知四边形ABCD ,∠A =∠C =90°,BD 是四边形ABCD 的对角线,O 是BD 的中点,BF 是∠ABE 的角平分线交AD 于点F ,DE 是∠ADC 的角平分线交BC 于点E ,连接FO 并延长交DE 于点G .(1)求∠ABC +∠ADC 的度数;(2)求证:FO =OG ;(3)当BC =CD ,∠BDA =∠MDC =22.5°时,求证:DM =2AB7. 如图,已知在ABC 和ADE 中,AB AC =.(1)如图1,若90BAC ∠=︒,=90DAE ∠︒,AD AE =,4AC =,3CE =,连接CD ,求线段CD 的长;(2)如图2,若60BAC DAB ∠=∠=︒,AD AB =,E 、F 分别为BC AB 、边上的动点,CF 与AE 相交于点M ,BCF CAE ≌,连接DM ,点N 是DM 的中点,证明:2AM CM AN +=;(3)在(2)的条件下,G 是AC 的中点,1AC =,连接GE ,H 是ABC 所在平面内一点,连接HE HG 、,HGE 和CGE 关于直线GE 成轴对称图形,连接HD ,求HD 的最小值.8. 在□ABCD 中,对角线AC AB =,且AC AB ⊥,E 为CD 边上一动点,连接BE 交AC 于点F ,M 为线段BE 上一动点,连接AM .(1)如图1,若8AB =,2CF =,M 为BF 的中点,求AM 的长;(2)如图2,若M 在线段BF 上,45AME ∠=︒,作CN AM ∥交BE 于点N ,连接AN ,求证:AN AB =;(3)如图3,若M 在线段EF 上,将△ABM 沿着AM 翻折至同一平面内,得到AB M ' ,点B 的对应点为点B '.当30ABE ∠=︒,90BMB '∠=︒时,请直接写出B M EM AM'-的值.9. 在菱形ABCD 中,点E 、F 分别为BC 、CD 边上的点,连接AC 、AF 、EF .(1)如图1,EF 与AC 交于点G ,若CE CF =,5AF =,6EF =,求AG 的长;(2)如图2,若60ABC ∠=︒,DAF EFC ∠=∠,求证:BE CF =;(3)如图3,在(2)的条件下,将BEF △沿BF 翻折至同一平面内,得到BE F ' ,连接CE '与BF 交于点O ,记CEF △、CE F ' 、BCF △的面积分别为1S 、2S 、3S ,当O 为BF 中点时,请直接写出3213S S S -的值.10. 在菱形ABCD 中,60ABC ∠=︒,E 为对角线BD 上一动点,连接AE .(1)如图1,点F 为DE 的中点,连接AF ,若BE AE =,求FAD ∠的度数;(2)如图2,BEM △是等边三角形,连接DM ,H 为DM 的中点,连接AH ,猜想线段AH 与AE 之间的数量关系,并证明.(3)在(2)的条件下,N 为AD 的中点,连接AM ,以AM 为边作等边 AMP ,连接PN ,若AD =PN 的最小值.11. 问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.12. 矩形ABCD 中,将矩形沿AE 、AG 翻折,点B 的对应点为点F ,点D 的对应点为点Q ,A 、F 、Q 三点在同一直线上.(1)如图1,求EAG ∠的度数;(2)如图2,当AB BC =时,连接BD ,交AE 、AG 于点M 、N ,若3BM =,4DN =,求MN 的长度;(3)如图3,当8AB =,9AD =时,连接EG ,45GEC ∠=︒,求BE 的长.13. 如图,正方形ABCD 中,6AB =,点E 在CD 边上运动(不与点C 、D 重合).过点B 作AE 的平行线交DC 的延长线于点F ,过点D 作AE 的垂线DN 分别交于AE ,BF 于点M 、N .(1)求证:四边形ABFE 是平行四边形;(2)若13DE DC =,求线段MN 的长;(3)点E 在CD 边上运动过程中,CND ∠的大小是否改变?若不变,求出该值,若改变请说明理由.14. (1)如图1,在正方形ABCD 中,AE ,DF 相交于点O 且AE ⊥DF .则AE 和DF 的数量关系为 .(2)如图2,在正方形ABCD 中,E ,F ,G 分别是边AD ,BC ,CD 上的点,BG ⊥EF ,垂足为H .求证:EF =BG .(3)如图3,在正方形ABCD中,E,F,M分别是边AD,BC,AB上的点,AE =2,BF=4,BM=1,将正方形沿EF折叠,点M的对应点与CD边上的点N重合,求CN的长度.15. 已知:在边长为6的正方形ABCD中,点P为对角线BD上一点,且BP .将三角板的直角顶点与点P重合,一条直角边与直线BC交于点E,另一条直角边与射线BA交于点F(点F不与点B重合),将三角板绕点P旋转.(1)如图,当点E、F在线段BC、AB上时,求证:PE=PF;(2)当∠FPB=60°时,求△BEP的面积;(3)当△BEP为等腰三角形时,直接写出线段BF的长.16. 已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D 不与B、C重合).以AD为边作正方形ADEF,连接CF.=-.(1)如图①,当点D在线段BC上时,求证:CF BC CD(2)如图②和③,当点D在线段BC的延长线上或反向延长线上时,其它条件不变,请判断CF、BC、CD三条线段之间的关系,并证明之;(3)如图③,若连接正方形ADEF对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.17. 在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.18. 在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC 的中点,连接DQ,MQ,求证:DM=2DQ.八下期末难点特训(三)与平行四边形有关的压轴题【1题答案】【答案】(1)①见解析;②见解析;(2)①见解析;②见解析;(3)8【解析】【分析】(1)问题情景:①证明△ABE≌△ADF(SAS),由全等三角形的性质得出∠BAE=∠DAF;②由全等三角形的性质得出AE=AF,由直角三角形的性质可得出结论;(2)变式关联:①延长BE交DF于G,BG交CD于H,证明△CBE≌△CDF (SAS),由全等三角形的性质得出∠BCE=∠DCF,则可得出结论;②延长DM到N,使DM=MN,连接AN,证明△AMN≌△FMD(SAS),由全等三角形的性质得出AN=DF,证明△ABE≌△DAN(SAS),由全等三角形的性质得出AE=DN=2DM;(3)拓展应用:过点D作DP⊥DF,且使PD=AB,连接PF,PA,过点P作PQ⊥AD,交AD的延长线于点Q,证明△ABE≌△PDF(SAS),由全等三角形的性质得出AE=PF,AF+AE=AF+PF≥AP,即当A,F,P三点共线时,AE+AF的最小值为AP,求出2AP则可得出答案.【详解】解:(1)问题情景:①证明:∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF;②证明:∵△ABE≌△ADF,∴AE=AF,∵M为AF的中点,AF,∴DM=12∴AE=AF=2DM;(2)变式关联:①证明:延长BE交DF于G,BG交CD于H,∵四边形ABCD为正方形,∴∠BCD=90°,CD=CB,∵BE⊥DF,∴∠BGD=∠BCD=90°,∵∠BHD=∠CBE+∠BCD,∠BHD=∠BGD+∠CDF,∴∠CBE+∠BCD=∠BGD+∠CDF,∴∠CBE=∠CDF,又∵BE=DF,∴△CBE≌△CDF(SAS),∴∠BCE=∠DCF,∵∠BCD=90°,∴∠ECF=∠ECD+∠DCF=∠ECD+∠BCE=90°,∴CE⊥CF;②延长DM到N,使DM=MN,连接AN,∵M为AF的中点,∴AM=MF,∵MD=MN,∠AMN=∠FMD,∴△AMN≌△FMD(SAS),∴AN=DF,∵△CBE ≌△CDF ,∴BE =DF =AN ,∠NAM =∠DFM ,∴AN ∥DF ,∴∠DAN +∠ADF =180°,∵四边形ABCD 为正方形,∴∠BAD =90°,AB =DA ,∵∠BGD =90°,∴∠ABE +∠ADF =180°,∴∠ABE =∠DAN ,∴△ABE ≌△DAN (SAS),∴AE =DN =2DM ;(3)拓展应用:过点D 作DP ⊥DF ,且使PD =AB ,连接PF ,PA ,过点P 作PQ ⊥AD ,交AD 的延长线于点Q ,∴△ABE ≌△PDF (SAS),∴AE =PF ,∵∠ADB =45°,∴∠PDQ =45°,DQ =PQ ,∴AF +AE =AF +PF ≥AP ,即当A ,F ,P 三点共线时,AE +AF 的最小值为AP ,∵AD =AB =DP =2,∴PQ =DQ ,∴(2222228AP AQ QP =+=++=+∴()2AE AF +的最小值为.【点睛】本题属于四边形综合题,考查了正方形的性质,直角三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【2题答案】【答案】(1)见解析(2)见解析(3)【解析】【分析】(1)过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,由“ASA ”可证△ECH =△EFG ,可得CE =EF ;(2)过点E 作EH ⊥BC 于H ,交AD 于Q ,EG ⊥AB 于G ,交CD 于P ,由正方形的性质和矩形的性质可证△CEF 是等腰直角三角形,从而得到CF =,再证得四边形AGPD 是矩形,四边形DQHC 是矩形,四边形DQEP 是矩形,从而得到DQ =QM =GF =AG ,由“SAS ”可证△ABM ≌△BCF ,可得BM =CF ,可得结论;(3)过点E 作GE ⊥AB 于点G ,EQ ⊥AD 于点Q ,可得△EGB 是等腰直角三角形,进而得到BG =EG =7,再根据四边形AGEQ 是矩形,可得AQ =EG =7,从而得到QN =1,再由勾股定理列出方程可求EF 的长.【小问1详解】证明:如图,过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,∵四边形ABCD 是正方形,∴∠ABD =∠CBD =45°,∵EG ⊥AB ,EH ⊥BC ,∠ABC =90°,∴四边形FGBH 是正方形,∴GE=EH,∠GEH=90°,∴∠CEF=∠GEH=90°,∴∠CEH=∠GEF=90°-∠HEF,在△ECH和△EFG中,∵∠CEH=∠GEF,EH=EG,∠EHC=∠EGF=90°,∴△ECH≌△EFG(ASA),∴CE=EF;【小问2详解】证明:如图,过点E作EH⊥BC于H,交AD于Q,EG⊥AB于G,交CD于P,∵四边形ABCD是正方形,∴AD∥BC,CD∥AB,∴PG⊥CD,QH⊥AD,∵CE=EF,CE⊥EF,∴△CEF是等腰直角三角形,∴CF ,∵PG⊥AB,QH⊥AD,∴∠A=∠ADC=∠DCB=∠ABC=90°,∴四边形AGPD是矩形,四边形DQHC是矩形,四边形DQEP是矩形,∴DQ=CH,DP=AG,∵∠ADB=∠CDB=45°,EQ⊥AD,EP⊥CD,∴EP=EQ,∴四边形DPEQ是正方形,∴DQ=DP=PE=QE=CH=AG,∵△ECH≌△EFG,∴GF=CH=DQ,∵ME⊥BD,∠ADB=45°,∴△DEM是等腰直角三角形,∵EQ⊥AD,∴DQ=QM,∴DQ=QM=GF=AG,∴DM=AF,∵AD=AB,∴AM=BF,又∵AB=BC,∠A=∠CBF=90°,∴△ABM≌△BCF(SAS),∴BM=CF,∴BM=;【小问3详解】解:如图,过点E作GE⊥AB于点G,EQ⊥AD于点Q,由(2)得:AG=GF=QE,∵EG⊥AB,∠ABD=45°,∴△EGB是等腰直角三角形,∵BE=,∴BG=EG=7,∵EQ⊥AD,EG⊥AB,∠A=90°,∴四边形AGEQ是矩形,∴AQ=EG=7,∵AN =6,∴QN =1,∵22222NF EN EF AN AF =+=+,222EN QE QN =+,222EF EG GF =+,∴222364149GF GF GF +=+++,∴27GF =,∴249756EF =+=,∴EF CE ==.故答案为:.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【3题答案】【答案】(1)证明见解析(2)①4y x =+;②【解析】【分析】(1)连接DB ,由菱形的性质得出∠ABD =∠BDC =60°,60,A C ∠=∠=︒证出△ABD 为等边三角形, AB =BD ,证明△ABE ≌△DBF (ASA ),由全等三角形的性质可得出结论;(2)①过点B 作,BM EG BN HF ∥∥交EG 于点I ,证明四边形BMEG 为平行四边形,由平行四边形的性质得出BG =EM =6-y ,得出AM =y -3,同理DN =1+x ,由(1)得AM =DN ,得出y -3=x +1,则可得出答案; ②过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由题意求出x =1,y =5,得出BH =1,CG =5,由直角三角形的性质求出AM =3,由勾股定理求出答案即可.【小问1详解】证明:如图1,连接DB ,∵四边形ABCD 为菱形,∠ABC =120°,∴∠ABD =∠BDC =60°,,,AB CD AD BC ∥∥60,A C ∴∠=∠=︒∴△ABD 为等边三角形,∴AB =BD ,∵∠EBF =60°,∴∠ABE =∠DBF ,在△ABE 和△DBF 中, ,ABE DBF AB BD A BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△DBF (ASA ),∴AE =DF ;【小问2详解】解:①如图2,过点B 作,BM EG BN HF ∥∥交EG 于点I ,∵,AD BC BM EG ∥∥,∴四边形BMEG 为平行四边形,而6,,,AB BC CD AD CG y BH x ====== ∴BG =EM =6-y ,∵E 是AD的中点,∴3,AE DE ==∴AM =y -3, 同理DN =1+x ,∵BN HF ∥,∴∠EOF =∠EIN =60°,∵BM EG ∥,∴∠MBN =∠EIN =60°,由(1)得,AM =DN ,∴y -3=x +1,∴y =x +4;②如图3,过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由①知y =x +4,又∵x +y =6,∴x =1,y =5,∴BH =1,CG =5,∵DM ⊥AB ,AB CD ∥,∴DM ⊥CD ,∴四边形MDFN 为矩形,∴DM =NF ,DF =MN =1,∵∠A =60°,AD =6,∴AM =12AD =3,∴DM ==,∵AB =6,∴NH =AB -AM -MN -BH =6-3-1-1=1,∴HF ===,故答案为:.【点睛】本题属于四边形综合题,考查了菱形的性质,矩形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.【4题答案】【答案】(1)证明见解析;(2)DM=BMBF;(3【解析】【分析】(1)由“ASA”可证△CDE≌△CBF,可得CE=CF;(2)由“AAS”可证△DME≌△HMF,可得DM=MH,可得结论;(3)由直角三角形的性质可得AFAE,可求AB的长,由勾股定理可求PF的长,即可求解.【详解】(1)证明:在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°−∠ABC=90°,∵CF⊥CE,∴∠ECF=90°,∴∠DCB=∠ECF=90°,∴∠DCE=∠BCF,在△CDE和△CBF中,D CBF DC BCDCE BCF ∠∠⎧⎪⎨⎪∠∠⎩===∴△CDE≌△CBF(ASA),∴CE=CF;(2)DM=BMBF,理由如下:如图,过点F作FH⊥AF,交DB的延长线于H,∵△CDE≌△CBF,∴DE=BF,∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,∴∠FBH=45°,∵FH⊥AB,∴∠FBH=∠H=45°,∴BF=FH=DE,∴BH BF,∵∠EDM=∠H=45°,∠EMD=∠HMF,DE=FH,∴△DME≌△HMF(AAS),∴DM=MH,EM=MF,∴DM=MB+BH=MB BF;(3)连接EP,∵∠DME=15°,∠ABD=45°,∴∠AFE=30°,∴AF,∴AB+BF AB−DE),∴AB +=-+,∴AB =,∴AE =,AF =,∵EC =CF ,∠ECF =90°,EM =MF ,∴CP 是EF 的垂直平分线,∴EP =PF ,∵PE 2=AE 2+AP 2,∴PF 2=24+(−PF )2,∴PF =,∴PB +,【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.【5题答案】【答案】(1)①见解析;(2)【解析】【分析】(1)①证明△ADF ≌△DCG ,即可求证;②连接OG ,由①得:△ADF ≌△DCG ,可得AF =DG ,可证得△AOF ≌△DOG ,从而得到OG =OF ,∠DOG =∠AOF ,进而得到△FOG 为等腰直角三角形,可得到OF FG =,再由1122ADE S AE AD AF DE =⨯=⨯ ,求出125DG AF ==,从而得到165DF =,进而得到FG = 45,即可求解;(2)取CK 的中点Y ,连接MY ,CQ ,可得12YM CQ =,从而得到点M 的运动轨迹为线段YM ,然后分别计算出当点P 运动到BC 中点时,当点P 运动到N 点时,YM 1,YM 2的长, 即可求解.【小问1详解】①证明:在正方形ABCD 中,AD =CD ,∠DAB =∠ADC =90°,∴∠ADF +∠CDG =90°,∵AF D E ⊥,CG DE ⊥,∴∠AFD =∠CGD =90°,∴∠ADF +∠DAF =90°,∴∠DAF =∠CDG ,∴△ADF ≌△DCG ,∴DF =CG ;②解:如图,连接OG ,在正方形ABCD 中,OA =OD ,∠BAO =∠ADO =45°,∠AOD =∠BAD =90°,∴∠DAF +∠EAF =90°,∠EAF +∠OAF =∠ODG +∠ADF =45°,由①得:△ADF ≌△DCG ,∴AF =DG ,∵AF ⊥DE ,∴∠AFD =90°,∴∠ADF +∠DAF =90°,∴∠ADF =∠EAF ,∴∠OAF =∠ODG ,在△AOF 和△DOG 中,∵AF =DG ,∠OAF =∠ODG ,OA =OD ,∴△AOF ≌△DOG ,∴OG=OF,∠DOG=∠AOF,∴∠FOG=∠AOF+∠AOG=∠DOG+∠AOG=∠AOD=90°,∴△FOG为等腰直角三角形,∴FG==,∴OF FG=,在Rt AED△中,AD=4,AE=3,∠DAE=90°,∴5DE=,∵AF⊥DE,∴1122ADES AE AD AF DE=⨯=⨯,∴125 DG AF==,∴165 DF=,∴FG=DF-DG=45,∴OF==;【小问2详解】解:如图,取CK的中点Y,连接MY,CQ,∵点M为KQ的中点,∴12YM CQ=,YM∥CQ,∴点M的运动轨迹为线段YM,如图,当点P运动到BC中点,即BP=CP=2时,过点Q作QJ⊥CN于点J,在正方形ABCD中,∠ABC=90°,∴∠BAP+∠APB=90°,∵AP⊥PQ,∴∠APQ=90°,∴∠APB+∠QPJ=90°,∴∠BAP=∠QPJ,∵∠PJQ=∠ABP=90°,AP=PQ,∴△ABP≌△PJQ,∴QJ=BP=2,PJ=AB=4,∴CJ=2,∴CQ==YM=∴1如图,当点P运动到N点,即BP=BC+CN=8时,过点Q作QL⊥CN交CN延长线于点L,同理:△ABP≌△PLQ,∴QL=BP=8,PL=AB=4,∴CL=8,∴CQ ==,∴2YM =,∴12M M 的长为21YM YM -==.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识,熟练掌握全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识是解题的关键.【6题答案】【答案】(1)180°(2)见解析(3)见解析【解析】【分析】(1)在四边形ABCD 中,内角和为360°,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°;(2)由(1)可知,∠ABF +∠CBF +∠ADE +∠CDE =180°,根据BF 、DE 分别是∠ABE 、∠ADC 的角平分线,得到∠ABF +∠ADE =90°,由∠ABF +∠AFB =90°,得∠ADE =∠AFB ,求出BF ∥ED ,所以∠BFG =∠FGD ,得证BFO ∆≌DOG ∆,由此得出结论;(3)证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN ,易证BCD BKD ∆≅∆,所以BK =CD ,可证∆≅∆BAD NAD ,所以2=NB AB ,由22.5∠=∠=∠=︒ABK KDA MDC ,可证∆≅∆BKN MCD ,所以2==MD BN AB ;证法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L ,可得∆≅∆BAD BND ,所以=AB NB ,再由∆≅∆LND BND 得=NB NL ,所以2=BL AB ,易证LBC MDC ∠=∠,则∆≅∆LCB MCD ,所以2==BL MD AB .【小问1详解】解:∵四边形ABCD 的内角和为360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°.【小问2详解】证明:由(1)可知,∠ABF +∠CBF+∠ADE +∠CDE =180°,∵BF 、DE 分别是∠ABE 、∠ADC 的角平分线∴∠ABF =∠CBF ;∠ADE =∠CDE ,∴2∠ABF +2∠ADE =180°,∴∠ABF +∠ADE =90°,又∵∠ABF +∠AFB =90°,∴∠ADE =∠AFB ,∴BF ∥ED ,∴∠BFG =∠FGD .在BFO ∆和DOG ∆中BFO DGO BO ODBOF DOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆≅∆BFO DOG ,∴OF OG =;【小问3详解】证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN,∴四边形BCDK 是矩形,∵BC=CD ,∴四边形BCDK 是正方形,∴BCD BKD ∆≅∆,∴BK =CD ,∵∠BDA =∠MDC =22.5°,∠BDK =45°,∴∠ADN =22.5°=∠BDA ,在△BAD 和△NAD 中ADB ADN AD AD BAD NAD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BAD NAD (ASA )∴2=NB AB ,∵22.5∠=∠=∠=︒ABK KDA MDC ,在△BKN 和△MCD 中22.5ABK MDC BK CD BKN MCD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BKN MCD (ASA )∴2==MD BN AB ;解法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L .∵BC=CD ,∠BCD =90°,∴∠CBD =∠BDC =45°,∵∠BDA =∠MDC =22.5°,∴∠BDM =22.5°,在△BAD 和△BND 中ADB BDN BD BDBAD BND ∠=∠⎧⎪=⎨⎪∠=∠⎩,BAD BND ∴∆≅∆(ASA ),AB NB ∴=,在△LND 和△BND 中90BND LDN ND ND BDN LDN ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,LND BND ∴∆≅∆(ASA ),NB NL ∴=,2BL AB ∴=,∴LBC MDC ∠=∠,在△LCB 和△MCD 中BCL BCD BC CD LBC MDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,LCB MCD ∴∆≅∆(ASA ),2BL MD AB ∴==.【点睛】本题考查了全等三角形的性质与判定,正方形的性质与判定,第(2)问作出辅助线构造全等三角形是解题的关键.【7题答案】【答案】(1(2)证明见解析(312-【解析】【分析】(1)先证明45ABC ACB ∠=∠=︒,BAD CAE ∠=∠,再证明BAD CAE ≌,得到45ABD ACE ∠=∠=︒,3BD CE ==,则90CBD ∠=︒,求出BC =CD =;(2)如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,先求出60CAQ ∠=︒,再由已知条件得到AD AB AC AQ ===,即可证明ABC ACQ △,△都是等边三角形,得到60ACB ACQ CQ AC ==︒=∠∠,,由全等三角形的性质得到CAE BCF ∠=∠,即可证明60CMH ∠=︒,推出MCH △是等边三角形,则60CM HM CH MCH ===︒,∠,证明QCM ACH △≌△得到QM AH =,再证明AN 是DMQ △的中位线,得到2QM AN =,即可证明2AM CM AN +=;(3)如图所示,连接AH CH ,,DH DG ,,根据轴对称的性质得到CG HG =,则12AG CG HG ===,由三角形三边的关系得到HD DG HG ≤-,则当D G H 、、三点共线时,HD 最小,最小值为12DG -,过点G 作GT AD ⊥交DA延长线于T ,求出14AT =,TG =54DT =,即可求出DG =,则12HD =-最小值.【小问1详解】解:如图所示,连接BD ,∵90BAC ∠=︒,=90DAE ∠︒,AB AC =,∴BAC BAE DAE BAE ∠-∠=∠-∠,45ABC ACB ∠=∠=︒,∴BAD CAE ∠=∠,又∵AD AE =,∴()SAS BAD CAE ≌△△,∴45ABD ACE ∠=∠=︒,3BD CE ==,∴90CBD ∠=︒,∵4AC =,∴BC ==,∴CD ==【小问2详解】证明:如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,∵60BAC DAB ∠=∠=︒,∴60CAQ ∠=︒,∵AD AB =,AB AC =,∴AD AB AC AQ ===,∴ABC ACQ △,△都是等边三角形,∴60ACB ACQ CQ AC ==︒=∠∠,,∵BCF CAE ≌,∴CAE BCF ∠=∠,∴60CMH CAE ACM BCF ACM ACB =+=+==︒∠∠∠∠∠∠,∴MCH △是等边三角形,∴60CM HM CH MCH ===︒,∠,∴MCH ACM ACQ ACM +=+∠∠∠∠,即QCM ACH =∠∠,∴()SAS QCM ACH △≌△,∴QM AH =,∵N 是DM 的中点,AD AQ =,∴AN 是DMQ △的中位线,∴2QM AN =,∴2AH AN =,即2AM MH AN +=,∴2AM CM AN +=;【小问3详解】解:如图所示,连接AH CH ,,DH DG ,,∵HGE 和CGE 关于直线GE 成轴对称图形,∴CG HG =,∵G 是AC 的中点,∴1122AG CG HG AC ====,∴HD DG HG ≤-,∴当D G H 、、三点共线时,HD 最小,最小值为12DG HG DG -=-,过点G 作GT AD ⊥交DA 延长线于T ,∵60BAC DAB ∠=∠=︒,∴60GAT =︒∠,∴30AGT =︒∠,∴1124AT AG ==,∴TG ==,54DT AD AT =+=,∴DG ==,∴12HD =-最小值.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,勾股定理,含30度角的直角三角形的性质,轴对称图形的性质,三角形三边的关系,正确作出辅助线是解题的关键.【8题答案】【答案】(1)5;(2)证明过程见解析;(3)'B M EM AM-=.【解析】【分析】(1)先根据已知条件求出AF 的长度,再用勾股定理求出BF 的长度,最后根据直角三角形斜边中线定理求出AM 的长度即可;(2)过点A 作AG ⊥AM ,交BE 于点G ,连接CG ,先证出△ABM 和△ACG 全等,再证出BG ⊥CG ,再证出△ACG 和△ANG 全等,得到AC =AN ,即可得到结论;(3)根据已知条件使用勾股定理、等腰直角三角形的性质和直角三角形30°所对的直角边等于斜边的一半,用含有字母的代数式表示出NF 、AN 、MN 、AB 、AM 的长度,然后表示出BM 、EM 的长度,最后求出答案即可.【小问1详解】∵8AC AB ==,2CF =,∴826AF AC CF =-=-=,∵AC AB ⊥,∴在Rt ABF 中由勾股定理得:10BF ===,∵M 为BF 的中点,∴1110522AM BF ==⨯=.【小问2详解】作AG AM ⊥交BE 于点G ,连接CG ,∵AC AB ⊥,AG AM ⊥,∴1+3=90∠∠︒,2390∠+∠=︒,∴12∠=∠.∵45AME ∠=︒,∴AMG 为等腰直角三角形,∴AM AG =.在ABM 和ACG 中,∵12AB AC AM AG =⎧⎪∠=∠⎨⎪=⎩,∴ABM ≌ACG (SAS ),∴45∠=∠.∵67∠=∠,∴90CGF BAF ∠=∠=︒,∵//CN AM ,∴845AME ∠=∠=︒,∴CNG △为等腰直角三角形,∴GN CG =,∵45AGM ∠=︒,∴9135∠=︒,∴3609135AGC CGN ∠=︒-∠-∠=︒.在ACG 和ANG 中,∵9AG AG AGC CG NG =⎧⎪∠=∠⎨⎪=⎩,∴ACG ≌ANG (SAS ),∴AC AN =,∴AN AB =.【小问3详解】'B M EM AM-=.解析:作AN BE ⊥于点N ,设FN a =,∵130∠=︒,90BMB '∠=︒,∴根据折叠知2690245∠=∠=︒÷=︒,又AN ⊥BE ,∴5360∠=∠=︒,430∠=︒,∴22AF FN a ==,在Rt △AFN 中根据勾股定理得AN ==,∴AN MN ==,同理AM ==,2AB AN ==,同理3BN a ==,'3B M BM BN NM a ==+=+.∵2222BE BF EF AF FC AC AB =+=+===,∴()26BM EM BM BE BM BM BE a -=--=-=-,∴'B M EM AM -==.【点睛】本题考查了等腰直角三角形的判定和性质、直角三角形斜边中线定理、直角三角形30°所对的直角边等于斜边的一半、勾股定理、全等三角形的判定和性质;考查的内容比较多,按照阶梯难度逐级上升,熟练掌握那些定理并能画出辅助线是解决本题的关键.【9题答案】【答案】(1)4(2)证明见解析 (3)16【解析】【分析】(1)根据等腰三角形三线合一可知AG EF ⊥,EG FG =,可得132FG EF ==,根据勾股定理即可求出AG 的长;(2)在AD 上截取DH DF =,连接FH ,则AH CF =,因为60ABC ∠=︒,所以120AHF ECF ∠=∠=︒,则可证AHF △≌FCE △(ASA ),所以CE HF DF ==,又因为BC =CD ,所以BE CF =;(3)延长CE '交AB 于点I ,连接FI ,则△BOI ≌△FOC ,所以BI =CF ,又因为BI ∥CF ,所以四边形ACFI 是平行形,BFI BFC S S =△△,由BOI FOI S S =△△,''BOE FOE S S =△△,设''BE I FE I S S x ==△△,则32''CFI CE F FE I S S S S S x -=-==△△△,1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x =-=-=+=△△△△△△,代入计算可得321136-=S S S .【小问1详解】解:∵在菱形ABCD 中,AC 平分BCD ∠,CE CF = ,∴AG EF ⊥,EG FG =.∵6EF =,∴116322FG EF ==⨯=在Rt AFG 中,90AGF ∠=︒,5AF =,∴4AG ===.【小问2详解】证明:在AD 上截取DH DF =,连接FH .∵在菱形ABCD 中,DA DC =,∴DA DH DC DF -=-,即AH CF =.∵60ABC ∠=︒,∴60D ABC ∠=∠=︒.∴DFH 为等边三角形.∴60DHF ∠=︒.∴180********AHF DHF ∠=︒-∠=︒-︒=︒.∵//AD BC ,∴180********BCD D ∠=︒-∠=︒-︒=︒.∴AHF ECF ∠=∠.在AHF △和FCE △中,∵DAF EFC AH FC AHF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AHF △≌FCE △(ASA ).∴CE HF DF ==.∵BC DC =,∴BC CE DC DF -=-,即BE CF =.【小问3详解】321136-=S S S.解析:延长CE '交AB 于点I ,连接FI .∵AB ∥CD ,∴∠ABF =∠BFC ,∵点O 是BF 的中点,∴BO =FO ,∵∠BOI =∠FOC ,∴△BOI ≌△FOC ,∴BI =FC ,∴四边形ACFI 是平行形,∴BFI BFC S S =△△,∵BOI FOI S S =△△,''BOE FOE S S =△△,∴''BE I FE I S S x ==△△.∴3BCF CFI S S S ==△△.∴32''CFI CE F FE I S S S S S x -=-==△△△.∵BEF △沿BF 翻折至同一平面内得到BE F ' ,∴'BEF BE F S S =△△,∴1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x=-=-=+=△△△△△△∴32113326S S x S x -==⨯.【点睛】本题考查了菱形,熟练运用菱形的性质,结合三角形的相关知识(等腰三角形、等边三角形、全等三角形等)是解题的关键.【10题答案】【答案】(1)30°;(2)AE=2AH,证明见解析;(3【解析】【分析】(1)根据菱形的性质以及等腰三角形的性质可得∠ABD=∠ADB=30°,∠EAD=∠BAD−∠BAE=90°,根据直角三角形斜边上的中线得AF=DF,即可得∠FAD=∠ADB=30°;(2)延长DA至F点,使得AF=DA,连接AM,CE,FM,证明△AMB≌△CEB (SAS),根据全等三角形的性质得AM=CE,∠MAB=∠ECB,可得出∠FAM=∠ECA,再证△FAM≌△ACE(SAS),可得MF=AE,根据三角形中位线定理即可得出结论;(3)连接NC、PC、NP,证明△AMB≌△APC(SAS),可得PC=BM=BE,∠PCA=∠BMA=30°,根据等边三角形的性质得CN⊥AD,∠ACN=∠DCN=30°,则∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN 长度最短,根据含30°角的直角三角形的性质即可求解.【小问1详解】解:∵四边形ABCD为菱形,∠ABC=60°,∴AB=AD,∠ABD=∠ADB=30°,∠BAD=120°,∵BE=AE,∴∠ABE=∠BAE=30°,∴∠EAD=∠BAD−∠BAE=90°,∵点F为DE的中点,DE,∴AF=DF=12∴∠FAD=∠ADB=30°;【小问2详解】AE=2AH,证明:延长DA至F点,使得AF=DA,连接AM,CE,FM,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴∠ACB=60°,∵△BEM是等边三角形,∴∠ABM十∠ABE=∠ABE+∠EBC=60°,MB=BE,∴∠ABM=∠EBC,∴△AMB≌△CEB(SAS),∴AM=CE,∠MAB=∠ECB,∵AD=DC,且∠ADC=∠ABC=60°,∴△ADC为等边三角形,∴AD=AC,∵AD=AF,∴AF=AC,∵∠FAB=180°−∠BAD=60°,∴∠FAB=∠ACB=60°,∴∠FAM=∠FAB−∠MAB=∠ACB−∠ECB=∠ECA,∴△FAM≌△ACE(SAS),∴MF=AE,∵FA=AD,H为DM的中点,MF,∴AH=12∴AE=MF=2AH;【小问3详解】连接NC、PC、NP,∵△AMP为等边三角形,∴∠MAP=60°,AM=AP,∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC=CD=AD,∴△ABC为等边三角形,△ADC为等边三角形,∴∠BAC=60°,AB=AC=CD,∠ACD=60°,∴∠MAB=∠MAP−∠BAP=∠BAC−∠BAP=∠PAC,∴△AMB≌△APC(SAS),∴PC=BM=BE,∠PCA=∠BMA=30°,∵AC=CD,N为AD的中点,∴CN⊥AD,∠ACN=∠DCN=30°,∴∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN长度最短,∵AD=,∴DN=12AD,∴NC DN=3,∵∠PCN=60°,NP⊥PC,∴∠PNC=30°,∴PC=12NC=32,∴PN PC PN.【点睛】本题是四边形综合题,考查了菱形的性质,等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质等,添加恰当辅助线构造全等三角形是解题的关键.【11题答案】【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【解析】【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和=90DAE ∠︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解;(2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,∵四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠= .BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴= ≌.∴矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒= ,,ABH DAE AH DE ∴∴= ≌.又,DE AF AH AF =∴= ,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .∵四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆ ≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴= .60,AHB AHF ∠=︒∴ 是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.【12题答案】【答案】(1)45°(2)5(3)4【解析】【分析】(1)由折叠的性质得()290EAQ GAQ ∠+∠=︒,则45EAG EAQ GAQ ∠=∠+∠=︒;(2)连接MF ,NF ,BF ,DF ,由折叠的性质知AE 垂直平分BF ,AG 垂直平分DF ,则3BM MF ==,4DN NF ==,再求出90MFN ∠=︒,利用勾股定理可得答案;(3)设BE x =,则9EC x =-,()891DG CD GC x x =-=--=-,1QF =,过点G 作GH 垂直EF 交EF 的延长线于H ,证明四边形FQGH 是矩形,求出EH ,在Rt GHE 中,利用勾股定理列方程求解可得答案.【小问1详解】解:由折叠的性质可知:BAE QAE ∠=∠,DAG QAG ∠=∠,四边形ABCD 是矩形,90BAD ∴∠=︒,90BAE QAE DAG QAG ∴∠+∠+∠+∠=︒,()290EAQ GAQ ∴∠+∠=︒,45EAG EAQ GAQ ∴∠=∠+∠=︒;【小问2详解】如图,连接MF ,NF ,BF ,DF ,若AB BC =,则四边形ABCD 是正方形,由题意可知点Q 与点F 重合,由折叠的性质可知:点B 与点F 关于AE 对称,点D 与点F 关于AG 对称,AE ∴垂直平分BF ,AG 垂直平分DF ,3BM MF ∴==,4DN NF ==,BD 为正方形ABCD 的对角线,1452MBE MFE ABC ∴∠=∠=∠=︒,1452NDG NFG ADC ∠=∠=∠=︒,18090MFN MFE NFG ∴∠=︒-∠-∠=︒,在Rt MFN 中,由勾股定理得:5MN ==.【小问3详解】设BE x =,由题意可知:45GEC ∠=︒,90ECG ∠=︒,180EGC GEC ECG ∴∠=︒-∠-∠ 1804590=︒-︒-︒ 45=︒,GEC EGC ∴∠=∠,EC CG ∴=,ECG ∴ 是等腰直角三角形,在矩形ABCD 中,9BC AD ==,8CD AB ==,BE x = ,9EC GC BC BE x ∴==-=-,()891DG CD GC x x =-=--=-,)9EG x ∴==-,由折叠的性质可知:BE EF x ==,1DG QG x ==-,90AFE ABE ∠=∠=︒,90AQG ADG ∠=∠=︒,9AQ AD ==,8AF AB ==,1QF AQ AF ∴=-=,如图,过点G 作GH 垂直EF 交EF 的延长线于H ,则90FHG HFQ FQG ∠=∠=∠=︒,∴四边形FQGH 是矩形,1FH QG x ∴==-,1GH QF ==,121EH EF FH x x x ∴=+=+-=-,在Rt GHE 中,由勾股定理得:222GH EH EG +=,即)2221(21)9]x x +-=-,整理得:()()2040x x +-=,解得4x =或20(x =-舍去),4BE ∴=.【点睛】本题是四边形综合题,主要考查了翻折的性质,矩形的判定和性质,正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,熟练掌握翻折的性质是解题的关键,同时注意方程思想的运用.【13题答案】【答案】(1)见解析 (2)MN = (3)点E 在CD 边上运动过程中,CND ∠的大小不改变,且45CND ∠=︒【解析】【分析】(1)根据正方形的性质,得出AB CD ,再根据AE BF ∥,即可证明四边形ABFE 是平行四边形;(2)根据正方形的性质,结合勾股定理,求出AE =,再根据平行四边形的面积求出EF 的长即可;(3)在DN 上截取DG =BN ,连接CG ,根据“SAS ”证明DGC BNC ≌,得出CG =NC ,DCG BCN ∠=∠,说明△GCN 为等腰直角三角形,即可得出结果.【小问1详解】证明:∵四边形ABCD 为正方形,∴AB CD ,即AB EF ∥,∵AE BF ∥,∴四边形ABFE 是平行四边形.【小问2详解】解:∵四边形ABCD 为正方形,∴6AB BC CD AD ====,90ABC BCD CDA DAB ∠=∠=∠=∠=︒,∵123DE DC ==,∴在Rt △ADE 中根据勾股定理得:AE ===,∵ABFE S AB BC AE MN =⨯=⨯ ,∴AB BC MN AE ⨯===【小问3详解】解:点E 在CD 边上运动过程中,CND ∠的大小不改变;在DN 上截取DG =BN ,连接CG ,如图所示:∵DN ⊥AE ,∴90DME ∠=︒,∵AE BF ∥,∴90DNF DME ∠=∠=︒,∴90F NDF ∠+∠=︒,∵18090BCF BCD ∠=︒-∠=︒,∴90F FBC ∠+∠=︒,∴NDF FBC ∠=∠,∵在△DGC 和△BNC 中DC BC CDG CBN DG BN =⎧⎪∠=∠⎨⎪=⎩,∴DGC BNC ≌(SAS ),∴CG =NC ,DCG BCN ∠=∠,∴90BCN BCG BCG DCG ∠+∠=∠+∠=︒,∴190452CND CGN ∠=∠=⨯︒=︒.【点睛】本题主要考查了正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,平行四边形的面积,作出辅助线,构造全等三角形,是解题的关键.【14题答案】【答案】(1)AE =DF ;(2)见解析;(3)CN 的长度为3【解析】【分析】(1)证明∠BAE =∠ADF ,则△ABE ≌△DAF (AAS ),即可求解;(2)由正方形的性质得出∠CBG =∠MEF ,证明△BCG ≌△EMF (ASA ),即可求解;(3)证明△EHF ≌△MGN (ASA ),则NG =HF ,而AE =2,BF =4,故NG =HF =4-2=2,进而求解.【详解】解:(1)∵∠DAO +∠BAE =90°,∠DAO +∠ADF =90°,∴∠BAE =∠ADF ,在△ABE 和△DAF 中,BAE ADF ABE DAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DAF (AAS ),∴AE =DF ,故答案为:AE =DF ;(2)如图1,过点E 作EM ⊥BC 于点M ,则四边形ABME 为矩形,则AB =EM ,在正方形ABCD 中,AB =BC ,∴EM =BC ,∵EM ⊥BC ,∴∠MEF +∠EFM =90°,∵BG ⊥EF ,∴∠CBG +∠EFM =90°,。
八年级数学《平行四边形的特征》重点知识及经典例题
八年级数学《平行四边形的特征》重点知识及经典例题学习目标1.掌握平行四边形的定义及平行四边形的特征.2.能够灵活运用平行四边形的特征进行有关的计算.3.了解解决平行四边形问题的基本思想、是转化为三角形来处理.4.掌握平行线的性质即平行线之间的距离相等.学法指导在理解的基础上识记平行四边形的概念及其性质,并根据相应的条件选用相应的性质利用平行四边形是中心对称图形来解决一些实际问题更容易.基础知识讲解1.平行四边形的定义两组对边分别平行的四边形叫做平行四边形,用符合“□”表示,四个顶点分别为A.B.C.D.则这个平行四边形记作□ABCD.2.平行四边形的特征(1)平行四边形的两组对边分别平行.(2)平行四边形的对边相等,对角相等.(3)平行四边形的对角线互相平分.(4)平行四边形是中心对称图形.注意:特征(2)(3)利用平行四边形是中心对称图形的性质可推出.3.平行线的性质平行线的距离为其中一条直线上任一点到另一条直线的距离叫做两条平行线之间的距离.由平行线距离的定义可知,每作两条距离与两平行线组成—个平行四边形,为此有无数个平行四边形,根据平行四边形的特征可得,平行线之间的距离处处相等.重点难点重点:平行四边形的定义和特征难点:1.运用中心对称图形的特征来理解平行四边形的特征.2.作适当的辅助线把平行四边形分解成三角形来解决一些问题.3.平行线之间的距离处处相等,实质是平行四边形对边相等.易错误区分析1.利用平行四边形的定义判定一个四边形是平行四边形易犯如下错误.例如:已知如图12-1-1所示,在□ABCD中,AE=CF.求证:四边形EBFD是平行四边形错证:∵四边形ABCD是平行四边形.∴AB=DC,AD=BC∴在△ABE和△CDF中AB=DC ∠A=∠C AE=CF∴△ABE≌△CDF(SAS)∴BE=DF ∴四边形EBFD为平行四边形分析:BE=DF不能得出四边形EBFD是平行四边形,而由BE∥DF,再由已知□ABCD才能得出.正确证:连结BD∵四边形ABCD为平行四边形∴AD BC 又∴AE=CF ∴ED=BF∴∠1=∠2 ∴△BED≌△BFD∴∠3=∠4 ∴BE∥DF又∵ED∥BF ∴四边形BEDF为平行四边形2.运用平行四边形的性质和平行线距离处处相等,易犯下面的错误.例如:求证平行四边形对角线上的交点到一组对边的距离相等.已知:如图12-1-2,□ABCD的对角线AC、BD相交于点O,OE⊥AB OF⊥CD,垂足分别为E,F.求证:OE=OF错证:∵四边形ABCD为平行四边形∴OA=OC AB∥CD∴∠3=∠4 ∵∠2=∠1 ∴△OAE≌△OCF ∴OE=0F分析:错在用∠1=∠2,即把∠1与∠2当成对顶角了,因为OE,OF是从O点分别向AB、CD作两条垂线,而OE与OF是否是同一条直线还需证明,故不能直接利用∠1=∠2 正确证明:∵四边形ABCD为平形四边形∴OA=OC AB∥CD∴∠3=∠4 ∵OE⊥AB OF⊥CD∴∠AE0=∠CF0=90°∴△OAE≌△OCF ∴OE=OF典型例题例1.已知如图12-1-4所示,□ABCD中,AB的延长线上取一点E,使BE=AB,在CE 上取一点M使CM=CD,连结DM并延长交AE的延长线于点F.求证BD=BF分析:由于BD,BF是△BDF的两边,所以要证BD=BF,可由证△BDF中∠BDF=∠F入手,易知∠F=∠CDM=∠CMD=∠EMF,故只要证BD∥CE,由此由证法一又注意到BF=BE+EF,易知BE=AB=CD=CM,EF=EM,故BF=CE,从而只要证BD=CE,由此有证法二.证法(一):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上,且BE=AB ∴AB CD∴四边形BECD是平行四形∴BD∥CE ∴∠BDF=∠EMF∵∠EMF=∠CMD ∴∠BDF=∠CMD又∵CM=CD ∴∠CMD=∠CDM ∴∠BDF=∠CDM∵AF∥CD ∴∠CDM=∠F ∴BDF=∠F即BD=BF证法(二):∵四边形ABCD为平行四边形∴AB CD又∵E点在AB延长线上且BE=AB ∴BE CD∴四边形BECD是平行四边形∴BD=CE,BE=CD又∵∠EMF=∠CMD,CD=CM ∴∠CMD=∠CDM∴∠EMF=∠CDM ∵BE∥CD ∴∠F=∠EMF ∴EF=EM∴BF=BE+EF=CD+EM=CM+EM=CE=BD即BF=BD例2.如图12-1-5所示:L1∥L2、AB∥CD、CE⊥L2、FG⊥L2、E、G分别为垂足,则下列说法中错误的是()A.AB=CDB.CE=FGC.A,B两点的距离就是线段AB的长D.L1与L2间的距离就是线段CD的长分析:根据平行线之间的距离处处相等,推出夹在两平行线之间的平行线段也相等.(由图象的平移也可得到)答:选D.例3.如图12-1-6所示:已知六边形ABCDEF的6个内角均为120°,CD=2cm,BC=8cm,AB=8cm,AF=5cm,试求此六边形的周长.分析:分别求出六条边的长度,再求六边形的周长显然不可能,从图中可以发现AF分别绕A点,F点旋转60°后分别与BA,EF在同一直线上.同理DC分别绕D,C旋转60°后,分别与ED,BC在同一直线上,如图所示,得到一个平行四边形EMBN,△MFA与△DCN都为等边三角形,所以六边形的周长应等于平行四边形的周长减去AF+DC.解:由已知可得∠M=∠N=60°,又∠B=∠E=120°所以EN∥MB,EM∥NB,所以四边形MBNE为平行四边形又因为△AMF,△CDN为等边三角形所以MA=AF=MF=5cm,CD=CN=DN=2cmMB=EN=8+5=13cm,ME=BN=8+2=10cm故ED=13-2=11cm,EF=ME-MF=10-5=5cm得六边形的周长为8+8+2+11+5+5=39cm例4.把边长为3cm,5cm和7cm的两个三角形拼成一个四边形,一共能拼成几种不同的四边形?其中有几种是平形四边形?分析:由于要拼成四边形,故两个三角形一定有两条边重合在一起,这条重合的边即为四边形的对角线.因此找出问题的突破口,分三种情况讨论不难得出正确的答案.(1)以3cm长的边为对角线,有两种拼法,得到两个四边形中有一个是平行四边形.如图所示:(2)以7cm长的边为对角线,也有两种拼法,得到两个四边形,其中有一个平行四边形.如图所示:(3)以5cm长的边为对角线,也有两种拼法,得到两个四边形,其中也有一个是平行四边形,如图所示:答:总共拼成6种不同的四边形,其中有3种是平行四边形.创新思维例1.一块平行四边形菜地,若它的面积是144,测得相邻两边上的高分别为8和9,请你用平行四边行形的特征和有关的知识计算出它的周长.分析:如图12-1-7所示:要求周长必须求出BC,CD的长.从面积入手得.BC·AE=144 CD·AF=144 因而可求出周长.解:因为BC·AE=144,AE=8,所以BC=18因为DC·AF=144,AF=9,所以DC=16所以平行四边形菜地的周长=2(BC+DC)=2(18+16)=68例2.如图12-1-8,△ABC中AB=AC,点P在BC上任一点,PE∥AC,PF∥AB分别交AB,AC于E、F,试问线段PE,PF,AB之间有什么关系?试证明你的结论.分析:对于由给定条件寻求结论的这类探索性问题,其解题思路一般是从给的条件出发探索、归纳、猜想出结论,然后对猜想的结论进行证明.答:由线段PE,PF,AB之线段长度,不难得出三线段之间的关系为PE+PF=AB证明:∵PE∥AC ∴∠EPB=∠C又∵AB=AC ∴∠B=∠C∴∠EPB=∠B ∴PE=EB①∵PE∥AC PF∥AB ∴四边形AEPF是平行四边形∴PF=AE②由①+②得PE+PF=EB+AE,即PE+PF=AB例3.如右图:田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均有一棵大核桃树,田村准备开挖池塘养鱼,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘为平行四边形,请问田村能否实现这一设想,若能,请你画出图形,若不能,请说明理由.(画图要留下痕迹,不写作法)分析:由平行四边形的特征可知,四棵树应在平行四边形的边上,面积要扩大一倍,则把△BOA、△BOC、△COD、△AOD的面积扩一倍即可,分别过点B,点D作AC的平行线;过点A,点C分别BD的平行线,不难证明四边形A′B′C′D′就是符合条件的平行四边形的池塘.答:能,画法如图.中考练兵1.已知如图12-1-9,平行四边形ABCD中E,F分别是BC,AD边上的点,且BE=DF,AC与EF交于点O.求证:OE=OF证明:∵四边形ABCD是平行四边形∴AD BC ∴∠1=∠2∵BE=DF ∴BC-BE=AD-DF即EC=AF在△AOF和△COE中∴△AOF≌△COE(AAS)∴OF=OE2.如图12-1-10,□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取什范围是()A.1<AB<7 B.2<AB<4C.6<AB<8 D.3<AB<4解:由平行四边形的性质对角线互相平分得OA=4 OB=3,由三角形三边关系得OA-OB<AB<OA+OB即1<AB<7答:故选A3.如图12-1-12,将□ABCD沿AC折叠点B落在B′处,AB′交DC于点M,求证:折叠后重合的部分(即△MAC)是等腰三角形.证明:∵△BAC≌B′AC ∴AB′=AB,B′C=BC又∵AD=BC CD=AB ∴AD=B′C CD=AB′∴△ADC≌△CB′A(SSS) ∴∠ACD=∠CAB′∴MA=MC 即△MAC是等腰三角形4.如图12-1-13,E、F是平行四边形ABCD对角线上的两点,且AE=CF,求证:△ABF ≌△CDE证明:∵四边形ABCD为平行四边形∴AB∥CD,∠CAB=∠DCA∵AE二CF ∴AE+EF=CF+EF即AF=CE ∴△ABF≌△CDE。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学平行四边形的重点、难点典型例题
八年级数学下册特殊平行四边形的重点、难点、疑点
一、梯形有关性质
知识点一:梯形、等腰梯形的性质
知识点二:等腰梯形的判定
知识点三:梯形中位线定理
知识点四:梯形的面积
知识点测试题
一、选择题
1.能判定四边形ABCD为平行四边形的题设是().
(A)AB∥CD,AD=BC; (B)∠A=∠B,∠C=∠D;
(C)AB=CD,AD=BC; (D)AB=AD,CB=CD
2.正方形具有而菱形不一定具有的性质是()
(A)对角线互相平分; (B)对角线相等;
(C)对角线平分一组对角; (D)对角线互相垂直
3.下列说法不正确的是()
(A)对角线相等且互相平分的四边形是矩形;
(B)对角线互相垂直平分的四边形是菱形;
(C)一组对边平行且不等的四边形是梯形;
(D)一边上的两角相等的梯形是等腰梯形
4.不能判定四边形ABCD为平行四边形的题设是()(A)AB=CD,AD=BC (B)AB//CD
(C)AB=CD,AD∥BC (D)AB∥CD,AD∥BC
5.下列说法不正确的是()
(A)只有一组对边平行的四边形是梯形;
(B)只有一组对边相等的梯形是等腰梯形;
(C)等腰梯形的对角线相等且互相平分;
(D)在直角梯形中有且只有两个角是直角
(6)
二、填空题
6.如上图:矩形的对角线相交成的角中,有一个角是60°,
这个角所对的边长为20cm,则其对角线长为______;该矩形的面积为________.
7.一个菱形的两条对角线长分别为6cm,8cm,这个菱形的边长为_______,•面积S=______.
8.如果一个四边形的四个角的比是3:5:5:7,则这个四边形是_____形.
9.如下图,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是________.
综合提高题
一、填空题(5道题)
1.在平行四边形ABCD中,已知对角线AC和BD相交于点O,△ABO的周长为17,AB=6,那么对角线AC+BD=
2.以正方形ABCD的边BC 为边做等边△BCE,则∠AED的度数为 .
3.延长正方形ABCD的边AB到E,使BE=AC,则∠E =°
4.已知菱形ABCD的边长为6,∠A=60°,如果点P是菱形内
一点,且PB=PD=2那么AP的长为.
5.在平面直角坐标系中,点A、B、C的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D,使四边形
ABCD是平行四边形,那么点D的坐标是.
二、选择题(10道题)
6.如图4在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连结EF,则∠E+∠F=( )
A.110° B.30° C.50°D.70°
7.菱形具有而矩形不具有的性质是 ( ) A.对角相等 B.四边相等
C.对角线互相平分 D.四角相等
8.平行四边形ABCD中,对角线AC、BD交于点O,
点E是BC的中点.若OE=3 cm,则AB的长为 ( ) A.3 cm B.6 cm C.9 cm D.12 cm
9.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,
则图中阴影部分的面积为 ( )
A.8 B.6 C.4 D.3
10.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形
③正方形④等边三角形⑤等腰直角三角形
( )
A.①③⑤ B.②③⑤ C.①②③ D.①③④⑤11.如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长
是 ( )
A.88 mm B.96 mm C.80 mm D.84 mm
12、如图,把矩形ABCD沿EF对折后使两部分重合,若150
∠=o,则AEF
∠=()
A.110° B.115°
C.120° D.130°
13、某商店出售下列四种形状的地砖:①正三角形;②正方形;
(
E
A
F
D
C
B
H
G
③正五边形;④正六边形。
若只选购其中一种地砖镶嵌地面,可供选择的地砖共有
( ).
(A )4种 (B )3种
(C )2种 (D )1种
14、四边形ABCD ,仅从下列条件中
任取两个加以组合,使得ABCD 是平
行四边形,一共有多少种不同的组
合?( ) AB∥CD BC∥AD
AB=CD BC=AD
A.2组
B.3组
C.4
组 D.6组 15、下列说法错误的是( ) A.一组对边平行且一组对角相等
的四边形是平行四边形. B.每组邻边都相等的四边形是菱形.
C. 对角线互相垂直的平行四边形是正方形.
D.四个角都相等的四边形是矩形. 三、解答题(4道题)
16、如图9,四边形ABCD 是菱形,对角线AC =8 cm , BD =6 cm, DH⊥AB 于H ,求:DH 的长
F
E A
A
B D
C
E P F
(9
(1
(1
(1
17、已知:如图10,菱形ABCD的周长为16 cm,
∠ABC=60°,对角线AC和BD相交于点O,
求AC和BD的长.
18、如图11,在正方形ABCD中,P为对角线BD上一点,
PE⊥BC,垂足为E,PF⊥CD,垂足为F,
求证:EF=AP
19、在△ABC中,AB=AC,D是BC的中点,DE⊥AB,
DF⊥AC,垂足分别是E,F.
⑴试说明:DE=DF
⑵只添加一个条件,使四边形EDFA是正方形.
请你至少写出两种不同的添加方法.(不另外添加辅助线,无需证明
20.(8分)已知:如图,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.
21.(10分)小明为测量池塘的宽度,在池塘的两侧A,B引两条直线AC,BC相交于点C,在BC上取点E,G,使BE=CG,再分别过点E,G作EF∥AB,GH∥AB,交AC 于点F,H.测出EF=10m,GH=4m(如图).小明就得出了结论:池塘的宽AB为14m.你认为小明的结论正确吗?
请说明你的理由.
22.(10分)李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树.李大伯准备开挖池塘,使池塘面积扩大一倍,又想保持柳树不动.如果要求新池塘成平行四边形的形状.请问李大伯的愿望能否实现?若能,请画出你的设计;若不能,请说明理由.
23、已知在梯形ABCD中,AD∥BC,AB=DC,∠D=120o,对角线CA平分∠BCD,且梯形的周长20,求AC。
A D
B C
参考答案
一、填空题
1、22
2、150°或15°
3、22.5°
4、4
5、(2 ,5)
16.略
17、AC=4 cm , BD=4
18、证明:连结PC
∵四边形ABCD为平行四边形
∴AB=AC ,∠ABD=∠DPC ∠BCD=90°
∵BP=BP
∴△ABP≌△CBP
∴AP = CP
∵PE⊥BC,PF⊥DC
∴四边形PECF为矩形
∴EF=PC
∴EF=AP
19、证明:⑴连结AD
∵AB=AC,D为BC的中点
∴AD为∠BAC的平分线
∵DE⊥AB ,DF⊥AC
∴DE=DF
⑵∠BAC=90° DE⊥DF
20.提示:只要证明DE是△ABE的中位线,FG是△OBC的
中位线,得DE //1
2BC //FG .•
故四边形DFGE 是平行四边形
21.正确.理由:过点E 作ED ∥AC ,交AB 于点D .只要证明四边形ADEF 是平行四边形,△BDE ≌△GHC 即可
22.如图所示:
C
23、已知在梯形ABCD 中,AD ∥BC ,AB =DC ,∠D =120o ,对角线CA 平分∠BCD ,且梯形的周长20,求AC 。
25、⑴△BCE ≌△DCF (1分) 理由:因为四边形ABCD 是正方形∴BC =CD ,∠BCD =90o
∴∠BCE =∠DCF 又CE =CF ∴△BCE ≌△DCF (4分)
⑵∵CE =CF ∴∠CEF =∠CFE ∵∠FCE =90o ∴∠CFE
=1
(18090)452o o o -=
又∵△BCE ≌△DCF ∴∠CFD =∠
BEC =60o (6
分)
∴∠EFD=∠CFD-∠CFE=60o-45o=15o(8分)。