IEC 61000-3-2amendmenta14explained[资料]
基于技术要求分析IEC谐波电流发射限值标准修订趋势
基于技术要求分析IEC谐波电流发射限值标准修订趋势扈罗全;刘小林;万保权【摘要】针对IEC 61000-3-2:2014版本出版以后的技术发展变化,分析了IEC谐波电流发射限值标准修订中涉及的待测物工况设置要求的新变化.对电视接收机(电视机)的试验条件,自镇流灯谐波电流发射值测试评定程序,带有内置式调光器LED灯具测试要求,涉及LED灯具标准条款的修订趋势,以及谐波电流发射测试技术标准化发展趋势进行了详细分析.对今后在该标准的修订提出了技术层面的意见.【期刊名称】《中国电子科学研究院学报》【年(卷),期】2016(011)004【总页数】4页(P388-391)【关键词】电磁兼容;谐波;修订;试验配置【作者】扈罗全;刘小林;万保权【作者单位】苏州出入境检验检疫局,江苏苏州 215104;苏州大学城市轨道交通学院,江苏苏州 215021;苏州大学城市轨道交通学院,江苏苏州 215021;中国电力科学研究院,北京 100192【正文语种】中文【中图分类】TM930.12随着大数据、互联网+等新技术应用大量出现,电子通信技术的发展日趋迅猛,对各类电子设备电磁兼容性能的要求不断提升。
研究诸如谐波发射等现象的内在规律,开展相关标准化修制订工作,显得越发重要。
谐波电流发射测试适用于接入单相电源电压220 V ~240V,或者三相电源电压380 V~400 V电网的家用电子电气类产品。
目前国际上欧盟、非洲、以及亚洲一些国家,普遍使用IEC 61000-3-2或者与其等效的新版标准[1-3]。
以我国为例,GB 17625.1-2012是目前使用频次最高的电磁兼容(EMC)检测标准[4],该标准等同采用IEC 61000-3-2:2009。
IEC谐波电流发射限值标准作为欧盟电磁兼容指令的一个重要标准,目前执行的有效标准版本为2009年版本。
新版IEC 61000-3-2: 2014标准于2014年上半年出版。
根据IEC TC77A的工作计划,预计将于2016年出版该版标准的修订单(Amendment)。
最新静电放电抗扰性测试(ESD测试) IEC 61000-4-2
测试前须确认事项
在可接触点上采用直接放电,在不可接触点上
或绝缘表面采用空气放电(Air Discharge) 被测物需进行何种等级之测试? 每个测试点应施加放电次数几次? 被测物除了做直接放电测试外,是否还需进行 间接放电? 针对放电耦合板放置位置又如何? 是否还要进行安装后之静电放电测试
discharge): 利用放电电击直接对被测体或设备实施放电
Discharge): 对被测物体或试设备邻近之耦合板实施放电
间接放电(Air
测试之目的
IEC61000-4-2
标准设立之目的主要建立共通 的和可重现性之基准 用来评核电力和电子设备在遭受静电放电后 呈现之性能否符合法规之规范 除上之外,它还包括从人体接近被害设备物体 间之发生之静电放电
测试等级
具体之测试等级必须要由产品技术委员会根
据产品之使用情况来选择 但标准中建议: 在被测物体设备具有绝缘表面之情况下,可 使用放电电压高达15KV之空气放电方法,然而 现今许多测试是依据客户端之要求执行比法 规规定更严格之位准放电达到测试之目的也 就是说放电电压高过15KV
静电放电测试设备
静电放电测试等级
接触放电(Contact Discharge)
等级 测试电压/KV
空气放电(Air Discharge)
等级 测试电压/KV
1
2 3 4 x
2
4 6 8 特殊
1
2 3 4 x
2
4 8 15 特殊
静电放电测试等级
静电放电测试中,接触放电(Contact
Discharge)是首选的测试方式-也就是说在相 同的放电电压情况下,接触放电之严格度远大 于空气放电之严格度 特例: 某些情况下例如键盘之金属导电部分 藏在绝缘层覆盖下,及设备螺丝钉之金属部分 有时可见不可及.此时就不得不用空气放电之 测试方法了
可编程直流负载仪器遵循的标准
可编程直流负载仪器遵循的标准可编程直流负载是一种用于模拟电子负载的仪器,通常用于测试和验证电源系统的性能。
这些设备可能会遵循一系列标准,以确保其性能和安全性。
以下是一些与可编程直流负载仪器相关的标准:1.IEC 61000-3-2:这个国际电工委员会(IEC)标准涉及到设备的电源电流谐波的限制。
2.IEC 61000-3-3:类似于IEC 61000-3-2,此标准关注设备电源电压变化、电压波动和闪烁的规定。
3.IEC 61010-1:这是与电气设备安全性相关的国际标准,通常适用于实验室、工业和生产环境中的测量、控制和实验室用电气设备。
4.IEC 61010-2-033:这是电子设备用的特殊安全规范,包括用于测量和试验的设备。
5.IEEE 488 / SCPI(Standard Commands for Programmable Instruments):这是一套用于仪器之间通信的标准指令,确保设备可以通过通用的控制接口进行编程和操作。
6.EN 61000-6-3 和EN 61000-6-4:这是欧洲标准,涉及用于工业环境的电磁兼容性。
7.ISO 9001:质量管理系统的国际标准,适用于确保产品和服务的质量。
8.UL 61010-1 和UL 61010-2-033:这是北美的安全标准,确保设备符合安全要求。
9.CISPR 11:用于测量和测试电磁兼容性的标准,确保设备在电磁环境中不会引起干扰或受到干扰。
10.ISO/IEC 17025:实验室能力的一般要求标准,确保实验室符合一定的测试和校准要求。
这只是一些与可编程直流负载仪器相关的标准,具体适用的标准取决于设备的设计、用途和销售市场。
制造商通常会明确产品符合的标准,以便用户可以了解设备的性能和安全性。
谐波等级取用规定
4 GeneralThe objective of this standard is to set limits for harmonic emissions of equipment within its scope, so that, with due allowance for the emissions from other equipment, compliance with the limits ensures that harmonic disturbance levels do not exceed the compatibility levels defined in IEC 61000-2-2.P rofessional equipment that does not comply with the requirements of this standard may be permitted to be connected to certain types of low voltage supplies, if the instruction manual contains a requirement to ask the supply utility for permission to connect. Recommendations concerning this aspect are contained in IEC/TS 61000-3-4 or IEC 61000-3-12.5 Classification of equipmentFor the purpose of harmonic current limitation, equipment is classified as follows:Class A:– balanced three-phase equipment;– household appliances, excluding equipment identified as class D;– tools, excluding portable tools;– dimmers for incandescent lamps;– audio equipment.Equipment not specified in one of the three other classes shall be considered as class A equipment.NOTE 1 Equipment that can be shown to have a significant effect on the supply system may be reclassified in a future edition of the standard. Factors to be taken into account include:– number of pieces of equipment in use;– duration of use;– simultaneity of use;– power consumption;– harmonic spectrum, including phase.Class B:– portable tools;– arc welding equipment which is not professional equipment.Class C:– lighting equipment.Class D:Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:– personal computers and personal computer monitors;– television receivers.NOTE 2 Class D limits are reserved for equipment that, by virtue of the factors listed in note 1, can be shown to have a pronounced effect on the public electricity supply system.7.1 Limits for Class A equipmentFor Class A equipment, the harmonics of the input current shall not exceed the values given in Table 1.Audio amplifiers shall be tested according to Clause C.3. Dimmers for incandescent lamps shall be tested according to Clause C.6.7.2 Limits for Class B equipmentFor Class B equipment, the harmonics of the input current shall not exceed the values given in Table 1 multiplied by a factor of 1,5.7.3 Limits for Class C equipmenta) Active input power >25 WFor lighting equipment having an active input power greater than 25 W, the harmonic currents shall not exceed the relative limits given in Table 2.However, the limits given in Table 1 apply to incandescent lighting equipment that has built-in dimmers or consists of dimmers built in an enclosure.For discharge lighting equipment that has built-in dimmers or consists of independent dimmers or dimmers built in an enclosure, the following conditions apply:– the harmonic current values for the maximum load condition derived from the percentage limits given in Table 2 shall not be exceeded;– in any dimming position, the harmonic current shall not exceed the value of current allowed in the maximum load condition;– the equipment shall be tested according to the conditions given in C.5.b) Active input power ≤25 WDischarge lighting equipment having an active input power smaller than or equal to 25 W shall comply with one of the following two sets of requirements:– the harmonic currents shall not exceed the power-related limits of Table 3, column 2, or:– the third harmonic current, expressed as a percentage of the fundamental current, shall not exceed 86 % and the fifth shall not exceed 61 %; moreover, the waveform of the input current shall be such that it begins to flow before or at 60°, has its last peak (if there are several peaks per half period) before or at 65° and does not stop flowing before 90°, where the zero crossing of the fundamental supply voltage is assumed to be at 0°.If the discharge lighting equipment has a built-in dimming device, measurement is made only in the full load condition.7.4 Limits for Class D equipmentFor Class D equipment, the harmonic currents and the power shall be measured as defined in 6.2.2. The input currents at harmonic frequencies shall not exceed the values that can be derived from Table 3 according to the requirements specified in 6.2.3 and 6.2.4.。
出口韩国电动摩托车认证标准emc
出口韩国电动摩托车认证标准emc
EMC(Electromagnetic Compatibility)是指电动摩托车在使用
过程中不会产生干扰其他电子设备,同时也不会被其他电子设备的干扰影响的能力。
韩国电动摩托车的EMC认证标准通常遵循国际电工委员会(IEC)的相关标准,具体包括:
1. IEC 61000-3-2:对电动摩托车在供电网络上产生的谐波进
行限制,确保其不会对其他设备造成干扰。
2. IEC 61000-3-3:要求电动摩托车在电源电压波动和瞬态条
件下的稳定性,以防止对其他设备产生负面影响。
3. IEC 61000-4-2:对电动摩托车的抗静电能力进行测试,以
确保其在静电干扰环境中正常工作。
4. IEC 61000-4-3:对电动摩托车的抗电磁感应能力进行测试,以确保其在电磁干扰环境中正常工作。
5. IEC 61000-4-4:对电动摩托车的抗快速瞬变干扰能力进行
测试,以确保其在瞬变干扰环境中正常工作。
6. IEC 61000-4-5:对电动摩托车的抗雷电干扰能力进行测试,以确保其在雷电干扰环境中正常工作。
以上是一些与电动摩托车EMC认证相关的标准,需要根据具体情况和要求进行具体的认证。
国际标准IEC61000简介剖析
between 250 V and 4 kV with the Pulse Form 5/50 ns.
Status :Published as 1994 in IEC and CENELEC
Status :Published as 1993.
Test Set Up Magnetic Field
R
for IEC 61000-4-8,9,10
R
•IEC 61000 - 4 - 11
Voltage Dips, Short interruptions and Voltage variations Immunity Test.
R
Status of Basic Immunity Standard
IEC 61000 - 4 -xx Range of Standard
R
IEC 61000 - 4 - 1
Overview on EMC Immunity Tests
Contents: Overview concerning the various phenomena.
R
EFT Waveform IEC 61000-4-4
R
•IEC 61000 - 4 - 5
Surge Immunity Requirements.
Contents:Line-related, Energy-Rich pulses of 1.2/50 us, 8/20 us and 10/700 at 0.5 to 4 kV. (Lighting Surge)
欧洲电流标准(ENCurrentstandards)
EN 2794-003-1999 EN 2794-004-1999
航空航天系列 额定电流 20 A 至 50 A 单极补偿温度断 路器 第 003 部分:米制螺 纹接线 产品标准
Aerospace series - Circuit breakers, single-pole, temperature compensated, rated currents 20 A to 50 A - Part 003: Metric thread terminals - Product standard
001 部分:技术规范
capacity 65 In<(Index)n> - Part 001: Technical specification
航空航天系列 额定电流在 Aerospace series - Circuit breakers,
1A 至 25A 开关容量 65 In、 三极温度补偿断路器 第
standard
航空航天系列 额定电流在 Aerospace series - Circuit breakers,
1A 至 25A 开关容量 65 In、 three-pole, temperature compensated,
three-pole, temperature compensated, rated currents 2 A to 25 A, switching
003 部分:米制螺纹接线端 产品标
capacity 65 In<(Index)n> - Part 003: Metric thread terminals - Product
航空航天系列 额定电流 20 A 至 50 A 单极补偿温度断 路器 第 001 部分:技术规 范
音视频设备的CE认证
音视频设备的CE认证——液晶电视CE认证的测试项目以及出现问题时的解决方法江苏省电子产品监督检验所何飞摘要:文章介绍了液晶电视在CE认证时需要测试的项目以及所测试项目出现问题时,具体的整改措施。
关键词:液晶电视、干扰、抗干扰、测试项目、整改措施前言:随着科学技术的发展,液晶电视已经发展成为现在社会的主流,国内好多厂家都在做欧洲的市场,而你要想出口欧洲,CE认证是必不可少的。
下面讲一下液晶电视在CE认证时,所需的测试项目以及测试不合格时,具体的整改措施。
一.测试项目液晶电视做CE认证时,测试项目主要分为干扰和抗干扰两大块。
依据的欧洲标准为:EN55013、EN55020、IEC61000-3-2、IEC61000-3-3。
下面具体说一下这两大块的具体测试项目。
1.干扰依据标准EN55013、IEC61000-3-2、IEC61000-3-3的要求,干扰具体分为如下测试项目:(1) 电源端骚扰电压;(2) 天线端骚扰电压;(3) 辐射骚扰场强;(4) 谐波电流和电压闪烁。
2.抗干扰依据标准 EN55020的要求,抗干扰具体分为如下测试项目:(5) 内部抗扰度;(6) 对射频感应电流的抗扰度;(7) 对射频感应电压的抗扰度;(8) 辐射抗扰度;(9) 屏蔽效果;(10) 静电放电;(11) 电快速脉冲群;(12) 对键控信号的辐射抗扰度(900MHz)二.具体的整改措施工厂在做CE认证时,或多或少会出现这样那样的问题,为了CE认证,测试样品总要进行整改,但由于测试的样品对于工厂来说已成型,不可能去“大动干戈”。
所以,下面简单说一下各个项目在测试时遇到的常规问题,以及它们对应的整改措施。
1.电源端骚扰电压我们从EN55013标准可以得知,电源端骚扰电压的干扰频率范围是在9kHz~30MHz之间,具体考核的干扰频率在150kHz~30MHz之间。
测试中出现不合格的主要是开关电源造成的,因此,我们要预先在电源中加入滤波器来抑制它的干扰。
(整理)镇流器概述[]
镇流器概述一、镇流器Ballast1 镇流器的功能镇流器是气体放电灯工作时必不可缺的配套附件,其功能:1 产生高压,起辉灯管;2 灯管起辉后起镇流(限流)作用,使灯管正常稳定地工作。
气体放电灯都有较高的启动电压和低放电维持电压。
当灯通过高压启动后,电压下降,电流加大,如不加限制,灯电流将不断加大直至使灯烧毁,所以必需在放电灯的点灯回路中串接一个与灯的类型、规格匹配的镇流器,提供使灯启动的高启动电压,并限制灯电流使之稳定在所规定的范围。
2 镇流器的分类电感镇流器和电子镇流器3 电子镇流器的分类电子镇流器的基本组成:交流电压整流电路,高频振荡逆变电路。
电子镇流器的附属电路:EMI滤波,PFC(无源Passive,有源Active)电子镇流器的输出电路:直接输出(串連諧振),变压器隔离输出(并联谐振)供电电源电压:单电源:100Vac,120Vac,220Vac,230Vac,277Vac,305Vac,480Vac等等全电压范围:90Vac ~ 264Vac,108Vac ~ 305Vac(120V-10% ~ 277V+10%)供电电源频率:单一频率:50Hz,60Hz通用频率:50/60Hz灯管数量:1灯,2灯,3灯,4灯等灯管连接:串连连接,并联连接,串并联混合连接灯管功率:额定功率,实际功率启动方式:瞬时启动Instant Start,预热启动Preheat start,快速启动Rapid Start调光方式非调光,连续调光,分段调光4 电子镇流器的主要性能启动方式(影响开关次数):IS ,RS ,PS瞬时(立即)启动Instant Start (出现辉光电流的时间t1到灯电流达到稳定值的90%的时间t3,不大于0.1 秒);快速启动Rapid Start (出现阴极预热电压的时间t1到灯电流达到稳定值的10%的时间t2至少0.5 秒,灯电流达到稳定值的10%的时间t2到灯电流达到稳定值的90%的时间t3,不大于0.1 秒); 预热启动Preheat (Program )Start 。
EN61000-3-2
Pin Style** 1 = Short Pin 2 = Long Pin S = Short ModuMate N = Long ModuMate
1
Baseplate 1 = Slotted 2 = Threaded 3 = Thru-hole
*EN1 product includes one each MiniHAM and FARM3 with same product grade, pin and baseplate style. **Pin styles S & N are compatible with the ModuMate interconnect system for socketing and surface mounting.
EN61000-3-2, Amendment 14 EN61000-4-11 EN61000-4-5
Typ
Max
115
132
230
264
90
63
0.72
30
96
15
50
15.0
15.2
240
245
205
210
15
50
15.0
15.2
240
190
195
17
20
Unit Vac Vac Vac Hz
Amps %
Ω mA Vdc Vdc Vdc
Ω mA Vdc Vdc Vdc Vdc
Notes Autoranging (doubler mode) Autoranging (bridge mode) No damage C-,T-, H- and M-Grade Typical line 264Vac line voltage Full load
EMC测试项目详述
产品---系列标准概述Harmonic Flicker Radiated Emission (RE) Conducted Emission (CE) Electrostatic Discharge (ESD) RF electromagnetic field (RS) Fast transients (Burst/EFT) Surge Injected currents (CS) Power frequency magnetic field Voltage Dip and Interruptions EN 61000-3-2 (≤16A) EN 61000-3-3 (≤16A) EN 61000-6-4 EN 61000-6-4 IEC 61000-4-2 IEC 61000-4-3 IEC 61000-4-4 IEC 61000-4-5 IEC 61000-4-6 IEC 61000-4-8 IEC 61000-4-111. Emission1.谐波测试 Harmonic Standard:EN61000-3-2Scope规定向公共电网发射的谐波电流的限值。
指定由在特定环境下被测设备产生的输入电流的谐波成分的限值。
适用于输入电流小于或等于16A的接入公共低电压网络的电子电气设备。
Classification of equipmentClass A: -平衡的三相设备; - 家用电器; - 除手持工具外的工具; - 白炽灯调光器; - 音频设备; - 其他设备. Class B: - 手持工具; Class C: - 照明设备. Class D: - 个人电脑及监视器; - 电视接收机.1. Emission谐波测试主要是检验低压供电网络中的谐波可能对这些频率敏感 的设备所产生的影响。
谐波实验原理:由于电子设备的工作模式、非线性元件和各种干 扰噪声等原因,导致其输入电流不是完全的正炫波,往往含有丰 富的高次谐波成分对电网造成污染。
IEC61000
30@ ג
10 7 5 3
@ ג为线路功率因数
D类设备之限值
• 对于D类设备,各次谐波电流之限制是 依据额定负荷条件来确定的,数入电流 的各次谐波应不超过D类表推算出来之 值
• 此表所订之限值对功率>75W的所有设 备都是有效的
D类设备之限值
谐波次数 每瓦允许的最大谐波电流 最大容许斜坡电流
IEC61000
测试目的及应用场合
• 该标准主要针对对注入公共供电系统中谐波电流的限制 • 主要目的是要在标准适用的范围内和指定的条件下,规定
设备谐波电流发射限值.由于对来自其他设备的发射具有 适当之容差,因此,符合此标准限值即可保证设备的谐坡骚 扰位准不超过IEC61000-2-2所规定之兼容性位准
否 是
照明设备
否
设备具有特
是
殊波形且
P≦600W
否
*代表 相位控制
B类 C类
*电动设备?
否
是
D类 A类
各类设备谐波电流限值
• A类设备之限值: A类设备输入电流的各次谐波应不超过下表绘出之绝对值
谐波次数 n
3
奇
5
次
7
谐
9
波
11
13
15≦n≦39
最大容许谐波电流 /A
2.30 1.14 0.77 0.40 0.33 0.21 0.15x15/n
D 类设备之输入电流包络线
─i
Ipk
¶/3
1
0.35
¶/3
¶/3
M
¶/2
¶
wt
注意:
• 对B 类及C 类设备以及带有相位控 制之短时工作之电动设备,无论他 们的输入电流波形如何,都不作为 D类设备考虑
CE EMC 电磁相容性指令
CE EMC 電磁相容性指令(2004/108/EC)EMC (Electromagnetic Compatibility)即電磁相容性,是指規範產品的電磁干擾波不會影響其他的產品運作,同時產品也具備足夠抵抗外界干擾的能力。
因此,EMC 必須包括兩方面的要求:1.EMI (Electromagnetic Interference) 即電磁干擾,是指設備在正常運轉過程中對所在環境產生的電磁干擾不能超過一定的限值,電磁干擾又可分為二個方向考慮:‧CE(Conducted Emission)-傳導放射性‧RE(Radiated Emission)-輻射放射性2.EMS (Electromagnetic Susceptibility) 即電磁耐受性,是指設備對所在環境中存在的電磁干擾具有一定程度的抗干擾能力,電磁耐受性又可分為二個方向考慮:‧CS(Conducted Susceptibility)-傳導耐受性‧RE(Radiated Susceptibility)-輻射耐受性依歐盟資訊技術設備EMC測試標準如下:一、EMI:分為一般、商業或輕工業區環境使用(Class B)與重工業區環境使用(Class A)1.EN 55022:Conducted Emission (Class B or A)Radiated Emission (Class B or A)2.EN 61000-3-2:Harmonics (Class A or D)3.EN 61000-3-3:Flicker測試項目及判定等級表EN 61000-3-2:Harmonics (低於75W或高於600W測Class A,高於75w測Class D) EN 61000-3-3:Flicker二、EMS:不分一般,商業或輕工業區環境使用(Class B)與重工業區環境使用(Class A) EN 55024測試項目及判定等級表等級判定:A測試期間無允許誤動作B測試期間允許誤動作,但測試結束時,能自行恢復功能。
EMC standard
IEC 61000-2-4
1994-02
REFRIGERATION AND AIR CONDITIONING
IEC/TR2 61000-2-5
1995-09
电磁环境的分类基础EMC出版物Classification of electromagnetic environments.Basic EMC publication
IEC 61000-4-5
1995-02
IEC 61000-4-6
1996—03
IEC 61000-4-7
1991一07
REFRIGERATION AND AIR CONDITIONING
IEC 61000-4-7
1991一07
供电系统及所连设备谐波和谐间波的测量和仪表通用指南 General guide on harmonics and Interhamonics measurements and Instrumentation,for power supply systems and equipment connected thereto 工 频 磁 场 抗 扰 度 试 验 Power trequency magnetic held EMC publication 脉 冲 磁 场 抗 扰 度 试 验 Pulse magnetic field immunity tests . 基 础 EMC 出 版 物 immunity test . Basic 基 础 EMC 出 版 物 Basic EMC publication
IEC 6l000-4-24
1997-02
REFRIGERATION AND AIR CONDITIONING
第5部分 IEC/TR3 61000-5-l
国际电工委员会IEC标准
IEC国外标准中文文版目录IEC 61000-2-5:1995 電磁兼容第2部份第5節:電磁環境的分類基本規範(繁體中文版)IEC 61000-2-4:1994 電磁兼容第2部分第4節-低頻工業設備傳導干擾(繁體中文版) IEC 61000-2-3:1992 電磁兼容第2部份第3節-輻射及非網路頻率關係之傳導(繁體中文版)IEC 62471 中文版IEC 61000-2-2:1990 電磁兼容第2部份第2節低頻信號傳導干擾(繁體中文版)IEC 61000-2-1:1990 電磁兼容第2部份第1節(繁體中文版)IEC 61000-1-1:1992 電磁兼容第1部-通則第1節-基本定義(繁體中文版)IEC 61000-3-8-1997 电磁兼容性(EMC) 第3部分:限值第8节...(繁体中文版)IEC 60204-1:2005繁體中文版IEC 62305 雷电防护中文版IEC 60694,中文版IEC 62309-2004含再用部件的产品的可靠性.功能性要求和试验IEC 60034-30 无变速电机、三相电机、笼型感应电机功效等级中文翻译IEC-PAS 61906 电子电气行业中产品的材料宣告程序(中文版)ISO/IEC 38500-2008 (中文版)组织的信息技术治理IEC60335中文版ISO/IEC CD 27003-2008 信息技术-安全技术信息安全管理体系实施指南(中文版)IEC 61646-2007 薄膜地面光伏组件—设计资格的赋予和产品类型的认可(中文DOC 版)IEC 60502-2-2005 额定电压为1kV...绝缘电力电缆及附件第2部分(中文版)IEC 60502-1-2004 额定电压为1kV...电缆及附件第1部分:...的电缆(中文版)IEC 60840-2004 额定电压30kV...电力电缆及其附件:试验方法和要求(中文版)IEC 62067-2006 额定电压...挤出绝缘电力电缆及其附件:试验方法和要求(中文版) IEC 61892-4-2007 移动或固定离岸装置- 电气设备:第4部分...(中文版)IEC 60332-3-25-2009 在火焰条件下电缆和光缆的试验第3-25部分...(中文版)IEC 60332-3-24-2009 在火焰条件下电缆和光缆的试验第3-24部分...(中文版)IEC 60332-3-23-2009 在火焰条件下电缆和光缆的试验第3-23部分...(中文版)IEC 60331-3-2009 在火焰条件下测试电缆维持线路完整性的能力第3部分...(中文版) IEC 60331-2-2009 在火焰条件下测试电缆维持线路完整性的能力第2部分...(中文版) IEC 60331-1-2009 在火焰条件下测试电缆维持线路完整性的能力第1部分...(中文版) IEC 60331-11-2009 在火焰条件下的电缆测试-线路完整性第11部分:设备...(中文版) IEC 60332-3-10-2009 在火焰条件下电缆和光缆的试验第3-10部分:...(中文版)IEC 60332-3-22-2009 在火焰条件下电缆和光缆的试验第3-22部分:...(中文版)IEC 60079-15-2005 [中文] 爆炸性气体环境用电气设备—第15部分:“n”型电气设... IEC 68-2-14 試驗方法N 溫度變化(中文版)IEC 60099-4-2004 浪涌避雷器第4部分:交流无间隙金属氧化物避雷器(中文版)IECEE 01 Basic Rules中文版ISO/IEC 27005:2008 信息安全技术风险管理(中文版)ISO/IEC18000-6-2004 信息技术—物品管理的射频识别—第六部分:860MHz至...(中文版)IEC 62321-2008 中文译稿IEC 60227-3-1997 额定电压450/750V及以下聚氯乙烯绝缘电缆-第3部分...[中文] IEC614-2-6(1992中文版) 电气安装用电缆电线套管规范第2部分...IEC 61770:1998标准中文版IEC614-1(1994中文) 电气安装用电缆电线套管-规范第1部分IEC614-1-1994 AMENDMENT1—1995 (中文) 修正案1 电气安装用电缆电线套管-规范...IEC60811-5-1(2003中文) 电缆和光缆的绝缘和护套材料的通用试验方法第5-1部分 IEC 60598IEC60811-4-2(2004中文) 电缆和光缆的绝缘和护套材料的通用试验方法第4-2部分 IEC60811-4-1(2004中文) 电缆和光缆的绝缘和护套材料的通用试验方法第4-1部分 IEC60811-3-2(2003中文) 电缆和光缆的绝缘和护套材料的通用试验方法第3-2部分 IEC60811-3-1(2001中文) 电缆和光缆的绝缘和护套材料的通用试验方法第3-1部分 IEC60811-2-1(2001中文) 电缆和光缆的绝缘和护套材料的通用试验方法第2-1部分 IEC60811-1-4(2001中文) 电缆和光缆的绝缘和护套材料的通用试验方法第1-4部分 IEC60811-1-3(2001中文) 电缆和光缆的绝缘和护套材料的通用试验方法第1-3部分 IEC60811-1-2(2000中文) 电缆和光缆的绝缘和护套材料的通用试验方法第1-2部分 IEC60811-1-1(2001中文) 电缆和光缆的绝缘和护套材料的通用试验方法第1-1部分 IEC60092-375(1977中文版) 船用电气设备第375部分IEC60092-374(1977中文版) 船用电气设备第374部分IEC60092-359(1999中文版) 船用电气设备第359部分IEC60092-354(2003中文版) 船用电气设备第354部分IEC60092-353(2001中文版) 船用电气设备第353部分IEC60092-351(2004中文版) 船用电气设备第351部分IEC61034-2(2005中文版) 电缆在特定条件下燃烧的烟密度测量第2部分:试验步骤和要求IEC61034-1(2005中文版) 电缆在特定条件下燃烧的烟密度测量第1部分:试验设备 IEC60331-21(1999中文版) 在火焰条件下的电缆测试-线路完整性第21部分IEC60331-11(1999中文版) 在火焰条件下的电缆测试-线路完整性第11部分IEC60332-3-25(2000中文版) 在火焰条件下的电缆测试第3-25部分IEC60332-3-24(2000中文版) 在火焰条件下的电缆测试第3-24部分IEC60332-3-23(2000中文版) 在火焰条件下的电缆测试第3-23部分IEC60332-3-22-2000 在火焰条件下的电缆测试第3-22部分...(中文版)IEC60332-3-21(2000中文版) 在火焰条件下的电缆测试第3-21部分IEC60332-3-10(2000中文版) 在火焰条件下的电缆测试第3-10部分IEC60332-2-2(2004中文版) 在火焰条件下电缆和光缆的试验第2-2部分IEC60332-2-1(2004中文版) 在火焰条件下电缆和光缆的试验第2-1部分IEC60332-1-3(2004中文版) 在火焰条件下电缆和光缆的试验第1-3部分IEC60332-1-2(2004中文版) 在火焰条件下电缆和光缆的试验第1-2部分IEC60332-1-1(2004中文版)ISO/IEC DIS 17021 合格评定-对提供管理体系审核和认证的机构的要求(中文版) IEC 60079-7-2001 爆炸性气体中的电气设备第7部分:增安型(中文版)IEC60332-1和IEC60754中文版.....急用啊!!IEC/TR 62271-301:2004(中文) 高压开关设备和控制设备- 第301部分IEC 61730-2:2004(中文版) 光伏(PV)组件安全鉴定- 第2 部分:试验要求ISO 6579:1993(中文版) 食品和动物饲料的微生物学—沙门氏菌检测的基准方法IEC 60300-3-3:1996(中文版) 可靠性管理文献第三部分:第3节IEC 60300-3-2:1993(中文版) 可靠性管理文献第三部分:第2节IEC 60300-3-1:1991(中文版) 可靠性管理文献第三部分, 第1节IEC 61010-1 中文版IEC 60228-2004 绝缘电缆的导体(中文)IEC 60884-2-5-1995 家用和类似用途插头插座(中文)IEC 60598- 灯具标准(中文版)IEC 61133-2006 铁路设施铁路车辆车辆组装后和运行前的整车试验(中文版)IEC 60335-1 第四版2001-05 家用和类似用途电器的安全第一部分(中文版)IEC62305-1.Ed.1 雷电防护第1部分总则(中文版)IEC 60884-1-2002 家用和类似用途插头插座第1部分通用要求(中文)IEC 62384:2006(中文版) LED 模块之交直流电源电子式控制装置-性能要求ISO/IEC 17020:1998 (中文版) 各类检查机构运作的基本准则IEC 811-1-1~3(1993) 绝缘和护套材料的通用试验方法第1部分通用试验方法(中文)IEC 61347-1-2000 灯的控制装置第一部分:一般要求和安全要求中文版IEC 60949-1988 考虑非绝缘热效应的允许短路电流计算中文WORD版IEC 61034-1-1997 电(光)缆在特定条件下燃烧的烟密度测定:第1部分:试验装置中文IEC 61969-2-2000 电子设备机械结构户外机壳第2部分:分规范箱体和...(中文版) IEC 61850-10 变电站通信网络和系统第10部分:一致性测试(中文)IEC 61969-2-2 电子设备机械机构户外机壳第2-2部分:详细规范箱体尺寸(中文) IEC 61969-3-2001 电子设备机械结构户外机壳第3部分(中文版)IEC 61969-2-1 电子设备机械机构户外机壳第2-1部分:详细规范机柜尺寸(中文版)IEC 60601-1-8 的中文版IEC 1312-3-1996(中文) 雷电电磁脉冲的防护第三部分:电涌保护器的要求IEC 1312-1-1995(中文) 雷电电磁脉冲的防护第一部分:一般原则(通则)IEC 1312-2-1994(中文) 雷电电磁脉冲的防护第二部分:建筑物在受到……IEC62305-3中文征求意见稿IEC 60513中文版IEC 60364-5-523 1983电线电缆载流量标准(中文版)IEC 60095标准中文版IEC 60092-376-2003中文船舶电气设备-第376 部分:控制和仪表回路150/250V(300V)电缆IEC 60079-2-2001 爆炸性气体环境用电气设备—第2部分...(中文版)IEC 62056-21:2002(中文)ISO/IEC 17799 中文非扫描ISO/IEC 17799 中文版本SC/T 1056-2002 蛙类配合饲料(中文)IEC 1133-1992 中文版IEC 61373-1999 铁道车辆设备冲击和振动试验标准(中文)IEC 60077-2-1999 铁路应用机车车辆用电气设备第2部分:电工元件通用规则(中文) IEC 68-2-31 試驗方法Ec:跌落與傾倒,主要針對裝備層次產品(繁体中文版)IEC 68-2-32 試驗方法Ed:自由跌落(繁体中文版)IEC 68-2-33 溫度變化試驗指引(繁体中文版)IEC62321中文標準.我们收录国内外标准超过50万条,包括:国家标准,行业标准,部标,国际标准,美国标准,欧洲标准,英国标准,德国标准,澳大利亚标准,日本标准:GB,HB,GJB,EJ,HG,JB,ANSI,AS/NZS,API,ASCE,ASME,BS,DIN,EN,IEEE,IEC,IPC,ISO,JIS,MIL,NACE,SAE,UL,PEI等等可为您提供的标准服务项目一、标准检索和标准资料提供根据客户的需求提供标准号或标准名称检索相关标准;如需订购标准可以提供标准资料.二、标准查新和标准有效性确认:根据客户提供的标准号和标准名称对标准进行查新和现行有效性确认,并出具查新报告和有效性确认报告。
EMC IEC61000_3_2_2014新旧版本差异
Standard update instructionDate: 2015-03-18The IEV 61000-3-2:2014 includes the following significant technical changes with respect to the previous edition:A) A clarification of the repeatability and reproducibility of measurements;B) A more accurate specification of the general test conditions for information technology equipment;C) The addition of optional test conditions for information technology equipment with external power supplies or battery chargers;D) The addition of a simplified test method for equipment that undergoes minor changes or updates;E) An update of the test conditions for washing machines;F) A clarification of the requirements for class c equipment with active input power ≤ 25 w;G) An update of the test conditions for audio amplifiers;H) A clarification of the test conditions for lamps;I) An update of the test conditions for vacuum cleaners;J) The addition of test conditions for high pressure cleaners;K) An update of the test conditions for arc welding equipment;L) The reclassification of refrigerators and freezers with variable-speed drives into class d;M) The addition of test conditions for refrigerators and freezers.ITEM IEC 61000-3-2/A2:2009 IEC 61000-3-2:2014A clarification of the repeatability and reproducibility of measurementsA 6.2.3.1 RepeatabilityThe repeatability of the measurements shall be better than±5 %, when the following conditions are met:– the same equipment under test (EUT) (not another of thesame type, however similar it may be);– identical test conditions;– the same test system;– identical climatic conditions, if relevant.NOTE This repeatability requirement serves the purpose of definingthe necessary observation period, see 6.2.4. It is not intended toserve as a pass/fail criterion for the assessment of compliancewith the requirements of this standard.3.19repeatability of results of measurements closeness of the agreement between the results of measurements of harmonic currents on the same equipment under test, carried out with the same test system, at the same location, under identical test conditions[SOURCE: IEC 60050-394:2007, 394-40-38, modified1)]3.20reproducibility of results of measurements closeness of the agreement between the results of measurements of harmonic currents on the same equipment under test, carried out with different test systems under conditions of measurement intended to be the same in each caseNote 1 to entry: The test system and test conditions are assumed to fulfil all normative requirements in the standards.[SOURCE: IEC 60050-394:2007, 394-40-39, modified]6.2.3.1 RepeatabilityThe repeatability (see 3.19) of the average value for the individual harmonic currents over the entire test observation period shall be better than ±5 % of the applicable limit, when the following conditions are met:– the same equipment under test (EUT) (not another of the same type, however similar);– identical test conditions;– the same test system;– identical climatic conditions, if relevant.NOTE This repeatability requirement serves the purpose of defining the necessary observation period, see 6.2.4. It is not intended to serve as a pass/fail criterion for the assessment of compliance with the requirements of this standard.6.2.3.2 ReproducibilityThe reproducibility (see 3.20) of measurements on the same EUT with different test systems cannot be definitively calculated so as to apply to all possible combinations of EUT, harmonics meter and test supply, but can be estimated to be better than ± (1 % + 10 mA), where the 1 % is 1 % of the average value of the total input current taken over the entire test observation period. Therefore, differences in results which are less than that value of current are deemed negligible, but in some casesa higher value may occur.For the avoidance of doubt in such cases, test results, obtained at different locations or on different occasions, that show that all the relevant limits are met shall be accepted as demonstrating compliance, even though the results may differ more than the values for repeatability and reproducibility, given above.NOTE The variability (see 3.21) of measurements on different EUTs of the same type, having no intentional differences, can be increased by practical component tolerances and other effects, such as possible interactions between the characteristics of the EUT and the measuring instrument or the power supply. The results of these effects cannot be quantified in this standard, for the same reasons as for reproducibility. The second paragraph of 6.2.3.2 also applies in the case of variability.A regulatory concession in respect of limit values to allow for possible variability is recommended but outside thescope of this standard.A more accurate specification of the general test conditions for information technology quipmentB C.10 Test conditions for information technologyequipment (ITE)ITE is tested with the equipment configured to its ratedcurrent. In this case, the equipment, if necessary, may beconfigured with its power supplies loaded with additionalload (resistive) boards to simulate rated current conditions. C.10 Test conditions for information technology equipment (ITE)C.10.1 General conditions ITE(including personal computers) which is marketed without “factory-fitted options” and without expansion slot capabilities is tested as supplied. ITE, other than personal computers, which is marketed with “factory-fitted options” or has expansion slots, is tested with additional loads in each expansion slot that result in the maximum power consumption attainable using the “factory-fitted options” specified by the manufacturer.For the testing of personal computers with up to 3 expansion slots, load cards configured for the maximum permitted power for each expansion slot shall be added to each respective expansion slot.For the testing of personal computers with more than 3 expansion slots, additional load cards shall be installed at the rate of at least one load card for each group of up to 3 additional slots (i.e. for 4, 5 or 6 slots a total of at least 4 load cards shall be added. For 7, 8 or 9 slots a total of at least 5 load cards shall be added, etc.).Modular equipment, such as hard drive arrays and network servers, are tested in their maximum configuration.In all configurations, the use of additional load cards shall not cause the total DC output power available to be exceeded.NOTE 1 The above does not mean that multiple options of the same type, such as more than one hard drive, should be fitted, unless that is representative of the user configuration, or the product is of a type (such as Redundant Arrays of Inexpensive Disks (RAID)) for which such a configuration is not abnormal.NOTE 2 Common load cards for expansion slots such as PCI or PCI-2 are configured for 30 W but may be adjusted as industry standards change.Emission tests shall be conducted with the user’s operation controls or automatic programs set to the mode expected to produce the maximum total harmonic current (THC) under normal operating conditions.Power saving modes which may cause large power level fluctuations shall be disabled, so that all, or part, of the equipment does not automatically switch off during the measurements.The addition of optional test conditions for information technology equipment with external powersupplies or battery chargersC NONEC.10.2 Optional conditions for measuring emissions of IT equipment with external powersupplies or battery chargersFor IT equipment with external power supplies or battery chargers, manufacturers may choose• either to test the whole equipment according to C.10.1 (General conditions),• or to test the equipment by measuring the AC input power and the harmonic emissions of theassociated power supply or battery charger according to 6.2.2 with the DC output side loaded by aresistive load, provided that, with the resistive load applied, the peak-to-peak ripple voltageacross the load is not greater than 5 % of the DC output voltage.The resistance value of the load shall be such that the active power dissipated in the load isequal to the DC output power rating, or, if that is not available, to the DC output voltage ratingmultiplied by the DC output current rating marked on the power supply/battery charger unit.Power supply/battery charger units whose AC input power measured according to 6.2.2 under theabove load conditions is 75 W or less are deemed to conform without further testing, asspecified in Clause 7.ITEM IEC 61000-3-2/A2:2009 IEC 61000-3-2:2014The addition of a simplified test method for equipment that undergoes minor changes or updatesD Asymmetrical controls according to IEC 60050-161, 161-07-12 and half-wave rectification directly on the mainssupply may only be used in the following circumstances: Asymmetrical controls according to IEV 161-07-12 and half wave rectification directly on the mains supply may only be used in the following circumstances:An update of the test conditions for washing machines E The same as old versionA clarification of the requirements for Class C equipment with active input power ≤ 25 WF b) Active input power ≤25 W b) Active input power ≤ 25 WIf the discharge lighting equipment has a built-in dimming device, measurement is made only inthe full load condition.ITEM IEC 61000-3-2/A2:2009 IEC 61000-3-2:2014An update of the test conditions for audio amplifiers G The same as old versionITEM IEC 61000-3-2/A2:2009 IEC 61000-3-2:2014A clarification of the test conditions for lamps H The same as old versionAn update of the test conditions for vacuum cleanersI C.7 Test conditions for vacuum cleanersDuring the test observation period, which shall not be shorter than6 min, vacuum cleaners with electronic control are tested inthree modes of operation, each for an identical time interval,with the control adjusted:– to maximum input power,– to a firing-angle of 90° ± 5°, or, if controlled by steps, to thatstep closest to 90°,– and to minimum input power.NOTE Alternatively, the equipment may be tested for 3 identical timeintervals – each at least 2 min long – during which the vacuum cleaneris operated in the above three modes. These 3 time intervals need not beconsecutive,but the application of limits is done as if the intervalswere consecutive, without taking into account harmonic currentvalues outside these 3 intervals.C.7 Test conditions for vacuum cleanersVacuum cleaners with electronic control shall be tested in three modes of operation, each for an identical time interval that is at least 2 min long, with the control adjusted:– to maximum input power,– to 50 % ± 5 % of the maximum active input power, or, if that is not possible (e.g. controlled in steps), to the point closest to 50 % that is supported by the equipment design,– and to minimum input power.These three time intervals need not be consecutive, but the application of limits according to 6.2.3.4 is done as if the intervals were consecutive. In that case, the entire test observation period is made up of the three identical time intervals, without taking into account harmonic current values outside these three intervals.The addition of test conditions for high pressure cleanersJ None C.15 Test conditions for high pressure cleaners which are not professional equipmentThe high pressure cleaner is adjusted according to normal operation as defined in IEC 60335-2-79 except for the electronic power control.High pressure cleaners with electronic power control shall be tested in three modes ofoperation, each for an identical time interval that is at least 2 min long, with the controladjusted:– to maximum input power,– to 50 % ± 5 % of the maximum active input power, or, if that is not possible (e.g. controlled insteps), to the point closest to 50 % that is supported by the equipment design,– and to minimum input power.These three time intervals need not be consecutive, but the application of limits according to6.2.3.4 is done as if the intervals were consecutive. In that case, the entire test observationperiod is made up of the three identical time intervals, without taking into account harmoniccurrent values outside these three intervals.update of the test conditions for arc welding equipmentk C.14 Test conditions for arc welding equipment which is not professional equipmentThe arc welding power source is connected to a conventional load, which isadjusted in accordance with Table C1. The equipment is tested at the loadcurrent given by the maximum size of the rated electrode as specified by themanufacturer.C.14 Test conditions for arc welding equipment which is not professional equipmentTesting shall be carried out at an ambient temperature between 20 °C and 30 °C. The test shall be started with the arc welding power source at ambient temperature. The arc welding power source shall be connected to a conventional load. It shall be operated at the rated maximum welding current I2max and conventional load voltage given in Table C.1. The observation period shall be 10 thermal cycles (for short cyclic equipment where the first thermal cycle is less than or equal to 2,5 min) or one full thermal cycle (for long cyclic equipment where the first thermal cycle is greater than 2,5 min). Multi-process arc welding power sources shall be tested using the process which gives the highest input current. The definitions for conventional load, I2max, I2 and U2 are given in IEC 60974-1.The reclassification of refrigerators and freezers with variable-speed drives into Class DL Class D:Equipment having a specified power according to 6.2.2 less than orequal to 600 W, of the following types:– personal computers and personal computer monitors;– television receivers.Class D:Equipment having a specified power according to 6.2.2 less than or equal to 600 W, of the following types:– personal computers and personal computer monitors;– television receivers;– refrigerators and freezers having one or more variable-speed drives to control compressor motor(s)..ITEM IEC 61000-3-2/A2:2009 IEC 61000-3-2:2014The addition of test conditions for refrigerators and freezers.M None C.16 Test conditions for refrigerators and freezersC.16.1 GeneralRefrigerators and freezers shall be tested with an empty cabinet. The temperature control shall be adjusted to the lowestsetting. The measurement shall be started after the internal temperature has been stabilised.NOTE Stabilisation of the temperature can alternatively be deduced, for example, from the input power going into a low power mode.When the measurement is started, the ambient temperature shall be between 20 °C and 30 °C. During the test the ambienttemperature shall be maintained within ±2 °C.C.16.2 Refrigerators and freezers with VSDThe observation period shall be one hour. A few seconds after starting the measurement, all doors and further internalcompartments shall be fully opened for 60 s and then closed again and kept closed for the rest of the observation period.NOTE 1 A timing accuracy of ± 6 s is deemed to be sufficient for the targeted measurement repeatability, see Note 3 below.Deviating from 6.2.2, the value of the input power to be used for the calculation of limits shall be determined according to the formula below:Pi = 0,78 × Im × UrwherePi is the active input power in watts, to be used for the calculation of Class D limits (see Table 3);Im is the current in amperes of the appliance measured according to IEC 60335-2-24, 10.2;Ur is the rated voltage in volts of the appliance. If the appliance has a rated voltage range, Ur has the value that has been used formeasuring Im.NOTE 2 Pi is used for the calculation of limits instead of the measured active input power to eliminate theinfluence of other loads than the VSD, e.g. lighting devices or heating elements for defrosting, on the limitcalculation. This also increases the repeatability of the measurement.NOTE 3 The 5 % repeatability, mentioned in 6.2.3.1, can be achieved only if the climatic conditions are strongly controlled and,for each test, the measurement is started at the same point in the control cycle of the EUT. If these conditions are not fulfilled, the repeatabilityof the average value of the individual harmonic currents over the entire test observation period can be as much as 10 % of the applicablelimit.C.16.3 Refrigerators and freezers without VSDRefrigerators and freezers without any variable speed drive to control compressor motor(s) are tested according to Class A limitsin a representative 2,5 min observation period according to Table 4 for long cyclic equipment.。
IEC 标准 历史资料
2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorEMC CISPR 11:2003 (ed.4) + A1:2004 + A2:2006IECCISPR11A2008-06TÜV RheinlandJapan Ltd.EMC CISPR 14-1 (ed4) + am1 + am2; CISPR 14-2 (ed1) ; IEC 61000-3-2 (ed (2) + am 1 +am2; IEC61000-3-3 (ed1) + am1IECCISPR14_1&2_IEC61000_3_2&3A2008-03LCIEEMC IEC CISPR 14-1:2002 (Consolidated ed.4.2)IECCISPR14_1A2006-05VDE EMC CISPR 14-1:2005 (Fifth Edition) + A1:2008IECCISPR14_1C2009-08VDE TestingandCertificationInstitute EMC CISPR 14-2:1997 (1st Edition) + A1:2001IECCISPR14_2A2008-02TÜV RheinlandJapan Ltd. EMC CISPR 14-2:1997 + A1:2001 + A2:2008IECCISPR14_2B2010-05TÜV RheinlandJapan Ltd. EMC CISPR 15:2005 (ed. 7)IECCISPR15A2008-10IntertekSEMKO ABEMC CISPR 15:2005 (Seventh Edition) + A1:2006 + A2:2008IECCISPR15B2009-11IntertekSEMKO ABEMC IEC/CISPR22: 2005 Fifth Ed. with Am.1: 2005 andAm. 2; 2006IECCISPR22A2007-04UL Inc.EMC IEC CISPR22: 2008 Sixth Edition IECCISPR22B2010-06UL Inc. EMC IEC/CISPR 24:1997 (First Ed.) with Am. 1: 2001and Am. 2: 2002IECCISPR_24A2006-09UL Inc.SAFE IEC 60044-1:1996 (First Edition) + A1:2000 + A2:2002IEC60044_1A2010-04KEMA QualityB.V.TRON IEC 60065:98I0065__C1998-12BEAB TRON IEC 60065:2001IEC60065E2004-08ASATABEAB TRON IEC 60065:2001 (Seventh Edition) + A1:2005 IEC60065J2010-03IntertekSEMKO AB BATT IEC 60095-1:2005 (7th Edition)IEC60095_1A2010-01MEEI Kft.PROT IEC 60127-1:2006 withIEC 60127-2:2003 + A1:2003 IEC60127_2A_I2008-05VDE TestingandCertificationInstitutePROT IEC 60127-1:2006 withIEC 60127-2:2003 + A1:2004Cartridge fuse-links, homogenous series,minimum rating IEC60127_2A_II2008-05VDE TestingandCertificationInstitutePROT IEC 60127-1:2006 withIEC 60127-2:2003 + A1:2003Cartridge fuse-links, homogenous series,maximum rating IEC60127_2A_III2008-05VDE TestingandCertificationInstitute Conformity Testing and Certification of Electrotechnical Equipment andComponents (IECEE)List of available IEC TRFs2010-10-08ProductCategoryStandardTRF No.Master TRF date TRF originatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE)List of available IEC TRFsPROTIEC 60127-1:2006 withIEC 60127-2:2003 + A1:2003 Cartridge fuse-links with pigtailsIEC60127_2A_IV2008-05VDE Testingand Certification Institute PROT IEC 60127-3:1988 + A1:1991 + Cor.1:1994 + Cor.2:1996 + A2:2002 with IEC 60127-1:2006IEC60127_3A_I 2009-04VDE Testingand Certification Institute PROTIEC 60127-3:1988 + A1:1991 + Cor.1:1994 + Cor.2:1996 + A2:2002 in conjunction with IEC 60127-1:2006Sub-miniature fuse-links, homogenous series, minimum ratingIEC60127_3A_II 2009-04VDE Testingand Certification Institute PROTIEC 60127-3:1988 + A1:1991 + Cor.1:1994 + Cor.2:1996 + A2:2002 in conjunction with IEC 60127-1:2006Sub-miniature fuse-links, homogenous series, maximum rating sheet 1 and 2IEC60127_3A_III 2009-04VDE Testingand Certification Institute PROTIEC 60127-3:1988 + A1:1991 + Cor.1:1994 + Cor.2:1996 + A2:2002 in conjunction with IEC 60127-1:2006Sub-miniature fuse-links, homogenous series, maximum rating sheet 3 and 4IEC60127_3A_IV 2009-04VDE Testingand Certification Institute PROTIEC 60127-4:2005 + Amendment 1 :2008 in conjunction with IEC 60127-1:2006IEC60127_4A_I 2009-04VDE Testingand Certification Institute PROTIEC 60127-4:2005 + Amendment 1 :2008 inconjunction with IEC 60127-1:2006Miniature fuses – Universal Modular Fuse-links homogenous series, minimum ratingIEC60127_4A_II 2009-04VDE Testingand Certification Institute PROTIEC 60127-4:2005 + Amendment 1 :2008 inconjunction with IEC 60127-1:2006Miniature fuses – Universal Modular Fuse-links homogenous series, maximum rating IEC60127_4A_III 2009-04VDE Testingand Certification Institute LITE IEC 60155:93 + A1:95I155___A 1997-11IMQ LITE IEC 60155:1993 + A1:1995 + A2:2006IEC60155A 2009-04IMQ S.p.A.HOUS IEC 60204-1 (Fifth Edition) + A1:2008IEC60204_1A 2009-11ElectrosuisseCABL IEC 60227-3:93 + A1:97I227_3_A 1999-11KEMA CABL IEC 60227-4:92 + A1:97I227_4_A 1999-11KEMA CABL IEC 60227-5:97 + A1:97I227_5_B1999-11KEMA CABL IEC 60227-5:1997 + A1:1997 + A2:2003 for use with IEC 60227-1 and IEC 60227-2IEC60227_5C 2005-06KEMACABLIEC 60227-6:85 + A1:97I227_6_A1999-11KEMA2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsCABL IEC 60227-6:2001(Third Edition) in conjunctionwith IEC 60227-1:2007 (Third Edition) and/orIEC 60227-2:1997 (Second Edition); A1:2003IEC60227_6A2009-01KEMACABL IEC 60227-7:95I227_7_A1999-12KEMA LITE IEC 60238:1996(ed.6) + A1:1997 + A2:1997IEC60238C2005-02CQC LITE IEC 60 238:2004(8 Edition) IEC60238D2006-05CQC LITE IEC 60238:2004(Eighth Edition) + A1:2008IEC60238E2009-04CQC CABL IEC 60245-3:94 + A1:97I245_3_A1999-11KEMA CABL IEC 60245-4:94 + A1:97I245_4_A1999-11KEMA CABL IEC 60 245-4:1994 + A1:1997 + A2:2003 for usewith IEC 60245-1 and IEC 60245-2IEC60245_4B2005-01KEMACABL IEC 60245-5:94I245_5_A1999-11KEMA CABL IEC 60245-6:94 + A1:97I245_6_A1999-11KEMA CABL IEC 60245-6:1994 (Second Edition) + A1:1997 +A2:2003 for use in conjunction with IEC 60245-1and IEC 60245 -2IEC60245_6B2010-05CQCCABL IEC 60245-7:94 + A1:97I245_7_A1999-11KEMA CABL IEC 60245-8:98I245_8_A1999-12KEMA CABL IEC 60245-8:1998 + A1:2003 for use with IEC60245-1 and IEC 60245-2IEC60245_8B2005-01KEMACAP IEC 60252-1: 2001(First Edition)IEC60252_1A2005-11CQC CAP IEC 60252-2:2003 (First Edition)IEC60252_2A2009-05CQC PROT IEC 60269-1:86I2691__A1991-10EZU PROT IEC 60269-1:2006 (Fourth edition)IEC60269_1A2009-04EZU PROT IEC 60269-1:2006 (Fourth edition) + A1:2009IEC60269_1B2010-08EZU PROT IEC 60269-2:86I2692__A1991-10EZU PROT IEC 60269-2 : 2006 (third edition) (see also IEC60269-1:1998)IEC60269_2A2007-12EZU PROT IEC 60269-2-1:87I269201A1991-10EZU PROT IEC 60269-2-1: 2004 (see also IEC 60269-1:1998)IEC60269_2_1B2005-06LCIE PROT IEC 60269-3:87I2693__A1991-10EZU PROT IEC 60269-3 : 2006 (third edition) (see also IEC60269 – 1:1998)IEC60269_3A2008-02EZUPROT IEC 60269-3:2006 (Third edition) (see also IEC60269–1:2006)IEC60269_3B2009-04EZU PROT IEC 60269-3-1:94I269301A1995-11EZU PROT IEC 60269-4:86I2694__A1991-10EZU PROT IEC 60269-4:2006 (Fourth Edition) (see also IEC60269-1:2006)IEC60269_4A2008-10CQC INST IEC 60309-1/2:97I3091-2A1998-07IMQ INST IEC 60309-1, 4th Edition (1999) & IEC 60309-2,4th Edition (1999)IEC60309_1-2B2000-11IMQINST IEC 60309-1, 4th Edition 1999 + A1:2005 and IEC60309-2, 4th Edition 1999 + A1:2005IEC60309_1-2D2009-05IMQ2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsINST IEC 60309-4:2006 (First Edition) in conjunctionwith IEC 60309-1: 1999 (Fourth Edition) +A1:2005 and IEC 60309-2: 1999 (Fourth Edition) +A1:2005IEC60309_4B2009-05IMQ S.p.A.INST IEC 60320-1:94 + A1:95 + A2:96I320-1_B1998-07IMQ INST IEC 60320-1:2001 (2nd Edition) + A1:2007IEC60320_1A2008-10IMQ INST IEC 60320-2-1:84I320201A1989-05IMQ INST IEC 60320-2-2:90I320202A1992-06IMQ INST IEC 60320-2-2:98I320202B1999-12IMQ HOUS IEC 60335-1:91 + A1:94I3351_E1996-01NEMKO HOUS IEC 60335-1:91 + A1:94 + A2:99I3351__F2000-03NEMKO HOUS IEC 60335-1:2001IEC60335_G2002-04NEMKO HOUS IEC 60335-1:2001 (incl. Corrigendum 1:2002) +A1:2004IEC60335_H2004-09NEMKOHOUS IEC 60335-1:2001 (4. Edition) (incl. Corrigendum1:2002) + A1:2004IEC60335_1J2006-05NEMKO HOUS IEC 60335-1:2001 (4th Edition) incl. Corrigendum1:2002 + A1: 2004 + A2:2006 incl. Corrigendum1:2006IEC60335_1L2010-01NEMKOHOUS IEC 60335-1:2010 (5th Edition)IEC60335_1M2010-08Nemko AS HOUS IEC 60335-2-2:93I335202B/ 96-061996-03CEBEC HOUS IEC 60335 2 2:2002 (Fifth edition) + A1:2004 +A2:2006IEC60335_2_2A2007-11ElectrosuisseHOUS IEC 60335-2-2: 2002 (5th Edition) + A1:2004 +A2:2006 in conjunction with IEC 60335-1:2001(4th Edition) (incl. Corrigendum 1:2002) + A1:2004+ A2:2006 (incl. Corrigendum 1:2006)IEC60335_2_2B2009-12LCIEHOUS IEC 60335-2-2: 2002 (6th Edition) 2009 inconjunction with IEC 60335-1:2001 (4th Edition)(incl. Corrigendum 1:2002) + A1:2004 + A2:2006(incl. Corrigendum 1:2006)IEC60335_2_2C2010-09LCIEHOUS IEC 60335-2-2:2009 (6th Edition) & IEC 60335-2-54:2008 (4th Edition) for use in conjunction withIEC 60335-1:2001 (4th Edition) incl. Corrigendum1:2002 + A1:2004 + A2:2006 incl. Corrigendum1:2006 and IEC 62233:2005 (1st Edition)IEC60335_2_2&54A2010-04IMQ S.p.A.HOUS IEC 60335-1:2001 (4th Edition) (incl. Corrigendum1:2002) + A1:2004 + A2:2006 (incl. Corrigendum1:2006), IEC 60335-2-2: 2002 (5th Edition) +A1:2004 + A2:2006, IEC 60335-2-69:2002 (3thEdition) + A1:2004IEC60335_2_2&69A2008-02CQCHOUS IEC 60335-2-3:93I335203B1996-09NEMKO HOUS IEC 60335-2-3:93 + A1:99 + A2:99, IEC 60335-1:91 + A1:94 + A2:99IEC60335_2_3C2002-02NEMKO2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-3:2002 (5th Edition) +A1:2004 inconjunction with IEC 60335-1:2001 (4th Edition)(incl. Corr.1:2002) +A1:2004 +A2:2006 (incl.Corr.1:2006)IEC60335_2_3D2008-02KTLHOUS IEC 60335-2-3:2002 (Fifth Edition) + A1:2004+A2:2008 in conjunction with IEC 60335-1: 2001(Fourth Edition) (incl. Corr.1:2002)+A1:2004+A2:2006 (incl. Corr.1:2006)IEC60335_2_3E2009-03KTLHOUS IEC 60335-2-4:93 I335204B1996-09LCIE HOUS IEC 60335-2-4:93 & IEC 60335-2-7:93I3352C1A1996-09LCIE HOUS IEC 60335-2-4:2002 (5th Ed.) and IEC 60335-2-7:2002 (6th Ed.) use in conjunction with IEC60335-1:2001 (4th Ed.)IEC60335_2_4&7C2003-03VDEHOUS IEC 60335-2-4:2002 (5th Ed.) and IEC 60335-2-7:2002 (6th Ed.) use in conjunction with IEC60335-1:2001 +A1:2004IEC60335_2_4&7D2006-06CQCHOUS IEC 60335-2-4:2002 (5th Ed.) and IEC 60335-2-7:2002 (6th Ed.) and IEC 60335-2-11:2002 (6thEd.) + A1:2003 use in conjunction with IEC 60335-1:2001 (4th Ed.)IEC60335_2_4&7&11A2003-07VDEHOUS IEC 60335-2-5:84 + A1:88 (see also IEC 60335-1:76 + A1:77 + A2:79 + A3:82 + A4:84 + A5:86 +A6:88)i335205a1991-02LCIEHOUS IEC 60335-2-5:92I335205B1998-02LCIE HOUS IEC 60335-2-5: 2002 (Fifth edition) + A1:2005 withIEC 60335 1: 2001 (Fourth ed.) (incl. Corr.1: 2002)+ A1:04 + A2:06 (incl. Corr. 1: 2006)IEC60335_2_5A2008-05LCIEHOUS IEC 60335-2-5 2002 (Fifth edition) + A1:2005 +A2:2008 in conjunction with IEC 60335 1:2001(Fourth edition) (incl. Corr.1:2002) + A1:04 +A2:06 (incl. Corr. 1:2006)IEC60335_2_5B2009-07LCIEHOUS IEC 60335-2-6:86 + A1:88 + A2:90 (see also IEC60335-1:76 + A1:77 + A2:79 + A3:82 + A4:84 +A5:86 + A6:88)I335206A1992-02LCIEHOUS IEC 60335-2-6:97I335206B1999-12LCIE HOUS IEC 60335-2-6:97 (see also IEC 60335-1:1991 +A1:1994 + A2:1999)IEC60335_2_6C2002-08LCIE HOUS IEC 60335-2-6:2002 (for use with IEC 60335-1:2001)IEC60335_2_D2003-02LCIEHOUS IEC 60335-2-6:2002 with IEC 60335-1:2001(Fourth Edition) + Corrigendum 2002 + A1:2004IEC60335_2_6E2006-10LCIE2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-6 2002 (Fifth edition) + A1:2004 inconj. with IEC 60335 1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:04 + A2:06 (incl. Corr. 1:2006)IEC60335_2_6F2008-07LCIEHOUS IEC 60335-2-6 2002 (Fifth edition) + A1:2004 +A2:2008 in conjunction with IEC 60335 1:2001(Fourth ed.) (incl. Corr.1:2002) + A1:04 + A2:06(incl. Corr. 1:2006)IEC60335_2_6G2008-10LCIEHOUS IEC 60335-2-6:2002 (Fifth edition) + A1:2005 andIEC 60335-2-13:2002 (Fifth edition) + A1:2004used in conjunction with IEC 60335-1:2001 (incl.Corrigendum 1:2002) + A1:2004IEC60335_2_6&13A2005-05IMQHOUS IEC 60335-2-6:2002 (5. edition) + A1:2004 +A2:2008IEC 60335-2-9:2002 (5. edition) + A1:2004 +A2:2006IEC 60335-2-25:2002 (5. edition) + A1:2005 +A2:2006IEC 60335-1:2001 (4. edition) (incl. Corr.1:2002) +A1:2004 (incl. Corr.1:2005) + A2:2006 (incl.Corr.1:2006) and/or IEC60335_2_6&9&25A2008-08VDEHOUS IEC 60335-2-6:2002 (5th edition) + A1:2004 +A2:2008, IEC 60335-2-25:2002 (5th edition) +A1:2005 + A2:2006, IEC 60335-1:2001 (4thedition) (incl. Corr.1:2002) + A1:2004 (incl.Corr.1:2005) + A2:2006 (incl. Corr.1:2006) and/orIEC 62233:2005 (1st edition)IEC60335_2_6&25A2009-12VDEHOUS IEC 60335-2-7:93I335207B1997-09LCIE HOUS IEC 60335-2-7: 1993 + A1 : 1998 in conjunctionwith IEC 60335-1: 1991 + A1: 1994IEC60335_2_7C2004-01LCIE HOUS IEC 60335-2-7:2000 in conjunction with IEC60335-1:1991 + A1:1994 + A2:1999IEC60335_2_7D2004-01LCIEHOUS IEC 60335-2-7:2002 (sixth Edition) (in conjunctionwith IEC 60335-1:2001)IEC60335_2_7E2004-01LCIE HOUS IEC 60335-2-7:2002 (Fourth Edition) withIEC 60335-1:2001 (Fourth Edition) + Corrigendum2002 + A1:2004IEC60335_2_7F2006-10LCIEHOUS IEC 60335-2-7:2008 (Seventh Edition) inconjunction with IEC 60335-1:2001 (4th Edition)incl. Corrigendum 1:2002 + A1: 2004 + A2:2006incl. Corrigendum 1:2006IEC60335_2_7G2009-04LCIE2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-7:2002 (6. edition) + A1:2004 +A2:2006 and IEC 60335-2-11:2002 (6. edition) +A1:2003 + A2:2006 in conjunction with IEC 60335-1:2001 (4. edition) (incl. Corr.1:2002) + A1:2004(incl. Corr.1:2005) + A2:2006 (incl. Corr.1:2006) IEC60335_2_7&11A2009-05VDE TestingandCertificationInstituteHOUS IEC 60335-2-8:92IEC60335_2_8A2001-09KEMA HOUS IEC 60335-2-8:2002 (Fifth Edition) and IEC 60335-1:2001 (Fourth Edition)IEC60335_2_8B2003-08KEMAHOUS IEC 60335-2-8:2002 (Fifth Edition IEC 60335-1:2001 (Fourth Edition), incl. A1:2004IEC60335_2_8C2005-02KEMAHOUS IEC 60335-2-8:2002 + A1: 2005 +A2: 2008 (Fifth Edition) use conjunction with IEC 60335-1:2001+A1: 2004 + A2: 2006 +C1: 2006 (Fourth Edition)IEC60335_2_8D2009-11KEMA QualityB.V.HOUS IEC 60335-2-9:86 (SEE ALSO IEC 60335-1:76 +A1:77 + A2:79 + A3:82 + A4:84)I335209A1991-04LCIE HOUS IEC 60335-2-9:93I335209B1997-10LCIE HOUS IEC 60335-2-9:1993 + A1:1998 + A2:1999 (usedin conjunction with IEC 60335-1:1991 + A1:1994 +A2:1999)IEC60335_2_9C2003-02LCIEHOUS IEC 60335-2-9:2002 (used in conjunction with IEC60335-1:2001)IEC60335_2_9D2003-02LCIEHOUS IEC 60335-2-9:2002 (Fifth edition) + A1:2004 +A2:2006 with IEC 60335 1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:04 + A2:06 (incl. Corr. 1:2006)IEC60335_2_9E2008-02LCIEHOUS IEC 60335-2-9:2008 (Sixth edition) in conjunctionwith IEC 60335 1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:04 + A2:06 (incl. Corr. 1:2006)IEC60335_2_9G2010-03LCIEHOUS IEC 60335-2-10:92I335210B1996-03CEBEC HOUS IEC 60335-2-10:2002 (Fifth edition) with IEC60335 1:2001 (Fourth ed.) (incl. Corr.1:2002) +A1:04+ A2:06 (incl. Corr. 1:2006)IEC60335_2_10B2008-04IMQ S.p.A.HOUS IEC 60335-2-10:2002 (Fifth edition) + A1:08 inconjunction with IEC 60335 1:2001 (Fourthedition) (incl. Corr.1:2002) + A1:04+ A2:06 (incl.Corr. 1:2006)IEC60335_2_10C2009-03IMQ S.p.A.HOUS IEC 60335-2-11:93I335211B1998-01LCIE HOUS IEC 60335-2-11:1993 + A1:1998 + A2:1999 (usedin conjunction IEC 60335-1:1991 + A1:1994 +IEC60335_2_11C2003-04LCIEHOUS IEC 60335-2-11:2000 (used in conjunction IEC60335-1:1991 + A1:1994 + A2:1999)IEC60335_2_11D2003-04LCIEHOUS IEC 60335-2-11:2002 in conjunction with IEC60335-1:2001 (Fourth Edition)IEC60335_2_11E2003-04LCIE2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-11:2002 + A1:2003 in conjunctionwith IEC 60335-1:2001 (Fourth Edition)IEC60335_2_11F2003-04LCIEHOUS IEC 60335-2-11 : 2002 (Sixth Edition) + A1:2005 +A2: 2006 used in conjunction with IEC 603351:2001 (Fourth ed.) (incl. Corr.1:2002) + A1:2004+ A2:2006 (incl. Corr. 1:2006)IEC60335_2_11I2010-01LCIEHOUS IEC 60335-2-11 : 2008 (Seventh Edition) used inconjunction with IEC 60335 1:2001 (FourthEdition) (incl. Corr.1:2002) + A1:2004 + A2:2006(incl. Corr. 1:2006)IEC60335_2_11J2010-01LCIEHOUS IEC 60335-2-12 (5. Edition):2002 + A1:2008 in conjunction with IEC 60335-1 (4. Edition):2001(incl. Corr.1:2002) + A1:2004 (incl. Corr.1:2005) +A2:2006 (incl. Corr.1:2006) and/or IEC62233:2005 (1. Edition)IEC60335_2_12A2010-02VDE TestingandCertificationInstituteHOUS IEC 60335-2-13:87 (see also IEC 60335-1:76 +A1:77 + A2:79 + A3:82 + A4:84 + A5:86 + A6:88)I335213A1991-05LCIEHOUS IEC 60335-2-13:93 + A1:93 + A2:99I335213B2000-10DEMKO HOUS IEC 60335-2-13: 2002 (See also IEC 60335-1:2001 (Fourth Edition) (incl. Corrigendum 1:2002)IEC60335_2_13C2003-08DEMKOHOUS IEC 60335-2-13:2002 (5ft Edition) + A1:2004 +A2:2008 in conjunction with IEC 60335-1:2001(4th Edition) incl. Corrigendum 1:2002 + A1: 2004+ A2:2006 incl. Corrigendum 1:2006IEC60335_2_13D2009-03IMQ S.p.A.HOUS IEC 60335-2-13:2002 (Fifth edition) + A1:2004&IEC 60335 2 15:2002 (Fifth edition) + A1:2005with IEC 60335 1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:04 + A2:06 (incl. Corr. 1:2006)IEC60335_2_13&15A2008-01IMQ S.p.A.HOUS IEC 60335-2-14:94I335214B1997-02LCIE HOUS IEC 60335-2-14:2002 (used in conjunction withIEC 60335-1:2001)IEC60335_2_14C2003-05LCIEHOUS IEC 60335-2-14:94 + A1:99 (see also IEC 60335-1:91+A1:94+A2:99)IEC60335_2_14D2005-07CQC HOUS IEC 60335-2-14:2006(Fifth Edition) in conjunctionwith IEC 60335-1:2001 (Fourth Edition) + A1:2004 + A2: 2006IEC60335_2_14E2007-11CQCHOUS IEC 60335-2-14:2006(Fifth Edition)+A1:2008 inconjunction with IEC 60335-1:2001 (FourthEdition) + A1: 2004 + A2: 2006IEC 60335_2_14F2008-10CQCHOUS IEC 60335-2-14:2006 (Fifth Edition) + A1:2008IEC60335_2_14G2009-03CQC HOUS IEC 60335-2-15:86 + A1:88 + A2:90I335215A1993-02UTE2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-15:00 (Consolidated ed. 4.1) + A2:00(see also IEC 60335-1:91 + A1:94 + A2:99)IEC60335_2_15B2002-06LCIEHOUS IEC 60335-2-15:2002 (see also IEC 60335-1:2001Fourth Edition)IEC60335_2_15C2003-05LCIEHOUS IEC 60335-2-15:1995 (Fourth edition) + A1:99 +A2:00 used in conjunction with IEC 60335-1:1991(Third Edition) + A1:94 + A2:99IEC60335_2_15D2004-11CERTIFHOUS IEC 60335-2-15:2002 (Fifth edition) + A1:2005 +A2:2008 with IEC 60335-1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:2004 + A2:2006 (incl. Corr.1:2006)IEC60335_2_15F2009-01IMQ S.p.A.HOUS IEC 60335-2-15:2002 (Fifth edition) + A1:2005 +A2:2008IEC60335_2_15G2009-03IMQ S.p.A. HOUS IEC 60335-2-16:2002 (5th edition) (see also IEC60335-1:2001, Fourth Edition incl. Corrigendum1:2002)IEC60335_2_16A2005-05UL Inc.HOUS IEC 60335-2-16:2002 (5th edition) with IEC 60335-1:2001 (4th Ed.) incl. Corr. 1: 2002 + Corr. 2: 2005+ Am1: 2004 + Am2: 2006IEC60335_2_16B2007-11UL Inc.HOUS IEC 60335-2-16:2002 (Fifth Ed.) + Am.1: 2008 inconjunction with IEC 60335-1:2001, Fourth Editionincl. Cor. 1: 2002 + Cor. 2: 2005 + A1: 2004 + A2:2006IEC60335_2_16C2009-03UL Inc.HOUS IEC 60335-2-17:98 used in conjunction with IEC60335-1:91 + A1:94 + A2:99IEC60335_2_17A2001-02IMQHOUS IEC 60335-2-21:89 + A1:90 + A2:90 + A3:92I335221A1993-04NEMKO HOUS IEC 60335-2-21:97 + A1:99 using in conjunctionwith IEC 60335-1:91 + A1:91 + A2:99IEC60335_2_21B2002-02IMQHOUS IEC 60335-2-21 : 2002 (Fifth Edition) (incl.Corr.1:2007) + A1:2004 + A2: 2008 used inconjunction with IEC 60335 1:2001 (Fourth ed.)(incl. Corr.1:2002) + A1:2004 + A2:2006 (incl.Corr. 1:2006)IEC60335_2_21C2009-01LCIEHOUS IEC 60335-2-21: 2002 (Fifth Edition) (incl.Corr.1:2007) + A1:2004 + A2: 2008 & IEC 60335-2-40: 2002 (Fourth edition) +A1:2005 +A2:2005used in conjunction with IEC 60335 1:2001(Fourth ed.) (incl. Corr.1:2002) + A1:2004 +A2:2006 (incl. Corr. 1:2006)IEC60335_2_21&40A2009-04LCIEHOUS IEC 60335-2-23:96I335223B1996-10VDE HOUS IEC 60335-2-23:96 use in conjunction with IEC60335-1:91 + A1:94 + A2:99IEC60335_2_23C2002-01VDEHOUS IEC 60335-2-23:96 + A1:00 use in conjunctionwith IEC 60335-1:91 + A1:94 + A2:99IEC60335_2_23D2002-01VDE2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-23:2003 used in conjunction withIEC 60335-1:2001IEC60335_2_23E2003-04VDEHOUS IEC 60335 2 23:2003 (5th Edition) (incl.Corr.1:2004 + Corr.2:2008) + A1:2008 inconjunction with IEC 60335 1:2001 (4th Edition)(incl. Corr.1:2002) + A1:2004 (incl. Corr.1:2005) +A2:2006 (incl. Corr.1:2006)IEC60335_2_23F2009-01VDEHOUS IEC 60335-2-24:97 + A1:98IEC60335_2_242004-10SEV HOUS IEC 60335-2-24:00IEC60335_2_24D2001-01SEV HOUS IEC 60335-2-24:2002 (Sixth edition) used inconjunction with IEC 60335-1:2001 (Fourthedition)IEC60335_2_24E2003-04SEVHOUS IEC 60335-2-24: 2002 (Sixth edition) + A1:2005 inconj. With IEC 60335-1:01 incl. Corr. 1: 2002 +A1: 2004IEC60335_2_24F2005-08SEVHOUS IEC 60335-2-24:2002 (Sixth Edition) + A1:2005 +A2:2007 in conjunction with IEC 60335-1:2001incl. Corr. 1:2002 + A1:2004 + A2:2006 (incl.Corr.1:2006)IEC60335_2_24I2009-09ElectrosuisseHOUS IEC 60335-2-25:96I335225B1997-11LCIE HOUS IEC 60335-2-25:1996 + A1:1999 (used inconjunction IEC 60335-1:1991 + A1:1994 +IEC60335_2_25C2003-03LCIE HOUS IEC 60335-2-25:2002 (used in conjunction IEC60335-1:2001)IEC60335_2_25D2003-03LCIE HOUS IEC 60335-2-25 2002 (Fifth edition) + A1:2005 +A2:2006 with IEC 60335 1:2001 (Fourth ed.) (incl.Corr.1:2002) + A1:04 + A2:06 (incl. Corr. 1:2006)IEC60335_2_25E2008-05LCIEHOUS IEC 60335-2-26:87I335226A1994-06ÖVE HOUS IEC 60335-2-27:95I335227A1998-06KEMA HOUS IEC 60335-2-27:2003 Fourth Edition (see also IEC60335-1:2001 (Fourth Edition) (incl. Corrigendum1:2002)IEC60335_2_27B2004-03KEMAHOUS IEC 60335-2-27: 2002 (Fouth Edition) incl. A1: 2004 and A2: 2007, IEC 60335-1:2001 (FourthEdition), incl. A1:2004 and A2 : 2006, C1:2006IEC60335_2_27C2009-07KEMA QualityB.V.HOUS IEC 60335-2-28:87 (see also IEC 60335-1:76 +A1:77 + A2:79 60 + A3:82 + A4:84 + A5:86 +A6:88)I335228A1994-06OVEHOUS IEC 60335-2-28:94I335228B1998-03KEMA HOUS IEC 60335-2-28:2002 (Fourth Edition) and IEC60335-1:2001 (Fourth Edition), incl. A1:2004IEC60335_2_28C2004-10KEMA2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-28:2002 (Fourth Edition) + A1: 2008 with IEC 60335-1:2001 (4th Edition) incl.Corrigendum 1:2002 + A1: 2004 + A2:2006 incl.Corrigendum 1:2006IEC60335_2_28D2010-01KEMA QualityB.V.HOUS IEC 60335-2-29:1994 used in conjunction with IEC 60335-1:1991 + A1: 1994 + A2:1999)IEC60335_2_29A/01-032001-03SIQHOUS IEC 60335-2-29:2002 (4th edition)IEC 60335-1:2001 (4th edition) + A1:2004IEC60335_2_29B2004-11SIQHOUS IEC 60335-2-29:2002 (4th edition) + A1:2004IEC 60335-1:2001 (4th edition) + A1:2004IEC60335_2_29C2005-07SIQHOUS IEC 60335-2-29:2002 (4th edition), IEC 60335-1:2001 (4th edition)IEC60335_2_29D2006-12SIQ HOUS IEC 60335-2-29:2002 (Fourth edition) + A1:2004in conjunction with IEC 60335-1:2001 (Fourthedition) + A1:2004 + A2:2006IEC60335_2_29E2009-07SIQHOUS IEC 60335-2-29:2002 (Fourth Edition) + A1:2004+ A2:2009 in conjunction with IEC 60335-1:2001(Fourth Edition) incl. Corrigendum 1:2002 +A1:2004 + A2:2006 incl. Corrigendum 1:2006IEC60335_2_29F2010-08SIQHOUS IEC 60335-2-30:96I335230B1997-07VDE HOUS IEC 60335-2-30:96 + A1:99 used in conjunctionwith IEC 60335-1:91 + A1:94 + A2:99IEC60335_2_30C2002-04VDEHOUS IEC 60335-2-30:2002 (Fourth edition) used inconjunction with IEC 60335-1:2001 (FourthEdition)IEC60335_2_30D2003-04VDEHOUS IEC 60335-2-30:2002 (Fourth edition) + A1 :2004+ A2 :2007 used in conjunction with IEC 60335-1:2001 (Fourth Edition) + A1 : 2004 + A2: 2006IEC60335_2_30E2009-05LCIEHOUS IEC 60335-2-30:2002 (Fourth edition) + A1 :2004and IEC 60335-2-43:2002 (Fourth edition) +A1:2006 used in conjunction with IEC 60335-1:2001 (Fourth Edition) + A1 : 2004 + A2: 2006IEC60335_2_30&43A2007-12LCIEHOUS IEC 60335-2-30:2002 (Fourth edition) + A1 :2004+ A2 :2007 and IEC 60335-2-43:2002 (Thirdedition) + A1:2006 + A2:2008 used in conjunctionwith IEC 60335-1:2001 (Fourth Edition) + A1 :2004 + A2: 2006IEC60335_2_30&43C2009-01LCIEHOUS IEC 60335-2-30 (Fifth edition) :2009 used inconjunction with IEC 60335-1:2001 (FourthEdition) + A1:2004 + A2:2006IEC60335_2_30G2010-09LCIE HOUS IEC 60335-2-31:95I335231A1997-10KEMA2010-10-08Product Category Standard TRF No.MasterTRF dateTRForiginatorConformity Testing and Certification ofElectrotechnical Equipment andComponents (IECEE) List of available IEC TRFsHOUS IEC 60335-2-31:2002 (Fourth Edition), IEC 60335-1:2001 (Fourth Edition)IEC60335_2_31B2003-11KEMAHOUS IEC 60335-2-31: 2002 (Fourth Edition), IEC 60335-1: 2001 (Fourth Edition) incl. A1: 2004IEC60335_2_31C2005-04KEMAHOUS IEC 60335-2-31:2002+A1:2006 ( Fourth Edition) with IEC 60335-1:2001 (Fourth Edition), incl.A1:2004 and A2, C1:2006 IEC60335_2_31D2007-11KEMA QualityB.V.HOUS IEC 60335-2-31: 2002+A1: 2006 + A2 : 2008 (Fourth Edition) with IEC 60335-1:2001 (FourthEdition), incl. A1:2004 and A2 : 2006, C1:2006IEC60335_2_31E2009-03KEMA QualityB.V.HOUS IEC 60335-2-32:93I335232B1998-04LCIE HOUS IEC 60335 2 32:93 + A1: 1999 use in conjunctionwith IEC 60335 1:91 + A1:94 + A2: 1999IEC60335_2_32C2006-03LICEHOUS IEC 60335-2-32: 2002 used in conjunction IEC 60335-1:2001 (Fourth Edition) (incl. Corrigendum)IEC60335_2_32D2005-05LCIEHOUS IEC 60335-2-32:2002 (Fourth edition) + A1 :2008used in conjunction with IEC 60335-1:2001(Fourth Edition) + A1 : 2004 + A2: 2006IEC60335_2_32E2009-05LCIEHOUS IEC 60335-2-33:87 + A1:90I335233A1994-05ÖVE HOUS IEC 60335-2-34:96I335234B2000-08IMQ HOUS IEC 60335-2-34:99TRF 001592001-06IMQ HOUS IEC 60335-2-34:2002 4th Edition + A1:04 used inconjunction with IEC 60335 1:2001 4th Edition(incl. Corrigendum 1:2002) + A1:04 + A2:06 (incl.Corrigendum 1:2006)IEC60335_2_34D2008-05IMQ S.p.A.HOUS IEC 60335-2-34:2002 4th Edition + A1:04 used inconjunction with IEC 60335-1:2001 4th Edition(incl. Corrigendum 1:2002) + A1:04IEC60335_2_34C2005-02IMQHOUS IEC 60335-2-34:2002 (4th Edition) + A1:04 +A2:08 used in conjunction with IEC 60335 1:2001(4th Edition) (incl. Corrigendum 1:2002) + A1:04 +A2:06 (incl. Corrigendum 1:2006)IEC60335_2_34E2009-04IMQ S.p.A.HOUS IEC 60335-2-35:97I335235A1999-12VDE HOUS IEC 60335-2-35: 97 , using in conjunction with IEC60335-1:91 + A1:94 + A2:99IEC60335_2_35B2001-11VDE HOUS IEC 60335-2-35:2002 used in compliance withIEC 60335-1:2001 (Fourth Edition)IEC60335_2_35C2003-04VDEHOUS IEC 60335 2 35:2002 (4. edition) + A1:2006IEC 60335 1:2001 (4. edition) (incl. Corr.1:2002)+A1:2004 (incl. Corr.1:2005) + A2:2006 (incl.Corr.1:2006)IEC60335_2_35D2008-06VDEHOUS IEC 60335-2-36:93I335236C1996-06IMQ HOUS IEC 60335-2-36:2000, using in conjunction withIEC 60335-1:1991 +A1:94 + A2:99IEC60335_2_36D2001-11IMQ。
烤箱安全标准解读
继电器开关两端的距离要满足 功能绝缘的要求
继电器开关两端的距 离要满足功能绝缘的 要求
F. 结果的判定:
¾ 产品不得变形至带电体外露, ¾ 无有毒气体和烟雾产生, 产品无金属熔解, 火焰 ¾ 产品的电源线及产品周围的墙和地板的温升不得超过150K
电气绝缘性能测试
泄漏电流
电气绝缘强度
时间: 1 分钟 泄漏电流: 100mA
带电体与接地金属间
带电体与绝缘外壳, 按钮间
溢水实验
OVEN ¾ 炉腔内的托盘, 溢出0.25L的溶液( 1%的NaCl), 持续时间 : 1分钟 ¾ 把0.25L的溶液( 1%的NaCl),直接倾倒在炉腔的底部
COOKER ¾ 电炉发热盘上的容器, 溢出0.5L的溶液( 1%的NaCl), 持续时间 : 15秒
OVEN
COOKER
Rotary Grill
标识和说明书的特殊要求
1. 铭牌的基本内容
- 制造商, 商标, 代理商名称 - 产品型号 - 额定电压或额定电压范围 - 额定输入功率
2. 产品的金属外壳表面的放热警告标识
符号高度至少12mm
3. 说明书中的安全要求
- 指出清洁与食品接触的部件的方法 - 说明书中应声明以下警告语句: 9 If the supply cord is damaged, it must be replaced by the manufacturer, its
绝缘(基本绝缘+附加绝缘).
- 金属把手, 按钮不能依靠基本绝缘+保护接地的方式进行触电防护
- Hotplate 的结构应确保发热盘的不会产生轴向的转动.
- 如发热盘是通过中心轴固定的, 应增加保护措施, 以确保不发生轴向旋 转
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Harmonic Analysis perCENELEC Amendment -14to EN/IEC61000-3-2IntroductionWorking Group no.1 of Technical Committee 77 ( IEC TC77/SC77A/WG-1 ) agreed on the text of the so-called Millennium Amendment to EN/IEC61000-3-2 [1] in a special meeting, held in December 1999 in Rome,Italy. This special meeting was called after a basic compromise was reached during the preceding meeting in London. The IEC amendment, which was partly based on an earlier CENELEC proposal, was subsequently adopted by CENELEC [2], and processed through an accelerated acceptance procedure. After approval in September 2000, it was published in the Official Journal (OJ ) in December, just about one year after agreement was reached within the IEC committee. Per this amendment, harmonics tests per EN61000-3-2 can either be done per the existing standard, or the user may test per the amendment. The amendment changes the classi-fication of many products, i.e. allows the manufacturer to test them per the more relaxed Class-A limits, instead of using the potentially more strict Class-D limits. Also, the amendment changes the way limits are computed for Class-D and Class-C products, and requires that the overall measurement is performed in accordance with IEC61000-4-7. In fact, the complete Annex-B to IEC61000-3-2 (second edition) which describes the measure-ment methodology is to be replaced by IEC61000-4-7. These changes impact various areas, which are not all that well understood as yet. This paper explains all the changes from a practical viewpoint.Classification of products & limit calculationsThe existing standard EN/IEC61000-3-2 ( second edition ) has four product classes, each having their own set of limits for harmonic currents, as shown in Table 1. The limits for Class-A and Class-B are given in ampere (rms) and are fixed, irrespective of the power level of the product. Note that EN61000-3-2 applies to all products up to 16 Ampere per phase, although limits for professional equipment > 1000 Watt are still under consider-ation. Limits for Class-D equipment are proportional to the power level, and limits for Class-C (lighting products)depend on the fundamental current, and the Power Factor (for H 3). The limits for classes C & D are therefore proportional, while A & B are fixed.The existing standard classifies allmotor driven equipment as Class-A, and all portable electrical equipment ( for short time use ) is tested per Class-B. All lighting prod-ucts are tested per Class-C. For Class-D,the situation is a little more involved, and some historical perspective is in place.The IEC developed a so called Com-patibility Standard ( IEC61000-2-2 ) which permits specific voltage distortion percent-ages for the public supply network. These distortion levels are specified for individual voltage harmonics. Similar to IEEE-Std-519,the compatibility percentages concern power quality at the HV - MV and LV level.A portion of the overall distortion percent-ages are allocated to the LV level, and sub-sequently to products which are directly con-nected to the Low Voltage ( LV ) public dis-tribution system.Table -1 EN/IEC61000-3-2 Harmonic current limitsHarmonic Class-A Class-B Class-C Class-D Amp Amp % of Fund mA/Watt 2 1.08 1.6223 2.30 3.4530*PF 3.440.430.65 51.442.1610 1.960.300.45 70.77 1.127180.230.35 90.400.6050.5100.180.28 110.330.5030.35120.150.23130.210.3230.29614/40 (even) 1.84/n 2.76/n 15/39 (odd) 2.25/n3.338/n 3 3.85/nHarmonic Distortion Order %20.3030.8550.6570.6090.40110.40130.3015-390.254-400.20 These admissible contributions to voltage distortion levels by individual products formed the basis for the harmonics limits of Class-A type products per IEC/EN60555.2 and its successor standard IEC61000-3-2. Table -2 shows these compatibility levels, i.e. permitted voltage distortion contribution at the 230 V - 50 Hz LV level.The European Reference Impedance is given in IEC-60725, which was based on work in the 1970’s. The Reference Impedance values are set such that 95 % of the network will have an impedance at or below the selected values. The resulting impedance levels are given in Fig. 1. Recent tests [3] show that the IEC-60725resistive levels appear to be about correct, while the reactive component appears to have decreased somewhat ( probably due to a shift from overhead to underground cabling).The following example illustrates how the EN60555.2 Class-A harmonic limits were derived, using the compatibility levels, and system impedance. The LV distribution network impedance at the 3rd harmonic (150Hz) is (0.42 + (3 x j 0.25)2)0.5 = 0.85 Ohm. The 0.85 % (compatibility) permit-ted voltage distortion level for H 3 in Table-2, means a max. voltage distor-tion of 1.955 V ( 0.85 % of 230 V ). Hence, I H3 is allowed to be 1.955 / 0.85= 2.3 Amp before 0.85 % distortion for VH 3 is reached. The same calcula-tions apply to the other harmonics, and they in turn form the limit set for Class-A equipment. Class-B involves portable equipment, intended for short time use, and the limits for these electrical products are simply 1.5 times higher than those of Class-A. The limits for lighting products and other high volume consumer type products ( TV’s ) were set more stringent. Lighting products are easily defined as a class, and thus presented little problems.In EN60555.2 harmonic limits were defined for TV’s. These limits were based on the harmonics levels that a switch mode power supply with anacceptable current conduction angle would exhibit. In EN61000-3-2, this TVtest class was extrapolated into a new Class-D test class. Since the current waveform can be more or less defined by its conduction angle, the “specialwave shape envelope” was defined as the identifying method. The Class-Dlimits in mA/Watt were based on the samemethodology (for the 75 - 600 Wattrange). This special wave shape methodto define what constitutes a Class-D prod-uct caused some controversy. TV’s areso called “high impact” products. Not onlyare some 20 million sold every year inthe EC, but many TV’s are also operatedsimultaneously during the same peakhours. As the switch mode power supplycurrent pattern was used as the methodto identify Class-D products however, thiscauses many “low impact products” withswitch mode power supplies to be classi-fied as Class-D equipment as well, be-cause these power supplies exhibit the typical “Class-D special waveform”. Someproducts with fluctuating power levels have this “special waveform” for only partof the time, and exhibit a Class-A wave-form for the rest of the time.This is one of the key areas whereCENELEC-A14 changes the definition of Class-D products. Per the amendment, only TV’s, PC’s and PC monitors are to be tested per Class-D limits. This means that many products migrate to Class-A.Note that there is no change in classification for Class-A, B, and C products, but the harmonic analysismethod for products with fluctuating power is affected by A-14 for these products as well.= 0.40 + j0.25Fig. 1 - Impedance model for European LV distribution Table-2 Compatibility LevelsNew Class-D & Class-C Limits and Fluctuating HarmonicsThe limits for Class-C & D are proportional as earlier explained. Whereas this doesn’t cause any difficul-ties for products with a constant current/power level, the situation was less clear for products with fluctuating load levels. Most test systems implemented so called dynamic limits, with the limits constantly being adjusted per the measured power ( or the fundamental current for Class-C ) while others used some average power level to set the limits. The latter systems determine this average power/current using some arbitrary method, and pre-test period. Thus different test systems implement different limits for the same (fluctuating power) products,which can result in one system PASSING a product while the other REJECTS it.A second issue for fluctuating loads is the way the existing standard (second edition) defines criteria for passing and failing the harmonics test. The existing standard permits the unit under test to occassionally exceed the 100 % limit, provided the harmonics never exceed 150 % of the limit. In fact, the unit under test is allowed to exceed the 100 % level for 10 % of the test time. The test time for fluctuating loads is to be at least 2.5minutes, i.e. the harmonics can exceed the 100 % limit for 15 seconds in every 150 second ( 2.5 min ) period.For longer test times, one can perform this test in 2.5 minutes “time blocks” but another interpretation is to just take 10 % of the overall test time. Thus, the testing method for fluctuating loads was somewhat subject to interpretation by the test equipment manufacturer.CENELEC A-14 addresses these area in two ways. First of all, the manufacturer is required to declare the rated power ( the fundamental current and Power Factor for Class-C ) for the product. This “rated power”(current & PF ) will be used as the basis for the limit calculation of Class-D ( Class-C). Thus, a “rated power” of 150 Watt for example, will yield a third harmonic limit of 150 x 3.4 = 510 mA. Similarly, a rated fundamental current of 0.4 Amp, and a rated PF of 0.98 for an electronic ballast will result in a third harmonic limit of 0.4 x 0.3x 0.98 = 117.6 mA. Thus, the amendment requires that an automated compliance test system must allow the user to enter this rated power or rated current. Also, the test system must verify the power (fundamental current and PF) because these “rated vales” as declared by the manufacturer must be within +/- 10 % of the actual values. If not, the actually measured values are to be used for the limit calculation. The method to measure these actual power, fundamental current and PF differ from the “average method” used in existing test systems,and of course differ also from the “dynamic limit method”.The Pass/Fail criterion is given in Fig. 2 above. The “10 % of the time over 100 % of the limits” no longer exists. The average harmonic level during the whole test must simply be below the limit, and individual values in each acquisition window ( after 1.5 sec filtering) must be below 150 % of the limit. Also note the extra allowance for the higher harmonics from H 21 - H 39. The exact method to determine the “rated” power, fundamen-tal current and PF , and how to measure these, is discussed in more detail below.The average value for the individual harmonic currents, taken over the entire test observation period shallbe less than or equal to the applicable limits.For each harmonic order, all 1,5 s smoothed r.m.s. harmonic curent values, as defined in 6.2.2, shall be lessthan or equal to 150% of the applicable limits.Harmonic currents less than 0,6% of the input current measured under the test conditions, or less than 5mA, whichever is greater, are disregarded.For the 21st and higher odd order harmonics, the average values obtained for each individual odd harmonicover the full observation period, calculated from the 1,5 s smoothed values according to 6.2.2 may exceedthe applicable limits by 50% provided that the following conditions are met:-the measured partial odd harmonic current does not exceed the partial odd harmonic current which can be calculated from the applicable limits.- All 1,5 s smoothed individual harmonic current values shall be less than or equal to 150% of theapplicable limits.Fig. 2 Pass/Fail criterion per CENELEC Amendment-14 to EN/IEC61000-3-2Measuring “rated” power, fundamental current and PFThe process to measure this maximum averaged power therefore is as follows; Calculate the power for every acquisition window ( 200 ms is preferred, although 16 cycles of the fundamental are permitted) and pass this value through a 1.5 seconds smoothing filter. Take the maximum level of these 1.5 sec. smoothed values, and compare this with the “rated power” ( or fundamental current and PF ) and establish whether or not it is within +/- 10 % of the manufacturer’s rated power. If so, use the “rated power” for harmonic limit calculations and pass/fail comparison. If the measured value deviates by more than 10 % from the rated value, use the mea-sured value to compute the harmonics limits and perform the pass/fail test. It is extremely important to follow this procedure, as the peak level of the 1.5 sec. smoothed value will differ enormously from just the peak value for a given acquisition window ! Obviously, it behooves the manufacturer to determine the “rated” values using the same methodology.Assessment of Quasi Stationary and Fluctuating HarmonicsFor product testing per A-14, especially those with fluctuating power, one must complete the whole test before the peak 1.5 sec. smoothed power ( fund. current & PF ) can be determined, and before the limit calculation and Pass/Fail test can be finalized. Of course, intermediate results - based on either the “rated values” by the manufacturer or on peak levels observed thus far - can be given, but the official Pass/Fail decision cannot be made until the test is complete.The test duration has to be sufficiently long to obtain better than +/- 5 % repeatability between successive tests. For products with a steady state power level ( quasi stationary ) this test time can be short, even less than a minute. For products with short power cycles (cycles < 2.5 min.) the test should include at least 10 power cycles. For products with very long cycles, the manufacturer can provide information showing the worst case condition- highest Total Harmonic Current operating mode - in order to minimize test time. The test methods per the amendment therefore no longer makes the distinction between Steady State and Fluctuating harmonics test methods that the existing EN61000-3-2 (second edition) makes. In fact, the whole existing Annex-B (in 61000-3-2) is replaced by a reference to (the new) standard IEC61000-4-7. This new IEC61000-4-7 does have signifi-cant impact on the harmonic analysis methods, including the fact that interharmonic currents enter the equa-tion. This aspect is illustrated in Fig. 3 below, and explained in more detail in the following section.R.M.S. value of a harmonic groupThe square root of the sum of the squares of the amplitudes of a harmonic and the spectral components adjacent to it within the observation window, thus summing the energy contents of the neighbouring lines with that of the harmonic proper. See also equation 3 and Figure 4. The harmonic order is given by the harmonic considered.Fig. 3 Graphical representation and formulas to calculate harmonic group RMS value ( 200 ms cycles )The impact of the new IEC61000-4-7Before discussing the impact of this new standard, it is important to note that within TC77/SC77A/WG-1 there are several Task Forces. Whereas TF1a was busily working on the Millennium Amendment, TF2 has been working on a revision of IEC61000-4-7 for a number of years. Several of the participants in TF2 in fact also are members of TF1a. Hence, some of the work that was done in the context of revising IEC61000-4-7 was initially also included in the text of the Millennium Amendment. Since the new IEC61000-4-7 is already at the CDV (committee draft for voting ) level, the Millennium amendment at one time even included a reference to this CDV. This however, is procedurally not acceptable, and hence both the IEC and the CENELEC Amendment now simply state that the entire Annex B is replaced by “The requirements for measurement equipment are defined in IEC61000-4-7”.Whereas small portions of the IEC61000-4-7 CDV still make their appearance in the CENELEC amend-ment, it is relevant to examine what the new IEC61000-4-7 will say about the measurement methods, as it directly impacts how products are to be evaluated. The important factors of the revised IEC61000-4-7 will be the move to a 200 ms measurement window and the inclusion of interharmonics in the harmonic level computation. Until IEC61000-4-7 is revised again ( hopefully not until at least 5 years from now ) measurements using existing test equipment having 320 ms/16 cycles ( 266.7 ms for 60 Hz ) acquisition windows will be permitted. The new 200 ms acquisition window better accommodates both 50 and 60 Hz systems, as 200 ms includes exactly 10 cycles of 50 Hz and 12 cycles of 60 Hz. Also, there are exactly 15 such 200 ms periods in a 3 second averaging period which is commonly used in power quality analysis.Including interharmonicsIn the new IEC61000-4-7, interharmonics are “lumped in” with the (integer) harmonic subgroup level per a precisely specified algorithm. Although interharmonics may not necessarily have the cumulative effect as is the case with odd triplens ( 3 rd, 9 th , 15 th, etc ) they do generate heat, and adversely affect electrical gear. Hence the interharmonics are lumped into the adjacent integer harmonic level using the geometric averaging algo-rithm, similar to a RMS calculation, as given in Fig. 3. This geometric average of the harmonic subgroup is filtered (using the 1.5 sec filter) and then compared against the applicable limits. The new standard also defines the algorithm to calculate just the interharmonic subgroup ( see Fig. 3 ). Note that if the 16 cycle acquisition window were to be used, the algorithms will change somewhat, as the number of interharmonics from the FFT would differ. This is reflected in the different algorithms. Fig. 3 shows the algorithm for a 0.2 sec. acquisition period, and the graphical representation of this concept for a 50 Hz power system.ConclusionsCENELEC Amendment-14 to EN61000-3-2 moves many electronic products from test Class-D to the generally more relaxed Class-A, with limits initially being based on the manufacturer’s “rated” power. This rated power is to be determined in accordance with the 1.5 sec filtered measurement method as given in the amend-ment. The same method applies to determine the Fundamental Current and Power Factor for Class-C products.The amendment defines measurement methods and harmonic limit comparisons that apply to both, sta-tionary and fluctuating harmonic analysis. Per the amendment, the normative Annex-B of EN61000-3-2 is to be replaced by the measurement and analysis methods given in (the new) IEC61000-4-7. This new standard requires the use of a 200 ms acquisition window, and specifies algorithms to include interharmonics into the so called harmonic subgroups.The CENELEC Amendment therefore greatly affects compliance test systems. Especially manufacturers of Class-D products need to implement the new methods to determine what “rated” power levels they need to specify for their products. This applies also to manufacturers of lighting products ( Class-C ) for fundamental current and PF as well. Testing authorities and test laboratories should also take the changing requirements of IEC61000-4-7 into consideration.References: 1: EN61000-3-2 Second Edition 2000-08, IEC, Geneva - Switzerland2: Amendment A14:2000 to EN61000-3-2 :1995 OJ Publication date 14-12-2000.3: Low Voltage System Impedance Test, Mathieu van den Bergh - Oct. 2000。