晶闸管的结构以及工作原理
04第四章 晶闸管及其应用
第四章晶闸管及其应用第一节晶闸管的构造、工作原理、特性和参数晶闸管—可控硅,是一种受控硅二极管。
优点:体积小、重量轻、耐压高、容量大、响应速度快、控制灵活、寿命长、使用维护方便。
缺点:大多工作与断续的非线性周期工作状态,产生大量谐波干扰电网;过载能力和抗扰能力较差、控制电路复杂。
(由于技术进步,近年有改善)1.1晶闸管的基本结构:晶闸管是具有三个PN结的四层结构,其外形、结构及符号如图。
1.2晶闸管的工作原理在极短时间内使两个三极管均饱和导通,此过程称触发导通。
晶闸管导通后,去掉EG ,依靠正反馈,仍可维持导通状态。
晶闸管导通必须同时具备两个条件:1. 晶闸管阳极电路(阳极与阴极之间)施加正向电压。
2. 晶闸管控制电路(控制极与阴极之间)加正向电压或正向脉冲(正向触发电压)。
晶闸管导通后,控制极便失去作用。
依靠正反馈,晶闸管仍可维持导通状态。
晶闸管关断的条件:1. 必须使可控硅阳极电流减小,直到正反馈效应不能维持。
2. 将阳极电源断开或者在晶闸管的阳极和阴极间加反向电压。
1.3晶闸管的伏安特性静态特性承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通;晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。
晶闸管的阳极伏安特性是指晶闸管阳极电流和阳极电压之间的关系曲线,如图3所示。
其中:第I象限的是正向特性;第III象限的是反向特性图3 晶闸管阳极伏安特性I G2>I G1>I GI G=0时,器件两端施加正向电压,正向阻断状态,只有很小的正向漏电流流过,正向电压超过临界极限即正向转折电压U bo,则漏电流急剧增大,器件开通。
这种开通叫“硬开通”,一般不允许硬开通;随着门极电流幅值的增大,正向转折电压降低;导通后的晶闸管特性和二极管的正向特性相仿;晶闸管本身的压降很小,在1V左右;导通期间,如果门极电流为零,并且阳极电流降至接近于零的某一数值I H以下,则晶闸管又回到正向阻断状态。
晶闸管的结构以及工作原理
晶闸管的结构以及工作原理晶闸管是一种异型双极结构的电子器件,由三层PNPN结构组成。
它的结构和工作原理可以分为几个方面进行介绍。
1.结构晶闸管由P型和N型半导体材料交叉组成的四层PNPN结构,形成了三个PN结的结构,即P1-N1-P2-N2、两个P型区域称为主极(anode,A)和触发极(gate,G),两个N型区域称为P型区域的发射层(emitter,E)和P型区域的集电层(collector,C)。
晶闸管的主极两端接有外部电源,而触发极一般连接到控制电路。
2.工作原理当晶闸管的控制电极施加一个低于临界电压的阳极电压时,即晶闸管处于关断状态,没有电流通过。
当控制电极施加一个高于临界电压的阳极电压时,即晶闸管处于导通状态,电流可以通过。
晶闸管的导通过程可以分为四个阶段:保持阶段、启动阶段、加强阶段和饱和阶段。
-保持阶段:当触发电压上升时,晶闸管开始导通,但此时并没有电流通过。
主极处于反向偏置,控制电压从触发极上扩展到集电极端,使得内部的PNPN结正向偏置。
-启动阶段:当控制电压达到晶闸管的启动电压时,发射极和集电极之间的电流开始增加。
这个过程是正反馈的,因为电流的增加会引起发射层电压的降低,从而增加集电层电压。
这种正反馈的作用会使晶闸管持续导通而不需要保持电流。
-加强阶段:在启动阶段之后,电流从发射层向集电层继续增加,响应时间非常快,仅为纳秒级别。
晶闸管的涉及电压变小,其间接穿晶闸管的电流开始逐渐加强。
-饱和阶段:在集电极电流和发射极电流足够大的情况下,晶闸管进入饱和状态,其电压降只有几个伏特,并且电流保持在一个稳定的值。
晶闸管的导通和关断是通过控制电极的电压来实现的。
当控制电压去除或降低,晶闸管将自动进入关断状态。
晶闸管的关断过程相对较长,需要通过外部电路才能完全关断。
总结:晶闸管是一种PNPN结构的电子器件,由四个区域(P1-N1-P2-N2)组成。
其工作原理是通过控制电压对其导通和关断进行控制。
晶闸管工作原理
晶闸管工作原理
晶闸管是一种半导体器件,它具有双向导电性能。
晶闸管的工作原理主要是通过控制晶闸管的触发电压来实现对电流的控制。
晶闸管的结构包括P型半导体和N 型半导体,通过控制晶闸管的触发电压,可以实现对电流的导通和截止。
晶闸管的工作原理可以简单地分为导通状态和截止状态两种情况。
在导通状态下,当晶闸管的触发电压达到一定数值时,晶闸管会从截止状态转变为导通状态,电流可以通过晶闸管流动。
而在截止状态下,晶闸管不导电,电流无法通过晶闸管流动。
晶闸管的工作原理还涉及到晶闸管的触发方式。
晶闸管的触发可以通过外部电压脉冲来实现,也可以通过控制电压来实现。
在晶闸管的触发过程中,需要注意控制触发电压的大小和触发脉冲的宽度,以确保晶闸管可以稳定地从截止状态转变为导通状态。
此外,晶闸管的工作原理还与晶闸管的特性参数有关。
例如,晶闸管的触发电压、保持电流、最大正向电压等参数都会影响晶闸管的工作状态和性能。
在实际应用中,需要根据具体的电路要求选择合适的晶闸管,并合理设置触发电压和控制电压,以确保晶闸管可以稳定可靠地工作。
总的来说,晶闸管的工作原理是通过控制触发电压来实现对电流的控制,包括导通状态和截止状态两种情况。
在实际应用中,需要根据晶闸管的特性参数和具体的电路要求来选择合适的晶闸管,并合理设置触发电压和控制电压,以确保晶闸管可以稳定可靠地工作。
通过对晶闸管工作原理的深入理解,可以更好地应用晶闸管在各种电路中,发挥其作用。
晶闸管的结构与工作原理
晶闸管的结构与工作原理一、晶闸管简介晶闸管(Thyristor):又称晶体闸流管,可控硅整流器(Silicon Controlled Rectifier——SCR)1956年美国贝尔实验室(Bell Lab)发明了晶闸管1957年美国通用电气公司(GE)开发出第一只晶闸管产品1958年商业化,开辟了电力电子技术迅速发展和广泛应用的崭新时代20世纪80年代以来,开始被性能更好的全控型器件取代能承受的电压和电流容量最高,工作可靠,在大容量的场合具有重要地位晶闸管往往专指晶闸管的一种基本类型——普通晶闸管广义上讲,晶闸管还包括其许多类型的派生器件(如:双向晶闸管、逆导晶闸管、光控晶闸管等)二、晶闸管的结构与封装外形有螺栓型和平板型两种封装引出阳极A、阴极K和门极(控制端)G三个联接端对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便平板型封装的晶闸管可由两个散热器将其夹在中间晶闸管的外形、结构和电气图形符号a) 外形b) 结构c) 电气图形符号三、晶闸管基本工作特性三、晶闸管基本工作特性晶闸管基本工作特性归纳:承受反向电压时(UAK <0),不论门极是否有触发电流,晶闸管都不会导通;承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通(即UAK >0,IGK >0才能开通);晶闸管一旦导通,门极就失去控制作用;要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值以下。
从这个角度可以看出,SCR是一种电流控制型的电力电子器件。
四、晶闸管的工作机理在分析SCR的工作原理时,常将其等效为两个晶体管V1和V2串级而成。
其工作过程如下:UGK>0 →产生IG → V2通→产生IC2 → V1通→ IC1↗→ IC2 ↗→出现强烈的正反馈,G 极失去控制作用,V1和V2完全饱和,SCR饱和导通。
晶闸管导通后,即使去掉门极电流,仍能维持导通。
晶闸管的双晶体管模型及其工作原理a) 双晶体管模型b) 工作原理。
晶闸管的结构与工作原理
2020年10月14日星期三
2
学习情境第一7 单章相电可力控电整子流技电术路的制作
1.5.1.1 晶闸管的基本结构
(1)晶闸管的电路的外形、结构、符号
3
下一 返回
学习情境第一7 单章相电可力控电整子流技电术路的制作
1.5.1.1 晶闸管的基本结构
晶闸管的外型如下图所示
螺旋式
平板式
塑封式
它有三个引出极:阳极(A)、阴 极(K)、和门极(G)。螺旋式 晶闸管中,螺栓是阳极A的引出端, 并利用它与散热器紧固。平板式则 由两个彼此绝缘的散热器把晶闸管 紧夹在中间,由于两面都能散热, 因而200A以上的晶闸管常采用 平板式。小功率晶闸管常采用塑封 式,其上部的金属片用螺栓与散热 片紧密接触,以利散热。
2020年10月14日星期三
4
学习情境第一7 单章相电可力控电整子流技电术路的制作
晶闸管的内部结构和符号
晶闸管内部是由PNPN四层 半导体构成,所以有三个PN 结J1、J2、J3。阳极A从P1层 引出,阴极由N2层引出,门极 由P2层引出。普通晶闸管的结 构和符号如图所示。普通晶闸 管的型号是KP型
学习情境第一7 单章相电可力控电整子流技电术路的制作
1.5 晶闸管
晶闸管的结构与工作原理 单相可控整流电路 晶闸管的保护 晶闸管触发电路 双相晶闸管与交流调压电路
2020年10月14日星期三
1
学习情境第一7 单章相电可力控电整子流技电术路的制作
1.5.1 晶闸管的结构与 工作原理
主要要求:
1、理解晶闸管的基本结构和工作原理 2、理解晶闸管的伏安特性 3、掌握晶闸管的主要参数和型号
2020年10月14日星期三
5
第 7 章 电力电子技术 6
晶闸管的结构与工作原理
晶闸管的结构与工作原理晶闸管是一种电子元器件,其工作原理基于半导体材料中正负载流子的反复注入和浓缩。
晶闸管具有低损耗,高可靠性和耐受高电压和电流的特点,常用于电力电子设备和自动化控制系统中。
在本文中,我们将讨论晶闸管的结构和工作原理。
一、晶闸管的结构下面是晶闸管的主要结构:1. P型硅基板:晶片的底部是由P型硅基板组成的,其中注入了氧化物层(SiO2层)。
2. N型漂浮区:晶片的顶部是由N型漂浮区域组成的,其厚度通常约为几微米。
3. P型区:在N型区域下面,有一小块P型电极区,通常称为阳极。
在晶片上另一端同样有一块P型区,通常称为阴极。
4. 金属接触层:阳极和阴极上方均有金属接触层,以便在晶体中注入电流。
5. 控制极:在P型区和N型漂浮区中间的区域上有一个控制极,通常称为门极。
门极是一个金属电极,可以通过它来控制晶闸管的通电和断电状态。
晶闸管的主体是一个单结结构,由两个异种半导体材料组成,具有PN结的特征。
二、晶闸管的工作原理晶闸管的工作原理主要涉及PN结中存储的大量载流子的控制。
下面是晶闸管的工作原理:1. 断电状态:当晶闸管处于正常的断电状态时,P型区和N型区之间的PN结是不导电的。
此时在晶闸管两端施加的电压低于其绝缘强度,没有足够的电子跨越PN结进入N型区域,也没有足够的空穴跨越PN结进入P型区域。
2. 触发状态:通过控制极施加一个短的脉冲电压,可以注入到N型区的少量电子,这些电子在PN结中的重复撞击产生更多的电子,这些电子在N型区域和P型区域传播,直到引起晶闸管的完全导通。
在完全导通状态下,PN结两侧形成了大量的少数载流子,这些载流子可以像导体一样流动并在晶闸管中形成一个低阻通路。
3. 导通状态:在晶闸管的导通状态下,当控制极不再施加脉冲电压时,晶体仍继续处于导通状态,并且只有在PN结两端电流降为零时才能停止导通。
因此,在应用中可以通过控制电流的大小和时间来控制晶闸管的导通状态,从而实现所需的电路控制。
精析晶闸管的内部结构及工作原理
1.晶闸管的结构晶闸管是一种4层功率半导体器件,具有3个PN结,其内部的构造、外形和电路符号如图6 -1所示。
其中,最外层的P区和N区分别引出两个电极,称为阳极A和阴极K,中间的P区引出控制极(或称门极)。
2.晶闸管的工作原理晶闸管组成的实际电路如图6-2所示。
为了说明晶闸管的工作原理,可将其看成NPN和PNP两个三极管相连,用三极管的符号来表示晶闸管的等效电路,如图6-3所示。
其工作过程如图6-4所示。
当晶闸管的阳极A和阴极K之间加正向电压UZ而控制极K不加电压时,中间的PN结处于反向偏置,管子不导通,处于关断状态。
当晶闸管的阳极A和阴极K之间加正向电压UA,M28F101-200 K6且控制极G和阴极K之间也加正向电压UG时,外层靠下的PN 结处于导通状态。
若V2管的基极电流为IB2,则集电极电流Ic2为β2IB2,V1管的基极电流IB1等于Vz管的集电极电流,因而V2的集电极电流Icl为βlβ2如,该电流又作为V2管的基极电流,再一次进行上述的放大过程,形成正反馈。
在很短的时间(一般几微秒)两只二极管均进入饱和状态,使晶闸管完全导通。
当晶闸管完全导通后,控制极就失去了控制作用,管子依靠内部的正反馈始终维持导通状态。
此对管子压降很小,一般为0. 6~1.2 V,电源电压几乎全部加在负载电阻R上,晶闸管中有电流流过,可达几十至几千安。
要想关断晶闸管,必须将阳极电流减小到不能维持正反馈过程,当然也可以将阳极电源断开或者在晶闸管的阳极和阴极之间加一反向电压。
综上所述,可得如下结论:①晶闸管与硅整流二极管相似,都具有反向阻断能力,但晶闸管还具有正向阻断能力,即晶闸管正向导通必须具有一定的条件:阳极加正向电压,同时控制极也加正向触发电压(实际工作中,控制极加正触发脉冲信号)。
②晶闸管一旦导通,控制极即失去控制作用。
要使晶闸管重新关断,必须做到以下两点之一:一是将阳极电流减小到小于维持电流I H;二是将阳极电压减小到零或使之反向。
晶闸管工作原理
晶闸管工作原理引言概述:晶闸管是一种重要的电子器件,广泛应用于电力控制和电子调节领域。
了解晶闸管的工作原理对于理解其应用和故障排除至关重要。
本文将详细介绍晶闸管的工作原理,包括晶闸管的结构、特性和工作方式。
一、晶闸管的结构1.1 硅基材料:晶闸管的主要材料是硅,因其具有较好的电特性和热特性而被广泛应用。
1.2 PN结:晶闸管由两个PN结组成,其中一个PN结被称为控制结,另一个PN结被称为终端结。
1.3 门极结:晶闸管的控制结上有一个附加的门极结,通过控制门极上的电压来控制晶闸管的导通和截止。
二、晶闸管的特性2.1 可控性:晶闸管的导通和截止状态可以通过控制门极上的电压来实现,具有可控性。
2.2 双向导通性:晶闸管可以在正向和反向电压下导通,具有双向导通性。
2.3 高电压和高电流承受能力:晶闸管能够承受较高的电压和电流,适用于高功率电子设备的控制。
三、晶闸管的工作方式3.1 导通状态:当门极结施加正向电压时,晶闸管处于导通状态,电流可以从终端结流过。
3.2 截止状态:当门极结施加反向电压时,晶闸管处于截止状态,电流无法通过终端结。
3.3 触发方式:晶闸管可以通过正向或负向的脉冲电压来触发,使其从截止状态转变为导通状态。
四、晶闸管的应用4.1 电力控制:晶闸管可以用于电力调节、电压变换和电流控制等领域,实现对电力的精确控制。
4.2 电子调节:晶闸管可以用于调节电子设备的亮度、速度和功率等,提高设备的性能和效率。
4.3 高频电子设备:晶闸管具有快速开关速度和较低的开关损耗,适用于高频电子设备的控制和调节。
五、晶闸管的故障排除5.1 过电流保护:晶闸管在工作过程中可能会受到过电流的影响,需要采取相应的保护措施。
5.2 过电压保护:晶闸管在工作过程中可能会受到过电压的影响,需要采取相应的保护措施。
5.3 温度控制:晶闸管在工作时会产生较高的温度,需要采取散热措施来控制温度,以避免故障发生。
结论:晶闸管作为一种重要的电子器件,具有可控性、双向导通性和高电压、高电流承受能力等特点。
晶闸管工作原理
晶闸管工作原理晶闸管(Thyristor)是一种常用的电子器件,广泛应用于电力控制和电子变换领域。
它具有双向导电性和开关特性,可以实现高电压和高电流的控制。
本文将详细介绍晶闸管的工作原理及其相关特性。
一、晶闸管的结构晶闸管由四个半导体材料层叠而成,主要由P型半导体(阳极),N型半导体(阴极),P型半导体(门极)和N型半导体(门极)组成。
晶闸管的结构类似于二极管,但多了一个控制极(门极),因此也被称为四层结构。
二、晶闸管的工作原理晶闸管的工作原理可以分为四个阶段:关断状态、触发状态、导通状态和关断状态。
1. 关断状态:在晶闸管未被触发时,处于关断状态。
此时,晶闸管的正向电压(阳极对阴极)和反向电压(阴极对阳极)均无法导通。
晶闸管的结构中存在一个PN结,阻止了电流的流动。
2. 触发状态:当给予晶闸管的门极一个正向电压脉冲时,晶闸管将进入触发状态。
在触发状态下,晶闸管的正向电压依然无法导通,但是反向电压下的电流开始流动。
这个过程被称为触发。
3. 导通状态:一旦晶闸管被触发,它将进入导通状态。
在导通状态下,晶闸管的正向电压和反向电压均能导通。
当正向电压大于晶闸管的导通电压(通常为0.7V)时,晶闸管会导通电流。
此时,晶闸管相当于一个导电通道,允许电流从阳极流向阴极。
4. 关断状态:当导通电流下降到一个很低的水平时,晶闸管将进入关断状态。
在关断状态下,晶闸管的正向电压和反向电压均无法导通。
晶闸管需要重新触发才能再次导通。
三、晶闸管的特性晶闸管具有以下几个特性:1. 双向导电性:晶闸管可以在正向和反向电压下导通电流。
这使得晶闸管在交流电路中起到了重要的作用,可以实现电流的双向控制。
2. 开关特性:晶闸管具有开关特性,可以实现高电压和高电流的控制。
通过控制门极电压的变化,可以控制晶闸管的导通和关断状态。
3. 快速开关速度:晶闸管具有快速的开关速度,可以在微秒的时间内完成导通和关断状态的切换。
这使得晶闸管在高频电路和脉冲电路中得到广泛应用。
晶闸管的结构
晶闸管的结构
晶闸管的结构:晶闸管由四个P型、N型业导体材料层构成,它们被交错地叠放在一起形成PNPN结构。
晶闸管的主要结构包括:
1.阳极(A):晶闸管的正极,通常与外部电源相连。
2.阴极(K):晶闸管的负极,通常与负载相连。
3.控制极(G):用于控制晶间管的导通和截止,通常称为闸极。
4.阳极侧半导体材料(P1):晶闸管中的第一层半导体材料,与阳极相连。
5.阳极侧PN结(P1N1):晶闸管中的第一层PN结,由P1层和N1层组成。
6.中间N型半导体材料(N2):晶闸管中的第二层半导体材料,与闸极相连。
7.控制侧PN结(N2P2):晶闸管中的第二层PN结,由N2层和P2层组成。
8.阴极侧半导体材料(N3):晶闸管中的第三层半导体材料,与阴极相连。
9.阴极侧PN结(N3P3):晶闸管中的第三层PN结,由N3层和P3层组成。
晶闸管的优点包括体积小、重量轻、工作稳定可靠,使用寿命长等,但它也有一些缺点,比如开关速度慢、控制电路复杂,容易受到噪声干扰等。
因此,在实际应用中,需要根据具体需求来选择是否使用晶闸管以及选择何种型号的晶闸管。
晶闸管工作原理.
晶闸管工作原理晶闸管是一种电子器件,它在电子学和电力控制领域有着广泛的应用。
晶闸管能够控制大电流和高电压,因此在电力传输和电动机控制等方面扮演着重要角色。
本文将详细介绍晶闸管的工作原理,以及它在不同应用领域中的工作方式。
晶闸管的基本结构由四个层组成:N型区域,P型区域,P型区域和N型区域。
晶闸管一般是通过控制一个电极上的电流来实现对另一个电极上电流的控制。
这个电极被称为“控制电极”或“闸极”,而另外两个电极分别是“阳极”和“阴极”。
当闸电流被施加在晶闸管的闸极上时,晶闸管处于关断状态,此时正向电压施加在阳极上,而阴极则是负电压。
在关断状态下,晶闸管会阻断正向电流,类似于电子开关。
当闸电流被去除或减小到一个可忽略的水平时,晶闸管的工作状态将发生变化。
当前向电流施加在阳极上时,P型的区域成为一个PN结,此时称为“在态”或“导通态”。
在导通状态下,晶闸管将允许正向电流流动。
晶闸管的转换过程是通过两种方式实现的:转流和转向。
转流是指将电流从晶闸管的阳极转移到阴极,而转向则是指将电流从阳极转移到阴极。
当闸电流被去除时,转流是通过重新注入电流来实现的。
当闸电流被减小到可忽略的水平时,转向是通过向晶闸管施加反向电压来实现的。
晶闸管通常在交流电路中被广泛应用。
在交流电路中,晶闸管可以控制电流的相位,以实现电压和电流的控制。
这使得晶闸管成为一种重要的电力控制器件。
晶闸管还可用于直流电路中,尤其是在工业自动化和电动机控制领域。
尽管晶闸管在许多应用领域中具有广泛的应用,但是在实际应用中仍然存在一些问题。
其中之一是晶闸管的损耗问题。
晶闸管在导通过程中会有一定的导通压降,从而产生额外的损耗。
此外,晶闸管还需要适当的散热措施,以确保其正常工作。
综上所述,晶闸管是一种重要的电力控制器件,它通过控制闸电流来实现电流的控制。
晶闸管的工作原理涉及其基本结构以及电流的转流和转向过程。
晶闸管在交流电路和直流电路中都有着广泛的应用,尤其在电力传输和电动机控制领域。
晶闸管的结构与工作原理
晶闸管的结构与工作原理晶闸管(Thyristor),又称为双极型晶体管,是一种半导体器件,具有可控的开关特性。
它广泛应用于电力电子设备、变流器、电机驱动器等领域。
本文将详细介绍晶闸管的结构和工作原理。
一、晶闸管的结构晶闸管由四个半导体层组成,分别是P型半导体(阳极)、N型半导体、P型半导体(门极)和N型半导体。
整个结构组成了一个PNPN的结构,类似于一个双极型晶体管,但晶闸管比双极型晶体管多了一个所有电流都能通过的门极。
在晶闸管结构中,阳极和门极是两个主要的电极。
阳极承受电流,而门极用于控制晶闸管的导通和关断。
在正常工作状态下,阳极上的电压高于门极,晶闸管处于关断状态。
只有当门极施加一个合适的触发脉冲时,晶闸管才能实现导通,形成通路,电流开始流动。
晶闸管还具有反并联二极管,它被连接在晶闸管的两个半导体层之间。
它的作用是提供反向偏置,以避免晶闸管在关断状态下被击穿。
同时,反并联二极管还能够保护晶闸管免受反向电压的损害。
二、晶闸管的工作原理晶闸管的工作原理可以分为三个阶段:关断状态、触发状态和导通状态。
1. 关断状态:在关断状态时,门极的控制电压低于晶闸管的临界触发电压。
此时,PNPN结构的两个PN结正向偏置,形成一个高反向电压,导致整个结构处于关断状态。
晶闸管的主要特点是具有很高的绝缘能力,能够承受很高的反向电压。
2. 触发状态:当门极施加一个合适的触发脉冲时,晶闸管就会从关断状态切换到触发状态。
触发脉冲使得PN结发生反向电流扩散,导致PN结正向偏置被打破。
一旦PN结正向偏置被打破,PNPN结构中的第一个PN结就会形成一个电流驱动器,使得整个结构逐渐变得导电。
3. 导通状态:在晶闸管进入导通状态后,发生一种被称为“自持现象”的反馈作用。
即使移除控制电压,晶闸管也会保持导通状态,直到通过它的电流下降到一个非常低的水平。
此时,晶闸管具有很低的压降和很高的电流承受能力,使其能够在高功率电子设备中广泛应用。
晶闸管结构和工作原理
晶闸管结构和工作原理晶闸管是一种电力电子器件,主要用于交流电的控制。
它具有可控硅的性质,可用于控制高功率电路中的电流和电压。
下面将详细介绍晶闸管的结构和工作原理。
晶闸管的结构:晶闸管主要由四个层状结构的半导体材料构成,分别为N型半导体层、P型半导体层、N型半导体层和P型半导体层。
其中,两个N型半导体层分别为阳极和阴极,两个P型半导体层分别为控制电极和控制极。
这四个层状结构组成了一个PNPN的结构,在两个P型半导体层之间形成一个N型的电流通道。
晶闸管的工作原理:晶闸管的工作原理可以分为四个阶段:关断状态、触发状态、导通状态和自关断状态。
1.关断状态:当晶闸管两端的电压低于其耐压能力时,晶闸管处于关断状态。
此时,晶闸管的正向和反向电阻非常大,几乎不导电。
2.触发状态:当控制电极施加一个正向电压时,会在控制电极和阳极之间形成一个小电流。
这个小电流被称为触发电流,它可以激活和控制晶闸管的导通。
3.导通状态:当晶闸管的控制电极施加一个足够的触发电流时,晶闸管可以从关断状态转变为导通状态。
此时,晶闸管会变为低电阻状态,导通电流流过。
4.自关断状态:当晶闸管处于导通状态时,只有当电流降至零或通过一个负电流触发时,晶闸管才能自动返回关断状态。
此时,通过断开控制电路或通过反向电流将晶闸管的控制电极电压逆向极化,晶闸管会自动关断。
晶闸管的应用:晶闸管作为一种可控硅器件,具有广泛的应用。
主要有以下几个方面:1.交流电控制:晶闸管可以用于控制交流电的电流和电压,如家电中的电炉、实验室中的变压器和电机控制等。
2.电力调节器:晶闸管可以用于电力调节器中,用于控制电能的输出和稳定电路。
3.变频器:晶闸管可以用于变频器中,将交流电转换为不同频率的电流,广泛应用于电机调速、光伏发电和风电发电等领域。
4.焊接设备:晶闸管可以用于电子焊接设备中,控制焊接电流的大小和稳定性。
5.逆变器:晶闸管可以用于逆变器中,将直流电转换为交流电,并可调节输出电压和频率,应用于太阳能发电和电动汽车等领域。
晶闸管的结构以及工作原理
晶闸管的结构以及工作原理一、晶闸管的基本结构可控硅整流器(SCR)是一种四层结构的大功率半导体器件。
它也被称为可控整流器或可控硅元件。
它有三个引出电极,即阳极(a)、阴极(k)和栅极(g)。
符号表示和设备部分如图1所示。
图1符号表示法和器件剖面图普通晶闸管在n型硅片中双向扩散p型杂质(铝或硼)形成p1n1p2结构,然后在P2的大部分区域扩散n型杂质(磷或锑)形成阴极。
同时,在P2上引出栅极,在P1区域形成欧姆接触作为阳极。
-1-图2。
晶闸管载波分配二、晶闸管的伏安特性晶闸管的通断状态由阳极电压、阳极电流和栅极电流决定。
它们之间的关系通常用伏安特性曲线来描述,如图3所示。
-2-图3晶闸管伏安特性曲线当晶闸管vak加正向电压时,j1和j3正偏,j2反偏,外加电压几乎全部降落在j2结上,j2结起到阻断电流的作用。
随着vak的增大,只要vak?vbo,通过阳极电流ia都很小,因而称此区域为正向阻断状态。
当vak增大超过vbo以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过由负载决定的通态电流it,器件压降为1v左右,特性曲线cd段对应的状态称为导通状态。
通常将vbo及其所对应的ibo称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流ih的某一临界值以下,器件才能被关断。
当晶闸管处于关闭状态(VAK?VBO)时,如果栅极相对于阴极为正,并且电流Ig施加到栅极,晶闸管将在较低的电压下导通。
转向电压VBO和转向电流IBO都是Ig的功能。
Ig越大,VBO越小。
如图3所示,一旦晶闸管导通,即使栅极信号被移除,该装置仍导通。
当晶闸管的阳极相对于阴极为负,只要vak?vro,ia很小,且与ig基本无关。
但反向电压很大时(vak?vro),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称vro为反向转折电压和转折电流。
第一章:电力电子器件晶闸管
2.反向重复峰值电压URRM:在门极断路而结温为额定值时,允许 重复加在器件上的反向峰值电压。
3.通态(峰值)电压UTM:晶闸管通以某一规定倍数的额定通态 平均电流时的瞬态峰值电压。
4.额定电压:取晶闸管的UDRM和URRM中较小的标值作为该器件 的额定电压。选用晶闸管时,额定电压要留有一定裕量。
最小门极电流; ● UGr:指产生触发电流 IGr 所需门极电压值; ● 环境温度高时需要的 Igr 和 Ugr 要小些;
环境温度低时需要的 IGr 和 Ugr 要大些; ● 同一型号晶闸管门极特性分散性较大,因此触发电路送出的
触发电流和触发电压应适当大于额定值的上限,但不能超过 最大电流、电压和功率极限。
雪崩 击穿
IH
IG2
IG1 IG=0
O
UDRM Ubo +UA
UDSM
-IA
一.静态特性
§1.3.2 晶闸管的基本特性
1.正向特性:器件施加正向电压,IG=0 时,正向阻断状态,只有 很小的正向漏电流流过;正向电压超过临界极限——正向转折
电压Ubo,则漏电流急剧增大,器件开通; ● 随着门极电流幅值的增大,正向转折电压降低;
IC2=2 IK + ICBO2
(1-2) ICBO:共基极漏电流
I K=IA+IG
(1-3)
IA=Ic1+Ic2
(1-4)
IA
2 I G I CBO1 I CBO2 1 ( 1 2 )
(1-5)
★ 晶闸管中的晶体管特性为:
● 在低发射极电流下 是很小的; ● 而当发射极电流建立起来之后, 迅速增大。
晶闸管的工作原理
晶闸管的工作原理晶闸管是一种电子器件,用于控制直流或交流电流的流动,它有着广泛的使用场合,比如变频器、电子调压器、电子稳压器等。
本文将详细介绍晶闸管的工作原理。
一、晶闸管的结构晶闸管是由四层P-N结构构成,其中包括一个PNPN四层结构,在四个结之间有一些控制引脚。
晶闸管之所以被称为"可控硅",是因为它的PNPN四层结上一个控制电压可以改变结内的电阻,进而改变晶闸管的导通性能。
晶闸管的上下两个接口分别为阴极(C)和阳极(A),第三个引脚为控制态晶体(G),第四个引脚为触发极(T)。
当晶闸管的控制极接通一定的电压,晶体内的电子开始运动,此时晶闸管就可以导电。
二、晶闸管的工作原理1. 晶闸管的导通当晶体管的控制极施加一个正的触发脉冲时,会通过控制极、基极、阳极、阴极,形成一个电压引导,使得晶闸管进入导通状态,在导通状态下,晶闸管的电流可以高达几百安培。
2. 晶闸管的关断当通过晶闸管的电流小于其维持电流等级时,晶件处于关断状态,此时晶闸管会把所有的电流阻止在其耗散电阻中,即是晶闸管的电流变成向耗散电阻方向流动,并阻止向阴阳极流出。
当在晶体管的阳极有正向电压加到临门时,此时晶体管的硅晶在电场作用下可产生开孔,使得阳极所加电压的电流向晶体管的控制极G流入,使得晶能进入导通状态。
在晶闸管的导通状态下,从阳极到阴极的电流不断增大,但是从控制极G到阳极的电流却非常小,此时控制极G断电后,晶体管不会立即关断,它会维持一定的电流容量,直到晶体管的电流降低到维持电流以下,晶体管才会进入关断状态。
三、晶闸管的优势晶闸管相对于其他电子器件,有如下优势:1. 低功耗:晶闸管转换数据时会使无功损耗降至最低,从而达到更高效的传输速率。
2. 维护方便:晶闸管不需要额外的维护,因为它的包装结构只需要更换整个组件就可以在很长的时间内维持。
3. 节省成本:晶闸管组件的启动输入电流较于其他电子器件更低,所以在启动的时候只需要更小的电源,就可以完成同样的复杂任务。
晶闸管结构及工作原理_
晶闸管结构及工作原理_晶闸管的结构主要由四个区域组成:N区,P区,N+区和P+区。
其中N区和P区之间形成PN结,N+区和P+区之间形成P+N结。
在N区和P区之间加上一个外接电压,当向PN结端施加一个正向电压时,PN结处的电子和空穴被迁移到PN结的另一侧,形成一个导电通路。
这个导电通路就是晶闸管的主要通道。
晶闸管的工作原理是基于PNPN结构。
当晶闸管处于关断状态时,PN 结处有一个薄的绝缘层,没有电流通过。
一旦向PN结端施加一个正向电压,PN结附近的电子被迁移到P区,形成电子空穴对。
这些电子空穴对再漂移到PN结另一侧,继续形成更多的电子空穴对,这样就形成了一个电导通道。
当晶闸管接通时,通过PNPN结的电流增加,PN结的电场增强,进一步促进了电流的传输。
晶闸管内部的电导通道逐渐扩大,形成一个低阻通道,从而允许更大的电流通过。
晶闸管处于导通状态时,仅需一个较小的控制电流即可控制整个晶闸管的电流。
通过控制晶闸管的触发脉冲,可以实现开关功能。
当有一个触发脉冲施加在PNPN结上时,PNPN结的电流迅速增加,晶闸管从导通状态转换为关断状态。
同样地,当再次施加一个触发脉冲时,晶闸管又从关断状态转换为导通状态。
晶闸管的工作原理主要涉及到PNPN结的电流迁移和电导特性。
其关键在于控制电路和触发脉冲的施加。
正是通过对触发脉冲进行控制,以及对晶闸管的电流和电压进行有效的监控,才能实现对晶闸管的精确控制。
晶闸管的结构和工作原理的理解对于实际应用非常重要。
晶闸管可以在电力控制、变换和调制等领域中发挥重要作用,如交流电变直流电、电能调节和传输等。
通过深入了解晶闸管的特性和工作原理,可以更好地应用晶闸管,提高电力系统的效率和可靠性。
晶闸管的构造和工作原理
晶闸管是一种半导体器件,常用于电能控制领域。它由多种组成部分构成, 通过导通和关断过程实现电流控制和电力转换。下面我们将深入了解晶闸管 的原理和应用。
什么是晶闸管?
晶闸管是一种功率半导体器件,能够在一个电压触发条件下控制电流流动。 它通过自我保持性质,只需要一次触发就可以持续导通电流。
晶闸管的结构
晶闸管由四层结构的PNPN型晶体管构成,包括一个P型层、一个N型层、一 个P型层和一个N型层。结构的四个区域称为阳极、阴极、控制极和触发极。
晶闸管的工作原理
当施加触发电压时,晶闸管进入导通状态。在导通状态下,阳极和阴极之间的电流可以流动。当电流降低到一 个非导通电流水平时,晶闸管自动关闭。
3
关断状态
晶闸管处于关断状态,电流无法通过。
晶闸管的分类
晶闸管可以根据不同的工作原理和结构特点进行分类,常见的包括雪崩晶闸 管、光控晶闸管和门极可控晶闸管等。
理想晶闸管的特性
低导通压降
理想的晶闸管具有低导通压降,能够减少功耗。
高导通能力
可以承受较大的电流,具有高导通能力。
快速响应
理想的晶闸管能够快速响应触发信号,实现快速导通。
导通过程分析
1
注入过程
当施加触发电压时,少数载流子被注入晶体结构中。
2
扩散过程
注入的载流子扩散到晶闸管内部,形成导电通道。
3
电流流动
在导电通道中,电流可以自由流动,晶闸管处于导通状态。
关断过程分析
1
断续过程
施加负向电压时,载流子重新组合,导电通道断开。
2
封堵过程
断开的导电通道被封堵住,电流无法流动。
3 可控性强
晶闸管的导通和关断过程可以通过控制信号进行精确控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、晶闸管的基本结构晶闸管(SemiconductorControlled Rectifier 简称SCR )是一种四层结构(PNPN )的大功率半导体器件,它同时又被称作可控整流器或可控硅元件。
它有三个引出电极,即阳极(A )、阴极(K )和门极(G )。
其符号表示法和器件剖面图如图1所示。
图1 符号表示法和器件剖面图普通晶闸管是在N 型硅片中双向扩散P 型杂质(铝或硼),形成211P N P 结构,然后在2P 的大部分区域扩散N 型杂质(磷或锑)形成阴极,同时在2P 上引出门极,在1P 区域形成欧姆接触作为阳极。
图2、晶闸管载流子分布二、晶闸管的伏安特性晶闸管导通与关断两个状态是由阳极电压、阳极电流和门极电流共同决定的。
通常用伏安特性曲线来描述它们之间的关系,如图3所示。
图3 晶闸管的伏安特性曲线当晶闸管AK V 加正向电压时,1J 和3J 正偏,2J 反偏,外加电压几乎全部降落在2J 结上,2J 结起到阻断电流的作用。
随着AK V 的增大,只要BO AK V V <,通过阳极电流A I 都很小,因而称此区域为正向阻断状态。
当AK V 增大超过BO V 以后,阳极电流突然增大,特性曲线过负阻过程瞬间变到低电压、大电流状态。
晶闸管流过由负载决定的通态电流T I ,器件压降为1V 左右,特性曲线CD 段对应的状态称为导通状态。
通常将BO V 及其所对应的BO I 称之为正向转折电压和转折电流。
晶闸管导通后能自身维持同态,从通态转换到断态,通常是不用门极信号而是由外部电路控制,即只有当电流小到称为维持电流H I 的某一临界值以下,器件才能被关断。
当晶闸管处于断态(BO AK V V <)时,如果使得门极相对于阴极为正,给门极通以电流G I ,那么晶闸管将在较低的电压下转折导通。
转折电压BO V 以及转折电流BO I 都是G I 的函数,G I 越大,BO V 越小。
如图3所示,晶闸管一旦导通后,即使去除门极信号,器件仍然然导通。
当晶闸管的阳极相对于阴极为负,只要RO AK V V <,A I 很小,且与G I 基本无关。
但反向电压很大时(RO AK V V ≈),通过晶闸管的反向漏电流急剧增大,表现出晶闸管击穿,因此称RO V 为反向转折电压和转折电流。
三、晶闸管的静态特性晶闸管共有3个PN 结,特性曲线可划分为(0~1)阻断区、(1~2)转折区、(2~3)负阻区及(3~4)导通区。
如图5所示。
(一)正向工作区1、正向阻断区(0~1)区域当AK 之间加正向电压时,1J 和3J 结承受正向电压,而2J 结承受反向电压,外加电压几乎全部落在2J 结身上。
反偏2J 结起到阻断电流的作用,这时晶闸管是不导通。
2、雪崩区(1~2也称转折区)当外加电压上升接近2J 结的雪崩击穿电压2BJ V 时,反偏2J 结空间电荷区宽度扩展的同时,内电场也大大增强,从而引起倍增效应加强。
于是,通过2J 结的电流突然增大,并使得流过器件的电流也增大。
此时,通过2J 结的电流,由原来的反向电流转变为主要由1J 和3J 结注入的载流子经过基区衰减而在2J 结空间电荷区倍增了的电流,这就是电压增加,电流急剧增加的雪崩区。
因此区域发生特性曲线转折,故称转折区。
3、负载区(2~3)当外加电压大于转折电压时候,2J 结空间电荷区雪崩倍增所产生大量的电子—空穴对,受到反向电场的抽取作用,电子进入1N 区,空穴进入2P 区,由于不能很快的复合,所以造成2J 结两侧附近发生载流子积累:空穴在2P 区、电子在1N 区,补偿离化杂质电荷,使得空间电荷区变窄。
由此使得2P 区电位升高、1N 区电位下降,起了抵消外电场作用。
随着2J 结上外加电压下降,雪崩倍增效效应也随之减弱。
另一方面1J 和3J 结的正向电压却有所增强,注入增加,造成通过2J 结的电流增大,于是出现了电流增加电压减小的负阻现象。
4、低阻通态区(3~4)如上所述,倍增效应使得2J 结两侧形成电子和空穴的积累,造成2J 结反偏电压减小;同时又使得1J 和3J 结注入增强,电路增大,因而2J 结两侧继续有电荷积累,结电压不断下降。
当电压下降到雪崩倍增停止以后,结电压全部被抵销后,2J 结两侧仍有空穴和电子积累,2J 结变为正偏。
此时1J 、2J 和3J 结全部正偏,器件可以通过大电流,因为处于低阻通态区。
完全导通时,其伏安特性曲线与整流元件相似。
(二)反向工作区(0~5)器件工作在反向时候,1J 和3J 结反偏,由于重掺杂的3J 结击穿电压很低,1J 结承受了几乎全部的外加电压。
器件伏安特性就为反偏二极管的伏安特性曲线。
因此,PNPN 晶闸管存在反向阻断区,而当电压增大到1J 结击穿电压以上,由于雪崩倍增效应,电流急剧增大,此时晶闸管被击穿。
图4 晶闸管的门极电流对电流—电压特性曲线的影响四、晶闸管的特性方程一个PNPN 四层结构的两端器件,可以看成电流放大系数分别为1α和2α的211P N P 和221N P N 晶体管,其中2J 结为共用集电结,如图6所示。
当器件加正向电压时。
正偏1J 结注入空穴经过1N 区的输运,到达集电极结(2J )空穴电流为A I 1α;而正偏的3J 结注入电子,经过2P 区的输运到达2J 结的电流为K I 2α。
由于2J 结处于反向,通过2J 结的电流还包括自身的反向饱和电流CO I 。
由图6可知,通过2J 结的电流为上述三者之和,即CO K A J I I I I ++=212αα (1)假定发射效率121==γγ,根据电流连续性原理K A J I I I ==2,所以公式(1)变成:)(121αα+-=CO A I I (2) 公式说明,当正向电压小于2J 结的雪崩击穿电压B V ,倍增效应很小,注入电流也很小,所以1α和2α也很小,故有121<+αα (3)此时的CO I 也很小。
所以1J 和3J 结正偏,所以增加AK V 只能使2J 结反偏压增大,并不能使CO I 及A I 增加很多,因而器件始终处于阻断状态,流过器件的电流与CO I 同一数量级。
因此将公式(3)称为阻断条件。
当AK V 增加使得2J 结反偏压增大而发生雪崩倍增时候,假定倍增因子M M M p n ==,则CO I 、1α和2α都将增大M 倍,故(2)变成)(121αα+-=M MI I CO A (4)此时分母变小,A I 将随AK V 的增长而迅速增加,所以当1)(21=+ααM (5)便达到雪崩稳定状态极限(BO AK V V =),电流将趋于无穷大,因此(5)式称为正向转折条件。
准确的转折点条件,是根据特性曲线下降段的起点来标志转折点。
在这点0=A AK dI dV ,022<AAK dI V d 现在利用这个特点,由特性曲线方程式(4)推导转折点条件。
因为1α和2α是电流的函数,M 是2J V 的函数,可近似用)()(2AK J V M V M =,CO I 为常数,对(4)求导AKA dV dI ,计算结果是 AKCO A A A A A A AK A AAK dV dM I I I dI d I M dI d I M dV dI dI dV )()()(11212211+++-+-==αααααα (6) 由于转折电压低于击穿电压,故AKdV dM 为一恒定值。
分母也为恒定值,由于0=AAK dI dV ,分子也必须为零,可得到 1)()(2211=+++AA A A dI d I M dI d I M αααα (7) 根据晶体管直流电压放大系数的定义,CBO E C I I I +=α (8)即可得到小信号电流放大系数EE E C dI d I dI dI ααα+==~ (9) 利用公式(9)可把公式(7)变为 1)(2~~1=+ααM (10)即在转折点,倍增因子与小信号~α之和的乘积刚好为1。
PNPN 结构只要满足上式,便具有开关特性,即可以从断态转变成通态。
由于α是随着电流E I 变化的,当A I 增大,1α和2α都随之增大。
由此可知,在电流较大时,满足(6)的M 值反而可以减小。
这说明A I 增大,AK V 相应减小,这正是图5中曲线(2~3)所示的负阻段。
α既是电流的函数名同时也是集电结电压的函数,当α一定时电流增大则相应的集电结反偏压减小。
当电流很大,会出现121>+αα (6)根据方程(2),2J 结提供一个通态电流(0<CO I )。
因此2J 结必须正偏,于是 1J 、2J 和3J 结全部正偏,器件处于导通。
这便是图5中的低压大电流段。
器件有断态变为通态,关键在于2J 结必须由反偏转为正偏。
2J 结反向专为正向的条件是2P 区、1N 区分别应有空穴和电子积累。
从图(6)可以看出,2P 区有空穴积累的条件是,1J 结注入并且被2J 收集到2P 区的空穴量A I 1α要大于同K I )1(2α-通过复合而消失的空穴量,即K A I I )1(21αα-> (7)因为K A I I =,所以得到121>+αα。
只要条件成立,2P 区的空穴积累同样,1N 区电子积累条件为K A I I )1(12αα-> (8)故121>+αα (9)可见当121>+αα条件满足时候,2P 区电位为正,1N 区电位为负。
2J 结变为正偏,器件处于导通状态,所以121>+αα称为导通条件。
五、门极触发原理如图5-7所示,断态时,晶闸管的1J 和3J 结处于轻微的正偏,2J 结处于反偏,承受几乎全部断态电压。
由于受反向2J 结所限,器件只能流过很小的漏电流。
若在门极相对于阴极加正向电压G V ,便会有一股与阳极电流同方向的门极电流G I 通过3J 结,于是通过3J 结的电流便不再受反偏2J 结限制。
只要改变加在3J 结上的电压,便可以控制3J 结的电流大小。
G I 增大时,通过3J 结的电流的电流也随着增大,由此引起2N 区向2P 区注入大量的电子。
注入2P 区的电子,一部分与空穴复合,形成门极电流的一部分,另一部分电子在2P 区通过扩散到达2J 结被收集到1N 区,由此引起通过2J 结电子电流增加,2α随之增大。
电子被收集到1N 区使得该地区电位下降,从而使得1J 结更加正偏,注入空穴电流增大,于是通过2211N P N P 结构的电流A I 也增大。
而1α和2α都是电流的函数,它将随着电流A I 增大而变大。
这样,当门极电流G I 足够大时候,就会使得通过器件的电流增大,使得121>+αα条件成立。
所以,当加门极信号时候,器件可以在较小的电压下触发导通。
G I 越大,导通时候的转折电压就越低,如图4所示。
对于三端晶闸管,如图所示7,通过2J 结的各电流分量之和仍然等于总电流A I ,即A C I I 11α= (1)A C I I 22α= (2)A G K I I I += (3)CO c c A I I I I ++=21 (4)将(1)和(3)分别代入(4)有CO K A A I I I I ++=21αα (5)当考虑倍增效应情况下,各电流分量经过2J 结空间电荷区后都要增大M 倍,因此CO K A A MI I M I M I ++=21αα (8))(1)(212ααα+-+=M I I M I G CO A (9))(1212ααα+-+=GCO A I I I (当M=1) (10)这就是晶闸管的特性方程,它表明晶闸管加正向电压时,阳极电流与1α和2α以及G I 和CO I 的关系。