(完整版)整数裂项.docx
小学奥数裂项公式汇总资料
裂项运算常用公式一、分数“裂差”型运算(1) 对于分母可以写作两个因数乘积的分数,即b a ⨯1形式的,这里我们把较小的数写在前面,即 a <b ,那么有: )11(11b a a b b a --=⨯(2) 对于分母上为 3 个或 4 个连续自然数乘积形式的分数,即有:⎪⎪⎭⎫⎝⎛+⨯+-+⨯=+⨯+⨯)2()1(1)1(121)2()1(1n n n n n n n⎪⎪⎭⎫⎝⎛+⨯+⨯+-+⨯+⨯=+⨯+⨯+⨯)3()2()1(1)2()1(131)3()2()1(1n n n n n n n n n n二、分数“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a b b a b b a a b a b a 11+=⨯+⨯=⨯+(2)a bb ab a b b a a b a b a +=⨯+⨯=⨯+2222裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,“先裂再碎,掐头去尾”分数裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
裂和:抵消,或 凑整三、整数裂项基本公式(1))1()1(31)1(......433221+-=⨯-++⨯+⨯+⨯n n n n n(2) )1()1)(2(41)1()2(......543432321+--=⨯-⨯-++⨯⨯+⨯⨯+⨯⨯n n n n n n n (3) )1()1(31)2)(1(31)1(+--++=+n n n n n n n n n n n n +=+2)1((4) )2)(1()1(41)3)(2)(1(41)2)(1(++--+++=++n n n n n n n n n n n(5) !)!1(!n n n n -+=⨯裂项求和部分基本公式1.求和: 1)1(1......541431321211+=+++⨯+⨯+⨯+⨯=n n n n S n证:1111)111()5141()4131()3121()211(+=+-=+-++-+-+-+-=n n n n n S n2.求和:12)12)(12(1971751531311+=+-++⨯+⨯+⨯+⨯=n n n n S n证:12)1211(21)121121(21)7151(21)5131(21)311(21+=+-=+--++-+-+-=n n n n n S n3.求和:13)13)(23(11071741411+=+-++⨯+⨯+⨯=n n n n S n证:)131231(31)10171(31)7141(31)411(31+--++-+-+-=n n S n 13)1311(31+=+-=n n n4.求和:)2111211(31)2(1641531421311+-+-+=+++⨯+⨯+⨯+⨯=n n n n S n 证:)1111(21)6141(21)5131(21)4121(21)311(21+--++-+-+-+-=n n S n )2111211(31)211(21+-+--+=+-+n n n n5.求和:⎪⎪⎭⎫ ⎝⎛++-=++++⨯⨯+⨯⨯+⨯⨯=)2)(1(12121)2)(1(1543143213211n n n n n S n 证:因为])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n , ])2)(1(121[21])2)(1(1)1(1[21)431321(21)321211(21++-=++-+++⨯-⨯+⨯-⨯=∴n n n n n n S n特殊数列求和公式2)1(321+=++n n n 212311321n n n n =++++-++-++++ )()(2127531n n =-++++)(6)12)(1(21222++=+++n n n n 3)14(3)12)(12(1253122222-⨯=-+=-++++n n n n n n )( ()()412121222333+=++=+++n n n n平方差公式 ))((22b a b a b a -+=-完全平方和(/差)公式 2222)(b ab a b a +±=±。
(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版.docx
整数裂项与分数裂和考试要求(1)能熟练运算常规裂和型题目;(2)复杂整数裂项运算;(3)分子隐蔽的裂和型运算。
知识结构一、复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加 1 的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0 时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、“裂和”型运算常见的裂和型运算主要有以下两种形式:(1) a bab1 1(2) a 2b2 a 2b2a ba b a b a b b a a b a b a b b a裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
重难点(1)复整数裂的特点及灵活运用(2)分子蔽的裂和型运算。
例题精讲一、整数裂【例 1】算:1 3 2 4 3 5 4 6 L 99 101【巩固】算: 3 5 5 7 7 9 L 97 99 99 101【例 2】算1016 22 16 22 28 L 70 76 82 76 8288【巩固】 3 3 3 4 4 4 L 79 7979【例 4】计算:1 1 1 2 2 2 3 3 3 L 99 99 99 100 100 100【例 5】1 1 2 1 2 3 1 2 3 4 L 1 2 3 L100【巩固】 3 3 6 3 6 9 L 3 6 L300二、分数裂和【例 6】填空:51,71,91 62123204 111, 131, 151 3054265675791113151719【巩固】计算: 1122030425672906【例7】 5 6 6 7 78 8 9 9 1056677889910【巩固】36579111357612203042【例 8】计算:132579101119 3457820212435【巩固】12379111725 3571220283042【例 9】111112010263827 2330314151119120123124【巩固】3549637791105 1 316122030425688【例10】122222321821921922021223181919201212221222321222324212 2 2262【巩固】1323132333132333431323263 13课堂检测1、1 4 4 7 7 10 L 4952 =_________57911131517192、计算: 11220304256729063 、1179817512 22 22 32 20042 20052 20052 200624、22 3L20052005 20061 20045、 11 11L 11111223299 2家庭作业1、 1 1 2 2 3 3 L 50 502、 2 4 6 4 6 8 L 96 98 1003、 1 2 3 7911 21 313 5 7 12 20 28 40 564 、(11) (22) (33) L(88) (99 ) 2349105、 1 2 1 2 3 1 2 3 4 L 1 2 3 L 502 23 2 34 2 3 L 50教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:。
(完整word版)整数裂项例题讲解
整数裂项例题讲解对于较长的复杂算式,单单靠一般的运算顺序和计算方法是很难求出结果的.如果算式中每一项的排列都是有规律的,那么我们就要利用这个规律进行巧算和简算。
而裂项法就是一种行之有效的巧算和简算方法。
通常的做法是:把算式中的每一项裂变成两项的差,而且是每个裂变的后项(或前项)恰好与上个裂变的前项(或后项)相互抵消,从而达到“以短制长”的目的。
下面我们以整数裂项为例,谈谈裂项法的运用,并为整数裂项法编制一个易用易记的口诀。
例1、计算1×2+2×3+3×4+4×5+……+98×99+99×100分析:这个算式实际上可以看作是:等差数列1、2、3、4、5……98、99、100,先将所有的相邻两项分别相乘,再求所有乘积的和。
算式的特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)2×3=(2×3×4-1×2×3)÷(1×3)3×4=(3×4×5—2×3×4)÷(1×3)4×5=(4×5×6-3×4×5)÷(1×3)……98×99=(98×99×100—97×98×99)÷(1×3)99×100=(99×100×101—98×99×100)÷(1×3)将以上算式的等号左边和右边分别累加,左边即为所求的算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101—0×1×2)÷3。
裂项公式大全基本
裂项公式大全基本1.二项展开公式:二项展开公式是裂项公式的基本形式,用于展开一个二项式的幂。
假设有两个实数a和b,以及非负整数n,则二项展开公式如下:(a+b)^n=C(n,0)*a^n*b^0+C(n,1)*a^(n-1)*b^1+C(n,2)*a^(n-2)*b^2+...+C(n,n-1)*a^1*b^(n-1)+C(n,n)*a^0*b^n其中C(n,k)表示组合数,表示从n个元素中选择k个元素的组合的个数。
2.差的平方公式:差的平方公式用于展开一个两个实数的差的平方。
假设有两个实数a 和b,则差的平方公式如下:(a - b)^2 = a^2 - 2ab + b^23.和的平方公式:和的平方公式用于展开一个两个实数的和的平方。
假设有两个实数a 和b,则和的平方公式如下:(a + b)^2 = a^2 + 2ab + b^24.三项展开公式:三项展开公式是裂项公式的扩展形式,用于展开一个三项式的幂。
假设有三个实数a、b和c,以及非负整数n,则三项展开公式如下:(a + b + c)^n = Σ(i=0 to n) Σ(j=0 to n-i) C(n, i, j) *a^(n-i-j) * b^i * c^j其中C(n,i,j)表示三项式系数,表示从n个元素中选择i个元素的组合的个数,且这i个元素中的j个选择为c。
5.四项展开公式:四项展开公式是裂项公式的进一步扩展,用于展开一个四项式的幂。
假设有四个实数a、b、c和d,以及非负整数n,则四项展开公式如下:(a + b + c + d)^n = Σ(i=0 to n) Σ(j=0 to n-i) Σ(k=0 to n-i-j) C(n, i, j, k) * a^(n-i-j-k) * b^i * c^j * d^k其中C(n,i,j,k)表示四项式系数,表示从n个元素中选择i个元素的组合的个数,且这i个元素中的j个选择为c,这j个元素中的k个选择为d。
(完整版)五年级奥数.计算综合.整数裂项与分数裂和(A级).学生版
(1) 能熟练运算常规裂和型题目;(2) 复杂整数裂项运算;(3) 分子隐蔽的裂和型运算。
一、 复杂整数裂项型运算复杂整数裂项特点:从公差一定的数列中依次取出若干个数相乘,再把所有的乘积相加。
其巧解方法是:先把算式中最后一项向后延续一个数,再把算式中最前面一项向前伸展一个数,用它们的差除以公差与因数个数加1的乘积。
整数裂项口诀:等差数列数,依次取几个。
所有积之和,裂项来求作。
后延减前伸,差数除以N 。
N 取什么值,两数相乘积。
公差要乘以,因个加上一。
需要注意的是:按照公差向前伸展时,当伸展数小于0时,可以取负数,当然是积为负数,减负要加正。
对于小学生,这时候通常是把第一项甩出来,按照口诀先算出后面的结果再加上第一项的结果。
此外,有些算式可以先通过变形,使之符合要求,再利用裂项求解。
二、 “裂和”型运算常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
考试要求知识结构整数裂项与分数裂和(1) 复杂整数裂项的特点及灵活运用(2) 分子隐蔽的裂和型运算。
一、整数裂项【例 1】 计算:1324354699101⨯+⨯+⨯+⨯++⨯L【巩固】计算:355779979999101⨯+⨯+⨯++⨯+⨯L【例 2】 计算101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯L【例 3】 计算1×1+2×2+3×3+……+99×99+100×100例题精讲重难点【巩固】333444797979⨯⨯+⨯⨯++⨯⨯L【例 4】 计算:111222333999999100100100⨯⨯+⨯⨯+⨯⨯++⨯⨯+⨯⨯L【例 5】 ()()()()1121231234123100+++++++++++++++L L【巩固】()()()33636936300++++++++++L L二、分数裂和【例 6】 填空: ()+=2165, ()+=31127, ()+=41209()+=513011,()+=614213, ()+=715615【巩固】计算:90197217561542133011209127651+-+-+-+-【例 7】 5667788991056677889910+++++-+-+⨯⨯⨯⨯⨯【巩固】 36579111357612203042++++++【例 8】计算:132579101119 3457820212435 ++++++++=【巩固】12379111725 3571220283042 +++++++【例 9】111112010263827 2330314151119120123124 +++++++++【巩固】3549637791105311 6122030425688⎡⎤⎛⎫-+-+--÷ ⎪⎢⎥⎝⎭⎣⎦【例 10】22222222 122318191920 122318191920 ++++ ++⋯⋯++⨯⨯⨯⨯【巩固】333222333322223332223322322621262143214321321321212111+⋯+++⋯++-⋯+++++++-+++++++-1、 14477104952⨯+⨯+⨯++⨯L =_________2、 计算:57911131517191612203042567290-+-+-+-+3、 11798175451220153012++++++ 课堂检测4、 222222221223200420052005200612232004200520052006++++++++⨯⨯⨯⨯L5、 2221111112131991⎛⎫⎛⎫⎛⎫+⨯+⨯⨯+ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭L1、 1122335050⨯+⨯+⨯++⨯L2、 2464689698100⨯⨯+⨯⨯++⨯⨯L家庭作业3、12379112131 3571220284056 +++++++4、12389 (1)(2)(3)(8)(9)234910 -⨯-⨯-⨯⨯-⨯-L5、12123123412350 2232342350 ++++++++++⨯⨯⨯⨯++++++LLL学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:教学反馈。
整数裂项
整数裂项整数裂项基本公式(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,相互抵消。
设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以 原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×7 7×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++而()()333333333333135191232024620++++=++++-++++22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++ 221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷ 2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++= 【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-, 可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!= 【答案】2009!。
整数裂项
整数裂项整数裂项基本公式(1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,相互抵消。
设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×(4-1)=2×3×4-1×2×33×4×3=3×4×(5-2)=3×4×5-2×3×4……49×50×3=49×50×(51-48)=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】 1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________【考点】整数裂项 【难度】3星 【题型】计算【解析】 本题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进行计算.对于项数较多的情况,可以进行如下变形:()()()()()()()()()12111111211333n n n n n n n n n n n n n n ++--++==++--+, 所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭1910113303=⨯⨯⨯= 另解:由于()21n n n n +=+,所以 原式()()()222112299=++++++()()222129129=+++++++119101991062=⨯⨯⨯+⨯⨯330= 采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 设S =14477104952⨯+⨯+⨯++⨯1×4×9=1×4×7+1×4×24×7×9=4×7×(10-1)=4×7×10-1×4×7 7×10×9=7×10×(13-4)=7×10×13-4×7×10………….49×52×9=49×52×(55-46)=49×52×55-46×49×529S =49×52×55+1×4×2S =(49×52×55+1×4×2)÷9=15572【答案】15572【例 3】 12323434591011⨯⨯+⨯⨯+⨯⨯++⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭191011124=⨯⨯⨯⨯2970= 从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 4】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进行整数裂项.357913573578⨯⨯⨯-⨯⨯⨯⨯⨯=, 5791135795798⨯⨯⨯-⨯⨯⨯⨯⨯=, 17192123151719211719218⨯⨯⨯-⨯⨯⨯⨯⨯=, 所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+()()()22222232352519219=-⨯+-⨯++-⨯ ()()333351943519=+++-⨯+++()()3333135194135193=++++-⨯+++++而()()333333333333135191232024620++++=++++-++++22221120218101144=⨯⨯-⨯⨯⨯19900=, 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,本题中各项之间是断开的,为此可以将中间缺少的项补上,再进行计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯,则123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯197989910010119010098805=⨯⨯⨯⨯⨯=, 现在知道A 与B 的和了,如果能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.12342345345645675678979899100A B -=⨯⨯⨯-⨯⨯⨯+⨯⨯⨯-⨯⨯⨯+⨯⨯⨯++⨯⨯⨯4(123345567...979899)=⨯⨯⨯+⨯⨯+⨯⨯++⨯⨯222242(21)4(41)6(61)98(981)⎡⎤=⨯⨯-+⨯-+⨯-++⨯-⎣⎦33334(24698)4(24698)=⨯++++-⨯++++ 221148495041004942=⨯⨯⨯⨯-⨯⨯⨯48010200= 所以,()1901009880480102002974510040A =+÷=.【答案】974510040【例 5】 2004200320032002200220012001200021⨯-⨯+⨯-⨯++⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯()213520012003=⨯+++++()21200310022=⨯+⨯÷ 2008008=其中也可以直接根据公式()2135721n n +++++-=得出2135200120031002+++++= 【答案】2008008【例 6】 11!22!33!20082008!⨯+⨯+⨯++⨯=【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,33!3321(41)3214!3!⨯=⨯⨯⨯=-⨯⨯⨯=-,……20082008!20082008200721(20091)20082007212009!2008!⨯=⨯⨯⨯⨯⨯=-⨯⨯⨯⨯⨯=-, 可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!= 【答案】2009!。
小学奥数-整数裂项
小学奥数--整数裂项对于较长得复杂算式,单单靠一般得运算顺序与计算方法就是很难求出结果得。
如果算式中每一项得排列都就是有规律得,那么我们就要利用这个规律进行巧算与简算。
而裂项法就就是一种行之有效得巧算与简算方法。
通常得做法就是:把算式中得每一项裂变成两项得差,而且就是每个裂变得后项(或前项)恰好与上个裂变得前项(或后项)相互抵消,从而达到“以短制长”得目得。
下面我们以整数裂项为例,谈谈裂项法得运用,并为整数裂项法编制一个易用易记得口诀。
后延减前伸差数除以N例1、计算1×2+2×3+3×4+4×5+…+98×99+99×100分析:这个算式实际上可以瞧作就是:等差数列1、2、3、4、5……98、99、100,先将所有得相邻两项分别相乘,再求所有乘积得与。
算式得特点概括为:数列公差为1,因数个数为2。
1×2=(1×2×3-0×1×2)÷(1×3)2×3=(2×3×4-1×2×3)÷(1×3)3×4=(3×4×5-2×3×4)÷(1×3)4×5=(4×5×6-3×4×5)÷(1×3)……98×99=(98×99×100-97×98×99)÷(1×3)99×100=(99×100×101-98×99×100)÷(1×3)将以上算式得等号左边与右边分别累加,左边即为所求得算式,右边括号里面诸多项相互抵消,可以简化为(99×100×101-0×1×2)÷3。
整数裂项的计算方法
整数裂项的计算方法嘿,咱今儿个就来唠唠整数裂项的计算方法!这可是个很有意思的玩意儿呢!你看啊,整数裂项就像是一把神奇的钥匙,能帮我们打开那些看似复杂难搞的数学大门。
比如说,咱有个式子像这样:1×2+2×3+3×4+……+n(n+1)。
哇,乍一看是不是有点头疼?别急,这时候整数裂项就派上用场啦!我们可以把每一项都拆分成两个数的差,就像这样:1×2=(1×2×3-0×1×2)÷3,2×3=(2×3×4-1×2×3)÷3,3×4=(3×4×5-2×3×4)÷3……以此类推。
然后你发现没,中间的那些项都可以相互抵消掉啦!最后就剩下两头的,神奇不神奇?这就好像我们在走一条长长的路,一路上有很多小障碍,但通过整数裂项这个方法,就像是找到了一条巧妙的捷径,一下子就穿过去了!再比如另一个例子,计算1²+2²+3²+……+n²。
这也能用整数裂项来搞定呢!我们可以把每一项都转化一下,变成可以裂项的形式。
你想想,数学的世界多奇妙啊!整数裂项就像是隐藏在其中的一个小秘密,等着我们去发现和运用。
咱平常学习数学,不就是要不断探索这些好玩的方法嘛!就像探险家在未知的领域里寻找宝藏一样,每找到一个新方法,都让人兴奋不已!通过整数裂项,那些原本让人头疼的式子都变得乖乖听话啦!咱可以轻松地算出结果,那种感觉,就像打了一场胜仗一样爽!所以啊,同学们可千万别小瞧了这个整数裂项的计算方法哦!它能让我们在数学的海洋里畅游得更顺畅,更开心!多去试试,多去探索,你就会发现它的魅力所在啦!怎么样,是不是迫不及待想去试试啦?赶紧的吧!。
整数裂项方法
整数裂项方法
整数裂项方法,那可真是数学世界里的一颗璀璨明珠啊!你知道吗,它就像是一把神奇的钥匙,能打开那些看似复杂难解的数学大门。
我们来看看整数裂项到底是怎么一回事。
比如说,有一个数列 1,2,3,4,5……那怎么通过裂项来找到其中的规律和奥秘呢?这就好像是在一个大宝藏中寻找隐藏的宝贝一样刺激!
把一个整数拆分成几个数的和或差,这就是裂项的核心啊!这不就像是把一个大拼图拆成小块,然后再重新组合,发现它原本的模样吗?比如说 5 可以拆成 2 和 3,也可以拆成 1 和 4,这多有趣啊!
通过裂项,我们可以把复杂的计算变得简单易懂。
就好像原本是一团乱麻,突然就被理清了头绪。
这难道不令人惊叹吗?比如计算从 1 到 100 的所有整数的和,要是直接一个个加,那得累死人啊!但用裂项方法,就轻松多了。
而且啊,整数裂项方法在解决很多实际问题中也大显身手呢!它就像是一个万能工具,不管遇到什么难题,都能派上用场。
难道你不想掌握这样神奇的方法吗?
在学习整数裂项方法的过程中,可能会遇到一些困难,但这有什么可怕的呢?不经历风雨怎么见彩虹,对吧?就像爬山一样,虽然过程中会累会辛苦,但当你爬到山顶,看到那美丽的风景时,一切都值得了。
整数裂项方法就是这样独特又精彩,它让我们看到数学的魅力和无限可能。
不用它,那不是太可惜了吗?所以啊,大家都要好好去探索和运用整数裂项方法,让自己在数学的海洋中畅游,去发现更多的奇妙和惊喜!这就是我的观点,毋庸置疑!。
小学奥数教程整数裂项.教师版 全国通用
整数裂项根本公式 (1) 122334...(1)n n ⨯+⨯+⨯++-⨯1(1)(1)3n n n =-⨯⨯+ (2) 1123234345...(2)(1)(2)(1)(1)4n n n n n n n ⨯⨯+⨯⨯+⨯⨯++-⨯-⨯=--+ 【例 1】 1223344950⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算【解析】 这是整数的裂项。
裂项思想是:瞻前顾后,互相抵消。
设S =1223344950⨯+⨯+⨯++⨯1×2×3=1×2×32×3×3=2×3×〔4-1〕=2×3×4-1×2×33×4×3=3×4×〔5-2〕=3×4×5-2×3×4……49×50×3=49×50×〔51-48〕=49×50×51-48×49×503S =1×2×3+2×3×3+3×4×3+…+49×50×3=49×50×51S =49×50×51÷3=41650【答案】41650【巩固】1223344556677889910⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯=________ 【考点】整数裂项 【难度】3星 【题型】计算 【解析】 此题项数较少,可以直接将每一项乘积都计算出来再计算它们的和,但是对于项数较多的情况显然不能这样进展计算.对于项数较多的情况,可以进展如下变形:所以原式1111112323412391011891033333⎛⎫⎛⎫=⨯⨯⨯+⨯⨯⨯-⨯⨯⨯++⨯⨯⨯-⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭另解:由于()21n n n n +=+,所以原式()()()222112299=++++++采用此种方法也可以得到()()()112231123n n n n n ⨯+⨯++⨯+=++这一结论. 【答案】330【例 2】 14477104952⨯+⨯+⨯++⨯=_________【考点】整数裂项 【难度】3星 【题型】计算 【解析】 设S =14477104952⨯+⨯+⨯++⨯ 1×4×9=1×4×7+1×4×24×7×9=4×7×〔10-1〕=4×7×10-1×4×7 7×10×9=7×10×〔13-4〕=7×10×13-4×7×10例题精讲知识点拨整数裂项49×52×9=49×52×〔55-46〕=49×52×55-46×49×529S =49×52×55+1×4×2S =〔49×52×55+1×4×2〕÷9=15572【答案】15572【考点】整数裂项 【难度】3星 【题型】计算【解析】 ()()()()()()()()111212311244n n n n n n n n n n n ++=+++--++,所以, 原式11111123423451234910111289101144444⎛⎫⎛⎫=⨯⨯⨯⨯+⨯⨯⨯⨯-⨯⨯⨯⨯++⨯⨯⨯⨯-⨯⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭从中还可以看出,()()()()()1123234345121234n n n n n n n ⨯⨯+⨯⨯+⨯⨯++⨯+⨯+=+++ 【答案】2970【例 3】 计算:135357171921⨯⨯+⨯⨯++⨯⨯= .【考点】整数裂项 【难度】3星 【题型】计算【解析】 可以进展整数裂项.所以原式35791357171921231517192113588⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯=⨯⨯+++1719212313571358⨯⨯⨯-⨯⨯⨯=⨯⨯+171921231358⨯⨯⨯+⨯⨯=19503= 也可适用公式.原式()()()()()()323325255219219192=-⨯⨯++-⨯⨯+++-⨯⨯+ 而()()333333333333135191232024620++++=++++-++++ 21351910100++++==,所以原式1990041003=-⨯+19503=.【答案】19503【巩固】 计算:101622162228707682768288⨯⨯+⨯⨯++⨯⨯+⨯⨯ 【考点】整数裂项 【难度】3星 【题型】计算【解析】 可进展整数裂项:原式1016222841016221622283410162228=2424⨯⨯⨯-⨯⨯⨯⨯⨯⨯-⨯⨯⨯⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭【答案】2147376【巩固】 计算:123434565678979899100⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯=【考点】整数裂项 【难度】3星 【题型】计算【解析】 一般的整数裂项各项之间都是连续的,此题中各项之间是断开的,为此可以将中间缺少的项补上,再进展计算.记原式为A ,再设23454567678996979899B =⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯, 那么123423453456979899100A B +=⨯⨯⨯+⨯⨯⨯+⨯⨯⨯++⨯⨯⨯如今知道A 与B 的和了,假如能再求出A 与B 的差,那么A 、B 的值就都可以求出来了.所以,()1901009880480102002974510040A =+÷=.【答案】974510040【考点】整数裂项 【难度】3星 【题型】计算【解析】 原式20032200123212=⨯+⨯++⨯+⨯ 其中也可以直接根据公式()2135721n n +++++-=得出【答案】2008008【考点】整数裂项 【难度】4星 【题型】计算【解析】 观察发现22!221(31)213!2!⨯=⨯⨯=-⨯⨯=-,可见,原式1!(2!1!)(3!2!)(2009!2008!)=+-+-++- 2009!= 【答案】2009! 【例 4】 计算:1234569910023459899⨯+⨯+⨯++⨯=⨯+⨯++⨯ 【考点】整数裂项 【难度】5星 【题型】计算 【解析】 设原式=B A122334989999100A B +=⨯+⨯+⨯++⨯+⨯ ()()()11230122341239910010198991003=⨯⨯-⨯⨯+⨯⨯-⨯⨯++⨯⨯-⨯⨯⎡⎤⎣⎦1991001013333003=⨯⨯⨯= 1232992501005000B A -=⨯+⨯++⨯=⨯=3333005000338333330050003283B A +==- 【答案】33833283。
整数裂项题目
整数裂项题目
摘要:
一、整数裂项题目的背景和定义
二、整数裂项题目的解题技巧和方法
1.分解质因数法
2.短除法
3.综合运用
三、整数裂项题目的实际应用
1.数学竞赛
2.日常生活计算
四、总结整数裂项题目的意义和重要性
正文:
整数裂项题目是数学中一种常见的题目类型,它涉及到整数的分解和计算。
对于这类题目,掌握解题技巧和方法至关重要。
首先,我们需要了解整数裂项题目的背景和定义。
整数裂项题目是指将一个整数分解为两个或两个以上的整数的乘积,这些乘积被称为裂项。
例如,将整数24裂项,可以得到24=2×2×2×3,这就是一个三项裂项。
针对整数裂项题目,有三种常用的解题技巧和方法。
第一种是分解质因数法。
通过将整数分解为质因数的乘积,再进行裂项。
例如,将整数36分解质因数,得到36=2×2×3×3,这就是一个四项裂项。
第二种方法是短除法。
短除法是一种简便的分解整数的方法,通过不断地除以最小的裂项,直至无法再
除为止。
第三种方法是综合运用。
在实际解题过程中,可以根据题目的具体情况,灵活运用以上两种方法。
整数裂项题目在实际生活中有着广泛的应用。
在数学竞赛中,这类题目经常出现,考验学生的计算能力和思维能力。
在日常生活中,我们也常常需要对整数进行裂项计算,例如计算利息、折扣等。
掌握整数裂项题目,可以帮助我们更加快速、准确地进行计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
整数裂项
整数裂 基本公式
(1) 1 2 2 3 3 4 ... (n
1) n
1 1) n ( n
1) (n
3
(2) 1 2 3 2 3 4 3
4 5 ... (n
2) (n 1) n
1 ( n 2)( n 1)n(n 1)
4
【例 1 】 1 2 2 3 3 4 L
49 50=_________
【考点】整数裂 【 度】 3 星
【 型】 算
【解析】
是整数的裂 。
裂 思想是:瞻前 后,相互抵消。
S = 1
2 2
3 3
4 L 49 50
1×2×3= 1×2×3
2×3×3= 2×3×( 4- 1)= 2×3×4- 1×2×3 3×4×3= 3×4×( 5- 2)= 3×4×5- 2× 3× 4⋯⋯
49×50×3= 49×50×( 51- 48) =49 ×50×51- 48×49×50 3S = 1×2×3+ 2×3×3+ 3×4×3+ ⋯+ 49×50×3= 49×50×51 S = 49×50×51÷3= 41650
【答案】 41650
【巩固】 1 2 2 3 3 4
4 5 5 6 6 7
7 8 8 9 9 10 ________
【考点】整数裂
【 度】 3 星
【 型】 算
【解析】本 数 少,可以直接将每一 乘 都 算出来再 算它 的和,但是 于 数 多的情况 然
不能 行 算. 于 数 多的情况,可以 行如下 形:
n n 1 n 2
n 1 n n 1
1
1
n 1 n n 1 , n n 1
3
n n 1 n 2
3
3
所以原式
1 1
2 3
1 2 3 4 1 1 2 3
L
1 9 10 11 1
8 9 10
3
3 3
3
3 1
10 11 330
9
3
另解:由于 n n 1 n 2 n ,所以
原式
12 1 22 2 L
92 9
12
22 L
92
1 2
L 9
1 9 10 19 1 9 10
330
6
2 1
采用此种方法也可以得到
1 2 2 3 L
n
n
1
1 n
2 一 .
n n
3
【答案】 330
【例 2 】 1 4
4 7
7 10 L
49 52 =_________
【考点】整数裂
【 度】 3 星
【 型】 算
【解析】
S = 1 4 4 7 7 10 L 49 52
1×4×9= 1×4×7+ 1×4×2
4×7×9= 4×7×( 10- 1)= 4×7×10- 1×4×7
7×10×9= 7×10×( 13-4)= 7×10×13- 4×7×10
⋯⋯⋯⋯.
49×52×9= 49×52×( 55- 46)= 49×52×55- 46×49×52
9S= 49×52×55+ 1×4×2
S=( 49×52×55+ 1×4×2)÷9=15572
【答案】 15572
【例 3 】 1 2 3 2 3 4 3 4 5 L 9 10 11
【考点】整数裂【度】 3 星【型】算
【解析】 n n1n21
n1n2n3
1
1 n n1n
2 ,所以,n n
44
原式1
1 2 3 41 2 3 4 5
1
1 2 3 4L
1
9 10 11 12
1
8 9 10 11 44444
1
91011122970
4
从中可以看出,1232343 4 5L n n11
n 2 n 3 n 2n n 1
4
【答案】 2970
【例 4 】算:1 3 5357L171921.【考点】整数裂【度】 3 星【型】算
【解析】可以行整数裂.
357 3 5 7 9 1 3 5 7 ,
8
579 5 7 9 11 3 5 7 9 ,
8
17192117 19 21 23 15 17 19 21 ,
8
所以原式
135********
L
1719212315171921 88
13517192123135717192123135
88
19503
也可适用公式.
原式 3 2 3 3 2 5 2 5 5 2 L19 2 19 19 2 3222 3 5222 5 L1922219
3353L 193 4 3 5 L 19
133353L 193 4 1 3 5 L 19 3
而 133353L 193132333L 203234363L203
1
20221281
10211219900,
44
1 3 5 L 19 102100 ,所以原式19900 4 100 3 19503.
【答案】19503
【巩固】算:1 2 3 4 3 4 5 6 5 6 7 8 L 97 98 99 100
【考点】整数裂【度】 3 星【型】算
【解析】一般的整数裂各之都是的,本中各之是断开的,此可以将中缺少的上,
再行算.
原式 A ,再 B2345456767 89L96979899 ,
A B 1 234 2 3453456L979899100
1
9798991001011901009880 ,
5
在知道 A 与 B 的和了,如果能再求出 A 与 B 的差,那么 A 、 B 的就都可以求出来了.
A B12342345345645 6 7567 8L9798 99 100
4(123345567... 979899)
42(221)4(421)6(621)L98(9821)
4(2 34363L983 )4(246L98)
48149250 2411004948010200
42
所以, A1901009880480102002974510040 .
【答案】 974510040
【例 5 】2004 2003 20032002 2002200120012000L 2 1
【考点】整数裂【度】 3 星【型】算
【解析】原式2003220012L3212
2135L20012003
21200310022
2008008
其中也可以直接根据公式 1 357L2n 1 n2得出
1 35L20012003
2 1002
【答案】2008008
【例 6 】 1 1!22!33!L20082008!
【考点】整数裂【度】 4 星【型】算
【解析】察 22!221(31)213!2! ,
3 3!3321(41)32 14!3! ,⋯⋯
20082008!20082008 2007L 2 1,
(20091)20082007L212009!2008!
可,原式1!(2!1!)(3!2!)L(2009!2008!)2009!【答案】 2009!
【例 7 】计算:1
23456L99100
2345L98 99
【考点】整数裂项【难度】 5 星【题型】计算
【解析】设原式 =
B
A
A B 122334L989999100
1
1230122 3 412 3 L99 100 101 98 99 100 3
【答案】
1
99 100 101333300
3
B A 1 2 3 2 L 99 2 50 100 5000 B 333300 50003383
A 333300 50003283
3383
3283。