LTE干扰处理要点

合集下载

TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册引言TD-LTE(Time Division-Long Term Evolution)是一种4G移动通信技术,其上行信号受到干扰会影响网络性能和用户体验。

这篇文档旨在介绍TD-LTE上行干扰的定位方法和提供排查指导手册,帮助网络运维人员快速定位和解决干扰问题。

TD-LTE上行干扰的定义TD-LTE上行干扰是指在TD-LTE系统的上行频带中,由于外部因素导致信号质量下降,从而影响到正常设备的通信质量。

常见的干扰源包括其他无线通信设备、电磁干扰、天气条件等。

TD-LTE上行干扰的定位方法现场勘测1.使用专业的功率分析仪进行场强测试,记录各个位置的信号强度。

根据测试结果,可以初步判断干扰源的方位和强度。

2.根据勘测结果,在网络管理系统中标记出干扰源所在的区域,并记录对应的信息,便于后续排查和干扰源的定位。

特殊干扰事件分析1.根据用户投诉或网络性能异常的事件记录,对特定时间段的数据进行分析。

通过分析这些事件发生的时间、地点和规律,可以初步确定干扰源的可能性和范围。

2.基于事件发生的时段和地点,对相关设备进行深度排查和监测,利用网络管理系统提供的工具分析干扰源的特征和影响范围。

频谱监测与分析1.使用频谱分析仪对TD-LTE上行频段进行监测,识别异常频谱特征。

干扰源通常具有特殊的频谱分布,通过频谱分析可以帮助定位干扰源。

2.借助频谱分析仪提供的功率谱图、水平图和瀑布图等视图,可以更直观地观察到频谱上的干扰特征,进一步确定干扰源的方位和类型。

其他辅助工具1.利用网络管理系统提供的相关工具,如无线性能监控、用户分析等,结合干扰事件发生时的数据记录,进行数据分析,找出与事件相关的关键信息,以帮助确定干扰源的位置。

2.配合现场勘测和频谱监测的结果,利用数学建模和计算机仿真等方法,进一步提高定位干扰源的准确性。

TD-LTE上行干扰的排查指导手册前期准备1.确认干扰事件的特征和范围。

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
龙LF-3小区提升至第一平台
思考:目前宿迁DCS1800暂未发现由于垂直隔离度低导致的杂散干扰,因此在平台 有空余空间的情况可以更换至其他平台。
24
1、DCS1800杂散干扰的解决方案-调整效果
8月10日对3小区更换平台,整改前后指标对比如下:
FTP吞吐率测试 整改前 下载 整改后 宿豫来 龙LF-3 提升 整改前 上传 整改后 提升 RSRP Average SINR 下行吞吐率 RSRP Average SINR 下行吞吐率 下行吞吐率 RSRP Average SINR 上行吞吐率 RSRP Average SINR 上行吞吐率 上行吞吐率 好点 -68 31 60.2 -71 27.3 60.4 0.2 -67 30 9.46 -72 27.3 11.9 2.44 中点 -90 14.75 28.7 -89 15.5 45.7 17 -85 17.3 4.52 -90 15.3 7.91 3.39 差点 -102 5.7 8.6 -99 7.9 29.8 21.2 -97 5.2 1.87 -99 6.7 6.19 4.32
用户 感知
3
系统间干扰-杂散干扰特征

LTE无线网络中的干扰协调技术

LTE无线网络中的干扰协调技术

LTE无线网络中的干扰协调技术近年来,随着移动通信用户数量的不断增加和频谱资源的紧张,无线网络中的频谱资源利用率成为了一个重要的课题。

对于LTE无线网络来说,由于其使用的是频分复用技术,因此会存在大量的干扰问题。

为了解决这个问题,干扰协调技术应运而生。

一、LTE无线网络中的干扰问题在LTE无线网络中,由于多个用户同时使用同一频段,必然会产生相互之间的干扰。

具体来说,干扰主要分为两种情况:一种是同步干扰,另一种是异步干扰。

同步干扰是指来自同一基站传输的信道之间发生的干扰,多数情况下是由于基站内部时序同步不达规定水平所引起的。

而异步干扰主要指与不同基站传输信道之间相互抵触招致的干扰。

当信道之间存在干扰的情况时,信号质量就会严重下降,从而影响通信质量。

二、干扰协调技术的分类干扰协调技术可以分为两大类,一类是基于协作的干扰协调技术,另一类是基于信道质量的干扰协调技术。

基于协作的干扰协调技术主要是通过在不同基站间进行通信协同,减少互相之间的干扰。

其中,最常见的技术包括动态频谱共享技术、传输干扰协调技术等。

而基于信道质量的干扰协调技术则是通过监测无线信道的质量情况,根据不同用户之间的信道质量差异来实现干扰协调。

技术手段主要包括功率控制、资源块分配优化、信道跟踪技术等。

三、功率控制技术功率控制技术是干扰协调技术中的一种重要技术。

实际上,它也是目前应用最为广泛的技术之一。

通过对各个用户的发送功率进行控制,就可以减少同一频率的用户之间的干扰。

在LTE无线网络中,功率控制技术通常分为两种类型:第一种是基于控制信号的功率控制技术。

在该技术中,传输端和接收端之间通过控制信号的变化来实现功率的调节。

具体来说,就是根据接收到的信号功率信息,发送一定的控制信号,通知发送端正确设置发送功率。

第二种是基于调整开关时间的功率控制技术。

该技术主要是通过改变信道开关时间的长短来实现功率的调节。

具体来说,就是通过动态调整信道开启的时间,在保证通信质量的前提下达到功率控制的目的。

LTE多系统互调干扰解决方案

LTE多系统互调干扰解决方案

LTE多系统互调干扰解决方案随着移动通信技术的发展,LTE多系统互调干扰问题成为运营商面临的一个重要挑战。

在现有的网络中,由于LTE与其他无线通信系统共用频段,可能会导致互调干扰,进而降低用户通信质量。

为了解决这一问题,需要采取一系列的技术手段和规范措施。

本文将介绍LTE多系统互调干扰的解决方案。

1.频域资源规划在LTE系统中,通过对频谱进行动态管理和分配,可以减少与其他系统之间的互调干扰。

首先,需要对不同系统的频段进行合理划分,避免频段交叠。

其次,可以采用跳频技术,即在一定时间间隔内,动态改变频率使用情况,从而降低互调干扰的可能性。

2.功率控制合理的功率控制策略可以减少互调干扰的发生。

LTE系统中可以根据实际情况,动态调整功率水平,使得发射功率不超过允许的最大值。

同时,可以通过设备间的协调,控制系统之间的功率差异,从而降低互调干扰。

3.空域资源规划通过合理的空域资源规划,可以将相邻系统之间的载波分配得更加均匀,从而减少互调干扰的概率。

可以利用网络规划工具进行仿真分析,确定不同站点的位置和天线方向,使得站点之间的干扰最小化。

4.前向误差校正(FEIC)前向误差校正是一种通过提前对LTE信号进行处理的技术手段,从而降低与其他系统之间的互调干扰。

通过对信号进行数字预处理,可以有效地降低互调干扰带来的负面影响。

5.信号过滤通过在LTE系统中增加过滤器,可以实现对其他系统产生的互调干扰信号的滤波。

这样可以阻止互调干扰信号进入LTE系统,从而提高系统的抗干扰能力。

6.接收端敏感度控制在LTE系统中合理控制接收机的灵敏度,可以减少来自其他系统的信号带来的互调干扰。

通过动态调整接收机的灵敏度级别,可以使其能够更好地抵抗互调干扰带来的影响。

总结起来,LTE多系统互调干扰问题的解决方案包括频域资源规划、功率控制、空域资源规划、前向误差校正、信号过滤和接收端敏感度控制等。

通过采取这些措施,可以有效地降低多系统互调干扰的概率,提高用户通信质量。

LTE同频干扰

LTE同频干扰

L TE解决同频干扰的方法很多:方法一:LTE采用OFDM技术,小区内用户的信号都是正交的,各用户之间信号互不干扰,遮掩避免了小区内的干扰方法二:加扰,这个2G就有的技术方法三:跳频技术,这个2G就有的技术方法四:发射端波束赋形:它的思想就是通过波束赋形技术的运用,提高目标用户的信号强度,同时主动降低干扰用户方向的辐射能量(假如能判断出干扰用户的位置),此消彼长来解决小区间干扰。

方法五:IRC 抑制强干扰技术,当接收端也是多天线的话,就可以利用多天线来降低用户间干扰,其主要原理估计目标基站和干扰基站的信号,通过对接收信号进行加权来抑制干扰。

这个技术目前比较复杂,实际中应用很少采用。

方法六:也是LTE避免同频干扰的主要、关键技术 :小区间的干扰协调,基本思想就是以小区协调的方式对资源使用进行限制,包括限制时频资源的可用性,或者限制功率资源可用性来是边缘用户得以区分。

主要分为2 种方式,频率资源协调和功率资源协调。

1)频率资源协调:将频率分为3 份,保证边缘用户始终处于异频的状态,从而避免小区间干扰.小区中间用户全部使用频率,而小区边缘的用户则只使用三分之一的频率,从而是覆盖边界形成异频。

当然,这样做牺牲频率资源,也牺牲了平均吞吐量但是保证了边缘的吞吐量。

2)功率资源协调:和上面的原理一样,也是保证边缘异频,但是是通过功率来控制覆盖实现。

每个小区都会在某一个频率上加强功率,其余 2 个频率上降低功率,从而使小区边缘的频率不同,实现异频来解决干扰。

基本原理同频率协调,它的好处是频率资源得到了全部的使用,缺点是功率资源没用完,浪费了。

IUV-4G全网规划部署V2.0(公测版)新增功能说明一、无线性能优化功能无线增加网络系统性能优化功能,优化参数配置适配场景参数,达到系统速率性能最优化。

优化参数描述如下:1. PCIa) 功能描述:标识小区的物理层标识号,LTE中终端以此区分不同小区的无线信号,PCI取值范围(0-503),分成168组,每组包含3个小区ID。

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

LTE网络优化-干扰问题处理(干扰特征规律总结及整改经验总结)

方位角、安装DCS1800滤波器及更换D频段天线的顺序整改。
增加DCS1800 滤波器 21% 调整方位角 7%
按图施工 21%
其他 3%
更换天线位臵 17%
更换为D频段 14% 调整天线平台 17%
22
1、DCS1800杂散干扰的解决方案-按图施工
与设计院会审整改方案时发现存在工程未按设计图纸施工的现象,如宿迁宿城 中豪国际星城LF三个小区均存在上行干扰,现场勘查与DCS1800隔离度仅有 1.2米,与设计图纸不符,已要求按图整改:
南通麦客隆C PRB干扰对比
0 -20 1 4 7 1013161922252831343740434649525558616467707376798285889194 -40 -60 -80 -100 -120 -140 关闭电信FDDLTE前 关闭电信FDDLTE后
12
1、电信FDD-LTE阻塞干扰
思考:现网未按图施工的站点绝不仅有这一个站点,为什么站点建设时不按图施 工?后期单验为什么未发现?为什么会通过验收?
23
1、DCS1800杂散干扰的解决方案-调整天线平台
宿迁宿豫来龙LF-3小区后台指标统计存在较强的上行干扰,现场勘查发现L3小 区与DCS1800隔离度较小导致:
整改方案:现场发现宿宿豫来龙LF-2小区在第一平台,而1、3小区在第二平台,与 结合设计图纸对比一致,同时发现在第一平台240度方向上有空抱杆,建议将宿豫来
影响范围:单个小区
4
系统间干扰-宽频干扰特征
宽频干扰主要是阻塞干扰和设备故障等造成。 频域100个RB的典型特征为绝大部分RB均受到强干扰。
主要干扰源:电信联通FDD使用1880MHz频段,自身接收机性能较差;设备 故障等

LTE覆盖干扰分析及优化

LTE覆盖干扰分析及优化

LTE覆盖干扰分析及优化文章主要研究LTE覆盖干扰优化思路,通过弱覆盖优化、模三干扰分析、重叠覆盖率优化、网络拓扑结构优化、邻区优化,改善LTE干扰水平,提升4G 网络质量。

标签:FDD-LTE;覆盖;干扰;优化;模三;邻区漏配1 概述LTE采用同频组网,整个系统覆盖范围内的所有小区可以使用相同的频带为本小区内的用户提供服务,频谱效率高,但是相邻小区在小区的交界处由于使用了相同的频谱资源,则容易产生较强的小区间干扰。

2 干扰分类根据干扰产生的原因,LTE干扰可分为系统内干扰、系统间干扰和外部干扰三个部分:(1)系统内干扰:主要指LTE系统内因邻区数据配置错误、PCI越区覆盖、重叠覆盖等带来的小区与小区之间的干扰;对于LTE而言,系统内干扰还可能存在交叉时隙干扰,GPS失步干扰,超远覆盖干扰等。

(2)系统间干扰:主要指LTE与其他不同系统之间因隔离度、互调等问题造成的系统与系统之间的干扰。

(3)外部干扰:通常为非通信系统的未知干扰源。

2.1 系统内干扰OFDM技术,LTE系统较好的解决了小区内同频干扰,但存在较严重的小区间同频干扰。

造成邻区同频干扰的主要原因是:(1)邻区漏配无法切换导致的邻区干扰;(2)PCI冲突、PCI模三冲突导致RS在频域上的干扰;(3)重叠覆盖区域过大导致的邻区干扰;(4)越区覆盖导致的干扰。

2.2 系统间干扰当LTE和GSM900、DCS1800、WCDMA2100、CDMA800、TD SCDMA(A频段、E频段)共存时,这些系统和LTE之间都有可能产生相互干扰。

这些干扰主要有以下几类:(1)邻频干扰:如果不同的系统工作在相邻的频率,由于发射机的邻道泄漏和接收机邻道选择性的性能的限制,就会发生邻道干扰;(2)杂散干扰:由干扰源在被干扰接收机工作频段产生的噪声,使被干扰接收机的信噪比恶化;(3)互调干扰:种类包括多干扰源形成的互调、发射分量与干扰源形成的互调和交调干扰;(4)阻塞干扰:阻塞干扰并不是落在被干扰系统接收带内的,但由于干扰信号过强,超出了接收机的线性范围,导致接收机饱和而无法工作。

LTE干扰处理分析

LTE干扰处理分析

LTE干扰处理分析LTE(Long Term Evolution)是一种高速无线通信技术,广泛应用于4G移动通信系统中。

然而,在实际应用中,LTE信号的传输可能会受到各种干扰,从而影响通信质量和性能。

为了解决这个问题,必须进行干扰处理的分析。

首先,我们来分析一下可能导致LTE信号干扰的原因。

LTE信号在传输过程中容易受到同频干扰和邻频干扰的影响。

同频干扰指的是不同LTE基站之间频率资源的冲突,当多个基站在相同频率上工作时,信号会相互干扰。

邻频干扰是指邻近频段的信号对LTE信号的影响,例如邻近的WiFi信号或其他无线通信系统的信号。

针对同频干扰问题,有几种常见的干扰处理方法。

一种是通过改进天线设计和布局来减小同频干扰。

例如,可以采用不同方向的天线,使得信号在特定方向上干扰最小化。

另一种方法是增加基站的解调复杂度,在接收端使用更加复杂的信号处理算法,提高信号的建模和估计能力,从而减小同频干扰。

对于邻频干扰问题,一种常见的解决方法是采用频谱规划和频谱监测技术。

通过将LTE系统的频段与其他无线通信系统的频段进行合理的划分,可以尽量减小邻频干扰的可能性。

此外,频谱监测技术可以实时监测周围环境中的邻近信号强度和频率使用情况,及时调整LTE系统的工作频段,避免与其他系统的频段产生冲突。

除了同频干扰和邻频干扰外,LTE信号还可能受到其他干扰的影响,例如多径衰落、多用户干扰和自身信号质量问题。

多径衰落是由于信号在传播过程中经历多个路径,抵达接收端时产生干扰。

为了处理这个问题,可以采用多天线传输技术,例如MIMO(Multiple-Input Multiple-Output)技术,以减小多径干扰的影响。

多用户干扰是指当多个用户同时使用LTE系统时,由于资源分配不合理或者用户间距离过近而产生互相干扰的问题。

为了解决这个问题,可以考虑合理的资源调度和功率控制策略,避免用户之间的干扰。

自身信号质量问题是指LTE系统自身的信号质量不佳,例如信号衰减或者过强的干扰。

TD-LTE干扰问题特征规律总结及整改经验总结

TD-LTE干扰问题特征规律总结及整改经验总结

➤主要干扰源:GSM900:2f1、f1+f2,DCS1800:2f1-f2 且自身互调性能较差。 ➤影响范围:单个小区。
3、系统内干扰分析 1、远距离同频干扰特征
远距离同频干扰概述: TDD 无线通信系统中, 在某种特定的气候、 地形、 环境条件下, 远端基站下行时隙传输距离超过 TDD 系统上下行保护时隙(GP)的保护距离,干扰到了本 地基站上行时隙。这就是 TDD 系统特有的“远距离同频干扰”。在大规模部署的网络中,此 类干扰较为普遍, 且可能会对本地基站的上行用户随机接入时隙以及上行业务时隙造成干扰, 从而影响用户上行随机接入、切换过程以及上行业务时隙。 这类干扰在频域上同样具有明显的分布特征,频域整体均有抬升,中间的 6 个 RB (RB47-52)抬升更明显。
DCS1800 滤波器及更换 D 频段天线的顺序整改。 ➤排查流程: 通过对杂散干扰源的排查及整改,梳理出 LTE 杂散干扰排查流程:
➤经验总结: 1、各厂家 DCS1800 设备杂散性能统计

对于我公司/联通杂散较差的 DCS1800 设备如果与 F 频段共站,即使 DCS1800 不使 用 1850M 以上频点,也会对共站的 F 频段设备产生杂散干扰,影响 RB 视隔离度等因 素决定。
➤扫频仪:电信 FDD-LTE 使用了 1880MHz,图为 JDSU 扫频仪在某小区(移动电信 共址站点)现场捕获的频率使用信息,可以清晰看出 1860-1880MHz 的存在 FDD-LTE 信 号。 ➤测试手机:利用电信 SIM 卡和 4G 终端对此处疑似信号进行测试,发现电信 LTE 信 号如下:TDD2530~2550MHzband41,FDD 下行 1850~1870Mhz,1860~ 1880MHzband3。

LTE干扰类型分析专题指导

LTE干扰类型分析专题指导

LTE干扰类型分析专题指导1、TDD超远干扰1.1 干扰原理超远干扰通常是由于无线传播环境条件较好,同系统的站点信号经过长距离传输后,强度衰减较少,同时由于传播时延,导致干扰信号的下行落到被干扰基站的上行,造成干扰,也称为“远距离同频干扰”。

如下图,干扰信号经过远距离传输,DwPTS 落到被干扰基站的UpPTS,造成上行干扰,若传输距离更远,还可能会干扰到后面的UL 时隙。

TD-LTE 系统中,特殊子帧的GP 长度决定了DL 不会干扰UL 的最大距离。

协议规定了多种特殊子帧的配比方式,每种方式保护距离计算如下,超过这个距离,则有可能产生上述原理所介绍的超远干扰。

子帧长度1ms,14 个symbol,以3:9:2 为例,GP 占用9 个symbol,即9/14 个子帧:保护距离D = 300000km/s * (9 / 14)*0.001s = 192.9km 1.2,干扰频谱特征时域特征:由前到后呈明显的减弱趋势,可能干扰到UpPTS 甚至部分或全部的UL 时隙。

频域特征:频域上通常整个带宽内都有干扰抬升。

1.3,解决办法TDD系统特有干扰,受大气波导影响,目前没有有效解决办法。

2,TDD帧失步干扰(GPS 失锁、帧偏置错误)2.1,干扰原理TDD 系统对时钟同步的精确性有很高的要求,不同用户到达基站的信号、以及不同基站发射的信号严格同步,系统方能正确运行。

为了提高抗干扰的能力,协议规定特殊子帧的DwPTS 和UpPTS 之间保留一个GP 保护长度作为隔离,确保上下行不会产生干扰,同时每个子帧末尾都留有一定长度的CP(循环前缀)保护长度,GP 保护长度由系统配置的特殊子帧配比决定,最小为71.4us (配置8),最大为714us(配置0)。

若帧失步时间超过当前配置下的GP 保护长度,UpPTS 就会受到干扰。

帧失步干扰通常是由于GPS 失锁、星卡隐形故障导致。

目前一些地方移动公司要求各个频段帧头保持一致,同时频段内所有小区帧偏置一致,若某个小区与周边小区帧偏置设置不一致,也会对周边基站造成上行干扰。

TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册

TD-LTE上行干扰定位方法与排查指导手册一、引言TD-LTE是一种主流的移动通信标准,但在实际使用过程中,可能会出现上行干扰问题,这会影响用户的通信体验。

因此,掌握上行干扰的定位和排查方法是非常重要的。

二、上行干扰的定位方法1. 频谱扫描:通过频谱扫描仪在基站周围进行频谱扫描,观察是否有异常的信号出现,找出干扰信号的频点和功率。

2. MIMO接收机干扰探测:利用MIMO接收机对接收到的信号进行处理,通过信噪比、干扰均匀度等参数来判断是否存在干扰信号。

3. 基站干扰定位:通过对基站进行探测,观察其邻频功率是否符合标准,如不符合则可能存在干扰信号。

三、上行干扰的排查指导手册1. 确认干扰类型:首先需要确定是外部干扰还是内部干扰,是来自其他无线电设备的干扰,还是来自自身基站设备的干扰。

2. 排查可能的干扰源:对周围环境进行调查,可能的干扰源包括电源设备、微波炉、雷达等。

3. 联合运营商进行排查:联合运营商进行干扰排查,对周围环境进行分析和调查,确认干扰源并进行处理。

4. 更新设备:如果是自身基站设备引起的干扰,及时升级设备软件或更换设备,确保设备符合标准,以减少干扰信号的发生。

四、结论TD-LTE上行干扰的定位和排查方法对于保障通信质量至关重要,需要进行科学的分析和系统的处理。

通过以上方法,可以有效地定位和排查上行干扰问题,保障用户通信体验。

五、实际案例分析以下是一个关于TD-LTE上行干扰的实际案例,以便更好地理解如何应用上述定位方法与排查指导手册。

案例描述:某地区的移动通信基站在一段时间内出现了上行干扰问题,用户反馈通话质量差,数据传输不稳定等情况。

运营商收到大量投诉后,决定对该地区的基站进行上行干扰的定位与排查。

定位与排查过程:1. 频谱扫描:工程师使用频谱扫描仪对该区域进行频谱扫描,发现在一些频点上出现了异常的信号。

经过进一步分析,发现这些信号源于周围的一些工业设备,如工厂的电炉和工业微波炉。

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施

LTE室分多系统合路干扰分析与整改措施LTE室分多系统合路干扰分析与整改措施中讯邮电咨询设计院有限公司2014年06月目次1干扰问题现象 (4)2干扰站点比例 (4)3 干扰问题原因 (4)3.1互调干扰分析 (4)3.2互调干扰的影响因素 (7)3.3功率容量影响分析 (8)4建议整改措施 (10)4.1整改目标 (10)4.2整改方案 (10)4.3其他工作要求 (10)LTE室分多系统合路干扰分析与整改措施目前,广东联通1800MHz FDD-LTE室分建设方案大多为合路至原室分系统,开通后出现了WCDMA室分底噪异常抬升的干扰问题,严重影响了现网3G用户。

为解决此类问题,广东联通网络建设部特制定《LTE室分多系统合路干扰分析与整改措施》用于指导LTE室分工程建设。

1干扰问题现象LTE室分合路至原系统激活之后,WCDMA室分RTWP有1-5dB的抬升;LTE模拟下行加载100%后,部分WCDMA室分RTWP有15-20dB的明显抬升。

干扰现象如下图所示:LTE室分多系统合路干扰示意图1(D/W/L合路)2干扰站点比例前期专项研究工作主要在广州开展,广州FDD规模为560站,其中合路站点共374站,占比66.8%。

目前已开通LTE室分168个,其中方案为合路站点111个;存在干扰站点15个,占比13.5%。

广分LTE站点互调干扰处理进度0512.xlsx3 干扰问题原因3.1互调干扰分析无源互调是射频信号路径中两个或多个射频信号因各种无源器件 (例如天线、电缆或连接器) 的非线性特性引起的混频干扰信号。

在大功率、多信道系统中,铁磁材料、异种金属焊接点、金属氧化物接点和松散的射频连接器都会产生Case1当前频段划分互调示意图(二)Case 2(D/W/L合路后续规划频段划分):DCS 1800: 1830-1840/1735-1745 MHz;LTE1800: 1840-1860/1745-1765 MHz UMTS2100: 2130-2145/1940-1955 MHz互调产物频率的分析结果:(1)三阶互调产物不会干扰GL1800和UMTS2100的上行;(2)五阶互调产物不会干扰GL1800和UMTS2100的上行;(3)七阶互调产物会干扰部分G1800上行频率(1740-1745),部分U2100上行频率(1940-1950),整个LTE1800的上行频率。

LTEF频段主要干扰及解决方式

LTEF频段主要干扰及解决方式

LTE系统F频段常见干扰及解决措施1.DCS1800阻塞干扰成因:当DCS1800使用高端频率(1865-1880MHZ)且F频段现网TD-SCDMA/TD-LTE基站的抗阻塞能力不足,将产生阻塞干扰。

规避方法:1)调整DCS1800频点:可通过关闭DCS1800高端频点载波来降低阻塞干扰的影响,尽量使用1830MHZ以下频点。

由于容量需求无法避免使用1830MHZ以上频点时,应至少保证不使用1865MHZ以上频点。

2)调整天面:通过调整TD-LTE天面与DCS1800天面的垂直距离、方向角、俯仰角和水平距离等来提高两系统间的隔离度,以达到降低干扰的目的。

3)在TD-LTE基站加装抗阻塞滤波器或整体更换RRU:通过在TD-LTE基站加装额外的抗阻塞滤波器(该滤波器可内置于天线中)或整体更换抗阻塞性能更优的RRU来抑制阻塞干扰。

2.DCS1800杂散干扰成因:由于我公司现网部分DCS1800基站在F频段内的杂散指标较差,将对F频段TD-LTE 基站产生杂散干扰。

规避方法:1)调整天面:通过调整TD-LTE天面与DCS1800天面的垂直距离、方向角、俯仰角和水平距离等来提高两系统间的隔离度,以达到降低干扰的目的。

2)在DCS1800基站加装杂散抑制滤波器:通过在DCS1800基站加装额外的杂散抑制射频滤波器来降低杂散干扰。

滤波器在DCS1800上下行频段的插损应不大于0.5dB,在F频段的抑制度应不小于50dB。

3.DCS1800互调干扰成因:若DCS1800使用高端频率(1850-1880MHZ),且部分DCS1800天馈(含天线、馈线、无源器件)的指标不达标,将对TD-LTE产生三阶互调干扰。

三阶互调产物的计算公式为f=2f2-f1,或f=2f1-f2。

规避方法:1)调整DCS1800频点:可通过关闭DCS1800高频点载波来降低互调干扰的影响,需要将使用的频点降低到1830MHZ以下,以保证三阶、五阶互调产物不落入F频段。

LTE干扰现状、原因分析及解决方案介绍

LTE干扰现状、原因分析及解决方案介绍

LTE干扰现状、原因分析及解决方案介绍干扰原理及分类按照干扰产生的起因可以将干扰分为系统内干扰和系统间干扰。

l系统内干扰:系统内干扰通常为同频干扰。

TD-LTE 系统中,虽然同一个小区内的不同用户不能使用相同频率资源 (多用户 MIMO 除外),但相邻小区可以使用相同的频率资源。

这些在同一系统内使用相同频率资源的设备间将会产生干扰,也称为系统内干扰。

l系统间干扰:系统间干扰通常为异频干扰。

世上没有完美的无线电发射机和接收机。

科学理论表明理想滤波器是不可实现的,也就是说无法将信号严格束缚在指定的工作频率内。

因此,发射机在指定信道发射的同时将泄漏部分功率到其他频率,接收机在指定信道接收时也会收到其他频率上的功率,也就产生了系统间干扰。

主要的干扰详细分类如下图所示:系统内干扰原理lGPS失锁干扰:GPS失锁、星卡故障、GPS天线故障等原因导致时钟不同步的A基站发射信号干扰到了B基站的上行接收。

l超远同频干扰:远距离的站点信号经过传播,DwPTS与被干扰站的UpPTS对齐,导致干扰站的基站发对被干扰站的基站收的干扰.l帧失步干扰:帧偏置配置不当、子帧配比不一致等原因会导致基站间的上下行帧对不齐,导致SiteA的下行干扰到了SiteB的上行,形成帧失步干扰。

l重叠覆盖干扰:A小区和B小区存在重叠区域(同频邻区必然会存在一定的切换区域),由于两个小区之间的信号不是一致的,不正交,会形成干扰。

l硬件故障干扰:设备故障是指在设备运行中,设备本身性能下降等造成干扰包括:RRU故障,RRU接收链路电路工作异常,产生干扰;天馈系统故障,包括天线通道故障,天线通道RSSI接收异常等,天馈避雷器老化,质量问题,产生互调信号落入工作带宽内。

系统间干扰原理l杂散干扰:由于发射机中产生辐射信号分量落入受害系统接收频段内,导致受害接收机的底噪抬升,造成灵敏度损失,称之为杂散干扰。

l互调/谐波干扰:不同频率的发射信号形成互调/谐波产物。

lte干扰解决方案

lte干扰解决方案

lte干扰解决方案
《LTE干扰解决方案》
LTE(Long Term Evolution)是一种高速无线通信标准,它为
移动设备提供了更快的数据传输速度和更可靠的连接。

然而,LTE信号也容易受到各种干扰,如电磁干扰、射频干扰和天
气干扰等。

要解决这些干扰问题,需要采取一些有效的解决方案。

首先,对于电磁干扰和射频干扰,可以使用各种滤波器和干扰抑制技术来减少干扰源对LTE信号的影响。

例如,可以使用
低通滤波器来过滤掉高频干扰,或者使用ADC(Analog to Digital Converter)和DAC(Digital to Analog Converter)等数
字信号处理器来对信号进行处理和干扰抑制。

其次,天气干扰是LTE信号常见的问题之一。

在遇到雷暴、
大风等恶劣天气条件下,LTE信号会受到严重影响甚至中断。

对于天气干扰问题,可以通过加强信号调制和编码技术来提高LTE信号的抗干扰能力,或者在设备和基站之间增加一些天
线和辐射校准技术,以提高信号的稳定性。

最后,对于LTE信号的干扰问题,还可以通过优化网络规划
和部署来提高信号的覆盖范围和质量。

通过合理规划无线基站的位置、增加天线数量和改善基站之间的信号传输,可以有效减少干扰并提高LTE信号的稳定性和可靠性。

总之,针对LTE信号的各种干扰问题,可以采取一系列相应
的技术措施和解决方案来解决。

通过滤波器、干扰抑制技术、信号调制和编码技术以及优化网络规划和部署等手段,可以有效减少LTE信号的干扰问题,提高其稳定性和可靠性。

LTE干扰处理方案

LTE干扰处理方案
干扰类型
干扰特征分析
互调干扰
通过模拟加载,上行信道的干扰随下 行信道Hale Waihona Puke 号变大而增强的特征;小灵通干扰
干扰特征上呈现出1~3个RB宽度的 窄带干扰特征,且干扰频点在您手动 设置的小灵通频点上;
干扰特征上呈现出1~3个RB宽度的 GSM互调杂散 窄带干扰特征,且干扰频点不在您手 干扰 动设置的小灵通频点上;
处理方法建议
若是发现是馈线、天线、接头等无源器件的问题,需更换互调抑制 指标好的无源器件;若是接头连接松动等工程质量问题,需提高工 程天馈工程质量。 若属于天线正面附近金属物(比如天线抱杆、金属广告牌等)引起 的互调干扰,需要协调客户进行处理;
如果找到小灵通的干扰源,并通过断电等方式确认是此干扰源导致 的,可进一步协调客户进行最终的处理; 若确定干扰来自本运营商的其它系统,则需要在两个系统间采用增 加空间隔离度(调节方位角,下倾角、移动天线位置等)、增加频 率间隔(重新频率规划等)或增加器件隔离度(如果是杂散则安装 杂散滤波器、如果是互调谐波则更换性能更好的天线、如果是合路 器问题则更换隔离度更高的合路器等)的方式进行规避; 若干扰来自其他运营商的系统,则需要协调客户要求其他运营商进 行对应的处理; 干扰来自本运营商的其它系统,则需要在两个系统间采用增加空间 隔离度(调节方位角,下倾角、移动天线位置等)、增加频率间隔 (重新频率规划等)或增加器件隔离度(如果是杂散则安装杂散滤 波器、如果是互调谐波则更换性能更好的天线、如果是合路器问题 则更换隔离度更高的合路器等)的方式进行规避; 若干扰来自其他运营商的系统,则需要协调客户要求其他运营商进 行对应的处理; 方法1:查清楚干扰源位置、高度、干扰角度等信息,通过调整天 线俯仰角、方位角等规避方式,让天线降低被干扰的程度(如果影 响KPI则不建议这么操作); 方法2:扫频后能确定干扰源位置,请求客户与干扰源责任主体 沟通,通过客户协调解决;
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2) 确认方式
通过网管确认阻塞干扰通常采用降低同一基站相同及相邻扇区 GSM900/1800 基站功率 20dB 以上,对受干扰 TD-LTE 小区前后各一段时间如 十分钟的 PRB 进行轮询来完成确认。
会稍微升高
判断为二阶互调 干扰
降低 GSM900 基站时干 扰波干扰波峰继续降低
判断为阻塞干扰
小区级干扰曲线较 为平直,而和 PRB 轮询 干扰波形呈现左低右高 或右低左高的平滑曲线
判断为杂散干扰
小区级干扰曲线和 PRB 轮询 干扰波形都呈波浪形
③ D 频段干扰状况
从频谱状况来说,存有各运营商 TD-LTE 间的干扰、与雷达间、射频天文、北斗、 Wifi 以及 MMDS 、 Wimax 间的干扰
MMDS 和 WiMAX 对 D 频段的同频干扰,可使底噪抬升 20dB 以上,严重时更会 导致 TD-LTE 业务无法建立连接
5 / 21
TDLTE优化文档 ——干扰处理 ——王楠
判断为 LTE 网内干扰
6 / 21
TDLTE优化文档 ——干扰处理 ——王楠
2. 阻塞干扰
阻塞干扰一般为附近的无线电设备发射的较强信号被 TD-LTE 设备接收导 致的,现阶段发现的阻塞干扰主要为中国移动 GSM900/1800 及距离较近的友 商基站系统带来的。
1) 特点 ① 话务相关
小区级平均干扰电平跟干扰源话务关联大,干扰源话务忙时 TD-LTE 干 扰越大
TDLTE优化文档 ——干扰处理 ——王楠
LTE干扰处理 _ 王楠
一、 TD-L TE 干扰概述 1. TD-LTE频段分析
目前 TD-LTE 主要使用三个频段, F、 D、 E。
1 / 21
TDLTE优化文档 ——干扰处理 ——王楠
2. TD-LTE内外干扰分析
1) 内部干扰
交叉时隙干扰:上下行时隙干扰 远距离同频干扰:站 A 和站 B 间距> GP 传播距离 GPS 失步:失步基站与周围基站上下行收发不一致,相互干扰 小区间同频干扰:同 PCI 同 mod3 设备故障: RRU 故障;天馈故障
与话务忙闲正相关


先对干扰小区 PRB 轮询 10分钟,然
后降低水平方位角更接近的两个
GSM900
小区下行输出功率 10dB 10 分钟,再降低
相同方向两个 GSM1800 基站功率 10dB10
分钟,并同时轮询 PRB
小区级干扰曲线和 PRB 轮询干扰波形都 较为平直
判断为外部干扰
降低 GSM900 基站时 干扰波峰干扰降低, 而降低 GSM1800 基站 输出功率时干扰波峰
3 / 21
TDLTE优化文档 ——干扰处理 ——王楠
① F 频点干扰状况
DCS1800 阻塞干扰: 16~30dB 底噪抬升, UL 吞吐量损失严重,甚至无法建立连 接
DCS1800 杂散干扰: 5dB 的底噪抬升, UL 吞吐量损失约 10% DCS1800 互调干扰: 8~16dB 的底噪抬升, UL 吞吐量损失超过 30% GSM900 谐波干扰:约 5dB 的底噪抬升 PHS 杂散:一般情况下轻微干扰,严重时 TD-S 或 TD-L 无法建立连接
踪 PRB干扰波形,观察是否有变化; 5. 对非共址 2G 站引起的干扰进行天面勘察和现场扫频,观察是否有天线对打,隔离
度不够的情况; 6. 如果隔离度足够且现场扫频无外部干扰源,则判断为硬件原因。
TD-LTE 上行干扰分析

同站点是否有

中国移动 2G 基站
小区级干扰是否
小区级干扰是否


与话务忙闲正相关
二、 TD-L TE 外部处理
1. 干扰排查流程
1. 提取全网 PRB干扰值,筛选存在干扰的小区; 2. 根据实时跟踪 PRB干扰波形,初步判断干扰类型 3. 由于 DCS1800M 和 GSM900M 产生的杂散, 谐波均为固定频率的干扰, 所以可以通
过更改 LTE小区的中心载频来确定是否为固定频域上的干扰; 4. 将怀疑为 DCS1800M 和 GSM900M 干扰的小区,对 2G 站分别进行闭解,并实时跟
2) 外部干扰
同频干扰:杂散干扰,互调干扰,谐波干扰 异频干扰:阻塞干扰
2 / 21
3) 干扰表现
TDLTE优化文档 ——干扰处理 ——王楠
上行底噪≥ =105db ping 包延时大于正常小区,或无法 ping 成功 KPI:切换、接通、掉线
4) 外部干扰分频段分析
TD-LTE 频段
容易受到的干扰
4 / 21
TDLTE优化文档 ——干扰处理 ——王楠
② E 频段干扰状况
E 频段和 Wifi 相隔 30MHz ,比较近, 且 Wifi 不遵循 3GPP 协议, 射频指标比较差 普通室分系统下, 80dB 的合路器基本可以消除干扰,两者频率越远,受到的影响
越小。 外挂情况下,空间隔离需 1m 以上
② 隔离度低
干扰基站天线与 TD-LTE 小区天线隔离度越小,干扰越严重。当然仅仅 通过工参信息无法得知系统间天线隔离度大小, 但可以从天线高度和天 线水平方位角大致了解天线隔离度。
7 / 21
③ PRB前高后低
TDLTE优化文档 ——干扰处理 ——王楠
PRB 级干扰呈现的特点是 PRB10 之前有一个明显凸起, 凸起的 PRB 后 没有明显的干扰波形。
F频段 ( 1880 ~ 1900MHz )
D 频段 ( 2575 ~ 2635MHz )
E频段 ( 2320 ~ 2370MHz )
① GSM900/GSM1800 系统和 PHS 系统带来的阻塞干扰 ② GSM900 系统带来的二阶互调干扰 ③ GSM1800 系统和 1.8FDD-LTE 系统带来的杂散干扰 ④ PHS 系统、手机信号屏蔽器和其他电子设备带来的外部干扰 ⑤ 因基站过覆盖带来的 LTE 网内干扰 ① GSM900/GSM1800 系统带来的阻塞干扰 ② 800M Tetra 系统和 CDMA800MHz 系统带来的三阶互调干扰 ③ 手机信号屏蔽器和其他电子设备带来的外部干扰 ④ 因基站过覆盖带来的 LTE 网内干扰 ① GSM900/GSM1800 系统带来的阻塞干扰 ② WLAN AP 带来的杂散和阻塞干扰 ③ 手机信号屏蔽器和其他电子设备带来的外部干扰 ④ 因基站过覆盖带来的 LTE 网内干扰
相关文档
最新文档