第8章_相量法2

合集下载

电路原理(邱关源)习题答案第八章 相量法

电路原理(邱关源)习题答案第八章  相量法

第八章 相量法求解电路的正弦稳态响应,在数学上是求非齐次微分方程的特解。

引用相量法使求解微分方程特解的运算变为复数的代数运运算,从儿大大简化了正弦稳态响应的数学运算。

所谓相量法,就是电压、电流用相量表示,RLC 元件用阻抗或导纳表示,画出电路的相量模型,利用KCL,KVL 和欧姆定律的相量形式列写出未知电压、电流相量的代数方程加以求解,因此,应用相量法应熟练掌握:(1)正弦信号的相量表示;(2)KCL,KVL 的相量表示;(3)RLC 元件伏安关系式的相量形式;(4)复数的运算。

这就是用相量分析电路的理论根据。

8-1 将下列复数化为极坐标形式:(1)551j F --=;(2)342j F +-=;(3)40203j F +=;(4)104j F =;(5)35-=F ;(6)20.978.26j F +=。

解:(1)a j F =--=551θ∠25)5()5(22=-+-=a13555arctan -=--=θ(因1F 在第三象限)故1F 的极坐标形式为 135251-∠=F(2) 13.1435)43arctan(3)4(34222∠=-∠+-=+-=j F (2F 在第二象限)(3) 43.6372.44)2040arctan(40204020223∠=∠+=+=j F(4) 9010104∠==j F(5) 180335∠=-=F(6) 19.7361.9)78.220.9arctan(20.978.220.978.2226∠=∠+=+=j F注:一个复数可以用代数型表示,也可以用极坐标型或指数型表示,即θθj ae a ja a F =∠=+=21,它们相互转换的关系为:2221a a a += 12arctan a a =θ和 θcos 1a a = θsin 2a a =需要指出的,在转换过程中要注意F 在复平面上所在的象限,它关系到θ的取值及实部1a 和虚部2a 的正负。

8-2 将下列复数化为代数形式:(1) 73101-∠=F ;(2) 6.112152∠=F ;(3) 1522.13∠=F ;(4) 90104-∠=F ;(5) 18051-∠=F ;(6) 135101-∠=F 。

电路原理 第八章_相量法

电路原理 第八章_相量法

复数 复数

孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法(续)

已知正弦量 220√ 2 cos ( ω t-35° ) 有效值相量 最大值相量 220/ -35° — 220√ 2 /-35°
已知 相量 10/45° and 正弦量的角频率ω 相应的正弦量 — 10 √ 2 cos( ωt + 45° )
0 ωt1
ωt2
ωt
φ
图8-5 用旋转矢量表示的正弦量
孙惠英 shy@
上页
下页
返回
第8章
4、正弦量的相量表示法 F = ⎪F⎪e j(ω t + ϕ )
ejθ = cosθ + jsinθ
设:有一复数
欧拉公式
F = ⎪F⎪ej(ωt + ϕ ) = ⎪F⎪cos(ωt + ϕ) + j⎪F⎪sin(ωt +ϕ) Re [F] = ⎪F⎪cos(ωt + ϕ ) Im [F] = ⎪F⎪sin(ωt + ϕ )
返回
第8章
三、旋转因子
/ϕ 旋转因子: e jϕ = 1 — A = ⎪A⎪ejα Aejϕ = ⎪A⎪ejαejϕ = ⎪A⎪ej(α+ϕ ) ejπ/2 = j1 e-jπ/2 = − j1
+j
Aejϕ
ϕ α
0
A
+1
e-jπ = − 1
孙惠英 shy@
上页
下页
返回
第8章
ϕ 12 = ϕ 1- ϕ 2 —— u1 超前于 u2 的相角 ϕ 21 = ϕ 2- ϕ 1 —— u2 超前于 u1 的相角

(完整版)第八章相量图和相量法求解电路

(完整版)第八章相量图和相量法求解电路

(完整版)第⼋章相量图和相量法求解电路第⼋章相量图和相量法求解电路⼀、教学基本要求1、掌握阻抗的串、并联及相量图的画法。

2、了解正弦电流电路的瞬时功率、有功功率、⽆功功率、功率因数、复功率的概念及表达形式。

3、熟练掌握正弦电流电路的稳态分析法。

4、了解正弦电流电路的串、并联谐振的概念,参数选定及应⽤情况。

5、掌握最⼤功率传输的概念,及在不同情况下的最⼤传输条件。

⼆、教学重点与难点1. 教学重点: (1).正弦量和相量之间的关系;(2). 正弦量的相量差和有效值的概念(3). R、L、C各元件的电压、电流关系的相量形式(4). 电路定律的相量形式及元件的电压电流关系的相量形式。

2.教学难点:1. 正弦量与相量之间的联系和区别;2. 元件电压相量和电流相量的关系。

三、本章与其它章节的联系:本章是学习第 9-12 章的基础,必须熟练掌握相量法的解析运算。

§8.1 复数相量法是建⽴在⽤复数来表⽰正弦量的基础上的,因此,必须掌握复数的四种表⽰形式及运算规则。

1. 复数的四种表⽰形式代数形式A = a +j b复数的实部和虚部分别表⽰为: Re[A]=a Im[A]=b 。

图 8.1 为复数在复平⾯的表⽰。

图 8.1根据图 8.1 得复数的三⾓形式:两种表⽰法的关系:或根据欧拉公式可将复数的三⾓形式转换为指数表⽰形式:指数形式有时改写为极坐标形式:注意:要熟练掌握复数的四种表⽰形式及相互转换关系,这对复数的运算⾮常重要。

2. 复数的运算(1) 加减运算——采⽤代数形式⽐较⽅便。

若则即复数的加、减运算满⾜实部和实部相加减,虚部和虚部相加减。

复数的加、减运算也可以在复平⾯上按平⾏四边形法⽤向量的相加和相减求得,如图8.2所⽰。

图 8.2(2) 乘除运算——采⽤指数形式或极坐标形式⽐较⽅便。

若则即复数的乘法运算满⾜模相乘,辐⾓相加。

除法运算满⾜模相除,辐⾓相减,如图8.3⽰。

图 8.3 图 8.4(3) 旋转因⼦:由复数的乘除运算得任意复数A 乘或除复数,相当于A 逆时针或顺时针旋转⼀个⾓度θ,⽽模不变,如图 8.4 所⽰。

相量法

相量法

▪幅值、初相、角频率可确定一个正弦量,称为 正弦量的三要素。
二、同频率正弦量的比较 例:
u1(t)=U1mcos(t+1)
u2(t)=U2mcos(t+2)
(1) 相位差:相角或相位之差,也称相位角差。 用表示, = (t+1) - (t+2) = 1 - 2 相位差在任何瞬间都是一个常数,即等于它们的 初相之差,而与时间无关。 相位差与计时起点的选择无关。
如图5-2(a)、(b)、(c)、(d)分别表 示两个正弦量同相、超前、正交、反相。
三、正弦电流、电压的有效值 1、有效值
周期量的有效值定义为:一个周期量和一个直 流量,分别作用于同一电阻,如果经过一个周 期的时间产生相等的热量,则这个周期量的有 效值等于这个直流量的大小。电流、电压有效 值用大写字母I、U表示。
部分别相加或相减。
复数的加减运算可以用平行四边形法则在复平 面上用作图法来进行。
(3)乘法运算 :用极坐标形式或指数形式来进行。 A• B ab(a b ) abe j(a b )
即:复数相乘,其模相乘,其辐角相加。 (4)除法运算 :用极坐标形式或指数形式来进行。
A/ B a / b(a b ) a / be j(a b ) 即:复数相除,其模相除,其辐角相减。 (5)旋转因子:复数ej称为旋转因子。
同理:
U
1 2
Um
0.707 U m
U m 2U
▪通常所说的正弦电压、电流的值均指有效值。
§8-3 相量法的基础
相量法就是用复数来表示正弦量,使描述正弦电 路的微分(积分)方程转化为代数形式的方程,而这 些方程在形式上与电阻电路的方程相类似,从而 使正弦激励下的电路的分析和计算大大简化。

邱关源《电路》第八章相量法2

邱关源《电路》第八章相量法2

17
例1: 已知: R1 1000 , R2 10 , L 500mH , C 10F , BUCT
U 100V , 314rad / s , 求:各支路电流。
i2 R1 i1
i3 C
+
R2
_u
L
I1
I2 R1
I3
j 1 C
+
R2
_ U
Z1
Z2
jL
解:画出电路的相量模型

0.5770
A
瞬时值表达式为:
i1 0.6 2 sin(314 t 52.3 ) A i2 0.181 2 sin(314t 20 ) A i3 0.57 2 sin(314 t 70 ) A
解毕!
20
9. 2 阻抗(导纳)的串联和并联
一. RLC串联电路
用相量法分析R、L、C串联电路的阻抗。
2I R
.
.
1 UR UC
24
BUCT
练习:P188 8—11 12
25
作业
BUCT
习题:8-16 9-1 (b)、(f) 9-5 预习:第9章
26
j
G 导纳三角形
(二) R、L、C 元件的阻抗和导纳
(1)R:ZR R , YR 1 R G
(2)L:Z L jL jX L ,
1
1
YL
j
jL
L
jBL
(3)C:ZC

j 1
C

jX C ,
YC jC jBC
15
(三)阻抗和导纳的等效互换
º R
Z
18
I1
I2 R1

邱关源《电路》第五版 第八章 相量法

邱关源《电路》第五版  第八章 相量法
第八章
电力系统简介
HVDC Rectifier(整流器)
相量法
Inverter(逆变器)
Power Line(输电线) Power Plant Generator 电厂(发电机) Transformer 变电站(变压器)
第八章 复数(自学) 正弦量 相量法的基础 电路定律的相量形式
相量法
§8-1 复数(自学)
Charles Proteus Steinmetz
(1865~1923)
§8-3 相量法的基础
一、正弦量的相量
i 2I cos(t i )
设有一个复指数函数
2 Ie j( t i )
2 Ie j( t i ) 2 I cos( t i ) j 2 I sin( t i ) Re[ 2 Ie j( t i ) ] 2 I cos( t i ) i
1 I T

T
0
1 i dt T
2

T
0
2 I m cos2 ( t i )dt
Im 0.707 I m 2
I m 2I
i I m cos( t i ) 2I cos(t i )
§8-2 正弦量
四、同频正弦量的相位差 同频正弦量相角之差称为相位差。用 表示。
i
u
反 相
t
u
正 交 0
i t 0
1 2
i
t
电 压 超 前 电 流
§8-3 相量法的基础
The notion of solving ac circuits using phasors
was first introduced by Charles Proteus Steinmetz

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法

电路(第五版).-邱关源原著-电路教案--第8章相量法第8章 相量法● 本章重点1、正弦量的两种表示形式;2、相量的概念;3、KVL 、KCL 及元件VCR 的相量形式。

● 本章难点1、 正确理解正弦量的两种表示形式的对应关系;2、 三种元件伏安关系的相量形式的正确理解。

● 教学方法本章是相量法的基础,对复数和正弦量两部分内容主要以自学为主,本章主要讲授相量法的概念、电路定律的相量形式以及元件V AR 的相量形式。

讲述中对重点内容不仅要讲把基本概念讲解透彻,而且要讲明正弦量的相量与正弦时间函数之间的对应关系;元件V AR 的相量形式与时域形式之间的对应关系,使学生加深对内容的理解并牢固掌握。

本章对元件的功率和能量这部分内容作了简单讲解,以便为下一章的学习打下基础。

本章共用4课时。

● 授课内容8.1复数1. 复数的三种表示bj a A += 直角坐标=θ∠r 极坐标 =θj re 指数形式θθθsin cos 22r b r a ab arctgb a r ==⇒=+=⇒直极极直θθsin cos jr r A += 三角表示形式欧拉公式:θθθsin cos j e j +=2. 复数的运算已知:11111θ∠=+=r jb a A ,22222θ∠=+=r jb a A求:212121,,A AA A A A ⋅±i()()212121b b j a a A A ±+±=±212121212121θθθθ+∠=+∠=⋅r r A A r r A A 8.2正弦量一、正弦量:随时间t 按照正弦规律变化的物理量,都称为正弦量,它们在某时刻的值称为该时刻的瞬时值,则正弦电压和电流分别用小写字母i 、u 表示。

周期量:时变电压和电流的波形周期性的重复出现。

周期T :每一个瞬时值重复出现的最小时间间隔,单位:秒(S ); 频率f : 是每秒中周期量变化的周期数,单位:赫兹(Hz )。

电路分析课件第八章相量法

电路分析课件第八章相量法

KVL:任意时刻,任一回路,U=0
三、受控源的相量形式
i1
I1
R
正弦电流
i 1 电路时:
R
1I1
本章小结:
所谓相量法,就是电压、电流用相量表示, RLC元件用阻抗、感抗、容抗表示,画出电路的相 量模型,利用KCL、KVL和欧姆定律的相量形式写 出未知电压、电流相量的代数方程加以求解,因此, 应用相量法应熟练掌握:
∴ i =46.2 2cos(314t–27º)A j I1
+1 I
相量图
I2
注意:
在分析正弦交流电路时字母的写法:
i — 瞬时值 I — 有效值 Im — 最大值 I — 有效值相量 Im— 最大值相量
三、不同频率的正弦量不能用相量法运算。
相量只含有正弦量的有效值(最大值)和初相 位的信息,不包含频率的信息,即:在运用相量 法分析正弦量时,默认为同频率。
将 I (或 U)定义为电流i (或电压u) 的相量,它含有 正弦量的振幅和相位的信息。
注意:
有一个正弦量便可以得到一个相量; 有一个相量也可以写出对应的正弦
量。两者是一一对应的关系,决不
是相等的关系。
u=220 2 cos(314t+45º)V
U=220 45ºV u U
I=50 –30ºA 一一对应 i =50 2 cos(ωt–30º)A i I
U 相量形式电路图
相量关系既反映了u、i 的有效 值关系又反映了相位的关系。
I U 相量图
2、电感
iL
u
若:i = 2 Icos(ωt+ψi )
则:u=L
di dt
=–
2 IωLsin(ωt+ψi )

电路分析相量法

电路分析相量法

量的相量乘以 jω ,即表示di/dt 的相量为
j I I( i 90o )
该相量的模为ωI ,辐角则超前原相量π/2 。
对 i 的高阶导数 dni/dtn ,其相量为 ( j )。n I
3)正弦量的积分
设 i 2I cos( t i ),则
idt Re[ 2Ie j t ] dt Re[ (
F1F2 | F1 | 1 | F2 | 2 | F1 || F2 | (1 2 )
可见复数的乘法运算使用指数形式或极坐标形式较为简便。
3)除法运算
a)代数形式
F1 F2
a1 a2
jb1 jb2
(a1 (a2
jb1 )(a2 jb2 )(a2
jb2 ) jb2 )
(a1a2
b1b2 ) j(a2b1 a22 b22
设 F1 a1 jb1 , F2 a2 jb2 ,则
F1 F2 (a1 jb1 ) (a2 jb2 ) (a1 a2 ) j(b1 b2 )
平行四边形法则:
+j F1 +F2 F1
F2 o
+1
+j F1
F2 o
F1-F2 +1
2)乘法运算 a)代数形式
F1F2 (a1 jb1 )(a2 jb2 ) (a1a2 b1b2 ) j(a1b2 a2b1 )
di d Re[ 2Ie j t ] Re[ d ( 2Ie j t )] Re[ 2( j I)e j t ]
dt dt
dt
Re[ 2 Ie ] j( ti 90o ) 2 I cos( t i 90o )
上式表明:
复指数函数实部的导数等于复指数函数导数的实部;

电路原理课件 第8章 相量法

电路原理课件 第8章  相量法

三. 相位差 :
两个同频率正弦量相位角之差。
i(t) 0
Im um
设 u(t)=Umcos(w t+ u)
2
i(t)=Imcos(w t+ i)
0
wt
则 相位差j : j = (w t+ u)- (w t+ i)
u- i
同频率正弦量的相位差等于它们的初相之差。 不同频率的两个正弦量之间的相位差不再是一个常数,而是 随时间变动。
j u与i正交; j u与i反相;
2
§8 - 3相量法的基础
1. 正弦量的相量表示
复函数 F F ej(wt)
没有物理意义
F cos(wt ) j F sin(wt Ψ )
若对F取实部:
Re[F] F cos(ωt Ψ ) 是一个正弦量,有物理意义。
对于任意一个正弦时间函数都可以找到唯一的与其对应的 复指数函数:
F e j
4、极坐标形式:
F F ej
=|F|
二 复数运算
(1)加减运算——代数形式
+j F2
若 F1=a1+jb1
F2=a2+jb2 O
则 F1±F2= (a1±a2) +j (b1±b2)
F= F1 +F1
F1 +1
+j
O - F2
F2 F1
F= F1 - F2 +1
(2) 乘除运算——指数形式或极坐标形式
⑶∫i2dt。
解: ⑴设 i i1 i2 2I cos(wt i ), 其相量为 I=I/Ψi
I I1 I2 10/600A+22/-1500A=(5+j8.66)A+(-19.05-j11)A

第8章( 8.1-8.3) 相量及相量分析法

第8章( 8.1-8.3) 相量及相量分析法


i(t)
+ u(t) -
R
已知: u( t ) U m sin(wt y u ) 解: L
求:稳态解 i(t)
1. 经典法: 一阶常系数 di(t ) Ri (t ) L U m sin(wt y u ) 线性微分方程 dt 自由分量(齐次方程通解): A e-(R/L) t
全解:
第8章 相量及相量分析法 8.1-8.3 重点:
复数及其运算 相位差
相量和相量图 正弦量的相量表示
电路元件VCR 的相量形式
电路定律的相量形式
8 .1 .1 正弦量的基本概念 正弦交流电路
如果在电路中电动势的大小与方向均随时间按 正弦规律变化,由此产生的电流、电压大小和方向 也是正弦的,这样的电路称为正弦交流电路。

u (t ) 2U cos(wt y ) U Uy
例1. 已知
解: I 10030o A
o

i 141.4 cos(314t 30 ) A u 311.1cos(3 14t 60o )V
试用相量表示 i, u 。
U 220 60o V

14
例2. 已知 I 5015o A, f 50Hz . 试写出电流的瞬时值表达式。
y
Re
a
Re
A a jb
A A e jy | A | y
11
2. 复数运算
(1)加减运算——直角坐标
(2) 乘除运算——极坐标 3. 旋转因子
A1±A2=(a1±a2)+j(b1±b2)
A1 A2 A1 A2 y 1 y 2
复数 e jy = cos y + jsin y = 1∠y A e jy A逆时针旋转一个角度y ,模不变

第8章 相量法

第8章 相量法


T
0
i (t ) Rdt I RT
2 2
1 T 2 I 0 i (t )dt T
(1)式中代入
(1)式
i(t ) I m cos( t i ) 得
Im I 2
i(t ) I m cos( t i )
2.角频率(周期T、频率f):表示变化快慢 Angular frequency(period, frequency) 定义:相角(t+i)随时间变化的速度(rad/s)
The Phasor
相量法即用复数为工具来表示正弦量。 正弦量 相量(复数)
变换的思想
相量是一个包含正弦量“幅值”和“相 位”信息的复数。
一、复习复数:
1.复数的表示形式 (1)代数形式 b 0
+j
F
r
θ
a +1
F a jb
(2)三角形式 (3)指数形式 (4)极坐标形式
F r
a b
u(t ) 2U cos( t u )
X Y 53.1
xy 3 X Y
4
2.复数的代数运算 相加(减):使用代数形式
(a jb) (a1 a2 ) j (b1 b2 )
相乘(除):使用指数形式
F F1F2 r1r2e
j (1 2 )
F1 r1 j (12 ) F e F2 r2
二.正弦信号的相量表示
根据欧拉公式:
e
jx
cos x j sin x
j (t )
对于同频 正弦量而 言相同
u 2U cos ( t ) Re[ 2Ue
时域 一 一 对 应
] Re[ 2Ue j e jt ]

第08章相量法

第08章相量法
? 则:U=10V U 10e j15V? -j15º 已知: I 10050 A
? 则: i=100cos(t+50º)A
100 2
(3-24)
§8.3 相量法的基础
无物理意义
一、正弦量为何可以用相量表示?
某复函数: A(t ) 2Iej(t)
为正弦量 有物理意义
(3-16)
+j
b
r

A
+1
a
欧拉公式
cos+jsin =ej
A=a+jb …………………………代数式
=r(cos+j sin) …………三角函数式
=rej …… …………………………指数式
=r∠ …………………………极坐标形式
(3-17)
设a、b为正实数
A=a+jb =r∠
0<< 90º
2.KVL相量式
——任一瞬间任一回路上: u(t)=0
若该回路上的电压均为同频率正 弦量,则用相量表示时仍满足KVL,即:
KVL相量形式 U 0
I
如右图,设uR,uL,uC均为同频率正弦量:
U R U L U C U 0
+R
U U R U L U C
相量——表示正弦电压、电流的复数
(3-15)
一、复数的基本形式
设复平面上某复数A :
+j
b
r

A
+1
a
r a2 b2
arctan b
a a=rcos
b= rsin
其中:r—复数的模; —辐角; a—实部; b —虚部
A=a+jb =rcos+jrsin =r(cos+j sin)

第8章 相量法

第8章 相量法
*不同频率正弦量无固定的相位关系
j > 0, u 领先( 超前 )i ,或 i 落后( 滞后 ) u
u, i u i
u
0
t j i
j < 0, i 领先(超前) u,或u 落后(滞后) i
特殊相位关系: u, i 0
t
u i
u, i i
u
0
t
j = 0, 同相:
u, i u i 0
j = ( 180o ) ,反相:
1. 正弦量的三要素: 以电流为例 i
R
i(t ) Im cos( t i )
正弦量的三要素
(1) Im— 幅值 ( 振幅、 最大值)
( t + i ): 称为i(t)相位角或相位
d — 角频率,单位:弧度/秒(rad/s) (2) ( t i ) dt 与正弦量的周期T和频率f 的关系:
j = 90°,称为正交
t u 领先 i 90°或 i 落后 u 90°
规定: | j | (180°)
3. 正弦量的有效值 (effective value)
i)周期量的有效值:是一个在效应(如热效应)上与周期 量在一个周期内的平均效应相等的直流量。 设周期电流i 通过电阻R,电阻一周期内吸收的能量为:
2. 正弦量的相量 复函数
F (t ) 2Ie j(t ) 2Icos( t ) j 2Isin( t )

i 2 I cos( t ) Re [F (t )] Re[ 2Ie j ( t ) ] Re[ 2( Ie j )e j t ]
'
0
F +1
由于
e

第八章 相量法

第八章 相量法

F• ej
旋转因子 0

F Re
特殊旋转因子
+jF
Im
F

e
j

2 cos

2

2
j sin
j

2
j
0 -F
Re - jF
,e
2


2
cos

2
j sin

2
j
,e j cos( ) j sin( ) 1
注意 +j, –j, -1 都可以看成旋转因子。
iu 1, i
角频率 有效值 初相位
w
I1 o
i1
i2
i w 2 I2
i1+i2 i3
w
wI t
3
i3
1
2
3
结论 同频的正弦量相加仍得到同频的正弦量,
所以,只需确定初相位和有效值。因此采用 正弦量 复数 变换的思想
3. 正弦量的相量表示
造一个复函数
无物理意义
j (wt y )
F (t ) 2 Ie F (t ) 2 I cos(wt y ) j 2 I sin( wt y ) 2 I cos(wt y ) i(t )
F(t) 包含了三要素:I、 、w, 正弦量对 复常数包含了两个要素:I , 。 应的相量
i(t ) 2I cos(w t Ψ ) I IΨ
注意
相量的模表示正弦量的有效值 相量的幅角表示正弦量的初相位

同样可以建立正弦电压与相量的对应关系:
U u (t ) 2U cos(wt ) U
注意 ① 正弦量

相量法

相量法
第八章 相量法
重点
1、复数的几种表示形式的转换及计算 2、正弦量的三要素 3、 KCL、KVL 、VCR的相量表示
难点
理解相量法的实质
§8-1 复 数
一、复数的几种表示形式
1.代数形式: F a jb
Re[F] a --复数F的实部
Im[F] b --复数F的虚部
2.向量形式:
u(t)
U
m
cos(t



u
i(t)
I m cos(t



i
--本书采用cosine函数。
二、正弦量的三要素
1.幅值Um/Im:
Um、Im --振幅,正弦量的极大值 当cos(ω t+)=1时,imax=Im;当cos(ω t+)=-1时,imin=-Im。 Imax-Imin=2Im --正弦量的峰-峰值
解: | F2 | ( 20)2 ( 40)2 44.7
F2在第三象限,
arctan( 40) 180 63.4 180 243.4
20
F2 44.7243.4
二、复数的四则运算
1.加、减法运算:
①代数法:
F1 F2 ( a1 jb1 ) ( a2 jb2 ) ( a1 a2 ) j( b1 b2 )



u1
i2
2
Icos(t



i2
12 (t u1)(t i2) u1 i2
①12>0 ②12<0 ③12=0 ④|12|=π /2
--u1超前i2; --u1滞后i2; --u1和i2同相; --u1和i2正交;

高等教育出版社第六版《电路》第8章_相量法讲解

高等教育出版社第六版《电路》第8章_相量法讲解

定义:随时间按正弦规律变化的电压和电流,称为正弦量。 i
&#, i(t) Im cos(t i )
注意:方向是随时间在周期性的变化,所以更要标定参考方向。 5
1、变化的快慢: ①频率f:每秒变化的次数。单位:Hz ②周期T:变化一次所需的时间。单位:s ③角频率ω:每秒变化的弧度数。单位:rad/s
一般地 i 2I cos(t i )A
可用相量表示为: I I e ji I iA
9
二、相量和正弦量的比较:
①联系: 实数范围的正弦时间函数和复数范围的复指数常数一一对应。
欧拉公式:e j cos jsin,
i 2I cos(t i ) Re[ Re[ 2 I eji ejt ] Re[
F
其中 F : 模、§幅8值-1 复数: 幅角
b
四者之间有: a F cos b F sin
F a2 b2
arctan b
a
a
请注意:上式与教材P202倒数第二行的差别。
为正确判定θ所在的象限,我们将a、b的正负号分别
保留在分母分子中,而不用小括号。
例:
F
4
j4,
arctan
4 4
45
(第四象限)。

②正弦量的一个重要性质:
正弦量乘以常数,正弦量的微分、积分,同频 正弦量的代数和等,结果均为同频正弦量。
8
§8 - 3 相量法的基础(****)
§8 - 3 相量法的基础
一、相量定义:
表示正弦量的复常数称为相量。 例如:
正弦量 i 220 2 cos(314t 30 )A
可用相量I 220 ej30 A表示。
例 u(t) Um sin(t u )

第八章 相量法

第八章 相量法
0
e
j90
cos 90 j sin 90 j
e
j 90
90
0
⑥“j”的数学意义和物理意义 设相量
e
j

cos j sin 1
j
0
re jψ A
re
j ( )
A e
旋转 90 因子:
e
j 90 B
+j
+ UA N

uA 220 2 cos 314 t V
+ A
U AB N
UC +
– –
U A 220 0 V UB 220 120 V UC 220 120 V
UB +

B
C
由KVL定律可知
UAB 220 V 220 cos ( 120 ) j sin ( 120) V
求:i i1 i2 。
i2 11 2 cos(314 t 60 )A
12.7( cos 30 j sin 30 )A 11( cos 60 j sin 60 )A (16.5 - j3.18)A 16.8 10.9 A
有效值 I =16.8 A
⑥“j”的数学意义和物理意义 设相量
e
j
cos j sin 1
j
re jψ A
A e

re
j ( )
A e

j
re
j ( )
A• ej 相当于A逆时针旋转一个角度 ,而模 不变。 故把 ej 称为旋转因子。 旋转 90 因子:
3. 正弦量的相量表示

第08章 相量法

第08章 相量法
F1 F2
F1
F1 F2
F2
+1
O
F2
3、乘法 用极坐标形式比较方便 设
F1 | F1 | 1
F2 | F2 | 2
F F2 F 1 F2 2 1 1
F F2 / 1 2 1
4、除法
F1 F2
| F1 | 1
| F2 | 2

(a1 a2 ) j(b1 b2 )
几何意义 +j
F1 F2
F1
F2
O
+1
2、减法 用代数形式进行, 设
F1 a1 j b1
F2 a2 j b2
F1 F2 (a1 j b1 ) (a2 j b2 )
几何意义
+j
(a1 a2 ) j(b1 b2 )
二、正弦量的三要素
i + 瞬时值表达式: i(t ) u -
I m cos(t i )
1、振幅Im 2、角频率ω
i(t ) I m cos(t i )
i
Im 2π π 2π ωt
正弦量在整个振荡过程中达到的最大值
反映正弦量变化的快慢 ω =d(ωt+ )/dt 单位时间内变化的角度, 单位:rad/s ωT=2π,ω=2πf , f=1/T 频率f :每秒钟完成循环的次数, 单位为赫兹(Hz) 周期T :完成一个循环变化所需 的时间,单位为秒(s)
接下来…… i(t)=Imcos( t + )
(a) 角频率 ( )
所有电压电流均以相 同角频率ω变化!!
(b) 幅值 (Im)
(c) 初相角( )
用什么可以同时表示幅 值和相位?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A1 | A1 | θ1 | A1 | e jθ | A1 | j( θ θ ) e jθ 2 A2 | A2 | θ2 | A2 | e | A2 |
1 1 2
例1.
| A1 | 除法:模相除,辐角相减。 ( θ1 θ2 ) | A2 | 547 10 25 ?
故 +j, –j, -1 都可以看成旋转因子。
2. 正弦量的相量表示
两个正弦量的相加
i1 2 I1 cos(w t y 1 )
i2 2 I 2 cos(w t y 2 )
i
角频率: 有效值:
w i1
I1 0
i1
i2
w
i2
i3 i +i i 1 2 3
w
I2
I w3t
初相位: 1
解 547 10 25 (3.41 j 3.657) (9.063 j 4.226)
12.47 j 0(4 j6) 例2. 220 35 ? 20 j5 19.24 27.9 7.21156.3 解 原式 180.2 j126.2 20.6214.04 180.2 j126.2 6.72870.16
j = (w t+y u)- (w t+y i)= y u-y i 等于初相位之差
u, i
u
i O
yu yi j

wt
规定: |j | (180°)。
j >0, u超前i ,或i 落后u ,( u 比 i 先到达最大值);
j <0, i 超前 u,或u 滞后i ,( i 比 u 先到达最大值)。
(3)初相位(initial phase angle) y :
w 2 f 2 T
单位: rad/s ,弧度 / 秒
正弦量在t=0时刻的相位,反映正弦量的计时起点。
对于一个正弦量,如果计时起点不同,初相位也不同。
i
i(t)=Imcos(w t+y)
通常规定:| | 。
O
t
y =-/2 y =0

计算下列两正弦量的相位差。 解:
(1) i1 ( t ) 10 cos(100 t 3 4) i2 ( t ) 10 cos(100 t 2)
( 2) i1 ( t ) 10 cos(100 t 300 ) i2 ( t ) 10 sin(100 t 150 ) ( 3) u1 ( t ) 10 cos(100 t 300 ) u2 ( t ) 10 cos(200 t 450 ) (4) i1 ( t ) 5 cos(100 t 30 )
例1 已知
o

试用相量表示i, u .

解 I 100 30 o A i 141.4 cos(314t 30 )A
u 311.1cos(314t 60 )V
o
U 220 60 o V
例2 已知 I 5015 A, f 50Hz .
试写出电流的瞬时值表达式。
1 f T
周期T :信号变化一次所需的时间。单位:s,秒 频率f :信号每秒变化的次数。 单位:Hz,赫(兹)
2. 正弦量的三要素
i
Im O
T
i(t)=Imcos(w t+y)
y/w
2
wt t
(1)幅值 (amplitude) (振幅、 最大值)Im : 反映正弦量变化幅度的大小。 (2)角频率(angular frequency)w : 相位变化的角速度, 反映正弦量变化快慢。
可得其相量关系为:U
U
同频正弦量相加减运算变成对应相量的相加减运算。
u1 ( t ) 6 2cos(314t 30 ) V 例 u2 ( t ) 4 2cos(314t 60o ) V
U 1 6 30o V U 2 460o V



jwt
) Re( 2 U 2 e jwt )


jwt
2U2 e

jwt
) Re( 2 (U 1 U 2 )e jwt )
U1 U 2 因此: i1 i2 i3 I 1 I 2 I 3 u1 u2 u3 U1 U 2 U 3
u1 ( t ) 2 U 1 cos(w t Ψ 1) Re( 2 U 1 e jw t ) u2 ( t ) 2 U 2 cos(w t Ψ 2 ) Re( 2 U 2 e jw t )
u( t ) u1 ( t ) u2 ( t ) Re( 2 U 1 e Re( 2 U 1 e
(1)加减运算 — 采用代数形式 若 则
A1=a1+jb1, A2=a2+jb2 A1±A2=(a1±a2)+j(b1±b2)
Re
(2) 乘除运算 — 采用极坐标形式
若 则:
A1 | A1 | 1
1
A2 | A2 | 2
2 1 2
A1 A2 A1 e j A2 e j A1 A2 e j ( ) A1 A2 ( 1 2 ) 乘法:模相乘,辐角相加。
j 300 (1500 ) 1200
i2 ( t ) 3 cos(100 t 30 )
0
两个正弦量进行相位比较时应满足同频率、同函数、同符 号,且在主值范围比较。
4. 周期性电流、电压的有效值
周期性电流、电压的瞬时值随时间而变,为了衡量其大 小工程上采用有效值来表示。 周期电流、电压有效值(effective value)定义
i ( t ) I m cos(w t Ψ ) 2 I cos(w t Ψ )
Im 2I
同理,可得正弦电压有效值与最大值的关系:
U
1 2
Um

U m 2U
若一交流电压有效值为U=220V,则其最大值为Um311V;
U 380V U m 2U 537V
说明:
(1)工程上说的正弦电压、电流一般指有效值,如设备铭 牌额定值、电网的电压等级等。但绝缘水平、耐压值 指的是最大值。因此,在考虑电器设备的耐压水平时 应按最大值考虑。 (2)测量中用的电磁式交流电压、电流表读数均为有效值。 (3)区分电压、电流的瞬时值、最大值、有效值的符号。 i 瞬时值;I有效值;Im最大值。
直流I
物 理 意 义
R
交流i
R
W RI T
2
W Ri ( t )dt
2 0
T
电流有效 值定义为
1 I T
def

T
0
i ( t )dt
2
有效值也称均方根值 (root-mean-square)
同样,电压有效值定义为:
正弦电流、电压的有效值 设 i(t)=Imcos(w t+ )
2
3
因同频的正弦量相加仍得到同频的正弦量,所以,只 要确定初相位和有效值(或最大值)就行了。因此,
正弦量
复数
实际是变 换的思想
正弦量的相量表示 造一个复函数
A( t ) 2 Ie
j( wt )
是一个正弦量 无物理意义 有物理意义
2 Icos(wt ) j 2 Isin( wt Ψ )
0
Re
几种不同 值时的旋转因子
Im

e
j

2
jI
0
I
,

2
cos

2
j sin
j 2

2
Re
jI
j
I
, e 2
cos( ) j sin( ) j 2 2
, e
j
cos( ) j sin( ) 1
8.2 正弦量的相量表示
1. 复数及运算
复数A的表示形式
Im b
A=a+jb (j 1 为虚数单位)
Im b
A
A
|A|

0 a Re 0 a
j
Re
A a jb
A | A | e
j
A | A | e
| A | (cos j sin ) a jb
A | A | e | A |
j
两种表示法的关系:
Im b
直角坐标表示
A |A|
A=a+jb A=|A|ej =|A|
| A | a 2 b 2 b θ arctg a
复数运算
极坐标表示


0 a Re
a | A | cosθ b | A | sinθ
图解法
Im A2 A1 0
0
j 3 4 ( 2) 5 4
j 2 5 4 3 4
i2 (t ) 10 cos(100t 1050 ) j 300 (1050 ) 1350
w1 w 2
不能比较相位差
i2 (t ) 3 cos(100t 1500 )

180.2 j126.2 2.238 j6.329
182.5 j132.5 225.536
(3) 旋转因子: 复数 ej =cos +jsin =1∠ 而模不变,故把 子。 ej 称为旋转因 Im
A• ej
A
A• ej 相当于A逆时针旋转一个角度 ,

A(t)包含了三要素:I、 、w ,复常数包含了I , 。
称 I IΨ 为正弦量 i(t) 对应的相量。
相关文档
最新文档