2020-2021学年攀枝花市新人教版七年级下期末数学试卷(A卷全套)
2020-2021学年七年级数学下学期期末测试卷03(解析版)
2020-2021学年七年级数学下学期期末测试卷【人教版03】数学(答案卷)一.选择题(共12小题,满分48分,每小题4分)1.(4分)的相反数是()A.B.C.D.【分析】直接利用相反数的定义得出答案.【解答】解:﹣2的相反数是:﹣(﹣2)=2﹣.故选:A.2.(4分)(﹣7)2的算术平方根是()A.7B.±7C.﹣49D.49【分析】先求出式子的结果,再根据算术平方根的定义求出即可.【解答】解:∵(﹣7)2=49,=7,∴(﹣7)2的算术平方根是7,故选:A.3.(4分)据科学家统计,目前地球上已经被定义、命名的生物约有1500万种左右,数字1500万用科学记数法表示为()A.1.5×103B.1.5×106C.1.5×107D.15×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n是负整数.【解答】解:1500万=15000000=1.5×107.故选:C.4.(4分)下列各式正确的是()A.B.(﹣3)2=9C.﹣22=4D.=2【分析】根据平方根、立方根的意义计算.【解答】解:A.=2,故A错误,不符合题意;B.(﹣3)2=9,故B正确,符合题意;C.﹣22=﹣4,故C错误,不符合题意;D.=﹣2,故D错误,不符合题意;故选:B.5.(4分)如图,已知直线AB∥CD,点F为直线AB上一点,G为射线BD上一点.若∠HDG=2∠CDH,∠GBE=2∠EBF,HD交BE于点E,则∠E的度数为()A.45°B.55°C.60°D.无法确定【分析】设∠CDH=x,∠EBF=y,得到∠HDG=2x,∠DBE=2y,根据平行线的性质得到∠ABD=∠CDG=3x,求得x+y=60°,根据三角形的内角和即可得到结论.【解答】解:∵∠HDG=2∠CDH,∠GBE=2∠EBF,∴设∠CDH=x,∠EBF=y,∴∠HDG=2x,∠DBE=2y,∵AB∥CD,∴∠ABD=∠CDG=3x,∵∠ABD+∠DBE+∠EBF=180°,∴3x+2y+y=180°,∴x+y=60°,∵∠BDE=∠HDG=2x,∴∠E=180°﹣2x﹣2y=180°﹣2(x+y)=60°,故选:C.6.(4分)已知是二元一次方程mx+3y=7的一组解,则m的值为()A.﹣2B.2C.﹣D.【分析】把x与y的值代入方程计算,即可求出m的值.【解答】解:把代入方程得:﹣m+9=7,解得:m=2.故选:B.7.(4分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】分别求出每一个不等式的解集,结合各选项中解集在数轴上的表示即可.【解答】解:解不等式﹣2x+5≥3,得:x≤1,解不等式3(x﹣1)<2x,得:x<3,故选:B.8.(4分)甲、乙两种品牌的方便面在2016~2020年销售增长率如图所示,下列说法一定正确的是()A.这几年内甲、乙两种品牌的方便面销售量都在逐步上升B.甲品牌方便面在2018年到2019年期间销售量在下降C.在2017到2018年期间,甲品牌方便面销售量高于乙品牌D.根据折线统计图的变化趋势,预测在2020~2021年期间,甲品牌的销售量高于乙品牌【分析】根据折线统计图可直接解答.【解答】解:从折线图来看:乙种品牌的方便面销售量呈上升趋势,甲种品牌的方便面销售量不稳定,有上升有下降,故A错误,不符合题意;甲品牌方便面在2018年到2019年期间只是增长率下降,不能得出销售量在下降,故B错误,不符合题意;在2017到2018年期间,甲品牌方便面销售量高于乙品牌,C正确,符合题意;根据折线统计图的变化趋势,不能预测在2020~2021年期间,甲品牌的销售量高于乙品牌,故D错误,不符合题意.故选:C.9.(4分)下列命题:①过一点有且只有一条直线与已知直线平行;②垂直于同一条直线的两条直线互相平行;③相等的角是对顶角;④平行于同一条直线的两条直线互相平行.其中是真命题有()A.1个B.2个C.3个D.4个【分析】根据平行公理、平行线的判定定理、对顶角的概念判断即可.【解答】解:①过直线外一点有且只有一条直线与已知直线平行,故本小题说法是假命题;②在同一平面内,垂直于同一条直线的两条直线互相平行,故本小题说法是假命题;③相等的角不一定是对顶角,故本小题说法是假命题;④平行于同一条直线的两条直线互相平行,本小题说法是真命题;故选:A.10.(4分)已知x>y,xy<0,a为任意有理数,下列式子一定正确的是()A.﹣x>﹣y B.a2x>a2y C.﹣x+a<﹣y+a D.x>﹣y【分析】根据已知求出x>0,y<0,再根据不等式的性质逐个判断即可.【解答】解:∵x>y且xy<0,∴x>0,y<0,∴A、﹣x<﹣y,故本选项不符合题意;B、当a=0时,a2x=a2y,即a2x>a2y错误,故本选项不符合题意;C、∵x>y,∴﹣x<﹣y,∴﹣x+a<﹣y+a,故本选项符合题意;D、根据题意不能判断x和﹣y的大小,故本选项不符合题意;故选:C.11.(4分)如图,把一张长方形纸条折叠成如图所示的形状,若已知∠2=65°,则∠1为()A.130°B.115°C.100°D.120°【分析】先根据翻折变换的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠2=65°,∴∠3=180°﹣2∠2=180°﹣2×65°=50°,∵矩形的两边互相平行,∴∠1=180°﹣∠3=180°﹣50°=130°.故选:A.12.(4分)为庆祝建党100周年,更加深入了解党的光荣历史,我校团委计划组织全校共青团员到曾家岩周公馆、红岩村纪念馆、烈士墓渣滓洞一线开展红色研学之旅.计划统一乘车前往,若调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位.设计划调配30座客车x辆,全校共青团员共有y人,则根据题意可列出方程组为()A.B.C.D.【分析】根据“调配30座客车若干辆,则有8人没有座位;若调配36座客车,则用车数量将减少1辆,并空出4个座位”列出方程即可.【解答】解:设计划调配30座客车x辆,全校共青团员共有y人,根据题意得:,故选:A.二.填空题(共4小题,满分16分,每小题4分)13.(4分)比较大小:<6﹣(填“>”“<”或“=”).【分析】分别判断出、6﹣与4的大小关系,即可判断出、6﹣的大小关系.【解答】解:∵<,=4,∴<4;∵6﹣>6﹣2=4,∴<6﹣.故答案为:<.14.(4分)若关于x、y的方程组的解满足x+y=2k,则k的值为﹣.【分析】根据等式的性质,可得答案.【解答】解:②+①,得2x+2y=2k﹣3,∴x+y=k﹣,∵关于x,y的方程组的解满足x+y=2k,∴2k=k﹣,解得k=﹣.故答案为:﹣.15.(4分)若关于x的不等式组.只有4个整数解,则a的取值范围是.【分析】先解不等式组得到2﹣3a<x<21,再利用不等式组只有4个整数解,则x只能取17、18、19、20,所以16≤2﹣3a<17,然后解关于a的不等式组即可.【解答】解:,解①得x<2,解②得1x>2﹣3a,所以不等式组的解集为2﹣3a<x<21,因为不等式组只有4个整数解,所以16≤2﹣3a<17,所以﹣5<a≤﹣.故答案为:﹣5<a≤﹣.16.(4分)如图,平面直角坐标系中O是原点,等边△OAB的顶点A的坐标是(2,0),动点P从点O出发,以每秒1个单位长度的速度,沿O→A→B→O→A…的路线作循环运动,则第2021秒时,点P的坐标是(,).【分析】计算前面7秒结束时的各点坐标,得出规律,再按规律进行解答便可.【解答】解:由题意得,第1秒结束时P点的坐标为P1(1,0);第2秒结束时P点的坐标为P2(2,0);第3秒结束时P点的坐标为P3(2﹣1×cos60°,1×sin60°),即P3(,);第4秒结束时P点的坐标为P4(1,2×sin60°),即P4(1,);第5秒结束时P点的坐标为P5(,);第6秒结束时P点的坐标为P6(0,0);第7秒结束时P点的坐标为P7(1,0),与P1相同;……由上可知,P点的坐标按每6秒进行循环,∵2021÷6=336……5,∴第2021秒结束后,点P的坐标与P5相同为(,),故答案为:(,).三.解答题(共8小题,满分86分)17.(8分)(1)计算;(2)解方程组.【分析】(1)利用实数混合运算的法则计算即可;(2)利用代入法可解.【解答】解:(1)原式=9+(﹣3)+2+2﹣=10﹣;(2).①+②得:20x+20y=60.∴x+y=3 ③.由③得:y=3﹣x④,把④代入①得:11x+9(3﹣x)=36.解得:x=4.5.把x=4.5代入④得:y=﹣1.5.∴原方程组的解为:.18.(8分)按要求解下列不等式(组).(1)解关于x的不等式1﹣≤,并将解集用数轴表示出来.(2)解不等式组,将解集用数轴表示出来,并写出它的所有整数解.【分析】(1)去分母,去括号,移项,合并同类项,系数化成1即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)1﹣≤,去分母得:6﹣2(2x﹣1)≤3(1+x),去括号得:6﹣4x+2≤3+3x,移项得:﹣4x﹣3x≤3﹣6﹣2,合并同类项得:﹣7x≤﹣5,系数化成1得:x≥,在数轴上表示为:;(2),解不等式①得:x≤1,解不等式②得:x>﹣3,所以不等式组的解集是﹣3<x≤1,在数轴上表示不等式组的解集为:,所以不等式组的整数解是﹣2,﹣1,0,1.19.(10分)已知:3a+21的立方根是3,4a﹣b﹣1的算术平方根是2,c的平方根是它本身.(1)求a,b,c的值;(2)求3a+10b+c的平方根.【分析】(1)根据立方根,算术平方根,平方根的概念即可求出答案;(2)根据(1)中所求a、b、c的值代入代数式3a+10b+c中即可求出答案.【解答】解:(1)根据题意可知,3a+21=27,解得a=2,4a﹣b﹣1=4,解得b=3,c=0,所以a=2,b=3,c=0;(2)因为3a+10b+c=3×2+10×3+0=36,36的平方根为±6.所以3a+10b+c的平方根为±6.20.(10分)填空,完成下列证明过程,并在括号中注明理由.如图,已知∠BEF+∠EFD=180°,∠AEG =∠HFD,求证:∠G=∠H.证明:∵∠BEF+∠EFD=180°,(已知).∴AB∥CD(同旁内角互补,两直线平行).∴∠AEF=∠EFD(两直线平行,内错角相等).又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE.∴EG∥FH(内错角相等,两直线平行).∴∠G=∠H.(两直线平行,内错角相等).【分析】根据平行线的判定得出AB∥CD,根据平行线的性质得出∠AEF=∠EFD,求出∠GEF=∠HFE,根据平行线的判定推出EG∥FH,根据平行线的性质得出答案即可.【解答】证明:∵∠BEF+∠EFD=180°(已知),∴AB∥CD(同旁内角互补,两直线平行),∴∠AEF=∠EFD(两直线平行,内错角相等),又∵∠AEG=∠HFD,∴∠AEF﹣∠AEG=∠EFD﹣∠HFD,即∠GEF=∠HFE,∴EG∥FH(内错角相等,两直线平行),∴∠G=∠H(两直线平行,内错角相等),故答案为:已知,CD,同旁内角互补,两直线平行,∠AEF,两直线平行,内错角相等,∠GEF,∠HFE,EG,内错角相等,两直线平行,两直线平行,内错角相等.21.(12分)为了解某市市民对“垃圾分类知识”的知晓程度.某数学学习兴趣小组对市民进行随机抽样的问卷调查.调查结果分为“A.非常了解”,“B.了解”,“C.基本了解”,“D.不太了解”四个等级进行统计,并将统计结果绘制成如图两幅不完整的统计图(图1,图2).请根据图中的信息解答下列问题:(1)这次调查的市民人数为1000人,图2中,n=35;(2)补全图1中的条形统计图,并求在图2中“A.非常了解”所在扇形的圆心角度数;(3)据统计,2020年该市约有市民900万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有多少万人?据此,请你提出一个提升市民对“垃圾分类知识”知晓程度的办法.【分析】(1)从条形、扇形统计图中可以得到“C组”有200人,占调查总人数的20%,可求出调查人数;计算出“A组”所占的百分比,进而可求“B组”所占的百分比,确定n的值;(2)计算出“B组”的人数,即可补全条形统计图;“A.非常了解”所占整体的28%,其所对应的圆心角就占360°的28%,求出360°×28%即可;(3)样本中“D.不太了解”的占17%,估计全市900万人中,也有17%的人“不太了解”.【解答】解:(1)这次调查的市民人数为:200÷20%=1000(人);∵m%=×100%=28%,n%=1﹣20%﹣17%﹣28%=35%∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补全统计图如图所示:“A.非常了解”所在扇形的圆心角度数为:360°×28%=100.8°;(3)根据题意得:“D.不太了解”的市民约有:900×17%=153(万人),提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.答:“D.不太了解”的市民约有153万人.提升市民对“垃圾分类知识”知晓程度的办法:市民通过网络等渠道增加对垃圾分类的了解,理解垃圾分类的重要意义.22.(12分)如图,△ABC的三个顶点坐标为:A(﹣3,1),B(1,﹣2),C(2,2),△ABC内有一点P (m,n)经过平移后的对应点为P1(m﹣1,n+2),将△ABC做同样平移得到△A1B1C1.(1)画出平移后的三角形A1B1C1;(2)写出A1、B1、C1三点的坐标;(3)求三角形A1B1C1的面积.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)根据点的位置确定坐标即可.(3)利用分割法求解即可.【解答】解:(1)如图,三角形A1B1C1即为所求作.(2)A1(﹣4,3),B1(0,0),C1(1,4).(3)三角形A1B1C1的面积=4×5﹣×1×5﹣×3×4﹣×1×4=9.5.23.(12分)某商店购进便携榨汁杯和酸奶机进行销售,其进价与售价如表:进价(元/台)售价(元/台)200250便携榨汁杯酸奶机160200(1)第一个月,商店购进这两种电器共30台,用去5600元,并且全部售完,这两种电器赚了多少钱?(2)第二个月,商店决定用不超过9000元的资金采购便携榨汁杯和酸奶机共50台,且便携榨汁杯的数量不少于酸奶机的,这家商店有哪几种进货方案?说明理由;(3)在(2)的条件下,请你通过计算判断,哪种进货方案赚钱最多?【分析】(1)设购进x台便携榨汁杯,y台酸奶机,根据总价=单价×数量,结合商店购进这两种电器30台且共用去5600元,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,根据“购进便携榨汁杯的数量不少于酸奶机的,且总费用不超过9000元”,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为整数,即可得出各进货方案;(3)利用总利润=每台的利润×销售数量,分别求出3种进货方案可获得的利润,比较后即可得出结论.【解答】解:(1)设购进x台便携榨汁杯,y台酸奶机,依题意得:,解得:,∴(250﹣200)x+(200﹣160)y=(250﹣200)×20+(200﹣160)×10=1400(元).答:销售这两种电器赚了1400元.(2)设购进m台便携榨汁杯,则购进(50﹣m)台酸奶机,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴这家商店有3种进货方案,方案1:购进23台便携榨汁杯,27台酸奶机;方案2:购进24台便携榨汁杯,26台酸奶机;方案3:购进25台便携榨汁杯,25台酸奶机.(3)方案1获得的利润为(250﹣200)×23+(200﹣160)×27=2230(元);方案2获得的利润为(250﹣200)×24+(200﹣160)×26=2240(元);方案3获得的利润为(250﹣200)×25+(200﹣160)×25=2250(元).∵2230<2240<2250,∴方案3赚钱最多.24.(14分)如图,射线PE分别与直线AB,CD相交于E,F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=n∠EMF.(1)如图1,当n=1时.①试证明AB∥CD;②点G为射线MA(不与M重合)上一点,H为射线MF(不与M,F重合)上一点,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论;(2)如图2,∠PEM=∠PME,∠PFM+∠PNF=70°.若∠EMF=20°时,直接写出n的值为.【分析】(1)①当n=1时.∠PFM=∠EMF,因为FM平分∠PFN,可得∠EMF=∠MFN,利用内错角相等,两直线平行可得结论;②分H在线段MF上和H在MF的延长线上两种情形解答即可;(2)利用已知,根据三角形的外角等于和它不相邻的两个内角之和求出∠EFM的度数即可得出结论.【解答】解:(1)①依题意,当n=1时.∠PFM=∠EMF.∵FM平分∠PFN,∴∠EFM=∠MFN.∴∠MFN=∠EMF.∴AB∥CD.②当H在线段MF上时,∠GHF+∠FMN=180°;当H在线段MF的延长线上时,∠GHF=∠FMN.理由:∵AB∥CD,∴∠PNF=∠PME.∵∠MGH=∠PNF,∴∠MGH=∠PME.∴GH∥PN.如图,当H在线段MF上时,∵GH∥PN,∴∠GHM=∠FMN.∵∠GHF+∠GHM=180°,∴∠GHF+∠FMN=180°.如图,当H在线段MF的延长线上时,∵GH∥PN,∴∠GHM=∠FMN.∴∠GHF=∠FMN.(2)∵∠PEM是△EFM的外角,∴∠PEM=∠EFM+∠EMF.∵∠EMF=20°,∴∠PEM=∠EFM+20°.∵∠PMF是△NFM的外角,∴∠PMF=∠MFN+∠FNM.∴∠PME+∠EMF=∠MFN+∠FNM.∴∠PME+20°=∠MFN+∠FNM.∵∠PEM=∠PME,∴∠EFM+20°+20°=∠MFN+∠FNM.∵∠PFM+∠PNF=70°,∠PFM=∠MFN,∴∠EFM+20°+20°=70°.∴∠EFM=30°.∴∠PFM=∠EMF.故答案为:.。
2020-2021学年四川省初中七年级下期末考试数学试题(有答案)-精品试卷
最新下学期期末教学质量检测七年级 数学试题(全卷共8页,五个大题,总分150分,120分钟完卷) 题号 一 二 三 四 五 总分 总分人 题分 40 40 30 17 23 150得分一、选择题:(本大题共10小题,每小题4分,共40分.每小题只有一项符合题目要求,请将正确选项填在对应题目的空格中))A .东经116°,北纬42°B .红星大桥南C .北偏东30°D .太平洋影院第2排2.如图,一把矩形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上,若∠ADE =125°, 则∠DBC 的度数为( ) A .125°B .75°C .55°D .65°3.下列说法正确的是( )A .了解中央电视台新闻频道的收视率应采用全面调查B .了解岳池县初一年级学生的视力情况,现在我县城区甲、乙两所中学的初一年级随机地各抽取50名学生的视力情况C .反映岳池县6月份每天的最高气温的变化情况适合用折线统计图D .商家从一批粽子中抽取200个进行质量检测,200是总体 4.若b a >,则下列不等式错误的是( ) A .55->-b aB .b a 55>C .55ba > D .b a ->-555.若一个数的算术平方根和立方根都等于它本身,则这个数一定是( ) A .0或1B .1或-1C .0或±1D .06.下列命题中,是真命题的是( ) A .两条直线被第三条直线所截,同位角相等 B .相等的角是对顶角 C .同旁内角互补,两直线平行得 分 评 卷 人D .互补的两个角一定有一个锐角,一个钝角 7.下列各数中无理数有( )223.141,,0,4.217,0.20200200027π-&&K A .2个 B .3个 C . 4个 D .5个8.在平面直角坐标系中,点P,221x --)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.甲、乙两种商品原来的单价和为100元,因市场变化,甲商品降价10%,乙商品提价40%,调价后两种商品的单价和比原来的单价和提高了20%、若设甲、乙两种商品原来的单价分别为x 元、y 元,则下列方程组正确的是( )A . ()100(10%)140%100(120%)x y x x y +=⎧⎨++-=⨯+⎩B .()100(10%)140%10020%x y x x y +=⎧⎨-++=⨯⎩C .()100(10%)140%100(120%)x y x x y +=⎧⎨-++=⨯+⎩D .()100(10%)140%10020%x y x x y +=⎧⎨++-=⨯⎩10.若关于x 的一元一次不等式组202x k x k -≤⎧⎨+>⎩有解,则k 的取值范围为( )A . 23k >-B .23k >C .23k ≤D .23k ≥-二、填空题(本大题共10小题,每小题4分,共40分,把正确答案填在题中的横线上.)11.如图,两条直线相交成四个角,已知∠2=3∠1, 那么∠4= °.12.3-= .13.点A 的坐标(4,-3),它到x 轴的距离为 .14.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x 两,每只羊值金y 两,可列方程组为 .) 4 (第11题)( 1 )3 ( 215.若不等式358x x >-的解集中有m 个正整数,则m 的值为 .16.某中学为了了解学生上学方式,现随机抽取部分学生进行调查,将结果绘成条形统计图如图,由此可估计该校2400名学生中有 名学生是乘车上学的.17. 如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是 . 18.已知1(1,5)P a -和2(2,1)P b -关于x 轴对称,则2017()a b +的值为 .19.已知关于x ,y 的二元一次方程组221x y k x y +=⎧⎨+=-⎩的解互为相反数,则k 的值是______.20.任何实数a ,可用[a]表示不超过a 的最大整数,如[2]=2,[3.7]=3,现对72进行如下操作: 72[]=8[]=2[]=1,这样对72只需进行3次操作后变为1,类似地:对109只需进行 次操作后变为1.三、计算题(第21题6分,22题12分,第23题12分,共30分。
2020-2021学年七年级(下)期末数学试卷(解析版)
2020-2021学年七年级(下)期末数学试卷(解析版)一、选择题(每小题只有一个选项符合题意,请将你认为正确的选项字母填入下表相应空格内,每小题3分,共30分)1.下列各式不能成立的是()A.(x2)3=x6B.x2•x3=x5C.(x﹣y)2=(x+y)2﹣4xy D.x2÷(﹣x)2=﹣1【考点】4C:完全平方公式;46:同底数幂的乘法;47:幂的乘方与积的乘方;48:同底数幂的除法.【分析】根据同底数幂的乘法运算以及幂的乘方运算和完全平方公式求出即可.【解答】解:A.(x2)3=x6,故此选项正确;B.x2•x3=x 2+3=x5,故此选项正确;C.(x﹣y)2=(x+y)2﹣4xy=x2+y2﹣2xy,故此选项正确;D.x2÷(﹣x)2=1,故此选项错误;故选:D.【点评】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和完全平方公式的应用,熟练掌握其运算是解决问题的关键.2.给出下列图形名称:(1)线段;(2)直角;(3)等腰三角形;(4)平行四边形;(5)长方形,在这五种图形中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】P3:轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称可得答案.【解答】解:(1)线段;(2)直角;(3)等腰三角形;(5)长方形是轴对称图形,共4个,故选:D.【点评】此题主要考查了轴对称图形,关键是找出图形的对称轴.3.在下列多项式的乘法中,可用平方差公式计算的是()A.(2+a)(a+2)B.(a+b)(b﹣a)C.(﹣x+y)(y﹣x) D.(x2+y)(x ﹣y2)【考点】4F:平方差公式.【分析】根据平方差公式的定义进行解答.【解答】解:A、(2+a)(a+2)=(a+2)2,是完全平方公式,故本选项错误;B、(a+b)(b﹣a)=b2﹣(a)2,符合平方差公式,故本选项正确;C、(﹣x+y)(y﹣x)=(y﹣x)2,是完全平方公式,故本选项错误;D、(x2+y)(x﹣y2)形式不符合平方差公式,故本选项错误.故选B.【点评】本题考查了平方差公式,要熟悉平方差公式的形式.4.如图,有甲、乙两种地板样式,如果小球分别在上面自由滚动,设小球在甲种地板上最终停留在黑色区域的概率为P1,在乙种地板上最终停留在黑色区域的概率为P2,则()A.P1>P2B.P1<P2C.P1=P2 D.以上都有可能【考点】X5:几何概率.【分析】先根据甲和乙给出的图形,先求出黑色方砖在整个地板中所占的比值,再根据其比值即可得出结论.【解答】解:由图甲可知,黑色方砖6块,共有16块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P1是,由图乙可知,黑色方砖3块,共有9块方砖,∴黑色方砖在整个地板中所占的比值==,∴在乙种地板上最终停留在黑色区域的概率为P2是,∵>,∴P1>P2;故选A.【点评】本题考查的是几何概率,用到的知识点为:几何概率=相应的面积与总面积之比.5.在同一平面内,如果两条直线被第三条直线所截,那么()A.同位角相等B.内错角相等C.不能确定三种角的关系D.同旁内角互补【考点】J6:同位角、内错角、同旁内角.【分析】根据平行线的性质定理即可作出判断.【解答】解:A、两条被截直线平行时,同位角相等,故选项错误;B、两条被截直线平行时,内错角相等,故选项错误;C、正确;D、两条被截直线平行时,同旁内角互补,故选项错误.故选C.【点评】本题主要考查了平行线的性质定理,注意定理的条件:两直线平行.6.如图,下图是汽车行驶速度(千米/时)和时间(分)的关系图,下列说法其中正确的个数为()(1)汽车行驶时间为40分钟;(2)AB表示汽车匀速行驶;(3)在第30分钟时,汽车的速度是90千米/时;(4)第40分钟时,汽车停下来了.A.1个B.2个C.3个D.4个【考点】E6:函数的图象.【分析】观察图象,结合题意,明确横轴与纵轴的意义,依次分析选项可得答案.【解答】解:读图可得,在x=40时,速度为0,故(1)(4)正确;AB段,y的值相等,故速度不变,故(2)正确;x=30时,y=80,即在第30分钟时,汽车的速度是80千米/时;故(3)错误;故选C.【点评】解决本题的关键是读懂图意,明确横轴与纵轴的意义.7.如图,AB∥ED,则∠A+∠C+∠D=()A.180°B.270°C.360°D.540°【考点】JA:平行线的性质.【分析】首先过点C作CF∥AB,由AB∥ED,即可得CF∥AB∥DE,然后根据两直线平行,同旁内角互补,即可求得∠1+∠A=180°,∠2+∠D=180°,继而求得答案.【解答】解:过点C作CF∥AB,∵AB∥ED,∴CF∥AB∥DE,∴∠1+∠A=180°,∠2+∠D=180°,∴∠A+∠ACD+∠D=∠A+∠1+∠2+∠D=360°.故选C.【点评】此题考查了平行线的性质.此题难度适中,注意掌握辅助线的作法,注意掌握两直线平行,同旁内角互补定理的应用.8.已知一个正方体的棱长为2×102毫米,则这个正方体的体积为()A.6×106立方毫米B.8×106立方毫米C.2×106立方毫米D.8×105立方毫米【考点】47:幂的乘方与积的乘方.【分析】正方体的体积=棱长的立方,代入数据,然后根据积的乘方,把每一个因式分别乘方,再把所得的幂相乘计算即可.【解答】解:正方体的体积为:(2×102)3=8×106立方毫米.故选B.【点评】考查正方体的体积公式和积的乘方的性质,熟记体积公式和积的乘方的性质是解题的关键.9.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED=90°②∠ADE=∠CDE ③DE=BE ④AD=AB+CD,四个结论中成立的是()A.①②④B.①②③C.②③④D.①③【考点】KF:角平分线的性质;KD:全等三角形的判定与性质.【分析】过E作EF⊥AD于F,易证得Rt△AEF≌Rt△AEB,得到BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,得到EC=EF=BE,则可证得Rt△EFD≌Rt△ECD,得到DC=DF,∠FDE=∠CDE,也可得到AD=AF+FD=AB+DC,∠AED=∠AEF+∠FED=∠BEC=90°,即可判断出正确的结论.【解答】解:过E作EF⊥AD于F,如图,∵AB⊥BC,AE平分∠BAD,∴Rt△AEF≌Rt△AEB∴BE=EF,AB=AF,∠AEF=∠AEB;而点E是BC的中点,∴EC=EF=BE,所以③错误;∴Rt△EFD≌Rt△ECD,∴DC=DF,∠FDE=∠CDE,所以②正确;∴AD=AF+FD=AB+DC,所以④正确;∴∠AED=∠AEF+∠FED=∠BEC=90°,所以①正确.故选A.【点评】本题考查了角平分线的性质:角平分线上的点到角的两边的距离相等.也考查了三角形全等的判定与性质.10.如图,是把一张长方形的纸片沿长边中点的连线对折两次后得到的图形,再沿虚线裁剪,展开后的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】严格按照图中的方法亲自动手操作一下,即可得到所得图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,展开即可得到答案.【解答】解:由折叠可得最后展开的图形应既关于过原长方形两长边中点的连线对称,也关于两短边中点的连线对称,并且关于长边对称的两个剪去部分是不相连的,各选项中,只有选项D符合.故选D.【点评】本题主要考查学生的动手能力及空间想象能力.对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.解决本题的关键是根据折叠确定所得图形的对称轴.二、填空题(本大题共6个小题,每题3分,共计18分)11.任意翻一下2016年的日历,翻出1月6日是不确定事件,翻出4月31日是确定事件.(填“确定”或“不确定”)【考点】X1:随机事件.【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:任意翻一下2016年的日历,翻出1月6日是随机事件,即不确定事件,翻出4月31日是不可能事件,即确定事件,故答案为:不确定;确定.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.等腰三角形一边长为8,另一边长为5,则此三角形的周长为18或21.【考点】KH:等腰三角形的性质.【分析】本题应分为两种情况8为底或5为底,还要注意是否符合三角形三边关系.【解答】解:当8为腰,5为底时;8﹣5<8<8+5,能构成三角形,此时周长=8+8+5=21;当8为底,5为腰时;8﹣5<5<8+5,能构成三角形,此时周长=5+5+8=18;故答案为18或21.【点评】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.13.若x2+6x+b2是一个完全平方式,则b的值是±3.【考点】4E:完全平方式.【分析】利用完全平方公式的结构特征计算即可求出b的值.【解答】解:∵x2+6x+b2是一个完全平方式,∴b=±3,故答案为:±3【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.14.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有①②③(填序号)【考点】KN:直角三角形的性质.【分析】根据有一个角是直角的三角形是直角三角形进行分析判断.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∠C=90°,则该三角形是直角三角形;②∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=90°,则该三角形是直角三角形;③∠A=90°﹣∠B,则∠A+∠B=90°,∠C=90°.则该三角形是直角三角形;④∠A=∠B=∠C,则该三角形是等边三角形.故能确定△ABC是直角三角形的条件有①②③.【点评】此题要能够结合已知条件和三角形的内角和定理求得角的度数,根据直角三角形的定义进行判定.15.如图,已知C,D两点在线段AB上,AB=10cm,CD=6cm,M,N分别是线段AC,BD 的中点,则MN=8cm.【考点】ID:两点间的距离.【分析】结合图形,得MN=MC+CD+ND,根据线段的中点,得MC=AC,ND=DB,然后代入,结合已知的数据进行求解.【解答】解:∵M、N分别是AC、BD的中点,∴MN=MC+CD+ND=AC+CD+DB=(AC+DB)+CD=(AB﹣CD)+CD=×(10﹣6)+6=8.故答案为:8.【点评】此题考查的知识点是两点间的距离,关键是利用线段的中点结合图形,把要求的线段用已知的线段表示.16.一辆小车由静止开始从光滑的斜面上向下滑动,通过观察记录小车滑动的距离s(m)与时间t(s)的数据如下表:时间t(s) 1 2 3 4距离s(m) 2 8 18 32 …则写出用t表示s的关系式s=2t2.【考点】E3:函数关系式.【分析】根据物理知识列出函数表达式s=at2,代入数据计算即可得到关系式.【解答】解:设t表示s的关系式为s=at2,则s=a×12=2,解得a=2,∴s=2t2.故t表示s的关系式为:s=2t2.故答案为:2t2.【点评】本题考查了由实际问题列函数关系式,关键是掌握两个变量的关系.三、解答题(本大题共8个题,共72分.解答题要写出过程.)17.(15分)计算(1)简便计算:(2)计算:2a3b2•(﹣3bc2)3÷(﹣ca2)(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x=,y=2.【考点】4J:整式的混合运算—化简求值.【分析】(1)把15、16分别写成(16﹣)与(16+)的形式,利用平方差公式计算.(2)先乘方,再按整式的乘除法法则进行运算.(3)先计算左括号里面的,再算除法.最后代入求值.【解答】解:(1)原式=(16﹣)×(16+)=162﹣()2=255(2)原式=2a3b2×(﹣27b3c6)÷(﹣ca2)=54a3﹣2b2+3c6﹣1=54ab5c5(3)原式=[(9x2﹣4y2)﹣(5x2+8xy﹣4y2)]÷4x=(4x2﹣8xy)÷4x=x﹣2y当x=,y=2时原式=﹣4=﹣【点评】本题考查了整式的乘方、乘除、加减运算及乘法公式.解题过程中注意运算顺序.平方差公式:两个数的和与这两个数的差的积等于这两个数的平方差.18.(5分)“西气东输”是造福子孙后代的创世纪工程.现有两条高速公路和A、B两个城镇(如图),准备建立一个燃气中心站P,使中心站到两条公路距离相等,并且到两个城镇距离相等,请你画出中心站位置.【考点】N4:作图—应用与设计作图.【分析】到两条公路的距离相等,则要画两条公路的夹角的角平分线,到A,B两点的距离相等又要画线段AB的垂直平分线,两线的交点就是点P的位置.【解答】解:如图所示,.【点评】本题主要考查了角平分线的性质及垂直平分线的性质.解题的关键是理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.19.(8分)如图所示,转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6.(1)若自由转动转盘,当它停止转动时,指针指向奇数区的概率是多少?(2)请你用这个转盘设计一个游戏,当自由转动的转盘停止时,指针指向的区域的概率为.【考点】X5:几何概率.【分析】(1)根据题意先得出奇数的个数,再根据概率公式即可得出答案;(2)根据概率公式设计如:自由转动的转盘停止时,指针指向大于2的区域,答案不唯一.【解答】解:(1)根据题意可得:转盘被等分成六个扇形,并在上面依次写上数字1、2、3、4、5、6,有3个扇形上是奇数.故自由转动转盘,当它停止转动时,指针指向奇数区的概率是=.(2)答案不唯一.如:自由转动的转盘停止时,指针指向大于2的区域.【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.20.(7分)如图,已知∠1=∠2,∠3=∠4,∠E=90°,试问:AB∥CD吗?为什么?解:∵∠1+∠3+∠E=180°180°∠E=90°已知∴∠1+∠3=90°∵∠1=∠2,∠3=∠4已知∴∠1+∠2+∠3+∠4=180°∴AB∥CD同旁内角互补,两直线平行.【考点】J9:平行线的判定;K7:三角形内角和定理.【分析】第一空利用三角形内角和定理即可求解;第二利用已知条件即可;第三空利用等式的性质即可求解;第四空利用已知条件即可;第五孔利用等式的性质即可;第六空利用平行线的判定方法即可求解.【解答】解:∵∠1+∠3+∠E=180°∠E=90°(已知),∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4 (已知),∴∠1+∠2+∠3+∠4=180°,∴AB∥CD (同旁内角互补两直线平行).故答案为:180°、90°已知、已知、180°、同旁内角互补两直线平行.【点评】此题主要考查了平行线的判定及三角形的内角和定理,解题的关键是利用三角形内角和定理得到同旁内角互补解决问题.21.(7分)星期天,玲玲骑自行车到郊外游玩,她离家的距离与时间的关系如图所示,请根据图象回答下列问题.(1)玲玲到达离家最远的地方是什么时间?离家多远?(2)她何时开始第一次休息?休息了多长时间?(3)她骑车速度最快是在什么时候?车速多少?(4)玲玲全程骑车的平均速度是多少?【考点】E6:函数的图象.【分析】(1)利用图中的点的横坐标表示时间,纵坐标表示离家的距离,进而得出答案;(2)休息是路程不在随时间的增加而增加;(3)往返全程中回来时候速度最快,用距离除以所用时间即可;(4)用玲玲全称所行的路程除以所用的时间即可.【解答】解:观察图象可知:(1)玲玲到达离家最远的地方是在12时,此时离家30千米;(2)10点半时开始第一次休息;休息了半小时;(3)玲玲郊游过程中,各时间段的速度分别为:9~10时,速度为10÷(10﹣9)=10千米/时;10~10.5时,速度约为(17.5﹣10)÷(10.5﹣10)=15千米/小时;10.5~11时,速度为0;11~12时,速度为(30﹣17.5)÷(12﹣11)=12.5千米/小时;12~13时,速度为0;13~15时,在返回的途中,速度为:30÷(15﹣13)=15千米/小时;可见骑行最快有两段时间:10~10.5时;13~15时.两段时间的速度都是15千米/小时.速度为:30÷(15﹣13)=15千米/小时;(4)玲玲全程骑车的平均速度为:(30+30)÷(15﹣9)=10千米/小时.【点评】本题是一道函数图象的基础题,解题的关键是通过仔细观察图象,从中整理出解题时所需的相关信息,因此本题实际上是考查同学们的识图能力.22.(10分)把两个含有45°角的直角三角板如图放置,点D在AC上,连接AE、BD,试判断AE与BD的关系,并说明理由.【考点】KD:全等三角形的判定与性质.【分析】可通过全等三角形将相等的角进行转换来得出结论.本题中我们可通过证明△AEC 和BCD全等得出∠FAD=∠CBD,根据∠CBD+∠CDB=90°,而∠ADF=∠BDC,因此可得出∠AFD=90°,进而得出结论.那么证明三角形AEC和BCD就是解题的关键,两直角三角形中,EC=CD,AC=BC,两直角边对应相等,因此两三角形全等.【解答】解:BF⊥AE,理由如下:由题意可知:△ECD和△BCA都是等腰Rt△,∴EC=DC,AC=BC,∠ECD=∠BCA=90°,在△AEC和△BDC中EC=DC,∠ECA=∠DCB,AC=BC,∴△AEC≌△BDC(SAS).∴∠EAC=∠DBC,AE=BD,∵∠DBC+∠CDB=90°,∠FDA=∠CDB,∴∠EAC+∠FDA=90°.∴∠AFD=90°,即BF⊥AE.故可得AE⊥BD且AE=BD.【点评】本题考查了全等三角形的判定与性质,解答本题首先要大致判断出两者的关系,然后通过全等三角形来将相等的角进行适当的转换,从而得出所要得出的角的度数.23.(8分)暑假期间某中学校长决定带领市级“三好学生”去北京旅游,甲旅行社承诺:“如果校长买全票一张,则学生可享受半价优惠”;乙旅行社承诺:“包括校长在内所有人按全票的6折优惠”.若全票价为240元(1)设学生数为x,甲、乙旅行社收费分别为y甲(元)和y乙(元),分别写出两个旅行社收费的表达式.(2)当学生人数为多少时,两旅行社收费相同?【考点】E3:函数关系式.【分析】(1)由题意不难得出两家旅行社收费的函数关系式,(2)若求解那个更优惠,可先令两个式子相等,得到一个数值,此时两家都一样进而求解即可.【解答】解:(1)y甲=240+120x;y乙=240×60%(x+1);(2)240+120x=240×60%(x+1)解得x=4,所以当有4名学生时,两家都可以.【点评】本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.24.(12分)如图1,线段BE上有一点C,以BC,CE为边分别在BE的同侧作等边三角形ABC,DCE,连接AE,BD,分别交CD,CA于Q,P.(1)找出图中的所有全等三角形.(2)找出一组相等的线段,并说明理由.(3)如图2,取AE的中点M、BD的中点N,连接MN,试判断三角形CMN的形状,并说明理由.【考点】KD:全等三角形的判定与性质;KK:等边三角形的性质.【分析】(1)根据全等三角形的判定,可得答案;(2)根据全等三角形的判定与性质,可得答案;(3)根据全等三角形的判定与性质,可得CM=CN,根据等边三角形的判定,可得答案.【解答】解:(1)△BCD≌△ACE;△BPC≌△AQC;△DPC≌△EQC(2)BD=AE.理由:等边三角形ABC、DCE中,∵∠ACB=∠ACD=∠DCE=60°,∴∠BCD=∠ACE,在△BCD和△ACE中,,∴△BCD≌△ACE(SAS),∴BD=AE.(3)等边三角形.理由:由△BCD≌△ACE,∴∠1=∠2,BD=AE.∵M是AE的中点、N是BD的中点,∴DN=EM,又DC=CE.在△DCN和△ECM中,,∴△DCN≌△ECM(SAS),∴CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.∴∠NCD+∠DCM=60°,即∠NCM=60°,又∵CM=CN,∴△CMN为等边三角形.【点评】本题考查了全等三角形的判定与性质,解(1)的关键是全等三角形的判定,解(2)的关键是全等三角形的判定;解(3)的关键是利用全等三角形的判定与性质得出CN=CM,∠NCD=∠MCE,∠MCE+∠DCM=60°.,又利用了等边三角形的判定.。
四川省攀枝花市七年级下学期数学期末考试试卷
四川省攀枝花市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本大题共12小题,每小题3分,共36分 (共12题;共36分)1. (3分) (2017七下·东城期中) 如图,数轴上点表示的数可能是().A .B .C .D .2. (3分)如图,已知∠1=∠2=∠3=55º,则∠4=()A . 135ºB . 125ºC . 110ºD . 无法确定3. (3分)(2017·平顶山模拟) 下列调查中,适合普查的事件是()A . 调查华为手机的使用寿命B . 调查市九年级学生的心理健康情况C . 调查你班学生打网络游戏的情况D . 调查中央电视台《中国舆论场》的节目收视率4. (3分)方程x+2y=5的正整数解的个数为()A . 1个B . 2个C . 3个D . 4个5. (3分) (2019七下·潜江月考) 下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线.其中错误的有()A . 1个B . 2个C . 3个D . 4个6. (3分)如果a>b,下列不等式中不正确的是()A . a﹣3>b﹣3B . >C . ﹣2a<﹣2bD . 1﹣2a>1﹣2b7. (3分)已知二元一次方程3x﹣y=1,当x=2时,y﹣8等于()A . 5B . -3C . -7D . 78. (3分) (2017七下·重庆期中) (下列各数中无理数有()3.141,﹣,,π,0,0.1010010001…A . 2个B . 3 个C . 4个D . 5个9. (3分)下列调查适合做普查的是()A . 了解全球人类男女比例情况B . 了解一批灯泡的平均使用寿命C . 调查20~25岁年轻人最崇拜的偶像D . 对患甲型H7N9的流感患者同一车厢的乘客进行医学检查10. (3分)下列说法中正确的是()A . 在同一平面内,两条不平行的线段必相交B . 在同一平面内,不相交的两条线段是平行线C . 两条射线或线段平行是指它们所在的直线平行D . 一条直线有可能同时与两条相交直线平行11. (3分) (2019八上·顺德月考) 已知点P的坐标为(4,7),则点P到x轴的距离是()A . 4B . 5C . 7D . 1112. (3分)如图,弹性小球从P(2,0)出发,沿所示方向运动,每当小球碰到正方形OABC的边时反弹,反弹时反射角等于入射角,当小球第一次碰到正方形的边时的点为P1 ,第二次碰到正方形的边时的点为P2…第n 次碰到正方形的边时的点为Pn ,则P2015的坐标是()A . (5,3)B . (3,5)C . (0,2)D . (2,0)二、填空题:(本大题共6小题,每小题3分,共18分). (共6题;共18分)13. (3分) (2016七下·江阴期中) 已知是方程mx﹣y=3的解,则m的值是________.14. (3分)点到直线的距离:直线外一点到这条直线的________的长度.15. (3分) 2016年扬州体育中考现场考试内容有两项,50米跑为必考项目,另在立定跳远、坐位体前屈、实心球和一分钟跳绳中选一项测试.王老师对参加体育中考的九(1)班40名学生的一项选测科目作了统计,列出如图所示的统计表,则本班参加坐位体前屈的人数是________人.组别立定跳远坐位体前屈实心球一分钟跳绳频率0.40.350.10.1516. (3分)若点P(a,4-a)是第一象限的点,则a的取值范围是________.17. (3分) (2019七上·句容期中) 已知:x-2y=-4,则代数式(2y-x)2-2x+4y-1的值为________.18. (3分)如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a 的取值范围为________三、解答题:(本大题共8小题,满分66分) (共8题;共62分)19. (17.0分)解方程组:(1);(2).20. (5.0分)(2020·武汉模拟) 如图,在正方形网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,请分别仅用一把无刻度的直尺画图.(1)在图1中,过点A画AB的垂线AD;(2)在图2中,过点C画AB的平行线CE:(3)在图3中,以点B为顶点,BA为一边,画.21. (8.0分)(2018·吉林模拟) 某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有________人;(2)请你将条形统计图(2)补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)22. (6分) (2019八上·越秀期中) 如图,在△ABC中,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.(1)求证:∠EFA=90°- ∠B;(2)若∠B=60°,求证:EF=DF.23. (6分)对于实数x,y我们定义一种新运算L(x,y)=ax+by(其中a,b均为非零常数),等式右边是通常的四则运算,由这种运算得到的数我们称之为线性数,记为L(x,y),其中x,y叫做线性数的一个数对.若实数x,y都取正整数,我们称这样的线性数为正格线性数,这时的x,y叫做正格线性数的正格数对.(1)若L(x,y)=x+3y,则L(2,1)=________,L(,)=________;(2)已知L(1,﹣2)=﹣1,L(,)=2.①求a、b的值。
四川省攀枝花市2020-2021学年七年级下学期期末数学试题
21.已知关于x、y的二元一次方程组 的解满足不等式组 则m的取值范围是什么?
22.如图,用8块相同的小长方形拼成一个宽为 的大长方形,求大长方形的面积.
23.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
19.在正方形网格中,建立如图所示的平面直角坐标系xOy,△ABC的三个顶点都在格点上,点A的坐标(4,4),请解答下列问题:
(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1、B1、C1的坐标;
(2)将△ABC绕点C逆时针旋转90°,画出旋转后的△A2B2C2,并求出点A到A2的路径长.
5.下列图形中,不是中心对称图形的是( )
A. B. C. D.
6.下面四个图形中,线段BD是△ABC的高的是()
A. B.
C. D.
7.若 与 是同类项,则 的值是()
A. B. C. D.
8.某个体户卖出一件上衣,这件上衣的售价是150元,盈利了 ,这件上衣的成本是()
A.120元B.125元C.130元D.135元
参考答案
1.D
【解析】
试题分析:只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).
A、含有2个未知数,故选项错误;
B、不是等式,故选项错误;
C、是2次方程,故选项错误;
D、正确.
故选D.
考点:一元一次方程的定义.
2.A
【解析】
2020-2021学年人教版七年级下学期期末数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共8小题,满分24分,每小题3分)1.(3分)a6可以表示为()A.6a B.a2•a3C.(a3)2D.a12÷a2【解答】解:A、6a表示6×a,此选项不符合题意;B、a2•a3=a5,此选项不符合题意;C、(a3)2=a6,此选项符合题意;D、a12÷a2=a10,此选项不符合题意;故选:C.2.(3分)下列命题:①如果两个角相等,那么它们是对顶角;②两直线平行,内错角相等;③三角形的一个外角大于任何一个和它不相邻的内角;④等腰三角形的底角必为锐角,其中假命题的个数有()A.1个B.2个C.3个D.4个【解答】解:①如果两个角相等,那么它们是对顶角,错误,是假命题,符合题意;②两直线平行,内错角相等,正确,是真命题,不符合题意;③三角形的一个外角大于任何一个和它不相邻的内角,正确,是真命题,不符合题意;④等腰三角形的底角必为锐角,正确,是真命题,不符合题意,故选:A.3.(3分)已知x>y,则下列不等式不成立的是()A.x﹣6>y﹣6B.3x>3yC.﹣2x<﹣2y D.﹣3x+6>﹣3y+6【解答】解:A、∵x>y,∴x﹣6>y﹣6,故本选项错误;B、∵x>y,∴3x>3y,故本选项错误;C、∵x>y,∴﹣x<﹣y,∴﹣2x<﹣2y,故选项错误;D、∵x>y,∴﹣3x<﹣3y,∴﹣3x+6<﹣3y+6,故本选项正确.故选:D.4.(3分)下列命题中是真命题的是()A.相等的角是对顶角B.数轴上的点与实数一一对应C .同旁内角互补D .无理数就是开方开不尽的数【解答】解:A 、相等的角不一定是对顶角,故此命题是假命题; B 、数轴上的点与实数一一对应,故此命题是真命题; C 、两直线平行,同旁内角互补,故此命题是假命题;D 、π2是无理数,但不是开方开不尽的数,故此命题是假命题; 故选:B .5.(3分)若{x =1y =3是二元一次方程mx ﹣y =3的解,则m 为( )A .7B .6C .43D .0【解答】解:把{x =1y =3代入方程得:m ﹣3=3,解得:m =6, 故选:B .6.(3分)若解集在数轴上的表示如图所示,则这个不等式组可以是( )A .{x ≥−2x <3B .{x ≤−2x ≥3C .{x ≥−2x ≤3D .{x >−2x ≤3【解答】解:若解集在数轴上的表示如图所示,可得解集为﹣2≤x <3, 则这个不等式组可以是{x ≥−2x <3.故选:A .7.(3分)如图,下列推理及所证明的理由都正确的是( )A .若AB ∥DG ,则∠BAC =∠DCA ,理由是内错角相等,两直线平行 B .若AB ∥DG ,则∠3=∠4,理由是两直线平行,内错角相等 C .若AE ∥CF ,则∠E =∠F ,理由是内错角相等,两直线平行D .若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等【解答】解:A 、若AB ∥DG ,则∠BAC =∠DCA ,理由是两直线平行,内错角相等;故选项A 错误;B 、若AB ∥DG ,则∠BAC =∠DCA ,并不是∠3=∠4,理由是两直线平行,内错角相等;故选项B 错误;C 、若AE ∥CF ,则∠E =∠F ,理由是两直线平行,内错角相等;故选项C 错误;D 、若AE ∥CF ,则∠3=∠4,理由是两直线平行,内错角相等;正确; 故选:D .8.(3分)如图,带箭头的两条直线互相平行,其中一条直线经过正八边形的一个顶点,若∠1=20°,则∠2的度数为( )A .55°B .60°C .70°D .110°【解答】解:如下图所示,∵正八边形的一个内角为180°×(8−2)8=135°,∴∠4=∠3+∠6=135°,∵∠1+∠4+∠5=180°,∠1=20°,∴∠5=180°﹣∠1﹣∠4=180°﹣20°﹣135°=25°, ∵带箭头的两条直线互相平行,∴∠6=∠5=25°(两直线平行,内错角相等), ∴∠3=135°﹣∠6=135°﹣25°=110°, ∴∠2=180°﹣∠3=180°﹣110°=70°, 故选:C .二.填空题(共8小题,满分32分,每小题4分)9.(4分)人体内某种细胞的形状可近似看做球体,它的直径约为0.0000032m,数字0.00000032用科学记数法表示为 3.2×10﹣7.【解答】解:0.00000032=3.2×10﹣7.故答案为:3.2×10﹣7.10.(4分)已知a=240,b=332,c=424,试比较a,b,c的大小,用“>”将它们连接起来:b>c>a.【解答】解:a=240=(25)8=328,b=332=(34)8=818,c=424=(43)8=648,∵81>64>32,∴b>c>a,故答案为b>c>a.11.(4分)石景山区八角北路有一块三角形空地(如图1)准备绿化,拟从点A出发,将△ABC分成面积相等的三个三角形,栽种三种不同的花草.下面是小美的设计(如图2).作法:(1)作射线BM;(2)在射线BM上顺次截取BB1=B1B2=B2B3;(3)连接B3C,分别过B1、B2作B1C1∥B2C2∥B3C,交BC于点C1、C2;(4)连接AC1、AC2.则S△ABC1=S△AC1C2=S△AC2C.请回答,S△ABC1=S△AC1C2=S△AC2C成立的理由是:①平行线分线段成比例定理;②等底共高.【解答】解:由BB1=B1B2=B2B3且B1C1∥B2C2∥B3C,依据平行线分线段成比例定理知BC1=C1C2=C2C,再由△ABC1,△AC1C2与△AC2C等底共高知S△ABC1=S△AC1C2=S△AC2C,故答案为:①平行线分线段成比例定理;②等底共高.12.(4分)如图,将边长为5个单位的等边△ABC沿边BC向右平移3个单位得到△A′B′C′,则四边形AA′C′C的周长为16.【解答】解:∵△ABC为等边三角形,∴AB=AC=BC=5,∵等边△ABC沿边BC向右平移3个单位得到△A′B′C’,∴AC=A′C′=5,AA′=CC′=3,∴四边形AA′C′C的周长=3+3+5+5=16.故答案为16.13.(4分)如图,已知BC与DE交于点M,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.【解答】解:连接BE.∵△CDM和△BEM中,∠DMC=∠BME,∴∠C+∠D=∠MBE+∠BEM,∴∠A+∠ABC+∠C+∠D+∠DEF+∠F=∠A+∠ABC+∠MBE+∠BEM+∠DEF+∠F=∠A+∠F+∠ABE+∠BEF=360°.故答案为:360°.14.(4分)a,b,c为△ABC的三边,化简|a﹣b﹣c|﹣|a+b﹣c|+2a结果是2c.【解答】解:∵a,b,c为△ABC的三边,∴a+b>c,b+c>a,∴原式=c+b﹣a﹣(a+b﹣c)+2a=c+b﹣a﹣a﹣b+c+2a=2c.故答案为:2c.15.(4分)已知a﹣b=2,则a2﹣2ab+b2=4.【解答】解:原式=(a﹣b)2,当a﹣b=2时,原式=4.16.(4分)不等式3x﹣6>0的解集为x>2.【解答】解:移项得:3x>6,解得:x>2,故答案为:x>2.三.解答题(共9小题,满分84分)17.(10分)计算:(1)(﹣2a3)2+a8÷a2﹣2a2・a4;(2)(−12)﹣3+(﹣2)3+(−13)0+(14)﹣2.【解答】解:(1)原式=4a6+a6﹣2a6=3a6;(2)原式=1(−12)3−8+1+1(14)2=﹣8﹣8+1+16=1.18.(10分)分解因式: (1)x 2(x ﹣y )+(y ﹣x ); (2)3ax 2﹣6axy +3ay 2.【解答】解:(1)原式=(x ﹣y )(x 2﹣1), =(x ﹣y )(x ﹣1)(x +1);(2)原式=3a (x 2﹣2xy +y 2), =3a (x ﹣y )2.故答案为:(x ﹣y )(x ﹣1)(x +1);3a (x ﹣y )2. 19.(10分)(1){3x −2y =112x +3y =16(2){5x −1>3(x +1)12x −1≤7−32x【解答】解:(1){3x −2y =11①2x +3y =16②,①×3+②×2,得:13x =65, 解得x =5,将x =5代入①,得:15﹣2y =11, 解得y =2, ∴{x =5y =2;(2)解不等式5x ﹣1>3(x +1),得:x >2, 解不等式12x ﹣1≤7−32x ,得:x ≤4,则不等式组的解集为2<x ≤4.20.(8分)先化简,再求值:(a +3)2﹣(a +1)(a ﹣1)﹣2(2a +4),其中a =12. 【解答】解:原式=a 2+6a +9﹣(a 2﹣1)﹣4a ﹣8 =2a +2, ∵a =12,∴原式=1+2=3.21.(6分)已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(5,6),B (﹣2,3),C(3,1).请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移6个单位长度,再向左平移3个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点).①请画出三角形A1B1C1;②并判断线段AC与A1C1的位置与数量关系.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.22.(8分)如图,①AB∥CD,②BE平分∠ABD,③∠1+∠2=90°,④DE平分∠BDC.(1)请以其中三个为条件,第四个为结论,写出一个命题;(2)判断这个命题是否为真命题,并说明理由.【解答】解:(1)如果BE 平分∠ABD ,∠1+∠2=90°,DE 平分∠BDC ,那么AB ∥CD ; (2)这个命题是真命题, 理由如下:∵BE 平分∠ABD , ∴∠1=12∠ABD , ∵DE 平分∠BDC , ∴∠2=12∠BDC , ∵∠1+∠2=90°, ∴∠ABD +∠BDC =180°, ∴AB ∥CD .23.(10分)某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?【解答】解:(1)设每双速滑冰鞋购进价格是x 元,每双花滑冰鞋购进价格是y 元, 由题意,得{30x +20y =850040x +10y =8000.解得{x =150y =200.答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;(2)设该校购进速滑冰鞋a 双,根据题意,得 150a +200(2a ﹣10)≤9000. 解得 a ≤20.答:该校至多购进速滑冰鞋20双.24.(10分)已知关于x 的方程a ﹣3(x ﹣1)=7﹣x 的解为负分数,且关于x 的不等式组{−2(a −x)≤x +4,①3x−42<x −3,②的解集为x <﹣2,求符合条件的所有整数a 的积.【解答】解:{−2(a −x)≤x +4①3x−42<x −3②,由①得:x ≤2a +4, 由②得:x <﹣2,由不等式组的解集为x <﹣2,得到2a +4≥﹣2,即a ≥﹣3,把a =﹣3代入方程得:﹣3﹣3(x ﹣1)=7﹣x ,即x =−72,符合题意; 把a =﹣2代入方程得:﹣2﹣3(x ﹣1)=7﹣x ,即x =﹣3,不合题意; 把a =﹣1代入方程得:﹣1﹣3(x ﹣1)=7﹣x ,即x =−52,符合题意; 把a =0代入方程得:﹣3(x ﹣1)=7﹣x ,即x =﹣2,不合题意; 把a =1代入方程得:1﹣3(x ﹣1)=7﹣x ,即x =−32,符合题意; 把a =2代入方程得:2﹣3(x ﹣1)=7﹣x ,即x =﹣1,不合题意; 把a =3代入方程得:3﹣3(x ﹣1)=7﹣x ,即x =−12,符合题意. 故符合条件的整数a 取值为﹣3,﹣1,1,3,积为9.25.(12分)如图,在△ABC 中,AE 平分∠BAC ,AD ⊥BC 于点D .∠ABD 的角平分线BF 所在直线与射线AE 相交于点G ,若∠ABC =3∠C ,求证:3∠G =∠DFB .【解答】证明:∵AE 平分∠BAC ,BF 平分∠ABD , ∴∠CAE =∠BAE ,∠ABF =∠DBF ,设∠CAE =∠BAE =x , ∵∠ABC =3∠C ,∴可以假设∠C =y ,∠ABC =3y ,∴∠ABF =∠DBF =∠CBE =12(180°﹣3y )=90°−32y ,第 11 页 共 11 页 ∵AD ⊥CD ,∴∠D =90°,∴∠DFB =90°﹣∠DBF =32y ,设∠ABF =∠DBF =∠CBE =z ,则{z =x +∠G z +∠G =x +y, ∴∠G =12y ,∴∠DFB =3∠G .。
2020-2021 年新人教版七年级下期末考试数学试题及答案
金堂县2020-2021学年度下期期末考试题七年级数学(考试时间12021,满分150分)本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间12021。
A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题。
第Ⅰ卷1至2页, 第Ⅱ卷和B 卷3至6页。
考试结束时,监考员将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回。
注意事项:1.答卷前,考生务必将自己的姓名、准考证号等填写在密封线内相应位置上。
2.第Ⅰ卷各题均有四个选项,只有一项符合题目要求,每小题选出答案后,填在对应题目的答题卡上。
3. A 卷的第II 卷和B 卷用蓝、黑钢笔或圆珠笔直接答在答题卡上。
4.试卷中注有“▲”的地方,是需要你在答题卡上作答的内容或问题。
A 卷(满分100分) 第I 卷(选择题,共30分)一、选择题(每小题3分,共30分) 1.单项式20144xy π-系数是( ▲ )A. -2021B. 20141-C.π-D. 2014π- 2.下列算式中,正确的是( ▲ ) A. 221a a a a-÷⋅=- B. 4)2(22+=+a a C.326a -=(-a ) D.3262()a b a b -= 3.从长度分别为2cm 、3cm 、4cm 、5cm 的四条线段中任选三条线段能组成三角形的个数是(▲)A.1个 B.2个 C .3个D.4个4.一个等腰三角形的两边长分别为3,6则这个等腰三角形的周长是(▲ ) A 、12 B 、12或15 C 、15 D 、无法确定 5.下列图形中,不是轴对称图形的是( ▲ ) A .B .C .D .6.为支援雅安灾区,金堂某同学准备通过爱心热线(8位数)捐款,她只记得号码的前5位,后三位由5,1,2这三个数字组成,但具体顺序忘记了,则她第一次就拨通电话的概率是(▲ ) A .1/2 B.1/4 C.1/6 D.1/87.如图(一),在边长为a 的正方形中,挖掉一个边长为b 的小正方形)(b a >,把余下的部分剪成一个矩形(如图(二)),通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是(▲ )bbaaA.2222)(bababa++=+B.))((22bababa-+=-图一C.2222)(bababa+-=-图二D.222))(2(babababa-+=-+8、如右图,尺规作图作AOB∠的平分线方法如下:以为圆心,任意长为半径画弧交OA、OB于C、D,再分别以点C、D为圆心,以大于12CD长为半径画弧,两弧交于点P,作射线OP由作法得OCP ODP△≌△的根据是( ▲ )A.SAS B.ASA C.SSS D.AAS9.如图,将矩形ABCD沿AE折叠,使D点落在BC边上的F点处,如果060,BAF AED∠=∠那么等于( ▲ )A、060 B、045 C、030 D、07510.小李骑车沿直线旅行,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c千米,则他离起点的距离s与时间t的关系示意图是( ▲ )第Ⅱ卷(非选择题,共70分)二、填空题(每小题4分,共16分)11、一种病毒的长度约为0.000052mm,用科学计数法表示为▲ mm。
2020-2021学年人教版七年级下期末数学试卷及答案解析
2020-2021学年七年级下期末考试数学试卷一.选择题(共6小题,满分18分)1.(3分)若点P (x ,y )在第四象限,且|x |=2,|y |=3,则x +y =( )A .﹣1B .1C .5D .﹣5 解:由题意,得x =2,y =﹣3,x +y =2+(﹣3)=﹣1,故选:A .2.(3分)在下列考察中,是抽样调查的是( )A .了解全校学生人数B .调查某厂生产的鱼罐头质量C .调查宜春市出租车数量D .了解全班同学的家庭经济状况解:A .了解全校学生人数,适合普查,故本选项不合题意;B .调查某厂生产的鱼罐头质量,适合抽样调查,故本选项符合题意;C .调查宜春市出租车数量,适合普查,故本选项不合题意;D .了解全班同学的家庭经济状况,适合普查,故本选项不合题意;故选:B .3.(3分)下列实数中是无理数的是( )A .23B .√2C .3.1D .0 解:A 、23是分数,属于有理数,故本选项不合题意;B 、√2是无理数,故本选项符合题意;C 、3.1是有限小数,属于有理数,故本选项不合题意;D 、0是整数,属于有理数,故本选项不合题意.故选:B .4.(3分)如图,若直线l 1∥l 2,则下列各式成立的是( )A .∠1=∠2B .∠4=∠5C .∠2+∠5=180°D .∠1+∠3=180°解:∵直线l 1∥l 2,∴∠1+∠3=180°,∠2+∠4=180°,故选:D .5.(3分)不等式组{x +5>3x +6>4x −3的整数解的个数是( ) A .2 B .3 C .4 D .5 解:解不等式x +5>3,得:x >﹣2,解不等式x +6>4x ﹣3,得:x <3,则不等式组的解集为﹣2<x <3,所以不等式组的整数解为﹣1、0、1、2这4个,故选:C .6.(3分)在平面直角坐标系中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得到点A 1,A 2,A 3,…,A n ,….若点A 1的坐标为(a ,b ),则点A 2020的坐标为( )A .(a ,b )B .(﹣b +1,a +1)C .(﹣a ,﹣b +2)D .(b ﹣1,﹣a +1) 解:观察发现:A 1(a ,b ),A 2(﹣b +1,a +1),A 3(﹣a ,﹣b +2),A 4(b ﹣1,﹣a +1),A 5(a ,b ),A 6(﹣b +1,a +1)…∴依此类推,每4个点为一个循环组依次循环,∵2020÷4=505,∴点A 2020的坐标与A 4的坐标相同,为(b ﹣1,﹣a +1),故选:D .二.填空题(共6小题,满分18分,每小题3分)7.(3分)算术平方根等于它本身的数是 0和1 .解:算术平方根等于它本身的数是0和1.8.(3分)若a ,b 为实数,且|a ﹣1|+√b +2=0,则(a +b )2020的值为 1 .解:∵|a ﹣1|+√b +2=0,∴a ﹣1=0,b +2=0,∴a =1,b =﹣2,∴(a +b )2020=(1﹣2)2020=1,故答案为:1.9.(3分)如图,10块相同的小长方形墙砖拼成一个大长方形,设小长方形墙砖的长和宽分别为x 厘米和y 厘米,则列出的方程组为 {x +2y =75x =3y.解:根据图示可得{x +2y =75x =3y, 故答案是:{x +2y =75x =3y. 10.(3分)已知,∠AOB 和∠BOC 互为邻补角,且∠BOC :∠AOB =4:1,射线OD 平分∠AOB ,射线OE ⊥OD ,则∠BOE = 72°或108° .解:∵∠AOB 和∠BOC 互为邻补角,∴∠AOB +∠BOC =180°,又∵∠BOC :∠AOB =4:1,∴∠BOC =180°×45=144°,∠AOB =180°×15=36°, ∵射线OD 平分∠AOB ,∴∠AOD =∠BOD =12∠AOB =18°,∵OE ⊥OD ,∴∠DOE =90°,如图1,∠BOE =∠DOE ﹣∠BOD =90°﹣18°=72°,如图2,∠BOE =∠DOE +∠BOD =90°+18°=108°,故答案为:72°或108°.11.(3分)已知关于x ,y 的方程组{4x +y =3m x −y =7m −5的解满足不等式2x +y >8,则m 的取值范围是 m <﹣6 .解:解方程组得x =2m ﹣1,y =4﹣5m ,将x =2m ﹣1,y =4﹣5m 代入不等式2x +y >8得4m ﹣2+4﹣5m >8,∴m <﹣6,故答案为m <﹣6.12.(3分)一个角的补角与它的余角的3倍的差是40°,则这个角为 65°或25° .解:设这个角为x °,则其余角为(90﹣x )°,补角为(180﹣x )°,依题意有 180﹣x ﹣3(90﹣x )=40,解得x =65.或3(90﹣x )﹣(180﹣x )=40,解得x =25.故这个角是65°或25°.故答案为:65°或25°.三.解答题(共8小题,满分54分)13.(6分)(1)解方程组:{2x +y =5x −y =1; (2)计算:|√3−3|+√643−√3.解:(1){2x +y =5①x −y =1②, ①+②得:3x =6,解得:x =2,把x =2代入②得:y =1,则方程组的解为{x =2y =1; (2)原式=3−√3+4−√3=7﹣2√3.14.(6分)解不等式组:{4(x +1)≤7x +13①x−83>x −4②,并把解集在数轴上表示出来,并写出它的所有负整数解.解:解①得:x ≥﹣3,解②得:x <2,不等式组的解集为:﹣3≤x <2,则它的所有负整数解为﹣3,﹣2,﹣1.在数轴上表示:.15.(6分)(1)解不等式:5(x ﹣2)+8<6x .(2)已知(1)中的不等式的最小整数解是方程2x ﹣ax =3的解,求a 的值.解:(1)去括号得5x ﹣10+8<6x ,移项得5x ﹣6x <10﹣8,合并得﹣x <2,系数化为1得x >﹣2;(2)x >﹣2的最小整数为﹣1,把x =﹣1代入方程2x ﹣ax =3得﹣2+a =3,解得a =5.16.(6分)如图,先将△ABC 向上平移2个单位再向左平移5个单位得到△A 1B 1C 1,(1)画出△A 1B 1C 1,并写出点A 1、B 1、C 1的坐标.(2)求△A 1B 1C 1的面积.解:(1)如图所示:△A1B1C1即为所求,A1(﹣1,5)、B1(﹣2,3)、C1(﹣4,4);(2)△A1B1C1的面积为:2×3−12×1×3−12×1×2−12×1×2=2.5.17.(6分)麦当劳公司为扩大规模,占领市场,决定最新推出4种套餐,下面是该公司市场调研人员来到某校就A,B,C,D四种套餐在学生心中的喜爱程度进行的调查,询问了一部分同学,结果统计如图,请你结合图中信息解答下列问题.(1)该公司一共询问了多少名同学?(2)通过计算把条形统计图补充完整;(3)已知该校有2000人,估计全校最喜爱B种套餐的人数是多少?解:(1)44÷44%=100(名),答:该公司一共询问了100名同学;(2)B项目人数为100﹣(44+8+28)=20(名),补全条形图如下:(3)2000×20100=400(名),答:估计全校最喜爱B种套餐的人数是400名.18.(8分)完成下面推理过程:如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:∵∠1=∠2(已知),且∠1=∠CGD(对顶角相等),∴∠2=∠CGD(等量代换),∴CE∥BF(同位角相等,两直线平行),又∵∠B=∠C(已知),∴∠BFD=∠B(等量代换),∴AB∥CD(内错角相等,两直线平行).解:∵∠1=∠2( 已知),且∠1=∠CGD (对顶角相等),∴∠2=∠CGD (等量代换),∴CE ∥BF (同位角相等,两直线平行),又∵∠B =∠C (已知),∴∠BFD =∠B (等量代换),∴AB ∥CD (内错角相等,两直线平行).故答案为:已知,对顶角相等,同位角相等两直线平行,BFD ,等量代换,两直线平行内错角相等.19.(8分)某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a ,b ,c ,用M {a ,b ,c }表示这三个数的平均数,用min {a ,b ,c }表示这三个数中的最小的数,例如M{1,2,9}=1+2+93=4,min {1,2,﹣3}=﹣3,min {3,1,1}=1.请结合上述材料,解决下列问题:(1)①M {(﹣1)2,22,﹣22}= 13 ,②min {(﹣1)2,22,﹣22}= ﹣4 .(2)若M {3﹣2x ,1+3x ,﹣5}=min {2,﹣5,﹣3},求x 的值;解:(1)①M {(﹣1)2,22,﹣22}=1+4−43=13, ②min {(﹣1)2,22,﹣22}=﹣4,故答案为:13,﹣4;(2)∵M {3﹣2x ,1+3x ,﹣5}=min {2,﹣5,﹣3}=﹣5,∴3−2x+1+3x−53=−5,解得x =﹣14.20.(8分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为255人,1辆甲种客车与2辆乙种客车的总载客量为150人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织460名师生集体外出活动,拟租用甲、乙两种客车共8辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为480元,每辆乙种客车的租金为400元,请给出最节省费用的租车方案,并求出最低费用.解:(1)设1辆甲种客车的载客量为x 人,1辆乙种客车的载客量为y 人,依题意有 {2x +3y =255x +2y =150, 解得:{x =60y =45. 答:1辆甲种客车的载客量为60人,1辆乙种客车的载客量为45人;(2)设租用甲种客车a 辆,依题意有:{60a +45(8−a)≥460a <8, 解得:203≤a <8,因为a 取整数,所以a =7,∵7×480+1×400=3760(元).答:租用甲种客车7辆,乙种客车1辆,租车费用最低为3760元.四.解答题(共1小题,满分10分,每小题10分)21.(10分)如图1,在平面直角坐标系中,A (0,1),B (4,1),C 为x 轴正半轴上一点,且AC 平分∠OAB .(1)求证:∠OAC =∠OCA ;(2)如图2,若分别作∠AOC 的三等分线及∠OCA 的外角的三等分线交于点P ,即满足∠POC =13∠AOC ,∠PCE =13∠ACE ,求∠P 的大小;(3)如图3,在(2)中,若射线OP 、OC 满足∠POC =1n ∠AOC ,∠PCE =1n ∠ACE ,猜想∠OPC 的大小,并证明你的结论(用含n 的式子表示)解:(1)∵A(0,1),B(4,1),∴AB∥CO,∴∠OAB=90°,∵AC平分∠OAB.∴∠OAC=45°,∴∠OCA=90°﹣45°=45°,∴∠OAC=∠OCA;(2)∵∠POC=13∠AOC,∴∠POC=13×90°=30°,∵∠PCE=13∠ACE,∴∠PCE=13(180°﹣45°)=45°,∵∠P+∠POC=∠PCE,∴∠P=∠PCE﹣∠POC=15°;(3)∵∠POC=1n∠AOC,∴∠POC=1n×90°=90n°,∵∠PCE=1n∠ACE,∴∠PCE=1n(180°﹣45°)=135n°,∵∠P+∠POC=∠PCE,∴∠P=∠PCE﹣∠POC=45 n°.。
攀枝花市2021年七年级下学期数学期末考试试卷A卷
攀枝花市2021年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在实数,,,,,,,7.1010010001中,无理数有()A . 1个B . 2个C . 3个D . 4个2. (2分) (2019九下·锡山月考) 下列调查方式,你认为最合适的是()A . 了解汕头市民春节期间出行方式,采用全面调查方式B . 游客上飞机前的安检,采用全面调查方式C . 了解汕头市每天的流动人口数,采用全面调查方式D . 日光灯管厂要检测一批灯管的使用寿命,采用全面调查方式3. (2分) (2019八下·宽城期末) 在平面直角坐标系中,点M(3,2)在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分) (2019八上·榆林期末) 下列命题是假命题的是A . 同旁内角互补,两直线平行B . 若两个数的绝对值相等,则这两个数也相等C . 平行于同一条直线的两条直线也互相平行D . 全等三角形的周长相等5. (2分)(2018·岳阳模拟) 一个关于x的一元一次不等式组的解集在数轴上的表示如下图,则该不等式组的解集是()A . x>1B . x≥1C . x>3D . x≥36. (2分)如果a>b,那么下列各式中错误的是()A . a+5>b+5B . 5a>5bC .D . -5a>-5b7. (2分) (2020七下·越秀期中) 下列命题中,是假命题的是()A . 两点之间,线段最短B . 同旁内角互补C . 直角的补角仍然是直角D . 垂线段最短8. (2分)计算的结果是()A . 2B . ±2C . -2D . ±9. (2分)和都是方程y=kx+b的解,则k,b的值分别为()A . 6,3B . 1,4C . 3,2D . ﹣1,310. (2分) (2016七下·辉县期中) 一辆汽车从A地出发,向东行驶,途中要经过十字路口B,在规定的某一段时间内,若车速为每小时60千米,就能驶过B处2千米;若每小时行驶50千米,就差3千米才能到达B处,设A、B间的距离为x千米,规定的时间为y小时,则可列出方程组是()A .B .C .D .二、填空题 (共6题;共7分)11. (1分)(2017·白银) 估计与0.5的大小关系是: ________0.5.(填“>”、“=”、“<”)12. (1分) (2018七下·韶关期末) 某区为了了解14万名学生的数学成绩,从中抽取了1000名学生的数学成绩进行统计分析,这个问题中的样本容量是________.13. (1分) (2020七下·江阴期中) 如图,把一根直尺与一块三角尺如图放置,若∠1=55°,则∠2的度数为________.14. (1分)用不等式表示“a与5的差不是正数”:________15. (1分) (2017七下·长安期中) 为了奖励学习小组的同学,黄老师花92元钱购买了钢笔和笔记本两种奖品.已知钢笔和笔记本的单价各为18元和8元,则买了笔记本________本.16. (2分) (2019七下·吉林期中) 在平面直角坐标系中,一蚂蚁从原点出发,按向上、向右、向下、向右的方向依次不断移动每次移动1个单位,其行走路线如图所示.(1)填写下列各点的坐标: ________, ________;(2)写出点的坐标(为正整数)________;(3)蚂蚁从点到点的移动方向________.三、解答题 (共9题;共93分)17. (5分)计算:(1) -10-2-2´[2-(-3)3];(2) 2(x3)2×x3+(-3x3)3+(-5x)2×x718. (10分)(2013·遵义) 解方程组.19. (5分) (2019七下·湘桥期末) 解不等式组,并在数轴上表示出解集.20. (10分)(2020·达县) 如图,点O在的边上,以为半径作,的平分线交于点D,过点D作于点E.(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断与交点的个数,并说明理由.21. (11分) (2018八上·沈河期末)(1)在平面直角坐标系中,描出下列3个点:A (-1,0),B (3,-1),C (4,3);(2)顺次连接A,B,C,组成△ABC,求△ABC的面积.22. (2分)(2017·新化模拟) 某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.浠马中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有________名;(2)补全上面的条形统计图1,并计算出喜好“菠萝味”牛奶的学生人数在扇形统计图中所占圆心角的度数;(3)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?23. (15分) (2019八下·海安期中) 小明购买A,B两种商品,每次购买同一种商品的单价相同,具体信息如下表:次数购买数量(件购买总费用(元A B第一次2155第二次1365根据以上信息解答下列问题:(1)求A,B两种商品的单价;(2)若第三次购买这两种商品共12件,且A种商品的数量不少于B种商品数量的2倍,请设计出最省钱的购买方案,并说明理由.24. (15分) (2018七上·杭州期中) (阅读理解)如果点M,N在数轴上分别表示实数m,n,在数轴上M,N两点之间的距离表示为或或 .利用数形结合思想解决下列问题:已知数轴上点A与点B的距离为12个单位长度,点A在原点的左侧,到原点的距离为24个单位长度,点B在点A的右侧,点C表示的数与点B表示的数互为相反数,动点P从A出发,以每秒2个单位的速度向终点C移动,设移动时间为t秒.(1)点A表示的数为________,点B表示的数为________.(2)用含t的代数式表示P到点A和点C的距离: ________, ________.(3)当点P运动到B点时,点Q从A点出发,以每秒4个单位的速度向C点运动,Q点到达C点后,立即以同样的速度返回,运动到终点A,在点Q开始运动后,P、Q两点之间的距离能否为2个单位?如果能,请求出此时点P表示的数;如果不能,请说明理由.25. (20分) (2019七下·兴化月考) 如图①,已知线段AB、CD相交于点O,连接AC、BD,我们把形如图①的图形称之为“8字形”.(1)如图①,若∠A=∠D,判断∠C与∠B的数量关系,并说明理由;(2)如图②,∠CAB和∠BDC的平分线AP和DP相交于点P,并且与CD、AB分别相交于M、N,试解答下列问题:①仔细观察,在图②中有多少个“8字形”;②∠B=80°,∠C=100°,求∠P的度数.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、16-2、16-3、三、解答题 (共9题;共93分)17-1、17-2、18-1、19-1、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、。
四川省攀枝花市2020版七年级下学期数学期末考试试卷(I)卷
四川省攀枝花市 2020 版七年级下学期数学期末考试试卷(I)卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2020·常德) 下列计算正确的是( )A . a2+b2=(a+b)2B . a2+a4=a6C . a10÷a5=a2D . a2•a3=a52. (2 分) 若方程组 A . k=6 B . k=10 C . k=9的解也是方程 3x+ky=10 的解,则k的值是( )D . k= 3. (2 分) (2019 七下·武汉期末) 下列不等式 变形中,一定正确的是( ) A . 若 ac>bc,则 a>b B . 若 a>b,则 ac² >bc² C . 若 ac² >bc² ,则 a>bD . 若 a>0 ,b>0,且,则 a>b4. (2 分) (2020 八上·永嘉期中) 下列命题是真命题的是( )A . 内错角相等B . 直角三角形的两个锐角互补C . 三角形三个内角的和等于 180°D . 有一个角是 60°的三角形是等边三角形5. (2 分) (2012·北海) 把多项式 2x2﹣18 分解因式,结果正确的是( )A . 2(x2﹣9)B . 2(x+9)(x﹣9)C . 2(x+3)(x﹣3)D . 2(x﹣3)26. (2 分) (2019 七下·栾城期末) 关于 x 的不等式(1﹣m)x<m﹣1 的解集为 x>﹣1,那么 m 的取值范围为( )A . m>1第 1 页 共 15 页B . m<1C . m<﹣1D . m>﹣17. (2 分) (2019 七下·江苏月考) DNA 是每一个生物携带自身基因的载体,它是遗传物质脱氧核糖核酸的英文简称,DNA 分子的直径只有 0.0000007cm,则这个数用科学记数法表示是( )A . 7×10﹣6cmB . 0.7×108cmC . 0.7×10﹣8cmD . 7×10﹣7cm8. (2 分) (2020·湘西州) 从长度分别为、、、四条线段中随机取出三条,则能够组成三角形的概率为( )A.B.C.D. 9. (2 分) (2020 七下·温州期中) 下列因式分解正确的是( ) A. B. C.D.10. (2 分) (2020·潜江模拟) 如图,直线,将一块含按图中方式放置,其中 和 两点分别落在直线 和 上.若角( )的直角三角尺,则的度数为( )A. B. C. D.二、 填空题 (共 10 题;共 11 分)第 2 页 共 15 页11. (1 分) (2017·潮南模拟) 因式分解:a2b﹣ab+ b=________.12. (1 分) 写一个以为解的二元一次方程组是________.13. (1 分) (2019 七下·嘉兴期末) 如图,若,,则________.14. (1 分) 当,时,多项式(2x+3y)2﹣(2x+y)(2x﹣y)的值是________.15. (1 分) (2019 七下·萝北期末) 写出一个解为 x≤1 不等式________.16. (1 分) 如图,三角形共有________个.17. (1 分) (2020 八上·社旗月考) 已知 a+b=5,ab=-6,则代数式 ab2+a2b 的值是________. 18. (2 分) (2016 八上·靖江期末) 如图,等腰△ABC 中,AB=AC,∠DBC=15°,AB 的垂直平分线 MN 交 AC 于点 D,则∠A 的度数是________.19. (1 分) (2017 九下·武冈期中) 不等式组的解集为________.20. (1 分) (2020·武侯模拟) 如图,四边形 ABCD 中,∠BCD=90°,∠ABD=∠DBC,AB=3,DC=4,则△ABD的面积为________.三、 解答题 (共 6 题;共 35 分)21. (6 分) 图 1 是一个长为 2m、宽为 2n 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图 2 的 形状拼成一个正方形.第 3 页 共 15 页(1) 请写出图 2 中阴影部分的面积; (2) 观察图 2 你能写出下列三个代数式之间的等量关系吗? 代数式:(m+n)2 , (m﹣n)2 , mn; (3) 根据(2)中的等量关系,解决如下问题:若 a+b=7,ab=5,求(a﹣b)2 的值. 22. (5 分) (2017 八上·西安期末) 计算 题(1) 化简(1+ )( ﹣ )﹣(2) 解方程组.23. (5 分) (2020 八下·中卫月考) 请将下面证明中每一步的理由填在括号内.已知:如图,D,E,F 分别是 BC,CA,AB 上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A证明:∵ DE∥BA( ) ∴∠FDE=∠BFD( ) ∵DF∥CA( ) ∴∠BFD=∠A( ) ∴∠FDE=∠A( ) 24. (10 分) 阅读材料:若 m2﹣2mn+2n2﹣8n+16=0,求 m、n 的值. 解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m﹣n)2=0,(n﹣4)2=0第 4 页 共 15 页∴(m2﹣2mn+n2)+(n2﹣8n+16)=0∴n=4,m=4. ∴(m﹣n)2+(n﹣4)2=0, 根据你的观察,探究下面的问题: (1) 已知 x2﹣2xy+2y2+6y+9=0,求 xy 的值; (2) 已知△ABC 的三边长 a、b、c 都是正整数,且满足 a2+b2﹣10a﹣12b+61=0,求△ABC 的最大边 c 的最大 值. 25. (2 分) (2017·玉林模拟) 2013 年 1 月,由于雾霾天气持续笼罩我国中东部大部分地区,口罩市场出 现热卖,某旗舰网店用 8000 元购进甲、乙两种口罩,销售完后共获利 2800 元,进价和售价如下表:品 甲种口罩 乙种口罩 名价格进价(元/袋)2025售价(元/袋)2635(1) 求该网店购进甲、乙两种口罩各多少袋?(2) 该网店第二次以原价购进甲、乙、两种口罩,购进乙种口罩袋数不变,而购进甲种口罩袋数是第一次的2 倍.甲种口罩按原售价出售,而乙种口罩让利销售.若两种口罩销售完毕,要使第二次销售活动获利不少于 3680元,乙种口罩最低售价为每袋多少元?26. (7 分) (2020 八上·桐城期中) 如图,在中,∠ABC 和∠ACB 的平分线相交于点 P,根据下列条件,求∠BPC 的度数.⑴若∠ABC=50°,∠ACB=70°,则∠BPC=________; ⑵若∠ABC+∠ACB=120°,则∠BPC=________; ⑶若∠A=60°,则∠BPC=________; ⑷若∠A=100°,则∠BPC=________. ⑸从以上的计算中,你能发现已知∠A,求∠BPC 的公式是:∠BPC=________.第 5 页 共 15 页一、 单选题 (共 10 题;共 20 分)答案:1-1、 考点:参考答案解析: 答案:2-1、 考点:解析: 答案:3-1、 考点: 解析:第 6 页 共 15 页答案:4-1、 考点: 解析:答案:5-1、 考点:解析: 答案:6-1、 考点:解析:第 7 页 共 15 页答案:7-1、 考点: 解析:答案:8-1、 考点: 解析:答案:9-1、 考点:解析: 答案:10-1、 考点:第 8 页 共 15 页解析:二、 填空题 (共 10 题;共 11 分)答案:11-1、 考点:解析: 答案:12-1、 考点:解析: 答案:13-1、 考点:第 9 页 共 15 页解析: 答案:14-1、 考点: 解析:答案:15-1、 考点: 解析:答案:16-1、 考点: 解析:答案:17-1、 考点:第 10 页 共 15 页解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、考点:解析:三、解答题 (共6题;共35分)答案:21-1、答案:21-2、答案:21-3、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、考点:解析:。
2020—2021年人教版七年级数学下册期末试卷及答案【完整版】
2020—2021年人教版七年级数学下册期末试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.三、解答题(本大题共6小题,共72分)1.解不等式组:3(2)421152x x x x --≥⎧⎪-+⎨<⎪⎩,并将解集在数轴上表示出来.2.如果关于x ,y 的方程组437132x y k x y k -=⎧⎪⎨+-=-⎪⎩的解中,x 与y 互为相反数,求k 的值.3.如图,在平面直角坐标系中,已知点A (0,4),B (8,0),C (8,6)三点.(1)求△ABC 的面积;(2)如果在第二象限内有一点P (m ,1),且四边形ABOP 的面积是△ABC 的面积的两倍;求满足条件的P点的坐标.4.如图,在△ABC中,AB=AC,点D、E分别在AB、AC上,BD=CE,BE、CD相交于点0;∆≅∆求证:(1)DBC ECB=(2)OB OC6.绵阳中学为了进一步改善办学条件,决定计划拆除一部分旧校舍,建造新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需要800元,计划在年内拆除旧校舍与建造新校舍共9 000平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的90%而拆除旧校舍则超过了计划的10%,结果恰好完成了原计划的拆、建总面积.(1)求原计划拆、建面积各是多少平方米?(2)若绿化1平方米需要200元,那么把在实际的拆、建工程中节余的资金全部用来绿化,可绿化多少平方米?参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)11、5或-7三、解答题(本大题共6小题,共72分)17、-7<x≤1.数轴见解析.18、x=1,y=-1,k=9.19、(1)24;(2)P(﹣16,1)20、(1)略;(2)略.22、(1)原计划拆建各4 500平方米;(2)可绿化面积1 620平方米.。
2020—2021年人教版七年级数学下册期末考试卷及参考答案
2020—2021年人教版七年级数学下册期末考试卷及参考答案班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)1.解方程:(1)3(2x-1)=15(2)212 32x x-+-=-2.已知关于x,y的二元一次方程组3426x y mx y+=+⎧⎨-=⎩的解满足3x y+<,求满足条件的m的所有非负整数值.3.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.4.某住宅小区有一块草坪如图所示.已知AB=3米,BC=4米,CD=12米,DA =13米,且AB⊥BC,求这块草坪的面积.6.在端午节来临之际,某商店订购了A型和B型两种粽子.A型粽子28元/千克,B型粽子24元/千克.若B型粽子的数量比A型粽子的2倍少20千克,购进两种粽子共用了2560元,求两种型号粽子各多少千克.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)三、解答题(本大题共6小题,共72分)17、(1)x 3=;(2)x 5=.18、满足条件的m 的所有非负整数值为:0,1,219、(1)见解析(2)成立(3)△DEF 为等边三角形20、36平方米22、A 型粽子40千克,B 型粽子60千克.。
四川省攀枝花市2020初一下学期期末数学达标测试试题
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,直线AB∥CD,AB与CE相交于点F,∠AFE=130°,则∠C等于()A.35°B.40°C.45°D.50°2.如图,直线与直线相交于点,与直线相交于点,,,若要使直线,则将直线绕点按如图所示的方向至少旋转()A.B.C.D.3.如图,从边长为a的大正方形中剪掉一个边长为b的小正方形,将阴影部分剪下,拼成右边的矩形,由图形①到图形②的变化过程能够验证的一个等式是()A.a(a+b)=a2+ab B.a2﹣b2=(a+b)(a﹣b)C.(a+b)2=a2+2ab+b2D.a(a﹣b)=a2﹣ab4.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC,给出下列结论:①∠BAD=∠C;②∠AEF=∠AFE;③∠EBC=∠C;④AG⊥EF;正确结论有()A.4个B.3个C.2个D.1个5.已知三角形的两边长分别为4和9,则此三角形的第三边长可能为()A.9 B.4 C.5 D.136.一副三角板如图放置,点D在CB的延长线上,EF∥CD,∠C=∠EDF=90°,∠A=45°,∠EFD=30°,则∠DFB=( )A .15°B .20°C .25°D .30°7.若单项式x 2y m-n 与单项式-12x 2m+n y 3是同类项,则这两个多项式的差是( ) A .12x 4y 6 B .1 2x 2y 3 C .32x 2y 3 D .-12x 2y 3 8.若x 2+(m -3)x +16是完全平方式,则m 的值是( )A .-5B .11C .-5或11D .-11或59.下列各方程中,是二元一次方程的是( )A .B .C .D .10.如图,∠AOB=120°,OP 平分∠AOB ,且OP=3,若点M,N 分别在OA,OB 上,ΔPMN 为等边三角形,则满足上述条件的△PMN 有中( )A .1个B .2个C .3个D .3个以上二、填空题题 11.计算:2020×2018﹣20192=_____.12.16的平方根是 .13.当x=_____时,分式312x x -+的值为1. 14.关于x 的不等式23x a -≤的解集如图所示,则a 的值是_________.15.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,此时∠ODE =∠ADC ,且反射光线DC 恰好与OB 平行,则∠DEB 的度数是___.16.三角形的两边长分别是 3 和 6,第三边长为偶数,则三角形的周长为 _____.17.若单项式﹣2x a ﹣1y 3与3x ﹣b y 2a+b 是同类项,则b a 的值为_____.三、解答题18.已知在图(1)与图(2)中,每个小方格都是边长为1个单位的正方形,AOB ∆的三个顶点都在格点上.(1)将OAB ∆关于点P 对称,在图(1)中画出对称后的图形O A B '''∆,并涂黑;(2)将△OAB 先向右平移3个单位,再向上平移2个单位,在图2中画出平移后的图形,并涂黑。
2020—2021年人教版七年级数学下册期末试卷(含答案)
2020—2021年人教版七年级数学下册期末试卷(含答案) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.三、解答题(本大题共6小题,共72分)1.解下列方程(1)12225y y y -+-=- (2)()()()22431233x x x ---=-+2.已知方程组3247x y mx ny -=⎧⎨+=⎩与231953mx ny y x -=⎧⎨-=⎩有相同的解,求m ,n 的值.3.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足|a 2|b 40++-=,点C 的坐标为(0,3).(1)求a ,b 的值及S 三角形ABC ;(2)若点M 在x 轴上,且S 三角形ACM =13S 三角形ABC ,试求点M 的坐标.4.如图,四边形ABCD 中,∠A =∠C =90°,BE ,DF 分别是∠ABC ,∠ADC 的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.6.去冬今春,我市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.(1)求饮用水和蔬菜各有多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)11、5或-7三、解答题(本大题共6小题,共72分)17、(1)711y (2)x=0 18、m=4,n=﹣1.19、(1)9(2)(0,0)或(-4,0)20、(1)∠1+∠2=90°;略;(2)(2)BE ∥DF ;略.22、(1)饮用水和蔬菜分别为200件和120件(2)设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆; ③甲车4辆,乙车4辆(3)运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是2960元。
2020—2021年人教版七年级数学下册期末试卷及答案【完美版】
2020—2021年人教版七年级数学下册期末试卷及答案【完美版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)1.已知关于x 的代数式()2x -1x 9a ++是完全平方式,则a =_________.三、解答题(本大题共6小题,共72分)1.计算那列各式(1)计算:﹣14+(﹣2)3÷4×[5﹣(﹣3)2](2)解方程435x -﹣1=723x -2.已知关于x 、y 的二元一次方程组21222x y m x y m +=+⎧⎨+=-⎩的解满足不等式组81x y x y -<⎧⎨+>⎩则m 的取值范围是什么?3.如图1,在平面直角坐标系中,A (a ,0)是x 轴正半轴上一点,C 是第四象限内一点,CB ⊥y 轴交y 轴负半轴于B (0,b ),且|a ﹣3|+(b+4)2=0,S 四边形AOBC =16.(1)求点C 的坐标.(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数;(点E在x轴的正半轴).(3)如图3,当点D在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则点D在运动过程中,∠N的大小是否会发生变化?若不变化,求出其值;若变化,请说明理由.4.如图1,△ABD,△ACE都是等边三角形,(1)求证:△ABE≌△ADC;(2)若∠ACD=15°,求∠AEB的度数;(3)如图2,当△ABD与△ACE的位置发生变化,使C、E、D三点在一条直线上,求证:AC∥BE.6.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降50%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.参考答案一、选择题(本大题共10小题,每题3分,共30分)二、填空题(本大题共6小题,每小题3分,共18分)11、5或-7三、解答题(本大题共6小题,共72分)17、(1)7;(2)x=﹣14 2318、0<m<3.19、(1) C(5,﹣4);(2)90°;(3)略20、(1)略(2) ∠AEB=15°(3) 略22、(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.。
四川省攀枝花市2021版七年级下学期数学期末考试试卷A卷(新版)
四川省攀枝花市2021版七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题:本题共12小题,每小题3分,共36分. (共12题;共36分)1. (3分) (2019七上·顺德期末) 下列变形正确的是()A .B .C .D . (,是正整数)2. (3分) (2019八上·霍林郭勒月考) 如图,OC平分∠AOB ,点P是OC上一点,PM⊥OB于点M ,点N 是射线OA上的一个动点,若PM=3,则下列选项正确的是()A . PN>3B . PN ≥3C . PN < 3D . PN ≤ 33. (3分)(2018·来宾模拟) 下列计算正确的是()A . a2•a3=a5B . (a3)2=a5C . (3a)2=6a2D .4. (3分)(2018·鼓楼模拟) 下列图标,是轴对称图形的是()A .B .C .D .5. (3分)如图,由AB=AC,,得到△ABE≌△ACF,根据是()A . SASB . ASAC . AASD . HL6. (3分)(2017·蓝田模拟) 若一个正比例函数的图象经过点(﹣2,1),则这个图象也一定经过点()A . (﹣,1)B . (2,﹣1)C . (﹣1,2)D . (1,)7. (3分) (2020七下·大庆期末) 如图,点O是矩形ABCD的中心,E是AB上的点,折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为()A .B .C . 3D . 68. (3分) (2020九上·德惠期末) 下列事件中,属于必然事件的是()A . 明天的最高气温将达35℃B . 任意购买一张动车票,座位刚好挨着窗口C . 掷两次质地均匀的骰子,其中有一次正面朝上D . 对顶角相等9. (3分)(2017·石景山模拟) 如图,直线a∥b,直线l与a,b分别交于A,B两点,过点B作BC⊥AB交直线a于点C,若∠1=65°,则∠2的度数为()A . 25°B . 35°C . 65°D . 115°10. (3分) (2019八上·交城期中) 如图,AD是ΔABC的角平分线,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,BC恰好平分∠ABF,下列结论错误的是()A . DE=DFB . AC=3DFC . BD=DCD . AD⊥BC11. (3分) (2019八上·海口期中) 已知两数和的平方是x2+kx+64,则k的值为()A . 20B . -16C . 16或-16D . -20或2012. (3分)如图在△ABC中,∠B=40°,∠C=70°,AD⊥BC于D,AE平分∠BAC交BC于E,则∠DAE等于()A . 15°B . 20°C . 35°D . 70°二、填空题:本题共4小题,每小题3分,共12分. (共4题;共12分)13. (3分) (2017七下·萧山期中) 已知三条不同的直线a,b,c在同一平面内,下列命题中:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题有________.(填写真命题的序号)14. (3分)在分别写有-1,0,1,2的四张卡片中随机抽取一张,所抽取的数字平方后等于1的概率为________.15. (3分) (2015八上·晋江期末) 如图,在△ABC中,AC的垂直平分线交AB于点E,D为垂足,连接EC.若∠A=30°,则∠BEC=________°.16. (3分) (2019八下·水城期末) 若x+y﹣1=0,则 x2+xy+ y2﹣2=________.三、解答题:本题共7小题,共52分.解答应写出文字说明、证明过程 (共7题;共52分)17. (6分) (2017八上·上杭期末) 计算:(1)(m+1)(m﹣5)﹣m(m﹣6)(2)(x﹣y+1)(x+y﹣1)﹣6x2y3÷3x2y2 .18. (6分)(2018·柘城模拟) 某游泳馆普通票价20元张,暑假为了促销,新推出两种优惠卡:金卡售价600元张,每次凭卡不再收费.银卡售价150元张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.19. (7.0分) (2018八上·东台月考) 如图,已知AB=CD,∠B=∠C,AC和BD交于点O,E是AD的中点,连接OE.(1)求证:△AOD≌△DOC;(2)求∠AEO的度数.20. (8分) (2019七下·盐田期末) 如图(1)如图1,学校A,B在道路MN的异侧.在MN上建公交站P,使得P到A,B的距离相等。
四川省攀枝花市2021版七年级下学期数学期末考试试卷A卷
四川省攀枝花市2021版七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·滦县期中) 下列各式中正确的是()A .B .C .D .2. (2分) (2020七下·陇县期末) 某县共有1万名学生参加数学考试,现从中抽取600名考生的数学成绩进行统计分析,以下说法正确的是()A . 这是一次成绩普查B . 1万名考生是总体C . 每名考生的数学成绩是个体D . 600名考生是总体的一个样本3. (2分) (2017七下·莆田期末) 若x>y,则下列式子错误的是()A . x﹣3>y﹣3B . ﹣3x>﹣3yC . x+3>y+3D . >4. (2分)(2020·吉林模拟) 不等式组中的两个不等式的解集在同一个数轴上表示正确的是()A .B .C .D .5. (2分)在实数0、π、、、中,无理数的个数有()A . 1个B . 2个C . 3个D . 4个6. (2分) 2的相反数的倒数是()A . ﹣2B . ﹣C . 2D .7. (2分) (2019七下·定襄期末) 将点向右平移3个单位长度得到点,则点所在的象限是()A . 第四象限B . 第三象限C . 第二象限D . 第一象限8. (2分) (2018七下·桐梓月考) 如图,下列能判定AB∥CD条件有()个、( 1 )∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A . 4B . 3C . 2D . 19. (2分) (2020七下·江阴期中) 用四个完全一样的长方形(长、宽分别设为a、b,a>b)拼成如图所示的大正方形,已知大正方形的面积为64,中间空缺的小正方形的面积为16,则下列关系式中不正确的是()A . a+b=8B . a-b=4C . a·b=12D . a2+b2=6410. (2分)(2018·枣阳模拟) 若不等式组有解,则a的取值范围是()A . a>﹣1B . a≥﹣1C . a≤1D . a<1二、填空题 (共6题;共6分)11. (1分)点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是________.12. (1分) (2019七上·高州期末) 已知2x+1和3x+4互为相反数,则x2=________.13. (1分)不等式的正数解是1,2,3,那么k的取值范围是________ .14. (1分) (2017七下·柳州期末) 某市有6500名九年级学生参加数学毕业考试,为了了解这些学生毕业考试的数学成绩,从6500份数学答卷中随机抽取了300份进行统计分析,在这个问题中,样本容量是________.15. (1分)(2019·吉安模拟) 夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组________.16. (1分) (2020七上·南召期末) 若锐角,那么锐角余角的补角为________.三、解答题 (共8题;共88分)17. (10分) (2020七下·西丰期末) 解方程组18. (10分)(2016·平武模拟) 解答下面两题,并将结果在数轴上表示出来.(1)解不等式并把不等式组的解集在数轴上表示.(2)解方程.19. (11分) (2018七下·韶关期末) 某校为了了解七年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5﹣46.5;B:46.5﹣53.5;C:53.5﹣60.5;D:60.5﹣67.5;E:67.5﹣74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.请解答下列问题:(1)这次随机抽取了________名学生调查,并补全频数分布直方图;(2)在抽取调查的若干名学生中体重在________组的人数最多,在扇形统计图中D组的圆心角是________度;(3)请你估计该校七年级体重超过60kg的学生大约有多少名?20. (7分) (2019八上·昌图期中) 已知在平面直角坐标系中有A(-2,1),B(3,1),C(2,3)三点,请回答下列问题:(1)在坐标系内描出点A,B,C的位置.(2)画出关于直线x=-1对称的,并写出各点坐标.(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为10?若存在,请直接写出点P的坐标:若不存在,请说明理由.21. (10分)已知:如图,点C为线段AB的中点,点E为线段AB上的点,点D为AE的中点,(1)若线段AB=a,CE=b,|a-15|+(b-4.5)2=0,求a、b;(2)在(1)的条件下,求线段DE;(3)若AB=15,AD=2BE,求线段CE.22. (10分)(2020·深圳模拟) 某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3% 的损耗,第二次购进的水果有4% 的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?23. (15分) (2019八下·长春期中) 如图,△ABC中,AD是边BC上的中线,过点A作AE∥BC,过点D作DE∥AB,DE与AC、AE分别交于点O、点E,连接EC.(1)求证:AD=EC;(2)当∠BAC=Rt∠时,求证:四边形ADCE是菱形.24. (15分) (2020八上·沭阳月考) 如图①,△ABC中,AB=AC,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.(1)猜想:EF与BE、CF之间有怎样的关系,并说明理由.(2)如图②,若AB≠AC,其他条件不变,在第(1)问中EF与BE、CF间的关系还存在吗?若存在,请说明理由.(3)如图③,若△ABC中∠ABC的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时EF与BE、CF关系又如何?请说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共88分)17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。
四川省攀枝花市2020年七年级下学期数学期末考试试卷A卷
四川省攀枝花市2020年七年级下学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2020·张家界) 下列采用的调查方式中,不合适的是()A . 了解澧水河的水质,采用抽样调查.B . 了解一批灯泡的使用寿命,采用全面调查.C . 了解张家界市中学生睡眠时间,采用抽样调查.D . 了解某班同学的数学成绩,采用全面调查.2. (2分)(2019·江川模拟) 实数2,,,0中,无理数是()A . 2B .C .D . 03. (2分) (2020七下·衢州期末) 已知:如图,直线,若,则的度数是A .B .C .D .4. (2分) (2020七下·昌吉期中) 下列说法正确的是()A . ﹣81的平方根是±9B . 7的算术平方根是C . 的立方根是±D . (﹣1)2的立方根是﹣15. (2分) (2019八上·固镇月考) 已知点M(3a-9,1-a)在第三象限,且它的坐标都是整数,则a =().A . 1B . 2C . 3D . 06. (2分) (2020八下·海港期中) 将点向左平移3个长度单位,再向上平移2个长度单位得到点,则点的坐标是()A .B .C .D .7. (2分)已知是二元一次方程组的解,则m+3n的算术平方根为()A . ±3B . 3C . ±9D . 98. (2分) (2019八上·锦州期末) 在下列图形中,由条件∠1+∠2=180°不能得到AB∥CD的是()A .B .C .D .9. (2分) (2018八上·绍兴期末) 不等式x+3<5的解集在数轴上表示为()A .B .C .D .10. (2分) (2019七下·温岭期末) 如图,直线AB,CD,相交于点O,∠MON=90°.∠BON比∠MOA多10°.求∠BON,∠MOA的度数若设∠BON=x°,∠MOA=y°.可列方程组为()A .B .C .D .二、填空题 (共6题;共7分)11. (1分) (2019七下·龙岩期末) 请写出一个比2大且比4小的无理数:________.12. (1分)点M(﹣2,3)到x轴的距离是________.13. (2分) (2020七下·重庆期末) 某冷饮店一天售出各种口味冰淇淋份数的扇形统计图如图所示.则图中“芒果味”所在扇形的圆心角为________.14. (1分)(2020·云南模拟) 如图,三角板直角顶点落在长方形纸片的一边上,∠1=35°,则∠2=________°.15. (1分)(2020·石屏模拟) 不等式组的解集是________.16. (1分)(2019·宿迁) 下面3个天平左盘中“△”“□”分别表示两种质量不同的物体,则第三个天平右盘中砝码的质量为________.三、解答题 (共9题;共64分)17. (10分) (2019八上·永登期末)(1)(2)18. (5分) (2019七下·苏州期末) 解不等式组,并写出该不等式组的最大整数解.19. (7分) (2016七下·禹州期中) 如图,将△ABC平移,可以得到△DFE,点C的对应点为点E,请画出平移后的△DFE.20. (2分)某市教育局非常重视学生的身体健康状况,为此在体育考试中对部分学生的立定跳远成绩进行了调查(分数为整数,满分100分),根据测试成绩(最低分为53),分别绘制了如下统计表和统计图.(如图)1分数 59.5分以下 59.5分以上 69.5分以上 79.5分以上 89.5分以上1人数 3 42 32 20 8(1)被抽查的学生为________人;(2)请补全频数分布直方图;(3)若全市参加考试的学生大约有4 500人,请估计成绩优秀的学生约有多少人?(80分及80分以上为优秀) (4)若此次测试成绩的中位数为78分,请直接写出78.5~89.5分之间的人数最多有多少人?21. (5分) (2019八上·天台月考) 如图,在△ABC中,∠1=∠B,∠2=∠C,∠BAC=60° ,求∠B的度数.22. (15分) (2019七下·吉林期中) 已知点(1,0)、(0,2),点在轴上,且△PAB的面积为5.(1)满足点的坐标有________个;(2)求出满足点的坐标.23. (5分) (2020七下·江汉月考) 如图,已知CD⊥AB,EF⊥AB,垂足分别为D,F,∠B+∠BDG=180°,试说明∠BEF=∠CDG.将下面的解答过程补充完整,并填空(填写理由依据或数学式,将答案按序号填在答题卷的对应位置内)证明:∵CD⊥AB,EF⊥AB(________)∴∠BFE=∠BDC=90°(________)∴EF∥CD(________)∴∠BEF=________(________)又∵∠B+∠BDG=180°(________)∴BC∥DG(________)∴∠CDG=________(________)∴∠CDG=∠BEF(________)24. (5分) (2015七下·茶陵期中) 甲、乙两个水池共存水40吨,甲池注进水4吨,乙池放出水8吨后,两池的水正好相等,两池原来各有水多少吨?25. (10分)(2019·温岭模拟) 现有24个劳力和1000亩鱼塘可供对虾、大黄鱼、蛏子养殖,所需劳力与每十亩产值如下表所示.另外设对虾10x亩,大黄鱼10y亩,蛏子10z亩.(1)用x的式子分别表示y、z;(2)问如何安排劳力与养殖亩数收益最大?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共9题;共64分)17-1、17-2、18-1、19-1、20-1、20-2、20-3、20-4、21-1、22-1、22-2、23-1、24-1、25-1、25-2、。
2020四川省攀枝花市初一下学期期末数学达标测试试题
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.下列图像都是由相同大小的星星按一定规律组成的,其中第①个图形中一共有4颗星星,第②个图形中一共有11颗星星,第③个图形中一共有21颗星星,.....按此规律排列下去,第⑨个图形中星星的颗数为( )A .116B .144C .145D .1502.下列运算正确的是( )A .x 6÷x =x 6B .x 3+x 5=x 8C .x 2 x 2=2x 4D .(- x 2 y )3=-x 6 y 33.如图,已知E ,B ,F ,C 四点在一条直线上,EB CF =,A D ∠∠=,添加以下条件之一,仍不能证明ABC ≌DEF 的是( )A .E ABC ∠∠=B .AB DE =C .AB//DED .DF//AC4.如果a <b ,那么下列各式一定正确的是( )A .a 2<b 2B .22a b >C .﹣2a >﹣2bD .a ﹣1>b ﹣15.如图所示,AC ⊥BC,AB=5cm,BC=4cm,AC=3cm ,点P 是线段AC 上的一个动点,则线段BP 长度的最小值为( )A .2cmB .3cmC .4cmD .5cm6.在平面直角坐标系中,点(62,5)P x x --在第三象限,•则x 的取值范围是( )A .x > 5B .3<x <5C .x <3D .-3<x <57.16的算术平方根是( )A .4B .﹣4C .±4D .28.下列不是多项式32633x x x +-的因式的是( )A.1x-B.21x-C.x D.3+3x9.把22a a-分解因式,正确的是()A.()2a a-B.()2a a+C.()222a-D.()2a a-10.下列说法正确的是()A.同位角相等B.两条直线被第三条直线所截,内错角相等C.对顶角相等D.两条平行直线被第三条直线所裁,同旁内角相等二、填空题题11.若关于x,y的二元一次方程组23122x y kx y+-⎧⎨+-⎩==的解满足x-y>4,则k的取值范围是__.12.空气是由多种气体混合而成的,为了直观地介绍空气各成分的百分比,最适合使用的统计图是______(从“条形图,扇形图,折线图和直方图”中选一个)13.已知关于x的不等式(a-2)x>1的解集为x<12a-,则a的取值范围____________.14.一个正数的平方根分别是1x+和5x-,则x=__.15.定义:f (a,b)=(﹣a,b),g(m,n)=(m,﹣n),例f (1,2)=(﹣1,2),g(﹣4,﹣5)=(﹣4,5),则g(f (2,﹣3))=_____.16.如图所示,直线AB与直线CD交于点O,则AOC∠=______.17.164-的立方根的平方的相反数是__________.三、解答题18.如图,已知AB CD∥.(1)如图1,求证:B E D∠+∠=∠;(2)F为AB,CD之间的一点,30E∠=︒,140EFD∠=︒,DG平分CDF∠交AB于点G,如图2,若DG BE∥,求B的度数;19.(6分)如图,AM∥BN,∠BAM与∠ABN的平分线交于点C,过点C的直线分别交AM、BN于E、F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年四川省攀枝花市七年级(下)期末数学试卷
一、选择题(每小题3分,共30分)
1.方程3x=﹣6的解是()
A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12
2.如图所示,表示三人体重A,B,C的大小关系正确的是()
A.B>A B.A>C C.B>C D.C>B
3.方程2x﹣3y=7,用含x的代数式表示y为()
A.y=B.y=C.x=D.x=
4.如图,在方格纸中的△ABC经过变换得到△DEF,正确的变换是()
A.把△ABC向右平移6格
B.把△ABC向右平移4格,再向上平移1格
C.把△ABC绕着点A顺时针方向90°旋转,再右平移7格
D.把△ABC绕着点A逆时针方向90°旋转,再右平移7格
5.小王到瓷砖店购买一种正多边形瓷砖铺设无缝地板,他购买的瓷砖形状不可以是() A.正三角形B.正四边形C.正六边形D.正八边形
6.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数为()
A.54 B.27 C.72 D.45
7.关于x的方程4x﹣2m+1=5x﹣8的解集是负数,则m的取值范围是() A.m>B.m<0 C.m D.m>0
8.如图,△ABC中,∠C=60°,若沿图中虚线截去∠C,则∠1+∠2等于()
A.360° B.240° C.180° D.140°
9.下列说法中,正确的个数是()
①三角形的三条高都在三角形内,且都相交于一点
②任意三角形的外角和都是360°
③三角形的一个外角大于任何一个内角
④在△ABC中,当∠A=∠C,∠C时,这个三角形是直角三角形.
A.1 B.2个C.3个D.4个
10.关于x的不等式组有四个整数解,则a的取值范围是() A.﹣<a≤﹣B.﹣≤a≤﹣C.﹣≤a<﹣D.﹣<a<﹣
二、填空题(每小题3分,共18分)
11.一个正多边形的内角和与外角和相等,则该正多边形是.
12.一个三角形的三边分别为3,m,8,则m的取值范围是.
13.已知方程(a﹣2)x|a|﹣1+4=0是关于x的一元一次方程.则a的值为
.
14.如图,已知FB∥EC,则∠A+∠B+∠C+∠D的度数=.
15.若不等式组无解,则n的取值范围是.
16.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.某人两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款.
三、解答题(17-22每小题6分,23-24每小题6分,共52分)
17.解方程(组)
(1)
(2).
18.解不等式组:,并把解集表示在数轴上.
19.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB 于E,若∠AFD=158°,求∠EDF的度数.
2021西高速公路于2021年4月29日正式通车,西昌到成都全长42021,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇,相遇时,小汽车比客车多行驶70千米,求出小汽车和客车的平均速度.
21.如图所示,在7×6的正方形网格中,选取14个格点,以其中三个格点为顶点画出ABC,请你以选取的格点为顶点再画出一个三角形,且分别满足下列条件:
(1)图①中所画的三角形与ABC组成的图形是轴对称图形;
(2)图②中所画的三角形与ABC组成的图形是中心对称图形.
22.如图:在△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,点E是BC上一个动点(点E与B、C不重合),连接A、E.若a、b满足,且c是不等式组
的最大整数解.
(1)求a、b、c的长.
(2)若AE平分△ABC的周长,求∠BEA的大小.
23.“保护好环境,拒绝冒黑烟”,某市公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两种环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.
(1)求购买A型和B型公交车每辆各需多少万元?
(2)若该公司购买A型和B型公交车的总费用不超过1150万元,且两种车型都有,则该公司有哪几种购车方案?
(3)哪种购车方案总费用最少?最少总费用是多少?
24.(1)如图①,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠D=40°,∠B=30°,求∠E的大小;
(2)如图②,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=m°,∠ABC=n°,求∠AEC的大小;
当∠B:∠D:∠E=2:4:x时,x=.
(3)如图③,∠BAD的平分线AE与∠BCD的平分线CE交于点E,则∠E与∠D、∠B之间是否仍存在某种等量关系?若存在,请直接写出你得结论,并给出证明;若不存在,请说明理由.
2020-2021学年四川省攀枝花市七年级(下)期末数学试卷参考答案与试题解析
一、选择题(每小题3分,共30分)
1.方程3x=﹣6的解是()
A.x=﹣2 B.x=﹣6 C.x=2 D.x=﹣12
考点: 解一元一次方程.
分析:根据解方程的方法两边同时除以3求解.
解答:解:3x=﹣6
两边同时除以3,得
x=﹣2
故选:A.
点评:本题是简单的一元一次方程的解法,只用到系数化为1.
2.如图所示,表示三人体重A,B,C的大小关系正确的是()
A.B>A B.A>C C.B>C D.C>B
考点: 不等式的性质.
分析:根据不等式的传递性:a>b,b>c,⇒a>c,可得答案.
解答:解:A、由图示,得A>B,故A错误;
B、由图示,得C>A,故B错误;
C、由图示,得B<A,A<C,由不等式的传递性,得B<C,故C错误;
D、由图示,得B<A,A<C,由不等式的传递性,得B<C,故D正确;
故选:D.
点评:本题考查了不等式的性质,利用了不等式的传递性:a>b,b>c,⇒a>c.
3.方程2x﹣3y=7,用含x的代数式表示y为()
A.y=B.y=C.x=D.x=
考点: 解二元一次方程.
分析:本题是将二元一次方程变形,先移项、再系数化为1即可.
解答:解:移项,得﹣3y=7﹣2x,
系数化为1,得y=,。