实验二基尔霍夫定律的验证一、实验目的1.用实验的方法
基尔霍夫定律的验证实验报告

基尔霍夫定律的验证实验报告实验目的:验证基尔霍夫定律,即电流差值定律和电流的闭合定律。
实验原理:1. 电流差值定律(基尔霍夫第一定律)指出,在一个电路的任意一个节点上,节点流入的电流差值等于节点流出的电流差值。
数学表达式为:ΣI_in = ΣI_out。
2.电流的闭合定律(基尔霍夫第二定律)指出,在一个电路中,电流在闭合回路中的总和等于供电电压的总和。
数学表达式为:ΣI=0。
实验材料:1.电源2.导线3.电阻4.电流表5.电压表实验步骤:1.连接实验电路,包括电源、导线、电阻、电流表和电压表。
2.使用导线将电源、电流表、电压表和电阻连接在一起,构成一个简单的电路。
3.分别测量并记录电阻两端的电压和电流。
4.将电阻更换为新的不同阻值的电阻,重复步骤35.统计并比较不同电阻下的电流和电压数据,验证基尔霍夫定律。
实验结果:以一个简单的电路为例,连接一个12V的电源、一个10Ω的电阻以及一个电流表和一个电压表。
测量得到电压表读数为12V,电流表读数为1.2A。
我们可以验证基尔霍夫定律:1.在节点上,电流只有一个,所以节点流入的电流和流出的电流应该相等。
在这个电路中,电流表读数为1.2A,即节点流入电流和流出电流都是1.2A,符合电流差值定律。
2.电路中只有一个回路,电压表读数为12V,也等于供电电源的电压。
因此,符合电流的闭合定律。
实验分析:通过实验结果,我们可以验证基尔霍夫定律。
在一个简单电路中,电流差值定律表明在一个节点上,流入的电流和流出的电流相等,而电流的闭合定律显示电流在闭合回路中总和为零。
而实验结果与这两个定律的预测值相符,说明基尔霍夫定律成立。
实验结论:基尔霍夫定律是电学中非常重要的定律,经过实验证明,电流差值定律和电流的闭合定律在电路中成立。
实验结果表明,实际电路中的电流和电压符合基尔霍夫定律的预测值,验证了基尔霍夫定律的正确性。
因此,在电路分析和设计中,基尔霍夫定律是非常有用和可靠的工具。
实验报告验证基尔霍夫定理

实验报告验证基尔霍夫定理一、实验目的本实验的目的在于通过实际操作和测量,验证基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL),加深对电路基本定律的理解和掌握,提高电路分析和计算的能力。
二、实验原理1、基尔霍夫电流定律(KCL)内容:在集总电路中,任何时刻,对任一节点,所有流出节点的电流的代数和恒等于零。
数学表达式:∑I = 0 (流入电流之和等于流出电流之和)2、基尔霍夫电压定律(KVL)内容:在集总电路中,任何时刻,沿任一回路,所有元件两端电压的代数和恒等于零。
数学表达式:∑U = 0 (回路中各段电压降之和等于电源电动势之和)三、实验设备和器材1、直流电源(可调稳压电源)2、数字万用表3、电阻箱4、实验电路板5、连接导线若干四、实验步骤1、实验电路的设计与搭建根据实验要求,在实验电路板上选择合适的电阻值,设计并搭建一个包含多个节点和回路的电路。
确保电路连接牢固,无短路和断路现象。
2、测量电流将数字万用表调至电流测量档位,分别测量通过各支路的电流。
记录测量数据,注意电流的方向。
3、测量电压将数字万用表调至电压测量档位,分别测量回路中各元件两端的电压。
记录测量数据,注意电压的极性。
4、数据记录与处理将测量得到的电流和电压数据记录在表格中。
对数据进行分析和计算,验证基尔霍夫定律。
五、实验数据记录与分析1、电流测量数据|支路|电流测量值(mA)|方向|||||| I1 |____ |流入节点|| I2 |____ |流出节点|| I3 |____ |流入节点|||||根据基尔霍夫电流定律,对某一节点,流入电流之和等于流出电流之和。
例如,对于节点 A,I1 + I3 = I2 ,计算验证是否成立。
2、电压测量数据|元件|电压测量值(V)|极性|||||| R1 |____ |上正下负|| R2 |____ |上正下负|| R3 |____ |上正下负|||||根据基尔霍夫电压定律,沿某一回路,各元件两端电压的代数和等于零。
基尔霍夫定律的验证实验报告

基尔霍夫定律的验证实验报告实验报告实验题目:基尔霍夫定律的验证实验目的:通过实验验证基尔霍夫定律的正确性,理解电路中电流和电势的特性及其变化规律。
实验原理:基尔霍夫定律是针对电路中电流和电势的特性以及电路拓扑结构提出来的重要定理之一,主要包括基尔霍夫第一定律和基尔霍夫第二定律。
基尔霍夫第一定律:电路中任意一个节点的电流代数和为0。
基尔霍夫第二定律:电路中任意一个电路环的电势差代数和等于其中通过的电流代数和乘以其电路元件的电阻值之和。
实验器材和药品:数字万用表、30V 直流电源、5Ω 电阻器、10Ω 电阻器、20Ω 电阻器、导线等。
实验步骤:- 按照电路连接图搭建电路并接好电路元件。
- 连接数字万用表用于测量电阻值和电势差。
- 用 30V 直流电源为电路供电,并打开电源开关。
- 分别用数字万用表测量电路中各元件的电势差和电流,记录数据。
- 对实验结果进行统计和分析,验证基尔霍夫定律的正确性。
实验数据和结果:实验数据如下:元件电阻值(Ω)电势差(V)电流(mA)电源 / 30 3电阻R1 5 15 3电阻R2 10 10 1电阻R3 20 5 0.5通过实验测得的数据可以得出以下结论:符合基尔霍夫第一定律:在电阻R1处的电流为3mA,因此在R2和R3处的电流之和也是3mA。
符合基尔霍夫第二定律:通过电阻R1和电源的电路环的电势差之和等于通过电阻R2和R3的电路环的电势差之和,即15V + 15V = 10V + 5V。
结论和讨论:从实验结果来看,基尔霍夫定律得到了很好的验证,证明了其在电路分析中的重要性和正确性。
同时,本次实验也让我们深入了解了电路中电流和电势的特性以及在变化过程中的规律。
实验中的不确定性和误差主要来自于数字万用表本身和电源的精度等方面,在后续实验中需要更加精确的测量方法和设备来避免对实验数据的误差影响。
实验中还可以通过增加电路元件和不同的拓扑结构来进一步扩展实验步骤和深化理解,更好地理解和应用基尔霍夫定律。
基尔霍夫定律的验证实验报告

实验目的1. 验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
2. 学会用电流插头、插座测量各支路电流。
3. 运用multisim 软件仿真。
实验仪器可调直稳压电源、直流数字电压表、直流数字电流表、实验电路板实验原理1. 基尔霍夫定律是电路的基本定律。
测量某电路的各支路电流及每个元件两端的电压,能分别满足基尔霍夫电流定律(KCL )和电压定律(KVL )。
即对电路中任一借点而言,应有∑I=0,对任一闭合电路而言,应有∑U=0.实验内容与步骤1.分别将两路直流稳压电源介入电路,令U 1=6V ,U 2=12V 。
(先调准输出电压值,再接入实验线路)用DGJ-04挂箱的“基尔霍夫定律/叠加原理”电路板。
2.实验前任意设定三条支路电流正方向,如图1-1中的I 1,I 2,I 3的方向已设定。
闭合回路的正方向可任意设定。
3.熟悉电流插头的结构,将电流插头的两端接至数字电流表的“+、-”两端。
4.将电流插头分别插入三条支路的三个电流插座中,读出并记录电流值。
5.用直流数字电压表分别测量两路电源以及电阻元件上的电压值,记录于表(1)。
6.将开关指向二极管,重新测量两路电源及电阻元件上的电压值,记录于表(2)。
7.将开关指向电阻,分别测量三种故障情况下的两路电源及电阻元件上的电压值,记录于表3、4、5.图1被测量 I 1(mA ) I 2(mA ) I 3(mA )U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V )数据记录表1 图2表2表3 故障1:FA 开路表4 故障2:AD 短路计算值 1.93 5.99 7.92 6.00 12.00 0.98 -5.99 4.04 -1.98 0.98 测量值2.00 6.00 7.98 6.13 12.11 1.02 -6.03 4.08 -1.98 1.02 相对误差3.63%0.17%0.76%2.17% 0.92%4.08%0.67%0.99%0.00%4.08%被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 3.92 0.00 3.92 6.00 12.00 2.00 0.00 2.00 -10.00 2.00 测量值 4.00 0.00 4.00 6.1412.122.04 0.00 2.04 -10.07 2.04 相对误差2.04%0.00%2.04%2.33% 1.00%2.00%0.00%2.00%0.70%2.00%被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 0.00 6.52 6.52 6.00 12.00 2.68 -6.25 3.33 -2.15 0.00 测量值 0.00 6.56 6.56 6.14 12.002.79 -6.593.35 -2.17 0.00 相对误差0.00%0.64%0.64%2.33% 1.00%4.10%1.12%0.60%0.93%0.00%被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 5.88 9.02 14.90 6.00 12.00 3.00 -9.02 0.00 -2.97 3.00 测量值 5.98 9.04 14.86 6.14 12.123.06 -9.10 0.00 -3.00 3.06 相对误差1.70%0.22%0.27%2.33% 1.00%2.00%0.89%0.00%1.01%2.00%被测量 I 1(mA ) I 2(mA ) I 3(mA ) U 1(V) U 2(V) U FA (V) U AB (V) U AD (V) U CD (V) U DE (V) 计算值 3.92 0.00 3.92 6.00 12.00 2.00 0.00 2.00 -10.00 2.00 测量值 4.00 0.00 4.00 6.14 12.12 2.04 0.00 2.04 -10.07 2.04 相对误 2.04%0.00%2.04%2.33% 1.00% 2.00%0.00%2.00% 0.70%2.00%表5 故障3:CD开路思考题1.根据图1-1的电路参数,计算出待测的电流I1、I2、I3和各电阻上的电压值,记入表中,以便实验测量时,可正确地选定电流表和电压表的量程。
实验二基尔霍夫定律的验证(1)

实验二:基尔霍夫定律的验证一。
实验目的:1。
通过实验验证基尔霍夫电流定律和电压定律,巩固所学理论知识。
2。
加深对参考方向概念的理解。
二.实验原理基尔霍夫定律是电路理论中最基本也是最重要的定律之一。
它概括了电路中电流和电压分别遵循的基本规律.它包括基尔霍夫电流定律(KCL)和基尔霍夫电压定律(KVL)。
基尔霍夫节点电流定律:电路中任意时刻流进(或流出)任一节点的电流的代数和等于零。
其数学表达式为:∑ I =0此定律阐述了电路任一节点上各支路电流间的约束关系,这种关系,与各支路上元件的性质无关,不论元件是线性的或是非线性的,含源的或是无源的,时变的或时不变的。
基尔霍夫回路电压定律:电路中任意时刻,沿任意闭合回路,电压的代数和等于零。
其数学表达式为:∑ U =0此定律阐述了任意闭合回路中电压间的约束关系.这种关系仅与电路的结构有关,而与构成回路的各元件的性质无关,不论这些元件是线性的或是非线性的,含源的或是无源的,时变的或时不变的。
参考方向:KCL和KVL表达式中的电流和电压都是代数量,它们除具有大小之外,还有方向,其方向是以它量值的正、负表示的.为研究问题方便,人们通常在电路中假定一个方向为参考,称为参考方向,当电路中的电流(或电压)的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
例如,测量某节点各支路电流时,可以设流入该节点的电流方向为参考方向(反之亦然)。
将电流表负极接到该节点上,而将电流表的正极分别串入各条支路,当电流表指针正向偏转时,说明该支路电流是流入节点的,与参考方向相同,取其值为正;若指针反向偏转,说明该支路电流是流出节点的,与参考方向相反,倒换电流表极性,再测量,取其值为负。
测量某闭合电路各电压时,也应假定某一绕行方向为参考方向,按绕行方向测量各电压时,若电压表指针正向偏转,则该电压取正值,反之取负值。
三。
实验内容及步骤1. 验证基尔霍夫电流定律(KCL )本实验在直流电路单元板上进行,按下图接好线路。
基尔霍夫定律的验证的实验报告

基尔霍夫定律的验证的实验报告实验报告:基尔霍夫定律的验证实验目的:验证基尔霍夫定律,即“电流在节点汇聚时,电流的代数和为零;电压在回路中闭合时,电压的代数和为零”。
实验器材:1.电源2.电阻器3.连线4.摇摆开关5.电流表6.电压表7.多用表实验原理:1. 基尔霍夫第一定律(又称为电流定律):在一个网络中,进入节点的电流等于离开该节点的电流之和。
这个定律的数学公式可以表示为:ΣIin = ΣIout。
2.基尔霍夫第二定律(又称为电压定律):在闭合网络中,电源供给的电压等于电阻器消耗的电压。
这个定律的数学公式可以表示为:ΣV=0。
实验步骤:1.将电源接入电路,并连接电阻器形成一个简单的电路。
2.使用多用表将电压表和电流表选为电压测量模式和电流测量模式。
3.使用摇摆开关控制电路的通断,确保电路处于开启状态。
4.使用电流表测量电路中的电流,并记录下测量值。
5.使用电压表测量电路中的电压值,并记录下测量值。
6.对电路进行分析,应用基尔霍夫定律来验证实验结果。
-验证基尔霍夫第一定律:选择一个节点,将所有进入该节点的电流与所有离开该节点的电流进行比较,如果两者相等,则基尔霍夫第一定律成立。
-验证基尔霍夫第二定律:选择一条回路,在该回路上记录下所有电压值,然后将这些电压值相加,如果结果为零,则基尔霍夫第二定律成立。
7.分别通过计算和实验结果比较,验证基尔霍夫定律的成立与准确性。
实验结果和讨论:在实验中,我们按照以上步骤进行了电流和电压的测量,并记录了测量结果。
然后,我们通过基尔霍夫定律进行验证。
首先,我们验证了基尔霍夫第一定律。
在电路中选取了一个节点,测量了进入和离开该节点的电流。
通过对测量值的比较,我们发现进入和离开节点的电流之和相等,验证了基尔霍夫第一定律的成立。
接着,我们验证了基尔霍夫第二定律。
选择了一个回路,并测量了回路上各个电压值。
通过将这些电压值相加,得出的结果非常接近于零,从而验证了基尔霍夫第二定律的成立。
实验2 基尔霍夫定律电路设计及验证

实验2基尔霍夫定律电路设计及验证一.实验目的1.理解基尔霍夫定律的内容,设计相应的验证电路2.验证基尔霍夫电流定律(KCL)和电压定律(KVL)3.通过实验加深对基尔霍夫定律的理解二.实验原理与说明1.基尔霍夫电流定律(KCL)在任一时刻,流出(或流入)集中参数电路中任一可以分割开的独立部分的端子电流的代数和恒等于零,即:ΣI=0 或ΣI入=ΣI出式(1)此时,若取流出节点的电流为正,则流入节点的电流为负。
它反映了电流的连续性。
说明了节点上各支路电流的约束关系,它与电路中元件的性质无关。
要验证基式电流定律,可选一电路节点,按图中的参考方向测定出各支路电流值,并约定流入或流出该节点的电流为正,将测得的各电流代入式(1),加以验证。
2.基尔霍夫电压定律(KVL)按约定的参考方向,在任一时刻,集中参数电路中任一回路上全部元件两端电压代数和恒等于零,即:ΣU=0 式(2)它说明了电路中各段电压的约束关系,它与电路中元件的性质无关。
式(2)中,通常规定凡支路或元件电压的参考方向与回路绕行方向一致者取正号,反之取负号。
三.实验设备名称数量1.三相空气开关1块2.双路可调直流电源1块3.直流电压表、电流表1块4.电阻4个100Ω*1 150Ω*1220Ω*1 510Ω*15.连接导线若干6.实验用9孔插件方板1块四.实验步骤1.理解基尔霍夫定律(KCL和KVL)的要点,明确定律所需的电路结构。
图1 基尔霍夫定律实验线路2.基尔霍夫电流定律(KCL)的验证(1)按图1接线,Us1、Us2用直流稳压电源提供。
(2)用直流电流表依次测出电流I1、I2、I3,(以节点b为例),数据记入表1内。
(3)根据KCL定律式(1)计算ΣI,将结果填入表1,验证KCL。
表1 验证KCL实验数据I1(mA) I2(mA) I3(mA)ΣI3.基尔霍夫电压定律(KVL)的验证(1)按图1接线,U S1、U S2用直流稳压电源。
(2)用直流电压表,依次测出回路1(绕行方向:beab)和回路2(绕行方向:bcdeb)中各支路电压值,数据记入表2内。
实验二基尔霍夫电压定律的验证实验完成wpy

实验二基尔霍夫电压定律的验证实验完成wpy第一篇:实验二基尔霍夫电压定律的验证实验完成wpy实验二基尔霍夫电压定律的验证实验一、实验目的1、通过实验验证基尔霍夫电压定律,巩固所学的理论知识。
2、加深对参考方向概念的理解。
二、实验原理1、基尔霍夫定律:基尔霍夫电压定律为Σ U = 0,应用于回路。
基尔霍夫定律是分析与计算电路的基本重要定律之一。
图2-1两个电压源电路图图2-2基尔霍夫电流定律2、基尔霍夫电压定律(Kirchhoff 's Voltage law)可简写为KVL:基尔霍夫电压定律,从回路中任意一点出发,以顺时针方向或逆时针方向沿回路循行一周,则在这个方向上的电位升之和应该等于电位降之和。
就是在任一瞬时。
沿任一回路循行方向(顺时方向或逆时方向),回路中各段电压的代数和恒等于零。
(如果规定电位升为正号则电位降为负号)。
在电阻电路中的另一种表达式,就是在任一回路循行方向上,回路中电动势的代数和等于电阻上电压降的代数和。
在图2-1所示电路中,对回路adbca由图2-2可以写出U2 + U3 = U1 + U4U2 + U3-U1-U4 = 0即Σ U = 0上式可改为E1-E2-I1R1 + I2R2 = 0E1-E2 = I1R1-I2R2即Σ E = Σ(IR)4、参考方向:为研究问题方便,人们通常在电路中假定一个方向为参考,称为参考方向。
(1)若流入节点的电流取正号,则流出节点的电流取负号。
(2)任一回路中,凡电压的参考方向与回路绕行方向一致者,则此电压的前面取正号,电压的参考方向与回路绕行方向相反者,前面取负号。
(3)任一回路中电流的参考方向与回路绕行方向一致者,前面取正号,相反者前面取负号。
在实际测量电路中的电流或电压时,当电路中所测的电流或电压的实际方向与参考方向相同时取正值,其实际方向与参考方向相反时取负值。
三、实验内容及步骤KVL定律实验电路如图2-3所示,有两个直流电压源作用于电路中,选定电路的参考方向为U6→U5→U4→U3→U2→U1→U6,电压表中除U3的正、负极性与参考方向相反以外,其余电压表均与该参考方向一致,则列写KVL方程为:Σ U = U6+U5+U4-U3+U2+U1=0(上式中的U1、U2、U3、U4、U5、U6分别对应图上器件R1、R2、E2、R3、R4、E1的电压)故:若用电压表测得的电压值符合上式,则KVL定律得证。