2020年8月甘肃自考《06227大学数学》真题[无答案]
02324离散数学2020年08月自考真题及答案
绝密★启用前2020年8月高等教育自学考试全国统一命题考试离散数学试题答案及评分参考(课程代码 02324)一、单项选择题:本大题共15小题,每小题1分,共15分。
1. D2. B3. D4. A5. B6. C7. B8. D9. A 10. C11.B 12.A 13.D 14.C 15.D二、填空题:本大题共10小题,每小题2分,共20分。
16. 317.{1,5,9}18.T19.1120.{〈1,2〉}21.∀x∀y∃z�F(x)∨¬G(y)∨H(z)�22.1123.∅24.825.{〈3,1〉,〈9,2〉,〈6,3〉}三、简答题:本大题共7小题,第26~30小题,每小题6分;第31~32小题,每小题7分,共44分。
26.解:命题公式(P∧Q)∨(¬Q→R)的真值表如下P Q R P∧Q¬Q→R(P∧Q)∨(¬Q→R)(1分)F F F F F FF F T F T T (1分)F T F F T TF T T F T T (1分)T F F F F FT F T F T T (1分)T T F T T TT T T T T T (1分) 由上表可知,命题公式为非重言式的可满足式。
(1分)离散数学试题答案及评分参考第1页(共4页)离散数学试题答案及评分参考第2页(共4页) 27. 解:(P ∨¬Q )∧(¬R →Q )⇔(P ∨¬Q )∧(R ∨Q ) (2分) ⇔(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(P ∨Q ∨R )∧(¬P ∨Q ∨R )(1分) 主合取范式为 (P ∨Q ∨R )∧(P ∨¬Q ∨R )∧(P ∨¬Q ∨¬R )∧(¬P ∨Q ∨R ), (1分)成假赋值为000,010,011和100。
(2分) 28. 解:集合A ={a ,b ,c ,d }的二元关系R ={〈a ,b 〉,〈b ,d 〉,〈c ,a 〉,〈c ,c 〉,〈d ,c 〉},(2分) R 的关系矩阵M R =�0100000110001010�,(2分) 对称闭包的关系矩阵M s (R )=M R ∨M R −1=�0110100110011110�。
2022-2023学年甘肃省武威市普通高校对口单招数学自考测试卷(含答案)
2022-2023学年甘肃省武威市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.函数f(x)=log2(3x-1)的定义域为()A.(0,+∞)B.[0,+∞)C.(1,+∞)D.[1,+∞)2.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个3.A.(1,2)B.(3,4)C.(0,1)D.(5,6)4.设a=log32,b=log52,c=log23,则()A.a>c>bB.b>c>aC.c>b>aD.c>a>b5.A.1B.2C.3D.46.已知两直线y=ax-2和3x-(a+2)y+l=0互相平.行,则a等于()A.1或-3B.-1或3C.1和3D.-1或-37.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定8.A.(0,4)B.C.(-2,2)D.9.下列句子不是命题的是A.B.C.D.10.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7二、填空题(10题)11.12.已知_____.13.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.14.以点(1,0)为圆心,4为半径的圆的方程为_____.15.圆x2+y2-4x-6y+4=0的半径是_____.16.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.17.18.若,则_____.19.要使的定义域为一切实数,则k的取值范围_____.20.三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2. (1) 求f(-1)的值;(2) 若f(t2-3t+1)>-2,求t的取值范围.22.己知{a n}为等差数列,其前n项和为S n,若a3=6, S3= 12,求公差d.23.已知函数y=cos2x + 3sin2x,x ∈R求:(1) 函数的值域;(2) 函数的最小正周期。
2020年夏季甘肃省普通高中学业水平考试数学试卷
2020年夏季甘肃省普通高中学业水平考试数学试卷甘肃省夏季普通高中学业水平考试试卷数 学第I 卷(选择题共40分)一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合}{1,0,2-=A ,}{02,B -=,则B A 等于( ) A .}{2- B .}{0C .}{02,- D .}{102,,- 2.已知向量)2,1(-=a ,a b 2=,则向量=b ( )A .)1,2(-B .)4,2(-C .)2,2(-D .)2,4(-3. 已知角α的终边经过点)21,23(-P ,则=αsin ( )3.-A 23.-B 21.C 1.D4.不等式0)3)(1(≤+-x x 的解集为( ) A .{}13|≤≤-x x B .{}13|≤<-x x C .{}1,3|≥-≤x x x 或 D .{}3,1|-≥≤x x x 或5.过点)1,0(且与直线x y =平行的直线方程为( )A .1--=x yB .1+-=x yC .1-=x yD .1+=x y6.设x 、y 满足约束条件⎪⎩⎪⎨⎧≥≥≤+.1,0,42y x y x ,则y x z +=的最大值( )4.A 25.B 2.C 1.D 7. 运行如图所示的程序框图,则输出的S 的值为( )A .3B .8C . 10D .15 8. 函数x x y cos sin 2=的最小正周期是( )4.πA 2.πB π.C π2.D9.下列函数中,在区间),0(+∞上为减函数的是( ) A .2x y = B .3x y =C .x y lg =D .xy ⎪⎭⎫⎝⎛=2110.右图是学校歌咏比赛中某班得分的茎叶图,从这七个得分中去掉一个最高分和一个最低分后,所剩数据的中位数和平均数依次为( ) 84,87.A 84,85.B85,87.C 85,85.D第II 卷(非选择题共60分)二、填空题:本大题共5小题,每小题4分,共20分.把答案填在题中的横线上.11. 已知函数)1(log )(2-=x x f 的定义域是 .12. 在ABC ∆中,角C B A ,,的对边分别为c b a ,,,已知1=b ,2=c ,︒=120A ,则=a .13.若圆C 的直角坐标方程为4)1()1(22=-++y x ,则圆C 的圆心坐标为 . 14.在正方体1111D C B A ABCD -中,异面直线AC 与11C B 所成的角的大小为 . 15.某学校共有教师240人,其中青年、中年、老年教师分别有120人、80人、40人,使用分层抽样的方法抽取6人参加某项活动,则应抽取的青年教师人数为 . 三、解答题:本大题共5小题,共40分.解答时应写出必要的文字说明、证明过程或演算步骤.16.(8分)在等差数列{}n a 中,已知31=a ,55=a , (1)求数列{}n a 的通项公式; (2)设nn b 2=,求数列{}n b 的前6项和6S .17.(8分)函数)2sin(sin 3)(x x x f -+=π,R x ∈.(1)求)3(πf 的值;(2)求函数)(x f 的最小值,并求取得最小值时x 的取值集合.18.(8分)为了让全班同学“快乐学习,健康成长”,高二(2)班举行了班级跳绳比赛活动,全班40名同学进行两分钟跳绳测试,将跳绳次数所得数据整理后,得到如下频率分布直方图.(1)求这40名同学跳绳次数在(]300,250内的人数;(2)若李华同学是这次跳绳比赛的第一名,现从这次班级跳绳次数在(]300,250内的人中随机选2人参加校级比赛,求李华同学被选中参加校级比赛的概率.19.(8分)在三棱柱111C B A ABC -中,︒=∠90ABC ,F E D ,,分别是BC C A B A ,,1111的中点. (1)求证:⊥BC 平面11ABB A ; (2)求证://EF 平面11ABB A .20.(8分)已知函数)(x f 是定义在R 上的奇函数,当0>x 时,2)(x x x f -=. (1)求)2(f 的值; (2)求函数)(x f 的解析式.O 0.0020.001 0.004 0.0050.006 0.003 频率/组距。
2024年甘肃省成考(专升本)经济学考试真题含解析
2024年甘肃省成考(专升本)经济学考试真题一、单选题1、根据恩格尔定律,随着消费者收入的增加,食物支出在收入中所占的比例______ A.上升B.下降C.不变D.无法判断2、下列哪种情况会导致奶粉需求曲线向左移动______A.生产奶粉的厂商减少生产B.政府对生产者进行补贴C.居民收入大幅度提高D.奶粉中检测出有害物质3、在AD-AS模型的一般情形下,原材料价格上涨对于经济的影响是______A.国民收入增加,价格上升B.国民收入增加,价格下降C.国民收入减少,价格上升D.国民收入减少,价格下降4、在一个四部门经济中,GDP是______A.消费、总投资、政府购买和净出口B.消费、净投资、政府购买和净出口C.消费、总投资、政府购买和总出口D.工资、地租、利息、利润和折旧5、以上物品属于商品的是______B.自制书架供自己使用C.空气D.苹果公司生产的手机6、表明某一确定物的最终归属的是______A.占有权B.使用权C.所有权D.处置权7、根据凯恩斯的货币需求理论,当收入水平上升时,会引起______ A.投机动机的货币需求增加B.交易动机的货币需求增加C.预防动机的货币需求减少D.边际消费倾向增大8、食品消费支出占全部消费支出的比重称为______A.恩格尔系数B.基尼系数C.消费结构D.消费弹性9、资本积累的源泉是______A.物质资料生产B.剩余价值C.扩大再生产10、基尼系数的增大将表明______A.收入不平均程度的增加B.收入不平均程度的减少C.洛伦茨曲线与横轴重合D.洛伦茨曲线与纵轴重合11、垄断资本主义国家的政府,私人银行和企业在国外直接投资办厂的行为是______ A.借贷资本输出B.生产资本输出C.国家资本输出D.私人资本输出12、长期总成本曲线是各种产量的______A.最低成本点的轨迹B.最低平均成本点的轨迹C.最低边际成本点的轨迹D.平均成本变动的轨迹13、在其他条件不变的情况下,资本有机构成的提高会导致______A.相对过剩人口的形成B.利润率的提高C.不变资本在总资本中的比例降低D.资本周转速度的加快14、商铺地段繁华程度不同,租金不同,这种租金差异被称为______A.绝对地租B.级差地租IC.级差地租ⅡD.垄断地租15、从国内生产总值减去下列哪项成为国内生产净值______A.直接税B.原材料支出C.折旧D.间接税16、根据生产要素投入与产出的关系划分的生产的三阶段中,生产者的合理生产阶段是______A.第一阶段B.第三阶段C.第二阶段D.第一阶段或第三阶段17、如果某企业处于规模报酬不变阶段,其LAC曲线是______A.上升的B.下降的C.水平的D.垂直的18、在生产要素价格决定理论中,完全竞争厂商使用要素所遵循的原则是______ A.边际效益MR=边际成本MCB.边际产品价值VMP=边际产品MP×产品价格PC.边际产品价值VMP=要素价格WD.边际产品MP=产品价格P19、在生产者短期生产的理性决策区间中,以下说法错误的是______A.平均产量不断下降B.平均产量大于边际产量C.边际产量递减D.总产量不断下降20、以下属于固定资本的是______A.原料B.厂房C.工资D.燃料21、个别资本家提高劳动生产率的直接目的是______A.获取绝对剩余价值B.获取相对剩余价值C.获取劳动力价值D.获取超额剩余价值22、边际消费倾向与边际储蓄倾向之和等于______A.大于1的正数B.小于2的正数C.零D.123、当政府实施扩张性财政政策时,在以下各种情况中,政策效果较好的是______ A.货币需求对利率敏感,投资支出对利率不敏感B.货币需求对利率敏感,投资支出对利率也敏感C.货币需求对利率不敏感,投资支出对利率不敏感D.货币需求对利率不敏感,投资支出对利率敏感24、若厂商增加使用一个单位的劳动,减少两个单位的资本,仍能生产相同产出,则劳动替代资本的边际技术替代率等于______A.1/2B.2C.3D.425、根据需求定理,在其他因素保持不变的条件下,一种商品的价格上升,则对该商品的______A.需求量减少B.需求减少C.需求增加D.需求量增加26、在一定时间内,在其他商品的消费数量保持不变的条件下,随着消费者对某种商品消费数量的增加,消费者所得到的______A.效用的增量是递减的B.总效用是递减的C.平均效用是递增的D.总效用是递增的27、关于预付资本总周转,说法正确的是______A.指固定资本的平均周转B.指流动资本的周转总值C.指预付资本总值与资本周转总值的比率D.资本不同组成部分的平均周转28、社会资本实现扩大再生产的基本条件是______A.I(v+m)=Ⅱ(c)B.I(v+△v+m/x)=Ⅱ(c+△c)C.Ⅱ(v+m)=I(c)D.Ⅱ(v+△v+m/x)=I(c+△c)29、下列各项中哪一项会导致一国生产可能性曲线向外移动______A.失业B.通货膨胀C.有用性资源增加或技术进步D.消费品生产增加,资本物品生产下降30、根据凯恩斯主义,在下列选项中,可以决定利率的是______A.产品供求B.投资和储蓄C.货币供求D.投资和收入31、根据平衡预算乘数的作用机制,如果政府购买支出和税收同时增加相同的数量,则会引起国民收入水平______A.增加B.减少C.不变D.无法确定32、关于帕累托最优状态的描述,以下正确的是______A.存在帕累托改进的可能B.在某人状况变好的同时,其他人的状况可以不变坏C.两人的状况可以同时变好D.如果某人的状况变好,其他人的状况肯定变坏33、对于一条向右下方倾斜的需求曲线,如果价格上升,消费者剩余会______A.增加B.减少C.不变D.上下波动34、利率和收入的组合点出现在IS曲线右上方、LM曲线左上方的区域中,则表示______ A.投资小于储蓄且货币需求小于货币供给B.投资小于储蓄且货币需求大于货币供给C.投资大于储蓄且货币需求小于货币供给D.投资大于储蓄且货币需求大于货币供给35、某商品的需求收入弹性大于1,则该商品属于______A.低档品B.正常品C.必需品D.奢侈品36、某人清扫了路边的积雪,路过的行人感到方便,这体现的是______A.生产的正外部性B.消费的正外部性C.生产的负外部性D.消费的负外部性37、使得预算线向右平移的原因可能是______ A.消费者收入下降B.商品的价格按相同比例提高C.商品的价格按不同的比例下降D.商品的价格同比例下降38、菲利普斯曲线的基本含义是______A.失业率和通货膨胀率同时上升B.失业率和通货膨胀率同时下降C.失业率上升,通货膨胀率下降D.失业率的变动与通货膨胀率的变动无关39、自然失业率______A.是经济处于潜在产出水平时的失业率B.依赖于价格水平C.恒为零D.是没有摩擦性失业时的失业率40、下列情况不利于经济可持续发展的是______ A.采取粗放型的经济增长方式B.合理开发和利用资源C.加强环境保护D.加快产业结构的优化升级41、对于一种商品,消费者得到最大满足,这意味着______A.边际效用最大B.总效用为零C.边际效用为零D.总效用为正42、在资本主义社会的商品价值中,既是新创造价值的一部分,又是生产成本组成部分的是______A.cB.vC.mD.v+m43、在完全竞争市场上,生产要素的需求曲线向右下方倾斜是由于______A.投入生产要素所生产的产品边际效用递减B.要素的边际产值递减C.投入越多,产量越大,从而产品价格越低D.要素所生产的产品的需求减少44、关于充分就业,以下说法正确的是______A.失业率为零B.消除了摩擦性失业C.失业率等于自然失业率D.存在周期性失业45、社会再生产过程中起决定作用的环节是______A.生产B.分配C.交换D.消费46、把资本区分为固定资本和流动资本,其依据是______A.在生产过程中不同的价值转移方式B.在生产过程中不同的物质存在形态C.不同部分在剩余价值生产中的不同作用D.不同部分的不同运动速度47、若企业的短期平均成本为SAC,平均可变成本为AVC,则企业的停止生产点位于______ A.SAC的最高点B.SAC的最低点C.AVC的最低点D.AVC的最高点48、根据序数效应理论,由______可推导出消费者的需求曲线。
2020年自考高等数学(工专)考试题库及答案
2020年自考高等数学(工专)考试题库及答案第一章(函数)之内容方法函数是数学中最重要的基本概念之一。
它是现实世界中量与量之间的依赖关系在数学中的反映,也是高等数学的主要研究对象。
本章主要阐明函数的概念,函数的几个简单性态,反函数,复合函数,初等函数及函数关系的建立等。
重点是函数的概念与初等函数,难点是复合函数。
1-2 函数的概念函数的定义:y=f(x)(x∈D),其中x是自变量,f为对应法则,y为因变量,D是定义域。
∀(对任意)x∈D,∃!(有唯一)y与x对应。
y所对应的取值范围称为函数的值域。
当自变量x取平面的点时,即x=(x1,x2)时,f(x)是二元函数;当x取空间中的点x=(x1,x2,x3)时,f(x)是三元函数。
函数的表示法主要有两种。
其一是解析法,即用代数式表达函数的方法。
例如y=f(x)=e x,符号函数,其中后者是分段函数。
其二是图示法。
如一元函数可表示为平面上的一条曲线,二元函数可表示为空间中的一张曲面等。
给定一个函数y=f(x),则会求函数的定义域,值域,特殊点的函数值等是最基本的要求。
应综合考虑分母不能为0,偶次根式中的表达式应大于等于0,对数函数的真数应大于0等情形。
1-3 函数的简单性态1.单调性:称函数f(x)在区间I(含于定义域内)单调增,若∀x1,x2∈I,当x1<x2时f(x1)≤f(x2);称函数在区间I(含于定义域内)单调减,若∀x1,x2∈I,当x1<x2时f(x1)≥f(x2).单调增函数和单调减函数统称为单调函数,I称为单调区间。
判断一个函数f(x)在区间I是否为单调函数,可用单调性的定义或者用第四章中函数在I中的导数的符号。
2.奇偶性:设函数f(x)的定义域D关于原点对称。
如果∀x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果∀x∈D,有f(-x) = -f(x),则称f(x)为奇函数。
判断一个函数的奇偶性时一般用定义。
在几何上,偶函数的图像关于y轴对称,而奇函数的图像关于原点对称。
2020年甘肃专升本考试题答案
2020年甘肃专升本考试题答案一、单项选择题(本类题共20小题,每小题1分,共20分。
每小题备选答案中,只有一个符合题意的正确答案。
多选、错选、不选均不得分)1、下列各项中,不属于会计核算具体内容的是()。
A、会计计划的制订B、资产的增减C、财务成果的计算D、收入的计算2、下列关于历史成本计量的表述中,不正确的是()。
A、在历史成本计量下,资产可以按照其购置时支付的现金或者现金等价物的金额计量B、在历史成本计量下,资产按照当前市场条件重新取得同样一项资产所需支付的金额计量C、在历史成本计量下,负债按照其因承担现时义务而实际收到的款项或者资产的金额计量D、在历史成本计量下,资产可以按照购置时所付出的对价的公允价值计量3、下列关于权责发生制的表述中,不正确的是()。
A、权责发生制是以收入和费用是否归属本期为标准来确认本期收入和费用的一种方法B、权责发生制要求,凡是本期收到的收入和付出的费用,不论是否属于本期,都应作为本期的收入和费用C、权责发生制要求,凡是不属于当期的收入和费用,即使款项已在当期收付,也不作为当期的收入和费用D、权责发生制要求,凡是当期已经实现的收入和已经发生或应当负担的费用,无论款项是否收付,都应当作为当期的收入和费用4、企业从其开户银行提取现金5000元,应记入的借方科目是()。
A、“库存现金”B、“银行存款”C、“其他应收款”D、“货币资金"5、下列经济业务中。
能够引起资产类项目和负债类项目同时增加的是()。
A、用银行存款购买原材料B、借入短期借款存入银行C、把现金存入银行D、用银行存款偿还购买原材料所欠的货款6、下列关于会计凭证的保管的说法中,不正确的是()。
A、原始凭证不得外借,其他单位如有特殊原因确实需要使用时,经本单位会计机构负责人、会计主管人员批准,可以复制B、经单位领导批准。
会计凭证在保管期满前可以销毁C、会计主管人员和保管人员应在封面上签章D、会计凭证应定期装订成册。
2024年甘肃高考数学试题及答案
2024年甘肃高考数学试题及答案本试卷共10页,19小题,满分150分.注意事项:1.答题前,先将自己的姓名、准考证号、考场号、座位号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置.2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.写在试卷、草稿纸和答题卡上的非答题区域均无效.3.填空题和解答题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内.写在试卷、草稿纸和答题卡上的非答题区域均无效.4.考试结束后,请将本试卷和答题卡一并上交.一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.已知1i z =--,则z =()A.0B.12D.22.已知命题p :x ∀∈R ,|1|1x +>;命题q :0x ∃>,3x x =,则()A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量,a b满足1,22a a b =+= ,且()2b a b -⊥ ,则b = ()A.122232D.14.某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(单位:kg)并部分整理下表亩产量[900,950)[950,1000)[1000,1050)[1100,1150)[1150,1200)频数612182410据表中数据,结论中正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 至300kg 之间D.100块稻田亩产量的平均值介于900kg 至1000kg 之间5.已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A.221164x y +=(0y >)B.221168x y +=(0y >)C.221164y x +=(0y >)D.221168y x +=(0y >)6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =与()y g x =恰有一个交点,则=a ()A.1-B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为()A.12B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为()A.18B.14C.12D.1二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.对于函数()sin 2f x x =和π()sin(2)4g x x =-,下列正确的有()A.()f x 与()g x 有相同零点B.()f x 与()g x 有相同最大值C.()f x 与()g x 有相同的最小正周期D.()f x 与()g x 的图像有相同的对称轴10.抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A.l 与A 相切B.当P ,A ,B 三点共线时,||PQ =C.当||2PB =时,PA AB⊥D.满足||||PA PB =的点P 有且仅有2个11.设函数32()231f x x ax =-+,则()A.当1a >时,()f x 有三个零点B.当0a <时,0x =是()f x 的极大值点C.存在a ,b ,使得x b =为曲线()y f x =的对称轴D.存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题:本大题共3小题,每小题5分,共15分.12.记n S 为等差数列{}n a 的前n 项和,若347a a +=,2535a a +=,则10S =.13.已知α为第一象限角,β为第三象限角,tan tan 4αβ+=,tan tan 1αβ=,则sin()αβ+=.14.在如图的4×4方格表中选4个方格,要求每行和每列均恰有一个方格被选中,则共有种选法,在所有符合上述要求的选法中,选中方格中的4个数之和的最大值是.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A +=.(1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.16.已知函数3()e x f x ax a =--.(1)当1a =时,求曲线()y f x =在点()1,(1)f 处的切线方程;(2)若()f x 有极小值,且极小值小于0,求a 的取值范围.17.如图,平面四边形ABCD 中,8AB =,3CD =,AD =90ADC ︒∠=,30BAD ︒∠=,点E ,F 满足25AE AD = ,12AF AB =,将AEF △沿EF 对折至PEF !,使得PC =.(1)证明:EF PD ⊥;(2)求面PCD 与面PBF 所成的二面角的正弦值.18.某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p ,乙每次投中的概率为q ,各次投中与否相互独立.(1)若0.4p =,0.5q =,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.(2)假设0p q <<,(i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?(ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?19.已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.1.C【分析】由复数模的计算公式直接计算即可.【详解】若1i z =--,则z =故选:C.2.B【分析】对于两个命题而言,可分别取=1x -、1x =,再结合命题及其否定的真假性相反即可得解.【详解】对于p 而言,取=1x -,则有101x +=<,故p 是假命题,p ⌝是真命题,对于q 而言,取1x =,则有3311x x ===,故q 是真命题,q ⌝是假命题,综上,p ⌝和q 都是真命题.故选:B.3.B【分析】由()2b a b -⊥ 得22b a b =⋅ ,结合1,22a a b =+= ,得22144164a b b b +⋅+=+=,由此即可得解.【详解】因为()2b a b -⊥ ,所以()20b a b -⋅= ,即22b a b =⋅,又因为1,22a a b =+=,所以22144164a b b b +⋅+=+= ,从而=b 故选:B.4.C【分析】计算出前三段频数即可判断A;计算出低于1100kg 的频数,再计算比例即可判断B;根据极差计算方法即可判断C;根据平均值计算公式即可判断D.【详解】对于A,根据频数分布表可知,612183650++=<,所以亩产量的中位数不小于1050kg ,故A 错误;对于B,亩产量不低于1100kg 的频数为341024=+,所以低于1100kg 的稻田占比为1003466%100-=,故B 错误;对于C,稻田亩产量的极差最大为1200900300-=,最小为1150950200-=,故C 正确;对于D,由频数分布表可得,亩产量在[1050,1100)的频数为100(612182410)30-++++=,所以平均值为1(692512975181025301075241125101175)1067100⨯⨯+⨯+⨯+⨯+⨯+⨯=,故D 错误.故选;C.5.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【详解】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 6.D【分析】解法一:令()()21,cos a x F x ax G x =-=+,分析可知曲线()y F x =与()y G x =恰有一个交点,结合偶函数的对称性可知该交点只能在y 轴上,即可得2a =,并代入检验即可;解法二:令()()()(),1,1h x f x g x x =-∈-,可知()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即可得2a =,并代入检验即可.【详解】解法一:令()()f x g x =,即2(1)1cos 2a x x ax +-=+,可得21cos a x ax -=+,令()()21,cos a x F x ax G x =-=+,原题意等价于当(1,1)x ∈-时,曲线()y F x =与()y G x =恰有一个交点,注意到()(),F x G x 均为偶函数,可知该交点只能在y 轴上,可得()()00F G =,即11a -=,解得2a =,若2a =,令()()F x G x =,可得221cos 0x x +-=因为()1,1x ∈-,则220,1cos 0x x ≥-≥,当且仅当0x =时,等号成立,可得221cos 0x x +-≥,当且仅当0x =时,等号成立,则方程221cos 0x x +-=有且仅有一个实根0,即曲线()y F x =与()y G x =恰有一个交点,所以2a =符合题意;综上所述:2a =.解法二:令()()()2()1cos ,1,1h x f x g x ax a x x =-=+--∈-,原题意等价于()h x 有且仅有一个零点,因为()()()()221cos 1cos h x a x a x ax a x h x -=-+---=+--=,则()h x 为偶函数,根据偶函数的对称性可知()h x 的零点只能为0,即()020h a =-=,解得2a =,若2a =,则()()221cos ,1,1h x x x x =+-∈-,又因为220,1cos 0x x ≥-≥当且仅当0x =时,等号成立,可得()0h x ≥,当且仅当0x =时,等号成立,即()h x 有且仅有一个零点0,所以2a =符合题意;故选:D.7.B【分析】解法一:根据台体的体积公式可得三棱台的高h =的结构特征求得AM =111ABC A B C -补成正三棱锥-P ABC ,1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,根据比例关系可得18P ABC V -=,进而可求正三棱锥-P ABC 的高,即可得结果.【详解】解法一:分别取11,BC B C 的中点1,D D ,则11AD A D ==可知1111166222ABC A B C S =⨯⨯⨯=⨯⨯ 设正三棱台111ABC A B C -的为h ,则(11115233ABC A B C V h -==,解得h =如图,分别过11,A D 作底面垂线,垂足为,M N ,设AM x =,则22211163AA AM A M x =++23DN AD AM MN x =--=-,可得()2221116233DD DN D N x =+=-+结合等腰梯形11BCC B 可得22211622BB DD -⎛⎫=+ ⎪⎝⎭,即()22161623433x x+=-++,解得33x =,所以1A A 与平面ABC 所成角的正切值为11tan 1A MA AD AMÐ==;解法二:将正三棱台111ABC AB C -补成正三棱锥-P ABC ,则1A A 与平面ABC 所成角即为PA 与平面ABC 所成角,因为11113PA A B PA AB ==,则111127P A B C P ABC V V --=,可知1112652273ABC A B C P ABC V V --==,则18P ABC V -=,设正三棱锥-P ABC 的高为d ,则1136618322P ABC V d -=⨯⨯⨯⨯,解得23d =,取底面ABC 的中心为O ,则PO ⊥底面ABC ,且23AO =所以PA 与平面ABC 所成角的正切值tan 1POPAO AO∠==.故选:B.8.C【分析】解法一:由题意可知:()f x 的定义域为(),b -+∞,分类讨论a -与,1b b --的大小关系,结合符号分析判断,即可得1b a =+,代入可得最值;解法二:根据对数函数的性质分析ln()x b +的符号,进而可得x a +的符号,即可得1b a =+,代入可得最值.【详解】解法一:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;若-≤-a b ,当(),1x b b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1b a b -<-<-,当(),1x a b ∈--时,可知()0,ln 0x a x b +>+<,此时()0f x <,不合题意;若1a b -=-,当(),1x b b ∈--时,可知()0,ln 0x a x b +<+<,此时()0f x >;当[)1,x b ∈-+∞时,可知()0,ln 0x a x b +≥+≥,此时()0f x ≥;可知若1a b -=-,符合题意;若1a b ->-,当()1,x b a ∈--时,可知()0,ln 0x a x b +<+>,此时()0f x <,不合题意;综上所述:1a b -=-,即1b a =+,则()2222211112222a b a a a ⎛⎫=++=++ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12;解法二:由题意可知:()f x 的定义域为(),b -+∞,令0x a +=解得x a =-;令ln()0x b +=解得1x b =-;则当(),1x b b ∈--时,()ln 0x b +<,故0x a +≤,所以10b a -+≤;()1,x b ∈-+∞时,()ln 0x b +>,故0x a +≥,所以10b a -+≥;故10b a -+=,则()2222211112222a b a a a ⎛⎫=++=++≥ ⎪⎝⎭+,当且仅当11,22a b =-=时,等号成立,所以22a b +的最小值为12.故选:C.【点睛】关键点点睛:分别求0x a +=、ln()0x b +=的根,以根和函数定义域为临界,比较大小分类讨论,结合符号性分析判断.9.BC【分析】根据正弦函数的零点,最值,周期公式,对称轴方程逐一分析每个选项即可.【详解】A 选项,令()sin 20f x x ==,解得π,2k x k =∈Z ,即为()f x 零点,令π()sin(2)04g x x =-=,解得ππ,28k x k =+∈Z ,即为()g x 零点,显然(),()f x g x 零点不同,A 选项错误;B 选项,显然max max ()()1f x g x ==,B 选项正确;C 选项,根据周期公式,(),()f x g x 的周期均为2ππ2=,C 选项正确;D 选项,根据正弦函数的性质()f x 的对称轴满足πππ2π,224k x k x k =+⇔=+∈Z ,()g x 的对称轴满足πππ3π2π,4228k x k x k -=+⇔=+∈Z ,显然(),()f x g x 图像的对称轴不同,D 选项错误.故选:BC 10.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【详解】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD11.AD【分析】A 选项,先分析出函数的极值点为0,x x a ==,根据零点存在定理和极值的符号判断出()f x 在(1,0),(0,),(,2)a a a -上各有一个零点;B 选项,根据极值和导函数符号的关系进行分析;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,则()(2)f x f b x =-为恒等式,据此计算判断;D 选项,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,据此进行计算判断,亦可利用拐点结论直接求解.【详解】A 选项,2()666()f x x ax x x a '=-=-,由于1a >,故()(),0,x a ∞∞∈-⋃+时()0f x '>,故()f x 在()(),0,,a ∞∞-+上单调递增,(0,)x a ∈时,()0f x '<,()f x 单调递减,则()f x 在0x =处取到极大值,在x a =处取到极小值,由(0)10=>f ,3()10f a a =-<,则(0)()0f f a <,根据零点存在定理()f x 在(0,)a 上有一个零点,又(1)130f a -=--<,3(2)410f a a =+>,则(1)(0)0,()(2)0f f f a f a -<<,则()f x 在(1,0),(,2)a a -上各有一个零点,于是1a >时,()f x 有三个零点,A 选项正确;B 选项,()6()f x x x a '=-,a<0时,(,0),()0x a f x '∈<,()f x 单调递减,,()0x ∈+∞时()0f x '>,()f x 单调递增,此时()f x 在0x =处取到极小值,B 选项错误;C 选项,假设存在这样的,a b ,使得x b =为()f x 的对称轴,即存在这样的,a b 使得()(2)f x f b x =-,即32322312(2)3(2)1x ax b x a b x -+=---+,根据二项式定理,等式右边3(2)b x -展开式含有3x 的项为303332C (2)()2b x x -=-,于是等式左右两边3x 的系数都不相等,原等式不可能恒成立,于是不存在这样的,a b ,使得x b =为()f x 的对称轴,C 选项错误;D 选项,方法一:利用对称中心的表达式化简(1)33f a =-,若存在这样的a ,使得(1,33)a -为()f x 的对称中心,则()(2)66f x f x a +-=-,事实上,32322()(2)2312(2)3(2)1(126)(1224)1812f x f x x ax x a x a x a x a +-=-++---+=-+-+-,于是266(126)(1224)1812a a x a x a-=-+-+-即126012240181266a a a a -=⎧⎪-=⎨⎪-=-⎩,解得2a =,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.方法二:直接利用拐点结论任何三次函数都有对称中心,对称中心的横坐标是二阶导数的零点,32()231f x x ax =-+,2()66f x x ax '=-,()126f x x a ''=-,由()02af x x ''=⇔=,于是该三次函数的对称中心为,22a a f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,由题意(1,(1))f 也是对称中心,故122aa =⇔=,即存在2a =使得(1,(1))f 是()f x 的对称中心,D 选项正确.故选:AD【点睛】结论点睛:(1)()f x 的对称轴为()(2)x b f x f b x =⇔=-;(2)()f x 关于(,)a b 对称()(2)2f x f a x b ⇔+-=;(3)任何三次函数32()f x ax bx cx d =+++都有对称中心,对称中心是三次函数的拐点,对称中心的横坐标是()0f x ''=的解,即,33b b f aa ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是三次函数的对称中心12.95【分析】利用等差数列通项公式得到方程组,解出1,a d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列n a 为等差数列,则由题意得()1111237345a d a d a d a d +++=⎧⎨+++=⎩,解得143a d =-⎧⎨=⎩,则()10110910104453952S a d ⨯=+=⨯-+⨯=.故答案为:95.13.3-【分析】法一:根据两角和与差的正切公式得()tan αβ+=-αβ+的范围,最后结合同角的平方和关系即可得到答案;法二:利用弦化切的方法即可得到答案.【详解】法一:由题意得()tan tan tan 1tan tan αβαβαβ++===--因为π3π2π,2π,2ππ,2π22k k m m αβ⎛⎫⎛⎫∈+∈++ ⎪ ⎪⎝⎭⎝⎭,,Z k m ∈,则()()()22ππ,22π2πm k m k αβ+∈++++,,Z k m ∈,又因为()tan 0αβ+=-,则()()3π22π,22π2π2m k m k αβ⎛⎫+∈++++ ⎪⎝⎭,,Z k m ∈,则()sin 0αβ+<,则()()sin cos αβαβ+=-+()()22sin cos 1αβαβ+++=,解得()sin αβ+=法二:因为α为第一象限角,β为第三象限角,则cos 0,cos 0αβ><,cos α,cos β==则sin()sin cos cos sin cos cos (tan tan )αβαβαβαβαβ+=+=+4cos cos 3αβ=====-故答案为:3-.14.24112【分析】由题意可知第一、二、三、四列分别有4、3、2、1个方格可选;利用列举法写出所有的可能结果,即可求解.【详解】由题意知,选4个方格,每行和每列均恰有一个方格被选中,则第一列有4个方格可选,第二列有3个方格可选,第三列有2个方格可选,第四列有1个方格可选,所以共有432124⨯⨯⨯=种选法;每种选法可标记为(,,,)a b c d ,a b c d ,,,分别表示第一、二、三、四列的数字,则所有的可能结果为:(11,22,33,44),(11,22,34,43),(11,22,33,44),(11,22,34,42),(11,24,33,43),(11,24,33,42),(12,21,33,44),(12,21,34,43),(12,22,31,44),(12,22,34,40),(12,24,31,43),(12,24,33,40),(13,21,33,44),(13,21,34,42),(13,22,31,44),(13,22,34,40),(13,24,31,42),(13,24,33,40),(15,21,33,43),(15,21,33,42),(15,22,31,43),(15,22,33,40),(15,22,31,42),(15,22,33,40),所以选中的方格中,(15,21,33,43)的4个数之和最大,为152********+++=.故答案为:24;112【点睛】关键点点睛:解决本题的关键是确定第一、二、三、四列分别有4、3、2、1个方格可选,利用列举法写出所有的可能结果.15.(1)π6A =(2)2+【分析】(1)根据辅助角公式对条件sin 2A A +=进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决;(2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长.【详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 122A A +=,即sin()1π3A +=,由于ππ4π(0,π)(,)333A A ∈⇒+∈,故ππ32A +=,解得π6A =方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A =又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos sin f A A A '==,即tan 3A =,又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A ==,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅== ,则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=,又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,2222)sin 211tt A A t t-+==++,整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 1t A t ==-,又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos 2B =,得到π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=,由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412bc==,解得b c ==故ABC 的周长为2+16.(1)()e 110x y ---=(2)()1,+∞【分析】(1)求导,结合导数的几何意义求切线方程;(2)解法一:求导,分析0a ≤和0a >两种情况,利用导数判断单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可;解法二:求导,可知()e '=-x f x a 有零点,可得0a >,进而利用导数求()f x 的单调性和极值,分析可得2ln 10a a +->,构建函数解不等式即可.【详解】(1)当1a =时,则()e 1x f x x =--,()e 1x f x '=-,可得(1)e 2f =-,(1)e 1f '=-,即切点坐标为()1,e 2-,切线斜率e 1k =-,所以切线方程为()()()e 2e 11y x --=--,即()e 110x y ---=.(2)解法一:因为()f x 的定义域为R ,且()e '=-x f x a ,若0a ≤,则()0f x '≥对任意x ∈R 恒成立,可知()f x 在R 上单调递增,无极值,不合题意;若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,则()120g a a a'=+>,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞;解法二:因为()f x 的定义域为R ,且()e '=-x f x a ,若()f x 有极小值,则()e '=-x f x a 有零点,令()e 0x f x a '=-=,可得e x a =,可知e x y =与y a =有交点,则0a >,若0a >,令()0f x '>,解得ln x a >;令()0f x '<,解得ln x a <;可知()f x 在(),ln a -∞内单调递减,在()ln ,a +∞内单调递增,则()f x 有极小值()3ln ln f a a a a a =--,无极大值,符合题意,由题意可得:()3ln ln 0f a a a a a =--<,即2ln 10a a +->,构建()2ln 1,0g a a a a =+->,因为则2,ln 1y a y a ==-在()0,∞+内单调递增,可知()g a 在()0,∞+内单调递增,且()10g =,不等式2ln 10a a +->等价于()()1g a g >,解得1a >,所以a 的取值范围为()1,+∞.17.(1)证明见解析(2)65【分析】(1)由题意,根据余弦定理求得2EF =,利用勾股定理的逆定理可证得EF AD ⊥,则,EF PE EF DE ⊥⊥,结合线面垂直的判定定理与性质即可证明;(2)由(1),根据线面垂直的判定定理与性质可证明PE ED ⊥,建立如图空间直角坐标系E xyz -,利用空间向量法求解面面角即可.【详解】(1)由218,,52AB AD AE AD AF AB ====,得4AE AF ==,又30BAD ︒∠=,在AEF △中,由余弦定理得2EF =,所以222AE EF AF +=,则AE EF ⊥,即EF AD ⊥,所以,EF PE EF DE ⊥⊥,又,PE DE E PE DE =⊂ 、平面PDE ,所以EF ⊥平面PDE ,又PD ⊂平面PDE ,故EF ⊥PD ;(2)连接CE,由90,3ADC ED CD ︒∠===,则22236CE ED CD =+=,在PEC中,6PC PE EC ===,得222EC PE PC +=,所以PE EC ⊥,由(1)知PE EF ⊥,又,EC EF E EC EF =⊂ 、平面ABCD ,所以PE ⊥平面ABCD ,又ED ⊂平面ABCD ,所以PE ED ⊥,则,,PE EF ED 两两垂直,建立如图空间直角坐标系E xyz -,则(0,0,0),(0,0,(2,0,0),(0,E P D C F A -,由F 是AB的中点,得(4,B ,所以(4,22(2,0,2PC PD PB PF =-===-,设平面PCD 和平面PBF 的一个法向量分别为111222(,,),(,,)n x y z m x y z ==,则11111300n PC x n PD ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,222224020m PB x m PF x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩ ,令122,y x =,得11220,3,1,1x z y z ===-=,所以(0,2,3),1,1)n m ==,所以cos ,65m nm n m n ⋅===,设平面PCD 和平面PBF 所成角为θ,则sin 65θ==,即平面PCD 和平面PBF所成角的正弦值为65.18.(1)0.686(2)(i)由甲参加第一阶段比赛;(i)由甲参加第一阶段比赛;【分析】(1)根据对立事件的求法和独立事件的乘法公式即可得到答案;(2)(i)首先各自计算出331(1)P p q ⎡⎤=--⎣⎦甲,331(1)Pq p ⎡⎤=--⋅⎣⎦乙,再作差因式分解即可判断;(ii)首先得到X 和Y 的所有可能取值,再按步骤列出分布列,计算出各自期望,再次作差比较大小即可.【详解】(1)甲、乙所在队的比赛成绩不少于5分,则甲第一阶段至少投中1次,乙第二阶段也至少投中1次,∴比赛成绩不少于5分的概率()()3310.610.50.686P =--=.(2)(i)若甲先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P p q ⎡⎤=--⎣⎦甲,若乙先参加第一阶段比赛,则甲、乙所在队的比赛成绩为15分的概率为331(1)P q p ⎡⎤=--⋅⎣⎦乙,0p q << ,3333()()P P q q pq p p pq ∴-=---+-甲乙()2222()()()()()()q p q pq p p q p pq q pq p pq q pq ⎡⎤=-+++-⋅-+-+--⎣⎦()2222()333p q p q p q pq =---3()()3()[(1)(1)1]0pq p q pq p q pq p q p q =---=---->,P P ∴>甲乙,应该由甲参加第一阶段比赛.(ii)若甲先参加第一阶段比赛,数学成绩X 的所有可能取值为0,5,10,15,333(0)(1)1(1)(1)P X p p q ⎡⎤==-+--⋅-⎣⎦,32123(5)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,3223(10)1(1)C (1)P X p q q ⎡⎤==--⋅-⎣⎦,33(15)1(1)P X p q ⎡⎤==--⋅⎣⎦,()332()151(1)1533E X p q p p p q ⎡⎤∴=--=-+⋅⎣⎦记乙先参加第一阶段比赛,数学成绩Y 的所有可能取值为0,5,10,15,同理()32()1533E Y q q q p=-+⋅()()15[()()3()]E X E Y pq p q p q pq p q ∴-=+---15()(3)p q pq p q =-+-,因为0p q <<,则0p q -<,31130p q +-<+-<,则()(3)0p q pq p q -+->,∴应该由甲参加第一阶段比赛.【点睛】关键点点睛:本题第二问的关键是计算出相关概率和期望,采用作差法并因式分解从而比较出大小关系,最后得到结论.19.(1)23x =,20y =(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出2P 的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明n S 的取值为与n 无关的定值即可.思路二:使用等差数列工具,证明n S 的取值为与n 无关的定值即可.【详解】(1)由已知有22549m =-=,故C 的方程为229x y -=.当12k =时,过()15,4P 且斜率为12的直线为32x y +=,与229x y -=联立得到22392x x +⎛⎫-= ⎪⎝⎭.解得3x =-或5x =,所以该直线与C 的不同于1P 的交点为()13,0Q -,该点显然在C 的左支上.故()23,0P ,从而23x =,20y =.(2)由于过(),n n n P x y 且斜率为k 的直线为()n n y k x x y =-+,与229x y -=联立,得到方程()()229n n x k x x y --+=.展开即得()()()2221290n n n n k x k y kx x y kx ------=,由于(),n n n P x y 已经是直线()n n y k x x y =-+和229x y -=的公共点,故方程必有一根n x x =.从而根据韦达定理,另一根()2222211n n n n nn k y kx ky x k x x x k k ---=-=--,相应的()2221n n nn n y k y kx y k x x y k +-=-+=-.所以该直线与C 的不同于n P 的交点为222222,11n n n n n n n ky x k x y k y kx Q k k ⎛⎫--+- ⎪--⎝⎭,而注意到n Q 的横坐标亦可通过韦达定理表示为()()2291n n ny kx k x----,故n Q 一定在C 的左支上.所以2212222,11n n n n n n n x k x ky y k y kx P k k +⎛⎫+-+- ⎪--⎝⎭.这就得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k ++-=-.所以2211222211n n n n n nn n x k x ky y k y kx x y k k +++-+--=---()()222222*********n n n n n n n nn n x k x kx y k y ky k k kx y x y k k k k+++++++==-=-----.再由22119x y -=,就知道110x y -≠,所以数列{}n n x y -是公比为11k k +-的等比数列.(3)方法一:先证明一个结论:对平面上三个点,,U V W ,若(),UV a b = ,(),UW c d =,则12UVW S ad bc =- .(若,,U V W 在同一条直线上,约定0UVW S = )证明:11sin ,22UVW S UV UW UV UW UV UW =⋅=⋅12UV UW =⋅==12ad bc ===-.证毕,回到原题.由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n nn y k y kx y k++-=-,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11k k-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.而又有()()()111,n n n n n n P P x x y y +++=---- ,()122121,n n n n n n P P x x y y ++++++=-- ,故利用前面已经证明的结论即得()()()()1212112112n n n n P P P n n n n n n n n S S x x y y y y x x ++++++++==---+-- ()()()()12112112n n n n n n n n x x y y y y x x ++++++=-----()()()1212112212n n n n n n n n n n n n x y y x x y y x x y y x ++++++++=-+---2219119119112211211211k k k k k k k k k k k k ⎛⎫-+-+-+⎛⎫⎛⎫⎛⎫⎛⎫=-+--- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-+-+-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭.这就表明n S 的取值是与n 无关的定值,所以1n n S S +=.方法二:由于上一小问已经得到21221n n n n x k x ky x k ++-=-,21221n n n n y k y kx y k ++-=-,故()()22211222221211111n n n n n n n n n nn n x k x ky y k y kx k k kx y x y x y k k k k+++-+-+--+=+=+=+---+.再由22119x y -=,就知道110x y +≠,所以数列{}n n x y +是公比为11k k-+的等比数列.所以对任意的正整数m ,都有n n m n n mx y y x ++-()()()()()()1122n n m n n m n n m n n m n n m n n m n n m n n m x x y y x y y x x x y y x y y x ++++++++=-+-----()()()()1122n n n m n m n n n m n m x y x y x y x y ++++=-+-+-()()()()11112121mmn n n n n n n n k k x y x y x y x y k k -+⎛⎫⎛⎫=-+-+- ⎪ ⎪+-⎝⎭⎝⎭()22111211mmn n k k x y k k ⎛⎫-+⎛⎫⎛⎫=-- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭911211mmk k k k ⎛⎫-+⎛⎫⎛⎫=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.这就得到232311911211n n n n n n n n k k x y y x x y y x k k ++++++-+⎛⎫-=-=- ⎪+-⎝⎭,以及22131322911211n n n n n n n n k k x y y x x y y x k k ++++++⎛⎫-+⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭.两式相减,即得()()()()232313131122n n n n n n n n n n n n n n n n x y y x x y y x x y y x x y y x ++++++++++++---=---.移项得到232131232131n n n n n n n n n n n n n n n n x y y x x y y x y x x y y x x y ++++++++++++--+=--+.故()()()()321213n n n n n n n n y y x x y y x x ++++++--=--.而()333,n n n n n n P P x x y y +++=--,()122121,n n n n n n P P x x y y ++++++=-- .所以3n n P P + 和12n n P P ++平行,这就得到12123n n n n n n P P P P P P S S +++++= ,即1n n S S +=.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.。
2024年甘肃省高考数学真题及参考答案
2024年甘肃省高考数学真题及参考答案一、单项选择题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求。
1.已知1i z =--,则||z =().A.0B.1D.22.已知命题:R p x ∀∈,|1|1x +>;命题:0q x ∃>,3x x =.则().A.p 和q 都是真命题B.p ⌝和q 都是真命题C.p 和q ⌝都是真命题D.p ⌝和q ⌝都是真命题3.已知向量a ,b 满足||1a = ,|2|2a b += ,且(2)b a b -⊥ ,则||b =().A.12B.22C.32D.14.某农业研究部门在面积相等的100块稻田上种植新型水稻,得到各块稻田的亩产量(单位:kg )并部分整理如下表所示.根据表中数据,下列结论正确的是()A.100块稻田亩产量的中位数小于1050kgB.100块稻田中的亩产量低于1100kg 的稻田所占比例超过80%C.100块稻田亩产量的极差介于200kg 到300kg 之间D.100块稻田亩产量的平均值介于900kg 到1000kg 之间5.已知曲线22:16(0)C x y y +=>,从C 上任意一点P 向x 轴作垂线PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为().A.221(0)164x y y +=> B.221(0)168x y y +=>C.221(0)164y x y +=> D.221(0)168y x y +=>6.设函数2()(1)1f x a x =+-,()cos 2g x x ax =+,当(1,1)x ∈-时,曲线()y f x =和()y g x =恰有一个交点,则a =()A.-1B.12C.1D.27.已知正三棱台111ABC A B C -的体积为523,6AB =,112A B =,则1A A 与平面ABC 所成角的正切值为().A.12 B.1C.2D.38.设函数()()ln()f x x a x b =++,若()0f x ≥,则22a b +的最小值为().A.18B.14C.12D.1二、多项选择题:本题共3小题,每小题6分,共18分。
2023年甘肃省兰州市普通高校对口单招数学自考真题(含答案)
2023年甘肃省兰州市普通高校对口单招数学自考真题(含答案)一、单选题(10题)1.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.82.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切3.A.5B.6C.8D.104.下列函数为偶函数的是A.B.y=7xC.y=2x+15.点A(a,5)到直线如4x-3y=3的距离不小于6时,则a的取值为()A.(-3,2)B.(-3,12)C.(-,-3][12,+)D.(-,-3)(12,+)6.如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是()A.正方体B.圆锥C.圆柱D.半球7.拋掷两枚骰子,两次点数之和等于5的概率是()A.B.C.D.8.已知互相垂直的平面α,β交于直线l若直线m,n满足m⊥a,n⊥β则()A.m//LB.m//nC.n⊥LD.m⊥n9.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1B.(x+1)2+(y+1)2=1C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=210.A.3个B.2个C.1个D.0个二、填空题(10题)11.在△ABC 中,若acosA = bcosB,则△ABC是三角形。
12.在锐角三角形ABC中,BC=1,B=2A,则=_____.13.已知函数则f(f⑶)=_____.14.设lgx=a,则lg(1000x)= 。
15.己知两点A(-3,4)和B(1,1),则= 。
16.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.17.函数f(x)=sin2x-cos2x的最小正周期是_____.18.10lg2 = 。