高中数学:对数函数的图象及性质的应用练习

合集下载

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

高中数学人教A版必修第一册 学案与练习 对数函数的概念、图象及性质

4.4 对数函数学习目标1.通过对数函数的概念及对数函数图象和性质的学习,培养数学抽象、直观想象素养.2.通过对数函数图象和性质的应用,培养逻辑推理、数学运算素养.第1课时对数函数的概念、图象及性质1.对数函数的概念一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).2.对数函数的图象与性质我们可以借助指数函数的图象和性质得到对数函数的图象和性质:对数函数的概念[例1] (1)下列函数是对数函数的是( )A.y=lg 10xB.y=log3x2C.y=ln xD.y=lo g13(x-1)(2)若函数f(x)=log a x+(a2-4a-5)是对数函数,则实数a= . 解析:(1)由对数函数的定义,得y=log a x(a>0,a≠1)是对数函数,由此得到y=ln x是对数函数.故选C.(2)由对数函数的定义可知,{a2-4a-5=0,a>0,a≠1,解得a=5.答案:(1)C (2)5判断一个函数是否为对数函数的方法判断一个函数是对数函数必须是形如y=log a x(a>0,且a ≠1)的形式,即必须满足以下条件: (1)系数为1.(2)底数为大于0,且不等于1的常数. (3)对数的真数仅有自变量x.针对训练1:(1)若函数y=log a x+a 2-3a+2为对数函数,则a 等于( ) A.1 B.2 C.3 D.4(2)已知对数函数的图象过点M(9,2),则此对数函数的解析式为 .解析:(1)因为函数y=log a x+a 2-3a+2为对数函数,所以{a 2-3a +2=0,a >0,a ≠1,解得a=2.故选B. (2)设函数f(x)=log a x(x>0,a>0,且a ≠1),因为对数函数的图象过点M(9,2),所以2=log a 9,所以a 2=9,又a>0, 解得a=3.所以此对数函数的解析式为y=log 3x. 答案:(1)B (2)y=log 3x对数型函数的定义域[例2] 求下列函数的定义域.(1)y=log a (3-x)+log a (3+x)(a>0,且a ≠1); (2)f(x)=1log 12(2x+1).解:(1)由{3-x >0,3+x >0,得-3<x<3,所以函数的定义域是{x|-3<x<3}.(2)由题意有{2x +1>0,2x +1≠1,解得x>-12,且x ≠0,则函数的定义域为(-12,0)∪(0,+∞).(1)求解含对数式的函数定义域,若自变量在底数和真数上,要保证真数大于0,底数大于0,且不等于1. (2)对数函数y=log a x 的定义域为(0,+∞).(3)形如y=log g(x)f(x)的函数,定义域由{f (x )>0,g (x )>0,g (x )≠1来确定.(4)形如y=f(log a x)的复合函数在求定义域时,必须保证每一部分都要有意义.针对训练2:函数f(x)=√lgx +lg(5-3x)的定义域是( ) A.[0,53) B.[0,53]C.[1,53) D.[1,53]解析:函数f(x)=√lgx +lg(5-3x)的定义域是{x|{x >0,lgx ≥0,5-3x >0},即{x|1≤x<53}.故选C.对数函数的图象类型一 对数型函数图象过定点问题[例3] (1)函数y=log a (x-3)+1(a>0,且a ≠1)的图象恒过定点P ,则点P 的坐标是()A.(4,1)B.(3,1)C.(4,0)D.(3,0)(2)若函数y=log a (x-1)+8(a>0,且a ≠1)的图象过定点P ,且点P 在幂函数f(x)=x α(α∈R)的图象上,则f(12) = .解析:(1)令x-3=1,求得x=4,y=1, 可得它的图象恒过定点P(4,1).故选A. (2)令x-1=1,解得x=2,此时y=8,此函数图象过定点P(2,8). 由点P 在幂函数f(x)=x α(α∈R)的图象上知, 2α=8,解得α=3,所以f(x)=x 3, 所以f(12)=( 12) 3=18.答案:(1)A (2)18涉及与对数函数有关的函数图象过定点问题的一般规律:若f(x)=klog a g(x)+b(a>0,且a ≠1),且g(m)=1,则f(x)图象过定点P(m ,b).针对训练3:(1)(多选题)下列四个函数中过相同定点的函数有( ) A.y=ax+2-a B.y=x a-2+1C.y=a x-3+1(a>0,a ≠1)D.y=log a (2-x)+1(a>0,a ≠1)(2)已知函数f(x)=log a(x-m)+n的图象恒过定点(3,5),则lg m+lg n 的值是.(3)函数y=log a(2x-1)+3(a>0,且a≠1)的图象恒过定点P,则点P的坐标是.解析:(1)由于函数y=ax+2-a=a(x-1)+2,令x=1,可得y=2,故该函数经过定点(1,2),由于函数y=x a-2+1,令x=1,可得y=2,故该函数经过定点(1,2),由于y=a x-3+1(a>0,a≠1),令x-3=0,求得x=3,y=2,故该函数经过定点(3,2),由于y=log a(2-x)+1(a>0,a≠1),令2-x=1,求得x=1,y=1,故该函数经过定点(1,1).故选AB.(2)函数f(x)=log a(x-m)+n的图象恒过定点(1+m,n),又函数f(x)的图象恒过定点(3,5),故1+m=3,n=5,即m=2,n=5,所以lg m+lg n=lg 2+lg 5=lg 10=1.(3)令2x-1=1,得x=1,y=3,所以函数的图象恒过定点P(1,3). 答案:(1)AB (2)1 (3)(1,3)类型二对数型函数图象的识别[例4] 函数y=-lg |x+1|的大致图象为( )解析:法一函数y=-lg |x+1|的定义域为{x|x≠-1},可排除A,C;当x=1时,y=-lg 2<0,显然只有D符合题意.故选D.法二y=-lg |x+1|={-lg(x+1),x>-1, -lg(-x-1),x<-1,又x∈(-1,+∞)时,y=-lg(x+1)是减函数.故选D.对数型函数图象的识别一定要注意利用对数式的真数大于0确定函数的定义域,注意利用对数型函数图象所过定点,同时结合单调性进行判断,也可以利用函数图象的变换进行判断.针对训练4:(1)(2021·河南开封期末)函数y=|lg(x+1)|的图象是( )(2)如图,①②③④中不属于函数y=log2x,y=log0.5x,y=-log3x的一个是( )A.①B.②C.③D.④解析:(1)函数的定义域为(-1,+∞),图象与x轴的交点是(0,0).故选A.(2)根据函数的图象,函数y=log a x(a>0,且a≠1)的底数决定函数的单调性,当底数a>1时,函数单调递增,当0<a<1时,函数单调递减,当底数a>1,x>1时,满足底数越大函数的图象越靠近x轴,故①对应函数y=log2x的图象,根据对称性,④对应函数y=log0.5x的图象,③对应函数y=-log3x的图象,②与函数的图象相矛盾,故②不符合题意.故选B.类型三根据图象求解析式中的参数的范围[例5] 已知函数y=log a(x+c)(a,c为常数.其中a>0,a≠1)的图象如图,则下列结论成立的是( )A.a>1,c>1B.a>1,0<c<1C.0<a<1,c>1D.0<a<1,0<c<1解析:因为函数单调递减,所以0<a<1.当x=1时,log a(x+c)=log a(1+c)<0,即1+c>1,所以c>0,当x=0时,log a(x+c)=log a c>0,所以0<c<1.故选D.根据图象求解析式中的参数的范围和图象识别的方法是一致的,也是主要利用函数的单调性和图象上特殊点的坐标的大小建立有关参数的不等式.针对训练5:(1)如图,若C1,C2分别为函数y=log a x和y=log b x的图象,则( )A.0<a<b<1B.0<b<a<1C.a>b>1D.b>a>1(2)已知定义在R上的函数f(x)=log2(a x-b+1)(a>0,a≠1)的图象如图所示,则a,b满足的关系是( )A.0<1a <1b<1 B.0<1b<a<1C.0<b<1a <1 D.0<1a<b<1解析:(1)由对数的性质log a a=1(a>0,且a≠1),画一条直线y=1,如图所示,由图可知0<b<a<1.故选B.(2)由函数单调性可知,a>1,f(0)=log2(1-b+1),故0<log2(1-b+1)<1,解得0<b<1,由log2(a-1-b+1)<0可得a-1<b,所以0<1a<b<1.故选D.典例探究:如图,直线x=t与函数f(x)=log3x和g(x)=log3x-1的图象分别交于点A,B,若函数y=f(x)的图象上存在一点C,使得△ABC为等边三角形,则t的值为( )A.√3+22B.3√3+32C.3√3+34D.3√3+3解析:由题意A(t ,log 3t),B(t ,log 3t-1),|AB|=1, 设C(x ,log 3x),因为△ABC 是等边三角形,所以点C 到直线AB 的距离为√32,所以t-x=√32,x=t-√32,所以C(t-√32,log 3(t-√32)), 根据中点坐标公式可得log 3(t-√32) =log 3t+log 3t -12=log 3t-12=log 3√3,所以t-√32=√3,解得t=3√3+34.故选C.应用探究:已知正方形ABCD 的面积为36,BC 平行于x 轴,顶点A ,B 和C 分别在函数y=3log a x ,y=2log a x 和y=log a x(其中a>1)的图象上,则实数a 的值为( ) A.√3 B.√6 C.√36D.√63解析:设B(x ,2log a x),因为BC 平行于x 轴,所以C(x ′,2log a x),即log a x ′=2log a x ,所以x ′=x 2,所以正方形ABCD 的边长|BC|=x 2-x=6,解得x=3.由已知,AB 垂直于x 轴,所以A(x ,3log a x),正方形ABCD 的边长|AB|=3log a x-2log a x=log a x=6,即log a 3=6,a 6=3,a=√36.故选C.1.函数f(x)=log 2(3+2x-x 2)的定义域为( C ) A.[-1,3] B.(-∞,-1)∪(3,+∞) C.(-1,3) D.(-∞,-1)∪[3,+∞)解析:由3+2x-x 2>0,得-1<x<3,所以f(x)的定义域为(-1,3).故选C.2.已知对数函数f(x)的图象过点(4,12),则f(x)等于( A )A.log 16xB.log 8xC.log 2xD.lo g 116x解析:由题意设f(x)=log a x(a>0,且a ≠1),由函数图象过点(4,12)可得f(4)=12,即log a 4=12,所以4=a 12,解得a=16,故f(x)=log 16x.故选A.3.如图所示的曲线是对数函数y=log a x ,y=log b x ,y=log c x ,y=log d x 的图象,则a ,b ,c ,d 与1的大小关系为 .解析:由题图可知函数y=log a x ,y=log b x 的底数a>1,b>1,函数y=log c x ,y=log d x 的底数0<c<1,0<d<1.过点(0,1)作平行于x 轴的直线l(图略),则直线l 与四条曲线交点的横坐标从左向右依次为c ,d ,a ,b ,显然b>a>1>d>c>0. 答案:b>a>1>d>c4.已知函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A ,若点A 也在函数f(x)=3x -b 的图象上,则b= . 解析:对于y=log a (x+3)+89,令x+3=1,得x=-2,则y=89,所以函数y=log a (x+3)+89(a>0,a ≠1)的图象恒过定点A(-2,89),又点A 也在函数f(x)=3x -b 的图象上, 则89=3-2-b ,求得b=-79.答案:-79[例1] 已知函数y=f(x)的定义域是[0,2],那么g(x)=f (x 2)1+lg (x+1)的定义域是( )A.(-1,-910)∪(-910,√2]B.(-1,√2]C.(-1,-910)D.(-910,√2)解析:依题意,{0≤x 2≤2,x +1>0,1+lg (x +1)≠0,解得-1<x<-910或-910<x ≤√2.故选A.[例2] 已知函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2),且线段AB 的中点在x 轴上,则x 1·x 2= .解析:因为函数y=log 3x 的图象上有两点A(x 1,y 1),B(x 2,y 2), 所以y 1=log 3x 1,y 2=log 3x 2.根据中点坐标公式得y1+y2=0,即log3x1+log3x2=0,所以log3(x1x2)=0,x1·x2=1.答案:1[例3] (1)求函数f(x)=log a(a x-1)(a>0,且a≠1)的定义域;(2)求函数f(x)=log a[(a-1)x-1]的定义域.解:(1)由a x-1>0,即a x>1,当a>1时,f(x)的定义域为(0,+∞),当0<a<1时,f(x)的定义域为(-∞,0).(2)由题意(a-1)x-1>0,且a>0,a≠1,当a>1时,x>1;a-1.当0<a<1时,x<1a-1所以当a>1时,f(x)的定义域为(1,+∞);a-1当0<a<1时,f(x)的定义域为(-∞,1).a-1[例4] 已知函数f(x)=lg(a x-b x)(a>1>b>0).(1)求y=f(x)的定义域;(2)证明f(x)是增函数;(3)当a,b满足什么条件时,f(x)在(1,+∞)上恒取正值?(1)解:要使函数有意义,必有a x-b x>0,a>1>b>0,可得(a) x>1,解得x>0,b函数的定义域为(0,+∞).(2)证明:设g(x)=a x-b x,再设x1,x2是(0,+∞)上的任意两个数,且x1<x2,则g(x1)-g(x2)=a x1-b x1-a x2+b x2=(a x1-a x2)+(b x2-b x1),对于函数y=a x为增函数,y=b x为减函数,所以a x1-a x2<0,b x2-b x1<0,所以g(x1)-g(x2)<0,所以g(x)在(0,+∞)上为增函数,因为y=lg x在(0,+∞)上为增函数,所以f(x)在(0,+∞)上为增函数.(3)解:因为f(x)在(1,+∞)上单调递增,所以命题f(x)恰在(1,+∞)取正值等价于f(1)≥0,所以a-b≥1.选题明细表基础巩固1.函数f(x)=ln(x+2)+的定义域为( B )√2-xA.(2,+∞)B.(-2,2)C.(-∞,-2)D.(-∞,2)解析:由题意可知{x +2>0,2-x >0,解得-2<x<2.故选B.2.已知f(x)=a -x ,g(x)=log a x ,且f(2)·g(2)>0,则函数f(x)与g(x)的图象是( D )解析:因为f(2)·g(2)>0,所以a>1,所以f(x)=a -x 与g(x)=log a x 在其定义域上分别是减函数与增函数.故选D.3.已知函数f(x)=a x-1+log b x-1(a>0,且a ≠1,b>0,且b ≠1),则f(x)的图象过定点( C ) A.(0,1) B.(1,1) C.(1,0) D.(0,0)解析:当x=1时,f(1)=a 0+log b 1-1=1+0-1=0,所以f(x)的图象过定点(1,0).故选C.4.(多选题)函数f(x)=log a (x+2)(0<a<1)的图象过( BCD ) A.第一象限 B.第二象限 C.第三象限 D.第四象限解析:作出函数f(x)=log a (x+2)(0<a<1)的大致图象如图所示,则函数f(x)的图象过第二、第三、第四象限.故选BCD.5.已知f(x)为对数函数,f(12)=-2,则f(√43)= .解析:设f(x)=log a x(a>0,且a ≠1), 则log a 12=-2,所以1a2=12,即a=√2,所以f(x)=lo g √2x ,所以f(√43)=lo g √2 √43=log 2(√43)2=log 2243=43.答案:436.(2021·江苏启东期末)已知函数f(x)=log a (x+b)(a>0,a ≠1,b ∈R)的图象如图所示,则a= ,b= .解析:由图象得{log a (0+b )=2,log a (-2+b )=0,解得{a =√3,b =3.答案:√3 3能力提升7.已知函数y=lg(x 2-3x+2)的定义域为A ,y=lg(x-1)+lg(x-2)的定义域为B ,则( D ) A.A ∩B= B.A=BC.A ⫋BD.B ⫋A解析:由x 2-3x+2>0,解得x<1或x>2, 所以A=(-∞,1)∪(2,+∞);由{x -1>0,x -2>0,解得x>2,所以B=(2,+∞).故B ⫋A.故选D.8.已知等式log 2m=log 3n ,m ,n ∈(0,+∞)成立,那么下列结论:①m=n;②n<m<1;③m<n<1;④1<n<m;⑤1<m<n.其中可能成立的是( B ) A.①② B.①②⑤ C.③④ D.④⑤解析:当m=n=1时,有log 2m=log 3n ,故①可能成立;当m=14,n=19时,有log 2m=log 3n=-2,故②可能成立;当m=4,n=9时,有log 2m=log 3n=2,此时1<m<n ,故⑤可能成立.可能成立的是①②⑤.故选B. 9.如图,四边形OABC 是面积为8的平行四边形,OC ⊥AC ,AC 与BO 交于点E.某对数函数y=log a x(a>0,且a ≠1)的图象经过点E 和点B ,则a= .解析:设点E(b ,c),则C(b ,0),A(b ,2c),B(2b ,2c), 则{2bc =8,log a b =c ,log a (2b )=2c ,解得b=c=2,a=√2.答案:√210.已知f(x)=|log 3x|. (1)画出函数f(x)的图象;(2)讨论关于x 的方程|log 3x|=a(a ∈R)的解的个数. 解:(1)f(x)={log 3x ,x ≥1,-log 3x ,0<x <1,函数f(x)的图象如图所示.(2)设函数y=|log 3x|和y=a ,当a<0时,两图象无交点,原方程解的个数为0个. 当a=0时,两图象只有1个交点,即原方程只有1个解. 当a>0时,两图象有2个交点,即原方程有2个解. 11.已知函数f(x)=log 2[ax 2+(a-1)x+14].(1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.解:(1)要使f(x)的定义域为R ,则对任意实数x 都有t=ax 2+(a-1)x+14>0恒成立.当a=0时,不合题意;当a ≠0时,由二次函数图象(图略)可知{a >0,Δ=(a -1)2-a <0,解得3-√52<a<3+√52.故所求实数a 的取值范围为(3-√52,3+√52).(2)要使f(x)的值域为R ,则有t=ax 2+(a-1)x+14的值域必须包含(0,+∞).当a=0时,显然成立;当a ≠0时,由二次函数图象(图略)可知,其图象必须与x 轴相交,且开口向上, 所以{a >0,Δ=(a -1)2-a ≥0, 解得0<a ≤3-√52或a ≥3+√52.故所求a 的取值范围为[0,3-√52]∪[3+√52,+∞).应用创新12.已知函数f(x)=|log 2x|,正实数m ,n 满足m<n ,且f(m)=f(n),若f(x)在区间[m 2,n]上的最大值为2,则n+m= . 解析:根据题意并结合函数f(x)=|log 2x|的图象知,0<m<1<n ,所以0<m 2<m<1.根据函数图象易知,当x=m 2时函数f(x)取得最大值,所以f(m 2)=|log 2m 2|=2.又0<m<1,解得m=12.再结合f(m)=f(n)求得n=2,所以n+m=52.答案:52。

高中数学-对数函数图像和性质及经典例题

高中数学-对数函数图像和性质及经典例题

对数函数的概念: 函数y 对数函数的图象和性质高中数学-对数函数图像和性质及经典例题第一部分:回顾基础知识点log a x(a 0,且a 1)叫做对数函数其中x是自变量,函数的定义域是(o, +3).在同一坐标系中画岀下列对数函数的图象;(1) y log 2 x (2)y log! x2(3)y log3x(4)y log i x3 ■0 5 -・图象特征函数性质a 10 a 1 a 10 a 1函数图象都在y轴右侧函数的定义域为(0,+x)图象关于原点和y轴不对称非奇非偶函数向y轴正负方向无限延伸函数的值域为R函数图象都过定点(1 , 1) 1 1自左向右看,图象逐渐上升自左向右看,图象逐渐下降增函数减函数第一象限的图象纵坐标都大于0第一象限的图象纵坐标都大于0x 1, log a x 00 x 1, log a x 0第二象限的图象纵坐标都小于0第二象限的图象纵坐标都小于00 x 1, log a x 0x 1, log a x 0 -1 --底数a是如何影响函数log a x 的.规律:在第一象限内,自左向右,图象对应的对数函数的底数逐渐变大第二部分:对数函数图像及性质应用例1 •如图,A , B , C 为函数y log i x 的图象上的三点,它们的横坐标分别是t , t +2, t +4(t 1).2⑴设 ABC 的面积为S 。

求S=f (t ); ⑵判断函数S=f (t )的单调性;解:(1 )过A,B,C,分别作AAi,BB i ,CC i 垂直于x 轴,垂足为 Ai,B i ,C i ,则 S =S 梯形 AA i B i B +S 梯形 BB 1C 1C — S上是减函数,且 1<u“ 2 (x 23) 3 解:(1 )••• f(x -3)=lg2,(x 3) 3••• f(x)=lg x —3l t24t汽6log 3(1 J )t 2 4t2(2)因为v= t4t 在[1,)上是增函数,且v 5,梯形 AA i C i C.S log 3 u 在上是增函数,所以复合函数 S=f (t )Iog 3(1t 2上是减函数(3)由(2)知t =1 时,S 有最大值, 最大值是f (1) log 39 52 log3 59例2 .已知函数f(x -3)=lg2x x 26(1)f(x)的定义域;⑵判断f(x)的奇偶性;⑶求f(x)的反函数;⑷若f[ (x)]=lgx,求(3)的值。

对数函数习题_高中数学对数函数练习题

对数函数习题_高中数学对数函数练习题

对数函数及其性质 送4171.对数定义定义:一般地,当a >0且a ≠1时,函数叫做对数函数,自变量是x ;底a y=log x 数的取值范围 ;真数的取值范围例1.把下列指数形式写成对数形式:(1) =625 (2)=4562-641 (3)=27 (4) =5.73 a 3m (31例2.把下列对数式写成指数式:(1) (2)=3 3log 92=5log 125 (3)=-2 (4)=-4 2log 4131log 812.两种重要对数1.常用对数:以10为底的对数叫做常用对数N 10log 简记作 . 例:5log 10简记作 ; 5.3log 10简记作2.自然对数:用以无理数e=2.71828……为底的对数叫自然对数,N e log 简记作 例:3log e 简记作 ;10log e 简记作3.重要公式:(1)01log =a (2) 1log =a a (3)对数恒等式N a N a =log4.对数概念应用例1.求下列各式中x 的取值范围:(1)log 2(x -10) (2)log (x -1)(x +2) (3)log (x +1)(x -1)2例2求下列各式中的x 的值:(1) (2) (3) (4) 32log 64-=x 68log =x x =100lg x e =-2ln例3.对数恒等式的应用计算 (1) (2) (3)5log -177)5log 9log 21222-()5log 9log 21224-5.对数函数运算法则(1) log a (MN)=_____________ (2) log a NM =______________ (3) log a M n = (4) log log .m n a a n b b m =______________(5)对数换底公式 aN N m m a log log log = ( a >0 ,a ≠ 1 ,m >0 ,m ≠ 1,N >0). 6.两个常用的推论:①1log log =⋅a b b a , 1log log log =⋅⋅a c b c b a .② b mn b a n a m log log =(a ,b >0且均不为1).7.对数的运算例1计算:(1)25log 5, (2))24(log 572⨯, (3)5100lg(4)(5) 22log 6log 3-551log 3log 3+8.计算:(1) (2) )2log 2)(log 3log 3(log 9384++3948(log 2log 2)(log 3log 3)+⋅+(3) (4) 2log )3log 3(log 384⋅+2(lg 2)lg 2lg 50lg 25+⋅+(5) (6)142log 2112log 487log 222--+3lg lg 707+9. 比较对数值的大小(1)与 (2)与 () 4.3log 28.3log 28.1log a 1.2log a 1,1≠a a >(3)与 (4)与5log 77log 55.0log 2.18.0log 7.010.恒过定点 (1)函数的图象必经过定点1)2lg()(++=x x f (2)函数的图象恒过定点15+=+x a y )1,0(≠>a a11.解对数不等式33log (4)2log x x ->+①. .2log (4)log (2)a a x x ->-②12.奇偶证明例1.已知.证明在R 上是奇函数。

高中数学 第二章 基本初等函数 2.2.2 对数函数及其性质(第2课时)对数函数性质的应用课时作业(

高中数学 第二章 基本初等函数 2.2.2 对数函数及其性质(第2课时)对数函数性质的应用课时作业(

第2课时 对数函数性质的应用A 级 基础巩固一、选择题1.(2019·某某某某众兴中学高一期末测试)函数f (x )=3-lg x 的定义域为( A ) A .(0,1 000] B .[3,1 000] C .(0,11 000]D .[11 000,3][解析] 由题意得3-lg x ≥0, ∴lg x ≤3,∴0<x ≤103=1 000, 故选A .2.(2019·某某市南开区高一期末测试)函数f (x )=lg(1-x 2)的单调递减区间为( B )A .(0,+∞)B .(0,1)C .(-∞,0)D .(-1,0)[解析] 由题意得1-x 2>0,∴x 2<1,∴-1<x <1. 令u =1-x 2,函数f (x )的单调递减区间即为u =1-x 2在(-1,1)上单调递减区间, 又u =1-x 2在(0,1)上递减,故选B .3.已知f (x )=log 3x ,则f (14),f (12),f (2)的大小是( B )A .f (14)>f (12)>f (2)B .f (14)<f (12)<f (2)C .f (14)>f (2)>f (12)D .f (2)>f (14)>f (12)[解析] 由函数y =log 3x 的图象知,图象呈上升趋势,即随x 的增大,函数值y 在增大,故f (14)<f (12)<f (2).4.(2019·某某文,5)已知a =log 27,b =log 38,c =0.30.2,则a ,b ,c 的大小关系为( A )A .c <b <aB .a <b <cC .b <c <aD .c <a <b[解析]a =log 27>log 24=2,log 38<log 39=2,log 38>log 33=1,∴1<b <2,c =0.30.2<0.30=1,∴c <b <a ,故选A .5.(2019·全国卷Ⅱ理,6)若a >b ,则( C ) A .ln(a -b )>0 B .3a <3bC .a 3-b 3>0D .|a |>|b |[解析]∵函数y =x 3在R 上是增函数, ∴若a >b ,则a 3>b 3,∴a 3-b 3>0,故选C .6.(2019·某某泸西一中高一期中测试)函数y =lg|x |x的图象大致是( D )[解析]∵函数y =lg|x |x是奇函数,∴其图象关于原点对称,排除A 、B ;又∵x =1时,y =0,排除C ,故选D .二、填空题7.(2019·某某某某高一期中测试)不等式log 2x <12的解集为__(0,2)__.[解析] 由题意得log 2x <log 2212,∴0<x <212,∴0<x <2,故不等式的解集为(0,2).8.(2019·某某云天化中学高一期末测试)设函数f (x )=⎩⎪⎨⎪⎧2e x -1x <2log 3x 2-1x ≥2,则f [f (2)]=__2__.[解析]∵x ≥2时,f (x )=log 3(x 2-1), ∴f (2)=log 33=1, ∴f [f (2)]=f (1),又∵x <2时,f (x )=2e x -1,∴f (1)=2e 0=2,∴f [f (2)]=f (1)=2. 三、解答题9.已知f (x )=log a (1-x )+log a (x +3),(a >0且a ≠1). (1)求函数f (x )的定义域、值域;(2)若函数f (x )有最小值为-2,求a 的值.[解析] (1)⎩⎪⎨⎪⎧1-x >0x +3>0,∴-3<x <1∴函数f (x )的定义域为{x |-3<x <1}.f (x )=log a (-x 2-2x +3),令t =-x 2-2x +3=-(x +1)2+4,∵x ∈(-3,1),∴t ∈(0,4].∴y =log a t ,t ∈(0,4]. 当0<a <1时,y min =f (4)=log a 4, ∴函数f (x )的值域为[log a 4,+∞).当a >1时,y max =log a 4,∴函数f (x )的值域为(-∞,log a 4].(2)∵函数f (x )有最小值-2,由(1)得⎩⎪⎨⎪⎧0<a <1log a 4=-2,得a =12.B 级 素养提升一、选择题1.已知函数f (x )=log a (x 2+2x -3),若f (2)>0,则此函数的单调递增区间是( D ) A .(-∞,-3) B .(1,+∞)∪(-∞-3) C .(-∞,-1)D .(1,+∞)[解析]∵f (2)=log a 5>0=log a 1,∴a >1.由x 2+2x -3>0,得函数f (x )的定义域为(-∞,-3)∪(1,+∞). 设u =x 2+2x -3,则此函数在(1,+∞)上为增函数. 又∵y =log a u (a >1)为增函数,∴函数f (x )的单调递增区间是(1,+∞),故选D .2.(2018·某某文,5)已知a =log 372,b =(14)13 ,c =log 1315,则a ,b ,c 的大小关系为( D )A .a >b >cB .b >a >cC .c >b >aD .c >a >b[解析]∵函数y =log 3x 在(0,+∞)上单调递增, ∴log 1315=log 35>log 372>log 33=1,又(14)13 <(14)0=1,∴c >a >b ,故选D . 3.(2019·某某理,6)已知a =log 52,b =log 0.50.2,c =0.50.2,则a ,b ,c 的大小关系为( A )A .a <c <bB .a <b <cC .b <c <aD .c <a <b[解析]a =log 52<log 55=12,b =log 0.50.2>log 0.50.5=1,0.51<0.50.2<0.50,∴12<0.50.2<1,∴12<c <1,∴a <c <b ,故选A . 4.已知函数f (x )=log a (2-ax )在[0,1]上是减函数,则a 的取值X 围为( B ) A .(1,+∞) B .(1,2) C .(2,+∞)D .(0,1)[解析] 由题意得a >0且a ≠1,2-ax >0,∴x <2a ,即函数f (x )的定义域为(-∞,2a ).∵函数在[0,1]上为减函数,∴2a>1,即a <2,∵函数y =log a (2-ax )在(0,1)上是减函数,又t =2-ax 为减函数,∴y =log a t 是增函数,∴a >1,∴1<a <2.二、填空题5.已知f (x )=|log 2x |,若f (a )>f (4),则a 的取值X 围是__(0,14)∪(4,+∞)__.[解析]∵f (4)=|log 24|=2.∴不等式化为f (a )>2,即|log 2a |>2,∴log 2a >2或log 2a <-2,∴a >4或0<a <14.6.若函数f (x )=x ln(x +a +x 2)为偶函数,则a =__1__. [解析]∵f (x )为偶函数,∴f (-1)=f (1),∴-ln(-1+a +1)=ln(1+a +1), ∴ln(1+a +1)+ln(-1+a +1)=0, ∴ln[(a +1)2-1]=0, ∴ln a =0,∴a =1. 三、解答题7.设f (x )为奇函数,且当x >0时,f (x )=log 12x .(1)求当x <0时,f (x )的解析式; (2)解不等式f (x )≤2.[解析] (1)当x <0时,-x >0,则f (-x )=log 12(-x ),又f (x )为奇函数,所以f (x )=-f (-x )=-log 12 (-x ).故当x <0时,f (x )=-log 12(-x ).(2)由题意及(1)知,原不等式等价于⎩⎪⎨⎪⎧x >0log 12x ≤2,或⎩⎪⎨⎪⎧x <0-log 12-x ≤2,解得x ≥14或-4≤x <0.∴不等式的解集{x |x ≥14或-4≤x <0}.8.已知函数f (x )=log a (3+2x ),g (x )=log a (3-2x )(a >0,且a ≠1). (1)求函数f (x )-g (x )的定义域;(2)判断函数f (x )-g (x )的奇偶性,并予以证明; (3)求使f (x )-g (x )>0的x 的取值X 围.[解析] (1)使函数f (x )-g (x )有意义,必须有⎩⎪⎨⎪⎧3+2x >03-2x >0,解得-32<x <32.所以函数f (x )-g (x )的定义域是{x |-32<x <32}.(2)f (x )-g (x )为奇函数.证明:由(1)知函数f (x )-g (x )的定义域关于原点对称.f (-x )-g (-x )=log a (3-2x )-log a (3+2x )=-[log a (3+2x )-log a (3-2x )]=-[f (x )-g (x )],∴函数f (x )-g (x )是奇函数.(3)f (x )-g (x )>0,即log a (3+2x )>log a (3-2x ). 当a >1时,有⎩⎪⎨⎪⎧3+2x >3-2x 3-2x >03+2x >0,解得x 的取值X 围是(0,32).当0<a <1时,有⎩⎪⎨⎪⎧3+2x <3-2x 3-2x >03+2x >0,解得x 的取值X 围是(-32,0).综上所述,当a >1时,x 的取值X 围是(0,32);当0<a <1时,x 的取值X 围是(-32,0).9.(2019·某某宿迁市高一期末测试)已知函数f (x )=ln(1+x )+ln(a -x )为偶函数. (1)某某数a 的值;(2)讨论函数f (x )的单调性. [解析] (1)∵f (x )为偶函数, ∴f (-x )=f (x ),∴ln(1-x )+ln(a +x )=ln(1+x )+ln(a -x ), ∴ln(1-x )-ln(1+x )=ln(a -x )-ln(a +x ), ∴ln 1-x 1+x =ln a -x a +x ,∴1-x 1+x =a -x a +x, 整理得2x (a -1)=0,∵x 不恒为0,∴a -1=0,∴a =1. (2)由(1)知f (x )=ln(1+x )+ln(1-x ),要使函数f (x )有意义,应满足⎩⎪⎨⎪⎧1+x >01-x >0,∴-1<x <1.∴函数f(x)的定义域为(-1,1).设任意x1,x2∈(-1,1),且x1<x2,∴f(x2)-f(x1)=ln(1+x2)+ln(1-x2)-ln(1+x1)-ln(1-x1) =ln(1-x22)-ln(1-x21)当-1<x1<x2<0时,x21>x22,1-x21<1-x22,∴ln(1-x22)>ln(1-x21),∴ln(1-x22)-ln(1-x21)>0,∴f(x2)-f(x1)>0,∴f(x2)>f(x1),∴f(x)在(-1,0)上是增函数,当0≤x1<x2<1时,x21<x22,∴1-x21>1-x22,∴ln(1-x21)>ln(1-x22),∴ln(1-x22)-ln(1-x21)<0,∴f(x2)-f(x1)<0,∴f(x2)<f(x1),∴f(x)在[0,1)上是减函数.综上可知,函数f(x)在(-1,0)上是增函数,在[0,1)上是减函数.。

高中数学 第四章 指数函数与对数函数 4.4 对数函数一课一练(含解析)新人教A版必修第一册-新人教

高中数学 第四章 指数函数与对数函数 4.4 对数函数一课一练(含解析)新人教A版必修第一册-新人教

第四章指数函数与对数函数4.4对数函数第1课时对数函数的概念及图像与性质 考点1对数函数的概念1.(2019·某某某某一中高一期中)与函数y =10lg(x -1)相等的函数是()。

A.y =(√x -1)2B.y =|x -1|C.y =x -1D.y =x 2-1x+1 答案:A 解析:y =10lg(x -1)=x -1(x >1),而y =(√x -12=x -1(x >1),故选A 。

2.(2019·某某公安一中单元检测)设集合A ={x |y =lg x },B ={y |y =lg x },则下列关系中正确的是()。

A.A ∪B =AB.A ∩B =⌀C.A =BD.A ⊆B 答案:D解析:由题意知集合A ={x |x >0},B ={y |y ∈R},所以A ⊆B 。

3.(2019·某某南安一中高一第二阶段考试)设函数f (x )={x 2+1,x ≤1,lgx ,x >1,则f (f (10))的值为()。

A.lg101B.1 C.2D.0 答案:C解析:f (f (10))=f (lg10)=f (1)=12+1=2。

4.(2019·东风汽车一中月考)下列函数是对数函数的是()。

A.y =log a (2x )B.y =lg10xC.y =log a (x 2+x )D.y =ln x 答案:D解析:由对数函数的定义,知D 正确。

5.(2019·某某调考)已知f (x )为对数函数,f (12)=-2,则f (√43)=。

答案:43解析:设f (x )=log a x (a >0,且a ≠1),则log a 12=-2,∴1a 2=12,即a =√2,∴f (x )=lo g √2x ,∴f (√43)=log √2√43=log 2(√43)2=log 2243=43。

6.(2019·某某中原油田一中月考)已知函数f (x )=log 3x ,则f (√3)=。

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题(带答案)

高中数学第四章指数函数与对数函数典型例题单选题1、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,0b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.2、函数f(x)=|x|⋅22−|x|在区间[−2,2]上的图象可能是()A.B.C.D.答案:C分析:首先判断函数的奇偶性,再根据特殊值判断即可;解:∵f(−x)=|x|⋅22−|x|=f(x),∴f(x)是偶函数,函数图象关于y轴对称,排除A,B选项;∵f(1)=2=f(2),∴f(x)在[0,2]上不单调,排除D选项.故选:C3、式子√m⋅√m 43√m 56m >0)的计算结果为( )A .1B .m 120C .m 512D .m 答案:D分析:由指数运算法则直接计算可得结果.√m⋅√m 43√m 56=m 12⋅m 43m 56=m 12+43−56=m .故选:D.4、若f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,实数a 的取值范围是( )A .[1,5]B .[32,5) C .(32,5)D .(1,5) 答案:B分析:由题意得{6−a >1a >1log a 1+3≥(6−a)−a ,解不等式组可求得答案因为f(x)={(6−a)x −a,x <1log a x +3,x ≥1是定义在R 上的增函数,所以{6−a >1a >1log a 1+3≥(6−a)−a ,解得32≤a <5,故选:B5、函数f (x )=√3−x +log 13(x +1)的定义域是( )A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3] 答案:C分析:由题可得{3−x ≥0x +1>0,即得.由题意得{3−x ≥0x +1>0,解得−1<x ≤3, 即函数的定义域是(−1,3].故选:C.6、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍.对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍. 对于D ,f (x )=√x 3为R 上的增函数,符合题意, 故选:D.7、下列计算中结果正确的是( ) A .log 102+log 105=1B .log 46log 43=log 42=12C .(log 515)3=3log 515=−3D .13log 28=√log 283=√33答案:A分析:直接根据对数的运算性质及换底公式计算可得;解:对于A :log 102+log 105=log 10(2×5)=log 1010=1,故A 正确; 对于B :log 46log 43=log 36,故B 错误;对于C :(log 515)3=(log 55−1)3=(−log 55)3=−1,故C 错误; 对于D :13log 28=13log 223=13×3log 22=1,故D 错误; 故选:A8、荀子《劝学》中说:“不积跬步,无以至千里;不积小流,无以成江海.”所以说学习是日积月累的过程,每天进步一点点,前进不止一小点.我们可以把(1+1%)365看作是每天的“进步”率都是1%,一年后是1.01365≈37.7834;而把(1−1%)365看作是每天“退步”率都是1%,一年后是0.99365≈0.0255.若“进步”的值是“退步”的值的100倍,大约经过(参考数据:lg101≈2.0043,lg99≈1.9956) ( )天.A .200天B .210天C .220天D .230天 答案:D分析:根据题意可列出方程100×0.99x =1.01x ,求解即可.设经过x 天“进步”的值是“退步”的值的100倍,则100×0.99x=1.01x,即(1.010.99)x =100,∴x =log 1.010.99100=lg lg 1.010.99=lg lg 10199=2lg−lg≈22.0043−1.9956=20.0087≈230.故选:D . 多选题9、已知函数f(x)=1−2x 1+2x,则下面几个结论正确的有( )A .f(x)的图象关于原点对称B .f(x)的图象关于y 轴对称C .f(x)的值域为(−1,1)D .∀x 1,x 2∈R ,且x 1≠x 2,f (x 1)−f (x 2)x 1−x 2<0恒成立答案:ACD分析:利用奇函数的定义和性质可判断AB 的正误,利用参数分离和指数函数的性质可判断CD 的正误. 对于A ,f(x)=1−2x1+2x ,则f(−x)=1−2−x1+2−x =2x −11+2x =−f(x), 则f(x)为奇函数,故图象关于原点对称,故A 正确.对于B ,计算f(1)=−13,f(−1)=13≠f(1),故f(x)的图象不关于y 轴对称,故B 错误. 对于C ,f(x)=1−2x1+2x =−1+21+2x ,1+2x =t,t ∈(1,+∞),故y =f(x)=−1+2t ,易知:−1+2t ∈(−1,1),故f(x)的值域为(−1,1),故C 正确. 对于D ,f(x)=1−2x1+2x =−1+21+2x ,因为y =1+2x 在R 上为增函数,y =−1+21+t 为(1,+∞)上的减函数, 由复合函数的单调性的判断法则可得f (x )在R 上单调递减,故∀x 1,x 2∈R ,且x 1≠x 2,f(x 1)−f(x 2)x 1−x 2<0恒成立,故D 正确.故选:ACD.小提示:方法点睛:复合函数的单调性的研究,往往需要将其转化为简单函数的复合,通过内外函数的单调性结合“同增异减”的原则来判断.10、设函数f (x )=ax 2+bx +c (a,b,c ∈R,a >0),则下列说法正确的是( ) A .若f (x )=x 有实根,则方程f(f (x ))=x 有实根 B .若f (x )=x 无实根,则方程f(f (x ))=x 无实根 C .若f (−b 2a)<0,则函数y =f (x )与y =f(f (x ))都恰有2个零点D .若f (f (−b 2a))<0,则函数y =f (x )与y =f(f (x ))都恰有2零点答案:ABD分析:直接利用代入法可判断A 选项的正误;推导出f (x )−x >0对任意的x ∈R 恒成立,结合该不等式可判断B 选项的正误;取f (x )=x 2−x ,结合方程思想可判断C 选项的正误;利用二次函数的基本性质可判断D 选项的正误.对于A 选项,设f (x )=x 有实根x =x 0,则f(f (x 0))=f (x 0)=x 0,A 选项正确; 对于B 选项,因为a >0,若方程f (x )=x 无实根,则f (x )−x >0对任意的x ∈R 恒成立, 故f(f (x ))>f (x )>x ,从而方程f(f (x ))=x 无实根,B 选项正确;对于C 选项,取f (x )=x 2−x ,则f (12)=−14<0,函数y =f (x )有两个零点, 则f(f (x ))=[f (x )]2−f (x )=0,可得f (x )=0或f (x )=1,即x 2−x =0或x 2−x =1. 解方程x 2−x =0可得x =0或1,解方程x 2−x −1=0,解得x =1±√52. 此时,函数y =f(f (x ))有4个零点,C 选项错误;对于D 选项,因为f (f (−b2a ))<0,设t =f (−b2a ),则t =f (x )min , 因为f (t )<0且a >0,所以,函数f (x )必有两个零点,设为x 1、x 2且x 1<x 2, 则x 1<t <x 2,所以,方程f (x )=x 1无解,方程f (x )=x 2有两解,因此,若f(f(−b))<0,则函数y=f(x)与y=f(f(x))都恰有2零点,D选项正确.2a故选:ABD.小提示:思路点睛:对于复合函数y=f[g(x)]的零点个数问题,求解思路如下:(1)确定内层函数u=g(x)和外层函数y=f(u);(2)确定外层函数y=f(u)的零点u=u i(i=1,2,3,⋯,n);(3)确定直线u=u i(i=1,2,3,⋯,n)与内层函数u=g(x)图象的交点个数分别为a1、a2、a3、⋯、a n,则函数y=f[g(x)]的零点个数为a1+a2+a3+⋯+a n.11、(多选题)某市出租车收费标准如下:起步价为8元,起步里程为3km(不超过3km按起步价付费);超过3km 但不超过8km时,超过部分按每千米2.15元收费;超过8km时,超过部分按每千米2.85元收费,另每次乘坐需付燃油附加费1元.下列结论正确的是()A.出租车行驶4km,乘客需付费9.6元B.出租车行驶10km,乘客需付费25.45元C.某人乘出租车行驶5km两次的费用超过他乘出租车行驶10km一次的费用D.某人乘坐一次出租车付费22.6元,则此次出租车行驶了9km答案:BCD分析:根据题意分别计算各个选项的情况,即可得答案.对于A选项:出租车行驶4km,乘客需付费8+1×2.15+1=11.15元,故A错误;对于B选项:出租车行驶10 km,乘客需付费8+2.15×5+2.85×(10-8)+1=25.45元,故B正确;对于C选项:乘出租车行驶5km,乘客需付费8+2×2.15+1=13.30元,乘坐两次需付费26.6元,26.6>25.45,故C正确;对于D选项:设出租车行驶x km时,付费y元,由8+5×2.15+1=19.75<22.6,知x>8,因此由y=8+2.15×5+2.85(x-8)+1=22.6,解得x=9,故D正确.故选:BCD.小提示:本题考查函数模型的应用,解题要点为认真审题,根据题意逐一分析选项即可,属基础题.12、若log2m=log4n,则()A.n=2m B.log9n=log3mC.lnn=2lnm D.log2m=log8(mn)答案:BCD分析:利用对数运算化简已知条件,然后对选项进行分析,从而确定正确选项.依题意log2m=log4n,所以m>0,n>0,log2m=log22n=12log2n=log2n12,所以m=n 12,m2=n,A选项错误.log9n=log32m2=22log3m=log3m,B选项正确.lnn=lnm2=2lnm,C选项正确.log8(mn)=log23m3=33log2m=log2m,D选项正确.故选:BCD13、在平面直角坐标系中,我们把横纵坐标相等的点称之为“完美点”,下列函数的图象中存在完美点的是()A.y=﹣2x B.y=x﹣6C.y=3xD.y=x2﹣3x+4答案:ACD分析:横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,依次计算即可.横纵坐标相等的函数即y=x,与y=x有交点即存在完美点,对于A,{y=xy=−2x,解得{x=0y=0,即存在完美点(0,0),对于B,{y=xy=x−6,无解,即不存在完美点,对于C,{y=xy=3x,解得{x=√3y=√3或{x=−√3y=−√3,即存在完美点(√3,√3),(−√3,−√3)对于D,{y=xy=x2−3x+4,x2−3x+4=x,即x2−4x+4=0,解得x=2,即存在完美点(2,2).故选:ACD.填空题14、化简(√a−1)2+√(1−a)2+√(1−a)33=________.答案:a-1分析:根据根式的性质即可求解.由(√a−1)2知a-1≥0,a≥1.故原式=a-1+|1-a|+1-a=a-1.所以答案是:a-115、对数型函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,则满足题意的一个函数解析式为______.答案:f(x)=|log2(x+1)|(答案不唯一,满足f(x)=|log a(x+b)|,a>1,b≥1即可)分析:根据题意可利用对数函数的性质和图像的翻折进行构造函数.∵函数f(x)的值域为[0,+∞),且在(0,+∞)上单调递增,∴满足题意的一个函数是f(x)=|log2(x+1)|.所以答案是:f(x)=|log2(x+1)|(答案不唯一)16、函数y=log a(x+1)-2(a>0且a≠1)的图象恒过点________.答案:(0,-2)分析:由对数函数的图象所过定点求解.解:依题意,x+1=1,即x=0时,y=log a(0+1)-2=0-2=-2,故图象恒过定点(0,-2).所以答案是:(0,-2)解答题17、(1)计算0.027−13−(−16)−2+810.75+(19)0−3−1;(2)若x 12+x−12=√6,求x 2+x −2的值.答案:(1)-5;(2)14.分析:(1)由题意利用分数指数幂的运算法则,计算求得结果. (2)由题意两次利用完全平方公式,计算求得结果. (1)0.027−13−(−16)−2+810.75+(19)0−3−1=0.3﹣1﹣36+33+1−13=103−36+27+1−13=−5.(2)若x 12+x −12=√6,∴x +1x +2=6,x +1x =4,∴x 2+x ﹣2+2=16,∴x 2+x ﹣2=14.18、已知函数f (x )=2x −12x +1.(1)判断并证明f (x )在其定义域上的单调性;(2)若f (k ⋅3x )+f (3x −9x +2)<0对任意x ≥1恒成立,求实数k 的取值范围. 答案:(1)f (x )在R 上单调递增;证明见解析 (2)(−∞,43)分析:(1)设x 2>x 1,可整理得到f (x 2)−f (x 1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1)>0,由此可得结论;(2)利用奇偶性定义可证得f (x )为奇函数,结合单调性可将恒成立的不等式化为k <g (x )=3x −23x −1,由g (x )单调性可求得g (x )≥43,由此可得k 的取值范围.(1)f (x )在R 上单调递增,证明如下: 设x 2>x 1,∴f (x 2)−f (x 1)=2x 2−12x 2+1−2x 1−12x 1+1=(2x 2−1)(2x 1+1)−(2x 2+1)(2x 1−1)(2x 2+1)(2x 1+1)=2(2x 2−2x 1)(2x 2+1)(2x 1+1);∵x 2>x 1,∴2x 2−2x 1>0,又2x 2+1>0,2x 1+1>0,∴f (x 2)−f (x 1)>0, ∴f (x )在R 上单调递增. (2)∵f (−x )=2−x −12−x +1=1−2x1+2x =−f (x ),∴f (x )为R 上的奇函数,由f(k⋅3x)+f(3x−9x+2)<0得:f(k⋅3x)<−f(3x−9x+2)=f(9x−3x−2),由(1)知:f(x)在R上单调递增,∴k⋅3x<9x−3x−2在[1,+∞)上恒成立;当x≥1时,3x≥3,∴k<3x−23x−1在[1,+∞)上恒成立;令g(x)=3x−23x−1,∵y=3x在[1,+∞)上单调递增,y=23x在[1,+∞)上单调递减,∴g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=3−23−1=43,∴k<43,即实数k的取值范围为(−∞,43).。

《红对勾》2015-2016学年人教版高中数学必修一习题第2章课时作业21对数函数及其性质的应用

《红对勾》2015-2016学年人教版高中数学必修一习题第2章课时作业21对数函数及其性质的应用

课时作业21 对数函数及其性质的应用时间:45分钟 分值:100分一、选择题(每小题6分,共计36分) 1.( )A .①②B .②③C .③④D .①④解析:y =x 12在(0,1)上为增函数;y =log 12(x +1)在(0,1)上为减函数;y =|x -1|在(0,1)上为减函数;y =2x +1在(0,1)上为增函数.故选B .答案:B2.若a =log 13 2,b =log 123,c =⎝ ⎛⎭⎪⎫120.3,则( )A .a<b<cB .a<c<bC . b<c<aD .b<a<c解析:∵0<⎝ ⎛⎭⎪⎫120.3<1,-1<log 13 2=-log 32<0,log 123=-log 23<-1,∴b<a<c. 答案:D3.已知y =(14)x 的反函数为y =f(x),若f(x 0)=-12,则x 0=( ) A .-2 B .-1 C .2D .12解析:y =(14)x的反函数是f(x)=log 14 x ,∴f(x 0)=log 14 x 0=-12.答案:C4.已知函数f(x)=log 13(2x 2+x),则f(x)的单调增区间为( )A .⎝⎛⎭⎪⎫-∞,-14B .⎝⎛⎭⎪⎫-∞,-12C .(0,+∞)D . ⎝ ⎛⎭⎪⎫-14,+∞ 解析:结合二次函数y =2x 2+x 的图象(如图)、复合函数的单调性以及对数函数的定义域可知f(x)的单调增区间为⎝ ⎛⎭⎪⎫-∞,-12.答案:B5.函数f(x)=log a |x -1|在(0,1)上是减函数,那么f(x)在(1,+∞)上( )A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值解析:由|x -1|>0得,函数y =log a |x -1|的定义域为{x|x ≠1}.设g(x)=|x -1|=⎩⎪⎨⎪⎧x -1 x>1,-x +1 x<1,则有:g(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数.∵f(x)=log a |x -1|在(0,1)上是减函数,∴a>1.∴f(x)=log a |x -1|在(1,+∞)上为增函数且无最大值.答案:A6.已知函数f(x)=log 12(x 2-ax +3a)在区间A .(-∞,4)B .(-4,4]C .(-∞,-4)D .上的值域为,则b -a 的最小值为________.解析:数形结合 |log 3x|=0,则x =1,|log 3x|=1,则x =13或3.作图,由图可知(b -a)min =1-13=23. 答案:23三、解答题(共计40分)10.(10分)讨论函数y =log a |x -2|的单调性. 解:由|x -2|>0得函数的定义域为{x|x ≠2}.设g(x)=|x -2|=⎩⎪⎨⎪⎧-x +2, x<2,x -2, x>2.则g(x)在(-∞,2)上为减函数, 在(2,+∞)上为增函数.若a>1,有y =log a |x -2|在(-∞,2)上为减函数, 在(2,+∞)上为增函数.若0<a<1,有y=log a|x-2|在(-∞,2)上为增函数,在(2,+∞)上为减函数.11.(15分)设f(x)=log12(1-axx-1)满足f(-x)=-f(x),a为常数.(1)求a的值;(2)证明f(x)在(1,+∞)内单调递增.解:(1)∵f(-x)=-f(x).∴log121+ax-x-1=-log121-axx-1⇒1+ax-x-1=x-11-ax>0⇒1-a2x2=1-x2⇒a=±1.检验a=1(舍去),∴a=-1.(2)证明:任取x1>x2>1,∴x1-1>x2-1>0.∴0<2x1-1<2x2-1⇒1<1+2x1-1<1+2x2-1⇒1<x1+1x1-1<x2+1x2-1⇒log12x1+1x1-1>log12x2+1x2-1,即f(x1)>f(x2),∴f(x)在(1,+∞)内单调递增.——能力提升——12.(15分)已知函数f(x)=log a(1-x)+log a (x+3),其中0<a<1,记函数f(x)的定义域为D.(1)求函数f(x)的定义域D;(2)求函数f (x)的值域.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x>0,x +3>0,解得-3<x<1.∴函数f(x)的定义域D 为(-3,1). (2)f(x)=log a=log a (-x 2-2x +3)=log a . ∵-3<x<1, ∴0<-(x +1)2+4≤4. ∵0<a<1,∴log a ≥log a 4, 即f(x)min =log a 4,∴函数f(x)的值域为[log a 4,+∞).。

指数对数函数图像与性质(含答案)

指数对数函数图像与性质(含答案)

指数对数函数图像与性质(含答案)指数函数和对数函数是高中数学中比较重要的函数类型之一。

对数函数的定义域为正实数集,值域为实数集,图像在点(1,0)处经过y轴且单调递增。

指数函数的定义域为实数集,值域为正实数集,图像在点(0,1)处经过y轴且单调递增。

对数函数和指数函数是互为反函数的函数对,它们之间有着很多有趣的性质和运算规律。

对于指数函数,有以下基本运算规律:(1) $a^r\cdota^s=a^{r+s}$,(2) $a^r\div a^s=a^{r-s}$,(3) $(a^r)^s=a^{rs}$,(4) $(ab)^r=a^r\cdot b^r$。

对于对数函数,有以下恒等式:$\log_aN=N$,$\log_ab=\frac{1}{\log_ba}$,$\log_a\frac{M}{N}=\log_aM-\log_aN$,以及以下几个小结论:$\log_ab^n=n\log_ab$,$\log_an^M=M\log_an$,$\log_ab=\frac{\log_cb}{\log_ca}$,$\log_aa=1$,$\log_a1=0$。

在解题时,我们可以利用对数函数和指数函数的性质和运算规律,来求解函数的定义域、值域、单调性等问题。

例如,对于函数$y=-x^2+2x+1$,我们可以求出它的顶点坐标为$(1,2)$,因此它的值域为$(-\infty,2]$,并且它在区间$(0,1)$上单调递减,在区间$(1,+\infty)$上单调递增。

对于函数$y=\log_2(x^2-ax+3a)-5x+6$,我们可以先求出它的定义域为$(a-3\sqrt{a},a+3\sqrt{a})$,然后判断它在该定义域内的单调性,最后求出使其在区间$[2,+\infty)$上单调递减的$a$的取值范围。

对于函数$y=4x-\frac{12}{2-a\cdot2x+2\sqrt{a^2x^2+1}}$,我们可以先求出它的定义域为$(0,2]$,然后求出它的导数,令其为0,解出$x$的值,再求出函数在该定义域上的最大值和最小值。

高中数学复习:对数函数的图像和性质练习及答案

高中数学复习:对数函数的图像和性质练习及答案

高中数学复习:对数函数的图像和性质练习及答案1.已知函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩则函数y=f (1-x)的大致图象是()A. B. C.D.【答案】D【解析】先画出函数f (x)=133,1log,1x xx x⎧≤⎪⎨>⎪⎩的草图,令函数f (x)的图象关于y轴对称,得函数f (-x)的图象,再把所得的函数f (-x)的图象,向右平移1个单位,得到函数y=f (1-x)的图象,故选:D.2.函数f(x)=10x与函数g(x)=lgx的图象A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x 对称 【答案】D【解析】因为f (x )=10x 与函数g (x )=lgx 是一对反函数,所以其图象关于y=x 对称.故选D.3.函数f (x )=ln|11x x +-|的大致图象是( ) A. B. C. D.【答案】D【解析】因为()()11ln ln 11x x f x f x x x-+-==-=-+-,所以函数()f x 是奇函数,图象关于原点对称,可排除,A C ;由()2ln30f =>,可排除B ,故选D.4.函数f (x )=log 2(x+1)与g (x )=2﹣x +1在同一直角坐标系下的图象大致是( )A. B. C. D.【答案】B【解析】定义域为,函数为增函数;定义域为,函数为减函数,所以结合指数函数对数函数的性质可知B 图像正确5.已知函数f(x)=-x 2+2,g(x)=log 2|x |,则函数F(x)=f(x)·g(x)的图象大致为( )A. B. C. D.【答案】B【解析】由题意得,函数()(),f x g x 为偶函数,∴函数()()()F x f x g x =为偶函数,其图象关于y 轴对称,故只需考虑0x >时的情形即可.由函数()(),f x g x 的取值情况可得,当0x >时,函数()F x 的取值情况为先负、再正、再负, 所以结合各选项得B 满足题意.故选B.6.设函数()()21ln 11f x x x =+-+,则使()()21f x f x >-成立的x 的取值范围是( ) A.1,13⎛⎫⎪⎝⎭ B.()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C.11,33⎛⎫- ⎪⎝⎭D.11,,33⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ 【答案】A【解析】因为函数()()21ln 11f x x x =+-+定义域为R ,关于原点对称, 且()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-, 所以函数()f x 是偶函数,又()f x 在()0,∞+是增函数,所以()()21f x f x >-等价于()()21fx f x >-, 所以2213410x x x x >--+<,, 解得113x <<, 故选:A7.函数2()ln(1)x xe ef x x --=+在[3,3]-的图象大致为( ) A. B. C.D.【答案】C 【解析】函数2()ln(1)x x e e f x x --=+, 则2()()ln(1)x xe ef x f x x ---==-+,所以()f x 为奇函数,排除B 选项; 当x →+∞时,2()ln(1)x xe ef x x --=→+∞+,所以排除A 选项; 当1x =时,11 2.720.37(1) 3.4ln(11)ln 20.69e e e ef -----==≈≈+, 排除D 选项;综上可知,C 为正确选项,故选:C.8.函数()1ln 1y x x=-+的图象大致为( ) A. B. C. D.【答案】A【解析】0x >时,函数为减函数,排除B ,10x -<<时,函数也是减函数,排除D ,又1x =时,1ln 20y =->,排除C ,只有A 可满足.故选:A.9.函数()()22ln 11x f x x +=+的大致图像为( )A. B. C. D.【答案】B【解析】因为()()22ln 11x f x x +=+是由()22ln x g x x=向左平移一个单位得到的, 因为()22ln ()(0)()x g x g x x x --==≠-, 所以函数()22ln x g x x =为偶函数,图像关于y 轴对称, 所以()f x 的图像关于1x =-对称,故可排除A ,D 选项;又当2x <-或0x >时,2ln 10x +>,()210x +>,所以()0f x >,故可排除C 选项故选:B .10.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A. B. C. D.【答案】D【解析】当01a <<时,函数x y a =过定点(0,1)且单调递减,则函数1x y a=过定点(0,1)且单调递增,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,0)2且单调递减,D 选项符合;当1a >时,函数x y a =过定点(0,1)且单调递增,则函数1x y a =过定点(0,1)且单调递减,函数1log 2a y x ⎛⎫=+ ⎪⎝⎭过定点1(,02)且单调递增,各选项均不符合.故选:D11.函数()24ln x f x x =的部分图象大致为( ) A. B. C. D.【答案】A【解析】因为()24ln x f x x =是偶函数,排除B ,当01x <<时,ln 0x <,()204ln x f x x=<,排除C , 当x e =时()214e f e =>,排除D. 故选:A.12.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=x 2﹣2x ﹣3,求当x ≤0时,不等式f (x )≥0整数解的个数为( )A.4B.3C.2D.1【答案】A【解析】由函数为奇函数可知当x ≤0时,不等式f (x )≥0整数解的个数与0x ≥时()0f x ≤的个数相同,由奇函数可知()00f =,由2230x x --≤得()()320x x -+≤,所以整数解为1,2,3,所以满足题意要求的整数点有4个 13.若x 1,x 2是方程2x =12⎛⎫⎪⎝⎭+1-1x 的两个实数解,则x 1+x 2=________.【答案】-1【解析】∵2x =1112x -+⎛⎫ ⎪⎝⎭ ,∴2x =112x - ,∴x =1x-1,∴x 2+x -1=0.∴x 1+x 2=-1.故答案:-114.已知函数()lg f x x =. (1)画出函数()y f x =的草图,并根据草图求出满足()1f x >的x 的集合;(2)若0a b <<,且()()f a f b >,求证:1ab <.【答案】(1)图见解析,(0,110)∪(10,+∞).(2)证明见解析 【解析】(1)画出函数()y f x =的草图,如图所示:令()1f x =,则lg 1,lg 1x x ==±,可得10x =或110x =. 故满足()1f x >的x 的集合为1(0,)(10,)10⋃+∞. (2)证明:若0a b <<,且()()f a f b >,则lg lg a b >.当01a b <<≤时, lg lg a b >显然成立且1ab <.当01a b <≤≤,因为lg lg a b >则lg lg lg +lg 0lg 01a b a b ab ab -><⇒<⇒<,成立 当1a b ≤<时, lg lg a b >不成立.综上所述1ab <成立.15.已知函数2()4||3f x x x =-+,(1)试证明函数()f x 是偶函数;(2)画出()f x 的图象;(要求先用铅笔画出草图,再用黑色签字笔描摹,否则不给分)(3)请根据图象指出函数()f x 的单调递增区间与单调递减区间;(不必证明)(4)当实数k 取不同的值时,讨论关于x 的方程24||3x x k -+=的实根的个数;(不必求出方程的解)【答案】(1)详见解析(2)详见解析(3)增区间()()+∞-,2,0,2减区间)2,0(),2,(--∞(4)①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根【解析】(1)()f x 的定义域为R ,且2()()4||3f x x x -=---+24||3()x x f x =-+=故()f x 为偶函数;(2)如图(3)递增区间有:()()+∞-,2,0,2递减区间有:)2,0(),2,(--∞(4)根据图象可知,①当1k <-时,方程无实数根;②当1k =-或3k >时,方程有两个实数根;③当3k =时,方程有三个实数根;④当13k -<<时,方程有四个实数根;16.已知函数f (x )=x ln x -x .(1)设g (x )=f (x )+|x -a |,a ∈R.e 为自然对数的底数.①当32a e =-时,判断函数g (x )零点的个数; ②1,x e e ⎡⎤∈⎢⎥⎣⎦时,求函数g (x )的最小值. (2)设0<m <n <1,求证:()2201m f n m +<+ 【答案】(1)① g (x )有且仅有两个零点.②a -e.(2)证明见解析【解析】(1)①当32a e =-时, g (x )=x ln x -x +|x +32e |=x ln x +32e , g ′(x )=1+ln x ,当0<x <1e 时,g ′(x )<0;当x >1e时,g ′(x )>0; 因此g (x )在(0,1e )上单调递减,在(1e ,+∞)上单调递增, 又434412424g =0e e e e e -⎛⎫-=> ⎪⎝⎭,g (1e )=-1e +23322e e e-=<0,g (1)=32e >0, 所以g (x )有且仅有两个零点.②(i )当a ≤1e 时,g (x )=x ln x -x +x -a =x ln x -a , 因为x ∈[1e,e ],g ′(x )=1+lnx ≥0恒成立, 所以g (x )在[1e ,e ]上单调递增,所以此时g (x )的最小值为g (1e )=-1e-a . (ii )当a ≥e 时,g (x )=x ln x -x +a -x =x ln x -2x +a ,因为x ∈[1e,e],g ′(x )=ln x -1≤0恒成立, 所以g (x )在[1e,e ]上单调递减,所以此时g (x )的最小值为g (e )=a -e . (iii )当1e<a <e 时, 若1e ≤x ≤a ,则g (x )=x ln x -x +a -x =x ln x -2x +a , 若a ≤x ≤e ,则g (x )=x ln x -x +x -a =x ln x -a ,由(i ),(ii )知g (x )在[1e,a ]上单调递减,在[a ,e ]上单调递增, 所以此时g (x )的最小值为g (a )=a ln a -a ,综上有:当a ≤1e 时,g (x )的最小值为-1e-a ;当1e<a <e 时,g (x )的最小值为a ln a -a ; 当a ≥e 时,g (x )的最小值为a -e . (2)设h (x )=221x x +, 则当x ∈(0,1)时,h ′(x )=()()222211x x -+>0,于是h (x )在(0,1)单调递增, 又0<m <n <1,所以h (m )<h (n ),从而有()()()2222ln 111m f n f n h n n n m n ⎛⎫+<+=-+ ⎪++⎝⎭设φ(x )=22ln 11n n -++,x >0 则φ′(x )=()()()222222114011x x x x x x --=≥++因此φ(x )在(0,+∞)上单调递增,因为0<n <1,所以φ(n )<φ(1)=0,即ln n -1+221n +<0, 因此()2222ln 1011m f n n n m n ⎛⎫+<-+< ⎪++⎝⎭ 即原不等式得证.17.已知函数f (x )=xln x ,g (x )=-x 2+ax -2(e 为自然对数的底数,a ∈R ).(1)判断曲线y =f (x )在点(1,f (1))处的切线与曲线y =g (x )的公共点个数;(2)当1[,]x e e ∈时,若函数y =f (x )-g (x )有两个零点,求a 的取值范围.【答案】(1)答案不唯一,见解析;(2)3<a ≤e +2e+1. 【解析】(1)()1f x lnx '=+,所以切线的斜率()11k f ='=,又()10f =,所以曲线在点(1,0)处的切线方程为1y x =-, 由221y x ax y x ⎧=-+-⎨=-⎩,得2(1)10x a x +-+=,由△22(1)423(1)(3)a a a a a =--=--=+-可得, 当△0>时,即1a <-或3a >时,有两个公共点, 当△0=时,即1a =-或3a =时,有一个公共点, 当△0<时,即13a -<>时,没有公共点, (2)2()()2y f x g x x ax xlnx =-=-++, 由0y =,得2a x lnx x=++, 令2()h x x lnx x=++,则2(1)(2)()x x h x x -+'=,当1[x e∈,]e 时,由()0h x '=,得1x =,所以()h x 在1[e,]e 上单调递减,在[1,]e 上单调递增,因此()()13min h x h ==, 由11()21h e e e =+-,()21h e e e =++,比较可知()1h h e e ⎛⎫> ⎪⎝⎭,所以,结合函数图象可得, 当231a e e<++时,函数()()y f x g x =-有两个零点. 18.根据函数f(x)=log 2x 的图像和性质解决以下问题: (1)若f(a)>f(2),求a 的取值范围; (2)求y =log 2(2x -1)在[2,14]上的最值.【答案】(1) (2,+∞) (2) 最小值为log 23,最大值为log 227【解析】(1)由函数2()log f x x =的单调性及()(2)f a f >,即可求出a 的取值范围;(2)根据定义域为[2,14],表示出21x -的取值范围,结合对数函数的性质,即可求得最值. 试题解析:函数f (x )=log 2x 的图象如图:(1)因为f (x )=log 2x 是增函数,故f (a )>f (2),即log 2a >log 22,则a >2.所以a 的取值范围为(2,+∞). (2)∵2≤x ≤14,∴3≤2x -1≤27, ∴log 23≤log 2(2x -1)≤log 227.∴函数y =log 2(2x -1)在[2,14]上的最小值为log 23,最大值为log 227.19.已知定义在R 上的函数()y f x =满足()()()111f x f x f x -=+=-,当[]12x ∈,时,2()log f x x =,若方程()0f x ax -=在()0+∞,上恰好有两个实数根,则正实数a 的值为( ) A.2log eeB.1ln 2e C.12D.2【答案】C【解析】由()()()111f x f x f x -=+=-,可知()f x 为偶函数,且一条对称轴为1x =, 再由()()11f x f x +=-,可得()2()f x f x +=,即函数()f x 的周期为2.根据[]12x ∈,时,2()log f x x =作出函数()f x 的草图,如图所示:方程()0f x ax -=在()0+∞,上恰好有两个实数根, ∴函数y ax =与()y f x =的图象在y 轴右侧有两个交点,设y ax =与2log y x =相切时,切点坐标为()020log x x ,, 由1ln2y x '=,得2000log 1ln2x x x =,解得02x e =>.∴由图象可知,当直线y ax =过点()21,时,方程()0f x ax -=在()0+∞,上恰好有两个实数根, 12a ∴=. 故选:C .20.已知函数2|1|,0()log ,0x x f x x x +≤⎧=⎨>⎩,若方程()f x a =有四个不同的解1x ,2x ,3x ,4x ,且1234x x x x <<<,则()3122341x x xx x++的取值范围是().A.(1,)-+∞ B.[1,1)- C.(,1)-∞ D.(]1,1-【答案】D【解析】函数()21,0|log,0x xf xx x⎧+⎪=⎨>⎪⎩,的图象如下:根据图象可得:若方程()f x a=有四个不同的解1x,2x,3x,4x,且1234x x x x<<<,则11x a+=-,21x a+=,23log x a=-,24log x a=.(01)a<≤122x x+=-,32ax-=,42ax=∴则31222344()22221222a aa a ax x xx x---++=-⋅+=-⋅.令2a t,(1t∈,2],而函数2y tt=-在(1,2]单调递增.所以211tt-<-≤,则21212aa∴-<-.故选:D.21.函数()log1xaf x a x=-有两个不同的零点,则实数a的取值范围是()A.()1,10 B.()1,+∞C.0,1D.()10,+∞【答案】B【解析】函数()f x有两个零点等价于1xya⎛⎫= ⎪⎝⎭与log ay x=的图象有两个交点,当01a<<时同一坐标系中做出两函数图象如图(2),由图知有一个交点,符合题意;当1a>时同一坐标系中做出两函数图象如图(1),由图知有两个交点,不符合题意,故选B.22.已知函数()2,11,12x a x f x x a x ⎧+≤⎪=⎨+>⎪⎩,其中a R ∈.如果函数()f x 恰有两个零点,则a 的取值范围为( )A.1,2⎛⎤-∞- ⎥⎝⎦B.[)2,-+∞C.12,2⎡⎤--⎢⎥⎣⎦D.12,2⎡⎫--⎪⎢⎣⎭【答案】D【解析】当1x ≤时,(]2,2xy a a a =+∈+,当1x >时,11,22y x a a ⎛⎫=+∈++∞ ⎪⎝⎭, 两段均为增函数,函数()f x 恰有两个零点,可得102200a a a ⎧+<⎪⎪⎨+≥⎪⎪<⎩,解得12,2a ⎡⎫∈--⎪⎢⎣⎭. 故选:D23.给出下列四个结论:(1)若集合A ={x,y },B ={0,2x },且A=B ,则x =1,y =0;(2)若函数f (x )的定义域为(-1,1),则函数f (2x +1)的定义域为(-1,0); (3)函数1()f x x=的单调减区间是{}0x x ≠; (4)若()()()f x y f x f y +=⋅,且(1)2f =,则(2)(4)(2014)(2016)(2018)2018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=其中不正确的有______.【答案】(3)【解析】(1)因为A=B ,所以20,0,1x y x x x ≠==∴=,故(1)正确;(2)因为函数f (x )的定义域为(-1,1),所以121110x x -<+<∴-<<,故(2)正确; (3)函数1()f x x=的单调减区间是(,0)-∞和(0,)+∞,故(3)错误; (4)因为()()()f x y f x f y +=⋅,所以(1)()(1)2()f x f x f f x +=⋅=, 因此(2)(4)(2014)(2016)(2018)210092018(1)(3)(2013)(2015)(2017)f f f f f f f f f f +++++=⨯=,故(4)正确;故答案为:(3) 24.已知1275a -⎛⎫= ⎪⎝⎭,1357b ⎛⎫= ⎪⎝⎭,25log 7c =,则a 、b 、c 的大小关系是( ). A.b a c << B.c b a <<C.c a b <<D.b c a <<【答案】C 【解析】12125757a -⎛⎫=⎛⎫= ⎝⎭⎪⎭⎪⎝<135()7b =,225log log 107c =<= 因此c a b << 故选:C.25.函数()log (2)a f x ax =-(0a >且1a ≠)在[]0,3上为增函数,则实数a 的取值范围是( )A.2,13⎛⎫⎪⎝⎭B.(0,1)C.20,3⎛⎫ ⎪⎝⎭D.[)3,+∞ 【答案】C【解析】因为0a >且1a ≠,令2t ax =-,所以函数2t ax =-在[]0,3上为减函数, 所以函数log a y t =应是减函数,()f x 才可能是增函数, ∴01a <<,因为函数()f x 在[]0,3上为增函数, 由对数函数性质知230a ->,即23<a ,综上023a <<. 故选:C .26.设3log 7a =, 1.12b =, 3.10.8c =,则( ) A.b a c << B.a c b <<C.c b a <<D.c a b <<【答案】D【解析】因为333log 7(log 3,log 9)a =∈,所以(1,2)a ∈; 1.122b =>; 3.100.80.81c =<=; 所以c a b <<, 故选D.27.三个数0.76,60.7,0.7log 6的大小顺序是( )A.60.70.7log 60.76<<B.60.70.70.76log 6<< C.0.760.7log 660.7<<D.60.70.70.7log 66<<【答案】A【解析】因为0.70661>=,6000.70.71<<=,0.70.7log 6log 10<=;所以60.70.7log 60.76<<.故选:A.28.已知0.42x =,2lg 5y =,0.425z ⎛⎫= ⎪⎝⎭,则下列结论正确的是( ) A.x y z << B.y z x << C.z y x << D.z x y <<【答案】B 【解析】0.4221x =>=,2lg lg105y =<=,0.421525z ⎛⎫<= ⎪⎝⎫⎭⎭⎛=⎪⎝,又0z >,即01z <<. 因此,y z x <<. 故选:B.考点1函数的反函数1.函数y=ln x+1(x>0)的反函数为( )A.y=e x+1(x∈R)B.y=e x-1(x∈R)C.y=e x+1(x>1)D.y=e x-1(x>1)【答案】B【解析】由y=ln x+1,得x=e y-1.又因为函数y=ln x+1的值域为R,于是y=ln x+1的反函数为y=e x-1(x∈R).故选B.2.函数f(x)=(x-1)2+1(x<1)的反函数为( )A.f-1(x)=1+(x>1)B.f-1(x)=1-(x>1)C.f-1(x)=1+(x≥1)D.f-1(x)=1-(x≥1)【答案】B【解析】∵x<1⇒y=(x-1)2+1,∴(x-1)2=y-1⇒x-1=-,∴反函数为f-1(x)=1-(x>1).3.已知指数函数f(x)=ax(a>0,a≠1),f(x)的反函数记为y=g(x),且g(x)过点(4,2),则f(x)的解析式是( )A.f(x)=log4xB.f(x)=log2xC.f(x)=2xD.f(x)=4x【答案】C【解析】指数函数的解析式为:f(x)=a x(a>0,a≠1),∵f(x)的反函数记为y=g(x)函数的图象经过(4,2)点,∴f(x)的图象经过(2,4)点,∴4=a2,a=2,∴指数函数的解析式为y=2x.故选C.4.已知函数f(x)的反函数为g(x)=log2x+1,则f(2)+g(2)等于( )A.1 B.2 C.3 D.4【答案】D【解析】因为函数f(x)的反函数为g(x)=log2x+1,所以f(2)+g(2)=f(2)+2.而根据反函数的图象与性质可知f(2)=2,因此选D.5.函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则函数y=f(4x-x2)的递增区间是________.【答案】(0,2)【解析】∵函数y=f(x)的图象与y=2x的图象关于直线y=x对称,∴y=f(x)与y=2x互为反函数,∵y=2x的反函数为y=log2x,∴f(x)=log2x,f(4x-x2)=log2(4x-x2).令t=4x-x2,则t>0,即4x-x2>0,∴x∈(0,4),又∵t=4x-x2的对称轴为x=2,且对数的底数大于1,∴y=f(4x-x2)的递增区间为(0,2).6.设f-1(x)为f(x)=2x-2+,x∈[0,2]的反函数,则y=f(x)+f-1(x)的最大值为________.【答案】4【解析】由题意得:f(x)在[0,2]上单调递增,值域为[,2],所以f-1(x)在[,2]上单调递增,因此y =f(x)+f-1(x)在[,2]上单调递增,其最大值为f(2)+f-1(2)=2+2=4.7.函数f(x)=a x+log a(x+1)在[0,1]上的最大值与最小值之和为a,则a的值为( )A. B. C.2 D.4【答案】B【解析】函数f(x)=a x+log a(x+1),令y1=a x,y2=log a(x+1),显然在[0,1]上,y1=a x与y2=log a(x+1)同增或同减.因而[f(x)]max+[f(x)]min=f(1)+f(0)=a+log a2+1+0=a,解得a=.8.设函数y=f(x)的图象与y=2x+a的图象关于直线y=-x对称,且f(-2)+f(-4)=1,则a等于( ) A.-1 B.1 C.2 D.4【答案】C【解析】设(x,y)是函数y=f(x)的图象上任意一点,它关于直线y=-x对称点为(-y,-x),由已知知(-y,-x)在函数y=2x+a的图象上,∴-x=2-y+a,解得y=-log2(-x)+a,即f(x)=-log2(-x)+a,∴f(-2)+f(-4)=-log22+a-log24+a=1,解得a=2.9.方程log2x+log2(x-1)=1的解集为M,方程22x+1-9·2x+4=0的解集为N,那么M与N的关系是( ) A.M=N B.M N C.M N D.M∩N=∅【答案】B【解析】由log2x+log2(x-1)=1,得x(x-1)=2,解得x=-1(舍)或x=2,故M={2};由22x+1-9·2x+4=0,得2·(2x)2-9·2x+4=0,解得2x=4或2x=,即x=2或x=-1,故N={2,-1},因此有M N.10.已知函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )A.(-1,0)∪(0,1)B.(-∞,-1)∪(1,+∞)C.(-1,0)∪(1,+∞)D.(-∞,-1)∪(0,1)【答案】C【解析】①当a>0时,f(a)=log2a,f(-a)=,f(a)>f(-a),即log2a>=log2,∴a>,解得a>1.②当a<0时,f(a)=,f(-a)=log2(-a),f(a)>f(-a),即>log2(-a)=,∴-a<,解得-1<a<0,由①②得-1<a<0或a>1.11.若函数f(x)=x2lg a-2x+1的图象与x轴有两个交点,则实数a的取值范围是( ) A.0<a<10B.1<a<10C.0<a<1D.0<a<1或1<a<10【答案】D【解析】lg a≠0且Δ=4-4lg a>0,解得0<a<1或1<a<10,故选D.12.已知集合A={x|x2≥1,x∈R},B={x|log2x<2,x∈R},则∁R A∩B等于( ) A.[0,1]B.(0,1)C.(-3,1)D.[-3,1]【答案】B【解析】集合A={x|x2≥1,x∈R}={x|x≥1,或x≤-1},B={x|log2x<2,x∈R}={x|0<x<4},∴∁R A=(-1,1),∴∁R A∩B=(0,1),故选B.13.已知函数f(x)=log a(x-1)(a>0,且a≠1),g(x)=log a(3-x)(a>0,且a≠1).(1)求函数h(x)=f(x)-g(x)的定义域;(2)利用对数函数的单调性,讨论不等式f(x)≥g(x)中x的取值范围.【答案】(1)要使函数h(x)=f(x)-g(x)=log a(x-1)-log a(3-x)有意义,需有解得1<x<3,故函数h(x)=f(x)-g(x)的定义域为(1,3).(2)因为不等式f(x)≥g(x),即log a(x-1)≥log a(3-x),当a>1时,有解得2≤x<3.当0<a<1时,有解得1<x≤2.综上可得,当a>1时,不等式f(x)≥g(x)中x的取值范围为[2,3);当0<a<1时,不等式f(x)≥g(x)中x 的取值范围为(1,2].14.已知函数f(x)=log a(1+x),g(x)=log a(1-x),(a>0,且a≠1).(1)设a=2,函数f(x)的定义域为[3,63],求函数f(x)的最值;(2)求使f(x)-g(x)>0的x的取值范围.【答案】(1)当a=2时,函数f(x)=log2(x+1)为[3,63]上的增函数,故f(x)max=f(63)=log2(63+1)=6,f(x)min=f(3)=log2(3+1)=2.(2)f(x)-g(x)>0,即log a(1+x)>log a(1-x),①当a>1时,1+x>1-x>0,得0<x<1.②当0<a<1时,0<1+x<1-x,得-1<x<0.15.下列函数关系中,可以看成是指数型函数y=ka x(k∈R,a>0且a≠1)模型的是( )A.竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系(不计空气阻力)B.我国人口年自然增长率为1%,我国人口总数随年份的变化关系C.如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系D.信件的邮资与其重量间的函数关系【答案】B【解析】A:竖直向上发射的信号弹,从发射到落回地面,信号弹的高度与时间的关系,是二次函数关系;B:我国人口年自然增长率为1%,我国人口总数随年份的变化关系,是指数型函数关系;C:如果某人t s内骑车行进了1km,那么此人骑车的平均速度v与时间t的函数关系,是反比例函数关系;D:信件的邮资与其重量间的函数关系,是正比例函数关系.故选B.16.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为如图所示的( )A.B.C.D.【答案】D【解析】设原来森林蓄积量是a,则a(1+10.4%)y=ax,1.104y=x,所以y=log1.104x,故选D.17.如图是某池塘中野生水葫芦的面积与时间的函数关系图象.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积会超过30m2;③野生水葫芦从4m2蔓延到12m2只需1.5个月;④设野生水葫芦蔓延至2m2、3m2、6m2所需的时间分别为t1、t2、t3则有t1+t2=t3;其中正确的说法有________.(请把正确的说法的序号都填在横线上)【答案】①②④【解析】∵其关系为指数函数,图象过(4,16)点,∴指数函数的底数为2,故①正确;当t=5时,s=32>30,故②正确;4对应的t=2,经过1.5月后面积是23.5<12,故③不正确;∵t1=1,t2=log23,t3=log26,∴有t1+t2=t3,故④正确.综上可知,①②④正确.故答案为①②④.18.我国辽东半岛普兰附近的泥炭层中,发掘出的古莲子,至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可用放射性碳法.在动植物的体内都含有微量的放射性14C,动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变,经过5570年(叫做14C的半衰期),它的残余量只有原始量的一半,经过科学家测定知道,若14C的原始含量为a,则经过t年后的残余量a′(与a之间满足a′=a·e-kt).现测得出土的古莲子中14C残余量占原量的87.9%,试推算古莲子的生活年代.【答案】因为a′=a·e-kt,即=e-kt.两边取对数,得lg=-kt lge.①又知14C的半衰期是5570年,即当t=5570时,=.故lg=-5570k lge,即k lge=.代入①式,并整理,得t=-.这就是利用放射性碳法计算古生物年代的公式.现测得古莲子的是0.879,代入公式,得t=-≈1036.即古莲子约是1036年前的遗物.19.诺贝尔奖发放方式为:每年一次,把资金总额平均分成6份,奖励在6个领域(物理学、化学、文学、经济学、医学或生理学、和平事业)为人类作出最有益贡献的人,每年发放奖金总金额是基金在该年度所获利息的一半,另一半利息用于基金总额,以便保证奖金数逐年增加.假设基金平均年利率为r=6.24%,资料显示:1999年诺贝尔奖发放后基金总额约为19800万美元,设f(x)表示为第x(x∈N*)年诺贝尔奖发放后的基金总额(1999年记为f(1),2000年记为f(2),…,依此类推).(1)用f(1)表示f(2)与f(3),并根据所求结果归纳出函数f(x)的表达式;(2)试根据f(x)的表达式判断网上一则新闻“2009年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:1.03129≈1.32,1.031210≈1.36)【答案】(1)由题意知f(2)=f(1)(1+6.24%)-f(1)×6.24%=f(1)×(1+3.12%),f(3)=f(2)(1+6.4%)-f(2)×6.24%=f(1)(1+3.12%)2,∴f(x)=19800(1+3.12%)x-1(x∈N*).(2)2008年诺贝尔奖发放后基金总额为f(10)=19800(1+3.12%)9≈26107(万美元).2009年诺贝尔奖各项金额为×f(10)×6.24%≈136(万美元),与150万美元相比少了约14万美元.故该新闻是假的.20.某城市现有人口总数为100万,如果年自然增长率为1.2%,试解答下面的问题:(1)写出该城市的人口总数y(万人)与年份x(年)的函数解析式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年后该城市人口总数将达到120万人.(精确到1年)[参考数据:(1+1.2%)10≈1.127,(1+1.2%)15≈1.196,(1+1.2%)16≈1.210]【答案】(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%);2年后该城市人口总数为y=100(1+1.2%)+100(1+1.2%)×1.2%=100(1+1.2%)2;3年后该城市人口总数为y=100(1+1.2%)3…故x年后该城市人口总数为y=100(1+1.2%)x.(2)10年后该城市人口总数为y=100×(1+1.2%)10=100×1.01210≈112.7(万人).(3)令y=120,则有100(1+1.2%)x=120,解得x≈16.即大约16年后该城市人口总数将达到120万人.。

高中数学 课时跟踪检测(二十六)对数函数的图象和性质 新人教A版必修第一册-新人教A版高一第一册数学

高中数学 课时跟踪检测(二十六)对数函数的图象和性质 新人教A版必修第一册-新人教A版高一第一册数学

课时跟踪检测(二十六) 对数函数的图象和性质A 级——学考水平达标练1.下列式子中成立的是( ) A .log 0.44<log 0.46 B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67解析:选D 因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x为增函数,所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错.2.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b解析:选D ∵0<a =2-13<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .故选D.3.函数f (x )=log 2(1-x )的图象为( )解析:选A 函数的定义域为(-∞,1),排除B 、D ,函数f (x )=log 2(1-x )在定义域内为减函数,排除C ,故A 正确.4.函数y =a x(a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( ) A .2 B .12C .2或12D .3解析:选B 法一:函数y =a x(a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),故y =log a x 的图象过点(a ,a ),则a =log a a =12.法二:∵函数y =a x(a >0,且a ≠1)的反函数的图象过点(a ,a ),∴函数y =a x(a >0,且a ≠1)的图象过点(a ,a ),∴a a=a =a 12,即a =12.5.若点(a ,b )在函数f (x )=ln x 的图象上,则下列点中,不在函数f (x )图象上的是( )A.⎝ ⎛⎭⎪⎫1a ,-b B .(a +e,1+b ) C.⎝ ⎛⎭⎪⎫e a,1-bD .(a 2,2b )解析:选B 因为点(a ,b )在f (x )=ln x 的图象上,所以b =ln a ,所以-b =ln 1a,1-b =ln e a,2b =2ln a =ln a 2,故选B.6.函数f (x )=ln(2-x )的单调减区间为________. 解析:由2-x >0,得x <2.又函数y =2-x ,x ∈(-∞,2)为减函数, ∴函数f (x )=ln(2-x )的单调减区间为(-∞,2). 答案:(-∞,2)7.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.解析:由⎩⎪⎨⎪⎧x +2>0,4-x >0得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln[-(x -1)2+9],设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4). 答案:(1,4)8.已知函数y =log a (2-ax )(a >0,且a ≠1)在[0,1]上是减函数,则实数a 的取值X 围是________.解析:令u =2-ax ,则y =log a u ,因为a >0,所以u =2-ax 递减,由题意知y =log a u 在[0,1]内递增,所以a >1.又u =2-ax 在x ∈[0,1]上恒大于0,所以2-a >0,即a <2.综上,1<a <2.答案:(1,2)9.比较下列各组数的大小 (1)log 0.13与log 0.1π; (2)log 45与log 65;(3)3log 45与2log 23;(4)log a (a +2)与log a (a +3)(a >0且a ≠1). 解:(1)∵函数y =log 0.1x 是减函数,π>3, ∴log 0.13>log 0.1π.(2)法一:∵函数y =log 4x 和y =log 6x 都是增函数, ∴log 45>log 44=1,log 65<log 66=1. ∴log 45>log 65.法二:画出y =log 4x 和y =log 6x 在同一坐标系中的图象如图所示,由图可知log 45>log 65.(3)∵3log 45=log 453=log 4125=log 2125log 24=12log 2125=log 2125,2log 23=log 232=log 29,又∵函数y =log 2x 是增函数,125>9, ∴log 2125>log 29,即3log 45>2log 23. (4)∵a +2<a +3,故①当a >1时,log a (a +2)<log a (a +3); ②当0<a <1时,log a (a +2)>log a (a +3).10.已知f (x )=|lg x |,且1c>a >b >1,试比较f (a ),f (b ),f (c )的大小.解:先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方,于是得f (x )=|lg x |图象(如图),由图象可知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增.由1c >a >b >1得:f1c>f (a )>f (b ),而f 1c =⎪⎪⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ).∴f (c )>f (a )>f (b ).B 级——高考水平高分练1.若函数f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上既是奇函数,又是减函数,则g (x )=log a (x +k )的大致图象是( )解析:选A f (x )=(k -1)a x-a -x(a >0,且a ≠1)在R 上是奇函数,∴f (0)=(k -1)a-a 0=k -2=0,∴k =2.∵f (x )是减函数,∴0<a <1,∴g (x )=log a (x +k )的图象是选项A 中的图象.2.(2018·全国卷Ⅲ)设a =log 0.20.3,b =log 20.3,则( ) A .a +b <ab <0 B .ab <a +b <0 C .a +b <0<abD .ab <0<a +b解析:选B ∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0,∴0<a +bab<1,∴ab <a +b <0. 3.是否存在实数a ,使函数y =log a (ax 2-x )在区间[2,4]上是增函数?如果存在,求出a 的取值X 围;如果不存在,请说明理由.解:存在.设u =g (x )=ax 2-x ,则y =log a u .假设符合条件的a 值存在. (1)当a >1时,只需g (x )在[2,4]上为增函数,故应满足⎩⎪⎨⎪⎧12a≤2,g (2)=4a -2>0.解得a >12.∴a >1.(2)当0<a <1时,只需g (x )在[2,4]上为减函数,故应满足⎩⎪⎨⎪⎧12a≥4,g (4)=16a -4>0.无解.综上所述,当a >1时,函数y =log a (ax 2-x )在[2,4]上是增函数. 4.设函数f (x )=log a ⎝⎛⎭⎪⎫1-a x,其中0<a <1.(1)证明:f (x )是(a ,+∞)上的减函数; (2)若f (x )>1,求x 的取值X 围.解:(1)证明:任取x 1,x 2∈(a ,+∞),不妨令0<a <x 1<x 2,g (x )=1-a x,则g (x 1)-g (x 2)=⎝ ⎛⎭⎪⎫1-a x 1-⎝ ⎛⎭⎪⎫1-a x 2=a (x 1-x 2)x 1x 2,∵0<a <x 1<x 2,∴x 1-x 2<0,x 1x 2>0,∴g (x 1)-g (x 2)<0, ∴g (x 1)<g (x 2),∴g (x )为增函数,又∵0<a <1,∴f (x )是(a ,+∞)上的减函数.(2)∵log a ⎝⎛⎭⎪⎫1-a x >1,∴0<1-a x<a , ∴1-a <a x<1.又∵0<a <1,∴1-a >0, ∴a <x <a1-a,∴x 的取值X 围是⎝ ⎛⎭⎪⎫a ,a 1-a .5.森林具有净化空气的功能,经研究发现,森林净化空气量Q 与森林面积S 的关系是Q =50log 2S10.(1)若要保证森林具有净化效果(Q ≥0),则森林面积至少为多少个单位? (2)当某森林面积为80个单位时,它能净化的空气量为多少个单位? 解:(1)由题意,当Q =0时,代入关系式可得0=50log 2S10,解得S =10,因为Q 随S 的增大而增大,所以当Q >0时S ≥10. 所以森林面积至少有10个单位. (2)将S =80代入关系式, 得Q =50log 28010=150,所以当森林面积为80个单位时,它能净化的空气量为150个单位.。

对数函数及其性质的应用(高中数学)

对数函数及其性质的应用(高中数学)
法二(中间值法):因为 log534<0,log543>0, 所以 log534<log543.
(2)法一(单调性法):由于 log132= 1
又因对数函数 y=log2x 在(0,+∞)上是增函数,
且13>15,所以 0>log213>log215,
常见的对数不等式的三种类型 1形如 logax>logab 的不等式,借助 y=logax 的单调性求解,如果 a 的取值不确定,需分 a>1 与 0<a<1 两种情况讨论; 2形如 logax>b 的不等式,应将 b 化为以 a 为底数的对数式的形式, 再借助 y=logax 的单调性求解; 3形如 logax>logbx 的不等式,可利用图象求解.
[解] (1)∵22a+1>25a-2,∴2a+1>5a-2,即 3a<3,∴a<1,即 0 <a<1.∴实数 a 的取值范围是(0,1).
(2)由(1)得,0<a<1,∵loga(3x+1)<loga(7-5x),
3x+1>0,
∴7-5x>0, 3x+1>7-5x,
x>-31, 即x<75,
x>34,
2.如何求形如 y=logaf(x)的值域? 提示:先求 y=f(x)的值域,注意 f(x)>0,在此基础上,分 a>1 和 0<a<1 两种情况,借助 y=logax 的单调性求函数 y=logaf(x)的值域.
【例 3】 (1)已知 y=loga(2-ax)是[0,1]上的减函数,则 a 的取值范 围为( )
A.(0,1)
B.(1,2)
C.(0,2)
D.[2,+∞)
(2)函数 f(x)=log21(x2+2x+3)的值域是________. [思路点拨] (1)结合对数函数及 y=2-ax 的单调性,构造关于 a 的

高一数学对数函数知识点例题

高一数学对数函数知识点例题

高一数学对数函数知识点例题对数函数是数学中一个重要的函数,广泛应用于各个领域。

在高中数学中,对数函数也是学习的重点内容之一。

本文将为大家介绍高一数学对数函数的知识点并提供一些例题进行讲解。

1. 对数函数的定义和性质对数函数的定义如下:对于任意一个正数a(a≠1)和正数x,以a为底的x的对数,记作logₐx,即x=aⁿ,n=logₐx。

其中,a被称为对数的底,x被称为真数,n被称为对数。

对数函数的性质如下:(1)logₐa=1,即对数a以自身为底的结果为1;(2)logₐ1=0,即对数a以1为底的结果为0;(3)logₐ(ab)=logₐa+logₐb,即对于乘法运算,对数函数的结果等于对数的和;(4)logₐ(a/b)=logₐa-logₐb,即对于除法运算,对数函数的结果等于对数的差;(5)logₐaⁿ=nlogₐa,即对于指数运算,对数函数的结果等于对数乘以指数。

2. 对数函数的例题例题1:已知log₂3=0.631和log₂5=2.322,求log₅3的值。

解析:根据对数函数的性质,我们可以利用换底公式进行计算。

换底公式如下:logₐb=logₐc/logₐb,其中a为对数底。

根据题目给出的已知信息,我们有:log₅3=log₂3/log₂5代入已知的对数值,可以计算得到:log₅3=0.631/2.322≈0.272因此,log₅3的值约为0.272。

例题2:已知logₐ10=2和log₁₀b=0.5,求logₐb的值。

解析:根据对数函数的性质,我们可以利用换底公式进行计算。

根据题目给出的已知信息,我们可以先用对数的倒数性质来换底,得到logₐb的表达式:logₐb=log₁₀b/log₁₀a代入已知的对数值,可以计算得到:logₐb=0.5/2=0.25因此,logₐb的值为0.25。

3. 对数函数的应用对数函数在实际问题中有许多应用,特别是在科学和工程领域。

以下举一个应用对数函数的例子。

高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.2 第1课时 对数函数的图象和性质(

高中数学 第四章 指数函数与对数函数 4.4 对数函数 4.4.2 第1课时 对数函数的图象和性质(

第四章 4.4 4.4.2 第1课时A 组·素养自测一、选择题 1.已知函数f (x )=11-x的定义域为M ,g (x )=ln(1+x )的定义域为N ,则M ∩N 等于( C ) A .{x |x >-1} B .{x |x <1} C .{x |-1<x <1}D .∅[解析]由题意知M ={x |x <1},N ={x |x >-1},则M ∩N ={x |-1<x <1},故选C . 2.函数y =log 2x 在[1,2]上的值域是( D ) A .R B .[0,+∞) C .(-∞,1]D .[0,1][解析]∵1≤x ≤2,∴log 21≤log 2x ≤log 22,即0≤y ≤1,故选D . 3.函数y =log a x 的图象如图所示,则实数a 的可能取值为( A )A .5B .15C .1eD .12[解析]∵函数y =log a x 的图象一直上升, ∴函数y =log a x 为单调增函数,∴a >1,故选A . 4.已知log a 13>log b 13>0,则a ,b 的取值X 围是( C )A .1<b <aB .1<a <bC .0<b <a <1D .0<a <b <1 [解析]由log a 13>log b 13>0,得-log a 3>-log b 3>0,得log a 3<log b 3<0,得1log 3a <1log 3b <0,得log 3b <log 3a <0,得0<b <a <1.5.函数f (x )=log 2(3x +3-x )是( B ) A .奇函数B .偶函数C .既是奇函数又是偶函数D .非奇非偶函数[解析]∵3x +3-x >0恒成立, ∴f (x )的定义域为R .又∵f (-x )=log 2(3-x +3x )=f (x ), ∴f (x )为偶函数,故选B .6.(2019·某某潍坊市高一期末测试)已知函数f (x )=⎩⎪⎨⎪⎧(-x )12 (x ≤0)log 2x (x >0),则f [f (116)]的值为( C )A .1B . 2C .2D .4 [解析]∵x >0时,f (x )=log 2x ,∴f (116)=log 2116=log 22-4=-4,又x ≤0时,f (x )=(-x )12 , ∴f (-4)=412 =2. ∴f [f (116)]=f (-4)=2.二、填空题7.已知f (x )=log 9x ,则f (3)=__12__.[解析]f (3)=log 93=log 9912 =12.8.函数y =log 12x -1的定义域为__(0,12]__.[解析]要使函数有意义,须log 12 x -1≥0,∴log 12x ≥1,∴0<x ≤12.∴定义域为(0,12].9.函数f (x )=log 13(2x +9)的值域为__(-∞,-2)__.[解析]f (x )的定义域为R ,又2x >0, 所以2x +9>9.因为y =log 13 x 在(0,+∞)上单调递减,所以log 13 (2x +9)<log 13 9=-2.即f (x )的值域为(-∞,-2). 三、解答题10.已知函数f (x )=lg|x |. (1)判断函数f (x )的奇偶性; (2)画出函数f (x )的图象.[解析](1)要使函数有意义,x 的取值需满足|x |>0,即函数的定义域是(-∞,0)∪(0,+∞)关于原点对称.f (-x )=lg|-x |=lg|x |=f (x ), ∴f (-x )=f (x ). ∴函数f (x )是偶函数.(2)由于函数f (x )是偶函数,则其图象关于y 轴对称,将函数y =lg x (x >0)的图象对称到y 轴的左侧与函数y =lg x (x >0)的图象合起来得函数f (x )的图象,如图所示.11.求下列函数的反函数.(1)y =10x ;(2)y =(45)x ;(3)y =log 13x ;(4)y =log 7x .[解析](1)指数函数y =10x ,它的底数是10,它的反函数是对数函数y =lg x (x >0).(2)指数函数y =(45)x ,它的底数是45,它的反函数是对数函数y =log 45x (x >0).(3)对数函数y =log 13 x ,它底数是13,它的反函数是指数函数y =(13)x .(4)对数函数y =log 7x ,它的底数是7,它的反函数是指数函数y =7x .B 组·素养提升一、选择题1.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点(a ,a ),则f (x )等于( A )A .log 12 xB .log 2xC .12xD .x 2[解析]由题意知f (x )=log a x ,又f (a )=a ,∴log a a =a ,∴a =12,∴f (x )=log 12 x ,故选A .2.(2019·某某莒县一中高一期末测试)已知函数y =log a (x +1)+3+x (a >0且a ≠1)的图象恒过定点A ,若点A 也在函数f (x )=2x +b 的图象上,则b =( C )A .0B .1C .2D .3[解析]令x +1=1,则x =0, y =3,∴A (0,3). ∴3=20+b ,∴b =2.3.(多选题)函数f (x )=log a |x -2|在(2,+∞)上单调递减,那么f (x )在(0,2)上( ABC ) A .单调递增 B .无最小值 C .无最大值D .单调递减 [解析]因为函数f (x )=log a |x -2|在(2,+∞)上单调递减,并且y =|x -2|在(2,+∞)上单调递增,所以0<a <1,那么f (x )在(0,2)上单调递增,且无最大值,也无最小值.4.(多选题)在同一坐标系中,f (x )=kx +b 与g (x )=log b x 的图象如图,则下列关系不正确的是( ABC )A .k <0,0<b <1B .k >0,b >1C .f (1x)g (1)>0(x >0)D .x >1时,f (x )-g (x )>0[解析]由直线方程可知,k >0,0<b <1,故A ,B 不正确;而g (1)=0,故C 不正确;而当x >1时,g (x )<0,f (x )>0,所以f (x )-g (x )>0,所以D 正确.二、填空题5.函数f (x )=log a (x +b )(a >0,且a ≠1)的图象不经过第一象限,则a ,b 的取值X 围分别为__(0,1)__,__[1,+∞)__.[解析]依题意函数必须是减函数,且y =log a x 的图象至少向左平移1个单位长度,故0<a <1,b ≥1.6.对数函数y =log a x 在区间[3,6]上的最大值比最小值大2,则实数a =__2或22__. [解析]由于对数函数y =log a x 是单调函数,故|log a 6-log a 3|=2,即|log a 2|=2,即log a 2=±2,即a 2=2或a -2=2,解得a =2或a =22. 7.已知函数f (x )=⎩⎪⎨⎪⎧x 2-(4a +1)x -8a +4(x <1),log a x (x ≥1),若函数f (x )是(-∞,+∞)上的减函数,则实数a =__⎣⎡⎦⎤14,13__.[解析]若函数f (x )是(-∞,+∞)上的减函数,则下列①②③三个条件同时成立;①x <1时,f (x )=x 2-(4a +1)x -8a +4是减函数,可是4a +12≥1,则a ≥14.②x ≥1时,f (x )=log a x 是减函数,则0<a <1. ③12-(4a +1)×1-8a +4≥0,a ≤13.综上可知,实数a 的取值X 围是⎣⎡⎦⎤14,13. 三、解答题8.已知函数y =f (x )的图象与g (x )=log a x (a >0,且a ≠1)的图象关于x 轴对称,且g (x )的图象过点(9,2).(1)求函数f (x )的解析式;(2)若f (3x -1)>f (-x +5)成立,求x 的取值X 围. [解析](1)由题意知g (9)=log a 9=2,解得a =3, ∴g (x )=log 3x .∵函数y =f (x )的图象与g (x )=log 3x 的图象关于x 轴对称,∴f (x )=log 13 x .(2)∵f (3x -1)>f (-x +5),∴log 13 (3x -1)> log 13 (-x +5),则⎩⎪⎨⎪⎧3x -1>0,-x +5>0,3x -1<-x +5,解得13<x <32,即x 的取值X 围为(13,32).9.已知函数f (x )=lg(x -1). (1)求函数f (x )的定义域和值域; (2)证明:f (x )在定义域上是增函数.[解析](1)要使函数有意义,则x -1>0,解得x >1, 即函数f (x )的定义域是(1,+∞).函数f (x )的定义域是(1,+∞),则u =x -1的值域是(0,+∞),函数f (x )的值域是R . (2)证明:设x 1,x 2为(1,+∞)上的任意两个实数,且x 1<x 2,则有f (x 1)-f (x 2)=lg(x 1-1)-lg(x 2-1)=lg x 1-1x 2-1.∵1<x 1<x 2,∴0<x 1-1<x 2-1.∴0<x 1-1x 2-1<1.又当0<x <1时,y =lg x <0,∴lg x 1-1x 2-1<0.∴f (x 1)<f (x 2).∴f(x)在定义域上是增函数.。

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题(带答案)

高中数学必修一第四章指数函数与对数函数典型例题单选题1、如图所示,函数y =|2x −2|的图像是( )A .B .C .D .答案:B分析:将原函数变形为分段函数,根据x =1及x ≠1时的函数值即可得解. ∵y =|2x −2|={2x −2,x ≥12−2x ,x <1,∴x =1时,y =0,x ≠1时,y >0. 故选:B.2、函数f(x)=2x −1x 的零点所在的区间可能是( ) A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题.3、已知函数f (x )={−2x,x <0−x 2+2x,x ≥0 若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解,则m 的取值范围是( ) A .[0,34]B .(0,34) C .[0,916]D .(0,916) 答案:D分析:根据题意,作出函数f (x )={−2x, x <0,−x 2+2x,x ≥0 与y =12x +m 的图像,然后通过数形结合求出答案.函数f (x )={−2x, x <0,−x 2+2x,x ≥0的图像如下图所示:若关于x 的方程f (x )=12x +m 恰有三个不相等的实数解, 则函数f (x )的图像与直线y =12x +m 有三个交点,若直线y =12x +m 经过原点时,m =0,若直线y =12x +m 与函数f (x )=12x +m 的图像相切,令−x 2+2x =12x +m ⇒x 2−32x +m =0,令Δ=94−4m =0⇒m =916. 故m ∈(0,916). 故选:D .4、函数y =2x −2−x ( )A .是R 上的减函数B .是R 上的增函数C .在(−∞,0)上是减函数,在(0,+∞)上是增函数D .无法判断其单调性 答案:B分析:利用指数函数的单调性结合单调性的性质可得出结论.因为指数函数f (x )=2x 为R 上的增函数,指数函数g (x )=2−x =(12)x为R 上的减函数, 故函数y =2x −2−x 是R 上的增函数. 故选:B.5、若y =log 3a 2−1x 在(0,+∞)内为增函数,且y =a −x 也为增函数,则a 的取值范围是( ) A .(√33,1)B .(0,12)C .(√33,√63)D .(√63,1) 答案:D分析:根据函数单调性,列出不等式组{3a 2−1>10<a <1求解,即可得出结果. 若y =log 3a 2−1x 在(0,+∞)内为增函数,则3a 2−1>1,由y =a −x 为增函数得0<a <1.解不等式组{3a 2−1>10<a <1,得a 的取值范围是(√63,1).故选:D.小提示:本题主要考查由对数函数与指数函数的单调性求参数,涉及不等式的解法,属于基础题型. 6、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( ) A .90<a <100B .90<a <110C .100<a <110D .80<a <100 答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100. 故选:A7、已知a =lg2,10b =3,则log 56=( ) A .a+b 1+aB .a+b 1−aC .a−b 1+aD .a−b 1−a答案:B分析:指数式化为对数式求b ,再利用换底公式及对数运算性质变形. ∵a =lg2, 10b =3, ∴b =lg3, ∴log 56=lg6lg5=lg2×3lg 102=lg2+lg31−lg2=a+b 1−a.故选:B .8、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a =5,b =log 83=13log 23,即23b =3,所以4a−3b =4a 43b=(2a )2(23b )2=5232=259.故选:C. 多选题9、已知函数f (x )={e x −1,x ≥a,−(x +1)2,x <a (a ∈R ) ,则( ) A .任意a ∈R ,函数f (x )的值域为R B .任意a ∈R ,函数f (x )都有零点C .任意a ∈R ,存在函数g (x )满足g (−|x |)=f (x )D .当a ∈(−∞,−4]时,任意x 1≠x 2,(x 1−x 2)(f (x 1)−f (x 2))>0答案:BD分析:画出分段函数图像,根据图像逐项分析即可得到结果设函数y=e x−1和y=−(x+1)2的左右两交点坐标为(x1,y1),(x2,y2)对于选项A,由图像可知,当a<x1时,f(x)的值域不为R,故A错误对于选项B,由图像可知,无论a取何值,函数f(x)都有零点,故B正确对于选项C,当x>0时g(−|x|)=g(−x),g(−|−x|)=g(−x)由图像可知f(−x)≠f(x)所以不存在函数g(x)满足g(−|x|)=f(x)对于选项D,若x1<a,x2<a,因为y=−(x+1)2为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立若x1>a,x2>a因为y=e x−1为增函数,所以对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立当x1,x2不在同一区间时,因为a∈(−∞,−4],所以y=e x−1(x>a)的图像在y=−(x+1)2(x<a)的图像的上方,所以也满足对于任意x1≠x2,(x1−x2)(f(x1)−f(x2))>0成立故D正确故选:BD10、已知实数a,b满足等式2a=3b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b=0其中有可能成立的关系式有()A.①B.②⑤C.②③D.④答案:AB分析:画出指数函数y=2x,y=3x的图象,利用单调生即可得出答案.如图所示,数y=2x,y=3x的图象,由图象可知:( 1 ) 当时x>0,若2a=3b,则a>b;( 2 ) 当x=0时,若2a=3b,则a=b=0;( 3 ) 当x<0时,若2a=3b,则a<b.综上可知,有可能成立的关系式是①②⑤ .故选:AB11、某杂志以每册2元的价格发行时,发行量为10万册.经过调查,若单册价格每提高0.2元,则发行量就减少5000册.要该杂志销售收入不少于22.4万元,每册杂志可以定价为()A.2.5元B.3元C.3.2元D.3.5元答案:BC分析:设每册杂志定价为x(x>2)元,根据题意由(10−x−2×0.5)x≥22.4,解得x的范围,可得答案.0.2依题意可知,要使该杂志销售收入不少于22.4万元,只能提高销售价,×0.5万册,设每册杂志定价为x(x>2)元,则发行量为10−x−20.2则该杂志销售收入为(10−x−2×0.5)x万元,0.2所以(10−x−2×0.5)x≥22.4,化简得x2−6x+8.96≤0,解得2.8≤x≤3.2,0.2故选:BC小提示:关键点点睛:理解题意并求出每册杂志定价为x (x >2)元时的发行量是解题关键. 填空题 12、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒ 原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2 =(1+1232)(1+1216)(1+128)×(1−128)×2 =(1+1232)(1+1216)×(1−1216)×2 =(1+1232)×(1−1232)×2 =(1−1264)×2 =2−1263所以答案是:2−1263﹒13、√a ⋅√a ⋅√a 3的分数指数幂表示为____________答案:a 34分析:本题可通过根式与分数指数幂的互化得出结果.√a ⋅√a ⋅√a 3=√a ⋅√a ⋅a 123=√a ⋅√a 323=√a ⋅a 12=√a 32=a 34, 所以答案是:a 34.14、写出一个同时具有下列性质①②③的函数f(x)=________.①定义域为R;②值域为(−∞,1);③对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.答案:f(x)=1−12x(答案不唯一)分析:直接按要求写出一个函数即可.f(x)=1−12x ,定义域为R;12x>0,f(x)=1−12x<1,值域为(−∞,1);是增函数,满足对任意x1,x2∈(0,+∞)且x1≠x2,均有f(x1)−f(x2)x1−x2>0.所以答案是:f(x)=1−12x(答案不唯一).解答题15、已知函数f(x)=1−2a|x|+1(a>0,a≠1).(1)判断f(x)的奇偶性并证明;(2)若f(x)在[−1,1]上的最大值为13,求a的值.答案:(1)偶函数;证明见解析;(2)a=2.解析:(1)利用奇偶函数的定义证明;(2)讨论去绝对值,并分a>1和0<a<1两种情况讨论函数的单调性,求函数的最大值,建立方程,求a的值.解:(1)f(x)的定义域为R,又f(−x)=1−2a|−x|+1=1−2a|x|+1=f(x)⇒f(−x)=f(x),所以f(x)为偶函数;(2)因为f(x)为偶函数,当0≤x≤1时,f(x)=1−2a|x|+1=1−2a x+1,若a∈(0,1),f(x)=1−2a x+1,函数单调递减,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a x+1,函数单调递增,f(x)max=f(1)=1−2a+1=13⇒a=2,当−1≤x<0,f(x)=1−2a|x|+1=1−2a−x+1,若a∈(0,1),f(x)=1−2a−x+1,函数单调递增,f(x)max=f(0)=0,若a∈(1,+∞),f(x)=1−2a−x+1,函数单调递减,f(x)max=f(−1)=1−2a+1=13⇒a=2,综上,a=2.小提示:关键点点睛:本题考查指数型复合函数证明奇偶性以及根据函数的最值,求参数的取值范围,本题的关键是求函数的单调性,关键是利用函数是偶函数,先去绝对值,再利用复合函数的单调性求函数的单调性,从而确定函数的最值.。

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用

高中数学第二章基本初等函数(Ⅰ)2.2.2对数函数及其性质(第2课时)对数函数及其性质的应用(习题课)应用案巩固提升新人教A 版必修1[A 基础达标]1.已知a =log 0.60.5,b =ln 0.5,c =0.60.5,则( ) A .a >b >c B .a >c >b C .c >a >bD .c >b >a解析:选B.a =log 0.60.5>log 0.60.6=1,b =ln 0.5<0,0<c =0.60.5<0.60=1, 故a >c >b .2.(2019·衡阳高一检测)函数y =log 15(1-3x)的值域为( )A .(-∞,+∞)B .(-∞,0)C .(0,+∞)D .(1,+∞)解析:选C.因为3x>0,所以-3x<0, 所以1-3x<1.又y =log 15t (t =1-3x)是关于t 的减函数,所以y =log 15t >log 151=0.选C.3.(2019·聊城高一检测)关于函数f (x )=log 12(1-2x )的单调性的叙述正确的是( )A .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是增函数B .f (x )在⎝ ⎛⎭⎪⎫12,+∞上是减函数 C .f (x )在⎝ ⎛⎭⎪⎫-∞,12上是增函数D .f (x )在⎝⎛⎭⎪⎫-∞,12上是减函数 解析:选C.由1-2x >0,得x <12,所以f (x )=log 12(1-2x )的定义域为⎝⎛⎭⎪⎫-∞,12.由于底数12∈(0,1),所以函数f (x )=log 12(1-2x )的单调性与y =1-2x 的单调性相反.因为y =1-2x 在(-∞,+∞)上是减函数,所以f (x )在⎝⎛⎭⎪⎫-∞,12上是增函数,故选C. 4.(2019·六安高一检测)若a >1,且log 1ax 1=log a x 2=log a +1x 3<0,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 3<x 2<x 1D .x 3<x 1<x 2解析:选C.因为log 1ax 1=log a x 2=log a +1x 3<0,所以lg x 1lg 1a=lg x 2lg a =lg x 3lg (a +1)<0,因为a >1,则lg 1a<0,lg(a +1)>lg a >0,所以lg x 1>0,lg x 2<0,lg x 3<0,且lg x 2>lgx 3,所以x 1>1,0<x 3<x 2<1,所以x 3<x 2<x 1.5.下列函数为奇函数的是( )A .f (x )=lg ⎝⎛⎭⎪⎫2x +12xB .f (x )=|lg x |C .f (x )=lg |x |D .f (x )=lg 1-x1+x解析:选D.对于选项A 中的函数f (x )=lg ⎝ ⎛⎭⎪⎫2x +12x ,函数定义域为R ,f (-x )=lg ⎝ ⎛⎭⎪⎫2-x +12-x =lg ⎝ ⎛⎭⎪⎫12x +2x =f (x ),故选项A 中的函数为偶函数;对于选项B 中的函数f (x )=|lg x |,由于函数定义域为(0,+∞),不关于原点对称,故选项B 中的函数既不是奇函数,也不是偶函数;对于选项C 中的函数f (x )=lg|x |,定义域为(-∞,0)∪(0,+∞),关于原点对称,f (-x )=lg|-x |=lg|x |=f (x ),故选项C 中的函数为偶函数;对于选项D 中的函数f (x )=lg 1-x 1+x ,由于函数的定义域为(-1,1),关于原点对称,f (-x )=lg 1+x 1-x =-lg 1-x1+x=-f (x ),故选项D 中的函数为奇函数.故选D.6.若lg(2x -4)≤1,则x 的取值范围是________. 解析:由lg(2x -4)≤1得lg(2x -4)≤lg 10, 所以0<2x -4≤10, 解得2<x ≤7. 答案:(2,7]7.(2019·凉州高一检测)已知函数y =log 2(1-x )的值域为(-∞,0),则其定义域是________.解析:因为函数y =log 2(1-x )的值域为(-∞,0),所以0<1-x <1,即-1<x -1<0,解得0<x <1,所以该函数的定义域为(0,1).答案:(0,1)8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为12,则a =________.解析:因为a >1,所以f (x )=log a x 在[a ,2a ]上递增, 所以log a (2a )-log a a =12,即log a 2=12,所以a 12=2,a =4.答案:49.已知函数f (x )是定义在R 上的奇函数.当x >0时,f (x )=log 2x . (1)求f (x )的解析式; (2)解关于x 的不等式f (x )≤12.解:(1)设x <0,则-x >0, 因为当x >0时,f (x )=log 2x , 所以f (-x )=log 2(-x ), 又因为函数f (x )是奇函数,所以f (x )=-f (-x )=-log 2(-x ). 当x =0时,f (0)=0,综上所述,f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,0,x =0,-log 2(-x ),x <0.(2)由(1)得不等式f (x )≤12可化为x >0时,log 2x ≤12,解得0<x ≤ 2.x =0时,0≤12满足条件.x <0时,-log 2(-x )≤12,解得x ≤-22. 综上可知,原不等式的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x |x ≤-22或0≤x ≤2.10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上是增函数.证明:(1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为(0,+∞)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x 21)-log 2(1+x 22)=log 21+x 211+x 22.因为0<x 1<x 2,所以0<x 21<x 22,0<1+x 21<1+x 22,所以0<1+x 211+x 22<1.又函数y =log 2x 在(0,+∞)上是增函数,所以log 21+x 211+x 22<0.所以f (x 1)<f (x 2).所以函数f (x )在区间(0,+∞)上是增函数.[B 能力提升]11.log 12(a 2+a +1)与log 1234的大小关系为( )A .log 12(a 2+a +1)≥log 1234B .log 12(a 2+a +1)>log 1234C .log 12(a 2+a +1)≤log 1234D .log 12(a 2+a +1)<log 1234解析:选C.因为y =log 12x 在(0,+∞)上是减函数,而a 2+a +1=⎝ ⎛⎭⎪⎫a +122+34≥34,所以log 12(a 2+a +1)≤log 1234.12.(2019·大庆高一检测)若⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a .则a ,b 满足的关系式是( )A .a >1且b >1B .a >1且0<b <1C .b >1且0<a <1D .0<a <1且0<b <1解析:选C.因为⎪⎪⎪⎪⎪⎪log a 14=log a 14,且|log b a |=-log b a ,所以log a 14>0,log b a <0,即0<a <1,b >1.13.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-2,求a 的值.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4,又0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )的最小值为log a 4.由log a 4=-2,得a -2=4,所以a =4-12=12.14.(选做题)已知函数f (x )=log a (3-ax ),(1)当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围;(2)是否存在实数a ,使得函数f (x )在区间[1,2]上为减函数,并且最大值为1?如果存在,试求出a 的值;如果不存在,请说明理由.解:(1)由题设,3-ax >0对x ∈[0,2]恒成立,且a >0,a ≠1.设g (x )=3-ax , 则g (x )在[0,2]上为减函数,所以g (x )min =g (2)=3-2a >0,所以a <32.所以实数a 的取值范围是(0,1)∪⎝ ⎛⎭⎪⎫1,32. (2)假设存在这样的实数a ,则由题设知f (1)=1, 即log a (3-a )=1,所以a =32.此时f (x )=log 32⎝ ⎛⎭⎪⎫3-32x . 但x =2时,f (x )=log 320无意义.故这样的实数a 不存在.。

新教材高中数学第四章对数运算与对数函数33第2课时对数函数图象及性质的应用(习题课)课件北师大版

新教材高中数学第四章对数运算与对数函数33第2课时对数函数图象及性质的应用(习题课)课件北师大版

当 log2x=0,即 x=1 时,f(x)取得最大值为 2,
∴函数 f(x)的值域是-14,2.
求函数值域的方法 (1)求对数型函数的值域,一般需要根据对数函数的单调性及真数的取值范 围求解; (2)求函数的值域时,一定要注意定义域对它的影响,并结合函数的单调性 求解,当函数较为复杂时,可对对数函数进行换元,把复杂问题简单化.
(2)[解] 设 u(x)=x2-2ax-a. ∵f(x)在(-∞,-3)上是减函数, ∴u(x)在(-∞,-3)上是减函数, 且 u(x)>0 在(-∞,-3)上恒成立. 又 u(x)=(x-a)2-a-a2 在(-∞,a)上是减函数. ∴au≥(--33,)≥0,∴a≥-95. ∴满足条件的实数 a 的取值范围是-95,+∞.
[跟踪训练] 1.若 y=log(2a-3)x 在(0,+∞)上是增函数,则实数 a 的取值范围为________.
解析:由 y=log(2a-3)x 在(0,+∞)上是增函数,所以 2a-3>1,解得 a>2. 答案:(2,+∞)
2.讨论函数 y=loga(3x-1)的单调性. 解:由 3x-1>0,得函数的定义域为xx>13. 当 a>1,x>13时, 函数 y=f(x)=loga(3x-1)为增函数; 当 0<a<1,x>13时, 函数 y=f(x)=loga(3x-1)为减函数.
[问题探究] 1.已知函数 f(x)=log2( x2+1+x),试判断其奇偶性.
提示:由 f(x)知 x∈R ,
又 f(-x)+f(x)=log2( x2+1-x)+log2( x2+1+x) =log21=0.∴f(x)为奇函数. 2.探究 1 中函数若变为 f(x)=log2( x2+1-x),f(x)还是奇函数吗? 提示:是.

2020年高中数学新教材人教B版必修第2册练习六对数函数的性质与图像97

2020年高中数学新教材人教B版必修第2册练习六对数函数的性质与图像97

课时素养评价六对数函数的性质与图像(25分钟·50分)一、选择题(每小题4分,共16分.多选题全部选对的得4分,选对但不全的得2分,有选错的得0分)1.(多选题)下列函数表达式中,是对数函数的有( )A.y=logπxB.y=ln xC.y=2log4xD.y=log2(x+1)【解析】选A、B.按对数函数的定义式判断.2.(2019·锦州高一检测)函数f(x)=log3(x2-x-2)的定义域为( )A.{x|x>2或x<-1}B.{x|-1<x<2}C.{x|-2<x<1}D.{x|x>1或x<-2}【解析】选A.由题意得:x2-x-2>0,解得:x>2或x<-1,所以函数的定义域是{x|x>2或x<-1}.3.设a=logπ3,b=log3,c=20.4,则( )A.a>b>cB.a>c>bC.c>b>aD.c>a>b【解析】选D.由对数函数的性质可得,0<a=logπ3<logππ=1,b=log3<0,由指数函数的性质可得,c=20.4>20=1,所以c>a>b.4.若log a<1,则a的取值范围是( )A. B.C. D.∪(1,+∞)【解析】选D.由log a<1得:log a<log a a.当a>1时,有a>,即a>1;当0<a<1时,则有0<a<.综上可知,a的取值范围是∪(1,+∞).二、填空题(每小题4分,共8分)5.已知函数f(x)=log a (x+2),若图像过点(6,3),则f(x)=________,f(30)= ________. 【解析】代入 (6,3),得3=log a(6+2)=log a8,即a3=8,所以a=2,所以f(x)=log2(x+2),所以f(30)=log232=5.答案:log2(x+2) 56.函数y=的定义域是________.【解析】由得所以x≥4.答案:[4,+∞)三、解答题(共26分)7.(12分)比较下列各组数的大小;(1)log0.90.8,log0.90.7,log0.80.9.(2)log32,log23,log4.【解析】(1)因为y=log0.9x在(0,+∞)上是减函数,且0.9>0.8>0.7,所以1<log0.90.8<log0.90.7.又因为log0.80.9<log0.80.8=1,所以log0.80.9<log0.90.8<log0.90.7.(2)由log31<log32<log33,得0<log32<1.又因为log23>log22=1,log4<log41=0,所以log4<log32<log23.8.(14分)已知函数f=log a,g=log a,.(1)设a=2,函数g(x)的定义域为[-15,-1], 求g(x)的最大值.(2)当0<a<1时,求使f-g>0的x的取值范围.【解析】(1)当a=2时,g=log2,在上为减函数,因此当x=-15时g的最大值为4 .(2)f-g>0,即f>g,所以当0<a<1时log a>log a,满足所以-1<x<0,故当0<a<1时f(x)-g(x)>0的解集为.(15分钟·30分)1.(4分)(2019·天津高考)已知a=log52,b=log0.50.2,c=0.50.2,则a,b,c的大小关系为( )A.a<c<bB.a<b<cC.b<c<aD.c<a<b【解析】选A.0<a=log52<log5=,b=log0.50.2>log0.50.5=1,1=0.50>c=0.50.2>0.51=,所以a<c<b.2.(4分)若log(a-1)(2x-1)>log(a-1)(x-1),则有( )A.1<a<2,x>0B.1<a<2,x>1C.a>2,x>0D.a>2,x>1【解析】选D.当a>2时,a-1>1,由解得x>1;当1<a<2时,0<a-1<1,由无解.3.(4分)设f(x)=则【解析】因为f(-2)=10-2>0,f(10-2)=lg 10-2,令lg 10-2=a,则10a=10-2,所以a=-2,所以f(f(-2))=-2.答案:-24.(4分)已知对数函数过点(2,4),则f(x)的解析式为【解析】设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则4=log a2,则a4=2,解得a=,故所求对数函数的解析式为f(x)=lo x.答案:f(x)=lo x5.(14分)(2019·衢州高二检测)已知函数f(x)=lg(ax2+x+1).(1)若a=0,求不等式f(1-2x)-f(x)>0的解集.(2)若f(x)的定义域为R,求实数a的取值范围.【解析】(1)a=0时,f(x)=lg(x+1),所以f(1-2x)-f(x)=lg(2-2x)-lg(x+1)>0,所以lg(2-2x)>lg(x+1),所以2-2x>x+1>0,所以x∈.(2)因为f(x)的定义域是R,所以得ax2+x+1>0恒成立.当a=0时,显然不成立,当a≠0时,由解得a>.综上a>.1.若函数y=log2(kx2+4kx+5)的定义域为R,则k的取值范围是( )A. B.C. D.(-∞,0)∪【解析】选B.由题意得:kx2+4kx+5>0在R上恒成立,k=0时,成立,k≠0时,由解得0<k<,综上,k∈.2.(2019·佛山高二检测)已知函数f=log2.(1)判断f(x)的奇偶性并证明你的结论.(2)解不等式f<-1.【解析】(1)f(x)为奇函数,证明:>0⇒-1<x<1, 所以f(x)的定义域为(-1,1),关于原点对称,任取x∈(-1,1), 则-x∈(-1,1),f(-x)+f(x)=log2+log2=log2=log21=0,所以f(-x)=-f(x),所以f(x)为奇函数.(2)由(1)知-1<x<1,log2<-1,所以<2-1=,-==<0, 所以>0,所以x<-或x>1.又因为-1<x<1,所以-1<x<-.综上,不等式f(x)<-1的解集为.。

高中数学-对数函数的图象和性质(二)

高中数学-对数函数的图象和性质(二)

对数函数的图象和性质(二)高中数学函数 1.进一步掌握对数函数的图象和性质.2.利用单调性进一步求函数的定义域和简单值域问题.3.了解反函数的概念和图象特点.一、与对数函数有关的定义域问题例1 求下列函数的定义域:(1)y =;(2)y =;(3)y =.lg (2-x )1log3(3x -2)log4(4-x )x -3解 (1)要使函数式有意义,则lg(2-x )≥0,∴Error!∴x ≤1.故函数的定义域为(-∞,1].(2)要使函数式有意义,则log 3(3x -2)≠0,∴Error!∴x >,且x ≠1.23故函数的定义域为∪(1,+∞).(23,1)(3)要使函数式有意义,则Error!解得x <4,且x ≠3.故函数的定义域为(-∞,3)∪(3,4).反思感悟 (1)对数函数的真数大于0.(2)求定义域的常用方法是解不等式(组),有时在解不等式时,还要考虑函数的单调性.(3)有时求定义域比较特殊,其解法为从外向里一层一层地将对数符号去掉,每去掉一层对数符号都要考虑函数的单调性,最后求出x 的取值范围.跟踪训练1 求下列函数的定义域:(1)y =log (2x +1);(2)y =.3x +22x +x 2lg (2x -1)解 (1)要使函数式有意义,则Error!解得x >-且x ≠0,12∴函数的定义域为∪(0,+∞).(-12,0)(2)要使函数式有意义,则Error!即Error!解得x >,且x ≠1.12∴函数的定义域为∪(1,+∞).(12,1)二、与对数函数有关的综合性问题例2 已知函数f (x )=log 2(x +1)-2.(1)若f (x )>0,求x 的取值范围;(2)若x ∈(-1,3],求f (x )的值域.解 (1)函数f (x )=log 2(x +1)-2,∵f (x )>0,即log 2(x +1)-2>0,∴log 2(x +1)>2,∴x +1>4,∴x >3.∴x 的取值范围是(3,+∞).(2)∵x ∈(-1,3],∴x +1∈(0,4],∴log 2(x +1)∈(-∞,2],∴log 2(x +1)-2∈(-∞,0].∴f (x )的值域为(-∞,0].反思感悟 (1)求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解;(2)判断函数的奇偶性,一定要先求函数的定义域,再研究f (x )与f (-x )的关系.跟踪训练2 函数f (x )=log a (a >0,且a ≠1)的图象( )1+x1-x A .关于原点对称B .关于直线y =x 对称C .关于直线y =-x 对称D .关于y 轴对称答案 A解析 因为函数f (x )的定义域为(-1,1),f (-x )=log a =log a -1=-loga=-f (x ),1-x1+x (1+x 1-x )1+x1-x 所以函数f (x )为奇函数,所以函数图象关于原点对称.三、反函数问题 在同一坐标系下,画出函数y =2x 与y =log 2x 的图象,观察两函数图象的关系.提示 知识梳理反函数:指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0,且a ≠1)互为反函数.它们的定义域与值域正好互换.注意点:(1)同底的指数函数与对数函数互为反函数;(2)互为反函数的两个函数图象关于y =x 对称.(高中阶段只要求掌握这一类反函数)例3 若函数y =f (x )是函数y =2x 的反函数,则f (f (2))的值为( )A .16 B .0 C .1 D .2答案 B解析 函数y =2x 的反函数是y =log 2x ,即f (x )=log 2x .∴f (f (2))=f (log 22)=f (1)=log 21=0.反思感悟 互为反函数的函数的性质(1)同底数的指数函数与对数函数互为反函数.(2)互为反函数的定义域与值域互换.(3)互为反函数的两个函数的图象关于直线y =x 对称.跟踪训练3 函数y =log 3x 的反函数的定义域为( )(13≤x ≤81)A .(0,+∞) B.(13,81)C .(1,4) D .[-1,4]答案 D解析 由y =log 3x ,可知y ∈[-1,4].(13≤x ≤81)所以反函数的定义域为x ∈[-1,4].1.知识清单:(1)利用对数函数的单调性求函数的定义域.(2)求简单对数的值域、最值、奇偶性问题.2.方法归纳:数形结合.3.常见误区:求对数型函数的定义域时,有时需求几部分的交集.1.函数f (x )=的定义域为( )1log2x -1A .(0,2) B .(0,2]C .(2,+∞) D .[2,+∞)答案 C解析 若函数f (x )有意义,则Error!即Error!解得x >2.∴函数f (x )的定义域为(2,+∞).2.函数y =x +log 2x (x ≥1)的值域为( )A .(1,+∞) B .(-∞,1)C .[1,+∞) D .[-1,+∞)答案 C3.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A. B. C .2 D .41412答案 B解析 由题意得f (x )在[0,1]上单调递增或单调递减,∴f (x )的最大值或最小值在端点处取得,即f (0)+f (1)=a ,即1+a +log a 2=a ,∴log a 2=-1,解得a =.124.若函数y =f (x )是函数y =a x (a >0,且a ≠1)的反函数,其图象经过点,则(32,23)a =________.答案 2解析 由题意得f (x )=log a x (a >0,且a ≠1,x >0),因为f (x )的图象过点,所以loga=,所以=,所以a 2=2,所以a =(负值(32,23)322323a 322舍去).课时对点练1.已知函数f (x )=log 2x ,若函数g (x )是f (x )的反函数,则f (g (2))等于( )A .1 B .2 C .3 D .4答案 B解析 ∵g (x )是f (x )的反函数,∴g (x )=2x ,∴g (2)=22=4,则f (g (2))=f (4)=log 24=2.2.若点(a ,b )在函数y =lg x 的图象上,a ≠1,则下列点也在此图象上的是( )A. B .(10a ,1-b )(1a ,b )C. D .(a 2,2b )(10a ,b +1)答案 D解析 因为点(a ,b )在函数y =lg x 的图象上,所以b =lg a .当x =时,有y =lg =-lg 1a 1a a =-b ,所以点不在此函数的图象上,A 不正确;当x =10a 时,有y =lg(10a )=1+lg(1a ,b )a =1+b ,所以点(10a ,1-b )不在此函数的图象上,B 不正确;当x =时,有y =lg 10a =1-lga =1-b ,所以点不在此函数的图象上,C 不正确;当x =a 2时,有10a (10a ,b +1)y =lg a 2=2lg a =2b ,所以点(a 2,2b )在此函数的图象上,D 正确.3.下列三个数:a =ln ,b =-log 3, 大小顺序正确的是( )2332132,3c ⎛⎫⎪⎝⎭=A .c >a >b B .c >b >a C .b >a >c D .a >b >c答案 B解析 ∵0=log 31>b =-log 3=log 3>a =ln ,∴c >b >a .322323132>0,3c ⎛⎫⎪⎝⎭=4.设f (x )是奇函数,当x >0时,f (x )=log 2x ,则当x <0时,f (x )的解析式为( )A .-log 2x B .log 2(-x )C .-log 2(-x ) D .log x 2答案 C解析 当x <0时,-x >0,f (-x )=log 2(-x ).又因为f (x )为奇函数,所以f (-x )=-f (x ),所以f (x )=-f (-x ),所以f (x )=-log 2(-x ).5.某企业2018年全年投入研发资金150万元,为激励创新,该企业计划今后每年投入的研发资金比上年增长8%,则该企业全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg 1.08≈0.033,lg 2≈0.301,lg 3≈0.477)A .2020年 B .2021年C .2022年 D .2023年答案 C解析 设经过n 年该企业全年投入的研发资金开始超过200万元,则150×(1+8%)n ≥200,则n ≥≈≈3.8,取n =4,则经过4年后是2022年.2lg 2-lg 3lg 1.080.602-0.4770.0336.(多选)任取x 1,x 2∈[a ,b ],且x 1≠x 2,若f>恒成立,则f (x )称为(x 1+x 22)f (x 1)+f (x 2)2[a ,b ]上的凸函数,下列函数中在其定义域上为凸函数的是( )A .y =2x B .y =log 2x C .y =-x 2 D .12y x=答案 BCD7.函数f (x )=的定义域为________.4-x 2ln x 答案 (0,1)∪(1,2]解析 由Error!得0<x ≤2,且x ≠1.∴函数f (x )=的定义域为(0,1)∪(1,2].4-x 2ln x 8.设a >1,函数f (x )=log a x 在区间[a ,2a ]上的最大值与最小值之差为,则a =________.12答案 4解析 ∵a >1,∴f (x )=log a x 在[a ,2a ]上单调递增,∴log a (2a )-log a a =,即log a 2=,∴a =4.121212=2,a 9.已知函数f (x )=log a (10+x )-log a (10-x )(a >0,且a ≠1).(1)判断f (x )的奇偶性,并说明理由;(2)若f (x )>0,求x 的取值范围.解 (1)函数f (x )是奇函数.理由如下:要使函数有意义,则Error!解得-10<x <10,即函数的定义域为(-10,10).函数的定义域关于原点对称.则f (-x )=log a (10-x )-log a (10+x )=-[log a (10+x )-log a (10-x )]=-f (x ),即函数f (x )是奇函数.(2)若f (x )>0,则f (x )=log a (10+x )-log a (10-x )>0,即log a (10+x )>log a (10-x ),若a >1,则Error!解得0<x <10,若0<a <1,则Error!解得-10<x <0,综上,当a >1时,x 的取值范围为(0,10),当0<a <1时,x 的取值范围为(-10,0).10.已知函数f (x )=log 2(1+x 2).求证:(1)函数f (x )是偶函数;(2)函数f (x )在区间(0,+∞)上单调递增.证明 (1)函数f (x )的定义域是R ,f (-x )=log 2[1+(-x )2]=log 2(1+x 2)=f (x ),所以函数f (x )是偶函数.(2)设x 1,x 2为区间(0,+∞)内的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=log 2(1+x )-log 2(1+x )=log 2.2121+x 211+x 2由于0<x 1<x 2,则0<x <x ,0<1+x <1+x ,212212所以0<<1,1+x 211+x 2所以log 2<0,1+x 211+x 2所以f (x 1)<f (x 2),所以函数f (x )在区间(0,+∞)上单调递增.11.已知函数f (x )=x ∈,则f (x )的值域是( )12log ,x [14,22]A. B. C. [0,2] D.[12,2][-12,2][0,12]答案 A解析 因为函数f (x )=在上单调递减,所以函数f (x )的最小值为f =12log x [14,22](22)函数的最大值为f =所以函数的值域为.121log ,2 (14)121log =2,4[12,2]12.函数f (x )=lg|x |为( )A .奇函数,在区间(0,+∞)上单调递减B .奇函数,在区间(0,+∞)上单调递增C .偶函数,在区间(-∞,0)上单调递增D .偶函数,在区间(-∞,0)上单调递减答案 D解析 已知函数的定义域为(-∞,0)∪(0,+∞),关于坐标原点对称,且f (-x )=lg|-x |=lg|x |=f (x ),所以它是偶函数;当x >0时,f (x )=lg x 在区间(0,+∞)上单调递增,又因为f (x )为偶函数,所以f (x )=lg|x |在区间(-∞,0)上单调递减.13.函数f (x )=lg(+x )的奇偶性为( )x 2+1A .奇函数 B .偶函数C .非奇非偶函数D .既奇又偶函数答案 A解析 易知该函数的定义域为R ,又f (x )+f (-x )=lg(+x )+lg(-x )=lg[(x 2+1x 2+1+x )·(-x )]=lg 1=0,∴f (x )=-f (-x ),x 2+1x 2+1∴f (x )为奇函数.14.如图,已知正方形ABCD 的边长为2,BC 平行于x 轴,顶点A ,B 和C 分别在函数y 1=3log a x ,y 2=2log a x 和y =log a x (a >1)的图象上,则实数a 的值为________.答案 2解析 设B (x ,2log a x ),∵BC 平行于x 轴,∴C (x ′,2log a x ),即log a x ′=2log a x ,∴x ′=x 2,∴正方形ABCD 的边长=|BC |=x 2-x =2,解得x =2.由已知,得AB 垂直于x 轴,∴A (x ,3log a x ),正方形ABCD 边长=|AB |=3log a x -2log a x =log a x =2,即log a 2=2,∴a =.215.已知f (x )=|log 3x |,若f (a )>f (2),则a 的取值范围为________________.答案 ∪(2,+∞)(0,12)解析 作出函数f (x )的图象,如图所示,由于f (2)=f ,故结合图象可知0<a <或a >2.(12)1216.已知函数f (x )=的图象关于原点对称,其中a 为常数.121log 1axx --(1)求a 的值;(2)若当x ∈(1,+∞)时,f (x )+恒成立,求实数m 的取值范围.()12log 1x m <-解 (1)∵函数f (x )的图象关于原点对称,∴函数f (x )的定义域关于原点对称,∵>0,1-ax x -1∴(x -1)(1-ax )>0,令(x -1)(1-ax )=0,得x 1=1,x 2=,∴=-1,a =-1,1a 1a 经验证,a =-1满足题意.(2)∵()()()()111122221log 1log log 1log 11xf x x x x x +-+-=+-=+,∴当x >1时,()12log 1+<1,x 又当x ∈(1,+∞)时,f (x )+恒成立,()12log 1<x m -∴m ≥-1.即实数m 的取值范围是[-1,+∞).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学:对数函数的图象及性质的应用练习
【选题明细表】
知识点、方法题号
对数值大小的比较1,3
利用对数函数单调性解不等式或方程4,9,10
对数函数性质的综合应用5,6,7,8,11,12,13
反函数 2
1.若m∈(,1),a=lg m,b=lg m2,c=(lg m)3,则( C )
(A)a<b<c (B)c<a<b
(C)b<a<c (D)b<c<a
解析:因为m∈(,1),所以a=lg m<0,1>m>m2>0,
所以a>b,c=(lg m)3>lg m=a,所以c>a>b.故选C.
2.若函数y=f(x)与函数y=ln+1的图象关于直线y=x对称,则f(x)等于( A )
(A)e2x-2(B)e2x
(C)e2x+1(D)e2x+2
解析:若两个函数的图象关于直线y=x对称,那么这两个函数互为反函数,而y=ln+1的反函数为y=e2x-2,故选A.
3.若log m3<log n3<0,则m,n应满足的条件是( D )
(A)m>n>1 (B)n>m>1
(C)1>n>m>0 (D)1>m>n>0
解析:因为log m3<log n3<0,
所以0<n<1,0<m<1且<<0,
即lg 3(-)<0⇔lg 3()<0.
因为lg 3>0,lg m<0,lg n<0,所以lg n-lg m<0,
即lg n<lg m⇔n<m,所以1>m>n>0.故选D.
4.已知函数f(x)=log(a-1)(2x+1)在(-,0)内恒有f(x)>0,则a的取值范围是( D )
(A)(1,+∞) (B)(0,1)
(C)(0,2) (D)(1,2)
解析:由-<x<0,得0<2x+1<1.
若f(x)>0恒成立,则0<a-1<1.所以1<a<2.
5.函数f(x)=lo(x2-2x)的单调递增区间是( D )
(A)(1,+∞) (B)(2,+∞)
(C)(-∞,1) (D)(-∞,0)
解析:函数f(x)=lo(x2-2x)的定义域为
(2,+∞)∪(-∞,0),

函数的单调增区间即u=x2-2x的单调减区间,
u=x2-2x的单调减区间为(-∞,0).故选D.
6.若函数f(x)=ln(x2+ax+1)是偶函数,则实数a的值为.
解析:函数f(x)=ln(x2+ax+1)是偶函数,
所以f(x)=f(-x),即ln(x2+ax+1)=ln(x2-ax+1),
所以ax=-ax在函数的定义域中总成立,所以a=0.
答案:0
7.不等式lo(4x+2x+1)>0的解集为 .
解析:由lo(4x+2x+1)>0,得4x+2x+1<1,即(2x)2+2·2x<1,配方得(2x+1)2<2, 所以2x<-1,两边取以2为底的对数,
得x<log2(-1).
答案:(-∞,log2(-1))
8.已知函数f(x)=lg(1+x)+lg(1-x).
(1)求函数f(x)的定义域;
(2)判断函数f(x)的奇偶性;
(3)求函数f(x)的值域.
解:(1)由求得-1<x<1,
所以函数f(x)的定义域为(-1,1).
(2)定义域关于原点对称,对于任意的x∈(-1,1),
因为f(-x)=lg(1-x)+lg(1+x)=f(x),
所以f(x)为偶函数.
(3)f(x)=lg[(1+x)(1-x)]=lg(1-x2).
由x∈(-1,1)可得t=1-x2∈(0,1],
所以y≤lg 1=0,
所以函数f(x)的值域为(-∞,0].
9.已知log2b<log2a<log2c,则( A )
(A)()b>()a>()c
(B)()a>()b>()c
(C)()c>()b>()a
(D)()c>()a>()b
解析:因为log2b<log2a<log2c,所以c>a>b,
所以()b>()a>()c.故选A.
10.(2018·许昌五校高一联考)函数f(x)=log a|x-1|在(0,1)上是减函数,那么f(x)在(1,+∞)上( A )
(A)递增且无最大值 (B)递减且无最小值
(C)递增且有最大值 (D)递减且有最小值
解析:由|x-1|>0得,函数y=log a|x-1|的定义域为{x|x≠1}.
设g(x)=|x-1|=
则有g(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数.
因为f(x)=log a|x-1|在(0,1)上是减函数,
所以a>1.
所以f(x)=log a|x-1|在(1,+∞)上递增且无最大值.
11.函数y=lo(-x2+6x-5)在区间(m,m+1)上为减函数,则m的取值范围为.
解析:令t=-x2+6x-5,由t>0得x∈(1,5),
因为y=lo t为减函数,
所以要使y=lo(-x2+6x-5)在区间(m,m+1)上为减函数,
则需要t=-x2+6x-5在区间(m,m+1)上为增函数,
又函数t=-x2+6x-5的对称轴方程为x=3,
所以
解得1≤m≤2.
答案:[1,2]
12.已知函数f(x)=log a(a>0,且a≠1)的图象关于原点对称,求m 的值.
解:根据已知条件,对于定义域内的一切x,都有f(-x)=-f(x),即f(-x)+f(x)=0,
所以log a+log a=0.
整理得log a=0,
所以=1,即(m2-1)x2=0.
所以m2-1=0.所以m=1或m=-1.
若m=1,=-1,f(x)无意义,
则舍去m=1,所以m=-1.
13.已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值以及y取最大值时x的值. 解:因为f(x)=2+log3x,
所以y=[f(x)]2+f(x2)
=(2+log3x)2+2+log3x2
=(2+log3x)2+2+2log3x
=(log3x)2+6log3x+6
=(log3x+3)2-3.
因为函数f(x)的定义域为[1,9],
所以要使函数y=[f(x)]2+f(x2)有意义,
必须满足所以1≤x≤3,
所以0≤log3x≤1.所以6≤y=(log3x+3)2-3≤13.
当log3x=1,即x=3时,y=13.
所以当x=3时,函数y=[f(x)]2+f(x2)取得最大值13.。

相关文档
最新文档