第7章 图像分割技术
第七章 图像分割_PPT课件
– 鲁棒局部特征,抗变形能力强,适用于匹配
• 7.3 阈值法 —— 全局阈值法
• 思路
– 将分割问题视为面向每一个像素的分类问题,通常使用简单的阈 值不等式判断像素的类别。
• 条件
– 待分割区域与背景区域在像素级特征上存在明显的差异,而两个 区域内部像素在统计上各自具有较强的相似性。从特征直方图上 看,具有明显的双峰分布的图像比较适合使用阈值法进行分割
• 自然图像理解
• 7.2 图像特征概述
•亮度 •直方图 •变换系数 •边缘 •纹理 •关键点
• 7.2 图像特征概述
•亮度
– 空间连续性,稠密性,直观,敏感性
•直方图
– 统计特征,抗线性几何变换
•变换系数
– 频域统计特征,提供一种完全不同的视角
•边缘
– 符合视觉习惯,是形状信息的基础
•纹理
– 局部不连续性和全局相似性的统一
• 7.3 阈值法 —— 全局阈值法
• 如何确定阈值T?
–迭代法 –大津法 (OTSU) –最优阈值法 –最大熵法 –众数法 –矩不变法 ……
• 7.3 阈值法 —— 全局阈值法
• 迭代阈值法
1)选取一个的初始估计值T; 2)用T分割图像。这样便会生成两组像素集合:G1由所有灰度值大 于T的像素组成,而G2由所有灰度值小于或等于T的像素组成。 3)对G1和G2中所有像素计算平均灰度值u1和u2。 4)计算新的阈值:T=1/2(u1 + u2)。 重复步骤(2)到(4),直到T值更新后产生的偏差小于一个事先定 义的参数T0。
• 从优化的角度看,迭代阈值法的目标函数:
• 7.3 阈值法 —— 全局阈值法
• 大津法(OTSU) – 寻找使类间离散度最大化的阈值T – 类间离散度的数学定义
使用图像处理技术进行图像分割的步骤
使用图像处理技术进行图像分割的步骤图像分割是数字图像处理中的一个基础任务,它的主要目标是将一幅图像划分成若干个具有语义信息的区域,以便进一步分析和处理。
图像分割在计算机视觉、医学影像、工业自动化等领域有着广泛的应用。
在进行图像分割时,我们可以使用图像处理技术来实现。
下面将介绍使用图像处理技术进行图像分割的步骤。
第一步是预处理。
在进行图像分割之前,我们需要对图像进行一些预处理操作,以便提高分割的效果。
预处理的步骤可以包括图像去噪、图像平滑、图像增强等。
去噪操作可以通过使用滤波器来消除图像中的噪声,例如均值滤波、中值滤波等。
图像平滑可以通过使用滤波器来减少图像中的细节,例如高斯滤波器、均值滤波器等。
图像增强可以通过直方图均衡化、对比度增强等方法来提高图像的清晰度和对比度。
第二步是特征提取。
在进行图像分割时,我们需要选择适当的特征来描述图像中的目标和背景区域。
特征提取的目的是将原始图像转化为具有区分性的特征向量。
常用的特征提取方法包括灰度统计特征、纹理特征、形状特征等。
灰度统计特征可以通过计算图像的均值、方差、最大值、最小值等来描述图像的灰度分布特性。
纹理特征可以通过计算图像的纹理统计量来描述图像的纹理结构特性,例如共生矩阵、灰度共生矩阵等。
形状特征可以通过计算图像的边缘信息来描述图像的几何形状特性,例如边缘直方图、边界形状描述符等。
第三步是分割方法的选择。
在进行图像分割时,我们可以选择不同的分割方法来实现目标区域的提取。
常用的分割方法包括基于阈值的分割、基于边缘的分割、基于区域的分割等。
基于阈值的分割是最简单和常用的分割方法之一,它将图像根据阈值的大小将像素分成不同的区域。
基于边缘的分割是通过检测图像中的边缘信息来实现目标区域的提取,常用的边缘检测算法包括Canny算子、Sobel算子等。
基于区域的分割是通过将图像中的像素划分到不同的区域来实现目标区域的提取,常用的区域分割算法包括区域生长、分水岭算法等。
图像分割方法
图像分割方法图像分割是图像处理的基本任务之一,它是用来从图像中将特征区分出来的一种编程技术,以提高图像处理任务的效率。
简单地说,图像分割是把一幅图像划分成若干个小块,每块代表一个特定的物体或物体的一部分。
它允许人们更好地理解图像的全局结构和本质,也有助于改善图像识别、检测、分类、检索等方面的性能。
图像分割的本质是将图像分解成两部分:分割区域和非分割区域。
分割区域是指要分割出的物体,而非分割区域表示背景或其他无关物体。
此外,分割有两个重要的部分:分割质量与分割效率。
常见的图像分割方法有基于边缘的方法、基于区域的方法和基于分段树的方法等。
基于边缘的方法是通过边缘检测技术检测图像中的边缘,然后将边缘分割出来,完成图像的分割。
由于这种方法主要考虑的是边缘信息,它不考虑整体的空间关系,所以当边缘信息不够时,可能会出现分割失败的现象。
因此,基于边缘的方法并不是很常用。
基于区域的方法是在图像中检测物体的区域,并将这些区域进行分割。
这种方法可以考虑整体的空间关系,但是也容易在细节考虑方面出现问题,比如区域界限不清晰,或者两个不同物体太接近,造成分割失败。
基于分段树的方法是利用每个像素的连通性和空间关系来构建连通域,然后分割连通域中的物体。
基于分段树的方法不仅可以考虑整体的空间关系,而且可以考虑细节的关系,由于考虑范围较广,因此在一些图像分割任务上,分段树的方法可以得到较好的效果。
此外,还有一种新兴的图像分割技术深度学习。
它采用了深度神经网络,通过深度学习网络可以实现半自动化的图像分割,它的效率要比传统的图像分割技术更高,具有潜力发展。
总之,图像分割是一种非常重要的图像处理技术,它可以帮助人们更好的理解图像的结构,改善图像识别的性能,并且可以应用在诸如自动驾驶、目标跟踪等领域中。
未来,深度学习在图像分割领域也将发挥很重要的作用,带来更高效率、更精确的分割结果。
HALCON数字图像处理-第7章 图像分割
典型算子
一阶算子
Roberts算子利用局部差分算子寻找边缘,边缘定 位较准,但容易丢失一部分边缘,同时由于图像没有经过平滑 处理,因此不具有抑制噪声的能力。该算子对具有陡峭边缘且 含噪声少的图像处理效果较好。
Sobel算子很容易在空间上实现。Sobel算子边缘 检测器不但产生较好的边缘检测效果,同时因为Sobel算子引 入了局部平均,使其受噪声的影响也比较小。当使用较大的模 板时,抗噪声特性会更好,但是这样会增大计算量,并且得到 的边缘比较粗。
HALCON数字图像处理
Hough变换 Hough变换是一种检测、定位直线和解析曲线的有效方法。它是 把二值图变换到Hough参数空间,在参数空间用极值点的检测来完成 目标的检测。 在实际中由于噪声和光照不均等因素,使得在很多情况下所获 得的边缘点是不连续的,必须通过边缘连接将它们转化为有意义的 边缘,一般的做法是对经过边缘检测的图像进一步使用连接技术, 从而将边缘像素组合成完整的边缘。
HALCON数字图像处理
7.3 区域分割
区域分割利用的是图像的空间性质,认为分割出 来的属于同一区域的像素应具有相似的性质。传统的 区域分割方法有区域生长和区域分裂与合并,还有源 于地形学的分水岭分割。
HALCON数字图像处理
1、区域生长法
区域生长也称为区域生成,其基本思想是将一幅图 像分成许多小的区域,并将具有相似性质的像素集合起 来构成区域。
HALCON数字图像处理
典型算子 像素边缘提取和亚像素边缘提取
例如某CMOS摄像机芯片,其像素间距为5.2微米。两 个像素之间有5.2微米的距离,在宏观上可以看作是连在一起 的。但是在微观上,它们之间还有更小的东西存在,这个更小 的东西我们称它为“亚像素”。
图像分割方法
图像分割方法图像分割是计算机视觉领域中的一个重要问题,它旨在将图像分成具有语义信息的区域。
图像分割在许多应用中都扮演着重要的角色,比如医学图像分析、自动驾驶、图像检索等。
针对不同的应用场景,有多种图像分割方法被提出并应用于实际问题中。
本文将介绍几种常见的图像分割方法,并对它们的原理和特点进行简要的分析。
1. 阈值分割。
阈值分割是一种简单而有效的图像分割方法。
其基本思想是将图像的灰度值按照设定的阈值进行划分,从而将图像分成不同的区域。
对于灰度图像,可以根据像素的灰度值与设定的阈值进行比较,将像素分为目标和背景两类。
阈值分割方法简单易行,但对光照变化和噪声敏感,对于复杂背景和多目标分割效果有限。
2. 边缘检测分割。
边缘检测分割是一种基于图像边缘信息的分割方法。
其基本思想是利用图像中目标与背景之间的边缘信息进行分割。
常用的边缘检测算子有Sobel、Prewitt、Canny等。
通过检测图像中的边缘信息,可以将图像分成具有明显边界的区域。
边缘检测分割方法对光照变化和噪声具有一定的鲁棒性,但在边缘连接处容易出现断裂和断点。
3. 区域生长分割。
区域生长分割是一种基于像素生长的分割方法。
其基本思想是从种子点开始,根据一定的生长准则逐步将与种子点相邻且满足条件的像素加入到同一区域中,直到满足停止准则为止。
区域生长分割方法适用于具有明显区域特征的图像,对于光照变化和噪声具有一定的鲁棒性,但对于种子点的选择和生长准则的确定比较敏感。
4. 基于深度学习的分割方法。
随着深度学习技术的发展,基于深度学习的图像分割方法逐渐成为研究热点。
深度学习模型如FCN、U-Net等在图像分割领域取得了显著的成果。
这些方法利用卷积神经网络对图像进行端到端的学习,能够有效地提取图像的语义信息,对于复杂背景和多目标分割效果较好。
总结。
图像分割是计算机视觉领域中的重要问题,有许多方法可以用来实现图像分割。
不同的方法适用于不同的应用场景,具有各自的特点和局限性。
图像分割技术的使用教程与案例分析
图像分割技术的使用教程与案例分析图像分割是计算机视觉领域的重要研究方向,它指的是将图像分成若干个具有相似特征的区域。
图像分割广泛应用于医学图像分析、目标检测、无人驾驶等领域。
本文将详细介绍图像分割技术的使用教程,并分享一些经典案例分析。
一、图像分割的基础原理图像分割的目标是将图像中的每个像素分配到对应的区域,使得同一区域内的像素具有相似的特征。
常用的图像分割方法包括基于阈值、边缘检测、区域生长、聚类等。
1. 基于阈值的分割方法:这是最简单且常用的分割方法,通过设定阈值,将图像中灰度值高于或低于阈值的像素分为不同的区域。
可以根据应用场景的需求来选择适当的阈值。
2. 边缘检测:边缘检测可以提取图像中的边界信息,然后根据边界信息将图像分割成不同的区域。
常用的边缘检测算法包括Sobel、Canny等。
3. 区域生长:区域生长是根据像素的相似性原则进行的,从种子像素开始,将与之相邻且相似的像素归为同一区域,逐步扩展分割区域。
区域生长的效果受到种子的选择、相似性准则的设定等因素的影响。
4. 聚类:聚类方法将图像像素聚合成若干个具有相似特征的集群,进而实现对图像的分割。
常用的聚类方法有K-means、Mean-shift等。
二、图像分割工具的使用教程在实际应用中,图像分割常常借助计算机软件或工具进行。
以下是两个常用的图像分割工具的使用教程。
1. OpenCVOpenCV是一个开源的计算机视觉库,提供了丰富的图像处理和计算机视觉算法。
下面是使用OpenCV进行图像分割的简单示例:(1)导入必要的库:```pythonimport cv2import numpy as np```(2)读取图像:```pythonimage = cv2.imread('image.jpg')```(3)将图像转换成灰度图像:```pythongray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)```(4)使用阈值方法进行分割,以获得二值图像:```pythonret, binary = cv2.threshold(gray, 127, 255, cv2.THRESH_BINARY)```(5)显示分割结果:```pythoncv2.imshow('Segmentation', binary)cv2.waitKey(0)cv2.destroyAllWindows()```2. MATLABMATLAB是一种常用的科学计算工具,也提供了丰富的图像处理与分析函数。
机器学习知识:机器学习中的图像分割
机器学习知识:机器学习中的图像分割随着人工智能技术的日益发展,图像分割技术在计算机视觉领域中扮演着越来越重要的角色。
图像分割是一种将图像切割成不同区域/像素的过程,每个区域/像素都具有独特的颜色、强度、纹理、形状等特征。
应用广泛的图像分割任务包括目标检测、医学图像分析、卫星图像处理等。
现在我将为大家详细介绍一下机器学习中的图像分割。
一.图像分割的定义图像分割是一种将图像切割成不同区域/像素的过程,每个区域/像素都具有独特的颜色、强度、纹理、形状等特征。
图像分割可以帮助我们更好地理解图像,同时也是许多计算机视觉算法的前提和核心步骤。
图像分割也是将数字图像转化为计算机可以使用的更简单、更具有代表性的表示形式。
二.常见的图像分割算法1.基于阈值的分割算法基于阈值的分割算法是最简单、最快捷的图像分割算法之一。
该算法基于图像中像素的灰度值,对像素根据其灰度值进行“黑白分割”,然后还可以运用形态学处理等操作,提高分割效果。
基于阈值的分割算法的速度快,因此非常适用于处理大量图像。
2.区域增长算法区域增长算法是一种通过像素间的邻接关系逐渐生成图像分割的方法。
该算法使用一个生长过程,将像素合并成区域。
在这个过程中,每个像素都有一个初始颜色和下一次生长时应该具有的颜色。
通过比较邻近像素间的颜色,从而判断在哪些位置进行分割。
区域增长算法可以自动确定最终分割的颜色,同时也可以检测边缘,因此非常适合处理那些具有复杂纹理的图像。
3.基于聚类的分割算法基于聚类的分割算法是一种常用的图像分割方法,该算法将所有像素分成不同的组/簇。
组/簇的个数可以由用户指定,也可以根据算法自动调整。
处理步骤分为三步,首先将像素用多维特征表示,然后使用聚类算法将像素聚类成不同的组/簇,最后通过应用分割后每个像素与组/簇之间的关系来实现图像分割。
基于聚类的分割算法比基于阈值的分割算法更加精细,同时也更加容易应用于复杂的纹素分布中。
4.基于卷积神经网络的分割算法卷积神经网络(CNN)是一种深度学习算法,近年来在图像分割中应用越来越广泛。
第7章图象分割与区域提取
第7章图象分割与区域提取图像分割就是将图像中不同性质的区域分开,将相同性质且相邻的像素分在同一区域,以便提取感兴趣的目标区域,识别图像的背景和主体,分析其颜色、纹理、形状、位置、大小等特征。
如果把图像看成是像素的集合,则图像分割可用数学方法做如下定义:令集合R代表整个图像区域,对R的分割可看作将R分成若干个满足以下5个条件的非空的子集(子区域)R1, R2, …, Rn:(1);(2) 对所有的i和j,,有;(3) 对i = 1, 2,…, n,有P(Ri ) = TRUE;(4) 对,有;(5) 对i = 1, 2, …, n,Ri是连通的区域。
其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,是空集。
图像分割所依据的像素的性质可以是多方面的,如颜色(灰度)、纹理、位置、变换等方面的性质。
在人们识别图像中的物体时,对图像的区域分割和物体的形状判断,综合利用了像素的各种性质、物体形状的先验知识和逻辑推理等,包括分析像素的颜色和邻域位置关系,检测与判断物体的边缘,利用形状模板对边缘轮廓连接,物体的结构、组成和空间关系等。
人类复杂的心理活动计算机很难模拟,因此图像分割一直是图像处理、图像分析和计算机视觉等领域经典的研究难题之一。
目前,图像分割的方法主要有三类:基于边缘的图像分割、基于像素聚类的图像分割和基于区域的图像分割。
基于边缘的分割是利用对象与背景的明显边缘来提取对象的边缘轮廓,由闭合边缘线围成的区域就是对象的轮廓区域。
基于边缘的分割方法有微分算子、边缘拟合、边界跟踪等,比较适合于分割边缘明显的图像,如卡通图、图形等。
这类方法定位准确,但对噪声敏感,提取的边缘线常常不能闭合。
基于像素聚类的分割是利用图像中像素的共性(如颜色、邻域内的纹理特性、分形维数等)进行聚类,形成具有形似性质的像素聚类区域。
同一对象的像素应该聚类为同一区域,从而实现对象的区域分割。
这类方法应该是图像区域分割的理想方法,但实现的困难在于如何选择像素的性质,有时难以对对象的像素性质进行抽象和描述。
胡学龙《数字图像处理(第二版)》课后习题解答
2
1.PHOTOSHOP:当今世界上一流的图像设计与制作工具,其优越性能令其产品望尘 莫及。PHOTOSHOP 已成为出版界中图像处理的专业标准。高版本的 P扫描仪、数码相机等图像输入设备采集的图 像。PHOTOSHOP 支持多图层的工作方式,只是 PHOTOSHOP 的最大特色。使用图层功能 可以很方便地编辑和修改图像,使平面设计充满创意。利用 PHOTOSHOP 还可以方便地对 图像进行各种平面处理、绘制简单的几何图形、对文字进行艺术加工、进行图像格式和颜色 模式的转换、改变图像的尺寸和分辨率、制作网页图像等。
1.5 常见的数字图像处理开发工具有哪些?各有什么特点? 答.目前图像处理系统开发的主流工具为 Visual C++(面向对象可视化集成工具)和 MATLAB 的图像处理工具箱(Image Processing Tool box)。两种开发工具各有所长且有相互 间的软件接口。 Microsoft 公司的 VC++是一种具有高度综合性能的面向对象可视化集成工具,用它开发 出来的 Win 32 程序有着运行速度快、可移植能力强等优点。VC++所提供的 Microsoft 基础 类库 MFC 对大部分与用户设计有关的 Win 32 应用程序接口 API 进行了封装,提高了代码 的可重用性,大大缩短了应用程序开发周期,降低了开发成本。由于图像格式多且复杂,为 了减轻程序员将主要精力放在特定问题的图像处理算法上,VC++ 6.0 提供的动态链接库 ImageLoad.dll 支持 BMP、JPG、TIF 等常用 6 种格式的读写功能。 MATLAB 的图像处理工具箱 MATLAB 是由 MathWorks 公司推出的用于数值计算的有 力工具,是一种第四代计算机语言,它具有相当强大的矩阵运算和操作功能,力求使人们摆 脱繁杂的程序代码。MATLAB 图像处理工具箱提供了丰富的图像处理函数,灵活运用这些 函数可以完成大部分图像处理工作,从而大大节省编写低层算法代码的时间,避免程序设计 中的重复劳动。MATLAB 图像处理工具箱涵盖了在工程实践中经常遇到的图像处理手段和 算法,如图形句柄、图像的表示、图像变换、二维滤波器、图像增强、四叉树分解域边缘检 测、二值图像处理、小波分析、分形几何、图形用户界面等。但是,MATLAB 也存在不足 之处限制了其在图像处理软件中实际应用。首先,强大的功能只能在安装有 MATLAB 系统 的机器上使用图像处理工具箱中的函数或自编的 m 文件来实现。其次,MATLAB 使用行解 释方式执行代码,执行速度很慢。第三,MATLAB 擅长矩阵运算,但对于循环处理和图形 界面的处理不及 C++等语言。为此,通应用程序接口 API 和编译器与其他高级语言(如 C、 C++、Java 等)混合编程将会发挥各种程序设计语言之长协同完成图像处理任务。API 支持 MATLAB 与外部数据与程序的交互。编译器产生独立于 MATLAB 环境的程序,从而使其他 语言的应用程序使用 MATLAB。
图像分割算法的原理与效果评估方法
图像分割算法的原理与效果评估方法图像分割是图像处理中非常重要的一个领域,它指的是将一幅图像分割成多个不同的区域或对象。
图像分割在计算机视觉、目标识别、医学图像处理等领域都有广泛的应用。
本文将介绍图像分割算法的原理以及评估方法。
一、图像分割算法原理图像分割算法可以分为基于阈值、基于边缘、基于区域和基于图论等方法。
以下为其中几种常用的图像分割算法原理:1. 基于阈值的图像分割算法基于阈值的图像分割算法是一种简单而高效的分割方法。
它将图像的像素值进行阈值化处理,将像素值低于阈值的部分归为一个区域,高于阈值的部分归为另一个区域。
该算法的优势在于计算速度快,但对于复杂的图像分割任务效果可能不理想。
2. 基于边缘的图像分割算法基于边缘的图像分割算法通过检测图像中的边缘来实现分割。
常用的边缘检测算法包括Sobel算子、Canny算子等。
该算法对边缘进行检测并连接,然后根据连接后的边缘进行分割。
优点是对于边缘信息敏感,适用于复杂场景的分割任务。
3. 基于区域的图像分割算法基于区域的图像分割算法将图像分割成多个区域,使得每个区域内的像素具有相似的属性。
常用的方法包括区域生长、分裂合并等。
该算法将相邻的像素进行聚类,根据像素之间的相似度和差异度进行分割。
优点是在复杂背景下有较好的分割效果。
4. 基于图论的图像分割算法基于图论的图像分割算法将图像看作是一个图结构,通过图的最小割分割图像。
常用的方法包括图割算法和分割树算法等。
该算法通过将图像的像素连接成边,将图像分割成多个不相交的区域。
该算法在保持区域内部一致性和区域间差异度的同时能够有效地分割图像。
二、图像分割算法的效果评估方法在进行图像分割算法比较和评估时,需要采用合适的评估指标。
以下为常用的图像分割算法的效果评估方法:1. 兰德指数(Rand Index)兰德指数是一种常用的用于评估图像分割算法效果的指标。
它通过比较分割结果和真实分割结果之间的一致性来评估算法的性能。
医学图像分割介绍课件
01
02
阈值分割对噪声较为敏感,噪声的存在可能会影响分割效果。
抗噪性能差
考虑区域特征
基于区域的分割方法考虑了像素间的空间关系和区域内的特征相似性,通过将具有相似性质的像素聚合成一个区域来图像质量的要求较低,适用于目标与背景差异不明显、光照不均匀、噪声较多的情况。
计算复杂度高
基于区域的分割方法通常需要迭代或动态规划来计算最优解,计算复杂度较高,耗时较长。
VS
利用边缘信息
基于边缘的分割方法利用图像中不同区域间的边缘信息进行分割,通过检测和跟踪边缘来实现图像分割。
对噪声敏感
基于边缘的分割方法对噪声较为敏感,噪声的存在可能会干扰边缘检测和跟踪。
对细节保留较好
基于阈值的分割方法
随着技术的发展,基于区域的分割方法逐渐兴起,如区域生长、分裂合并等。
基于区域的分割方法
利用图像中的边缘信息进行分割,如Canny边缘检测等。
基于边缘的分割方法
近年来,基于模型的分割方法成为研究热点,如水平集方法、变分法等。
基于模型的分割方法
02
CHAPTER
医学图像分割的基本原理
由于设备性能、采集参数等因素,医学图像中可能出现伪影。这些伪影可能导致图像分割算法误判,影响分割精度。
伪影
噪声
人体器官会随着呼吸、心跳等生理活动而发生动态变化,这要求图像分割算法能够适应这种变化,并准确地进行分割。
病变组织如肿瘤的生长、扩散等,也会导致图像的动态变化。分割算法需要能够识别并处理这些变化。
动态生理变化
病变组织的动态变化
05
CHAPTER
医学图像分割的未来展望
深度学习技术为医学图像分割提供了强大的工具,通过训练深度神经网络,可以实现高精度的图像分割。
图像分割技术的原理及方法
浅析图像分割的原理及方法一.研究背景及意义研究背景:随着人工智能的发展,机器人技术不断地应用到各个领域。
信息技术的加入是智能机器人出现的必要前提。
信息技术泛指包括通信技术、电子技术、信号处理技术等相关信息化技术的一大类技术。
它的应用使得人们今天的生活发生了巨大变化。
从手机到高清电视等家用电器设备出现使我们的生活越来越丰富多彩。
在一些军用及民用领域近几年出现了一些诸如:图像制导、无人飞机、无人巡逻车、人脸识别、指纹识别、语音识别、车辆牌照识别、汉字识别、医学图像识别等高新技术。
实现它们的核心就是图像处理、机器视觉、模式识别、智能控制、及机器人学等相关知识。
其中图像处理具有重要地位。
而图像分割技术是图像分析环节的关键技术。
研究图像分割技术的意义:人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,同时视觉信息是人类从自然界中获得信息的主要来源,约占人类获得外部世界信息量的80%以上。
图像以视觉为基础通过观测系统直接获得客观世界的状态,它直接或间接地作用于人眼,反映的信息与人眼获得的信息一致,这决定了它和客观外界都是人类最主要的信息来源,图像处理也因此成为了人们研究的热点之一。
人眼获得的信息是连续的图像,在实际应用中,为便于计算机等对图像进行处理,人们对连续图像进行采样和量化等处理,得到了计算机能够识别的数字图像。
数字图像具有信息量大、精度高、内容丰富、可进行复杂的非线性处理等优点,成为计算机视觉和图像处理的重要研究对象。
在一幅图像中,人们往往只对其中的某些区域感兴趣,称之为前景,这些区域内的某些空间信息特性(如灰度、颜色、轮廓、纹理等)通常与周围背景之间存在差别。
图像分割就是根据这些差异把图像分成若干个特定的、具有独特性质的区域并提取感兴趣目标的技术和过程。
在数字图像处理中,图像分割作为早期处理是一个非常重要的步骤。
为便于研究图像分割,使其在实际的图像处理中得到有效的应用,严格定义图像分割的概念是十分必要的。
图像分割算法的原理及实现
图像分割算法的原理及实现图像分割是一种将图像按照某种特定的准则进行拆分的技术,它被广泛应用于计算机视觉领域中的目标定位、图像识别以及医疗领域的病变检测等领域。
图像分割算法的实现要点包括图像特征提取、分割方法选择、分割效果评估等内容。
本文将从原理和实现两个层面对图像分割算法进行深入讲述。
一、图像分割算法原理的概述1.1 图像分割算法的基本原理图像分割是将图像按照其特征和相似性划分为若干个具有这些特征的部分的过程。
通常情况下,图像分割的基本原理是:首先通过预处理将图像中的噪声去除或减小,再进行特征提取来识别图像中感兴趣的目标或区域;接着根据预先设定的分割方法将图像划分为若干个子目标或子区域。
1.2 图像分割算法基本分类按照分割策略,图像分割算法可分为以下三类。
1.2.1 基于阈值的图像分割算法基于阈值的图像分割算法,是将图像根据像素值的分布情况进行分割。
分割时,选择一个阈值,通过枚举阈值的不同取值,找到最佳分割点,将图像分成两个子区域。
此类方法实现简单,但对于复杂场景和多目标识别效果会比较差。
1.2.2 基于区域的图像分割算法这类方法首先根据图像特征将图像中不同的区域分割出来,再通过分割区域外的连续边界将相邻区域进行合并。
1.2.3 基于边缘处理的图像分割算法这类方法首先对图像中的边缘进行检测,再根据边缘连接将图像区域划分为不同的部分。
此类方法对噪声敏感较小,但对于曲线和空间位置的变化比较大的图像难以处理。
二、图像分割算法实现的方法和技术2.1 图像特征提取在实现图像分割的过程中,需要对图像进行特征提取。
主要有以下两种方法。
2.1.1 基于像素点的特征提取方法这种方法主要是根据像素点的位置、颜色等特征进行分割。
其中,像素点的位置是指在图像中的坐标位置,而像素点的颜色是指在图像中的颜色属性。
2.1.2 基于图像区域的特征提取方法这种方法是根据不同区域的纹理、形状或颜色等进行分割。
该方法常用的特征提取技术包括SIFT、SURF、LBP等。
《MATLAB图像处理实例详解》课件Chapter_7a第7章 图像分割技术
7.4.1 区域生长法
区域生长是一种串行区域分割的图像分割方法。区域生长的基本思想是将 具有相似性质的像素集合起来构成区域。区域增长方法根据同一物体区域 内像素的相似性质来聚集象素点的方法,从初始区域(如小邻域或单个象 素)开始,将相邻的具有同样性质的象素或其它区域归并到目前的区域中 从而逐步增长区域,直至没有可以归并的点或其它小区域为止。区域内象 素的相似性度量可以包括平均灰度值、纹理、颜色等信息。
差分来逼近梯度算子,即:
2、Prewitt算子 下面介绍Prewitt算子。 Prewitt算子的大小为3×3,如下所示:
这两个算子分别代表图像的水平梯度和垂直梯度。 3、Sobel算子 Sobel算子的大小和Prewitt算子的大小相同,都是3×3。Soble算子的模板如下所示:
在MATLAB中,函数edge( )可以采用Sobel算子进行边缘检测。
设为图像的位置处的灰度值,灰度级为,则。若灰度级的所有像素个数为, 则第级灰度出现的概率为:
其中
,并且
。
7.3.3 迭代式阈值分割
迭代阈值法是阈值法图像分割中比较有效的方法,通过迭代的方法来求出 分割的最佳阈值,具有一定的自适应性。迭代法阈值分割的步骤如下:
(1)设定参数,并选择一个初始的估计阈值。 (2)用阈值分割图像。将图像分成两部分:是由灰度值大于的像素组成,
对于图像中的间断点,常用的检测模板为:
对于图像中的线段,常用的检测模板为:
2 1 1
1 2 1
1 1 2
7.4ቤተ መጻሕፍቲ ባይዱ2 微分算子
常用的微分算子有Sobel算子、Prewitt算子和Roberts算子。通过这些算子对图像进 行滤波,就可以得到图像的边缘。下面分别进行介绍。
第7章图像分割1
-1 1
Grad( x,y ) T 其它
-1
1
为了检测边缘点,选取适当的阈值T,对梯度图像进行二值化,则有:
1 g ( x, y ) 0
这样形成了一幅边缘二值图像g(x,y).
特点:仅计算相邻像素的灰度差,对噪声比较敏感,无法抑止噪声的影响。
2)Roberts算子
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx’Leabharlann fy’-1• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度
算子略好。
3) Prewitt算子
• 公式 f x f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1)
1
1
1
• 特点:在检测边缘的同时,能抑止噪声的影响.
4)Sobel算子
• 公式
f x f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f y f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1)
3 0
3 3
3 3 3
3 0
3 -5
医学影像处理中的图像分割教程
医学影像处理中的图像分割教程图像分割是医学影像处理中的重要任务之一。
它指的是将一幅图像分割成若干个组成部分的过程,每个部分代表一种不同的结构或对象。
图像分割在医学诊断、手术规划和治疗等方面有着广泛的应用,为医生提供了重要的帮助和支持。
本文将介绍医学影像处理中常用的图像分割方法及其实现。
1. 阈值分割阈值分割是最简单且常用的图像分割方法之一。
它基于像素的灰度值,将图像分成两个区域:灰度值大于某个阈值的像素属于一个区域,灰度值小于等于阈值的像素属于另一个区域。
阈值的选择对图像分割的结果有着重要影响,通常需要根据具体的应用场景进行调整。
2. 区域生长区域生长是一种基于像素的生长方法,其原理是从一个或多个种子点开始,通过迭代地选择与当前区域相连且与它们灰度值相似的像素进行合并,最终形成一些连通的区域。
区域生长方法相对于阈值分割方法更加灵活,能够得到更好的分割结果。
然而,它在处理边界模糊的图像时容易受到噪声的干扰,因此需要采取一些预处理或后处理的措施来提高分割的准确性。
3. 边缘检测边缘检测是指识别图像中各个物体之间的边界或轮廓。
医学图像中的边缘信息对于诊断和治疗非常关键。
常用的边缘检测算法包括Sobel 算子、Canny算子和Laplacian算子等。
这些算子基于图像的灰度梯度信息,能够有效地检测出图像中的边缘特征。
然而,在医学影像处理中,由于噪声和图像质量等因素的影响,边缘检测常常需要采用多种方法的组合,并进行后处理来提高分割效果。
4. 活动轮廓模型活动轮廓模型(Active Contour Model),也称为Snakes算法,是一种基于能量最小化的图像分割方法。
它通过定义一个概率能量函数,将轮廓视为画在图像上的一条曲线,并通过最小化能量函数来达到分割图像的目的。
活动轮廓模型在医学影像处理中得到了广泛的应用,尤其在分割复杂的器官和病灶方面具有独特的优势。
5. 卷积神经网络卷积神经网络(CNN)是一种深度学习方法,在医学影像处理中取得了极大的成功。
医学影像处理中的图像分割技术研究
医学影像处理中的图像分割技术研究一、绪论医学影像处理技术的发展已经逐渐成为医学领域中的重要分支。
其中,图像分割技术的应用得到了特别的重视。
图像分割技术可以将医学图像中感兴趣的区域提取出来,并且将它们与其他区域分开。
这可以帮助医生更好地理解病变的形态、大小、位置以及密度等特征,从而做出正确的诊断和治疗方案。
本文将从医学影像处理的角度对图像分割技术进行深入探讨。
二、图像分割技术概述图像分割技术是医学影像处理中最基本的技术之一,它可将需要研究的医学图像中目标区域与其他区域从像素级别分离出来。
根据分割目的和特点,图像分割可分为几种类型。
分割类型可以根据颜色、纹理、形状或物体之间的区别进行分类。
以下是几种常见的分割技术。
1. 基础阈值分割此种方法适用于二值图像。
通过确定图像中颜色、灰度值等的阈值,将像素分成两部分:黑色或白色。
阈值可以根据图像特征来设置,如直方图分析等。
2. 区域生长分割区域生长是一个基于相邻像素的分割方法,它可以根据目标区域周边像素的特征将像素合并成一个连续区域。
3. 骨头分割技术骨头分割技术可以分离成像时光线通过骨头时透射出来的区域。
这需要通过一些算法消除其他物质对骨头区域的遮挡。
4. 三维分割技术三维分割技术可以实现对体扫描中的各种组织、器官以及病变区域的交互式分割。
由于体扫描中的三维数据非常庞大,所以三维分割技术需要更高效的算法来处理。
以上是一些常见的图像分割技术,各个技术使用的方法不同,可以根据实际应用场景来选择使用。
三、图像分割技术的应用医学影像处理中的图像分割技术可以广泛应用于临床诊断、治疗规划、医学研究以及医学教育等方面。
1. 临床诊断在临床诊断中,医学影像处理中的图像分割技术可以帮助医生确定病灶所在的位置、大小以及与周围组织的关系。
通过图像分割技术,医生可以更快地判断病变的恶性程度,并且可以更好地确定手术范围,从而提高治疗效率。
2. 治疗规划对于一些复杂的疾病,治疗规划是非常必要的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
第7章 7.2 边缘检测
2.拉普拉斯算子
第7章 7.2 边缘检测
Sobel边缘提取
Laplacian边缘提取
Sobel算子:比较粗略的边界,边界信息较少,但较清晰; Laplacian算子:比较细致的边界,边界信息包括了许多的细 节,但不是太清晰。
第7章 7.3 轮廓跟踪和图搜索
轮廓跟踪: 串行边界技术!
利用一些像素邻域的局部性质来变换原来的直 方图以得到一个新的直方图。
新直方图类别:
1)低梯度值像素的直方图 其中峰之间的谷比原直方图深; 2)高梯度值像素的直方图 其中的峰是由原直方图的谷转化而来的。
第7章 7.6 基于变换直方图选取阈值
1)低梯度值像素的直方图 像素的梯度值:
目标和背景内部的像素具有较低的梯度值; 边界上的像素具有较高的梯度值;
1 g ( x, y ) 0 如 f (x, y ) > T 如 f (x, y ) ≤ T
第7章 7.5 阈值分割
阈值选取方法——极小值点阈值
将直方图的包络看作一条曲线 求曲线极小值
h( z ) 0 z 和 2 h( z ) 0 2 z
第7章 7.5 阈值分割
阈值选取方法——最优阈值
最小误差(误分割)阈值 设目标和背景均为高斯分布,则混合概率密度:
p( z ) P 1 p1 ( z ) P 2 p2 ( z )
2 2 P ( z ) P ( z ) 1 1 2 2 exp exp 2 2 2 2 21 2 2 1 2
X 起点
(7) (2) (2)
2
(5) (7) (2)
7
(0,0) (1,0)
(1,0) (2,0)
Y
(5) (1) (0)
9
(0,1) (1,1)
12
(1,0) (1,1)
2
(1,1) (1,0)
2
(1,1) (2,1)
总代价最小:
K
3
(0,2) (1,2)
1
(1,1) (1,2)
13
(1,2) (1,1)
(4)在搜索区域中,选择梯度最大点作为下一轮廓点; (5)以刚才的C作为新的P,以刚确定的点作为新的C继续 搜索,直到回到起点形成封闭轮廓。
第7章 7.3 轮廓跟踪和图搜索
图搜索:
将轮廓点和轮廓段用图结构表示 一个图可表示为G = {N, A} 对任一段弧(ni, nj)都可定义1个代价函数
K
C c(ni 1 , ni )
第7章 7.9 区域生长
区域生长基本思想:
将相似像素结合起来构成区域
基本步骤:
(1) 选择区域的种子像素 (2) 确定将相邻像素包括进来的准则 (3) 制定生长停止的规则
第7章 7.9 区域生长
种子的选取: 最亮像素
聚类重心
生长准则:(基于灰度差)
(1)对图像进行逐行扫描,找出尚没有归属的像素; (2)以该像素为中心检查它的邻域像素,如果灰度差小于 阈值,将它们合并; (3)以新合并的像素为中心,返回到步骤(2),检查新 像素的邻域,直到区域不再生长; (4)返回到步骤(1),继续扫描直到不能发现没有归属 的像素,则结束整个生长过程。
第7章 7.4 哈夫变换
运算量比较:
<参数空间>Hough变换:
图中n个点,P轴分为K份,需nK次运算; 若K<n,总计算量<n2
<图像空间>直接计算:
约n2次运算以确定n(n-1)/2条线 约n3次运算以比较n个点中的每一个与n(n-1)/2 条线中的每一条
第7章 7.4 哈夫变换
典型应用:圆检测 (x-a)2+(y-b)2=r2
k:灰度级 hk:像素数
(3)结束条件:Ti+1=Ti
第7章 7.5 阈值分割
阈值选取方法——迭代阈值
L 1i Ti hk k hk k 1 k Ti1 1 Ti 1 k 0 Ti L 1i 2 hk hk k Ti1 1 k 0
直方图中:
直方图中的峰对应目标或背景区域;
具有低梯度值像素的直方图中:
峰值对应目标或背景区域,基本不变; 减少边界点,谷比原直方图深!
第7章 7.6 基于变换直方图选取阈值
计算加权直方图:
1 权重: (1 g ) 2
低梯度权重大 高梯度权重小
第7章 7.6 基于变换直方图选取阈值
(a) 圆叠加噪声
(b)边缘检测
(c)Hough变换
(d)检测结果
第7章 7.5 阈值分割
并行区域类分割方法
图像模型: 双峰直方图
(由目标和背景的2个单峰直方图混合而成)
大小接近,均值相距远,均方差小 取阈值分割步骤: (1) 确定阈值 (2) 根据阈值对像素分类
第7章 7.5 阈值分割
单阈值分割:
点-线对偶性:
图像空间中共线的点参数空间里相交的线; 参数空间中相交于一点的线图像空间共线的点
哈夫变换:
把在图像空间中的检测问题转换到参数空间里, 在参数空间进行累加统计完成检测
第7章 7.4 哈夫变换
计算步骤
(1) 对参数空间中p和q的可能取值 范围量化,并构造累加数组: A(pmin:pmax, qmin:qmax) 初始化为0; (2) 对每个XY空间中的给定点让p取 遍所有可能值,计算出q,根据 p和q的值累加A: A(p, q) = A(p, q)+1; (3) 根据累加后A中最大值所对应的p 和q,定出XY中的一条直线。
Sobel算子运算实例:
1*1+2*2+1*3-1*3-2*0-1*8= -3
1 2 3 1 2
2 1 0 2 3
3 2 8 7 2
2 6 7 8 6
1 2 6 6 9
0 0 0 0 0
0
0
0
0 0 0 0 0
-3
1 0
-13 -20
-6 -13 -13 12 0 5 0
第7章 7.2 边缘检测
模板的方向性:
2 f [ f y ( i , j ) f y ( i , j 1)] 2 y [ f ( i , j ) f ( i , j 1)] [ f ( i , j 1) f ( i , j )]
f 4 f (i, j) f (i 1, j) f (i 1, j) f (i, j 1) f (i, j 1)
另一种最优阈值
k:灰度级 hk:像素数
比较器
开关函数 前景积分器 开关 阈值平均 背景积分器
输入图像
第7章 7.6 基于变换直方图选取阈值
仅利用像素灰度可能出现的问题:
直方图中峰之间的谷被填充,使谷的检测很困难。
解决方法:
利用像素邻域的局部性质
第7章 7.6 基于变换直方图选取阈值
1.直方图变换 基本思想:
一个轴是灰度值轴,一个轴是梯度值轴; 统计值是同时具有某个灰度值和梯度值的像素个数。
H(f(x), f’(x))
f’(x)
f(x)
第7章 7.9 区域生长
串行区域类分割方法 特点:
当前处理借助早期结果 优点:抗噪声,抗干扰 缺点:较复杂,费时间
分类:
区域生长:从单个像素出发,逐渐合并形成分割区域 分裂合并:从全图出发,逐渐分裂切割至分割区域
由一个边缘点出发,依次搜索并连接相邻边缘 点,从而逐步检测出轮廓。
步骤:
1. 确定作为搜索起点的边缘点; 2. 确定和采取一种合适的数据结构的搜索机理,在已 发现的轮廓点基础上确定新的轮廓点; 3. 确定搜索终结条件。
第7章 7.3 轮廓跟踪和图搜索
例:
(1)计算目标图像的梯度,选取梯度最大点作为起点; (2)在起点的8邻域中选梯度最大的点作为第二轮廓点; (3)根据当前点C和前一轮廓点P的相对位置,在以下8幅 图中选择搜索区域;
第7章 7.2 边缘检测
边缘:灰度值不连续的结果
可利用导数检测 一阶(梯度算子)、二阶(Laplacian算子)
第7章 7.2 边缘检测
1.梯度算子:
一阶导数算子
f ( x, y ) [Gx f Gy ] x
T
f y
T
卷积模板:
第7章 7.2 边缘检测
6
(1,2) (2,2)
C c(ni 1 , ni )
i 2
第7章 7.4 哈夫变换
•图像空间和参数空间之间的变换; •利用全局特性,受噪声和边界间断影响小
y=px+q:图像空间XY中 所有过点(x,y)的直线
q=-px+y:参数空间PQ中 过点(p,q)的一条直线
第7章 7.4 哈夫变换
Toptimal P2 1 2 2 ln 2 1 2 P 1
第7章 7.5 阈值分割
阈值选取方法——迭代阈值
(1)设定初始阈值T0 (2)迭代求阈值Ti+1
L 1i Ti hk k hk k 1 k Ti1 1 Ti 1 k 0 Ti L 1i 2 hk hk k Ti1 1 值的均方差
P1和P2:背景和目标区域的先验概率,可知P1+P2=1
第7章 7.5 阈值分割
最优阈值的计算: 背景
目标
T
2
误分概率: E1 (T )
p ( z )dz
E2 (T ) p1 ( z ) dz
T
总概率: E (T ) P2 E1 (T ) P1 E2 (T ) 对E(T)求导,令导数为零: P 1 p1 (T ) P 2 p2 (T ) 结合高斯密度,令目标 和背景均方差相等: