(精品)高一下期中数学试卷及答案
人教版高一下学期期中考试数学试卷及答案解析(共五套)
人教版高一下学期期中考试数学试卷(一)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为312.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a 的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.参考答案一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.点C是线段AB靠近点B的三等分点,下列正确的是()A.B.C.D.【答案】D【分析】根据共线向量的定义即可得结论.【解答】解:由题,点C是线段AB靠近点B的三等分点,=3=﹣3,所以选项A错误;=2=﹣2,所以选项B和选项C错误,选项D正确.故选:D.【知识点】平行向量(共线)、向量数乘和线性运算2.已知复数z满足z(3+i)=3+i2020,其中i为虚数单位,则z的共轭复数的虚部为()A.B.C.D.【答案】D【分析】直接利用复数代数形式的乘除运算化简,然后利用共轭复数的概念得答案.【解答】解:∵z(3+i)=3+i2020,i2020=(i2)1010=(﹣1)1010=1,∴z(3+i)=4,∴z=,∴=,∴共轭复数的虚部为,故选:D.【知识点】复数的运算3.如图,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,则•的值为()A.﹣1 B.﹣3 C.1 D.【答案】C【分析】利用图形,求出数量积的向量,然后转化求解即可.【解答】解:由题意,▱ABCD中,∠DAB=60°,AD=2AB=2,延长AB至点E,且AB=BE,可知=+=,=﹣=﹣2,所以•=()•(﹣2)=﹣2﹣2=1.故选:C.【知识点】平面向量数量积的性质及其运算4.设i是虚数单位,则2i+3i2+4i3+……+2020i2019的值为()A.﹣1010﹣1010i B.﹣1011﹣1010iC.﹣1011﹣1012i D.1011﹣1010i【答案】B【分析】利用错位相减法、等比数列的求和公式及其复数的周期性即可得出.【解答】解:设S=2i+3i2+4i3+ (2020i2019)∴iS=2i2+3i3+ (2020i2020)则(1﹣i)S=i+i+i2+i3+……+i2019﹣2020i2020.==i+==﹣2021+i,∴S==.故选:B.【知识点】复数的运算5.如图,在正方体ABCD﹣A1B1C1D1中,异面直线A1B与CD所成的角为()A.30°B.45°C.60°D.135°【答案】B【分析】易知∠ABA1即为所求,再由△ABA1为等腰直角三角形,得解.【解答】解:因为AB∥CD,所以∠ABA1即为异面直线A1B与CD所成的角,因为△ABA1为等腰直角三角形,所以∠ABA1=45°.故选:B.【知识点】异面直线及其所成的角6.在△ABC中,角A,B,C所对的边分别为a,b,c,若(a﹣2b)cos C=c(2cos B﹣cos A),△ABC的面积为a2sin,则C=()A.B.C.D.【答案】C【分析】先利用正弦定理将已知等式中的边化角,再结合两角和公式与三角形的内角和定理,可推出sin B=2sin A;然后利用三角形的面积公式、正弦定理,即可得解.【解答】解:由正弦定理知,==,∵(a﹣2b)cos C=c(2cos B﹣cos A),∴(sin A﹣2sin B)cos C=sin C(2cos B﹣cos A),即sin A cos C+sin C cos A=2(sin B cos C+cos B sin C),∴sin(A+C)=2sin(B+C),即sin B=2sin A.∵△ABC的面积为a2sin,∴S=bc sin A=a2sin,根据正弦定理得,sin B•sin C•sin A=sin2A•sin,化简得,sin B•sin cos=sin A•cos,∵∈(0,),∴cos>0,∴sin==,∴=,即C=.故选:C.【知识点】正弦定理、余弦定理7.在正方体ABCD﹣A1B1C1D1中,下列四个结论中错误的是()A.直线B1C与直线AC所成的角为60°B.直线B1C与平面AD1C所成的角为60°C.直线B1C与直线AD1所成的角为90°D.直线B1C与直线AB所成的角为90°【答案】B【分析】连接AB1,求出∠ACB1可判断选项A;连接B1D1,找出点B1在平面AD1C上的投影O,设直线B1C与平面AD1C所成的角为θ,由cosθ=可判断选项B;利用平移法找出选项C和D涉及的异面直线夹角,再进行相关运算,即可得解.【解答】解:连接AB1,∵△AB1C为等边三角形,∴∠ACB1=60°,即直线B1C与AC所成的角为60°,故选项A正确;连接B1D1,∵AB1=B1C=CD1=AD1,∴四面体AB1CD1是正四面体,∴点B1在平面AD1C上的投影为△AD1C的中心,设为点O,连接B1O,OC,则OC=BC,设直线B1C与平面AD1C所成的角为θ,则cosθ===≠,故选项B错误;连接BC1,∵AD1∥BC1,且B1C⊥BC1,∴直线B1C与AD1所成的角为90°,故选项C正确;∵AB⊥平面BCC1B1,∴AB⊥B1C,即直线B1C与AB所成的角为90°,故选项D正确.故选:B.【知识点】直线与平面所成的角、异面直线及其所成的角8.如图,四边形ABCD为正方形,四边形EFBD为矩形,且平面ABCD与平面EFBD互相垂直.若多面体ABCDEF的体积为,则该多面体外接球表面积的最小值为()A.6πB.8πC.12πD.16π【答案】A【分析】由题意可得AC⊥面EFBD,可得V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD,再由多面体ABCDEF 的体积为,可得矩形EFBD的高与正方形ABCD的边长之间的关系,再由题意可得矩形EFBD的对角线的交点为外接球的球心,进而求出外接球的半径,再由均值不等式可得外接球的半径的最小值,进而求出外接球的表面积的最小值.【解答】解:设正方形ABCD的边长为a,矩形BDEF的高为b,因为正方形ABCD,所以AC⊥BD,设AC∩BD=O',由因为平面ABCD与平面EFBD互相垂直,AC⊂面ABCD,平面ABCD∩平面EFBD=BD,所以AC⊥面EFBD,所以V ABCDEF=V C﹣EFBD+V A﹣EFBD=2V A﹣EFBD=2•S EFBD•CO'=•a•b•a =a2b,由题意可得V ABCDEF=,所以a2b=2;所以a2=,矩形EFBD的对角线的交点O,连接OO',可得OO'⊥BD,而OO'⊂面EFBD,而平面ABCD⊥平面EFBD,平面ABCD∩平面EFBD=BD,所以OO'⊥面EFBD,可得OA=OB=OE=OF都为外接球的半径R,所以R2=()2+(a)2=+=+=++≥3=3×,当且仅当=即b=时等号成立.所以外接球的表面积为S=4πR2≥4π•3×=6π.所以外接球的表面积最小值为6π.故选:A.【知识点】球的体积和表面积二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.在△ABC中,角A,B,C的对边分别为a,b,c,若a2=b2+bc,则角A可为()A.B.C.D.【答案】BC【分析】由已知利用余弦定理整理可得cos A=,对于A,若A=,可得b=<0,错误;对于B,若A=,可得b=>0,对于C,若A=,可得b=>0,对于D,若A=,可得c=0,错误,即可得解.【解答】解:因为在△ABC中,a2=b2+bc,又由余弦定理可得:a2=b2+c2﹣2bc cos A,所以b2+bc=b2+c2﹣2bc cos A,整理可得:c=b(1+2cos A),可得:cos A=,对于A,若A=,可得:﹣=,整理可得:b=<0,错误;对于B,若A=,可得:=,整理可得:b=>0,对于C,若A=,可得:cos==,整理可得:b=>0,对于D,若A=,可得:cos=﹣=,整理可得:c=0,错误.故选:BC.【知识点】余弦定理10.如图,四边形ABCD为直角梯形,∠D=90°,AB∥CD,AB=2CD,M,N分别为AB,CD的中点,则下列结论正确的是()A.B.C.D.【答案】ABC【分析】由向量的加减法法则、平面向量基本定理解决【解答】解:由,知A正确;由知B正确;由知C正确;由N为线段DC的中点知知D错误;故选:ABC.【知识点】向量数乘和线性运算、平面向量的基本定理11.下列说法正确的有()A.任意两个复数都不能比大小B.若z=a+bi(a∈R,b∈R),则当且仅当a=b=0时,z=0C.若z1,z2∈C,且z12+z22=0,则z1=z2=0D.若复数z满足|z|=1,则|z+2i|的最大值为3【答案】BD【分析】通过复数的基本性质,结合反例,以及复数的模,判断命题的真假即可.【解答】解:当两个复数都是实数时,可以比较大小,所以A不正确;复数的实部与虚部都是0时,复数是0,所以B正确;反例z1=1,z2=i,满足z12+z22=0,所以C不正确;复数z满足|z|=1,则|z+2i|的几何意义,是复数的对应点到(0,﹣2)的距离,它的最大值为3,所以D正确;故选:BD.【知识点】复数的模、复数的运算、虚数单位i、复数、命题的真假判断与应用12.如图,已知ABCD﹣A1B1C1D1为正方体,E,F分别是BC,A1C的中点,则()A.B.C.向量与向量的夹角是60°D.异面直线EF与DD1所成的角为45°【答案】ABD【分析】在正方体ABCD﹣A1B1C1D1中,建立合适的空间直角坐标系,设正方体的棱长为2,根据空间向量的坐标运算,以及异面直线所成角的向量求法,逐项判断即可.【解答】解:在正方体ABCD﹣A1B1C1D1中,以点A为坐标原点,分别以AB,AD,AA1为x 轴、y轴、z轴建立空间直角坐标系,设正方体的棱长为2,则A(0,0,0),A1(0,0,2),B(2,0,0),B1(2,0,2),C (2,2,0),D(0,2,0),D1(0,2,2),所以,故,故选项A正确;又,又,所以,,则,故选项B正确;,所以,因此与的夹角为120°,故选项C错误;因为E,F分别是BC,A1C的中点,所以E(2,1,0),F(1,1,1),则,所以,又异面直线的夹角大于0°小于等于90°,所以异面直线EF与DD1所成的角为45°,故选项D正确;故选:ABD.【知识点】异面直线及其所成的角三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知正方形ABCD的边长为2,点P满足=(+),则||=;•=.【分析】根据向量的几何意义可得P为BC的中点,再根据向量的数量积的运算和正方形的性质即可求出.【解答】解:由=(+),可得P为BC的中点,则|CP|=1,∴|PD|==,∴•=•(+)=﹣•(+)=﹣2﹣•=﹣1,故答案为:,﹣1.【知识点】平面向量数量积的性质及其运算14.若虛数z1、z2是实系数一元二次方程x2+px+q=0的两个根,且,则pq=.【答案】1【分析】设z1=a+bi,则z2=a﹣bi,(a,b∈R),根据两个复数相等的充要条件求出z1,z2,再由根与系数的关系求得p,q的值.【解答】解:由题意可知z1与z2为共轭复数,设z1=a+bi,则z2=a﹣bi,(a,b∈R 且b≠0),又,则a2﹣b2+2abi=a﹣bi,∴(2a+b)+(a+2b)i=1﹣i,∴,解得.∴z1=+i,z2=i,(或z2=+i,z1=i).由根与系数的关系,得p=﹣(z1+z2)=1,q=z1•z2=1,∴pq=1.故答案为:1.【知识点】复数的运算15.已知平面四边形ABCD中,AB=AD=2,BC=CD=BD=2,将△ABD沿对角线BD折起,使点A到达点A'的位置,当A'C=时,三棱锥A﹣BCD的外接球的体积为.【分析】由题意画出图形,找出三棱锥外接球的位置,求解三角形可得外接球的半径,再由棱锥体积公式求解.【解答】解:记BD的中点为M,连接A′M,CM,可得A′M2+CM2=A′C2,则∠A′MC=90°,则外接球的球心O在△A′MC的边A′C的中垂线上,且过正三角形BCD的中点F,且在与平面BCD垂直的直线m上,过点A′作A′E⊥m于点E,如图所示,设外接球的半径为R,则A′O=OC=R,,A′E=1,在Rt△A′EO中,A′O2=A′E2+OE2,解得R=.故三棱锥A﹣BCD的外接球的体积为.故答案为:.【知识点】球的体积和表面积16.已知一圆锥底面圆的直径为3,圆锥的高为,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为.【分析】根据题意,该四面体内接于圆锥的内切球,通过内切球即可得到a的最大值.【解答】解:依题意,四面体可以在圆锥内任意转动,故该四面体内接于圆锥的内切球,设球心为P,球的半径为r,下底面半径为R,轴截面上球与圆锥母线的切点为Q,圆锥的轴截面如图:则OA=OB=,因为SO=,故可得:SA=SB==3,所以:三角形SAB为等边三角形,故P是△SAB的中心,连接BP,则BP平分∠SBA,所以∠PBO=30°;所以tan30°=,即r=R=×=,即四面体的外接球的半径为r=.另正四面体可以从正方体中截得,如图:从图中可以得到,当正四面体的棱长为a时,截得它的正方体的棱长为a,而正四面体的四个顶点都在正方体上,故正四面体的外接球即为截得它的正方体的外接球,所以2r=AA1=a=a,所以a=.即a的最大值为.故答案为:.【知识点】旋转体(圆柱、圆锥、圆台)四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.在四边形ABCD中,AB∥CD,AD=BD=CD=1.(1)若AB=,求BC;(2)若AB=2BC,求cos∠BDC.【分析】(1)直接利用余弦定理的应用求出结果;(2)利用余弦定理的应用建立等量关系式,进一步求出结果.【解答】解:(1)在四边形ABCD中,AD=BD=CD=1.若AB=,所以:cos∠ADB==,由于AB∥CD,所以∠BDC=∠ABD,即cos∠BDC=cos∠ABD=,所以BC2=BD2+CD2﹣2•BD•CD•cos∠BDC==,所以BC=.(2)设BC=x,则AB=2BC=2x,由余弦定理得:cos∠ADB==,cos∠BDC===,故,解得或﹣(负值舍去).所以.【知识点】余弦定理18.(1)已知z1=1﹣2i,z2=3+4i,求满足=+的复数z.(2)已知z,ω为复数,(1+3i)﹣z为纯虚数,ω=,且|ω|=5.求复数ω.【分析】(1)把z1,z2代入=+,利用复数代数形式的乘除运算化简求出,进一步求出z;(2)设z=a+bi(a,b∈R),利用复数的运算及(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,可得,又ω==i,|ω|=5,可得,即可得出a,b,再代入可得ω.【解答】解:(1)由z1=1﹣2i,z2=3+4i,得=+==,则z=;(2)设z=a+bi(a,b∈R),∵(1+3i)•z=(1+3i)(a+bi)=a﹣3b+(3a+b)i为纯虚数,∴.又ω===i,|ω|=5,∴.把a=3b代入化为b2=25,解得b=±5,∴a=±15.∴ω=±(i)=±(7﹣i).【知识点】复数的运算19.如图,墙上有一壁画,最高点A离地面4米,最低点B离地面2米.观察者从距离墙x(x>1)米,离地面高a(1≤a≤2)米的C处观赏该壁画,设观赏视角∠ACB=θ.(1)若a=1.5,问:观察者离墙多远时,视角θ最大?(2)若tanθ=,当a变化时,求x的取值范围.【分析】(1)首项利用两角和的正切公式建立函数关系,进一步利用判别式确定函数的最大值;(2)利用两角和的正切公式建立函数关系,利用a的取值范围即可确定x的范围.【解答】解:(1)如图,作CD⊥AF于D,则CD=EF,设∠ACD=α,∠BCD=β,CD=x,则θ=α﹣β,在Rt△ACD和Rt△BCD中,tanα=,tanβ=,则tanθ=tan(α﹣β)==(x>0),令u=,则ux2﹣2x+1.25u=0,∵上述方程有大于0的实数根,∴△≥0,即4﹣4×1.25u2≥0,∴u≤,即(tanθ)max=,∵正切函数y=tan x在(0,)上是增函数,∴视角θ同时取得最大值,此时,x==,∴观察者离墙米远时,视角θ最大;(2)由(1)可知,tanθ===,即x2﹣4x+4=﹣a2+6a﹣4,∴(x﹣2)2=﹣(a﹣3)2+5,∵1≤a≤2,∴1≤(x﹣2)2≤4,化简得:0≤x≤1或3≤x≤4,又∵x>1,∴3≤x≤4.【知识点】解三角形20.如图,已知复平面内平行四边形ABCD中,点A对应的复数为﹣1,对应的复数为2+2i,对应的复数为4﹣4i.(Ⅰ)求D点对应的复数;(Ⅱ)求平行四边形ABCD的面积.【分析】(I)利用复数的几何意义、向量的坐标运算性质、平行四边形的性质即可得出.(II)利用向量垂直与数量积的关系、模的计算公式、矩形的面积计算公式即可得出.【解答】解:(Ⅰ)依题点A对应的复数为﹣1,对应的复数为2+2i,得A(﹣1,0),=(2,2),可得B(1,2).又对应的复数为4﹣4i,得=(4,﹣4),可得C(5,﹣2).设D点对应的复数为x+yi,x,y∈R.得=(x﹣5,y+2),=(﹣2,﹣2).∵ABCD为平行四边形,∴=,解得x=3,y=﹣4,故D点对应的复数为3﹣4i.(Ⅱ)=(2,2),=(4,﹣4),可得:=0,∴.又||=2,=4.故平行四边形ABCD的面积==16.【知识点】复数的代数表示法及其几何意义21.如图所示,等腰梯形ABFE是由正方形ABCD和两个全等的Rt△FCB和Rt△EDA组成,AB=1,CF=2.现将Rt△FCB沿BC所在的直线折起,点F移至点G,使二面角E﹣BC﹣G的大小为60°.(1)求四棱锥G﹣ABCE的体积;(2)求异面直线AE与BG所成角的大小.【分析】(1)推导出GC⊥BC,EC⊥BC,从而∠ECG=60°.连接DG,推导出DG⊥EF,由BC⊥EF,BC⊥CG,得BC⊥平面DEG,从而DG⊥BC,进而DG⊥平面ABCE,DG是四棱锥G ﹣ABCE的高,由此能求出四棱锥G﹣ABCE的体积.(2)取DE的中点H,连接BH、GH,则BH∥AE,∠GBH既是AE与BG所成角或其补角.由此能求出异面直线AE与BG所成角的大小.【解答】解:(1)由已知,有GC⊥BC,EC⊥BC,所以∠ECG=60°.连接DG,由CD=AB=1,CG=CF=2,∠ECG=60°,有DG⊥EF①,由BC⊥EF,BC⊥CG,有BC⊥平面DEG,所以,DG⊥BC②,由①②知,DG⊥平面ABCE,所以DG就是四棱锥G﹣ABCE的高,在Rt△CDG中,.故四棱锥G﹣ABCE的体积为:.(2)取DE的中点H,连接BH、GH,则BH∥AE,故∠GBH既是AE与BG所成角或其补角.在△BGH中,,,则.故异面直线AE与BG所成角的大小为.【知识点】异面直线及其所成的角、棱柱、棱锥、棱台的体积22.如图,四边形MABC中,△ABC是等腰直角三角形,AC⊥BC,△MAC是边长为2的正三角形,以AC为折痕,将△MAC向上折叠到△DAC的位置,使点D在平面ABC内的射影在AB上,再将△MAC向下折叠到△EAC的位置,使平面EAC⊥平面ABC,形成几何体DABCE.(1)点F在BC上,若DF∥平面EAC,求点F的位置;(2)求直线AB与平面EBC所成角的余弦值.【分析】(1)点F为BC的中点,设点D在平面ABC内的射影为O,连接OD,OC,取AC 的中点H,连接EH,由题意知EH⊥AC,EH⊥平面ABC,由题意知DO⊥平面ABC,得DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,从而OF∥平面EAC,平面DOF∥平面EAC,由此能证明DF∥平面EAC.(2)连接OH,由OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立空间直角坐标系,利用向量法能求出直线AB与平面EBC所成角的余弦值.【解答】解:(1)点F为BC的中点,理由如下:设点D在平面ABC内的射影为O,连接OD,OC,∵AD=CD,∴OA=OC,∴在Rt△ABC中,O为AB的中点,取AC的中点H,连接EH,由题意知EH⊥AC,又平面EAC⊥平面ABC,平面EAC∩平面ABC=AC,∴EH⊥平面ABC,由题意知DO⊥平面ABC,∴DO∥EH,∴DO∥平面EAC,取BC的中点F,连接OF,则OF∥AC,又OF⊄平面EAC,AC⊂平面EAC,∴OF∥平面EAC,∵DO∩OF=O,∴平面DOF∥平面EAC,∵DF⊂平面DOF,∴DF∥平面EAC.(2)连接OH,由(1)可知OF,OH,OD两两垂直,以O为坐标原点,OF,OH,OD所在直线分别为x,y,z轴,建立如图所示空间直角坐标系,则B(1,﹣1,0),A(﹣1,1,0),E(0,1,﹣),C(1,1,0),∴=(2,﹣2,0),=(0,2,0),=(﹣1,2,﹣),设平面EBC的法向量=(a,b,c),则,取a=,则=(,0,﹣1),设直线与平面EBC所成的角为θ,则sinθ===.∴直线AB与平面EBC所成角的余弦值为cosθ==.【知识点】直线与平面平行、直线与平面所成的角人教版高一下学期期中考试数学试卷(二)注意事项:本试卷满分150分,考试时间120分钟,试题共22题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.14.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.25.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.96.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R27.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π8.已知半球O与圆台OO'有公共的底面,圆台上底面圆周在半球面上,半球的半径为1,则圆台侧面积取最大值时,圆台母线与底面所成角的余弦值为()A.B.C.D.二、多选题(本大题共4小题,每小题5分,选对得分,选错、少选不得分)9.下列有关向量命题,不正确的是()A.若||=||,则=B.已知≠,且•=•,则=C.若=,=,则=D.若=,则||=||且∥10.若复数z满足,则()A.z=﹣1+i B.z的实部为1 C.=1+i D.z2=2i11.如图,在平行四边形ABCD中,E,F分别为线段AD,CD的中点,AF∩CE=G,则()A.B.C.D.12.已知正方体ABCD﹣A1B1C1D1,棱长为2,E为线段B1C上的动点,O为AC的中点,P 为棱CC1上的动点,Q为棱AA1的中点,则以下选项中正确的有()A.AE⊥B1CB.直线B1D⊥平面A1BC1C.异面直线AD1与OC1所成角为D.若直线m为平面BDP与平面B1D1P的交线,则m∥平面B1D1Q三、填空题(本大题共4小题,每小题5分,共20分.不需写出解答过程,请把答案直接填写在横线上)13.已知向量=(m,1),=(m﹣6,m﹣4),若∥,则m的值为.14.将表面积为36π的圆锥沿母线将其侧面展开,得到一个圆心角为的扇形,则该圆锥的轴截面的面积S=.15.如图,已知有两个以O为圆心的同心圆,小圆的半径为1,大圆的半径为2,点A 为小圆上的动点,点P,Q是大圆上的两个动点,且•=1,则||的最大值是.16.如图,在三棱锥A﹣BCD的平面展开图中,已知四边形BCED为菱形,BC=1,BF=,若二面角A﹣CD﹣B的余弦值为﹣,M为BD的中点,则CD=,直线AD与直线CM所成角的余弦值为.四、解答题(本大题共6小题,共70分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.已知,.(1)若与同向,求;(2)若与的夹角为120°,求.18.已知a、b、c是△ABC中∠A、∠B、∠C的对边,a=4,b=6,cos A=﹣.(1)求c;(2)求cos2B的值.19.已知:复数z1与z2在复平面上所对应的点关于y轴对称,且z1(1﹣i)=z2(1+i)(i为虚数单位),|z1|=.(Ⅰ)求z1的值;(Ⅱ)若z1的虚部大于零,且(m,n∈R),求m,n的值.20.(Ⅰ)在复数范围内解方程|z|2+(z+)i=(i为虚数单位)(Ⅱ)设z是虚数,ω=z+是实数,且﹣1<ω<2.(1)求|z|的值及z的实部的取值范围;(2)设,求证:μ为纯虚数;(3)在(2)的条件下求ω﹣μ2的最小值.21.如图,直三棱柱A1B1C1﹣ABC中,AB=AC=1,,A1A=4,点M为线段A1A 的中点.(1)求直三棱柱A1B1C1﹣ABC的体积;(2)求异面直线BM与B1C1所成的角的大小.(结果用反三角表示)22.如图所示,在正方体ABCD﹣A1B1C1D1中,点G在棱D1C1上,且D1G=D1C1,点E、F、M分别是棱AA1、AB、BC的中点,P为线段B1D上一点,AB=4.(Ⅰ)若平面EFP交平面DCC1D1于直线l,求证:l∥A1B;(Ⅱ)若直线B1D⊥平面EFP.(i)求三棱锥B1﹣EFP的表面积;(ii)试作出平面EGM与正方体ABCD﹣A1B1C1D1各个面的交线,并写出作图步骤,保留作图痕迹.设平面EGM与棱A1D1交于点Q,求三棱锥Q﹣EFP的体积.答案解析一、选择题(本大题共8小题,每小题5分,共40分)在每小题所给出的四个选项中,只有一项是符合题目要求的.(2﹣i)z对应的点位于虚轴的正半轴上,则复数z对应的点位于()1.已知复平面内,A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【分析】直接利用复数的运算和几何意义的应用求出该点所表示的位置.【解答】解:设z=a+bi(a,b∈R),所以(2﹣i)(a+bi)=2a+b+(2b﹣a)i,由于对应的点在虚轴的正半轴上,所以,即,所以a<0,b>0.故该点在第二象限.故选:B.【知识点】复数的代数表示法及其几何意义2.平行四边形ABCD中,点E是DC的中点,点F是BC的一个三等分点(靠近B),则=()A.B.C.D.【答案】D【分析】利用平行四边形的性质以及向量相等的概念,再利用平面向量基本定理进行转化即可.【解答】解:因为ABCD为平行四边形,所以,故.故选:D.【知识点】平面向量的基本定理3.已知向量=(6t+3,9),=(4t+2,8),若(+)∥(﹣),则t=()A.﹣1 B.﹣C.D.1【答案】B【分析】根据平面向量的坐标表示和共线定理,列方程求出t的值.【解答】解:向量=(6t+3,9),=(4t+2,8),所以+=(6t+3,11),﹣=(4t+2,5).又(+)∥(﹣),所以5(6t+3)﹣11(4t+2)=0,解得t=﹣.故选:B.【知识点】平面向量共线(平行)的坐标表示4.已知矩形ABCD的一边AB的长为4,点M,N分别在边BC,DC上,当M,N分别是边BC,DC的中点时,有(+)•=0.若+=x+y,x+y=3,则线段MN的最短长度为()A.B.2 C.2D.2【答案】D【分析】先根据M,N满足的条件,将(+)•=0化成的表达式,从而判断出矩形ABCD为正方形;再将+=x+y,左边用表示出来,结合x+y =3,即可得NC+MC=4,最后借助于基本不等式求出MN的最小值.【解答】解:当M,N分别是边BC,DC的中点时,有(+)•===,所以AD=AB,则矩形ABCD为正方形,设,,则=.则x=2﹣λ,y=2﹣μ.又x+y=3,所以λ+μ=1.故NC+MC=4,则MN==(当且仅当MC=NC=2时取等号).故线段MN的最短长度为2.故选:D.【知识点】平面向量数量积的性质及其运算5.若z∈C且|z+3+4i|≤2,则|z﹣1﹣i|的最大和最小值分别为M,m,则M﹣m的值等于()A.3 B.4 C.5 D.9【答案】B【分析】由题意画出图形,再由复数模的几何意义,数形结合得答案.【解答】解:由|z+3+4i|≤2,得z在复平面内对应的点在以Q(﹣3,﹣4)为圆心,以2为半径的圆及其内部.如图:|z﹣1﹣i|的几何意义为区域内的动点与定点P得距离,则M=|PQ|+2,m=|PQ|﹣2,则M﹣m=4.故选:B.【知识点】复数的运算6.已知球的半径为R,一等边圆锥(圆锥母线长与圆锥底面直径相等)位于球内,圆锥顶点在球上,底面与球相接,则该圆锥的表面积为()A.R2B.R2C.R2D.R2【答案】B【分析】设圆锥的底面半径为r,求得圆锥的高,由球的截面性质,运用勾股定理可得r,由圆锥的表面积公式可得所求.【解答】解:如图,设圆锥的底面半径为r,则圆锥的高为r,则R2=r2+(r﹣R)2,解得r=R,则圆锥的表面积为S=πr2+πr•2r=3πr2=3π(R)2=πR2,故选:B.【知识点】球内接多面体、旋转体(圆柱、圆锥、圆台)7.农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称“粽子”,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期楚国大臣、爱国主义诗人屈原.小明在和家人一起包粽子时,想将一丸子(近似为球)包入其中,如图,将粽叶展开后得到由六个边长为4的等边三角形所构成的平行四边形,将粽叶沿虚线折起来,可以得到如图所示的粽子形状的六面体,则放入丸子的体积最大值为()A.πB.πC.πD.π【答案】A【分析】先根据题意求得正四面体的体积,进而得到六面体的体积,再由图形的对称性得,内部的丸子要是体积最大,就是丸子要和六个面相切,设丸子的半径为R,则,由此求得R,进而得到答案.【解答】解:由题意可得每个三角形面积为,由对称性可知该六面体是由两个正四面体合成的,可得该四面体的高为,故四面体的体积为,∵该六面体的体积是正四面体的2倍,。
高一下学期数学期中考试卷含答案
高一下学期数学期中考试卷含答案第一部分:选择题(每题2分,共40分)1.已知正整数$a$和$b$满足$a+b=15$,则$a$和$b$的乘积最大为多少?A. 56B. 64C. 72D. 81答案:C2.已知线段AB的长为12,点C是线段AB的中点,点D在线段BC上,且满足BD=DC,则AD的长为多少?A. 4B. 6C. 8D. 12答案:C...(省略部分题目)...第二部分:填空题(每题3分,共30分)1. 若$x=3$,则$2x-1=$ ____答案:52. 若$a:b=2:3$,$b:c=5:4$,则$a:b:c$的比值为 ____ 答案:20:30:12...(省略部分题目)...第三部分:解答题(共30分)1. 求解方程组$$\begin{cases}2x + 3y = 7 \\4x - 5y = -9 \\\end{cases}$$解:将第一个方程乘以2,得到 $4x + 6y = 14$。
将第二个方程乘以5,得到 $20x - 25y = -45$。
将以上两个方程相加,消去$x$得到 $31y = -31$,解得 $y = -1$。
将$y$的值代入第一个方程,得到 $2x + 3(-1) = 7$,解得 $x = 5$。
所以,方程组的解是 $x = 5$,$y = -1$。
2. 计算 $1+2+3+\ldots+100$。
解:这是一个等差数列求和的问题,采用高斯求和法。
首项$a_1=1$,公差$d=1$,末项$a_{100}=100$。
和 $S = \frac{n(a_1 + a_{100})}{2} = \frac{100(1+100)}{2} = 5050$。
所以,$1+2+3+\ldots+100=5050$。
...(省略其他解答题)...以上是高一下学期数学期中考试卷的部分内容,请参考。
高一数学下学期期中试题(含解析)
,
原式=
=
=
.
【点睛】本题考查了余弦函数的定义、同角三角函数关系中的正弦、余弦平方和为 1 的关系 和商关系,考查了数学运算能力.
18.(1)已知扇形的周长为 8,面积是 4,求扇形的圆心角.
(2)已知扇形的周长为 40,当它的半径和圆心角取何值时,才使扇形的面积最大?
【答案】(1)2;(2)当半径为 10 圆心角为 2 时,扇形的面积最大,最大值为 100.
体重超过
的总人数为
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
,
在
的人数为
,应抽取的人数为
.
所以在
,
,
三段人数分别为 3,2,1.
甘肃省会宁县第一中学 2018-2019 学年高一数学下学期期中试题(含
解析)
一、选择题(本大题共 12 小题,共 60.0 分)
1.与
终边相同的角是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
根据与 终边相同的角可以表示为
这一方法,即可得出结论.
【详解】与
角终边相同的角为:
,
当 时,
.
故选:C.
11.函数
的值域是( )
A.
B.
C.
D.
【答案】C
【解析】
【分析】
因为角 的终边不能落在坐标轴上,所以分别求出角 终边在第一、第二、第三、第四象限时,
根据三角函数的正负性,函数的表达式,进而求出函数的值域.
【详解】由题意可知:角 的终边不能落在坐标轴上,
当角 终边在第一象限时,
北京市日坛中学2023-2024学年高一下学期期中考试数学试题(含答案)
北京市日坛中学2023-2024学年高一下学期期中考试数学试卷(本试卷共4页,考试时间120min ,满分150分)第一部分(选择题 共50分)一、单选题:(共10小题,每小题5分)1. 已知复数,则的共轭复数等于( )A. 0B. C. D. 2. 已知三条直线a ,b ,c 满足:a 与b 平行,a 与c 异面,则b 与c ( )A. 一定异面B. 一定相交C. 不可能平行D. 不可能相交3. 已知锐角,,,且,则为( )A. 30°B. 45°C. 60°D. 30°或60°4. 在复平面内,复数对应的点位于( )A 第一象限B. 第二象限C. 第三象限D. 第四象限5. 如图,在矩形中,为中点,那么向量等于( )A. B. C. D. 6. 如图,正方体的棱长为1,E 、F 分别为棱AD、BC 的中点,则平面与底面ABCD 所成的二面角的余弦值为()A.B.C.D.是.2zi =z z 2i2i-4-α()1,1a =- ()cos ,sin b αα= a b ⊥αi1i-ABCD E BC 12AD AE +ABACBC BE1111ABCD A B C D -11C D EF7. 中,若,,,则a 等于( )A. B. C.D.8. 已知两条直线m ,n 和平面,那么下列命题中的真命题是( )A. 若,,则B. 若,,则C. 若,,则D. 若,,则9. 在中,,,点在线段上.当取得最小值时,( )A.B.C.D.10. 如图,在棱长为的正方体中,P 为线段上的动点(不含端点),则下列结论错误的是()A 平面平面 B. C. 三棱锥的体积为定值D. 的取值范围是第二部分(非选择题共 100分)二、填空:(共6小题,每小题5分)11. 已知复数,其中是虚数单位,则的模是__.12. 2020年5月1日起,新版《北京市生活垃圾管理条例》实施,根据该条例:小区内需设置可回收垃圾桶和有害垃圾桶.已知李华要去投放这两类垃圾,他从自家楼下出发,向正北方向走了80米,到达有害垃圾桶,随后向南偏东方向走了30米,到达可回收物垃圾桶,则他回到自家楼下至少还需走___________米 .13. 已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的侧面积为______.在.ABC V b =3c =30B =︒αm n ⊥n ⊂αm α⊥m n ⊥n α⊥//m αm α⊥n ⊂αm n⊥//m α//n α//m nABC V 2AB AC ==BC =P BC PA PB ⋅PA =347411111ABCD A B C D -1A B CBP ⊥1BB P1DC PC⊥11C D PC -1APD ∠0,2π⎛⎤⎥⎝⎦13z i =-+i z 6014. 设向量满足,则______.15. 如图,已知正三棱柱的底面边长为1,侧棱的长为2,E 、F 分别为和AC 中点,则直线EF 与平面所成角的余弦值为______,异面直线与所成角的余弦值为______.16. 如图,从长、宽、高分别为的长方体中截去部分几何体后,所得几何体为三棱锥.下列四个结论中,所有正确结论的序号是_____.①三棱锥的体积为;②三棱锥的每个面都是锐角三角形;③三棱锥中,二面角不会是直二面角;④三棱锥中,三条侧棱与底面所成的角分别记为,则.三、解答题:(共70分)17. 如图,三棱柱的侧面是平行四边形,,平面平面,且P ,E ,F 分别是AB ,BC ,的中点.,a b2,1,,60a b a b ===︒ 2a b += 111ABC A B C -1AA 11A B ABC 1A B 1AC ,,a b c AEBF GCHD -A BCD -A BCD -13abc A BCD -A BCD-A CD B --A BCD -,,αβγ222sin sin sin 2αβγ++≤111ABC A B C -11BCC B 11BC C C ⊥11AC CA ⊥11BCC B 11A B(1)求证:平面;(2)求证:平面平面.18. 设的内角的对边分别为.已知,.(1)求的值;(2)求的面积.19. 如图,在四棱锥P-ABCD 中,底面ABCD 是正方形,侧面底面ABCD ,E 为侧棱PD 上一点.(Ⅰ)求证:平面ABE ;(II )求证:;(III)若E 为PD 中点,平面ABE 与侧棱PC 交于点F ,且,求四棱锥P-ABFE 的体积.20. 在①,③这三个条件中任选一个,补充在下面的问题中.若问题中的三角形存在,求出的值;若问题中的三角形不存在,请说明理由.问题:是否存在,它的内角的对边分别为,__________,且,.注:如果选择多个条件解答,按第一个解答计分.21. 已知集合(,),若存在数阵满足:1BC ⊥11A C CA EFP ⊥11BCC B ABC V ,,A B C ,,a b c b =3c =1cos 6B =-sinC ABC V PAD ⊥//CD CD AE ⊥2PA PD AD ===1a b +=sin 2c A =b =c ABC V ,,A B C ,,a b c sin B A =π6C ={}*N 2n M x x n =∈≤n ∈N 4n ≥1212n n a a a T b b b ⎡⎤=⎢⎥⎣⎦①;②.则称集合为“好集合”,并称数阵为的一个“好数阵”.(1)已知数阵是的一个“好数阵”,试写出,,,的值;(2)若集合为“好集合”,证明:集合的“好数阵”必有偶数个;(3)判断是否为“好集合”.若是,求出满足条件所有“好数阵”;若不是,说明理由.的{}{}1212,,,,,,n n n a a a b b b M = ()1,2,,k k a b k k n -== n M T n M 6712x y z T w ⎡⎤=⎢⎥⎣⎦4M x y z w n M n M ()5,6n M n ={}12,,,n n a a a ∈北京市日坛中学2023-2024学年高一下学期期中考试数学试卷答案第一部分(选择题共50分)一、单选题:(共10小题,每小题5分)【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】B【4题答案】【答案】B【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】C【9题答案】【答案】B【10题答案】【答案】D第二部分(非选择题共100分)二、填空:(共6小题,每小题5分)【11题答案】.【12题答案】【答案】70【13题答案】【答案】【14题答案】【答案】【15题答案】【答案】①.②.##【16题答案】【答案】①②④三、解答题:(共70分)【17题答案】【答案】(1)证明略;(2)证明略;【18题答案】【答案】(1;(2.【19题答案】【答案】(Ⅰ)证明略;(II )证明略;(III .【20题答案】【答案】答案不唯一,具体略.【21题答案】【答案】(1),,,(2)证明略 (3)是“好集合”,满足的“好数阵”有,,,;不是“好集合”,证明略2π7100.78x =5y =4z =3w =5M {}5125,,...,a a a ∈38105926714⎡⎤⎢⎥⎣⎦83510971264⎡⎤⎢⎥⎣⎦41095738612⎡⎤⎢⎥⎣⎦95410783162⎡⎤⎢⎥⎣⎦6M。
高一数学下学期期中考试测试试卷(含答案)
部分一:直线和圆1.1.(求圆的方程)以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( )1.2.(位置关系问题)直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( )1.3.(切线问题)过坐标原点且与圆0252422=++-+y x y x 相切的直线方程为( )解 化为标准方程25)1()2(22=++-y x ,即得圆心)1,2(-C 和半径25=r .设过坐标原点的切线方程为kx y =,即0=-y kx ,∴线心距251122==++=r k k d ,平方去分母得0)3)(13(=+-k k ,解得3-=k 或31,∴所求的切线方程为x y 3-=或x y 31=, 1.4.(弦长问题)设直线03=+-y ax 与圆4)2()1(22=-+-y x 相交于B A 、两点,且弦AB 的长为32,则=a .解 由已知圆4)2()1(22=-+-y x ,即得圆心)2,1(C 和半径2=r .∵线心距112++=a a d ,且222)2(r AB d =+,∴22222)3()11(=+++a a ,即1)1(22+=+a a ,解得0=a .点评:一般在线心距d 、弦长AB 的一半和圆半径r 所组成的直角三角形中处理弦长问题:222)2(r AB d =+.1.5.(夹角问题)从圆012222=+-+-y y x x 外一点)2,3(P 向这个圆作两条切线,则两切线夹角的余弦值为( )(A)21 (B)53(C)23 (D) 0解 已知圆化为1)1()1(22=-+-y x ,即得圆心)1,1(C 和半径1=r .设由)2,3(P 向这个圆作的两条切线的夹角为θ,则在切线长、半径r 和PC 构成的直角三角形中,522cos=θ,∴5312cos 2cos 2=-=θθ,故选(B). 1.6.(圆心角问题)过点)2,1(的直线l 将圆4)2(22=+-y x 分成两段弧,当劣弧所对的圆心角最小时,直线l 的斜率=k .解 由已知圆4)2(22=+-y x ,即得圆心)0,2(C 和半径2=r .设)2,1(P ,则2-=PC k ;∵⊥PC 直线l 时弦最短,从而劣弧所对的圆心角最小,∴直线l 的斜率221=-=PCk k . 1.7.(最值问题)圆0104422=---+y x y x 上的点到直线14-+y x 0=的最大距离与最小距离的差是( )解 已知圆化为18)2()2(22=-+-y x ,即得圆心)2,2(C 和半径23=r .设线心距为d ,则圆上的点到直线014=-+y x 的最大距离为r d +,最小距离为r d -,∴262)()(==--+r r d r d ,BD 部分二:向量2.1.设21,e e 是不共线的向量,已知向量2121212,3,2e e CD e e CB e k e AB -=+=+=,若A,B,D 三点共线,求k 的值 2.2.的两条对角线AC 与BD 交于E ,O 是任意一点,求证:+++=4 解析:证明:∵E 是对角线AC 和BD 的交点 ∴AE =EC =-CE ,BE =ED =-DE在△OAE 中,+=。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集D. 复数集C2. 函数f(x) = 2x^2 - 3x + 1在区间[0, 2]上的最大值是:A. 1B. 5C. 7D. 93. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∩B的元素个数。
A. 1B. 2C. 3D. 44. 若a > 0,b < 0,且|a| < |b|,则a + b的符号是:A. 正B. 负C. 零D. 不确定5. 下列哪个不等式是正确的?A. √2 < πB. e < 2.72C. √3 > √2D. log2(3) > log3(2)6. 已知等差数列的首项为a1 = 3,公差为d = 2,第5项a5的值是:A. 9B. 11C. 13D. 157. 函数y = x^3 - 6x^2 + 9x + 2的零点个数是:A. 0B. 1C. 2D. 38. 已知f(x) = x^2 - 4x + 4,求f(x)的最小值。
A. 0B. 4C. 8D. 169. 抛物线y = x^2 - 2x - 3与x轴的交点个数是:A. 0B. 1C. 2D. 310. 已知等比数列的首项为a1 = 2,公比为r = 3,求第4项a4的值。
A. 162B. 486C. 729D. 1458二、填空题(每题2分,共20分)11. 圆的一般方程为x^2 + y^2 + dx + ey + f = 0,其中d^2 + e^2 - 4f > 0时,表示______。
12. 若函数f(x) = 3x - 2在区间[1, 4]上是增函数,则f(1) =______。
13. 已知集合M = {x | x^2 - 5x + 6 = 0},则M的补集∁_R M = {x | ______ }。
14. 函数y = log_2(x)的定义域是{x | x > ______ }。
高一数学期中考试题及答案
高一数学期中考试题及答案一、选择题(每题3分,共30分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = x^3D. y = sin(x)2. 函数f(x) = x^2 - 2x + 1的零点是:A. 1B. -1C. 0D. 23. 集合A = {1, 2, 3},B = {2, 3, 4},则A∩B等于:A. {1}B. {2, 3}C. {4}D. {1, 2, 3, 4}4. 已知数列{a_n}的通项公式为a_n = 2n + 1,那么a_5等于:A. 11B. 9C. 13D. 155. 若函数f(x) = 3x - 5,则f(2)等于:A. 1B. -1C. 7D. 36. 直线y = 2x + 3与x轴的交点坐标是:A. (0, 3)B. (1, 5)C. (-3/2, 0)D. (3/2, 0)7. 圆的一般方程为x^2 + y^2 + 2x - 4y + 5 = 0,其圆心坐标是:A. (-1, 2)B. (1, -2)C. (-1, -2)D. (1, 2)8. 函数y = x^2 - 4x + 3的最小值是:A. -1B. 0C. 1D. 39. 已知三角形ABC的三边长分别为a, b, c,且满足a^2 + b^2 = c^2,那么三角形ABC是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定10. 函数y = √(x - 2)的定义域是:A. x ≥ 2B. x > 2C. x < 2D. x ≠ 2二、填空题(每题3分,共30分)1. 若函数f(x) = x^2 - 4x + 3的最大值为2,则x的值为______。
2. 已知数列{a_n}满足a_1 = 1,a_n = 2a_{n-1} + 1,那么a_3等于______。
3. 函数f(x) = 2x^2 - 3x + 1的对称轴方程是______。
4. 集合A = {x | x^2 - 5x + 6 = 0},则A的元素个数为______。
数学高一下期中经典测试卷(含答案解析)(1)
一、选择题1.(0分)[ID :12425]设曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行,则a=( )A .-4B .14-C .14D .42.(0分)[ID :12421]设l 为直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥3.(0分)[ID :12416]水平放置的ABC 的斜二测直观图如图所示,若112A C =,111A B C △的面积为22,则AB 的长为( )A .2B .217C .2D .84.(0分)[ID :12398]已知定义在R 上的函数()21()x m f x m -=-为实数为偶函数,记0.5(log 3),a f 2b (log 5),c (2)f f m ,则,,a b c ,的大小关系为( )A .a b c <<B .c a b <<C .a c b <<D .c b a << 5.(0分)[ID :12377]<九章算术>中,将四个面都为直角三角形的三棱锥称之为鳖臑.若三棱锥P ABC -为鳖臑,PA ⊥平面,2,4ABC PA AB AC ===,三棱锥P ABC -的四个顶点都在球O 的球面上,则球O 的表面积为( )A .8πB .12πC .20πD .24π6.(0分)[ID :12356]在我国古代数学名著 九章算术 中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD 中, AB ⊥平面BCD ,且AB BC CD ==,则异面直线AC 与BD 所成角的余弦值为( )A .12B .12-C 3D .3 7.(0分)[ID :12344]用一个平面去截正方体,则截面不可能是( )A .直角三角形B .等边三角形C .正方形D .正六边形 8.(0分)[ID :12396]若a >b >0,0<c <1,则A .log a c <log b cB .log c a <log c bC .a c <b cD .c a >c b9.(0分)[ID :12395]正方体ABCD ﹣A 1B 1C 1D 1中,E ,F 分别是AD ,DD 1的中点,AB =4,则过B ,E ,F 的平面截该正方体所得的截面周长为( )A .62+45B .62+25C .32+45D .32+25 10.(0分)[ID :12387]α,β为两个不同的平面,m ,n 为两条不同的直线,下列命题中正确的是( )①若α//β,m ⊂α,则m//β; ②若m//α,n ⊂α,则m//n ;③若α⊥β,α∩β=n ,m ⊥n ,则m ⊥β ④若n ⊥α,n ⊥β,m ⊥α,则m ⊥β. A .①③ B .①④ C .②③ D .②④ 11.(0分)[ID :12371]若方程21424x kx k +-=-+ 有两个相异的实根,则实数k 的取值范围是( )A .13,34⎛⎤ ⎥⎝⎦ B .13,34⎛⎫ ⎪⎝⎭ C .53,124⎛⎫ ⎪⎝⎭ D .53,124 12.(0分)[ID :12369]某锥体的三视图如图所示(单位:cm ),则该锥体的体积(单位:cm 3)是( )A .13 B .12 C .16 D .113.(0分)[ID :12410]已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =,则此棱锥的体积为( ) A 2 B 3C 2 D 2 14.(0分)[ID :12397]若函数6(3)3,7(),7x a x x f x a x ---≤⎧=⎨>⎩单调递增,则实数a 的取值范围是( )A .9,34⎛⎫ ⎪⎝⎭B .9,34⎡⎫⎪⎢⎣⎭C .()1,3D .()2,3 15.(0分)[ID :12360]如图,网格纸上小正方形的边长为1,粗实(虚)线画出的是某多面体的三视图,则该多面体的体积为( )A .64B .643C .16D .163二、填空题16.(0分)[ID :12478]在棱长为1的正方体1111ABCD A B C D -中,BD AC O ⋂=,M 是线段1D O 上的动点,过M 做平面1ACD 的垂线交平面1111D C B A 于点N ,则点N 到点A 的距离最小值是___________.17.(0分)[ID :12463]已知圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是22,则圆M 与圆22:(1)(1)1N x y -+-=的位置关系是_________.18.(0分)[ID :12462]若一个圆柱的侧面展开图是边长为2的正方形,则此圆柱的体积为 .19.(0分)[ID :12522]在三棱锥P ABC -中,PA ⊥平面ABC ,AB BC ⊥,3AB =,4BC =,5PA =,则三棱锥P ABC -的外接球的表面积为__________20.(0分)[ID :12508]已知P 是抛物线24y x =上的动点,点Q 是圆22:(3)(3)1C x y ++-=上的动点,点R 是点P 在y 轴上的射影,则PQ PR +的最小值是____________.21.(0分)[ID :12443]已知B 与点()1,2,3A 关于点()0,1,2M -对称,则点B 的坐标是______.22.(0分)[ID :12431]已知棱长等于23的正方体1111ABCD A B C D -,它的外接球的球心为O ﹐点E 是AB 的中点,则过点E 的平面截球O 的截面面积的最小值为________.23.(0分)[ID :12430]若直线:20l kx y --=与曲线()2:111C y x --=-有两个不同的交点,则实数k 的取值范围________.24.(0分)[ID :12432]如图所示,二面角l αβ--为60,,A B 是棱l 上的两点,,AC BD 分别在半平面内,αβ,且AC l ⊥,,4,6,8AB AC BD ===,则CD 的长______.25.(0分)[ID :12450]已知球的表面积为20π,球面上有A 、B 、C 三点.如果2AB AC ==,22BC =,则球心到平面ABC 的距离为__________.三、解答题26.(0分)[ID :12628]已知点()1,0P ,圆22:6440C x y x y +-++=.(1)若直线l 过点P 且到圆心C 的距离为2,求直线l 的方程;(2)设过点()0,1Q -的直线m 与圆C 交于A 、B 两点(m 的斜率为负),当||4AB =时,求以线段AB 为直径的圆的方程.27.(0分)[ID :12597]已知点(3,3)M ,圆22:(1)(2)4C x y -+-=.(1)求过点M 且与圆C 相切的直线方程;(2)若直线40()ax y a -+=∈R 与圆C 相交于A ,B 两点,且弦AB 的长为23,求实数a 的值.28.(0分)[ID :12545]如图所示,已知四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,60,,ABC E F ∠=分别是,BC PB 的中点.(1)证明:AE ⊥平面PAD ;(2)若H 为PD 上的动点,EH 与平面PAD 所成最大角的正切值为3,求二面角B AF C --的正切值.29.(0分)[ID :12622]已知圆22C (4)4x y +-=:,直线:(31)(1)40l m x m y ++--=.(1)求直线l 所过定点A 的坐标;(2)求直线l 被圆C 所截得的弦长最短时直线l 的方程及最短弦长;(3)已知点M (-3,4),在直线MC 上(C 为圆心),存在定点N (异于点M ),满足:对于圆C 上任一点P ,都有||||PM PN 为一常数, 试求所有满足条件的点N 的坐标及该常数.30.(0分)[ID :12542]如图,将棱长为2的正方体1111ABCD A B C D -沿着相邻的三个面的对角线切去四个棱锥后得一四面体11A CB D -.(Ⅰ)求该四面体的体积;(Ⅱ)求该四面体外接球的表面积.【参考答案】2016-2017年度第*次考试试卷参考答案 **科目模拟测试一、选择题1.D2.B3.B4.B5.C6.A7.A8.B9.A10.B11.D12.A13.A14.B15.D二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个18.2π【解析】试题分析:设圆柱的底面半径为r高为h底面积为S体积为V则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【解析】【分析】求出原函数的导函数,得到函数在2x =时的导数,再由两直线平行与斜率的关系求得a 值.【详解】 解:由31x y x +=-,得()()2213411x x y x x ---=---'=, ∴2'|4x y ==-,又曲线31x y x +=-在点25(,)处的切线与直线10ax y +-=平行, ∴4a -=-,即4a =.故选D .【点睛】本题考查利用导数研究过曲线上某点处的切线方程,考查两直线平行与斜率的关系,是中档题.2.B解析:B【解析】A 中,,αβ也可能相交;B 中,垂直与同一条直线的两个平面平行,故正确;C 中,,αβ也可能相交;D 中,l 也可能在平面β内.【考点定位】点线面的位置关系3.B解析:B【解析】【分析】依题意由111A B C △的面积为114B C =,所以8BC =,2AC =,根据勾股定理即可求AB .【详解】依题意,因为111A B C △的面积为所以11111sin 452AC B C ︒=⨯⋅=11122B C ⨯⨯,解得114B C =, 所以8BC =,2AC =,又因为AC BC ⊥,由勾股定理得:AB ====故选B .【点睛】本题考查直观图还原几何图形,属于简单题. 利用斜二测画法作直观图,主要注意两点:一是与x 轴平行的线段仍然与x '轴平行且相等;二是与y 轴平行的线段仍然与y '轴平行且长度减半. 4.B解析:B【解析】由()f x 为偶函数得0m =,所以0,52log 3log 32121312,a =-=-=-=2log 521514b =-=-=,0210c =-=,所以c a b <<,故选B.考点:本题主要考查函数奇偶性及对数运算.5.C解析:C【解析】【分析】先作出三棱锥P ABC -的图像,根据P ABC -四个面都为直角三角形和PA ⊥平面ABC ,可知PC 中点即为球心,利用边的关系求出球的半径,再由24S R π=计算即得.【详解】三棱锥P ABC -如图所示,由于P ABC -四个面都为直角三角形,则ABC 是直角三角形,且2ABC π∠=,2223BC AC AB ∴=-=,又PA ⊥平面ABC ,且PAC 是直角三角形,∴球O 的直径2222PC R PA AB BC ==++2025==,5R ∴=,则球O 的表面积2420S R ππ==.故选:C【点睛】本题考查多面体外接球的表面积,是常考题型.6.A解析:A【解析】如图,分别取,,,BC CD AD BD 的中点,,,M N P Q ,连,,,MN NP PM PQ ,则,MN BD NP AC ,∴PNM ∠即为异面直线AC 和BD 所成的角(或其补角).又由题意得PQ MQ ⊥,11,22PQ AB MQ CD ==. 设2AB BC CD ===,则2PM =又112,222MN BD NP AC ====, ∴PNM ∆为等边三角形,∴60PNM =︒∠,∴异面直线AC 与BD 所成角为60︒,其余弦值为12.选A . 点睛:用几何法求空间角时遵循“一找、二证、三计算”的步骤,即首先根据题意作出所求的角,并给出证明,然后将所求的角转化为三角形的内角.解题时要注意空间角的范围,并结合解三角形的知识得到所求角的大小或其三角函数值. 7.A解析:A【解析】【分析】【详解】画出截面图形如图显然A 正三角形C 正方形:D 正六边形可以画出三角形但不是直角三角形;故选A .用一个平面去截正方体,则截面的情况为:①截面为三角形时,可以是锐角三角形、等腰三角形、等边三角形,但不可能是钝角三角形、直角三角形;②截面为四边形时,可以是梯形(等腰梯形)、平行四边形、菱形、矩形,但不可能是直角梯形;③截面为五边形时,不可能是正五边形;④截面为六边形时,可以是正六边形.故可选A .8.B解析:B【解析】试题分析:对于选项A ,a b 1gc 1gc log c ,log c lg a lg b==,01c <<,10gc ∴<,而0a b >>,所以lg lg a b >,但不能确定lg lg a b 、的正负,所以它们的大小不能确定;对于选项B ,c lg lg log ,log lg lg c a b a b c c ==,lg lg a b >,两边同乘以一个负数1lg c改变不等号方向,所以选项B 正确;对于选项C ,利用c y x =在第一象限内是增函数即可得到c c a b >,所以C 错误;对于选项D ,利用xy c =在R 上为减函数易得a b c c <,所以D 错误.所以本题选B.【考点】指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数函数的单调性进行比较;若底数不同,可考虑利用中间量进行比较. 9.A解析:A【解析】【分析】利用线面平行的判定与性质证明直线1BC 为过直线EF 且过点B 的平面与平面11BCC B 的交线,从而证得1,,,B E F C 四点共面,然后在正方体中求等腰梯形1BEFC 的周长即可.【详解】作图如下:因为,E F 是棱1,AD DD 的中点,所以11////EF AD BC ,因为EF ⊄平面11BCC B ,1BC ⊂平面11BCC B ,所以//EF 平面11BCC B ,由线面平行的性质定理知,过直线EF 且过点B 的平面与平面11BCC B 的交线l 平行于直线EF ,结合图形知,l 即为直线1BC ,过B ,E ,F 的平面截该正方体所得的截面即为等腰梯形1BEFC ,因为正方体的棱长AB =4,所以11EF BE C F BC ====所以所求截面的周长为+故选:A【点睛】本题主要考查多面体的截面问题和线面平行的判定定理和性质定理;重点考查学生的空间想象能力;属于中档题.10.B解析:B【解析】【分析】在①中,由面面平行的性质定理得m ∥β;在②中,m 与n 平行或异面;在③中,m 与β相交、平行或m ⊂β;在④中,由n ⊥α,m ⊥α,得m ∥n ,由n ⊥β,得m ⊥β.【详解】由α,β为两个不同的平面,m ,n 为两条不同的直线,知:在①中,若α∥β,m ⊂α,则由面面平行的性质定理得m ∥β,故①正确;在②中,若m ∥α,n ⊂α,则m 与n 平行或异面,故②错误;在③中,若α⊥β,α∩β=n ,m ⊥n ,则m 与β相交、平行或m ⊂β,故③错误; 在④中,若n ⊥α,m ⊥α,则m ∥n ,由n ⊥β,得m ⊥β,故④正确.故选:B .【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、推理论证能力,考查化归与转化思想,是中档题.11.D解析:D【解析】【分析】由题意可得,曲线22(1)4(1)x y y +-=与直线4(2)y k x -=-有2个交点,数形结合求得k 的范围.【详解】如图所示,化简曲线得到22(1)4(1)x y y +-=,表示以(0,1)为圆心,以2为半径的上半圆,直线化为4(2)y k x -=-,过定点(2,4)A ,设直线与半圆的切线为AD ,半圆的左端点为(2,1)B -,当AD AB k k k <,直线与半圆有两个交点,AD 与半圆相切时,2|124|21k k --+=+,解得512AD k =, 4132(2)4AB k -==--,所以53,124k ⎛⎤∈ ⎥⎝⎦. 故选:D【点睛】本题考查直线与圆的位置关系,属于中档题.12.A解析:A【解析】【分析】根据三视图知该几何体对应的三棱锥,结合图中数据求得三棱锥的体积.【详解】由题意可知三棱锥的直观图如图:三棱锥的体积为:111211323⨯⨯⨯⨯=. 故选:A .【点睛】本题考查了利用三视图求几何体体积的应用问题,考查了空间想象能力,是基础题.13.A解析:A【解析】【分析】【详解】根据题意作出图形:设球心为O ,过ABC 三点的小圆的圆心为O 1,则OO 1⊥平面ABC ,延长CO 1交球于点D ,则SD ⊥平面ABC .∵CO 1=233323⨯=, ∴116133OO =-=, ∴高SD=2OO 1=263,∵△ABC 是边长为1的正三角形,∴S △ABC =34, ∴132623436S ABC V -=⨯⨯=三棱锥.考点:棱锥与外接球,体积.【名师点睛】本题考查棱锥与外接球问题,首先我们要熟记一些特殊的几何体与外接球(内切球)的关系,如正方体(长方体)的外接球(内切球)球心是对角线的交点,正棱锥的外接球(内切球)球心在棱锥的高上,对一般棱锥来讲,外接球球心到名顶点距离相等,当问题难以考虑时,可减少点的个数,如先考虑到三个顶点的距离相等的点是三角形的外心,球心一定在过此点与此平面垂直的直线上.如直角三角形斜边中点到三顶点距离相等等等.14.B解析:B【解析】【分析】利用函数的单调性,判断指数函数底数的取值范围,以及一次函数的单调性,及端点处函数值的大小关系列出不等式求解即可【详解】解:函数6(3)3,7(),7x a x x f x a x ---⎧=⎨>⎩单调递增,()301373a a a a ⎧->⎪∴>⎨⎪-⨯-≤⎩解得934a ≤< 所以实数a 的取值范围是9,34⎡⎫⎪⎢⎣⎭.故选:B .【点睛】本题考查分段函数的应用,指数函数的性质,考查学生的计算能力,属于中档题. 15.D 解析:D【解析】根据三视图知几何体是:三棱锥D ABC -为棱长为4的正方体一部分,直观图如图所示:B 是棱的中点,由正方体的性质得,CD ⊥平面,ABC ABC ∆的面积12442S =⨯⨯=,所以该多面体的体积1164433V =⨯⨯=,故选D.二、填空题16.【解析】连结易知面面而即在面内且点的轨迹是线段连结易知是等边三角形则当为中点时距离最小易知最小值为6【解析】连结11B D ,易知面1ACD ⊥面11BDD B ,而1MN ACD ⊥,即1NM D O ⊥,NM 在面11BDD B 内,且点N 的轨迹是线段11B D ,连结1AB ,易知11AB D 是等边三角形,则当N 为11B D 中点时,NA 6 17.相交【解析】【分析】根据直线与圆相交的弦长公式求出的值结合两圆的位置关系进行判断即可【详解】解:圆的标准方程为则圆心为半径圆心到直线的距离圆截直线所得线段的长度是即则圆心为半径圆的圆心为半径则即两个【解析】【分析】根据直线与圆相交的弦长公式,求出a 的值,结合两圆的位置关系进行判断即可.【详解】解:圆的标准方程为222:()(0)M x y a a a +-=>,则圆心为(0,)a ,半径R a =,圆心到直线0x y +=的距离d =,圆22:20(0)M x y ay a +-=>截直线0x y +=所得线段的长度是∴即24a =,2a =,则圆心为(0,2)M ,半径2R =,圆22:(1)(1)1N x y -+-=的圆心为(1,1)N ,半径1r =,则MN =3R r +=,1R r -=,R r MN R r ∴-<<+,即两个圆相交.故答案为:相交.【点睛】本题主要考查直线和圆相交的应用,以及两圆位置关系的判断,根据相交弦长公式求出a 的值是解决本题的关键.18.2π【解析】试题分析:设圆柱的底面半径为r 高为h 底面积为S 体积为V 则有2πr=2⇒r=1π故底面面积S=πr2=π×(1π)2=1π故圆柱的体积V=Sh=1π×2=2π考点:圆柱的体积解析:2π【解析】试题分析:设圆柱的底面半径为r ,高为h ,底面积为S ,体积为V ,则有2πr =2⇒r =1π,故底面面积S =πr 2=π×(1π)2=1π,故圆柱的体积V =Sh =1π×2=2π. 考点:圆柱的体积 19.【解析】【分析】以为长宽高构建长方体则长方体的外接球是三棱锥的外接球由此能求出三棱锥的外接球的表面积【详解】由题意在三棱锥中平面以为长宽高构建长方体则长方体的外接球是三棱锥的外接球所以三棱锥的外接球 解析:50π【解析】以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球,由此能求出三棱锥P ABC -的外接球的表面积.【详解】由题意,在三棱锥P ABC -中,PA ⊥平面,,3,4,5ABC AB BC AB BC PA ⊥===, 以,,AB BC PA 为长宽高构建长方体,则长方体的外接球是三棱锥P ABC -的外接球, 所以三棱锥P ABC -的外接球的半径为22215234522R =++=, 所以三棱锥P ABC -的外接球的表面积为225244()502S R πππ==⨯=. 【点睛】 本题主要考查了三棱锥的外接球的表面积的计算问题,其中解答中根据几何体的结构特征,以,,AB BC PA 为长宽高构建长方体,得到长方体的外接球是三棱锥P ABC -的外接球是解答的关键,着重考查了数形结合思想,以及推理与运算能力.20.【解析】根据抛物线的定义可知而的最小值是所以的最小值就是的最小值当三点共线时此时最小最小值是所以的最小值是3【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题考查了转化与化归能力圆外的 解析:【解析】根据抛物线的定义,可知1PR PF =-,而PQ 的最小值是1PC -,所以PQ PR +的最小值就是2PF PC +-的最小值,当,,C P F 三点共线时,此时PF FC +最小,最小值是()()2231305CF =--+-= ,所以PQ PR +的最小值是3.【点睛】本题考查了点和圆的位置关系以及抛物线的几何性质和最值问题,考查了转化与化归能力,圆外的点和圆上的点最小值是点与圆心的距离减半径,最大值是距离加半径,抛物线上的点到焦点的距离和到准线的距离相等,这样转化后为抛物线上的点到两个定点的距离和的最小值,即三点共线时距离最小.21.【解析】【分析】根据空间直角坐标系中点坐标公式求结果【详解】设B则所以所以的坐标为【点睛】本题考查空间直角坐标系中点坐标公式考查基本分析求解能力属基础题解析:()1,4,1--【解析】【分析】根据空间直角坐标系中点坐标公式求结果.【详解】设B (),,x y z ,则1230,1,2222x y z +++=-==,所以1,4,1x y z =-=-=,所以B 的坐标为()1,4,1--.【点睛】本题考查空间直角坐标系中点坐标公式,考查基本分析求解能力,属基础题. 22.【解析】【分析】当过球内一点的截面与垂直时截面面积最小可求截面半径即可求出过点的平面截球的截面面积的最小值【详解】解:棱长等于的正方体它的外接球的半径为3当过点的平面与垂直时截面面积最小故答案为:【 解析:3π.【解析】【分析】当过球内一点E 的截面与OE 垂直时,截面面积最小可求截面半径,即可求出过点E 的平面截球O 的截面面积的最小值.【详解】解:棱长等于1111ABCD A B C D -,它的外接球的半径为3,||OE =当过点E 的平面与OE 垂直时,截面面积最小,r 33S ππ=⨯=, 故答案为:3π.【点睛】本题考查过点E 的平面截球O 的截面面积的最小值及接体问题,找准量化关系是关键,属于中档题.23.【解析】【分析】由题意可知曲线为圆的右半圆作出直线与曲线的图象可知直线是过点且斜率为的直线求出当直线与曲线相切时k 的值利用数形结合思想可得出当直线与曲线有两个公共点时实数的取值范围【详解】对于直线则 解析:4,23⎛⎤ ⎥⎝⎦【解析】【分析】由题意可知,曲线C 为圆()()22111x y -+-=的右半圆,作出直线l 与曲线C 的图象,可知直线l 是过点()0,2-且斜率为k 的直线,求出当直线l 与曲线C 相切时k 的值,利用数形结合思想可得出当直线l 与曲线C 有两个公共点时实数k 的取值范围.【详解】对于直线:2l y kx =-,则直线l 是过点()0,2P -且斜率为k 的直线,对于曲线()2:111C y x --=-,则101x x -≥⇒≥,曲线C 的方程两边平方并整理得()()22111x y -+-=,则曲线C 为圆()()22111x y -+-=的右半圆,如下图所示:当直线l 与曲线C 相切时,0k >()222123111k k k k ---==++-,解得43k =, 当直线l 过点()1,0A 时,则有20k -=,解得2k =.结合图象可知,当4,23k ⎛⎤∈ ⎥⎝⎦时,直线l 与曲线C 有两个交点. 故答案为:4,23⎛⎤ ⎥⎝⎦. 【点睛】本题考查利用直线与曲线的交点个数求参数,解题的关键就是将曲线C 化为半圆,利用数形结合思想求解,同时要找出直线与曲线相切时的临界位置,考查数形结合思想的应用,属于中等题.24.【解析】【分析】推导出两边平方可得的长【详解】二面角为是棱上的两点分别在半平面内且的长故答案为:【点睛】本题考查线段长的求法考查空间中线线线面面面间的位置关系等基础知识考查运算求解能力考查函数与方程 解析:217【解析】【分析】推导出CD CA AB BD =++,两边平方可得CD 的长.【详解】二面角l αβ--为60︒,A 、B 是棱l 上的两点,AC 、BD 分别在半平面α、β内, 且AC l ⊥,BD l ⊥,4AB =,6AC =,8BD =,∴CD CA AB BD =++,∴22()CD CA AB BD =++2222CA AB BD CA BD =+++361664268cos12068=+++⨯⨯⨯︒=,CD ∴的长||68217CD ==.故答案为:217.【点睛】本题考查线段长的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.25.【解析】设球的半径为表面积解得∵在中∴从圆心作平面的垂线垂足在斜边的中点处∴球心到平面的距离故答案为点睛:本题考查的知识点是空间点线面之间的距离计算其中根据球心距球半径解三角形我们可以求出所在平面截 3【解析】设球的半径为r ,表面积24π20πS r ==,解得5r =ABC 中,2AB AC ==,22BC =222AB AC BC +=,∴90BAC ∠=︒,从圆心作平面ABC 的垂线,垂足在斜边BC 的中点处,∴球心到平面ABC 的距离22132d r BC ⎛⎫=-= ⎪⎝⎭3 点睛:本题考查的知识点是空间点、线、面之间的距离计算,其中根据球心距d ,球半径R ,解三角形我们可以求出ABC 所在平面截球所得圆(即ABC 的外接圆半径),构造直角三角形,满足勾股定理,我们即可求出球心到平面ABC 的距离是与球相关的距离问题常用方法.三、解答题26.(1)1x =或0y =;(2)()()22134x y -++=.【解析】【分析】(1)对直线l 的斜率是否存在进行分类讨论,利用圆心到直线l 的距离等于2可求得直线l 的方程;(2)先通过点到直线的距离及勾股定理可解得直线m 的斜率,然后将直线m 的方程与圆的方程联立,求出线段AB 的中点,作为圆心,并求出所求圆的半径,进而可得出所求圆的方程.【详解】(1)由题意知,圆C 的标准方程为()()22329x y -++=,∴圆心()3,2C -,半径3r =,①当直线l 的斜率k 存在时,设直线的方程为()01y k x -=-,即kx y k 0--=, 则圆心到直线l的距离为2d ==,0k ∴=.∴直线l 的方程为0y =;②当直线l 的斜率不存在时,直线l 的方程为1x =,此时圆心C 到直线l 的距离为2,符合题意.综上所述,直线l 的方程为1x =或0y =;(2)依题意可设直线m 的方程为1y kx =-,即()100kx y k --=<,则圆心()3,2C -到直线m的距离d === 22320k k ∴+-=,解得12k =或2k =-, 又0k <,2k ∴=-,∴直线m 的方程为210x y ---=即210x y ++=,设点()11,A x y 、()22,B x y ,联立直线m 与圆C 的方程得()()22210329x y x y ++=⎧⎪⎨-++=⎪⎩, 消去y 得251010x x -+=,122x x ∴+=,则线段AB 的中点的横坐标为1212x x +=,把1x =代入直线m 中得3y =-, 所以,线段AB 的中点的坐标为()1,3-, 由题意知,所求圆的半径为:122AB =, ∴以线段AB 为直径的圆的方程为:()()22134x y -++=.【点睛】本题考查利用圆心到直线的距离求直线方程,同时也考查了圆的方程的求解,涉及利用直线截圆所得弦长求参数,考查计算能力,属于中等题.27.(1)3x =或34210x y +-=;(2)34-. 【解析】【分析】(1)考虑切线的斜率是否存在,结合直线与圆相切的的条件d=r ,直接求解圆的切线方程即可.(2)利用圆的圆心距、半径及半弦长的关系,列出方程,求解a 即可.【详解】(1)由圆的方程得到圆心(1,2),半径2r .当直线斜率不存在时,直线3x =与圆C 显然相切;当直线斜率存在时,设所求直线方程为3(3)y k x -=-,即330kx y k -+-=,2=,解得34k =-, ∴ 方程为33(3)4y x -=--,即34210x y +-=. 故过点M 且与圆C 相切的直线方程为3x =或34210x y +-=. (2)∵ 弦长AB为 2.圆心到直线40ax y -+=的距离d =∴2242⎛⎛⎫+= ⎝⎭, 解得34a =-. 【点睛】本题考查直线与圆的位置关系的综合应用,考查切线方程的求法,考查了垂径定理的应用,考查计算能力. 28.(1)见证明;(2) 【解析】【分析】(1)由PA ⊥面ABCD 可知PA AE ⊥,又可证AE BC ⊥,根据线面垂直的判定即可证明(2) 取AB 中点M ,作MN AF ⊥于N ,连CN ,可证MNC ∠是二面角B AF C --的平面角,解三角形即可求解.【详解】(1)PA ⊥面ABCD ,AE ⊂面ABCD ,PA AE ∴⊥; 又底面ABCD 为菱形,60ABC ∠=,E 为BC 中点,,//,,AE BC AD BC AE AD ∴⊥∴⊥AE ∴⊥面PAD ;(2)AE 面PAD ,AHE ∴∠是EH 与面PAD 所成角,tan ,AE AHE AH PO AH∠=⊥时,AH 最小,tan AHE ∠最大,AHE ∠最大, 令2AB =,则3,1AE AH ==,在Rt AHD ∆中,2,30AD ADH =∠=, 在Rt PAD ∆中,233PA = PA ⊥面ABCD ,∴面PAB ⊥面ABCD ,且交线为AB ,取AB 中点M ,正ABC ∆中,,CM AB CM ⊥∴⊥面PAB ,作MN AF ⊥于N ,连CN ,由三垂线定理得CN AF ⊥,MNC ∠是二面角B AF C --的平面角.3CM =.在PAB ∆中,23,2,3BF AF AB ===边AF 上的高11,2BG MN ==, tan 23CM MNC MN∠==【点睛】 本题主要考查了线面垂直的判定,线面垂直的性质,二面角的求法,属于难题. 29.(1)A (1,3);(2)直线l 方程为20x y -+=,最短弦长为223)在直线MC 上存在定点4,43N ⎛⎫-⎪⎝⎭,使得||||PM PN 为常数32. 【解析】【分析】(1)利用直线系方程的特征,直接求解直线l 过定点A 的坐标;(2)当AC ⊥l 时,所截得弦长最短,由题知C (0,4),2r,求出AC 的斜率,利用点到直线的距离,转化求解即可;(3)由题知,直线MC 的方程为4y =,假设存在定点N (t ,4)满足题意,则设。
人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)
8.已知 ,且 ,则 ( )
A.4B.3C. D.
9.在△ 中, 为 边上的中线, 为 的中点,则
A. B.
C. D.
10.△ABC的内角A、B、C的对边分别为 、b、c.已知 , , ,则b=
A. B. C.2D.3
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
解得 ( 舍去),故选D.
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
A. B. C. D.
【答案】B
【解析】设 ,其中 ,则 .
由题意得 ,解得 ,即 .
故选:B.
12.若非零向量 满足 ,且 ,则 的夹角为
A. B.
C. D.
【答案】A
【解析】∵ ,所以 ,即 ,
即 ,∴
,又 ,故 ,故选A.
A.3B.2C. D.
【答案】D
【解析】点 是 所在平面上一点,过 作 ,如下图所示:
由 ,
故 ,
所以 与 的面积之比为 ,
故选:D.
7.设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
【答案】C
【解析】题意, ,所以 .故选:C.
8.已知 ,且 ,则 ( )
A.4B.3C. D.
(2)因为 为三角形内角,
所以 ,
,
由正弦定理得: ,
又∵ .
,解得 或 (舍).
.
22.在 中,角 所对的边分别为 ,已知 .
(1)求角 的大小;
(2)若 ,求 的取值范围.
【答案】(1) ;(2)
【解析】(1)∵ ,
∴ ,
即 ,
∵ ,∴ ,∴ .
高一下学期数学期中考试卷(含答案)
高一下学期数学期中考试卷(含答案)选择题部分(共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.每个小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分.1.设平面向量()1,2a =,(),3b x =-,若a b ∥,则x =( ) A .-6B .32-C .23-D .62.在△ABC 中,已知2b =,45B =︒,6c =C 为( )A .60°B .30°或150C .60°或120°D .120°3.已知△ABC 中,5AB BC ==,6AC =,则以边AC 所在直线为轴旋转△ABC 一周形成的几何体的体积为( ) A .16πB .32πC .64πD .96π4.在△ABC 中,点M 为AC 上的点,且2MC AM =,若BM BA BC λμ=+,则λμ-的值是( ) A .13B .12C .1D .235.在三棱锥P ABC -中,P A 、AB 、AC 两两垂直,3AP =,6BC =,则三棱锥外接球的表面积为( ) A .57πB .63πC .45πD .84π6.下列结论不.正确的是( ) A .在△ABC 中,若A B >,则sin sin A B > B .若△ABC 为锐角三角形,则sin cos A B > C .若cos cA b<,则△ABC 为钝角三角形 D .在△ABC 中,若3b =,60A =,三角形面积3S =2217.如图,在长方体1111ABCD A B C D -中,1AB AD ==,12AA =,M 为棱1DD 上的一点.当1A M MC +取得最小值时,1B M 的长( )A 3B 6C .23D .68.已知△ABC 中,22AB AC ==()min2AB BCR λλ+=∈,2AM MB =,22sin cos AP AB AC αα=⋅+⋅,,63ππα⎡⎤∈⎢⎥⎣⎦,则MP 的最小值为( )A .33B .23C .53D .63二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对得5分,部分选对的得2分,有选错的得0分.9.已知一个正方形的直观图是一个平行四边形,其中有一边长为4,则此正方形的面积可能为( ) A .16B .64C .32D .无法确定10.下列关于简单几何体的说法正确的是( ) A .所有棱长都相等的正三棱锥是正四面体B .正四面体的内切球与外接球半径之比为1:3C .侧棱与底面垂直的四棱柱是直平行六面体D .同底等高的圆柱和圆锥的表面积之比是2:111.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,2a =,BC 边上的中线2AD =,则下列说法正确的有( )A .AB AC ⋅与AD BC ⋅均为定值 B .2210b c += C .3cos 15A ≤<D .BAD ∠的最大值为6π12.在△ABC 中,3AB AC ==,4BC =,O 为△ABC 内的一点,设AO AB AC λμ=+,则下列说法正确的是( )A .若O 为△ABC 的重心,则23λμ+=B .若O 为△ABC 的内心,则25λμ+== C .若O 为△ABC 的外心,则910λμ+=D .若O 为△ABC 的垂心,则15λμ+=非选择题部分(共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.已知三角形三边长为3,437______.14.若1a =,2b =,a 与b 的夹角为60°,若()()35a b ma b +⊥-,则m 的值为______. 15.已知复数()i ,z a b a b R =+∈满足1110i z z +=+-,求1i 6i z z -++-+的最小值______. 16.已知△ABC 三点在平面直角坐标系x —O —y 所在平面内,点B 、C 分别在x 、y 正半轴上滑动,2BAC π∠=,6BCA π∠=,1AB =,则OA OB ⋅的最大值为______.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)已知复数()22i1i 1z i=++-,其中i 为虚数单位. (Ⅰ)求z 及z ;(Ⅱ)若223i z az b ++=+,求实数a ,b 的值.18.(本题满分12分)如图所示,四边形ABCD 是直角梯形,其中AD AB ⊥,AD BC ∥,若将图中阴影部分绕AB 旋转一周.(注:台体的体积公式:()112213v S S S S h =+⋅⋅(1S 表示上底面面积,2S 表示下底面面积,h 表示台体的高)(Ⅰ)求阴影部分形成的几何体的表面积; (Ⅱ)求阴影部分形成的几何体的体积.19.(本题满分12分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,()23cos 3cos b c A a C =. (Ⅰ)求A . (Ⅱ)若31a =,求△ABC 面积的最大值.20.(本题满分12分)已知4a =,3b =,()()23261a b a b -⋅+=.(Ⅰ)求a b + ; (Ⅱ)求a 与b 的夹角;(Ⅲ)若a 在b 方向上的投影向量为c ,求()c a b ⋅+的值.21.(本题满分12分)杭州市为迎接2022年亚运会,规划修建公路自行车比赛赛道,该赛道的平面示意图为如图的五边形ABCDE ,运动员的公路自行车比赛中如出现故障,可以从本队的器材车、公共器材车上或收容车上获得帮助.比赛期间,修理或更换车轮或赛车等,也可在固定修车点上进行.还需要运送一些补给物品,例如食物、饮料,工具和配件.所以项目设计需要预留出BD ,BE 为赛道内的两条服务通道(不考虑宽度),ED ,DC ,CB ,BA ,AE 为赛道23BCD BAE π∠=∠=,4CBD π∠=,26CD km =,8DE km =. (Ⅰ)从以下两个条件中任选一个条件,求服务通道BE 的长度; ①712CDE π∠=;②3cos 5DBE ∠= (Ⅱ)在(Ⅰ)条件下,应该如何设计,才能使折线段赛道BAE 最长(即BA AE +最大),最长值为多少?22.(本题满分12分)已知正△ABC 的边长为3I ,点P 满足1PI =. (Ⅰ)求证:222PA PB PC ++的定值并求此定值;(Ⅱ)把三个实数a ,b ,c 的最小值记为{}min ,,a b c ,若{}min ,,m PA PB PB PC PA PC =⋅⋅⋅,求m 的取值范围;(Ⅲ)若0xPA yPB zPC ++=,(),,x y z +∈R ,求xy的最大值.参考答案1.B2.解析:因为sin 4536c b c ︒=<<=2660sin sin sin 45sin b c C B C C=⇒=⇒=︒︒或120°,故选C . 3.解析:依题易知为两个同底的圆锥,半径和高分别为4,3,所以体积为21243323V ππ=⨯⨯⨯=.答案选:B4.解析:因为2MC AM =,所以2133BM BA BC =+,所以23λ=,13μ=,所以13λμ-=,故选A . 5.解析:由于P A ,AB ,AC 两两垂直,故可得该三棱锥为长方体的一部分,可得外接球半径为长方体体对角线的一半,故可得2222235222PA AB AC PA BC R +++===,故2445S R ππ==.所以答案为C .6.本题考查三角形的正弦定理、余弦定理和面积公式.对于选项A ,在△ABC 中,若2sin 2sin sin sin A B a b R A R B A B >⇔>⇔>⇔>,故选项A 正确. 对于选项C :()cos sin sin cos sin sin cos sin cos 0cA CB A A B B A A B b<⇒<⇒+<⇒<, 因为()0,A π∈,所以sin 0A >,故cos 0B B <⇒为钝角,故C 正确;对于选项D ,因为3b =,60A =︒,三角形面积13333sin 22S bc A ===,故2c =.再由余弦定理得222cos 7a b c bc A =+-=212sin 3a A =,故选项D 错误.本题选D7.【解答】解:由题意,将侧面11CDD C 绕1DD 逆时针转90°展开,与侧面11ADD A 共面(如图),连接1AC ',当1A ,M ,C '共线时,1A M MC +取得最小值,由1AB AD ==,12AA =,可得M 为1DD 的中点,12A M 1111ABCD A B C D -中,11B A ⊥平面11A D DA ,又1A M ⊂平面11A D DA ,则111B A A M ⊥,又12A M =()22221111123B M B A A M =+=+=.故选B8.C 解析:依题意得△ABC 为等腰直角三角形,斜边4BC =,D ,E 为斜边BC 的两个四等分点,点P 在线段DE 上运动,当点P 在点D 处时,MP 取得最小值,根据余弦定理解得53MD =,所以min 53MP MD == 9.AB 【解析】 【分析】正方形的直观图是一个平行四边形,有一边长为4,分两种情况讨论,根据斜二测画法的原则,即可得结果. 【详解】根据题意,正方形的直观图如图所示:①若直观图中平行四边形的边4A B ''=,则原正方形的边长为4AB A B ''==,所以该正方形的面积为4416S =⨯=; ②若直观图中平行四边形的边4A D ''=,则原正方形的边长为8AD A D ''==,所以该正方形的面积为8864S =⨯=, 故选:AB . 10. AB11.BCD12.ACD13.答案:120°或23π 14.答案:23815.答案:13 1633217.(1)13i z =-+,10z =(2)37a b =-⎧⎨=⎩【解析】 【分析】(1)利用复数的运算法则,求出z ,再根据复数的模的定义求出z ;(2)根据复数的运算法则,以及复数相等的充要条件,即可求出实数a ,b 的值. 【详解】 (1)()()22i1i 2i i 1i 13i 1iz =++=++=-+-,()221310z =-+=(2)由223i z az b ++=+得:()()213i 13i 23i a b -++--+=+,即()()863i 23i a b a --++--=+所以82633a b a --+=⎧⎨--=⎩,解之得37a b =-⎧⎨=⎩【点睛】本题考查了复数的运算法则,复数的模的定义,共轭复数的概念,复数相等的充要条件,考查了学生的运算能力,属于基础题.18.【答案】解:(1)由题意知,旋转体的表面由三部分组成,圆台下底面、侧面和半球面,21=42=82S ππ⨯⨯半球,()()22=25452S ππ++-圆台侧,2=5=25S ππ⨯圆台底,故所求几何体的表面积为=83525=68S ππππ++; (2)()()22221=22554=523V πππππ⎡⎤⨯⨯⨯⨯⨯⨯⨯⎢⎥⎣⎦圆台. 34116=2=323V ππ⨯⨯半球,∴所求几何体的体积为1614052=33πππ-. 19.(1)6π(2)1220.(1)∵()()23261a b a b -⋅+=,∴2244361a a b b-⋅-=又∵4a =,3b =,∴6442761a b -⋅-=,∴6a b ⋅=-.()22222426313a b a a b b +=+⋅+=+⨯-+=,∴13a b +=(2)∵6a b ⋅=-,∴61cos 432a b a bθ⋅-===-⨯⋅, ∵0θπ≤≤,∴23πθ=(3)∵12cos 423bbb c a a bb b⎛⎫=⋅=⨯-⨯=- ⎪⎝⎭,∴()()()()2222692333c a b b a b a b b ⋅+=-⋅+=-⋅+=--+=-. 21.(1)在△BCD 中,由正弦定理知sin sin BD CDBCD CBD =∠∠,∴62sin sin 34BD ππ=,解得6BD =, 选①:∵23BCD π∠=,4CBD π∠=,∴()23412BDC BCD CBD πππππ⎛⎫∠=-∠+∠=-+=⎪⎝⎭, ∴712122BDE CDE BDC πππ∠=∠-∠=-=, 在Rt △BDE 中,22226810BE BD DE =+=+=;若选②,在△BDE 中,由余弦定理知222cos 2BD BE DE DBE BD BE +-∠=⋅,∴222368526BE BE +-=⨯⨯,化简得25361400BE BE --=,解得10BE =或145-(舍负), 故服务通道BE 的长度10BE =;(2)在△ABE 中,由余弦定理知,2222cos BE BA AE BA AE BAE =+-⋅⋅∠, ∴22100BA AE BA AE =++⋅,∴()2100BA AE BA AE +-⋅=,即()()221004BA AE BA AE BA AE ++-=⋅≤,当且仅当BA AE =时,等号成立,此时()231004BA AE +=,BA AE +203. 22.(1)以I 为原点,IA 为y 轴建立平面直角坐标系如图所示. 由正弦定理得△ABC 外接圆半径14342sin 60R =⨯=,则()0,4A ,进而可得()23,2B --,()23,2C -.因为1PI =,所以点P 在圆221x y +=上,故设()cos ,sin P θθ,则()cos ,4sin PA θθ=--,()23cos ,2sin PB θθ=---,()23cos ,2sin PC θθ=--,所以222PA PB PC ++()()()()()222222cos 4sin 23cos 2sin 23cos 2sin θθθθθθ⎡⎤⎡⎤⎡⎤=+-++++++⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()223cos sin 4851θθ=++=.(2)由(1)知232sin 74sin 73PA PB πθθθ⎛⎫⋅=--=--- ⎪⎝⎭, 同理可得4sin 7PB PC θ⋅=-,4sin 73PA PC πθ⎛⎫⋅=-+- ⎪⎝⎭, 由对称性下面考查,22ππθ⎡⎤∈-⎢⎥⎣⎦时的情况, 当,26ππθ⎡⎤∈--⎢⎥⎣⎦时,4sin 7PB PC θ⋅=-[]11,9∈--,[]4sin 75,33PA PB πθ⎛⎫⋅=---∈-- ⎪⎝⎭,[]4sin 79,53PA PC πθ⎛⎫⋅=-+-∈-- ⎪⎝⎭,此时,PB PC ⋅最小;当,62ππθ⎡⎤∈-⎢⎥⎣⎦时,[]4sin 79,3PB PC θ⋅=-∈--,[]4sin 711,93PA PC πθ⎛⎫⋅=-+-∈-- ⎪⎝⎭,PB PC ⋅不是最小,故m 的取值范围是[]11,9--.(3))()()()023cos ,422sin xPA yPB zPC z y x y z x y z x y z θθ=++=--++---++,所以)23cos 422sin z y x y z x y z x y z θθ⎧-=⎪⎪++⎨--⎪=⎪++⎩,代入22sin cos 1θθ+=整理得2225556660x y z xy xz yz ++---=,,,x y z +∈R ,两边同时除以2y ,得:222225556660x z x xz zy y y y y++---=,令x m y =,z n y=,则225556660m n m mn n ++---=,即()225665650n m n m m -++-+=, 所以()()2266455650m m m ∆=+-⨯⨯-+≥,即2310m m -+≤,解得353522m -+≤≤,所以xy(即m )的最大值为352+. 此时,0∆=,因此335m n +=, 所以335m z +=,y x my =,从而()333515m yz x y m y +==++.。
北京市2023-2024学年高一下学期期中考试数学试题含答案
北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。
高一下学期期中数学试卷-(解析版)
高一下学期期中数学试卷一、填空题(共12小题).1.2021°角是第象限角.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为.3.已知tanθ=2,则=.4.函数y=arcsin(2x﹣1)的定义域为.5.S n为数列{a n}的前n项的和,,则a n=.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.7.已知,若,则sinα=.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是米.(精确到0.1米)9.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为.11.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是.12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.参考答案一.填空题1.2021°角是第三象限角.解:2021°=360°×5+221°,是第三象限角.故答案为:三.2.已知扇形的面积为2,扇形圆心角的弧度数是2,则扇形的弧长为2.解:设扇形的半径为r,则×2×r8=2,∴扇形的弧长=2×=4.故答案为:2.3.已知tanθ=2,则=.解:∵tanθ=2,∴==.故答案为:.4.函数y=arcsin(2x﹣1)的定义域为[0,1] .解:设t=2x﹣1,∵反正弦函数y=arcsin t的定义域为[﹣1,1],所以函数的定义域为:[0,7].故答案为:[0,1].5.S n为数列{a n}的前n项的和,,则a n=.解:因为,所以a3=S1=2﹣3+1=0,当n≥7时a n=S n﹣S n﹣1=(2n6﹣3n+1)﹣[2(n﹣1)2﹣3(n﹣5)+1]=4n﹣5,∴a n=.故答案为:.6.已知角α的顶点在坐标原点,始边与x轴的正半轴重合,为其终边上一点,则=.解:由题意可得cosα=,则sin()=cosα=.故答案为:﹣7.已知,若,则sinα=.解:,所以α+∈(,),又,所以sin(α+)==;=sin(α+)cos﹣cos(α+)sin=.故答案为:.8.如图所示,有一电视塔DC,在地面上一点A测得电视塔尖C的仰角是45°,再向塔底方向前进100米到达点B,此时测得电视塔尖C的仰角为60°,则此时电视塔的高度是236.6 米.(精确到0.1米)解:设电视塔的高度为x,则在Rt△BCD中,∠CBD=60°,则,解得.由于,整理得,解得x≈236.5.故答案为:236.69.已知数列{a n}与{b n}都是等差数列,且a1=1,b1=4,a25+b25=149,则数列{a n+b n}的前25项和等于1925 .解:∵等差数列{a n}、{b n}满足a1=1,b6=4,a25+b25=149,∴数列{a n+b n}的前25项和=+=+(a25+b25)=+×149=1925.故答案为:1925.10.“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134 .解:由能被3除余1且被5除余1的数就是能被15整除余7的数,故a n=15n﹣14.得n≤135,故此数列的项数为135﹣1=134.故答案为:13411.已知公式cos3θ=4cos3θ﹣3cosθ,θ∈R,借助这个公式,我们可以求函数f(x)=4x3﹣3x﹣2(x∈[0,])的值域.则该函数的值域是[﹣3,﹣2] .解:设x=cosθ,.则f(x)=4x4﹣3x﹣2=4cos6θ﹣3cosθ﹣2=cos3θ﹣2.∴cos3θ﹣5.∈[﹣3,﹣2]故答案为:[﹣3,﹣2]12.函数f(x)=sin(ωx)(其中ω>0)的图象与其对称轴在y轴右侧的交点从左到右依次记为A1,A2,A3,…,A n,…,在点列{A n}中存在四个不同的点成为某菱形的四个顶点,将满足上述条件的ω值从小到大组成的数列记为{ωn},则ω2020=.解:根据题意作出图象如下,设f(x)=sin(ωx)的最小正周期为,所以,即,解得;若A1A4A5A7为菱形,则若A1A k﹣1A k A m为菱形,则,解得,故答案为:.二.选择题13.“tan x=1”是“”成立的()条件A.充分非必要B.必要非充分C.充要D.既非充分又非必要解:tan x=1⇔x=kπ+,k∈Z.∴“tan x=1”是“”成立的必要不充分条件.故选:B.14.要得到函数y=2sin(2x+)的图象,只需要将函数y=2sin(2x﹣)的图象()A.向右平移π个长度单位B.向左平移π个长度单位C.向右平移个长度单位D.向左平移个长度单位解:只需要将函数y=2sin(2x﹣)的图象向左平移个长度单位,可得函数y=3sin[2(x+)﹣]=2sin(2x+)的图象,故选:D.15.设等差数列{a n}的前n项和为S n,且满足S15>0,S16>0,则中最大项为()A.B.C.D.解:∵等差数列前n项和S n=•n2+(a1﹣)n,由S15=15a8>0,S16=16×<0可得:故Sn最大值为S8.故S n最大且a n取最小正值时,有最大值,故选:D.16.函数f(x)=sin x在区间(0,10π)上可找到n个不同数x1,x2,…,x n,使得==…=,则n的最大值等于()A.8 B.9 C.10 D.11解:设==…==k,则条件等价为f(x)=kx,的根的个数,由图象可知y=kx与函数f(x)最多有10个交点,故选:C.三.解答题17.已知,,,求:(1)tanα和tanβ的值;(2)tan(α﹣2β)的值.解:(1)∵,,∴cosα=﹣=﹣,∵,∴.∴tan(α﹣2β)===.18.已知函数f(x)=sin n x+cos x(x∈R).(1)当n=1时,判断函数f(x)的奇偶性,并说明理由;(2)当n=2时,求f(x)的最值并指出此时x的取值集合.解:(1)当n=1时,f(x)=sin x+cos x=(sin x+cos x)=cos(x).∴f(x)≠f(﹣x)≠﹣f(﹣x),∴f(x)为非奇非偶函数;当时,,此时x的取值集合是;当cos x=﹣1时,f(x)min=﹣1,此时x的取值集合是{x|x=2kπ+π,k∈Z}.19.在△ABC中,4sin B sin2(+)+cos2B=1+.(1)求角B的度数;(2)若a=4,S△=5,求边b的值.解:(1)由4sin B•sin2(+)+cos2B=1+,得:2sin B•[7﹣cos(+B)]+1﹣2sin2B=1+,可得sin B=,∴B=,或B=;∴ac sin B=×4×c×=5,解之得c=6,∴当B=时,b==;即边b的值等于或.20.在等差数列{a n}中,a3+a4=﹣2,a5+a7=8.(1)求{a n}的通项公式;(2)求{a n}的前n项和S n的最小值;(3)设,求数列{b n}的前10项和,其中[x]表示不超过x的最大整数.解:(1)设等差数列{a n}的公差为d,∵a3+a4=﹣2,a5+a7=8.∴2a1+5d=﹣2,2a1+10d=8,∴a n=﹣6+2(n﹣1)=2n﹣8.∴当n=2或4时,S n取得最小值,(3),∴数列{b n}的前10项和=﹣2﹣1﹣1+8+0+0+0+1+2+8=2.21.已知函数f(x)=cos2x+2sin x cos x+l,x∈R.(1)把f(x)表示为A sin(ωx+φ)+B(A>0,ω>0,0<φ<π)的形式,并写出函数f(x)的最小正周期、值域;(2)求函数f(x)的单调递增区间;(3)定义:对下任意实数x1、x2,max{x1、x2}=.设g(x)=max{a sin x,a cos x}.x ∈R(常数a>0),若对于任意x1∈R,总存在x2∈R,使得g(x1)=f(x2)恒成立,求实数a的取值范围.解:(1)函数f(x)=cos2x+2sin x cos x+l=cos2x+sin2x+1=2sin(2x+)+6,x∈R;∴f(x)的最小正周期为T==π,值域为[﹣1,3];解得﹣+kπ≤x≤+kπ,k∈Z,(3)若对于任意x1∈R,总存在x2∈R,使得g(x2)=f(x2)恒成立,由g(x)的值域为[﹣a,a],f(x)的值域为[﹣1,8],解得0<a≤;所以实数a的取值范围是(0,].。
2023-2024学年江苏省苏州市高一下册期中数学试题(含解析)
2023-2024学年江苏省苏州市高一下册期中数学试题一、单选题1.已知复数1iiz -=,则z 的虚部为()A .i-B .iC .1-D .1【正确答案】C【分析】先利用复数代数形式的除法运算化简复数z ,再求z 的虚部.【详解】221i i i i 11i i i 1z --+====---,则z 的虚部为1-.故选:C.2.P 是ABC 所在平面上一点,若PA PB PB PC PC PA ⋅=⋅=⋅,则P 是ABC 的()A .外心B .内心C .重心D .垂心【正确答案】D【分析】利用平面向量数量积的性质推导出PB AC ⊥,进一步可得出PA BC ⊥,PC AB ⊥,即可得出结论.【详解】因为PA PB PB PC ⋅=⋅,则()0PB PC PA PB AC ⋅-=⋅= ,所以,PB AC ⊥,同理可得PA BC ⊥,PC AB ⊥,故P 是ABC 的垂心.故选:D.3.已知复数z 满足2z +,则2i z -的最小值为()AB .C .D .【正确答案】A【分析】设i z x y =+(),R x y ∈,由题意可得()222+2x y +≤,由此可知复数z 对应的点(),x y在以()2,0-为半径的圆上及圆内部,而2i z -=(),x y 到点()0,2的距离,进而结合圆的知识即可求解.【详解】设i z x y =+(),R x y ∈,则2i x y ++≤即()222+2x y +≤,所以复数z 对应的点(),x y 在以()2,0-为半径的圆上及圆内部,又()2i 2i z x y -=+-=(),x y 到点()0,2的距离,而()2,0-到()0,2的距离为所以2i z-的最小值为.故选:A.4.欧拉公式()i e cos isin e 2.71828θθθ=+= 是由18世纪瑞士数学家、自然科学家莱昂哈德・欧拉发现的,被誉为数学上优美的公式.已知πi 61e 22θ⎛⎫- ⎪⎝⎭=-+,则cos θ=()A.B .12-C .12D .2【正确答案】A【分析】按已知公式展开,由等式列出方程组,解出5π2π6k θ=+,进而求解.【详解】i e cos isin θθθ=+,πi 6ππ1ecos isin i 6622θθθ⎛⎫- ⎪⎝⎭⎛⎫⎛⎫∴=-+-=-+ ⎪ ⎪⎝⎭⎝⎭,π1cos 62πsin 62θθ⎧⎛⎫-=- ⎪⎪⎝⎭⎪∴⎨⎛⎫⎪-= ⎪⎪⎝⎭⎩,π2π2π63k θ∴-=+,Z k ∈,即5π2π6k θ=+,Z k ∈,5π5πcos cos 2πcos 66k θ⎛⎫∴=+=- ⎪⎝⎭故选:A.5.在如图所示的半圆中,AB 为直径,O 为圆心,点C 为半圆上一点且15OCB ∠= ,AB = ,则AC等于()A .4+B 1C 1D .4-【正确答案】C【分析】依题意可得30COA ∠=,OA OC == AC OC OA =- ,根据数量积的运算律计算可得.【详解】因为15OCB ∠= ,OC OB =,所以230COA OCB ∠∠== ,又AB = OA OC == AC OC OA =-,所以AC OC OA =-==1=.故选:C6.在ABC 中,若cos 1cos2cos 1cos2b C Bc B C⋅-=⋅-,则ABC 的形状为()A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形【正确答案】D【分析】根据正弦定理或三角恒等变换,记得判断ABC 的形状.【详解】由正弦定理,以及二倍角公式可知,22cos sin cos 1cos22sin cos sin cos 1cos22sin b C B C B Bc B C B C C⋅⋅-==⋅⋅-,即cos sin cos sin C BB C=,整理为sin cos sin cos B B C C =,即11sin 2222B C =,得22B C =,或2218090B C B C +=⇒+= ,所以ABC 的形状为等腰三角形或直角三角形.故选:D7.点P 是ABC 所在平面内一点且满足AP xAB yAC =+,则下列说法正确的个数有()①若12x y ==,则点P 是边BC 的中点;②若点P 是BC 边上靠近B 点的三等分点,则12,33x y ==;③若点P 在BC 边的中线上且12x y +=,则点P 是ABC 的重心;④若2x y +=,则PBC 与ABC 的面积相等.A .1个B .2个C .3个D .4个【正确答案】B【分析】①转化为BP PC = ,即可判断;②选项转化为2BP PC =,进而根据平面向量基本定理即可判断;③分析可得点P 为BC 边的中线的中点,即可判断;④可得点P 在直线MN 上,点P 与点A 到BC 边的距离相等即可判断.【详解】①若12x y ==,则1122AP AB AC =+ ,即AP AB AC AP -=-,即BP PC = .即点P 是边BC 的中点,故①正确;②由点P 是BC 边上靠近B 点的三等分点,所以2BP PC =,即()2AP AB AC AP -=- ,即21=33AP AB AC + ,所以21,33x y ==,故②错误;③因为点P 在BC 边的中线上,设D 为BC 中点,设AP AD λ= ,又()1=2AD AB AC + ,所以22AP AB AC λλ=+ ,又12x y +=,则1+=222λλ,所以1=2λ,即12AP AD = ,所以点P 为BC 边的中线的中点,故不是重心,故③错误;④设2AM AB = ,2AN AC =,则22x y AP AM AN =+ ,221x y +=,故点P 在直线MN 上,点P 与点A 到BC 边的距离相等,所以PBC 与ABC 的面积相等,故④正确.故选:B.8.在ABC 中,3B π=,BC,则cos A 的值为()A.B.CD【正确答案】B【分析】由题意设出BC x =,再利用锐角三角函数结合勾股定理,分别求出AB 、AC 的值,再由余弦定理即可求出cos A 的值.【详解】由题意,设BC x =,那么BC边上的高AD =,3B π= ,3sin 3ADxAB π∴==,6tan 3ADxBD π==,则56xDC BC BD =-=,2222225769x x AC DC AD ⎛⎫∴=+=+= ⎪⎝⎭⎝⎭,在ABC中,由余弦定理可得:222222799cos 2x x x AB AC BC A AB AC +-+-==-⋅故选:B.二、多选题9.若关于x 的方程20x ax b ++=的一个根是12i -,则下列说法中正确的是()A .2a =-B .=5b -C .i a b +的共轭复数在复平面内对应的点在第二象限D .i,i a b a b ++在复平面内对应的两点间的距离为【正确答案】AD【分析】首先将方程的实数根代入方程,求,a b ,再分别根据共轭复数的定义,以及复数的几何意义判断选项.【详解】由条件可知,()()212i 12i 0a b -+-+=,整理为()()342i 0a b a +--+=,则30420a b a +-=⎧⎨+=⎩,2,5a b =-=,故A 正确,B 错误;i 25i a b +=-+,其共轭复数i 25i a b -=--,对应的点的坐标为()2,5--,在第三象限,故C错误;i 25i a b +=-+,对应的点为()2,5-,52i ai b +=-,对应的点为()5,2-,两点间的距离d ==D 正确.故选:AD10.下列命题正确的是()A .非零向量1e 和2e不共线,若121212,2,36AB e e AC e e CD e e =-=+=- ,则B 、C 、D 三点共线B .已知1e 和2e 是两个夹角为60的单位向量,12122,4a e e b ke e =+=- 且a b ⊥ ,则实数5k =C .若四边形ABCD 满足()0,0AB CD AB AD AC +=-⋅=,则该四边形一定是矩形D .点O 在ABC 所在的平面内,动点P 满足()OP OA AB AC λ=++,则动点P 的运动路径经过ABC 的重心【正确答案】BD【分析】计算出BC ,即可判断BC 与CD不共线,从而判断A ,根据数量积的定义及运算律判断B ,可得⊥DB AC 再结合平面几何的性质判断C ,设BC 的中点为D ,得到2AP AD λ=,即可判断D.【详解】对于A :因为非零向量1e 和2e 不共线,所以1e 和2e可以作为平面内的一组基底,因为12AB e e =- ,122AC e e =+ ,1236CD e e =-所以()()12121222BC e e e e A AB e C e ==+--=+- ,显然不存在实数λ使得CD BC λ=,故B 、C 、D 三点不共线,故A 错误;对于B :因为1e 和2e 是两个夹角为60 的单位向量,所以121211cos 601122e e e e =︒⋅=⨯⨯=⋅ ,又122a e e =+,124b ke e =- 且a b ⊥ ,所以()()()2211212122240284a b e e ke e ke e k e e ⋅=+⋅-=--⋅+=,即()120842k k --+=,解得5k =,故B 正确;对于C :由0AB CD += 可得ABCD 为平行四边形,()0AB AD AC -⋅= ,即0DB AC ⋅=,所以⊥DB AC,即四边形ABCD 为对角线互相垂直的平行四边形,则该四边形可能是菱形或正方形,故C 错误;对于D :设BC 的中点为D ,则2AB AC AD +=,因为()OP OA AB AC λ=++ ,所以2OP OA AD λ-=,即2AP AD λ= ,所以A 、P 、D 三点共线,即P 在AD 上,又三角形重心在AD 上,所以动点P 的运动路径经过ABC 的重心,故D 正确;故选:BD11.在ABC 中,π,33B b c ===,则下列说法正确的是()A .C 有两解B .BC 边上的高为2C .BC 的长度为32+D .ABC 的面积为94【正确答案】BC【分析】根据正弦定理判断A ;根据条件直接求BC 边上的高,判断B ;根据余弦定理判断C ;根据三角形面积公式判断D.【详解】A.根据正弦定理可知,sin sin c b C B =,则3sin C =:3sin 4C =,且c b <,所以角C 只有一解,故A 错误;B.BC 边上的高sin 322h c B ===,故B 正确;C.根据余弦定理2222cos b a c ac B =+-,即21293a a =+-,解得:32a +=或0a <(舍)即BC ,故C 正确;D.9113sin 32228ABCSac B +==⨯⨯= ,故D 错误.故选:BC12.已知函数()()()sin cos sin cos f x x x x x =-+,则下列说法正确的是()A .()f x 在区间32π,π2⎡⎤--⎢⎥⎣⎦上单调递增B .()f x 的对称轴是()ππZ 4x k k =+∈C .方程()302f x -=在[]2π,2πx ∈-的解为12,,,n x x x ,且12πn x x x +++=- D .若()()123f x f x -=,则12min3π4x x -=【正确答案】ACD【分析】A.去绝对值后,化简函数,判断函数的单调性;B.根据对称性的性质,判断对称性;C.去绝对值,写成分段函数,根据图象,判断选项;D.根据函数的最值,结合图象,判断D.【详解】()()()()()2πsin 2πcos 2πsin 2πcos 2πf x x x x x +=+-+⎡+++⎤⎡⎤⎣⎦⎣⎦()()()sin cos sin cos x x x x f x =-+=,所以函数是周期函数,周期为2π,当3π2π,2x ⎡⎤∈--⎢⎥⎣⎦时,()()()22sin cos sin cos sin cos cos 2f x x x x x x x x =-+=-=-,[]24π,3πx ∈--,根据周期性可知,与[]0,π的单调性一样,cos y x =在区间[]0,π单调递减,所以()cos 2f x x =-在区间3π2π,2⎡⎤--⎢⎥⎣⎦单调递增,故A 正确;若函数()f x 的对称轴是()ππZ 4x k k =+∈,则其中一条对称轴是π4x =,但()01f =-,π12f ⎛⎫= ⎪⎝⎭,()π02f f ⎛⎫≠ ⎪⎝⎭,所以函数不关于π4x =对称,故B 错误;当cos 0x ≥时,()()()22sin cos sin cos sin cos cos 2f x x x x x x x x =-+=-=-,当cos 0x <时,()()2sin cos 1sin 2f x x x x =-=-,所以()ππcos 2,2π,2π22π3π1sin 2,2π,2π22x x k k f x x x k k ⎧⎡⎫-∈-++⎪⎪⎢⎪⎣⎭=⎨⎡⎫⎪-∈++⎪⎢⎪⎣⎭⎩,Z k ∈,如图,画出函数的图象,当3ππ,22x ⎡⎫∈--⎪⎢⎣⎭时,1sin 2y x =-,当5π4x =-时,取得最大值2,当π3π,22x ⎡⎫∈⎪⎢⎣⎭时,1sin 2y x =-,当3π4x =时,取得最大值2,方程()302f x -=在[]2π,2πx ∈-的解为1234,,,x x x x ,125π5π242x x ⎛⎫+=⨯-=- ⎪⎝⎭,343π3π242x x ⎛⎫+=⨯= ⎪⎝⎭,所以1234πx x x x +++=-,故C正确;因为函数的最大值为2,最小值为-1,若()()123f x f x -=,则()12f x =,()21f x =-,113π2π4x k =+,222πx k =,12,Z k k ∈,12123π2π2π4x x k k -=+-,所以12min3π4x x -=,故D 正确.故选:ACD.三、填空题13.下面给出的几个关于复数的命题,①若()()22432i x x x -+++是纯虚数,则实数2x =±②复数()21i()a a +∈R 是纯虚数③复数sin100i cos100z ︒︒=-+在复平面内对应的点Z 位于第三象限④如果复数z 满足|i ||i |2z z ++-=,则|2i 1|z --的最小值是2以上命题中,正确命题的序号是______.【正确答案】②③【分析】根据纯虚数的概念和复数的几何意义逐个检验可得【详解】对于①,因为22(4)(32)i x x x -+++为纯虚数,所以224=0320x x x ⎧-⎨++≠⎩,解得2x =,故①错误;对于②,因为R a ∈,所以2+10a ≠,所以2(+1)i a 是纯虚数,故②正确;对于③,因为sin1000︒-<,cos1000︒<,所以sin100i cos100z ︒︒=-+在复平面内对应的点在第三象限,故③正确;对于④,由复数的几何意义知,i i 2z z ++-=表示复数z 对应的点Z 到点(0,1)A -和到点(0,1)B 的距离之和,又因为2AB =,所以复数z 对应的点Z 在线段AB 上,而2i 1z --表示点Z 到点(1,2)P 的距离,所以其最小值为PB =故②③.14.已知()π0,sin sin3a f x x a x ⎛⎫>=-- ⎪⎝⎭=a __________.【正确答案】2【分析】利用两角差的正弦公式化简,再结合辅助角公式列出关于a 的方程,即可求得答案.【详解】由()π0,sin sin 3a f x x a x ⎛⎫>=-- ⎪⎝⎭1()sin cos 22a x x =-,由于()f x221()(32a -+=,解得2a =,或1a =-(负值舍去),故215.ABC 是钝角三角形,内角,,A B C 所对的边分别为,,,2,4a b c a b ==,则最大边c 的取值范围为__________.【正确答案】()【分析】由题意可得π2C >,由余弦定理结合c a b <+即可求解.【详解】因为ABC 是钝角三角形,最大边为c ,所以角C 为钝角,在ABC 中,由余弦定理可得:2222416cos 0216a b c c C ab +-+-==<,可得c >又因为6c a b <+=,所以6c <<,所以最大边c 的取值范围是.()故答案为.()16.根据毕达哥拉斯定理,以直角三角形的三条边为边长作正方形,从斜边上作出的正方形的面积正好等于在两直角边上作出的正方形面积之和.现在对直角三角形CDE 按上述操作作图后,得如图所示的图形,若AF AB AD x y =+,则x y -=____________.【正确答案】12-/-0.5【分析】建立平面直角坐标系,标出各个点的坐标,利用平面向量的坐标运算即可得解.【详解】如图,以A 为原点,分别以,AB AD为,x y 轴建立平面直角坐标系,设正方形ABCD 的边长为2a ,则正方形DEHI ,正方形EFGC 边长为a可知()0,0A ,()2,0B a ,()0,2D a ,)1DF a=则)1cos 30F x a =⋅ ,)1sin 302F y a a =+⋅+ ,即F a a ⎫⎪⎪⎝⎭又AF AB AD x y =+,()()()3353,2,00,22,222a a x a y a ax ay ⎛⎫++∴=+= ⎪ ⎪⎝⎭即33225322ax a ay a⎧+=⎪⎪⎨+⎪=⎪⎩,即33532222ax ay a a ++-=-,化简得12x y -=-故12-四、解答题17.已知复数()()212221i,sin 12cos i z m m z λθθ=-+-=+--(其中i 是虚数单位,,R m λ∈).(1)若1z 在复平面内表示的点在第三象限的角平分线上,求实数m 的值;(2)若12z z =,求实数λ的取值范围.【正确答案】(1)3m =-(2)3,34⎡⎤⎢⎥⎣⎦【分析】(1)由题意可得22210m m -=-<,解之即可得解;(2)根据12z z =,可得()22sin 2112cos m m λθθ⎧-=+⎪⎨-=--⎪⎩①②,消去m ,再结合三角函数的性质即可得解.【详解】(1)若1z 在复平面内表示的点在第三象限的角平分线上,则22210m m -=-<,解得3m =-;(2)若12z z =,则()22sin 2112cos m m λθθ⎧-=+⎪⎨-=--⎪⎩①②,由②得22cos m θ=③,将①③相加得22sin cos λθθ=++,故22213cos sin 2sin sin 1sin 24λθθθθθ⎛⎫=--+=-+=-+ ⎪⎝⎭,因为1sin 1θ-≤≤,则当1sin 2θ=时,min 34λ=,当sin 1θ=-时,max 3λ=,所以λ的取值范围为3,34⎡⎤⎢⎥⎣⎦.18.已知函数()2ππ2sin ,(0)6212x f x x ωωω⎛⎫⎛⎫=+++> ⎪ ⎪⎝⎭⎝⎭图象的相邻两对称轴间的距离为π2.(1)求()f x 的解析式;(2)将函数()f x 的图象向左平移π6个单位长度,再把所得图象上各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,求()g x 的单调递减区间.【正确答案】(1)()2sin 2f x x=(2)ππ7ππ,242242k k ⎡⎤++⎢⎥⎣⎦,Z k ∈【分析】(1)利用二倍角公式和辅助角公式化简即可求解;(2)根据函数图象的平移和变换公式得到()π2sin 43g x x ⎛⎫=+ ⎪⎝⎭,再利用正弦函数的图象及性质求解即可.【详解】(1)由()2ππ2sin 16212x f x x ωω⎛⎫⎛⎫=+++- ⎪⎪⎝⎭⎝⎭,整理得:()ππππcos 2sin 2sin 6666f x x x x x ωωωω⎛⎫⎛⎫⎛⎫=+-+=+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于相邻两对称轴间的距离为π2,故函数的最小正周期为π,故2ω=.所以()2sin 2f x x =.(2)由题意,将函数()f x 的图象向左平移π6个单位长度,可得ππ2sin 22sin 263y x x ⎛⎫⎛⎫=+=+ ⎪ ⎪⎝⎭⎝⎭的图象,再把所得图象上各点的横坐标缩小为原来的12(纵坐标不变),得到函数()π2sin 43g x x ⎛⎫=+ ⎪⎝⎭,令ππ3π2π42π232k x k +≤+≤+,Z k ∈,即ππ7ππ242242k k x +≤≤+,Z k ∈,所以()g x 的单调递减区间为ππ7ππ,242242k k ⎡⎤++⎢⎥⎣⎦,Z k ∈.19.设1z 是虚数,2111z z z =+是实数且21122z -≤≤.(1)求1z 的值以及1z 实部的取值范围;(2)若1111z z ω-=+,求证:ω为纯虚数.【正确答案】(1)11z =,11,44⎡⎤-⎢⎥⎣⎦(2)证明见解析【分析】(1)待定系数法设出1i z a b =+,代入到上式,利用共轭复数进行化简,由2z 是实数可求得221a b +=,且22z a =,故而11z =,再根据21122z -≤≤,即可求得实部a 的范围;(2)直接将(1)中1i z a b =+代入,结合复数的除法运算化简1111z z ω-=+,再由a ,b 范围即可得证.【详解】(1)设1i z a b =+(,R a b ∈,且0b ≠),则()()()22222i 1i i i i i ia b a b z a b a b a b a b a b a b a b a b -⎛⎫⎛⎫=++=++=++- ⎪ ⎪++-++⎝⎭⎝⎭,∵2z 是实数,0b ≠,∴221a b +=,即11z =,则22z a =,又∵21122z -≤≤,∴11222a -≤≤,即1144a -≤≤,∴1z 的实部的取值范围为11,44⎡⎤-⎢⎥⎣⎦;(2)()()()()()()2212211i 1i 1i 11i 1i 1i 1i 11a b a b b aa b z a b a b a b b z a ω-++++---+====+-+-+++++()222212i 12i 1i121211b a b b b a a b a a +-++-==++++++,因为0b ≠,1144a -≤≤,所以ω为纯虚数.20.如图,一个直径为5m 的水车按逆时针方向每分钟转1.8圈,水车的中心O 距离水面的高度为1.25m ,水车上的盛水筒P 到水面的距离为h (单位:m )(在水面下则h 为负数),若以盛水筒P 刚浮出水面时开始计时,则h 与时间t (单位:s )之间的关系为()πsin 0,0,2h A t b A ωϕωϕ⎛⎫=++>>< ⎪⎝⎭.(1)求h 与t 的函数解析式;(2)求在一个旋转周期内,盛水筒P 在水面以上的时长.【正确答案】(1)()53π5sin 25064h t t π⎛⎫=-+ ⎪⎝⎭(2)200s 9【分析】(1)依题意可得52A R ==, 1.25b =,由周期求出ω,再结合图形可得1sin 2ϕ=-,即可求出ϕ,从而得到函数解析式;(2)令()0h t >,即3π1sin 5062t π⎛⎫->- ⎪⎝⎭,结合正弦函数的性质计算可得.【详解】(1)依题意52A R ==, 1.25b =,1.8160T =,即1003T =,则2π2π3π100503Tω===,由给定的图形知, 1.251sin 2.52ϕ=-=-,又||2ϕπ<,即有π6ϕ=-,所以h 与t 的函数解析式是()53π5sin 25064h t t π⎛⎫=-+ ⎪⎝⎭;(2)令()53π5sin 025064h t t π⎛⎫=-+> ⎪⎝⎭,即3π1sin 5062t π⎛⎫->- ⎪⎝⎭所以3π765066t πππ-<-<,解得20009t <<,所以水车在一个旋转周期内,盛水筒P 在水面以上的时长为200s 9.21.在ABC 中,角,,A B C 的对边分别是,,a b c ,满足()sin sin sin 2sin b B c C A a b C +=⋅-.(1)求角A 的余弦值;(2)若D 是边AB 的中点且2CD =,求b 的取值范围.【正确答案】(1)2-(2)(2,【分析】(1)利用正弦定理将角化边,再由余弦定理得到sin cos A A =-,即可求出A ,从而得解;(2)设ACD α∠=,利用正弦定理表示出AD ,AC ,设()f b α=,利用辅助角公式化简,最后结合正弦函数的性质计算可得.【详解】(1)在ABC 中,由正弦定理有sin sin sin a b cA B C==,sin sin sin (2sin )b B c C A a b C +=⋅- ,22sin sin sin (sin 2sin sin )B C A A B C ∴+=⋅-,即2222sin b c a bc A +=-,在ABC 中,由余弦定理,有2222cos a b c bc A =+-,2sin 2cos bc A bc A ∴=-,则sin cos A A =-,即tan 1A =-,(0,)A π∈ ,∴34A π=,则cos 2A =-;(2)如图,设ACD α∠=,则4ADC πα∠=-,(0,)4πα∈,在ACD 中,根据正弦定理,有sin sin sin CD AD ACA ACD ADC==∠∠,2c AD α∴==,sin()4AC b πα==-,设()sin()8sin 2cos 6sin 4f b πααααα==-+=+cos sin )sin()αααθ==+,(其中sinθ=,cos θ=(0,)6πθ∈)又()(,)(0,42ππαθθθ+∈+∈,所以()f α在(0,)2πα∈上单调递增,所以(),))4f παθθ∈+,又sin()(sin cos )425πθθθ+=+=,所以b 的取值范围为(2,.22.设正ABC 的边长为1,O 为ABC 的外心,12,,,n P P P 为BC 边上的1n +等分点,12,,,n Q Q Q 为AC 边上的1n +等分点,12,,,n L L L 为AB 边上的1n +等分点.(1)当2023n =时,求122023OC OP OP OP OB +++++的值;(2)当4n =时.(i )求i j OC CP OC CQ ⋅+⋅的值(用,i j 表示);(ii )求()1,,4,,,i j j k k i OP OQ OQ OL OL OP i j k i j k N⋅+⋅+⋅≤≤∈的最大值与最小值.【正确答案】(2)(i )510i j --;(ii )最大值为225-,最小值为1350-.【分析】(1)根据,,i B P C 共线,将i OP uuu r 用OB OC ,uu u r uuu r表示,求和后再求模长;(2)(i )根据数量积定义计算;(ii )将i j j k k i OP OQ OQ OL OL OP ⋅+⋅+⋅用,,i j k 表示,依次视为,,i j k 的函数讨论单调求最值.【详解】(1)当2023n =时,12023120242024OP OB OC =+ ,22022220242024OP OB OC =+,……,20231202320242024OP OB OC =+ ,122023202320221122023(()202420242024202420242024OP OP OP OB OC ∴++⋅⋅⋅+=++⋅⋅⋅++++⋅⋅⋅+ 2023202322OB OC=+uu u r uuu r1220232023202322OC OP OP OP OB OB OB OC OC∴+++⋅⋅⋅++++=+uuu r uuu r uuu r uuuuu r uu uu u r uu u r uuu r u r uuu r 20252OB OC=+uu u r uuu r又ABC 为等边三角形,且边长为1,O 为外接圆的圆心,OB ∴=,120OB OC =o uu u r uuu r ,22222112(()2()333323OB OC OB OC OB OC ∴+=++⋅=++⨯-= ,则3OB OC += ,12202320252OB OC OC OP OP OP OB ∴+++⋅⋅⋅+++=uuu r uuu r uuu r uu uu u r uu uuu r uur u u r ;(2)(ⅰ)ABC 为等边三角形,O 为外接圆的圆心,30OCB OCA ∴∠=∠= ,则,150i OC CP =ouuu r uu u r ,,150j OC CQ =o uuu r uuu u r ,又4n =,,i j P Q ∴分别为BC ,CA 的5等分点,又1BC CA ==,55i i CP -∴=,5j jCQ =;cos150cos150i i j j OC CP OC CQ OC CP OC CQ ∴⋅+⋅=⋅+⋅555((352352101010i j i j i j ----=⨯⨯-+⨯⨯-=--=(ⅱ)2()()i j i j i j i j OP OQ OC CP OC CQ OC OC CP OC CQ CP CQ ⋅=+⋅+=+⋅+⋅+⋅ ,155cos150cos150cos 6035555i j i j i j OP OQ --∴⋅=++⨯155115355552650i j i j i ij---=⨯⨯=-+;同理可得:15650j kj jk OQ OL -⋅=-+ ;15650k i k ki OL OP -⋅=-+ ;15()()250i j j k k i i j k ij jk ik OP OQ OQ OL OL OP ++-++∴⋅+⋅+⋅=-+ ;令()()5515()()1250250j k i j k jki j k ij jk ik S --++-++-++=-+=-+①当5j k +≥时,1i =时,()()max 5454411250250j k jk k j kS ++-+-+=-+=-+,4k ≤ ,4j ∴=时取最大值,则()max 54441422505025k k S +-+=-+=-=-;4i =时,()()min 2020111250250j k jk k j k S ++-+-+=-+=-+,1k ≥ ,4j ∴=时取最小值,则()min 204113125050k k k S +-+--=-+=,则当4k =时,min 1350S =-;②当5j k +<时,4i =时,()()max 2020111250250j k jk k j k S ++-+-+=-+=-+,1k ≥ ,1j ∴=时取最大值,则max 1201422505025k k S +-+=-+=-=-;1i =时,()()min 5454411250250j k jk k j kS ++-+-+=-+=-+,4k ≤ ,1j ∴=时取最小值,则min 193250kS +=-+,则当1k =时,min 1121325050S =-+=-;综上所述:i j j k k i OP OQ OQ OL OL OP ⋅+⋅+⋅ 的最大值为225-,最小值为1350-.关键点点睛:求5()()i j k ij jk ik ++-++的最值利用函数的单调性求最值,先整理为()()55j k i j k jk --++-的形式,视为关于i 的一次函数,讨论5j k --的正负确定单调性,确定在1i =或4i =时取得最值,类似的,下一步再视为关于j 的一次函数求最值,最后再视为关于k 的一次函数求最值.。
北京市2023-2024学年高一下学期期中考试数学试卷含答案
北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。
2024高一数学期中试卷及答案
2024高一数学期中试卷及答案一、选择题(每题5分,共25分)1. 设集合A = {x | x = 2k, k ∈ Z},B = {x | x = 3k, k ∈ Z},则A∩B =____。
A. {x | x = 6k, k ∈ Z}B. {x | x = 2k, k ∈ Z}C. {x | x = 3k, k ∈Z}D. ∅2. 若f(x) = x² - 4x + 3,则f(2 - x) =____。
A. x² - 4x + 3B. 4 - xC. x² + 4x - 3D. 4 - x²3. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为____。
A. 1B. 3C. 5D. 94. 设函数f(x) = 2x + 1,若f(a) + f(b) = 3,则a + b =____。
A. 0B. 1C. -1D. 25. 下列函数在区间(-∞, 1)上单调递减的是____。
A. y = x²B. y = -x²C. y = 2xD. y = 1/x二、填空题(每题5分,共25分)6. 若|x - 2| ≤ 3,则____ ≤ x ≤ ____。
7. 已知log₂(x - 1) = 3,则x - 1 =____,x =____。
8. 函数f(x) = 2x + 1的反函数为____。
9. 若向量a = (1, 2),向量b = (-2, 3),则向量a + b =____,向量a - b =____。
10. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),矩阵B = \(\begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix}\),则矩阵A + B =____。
三、解答题(共50分)11. (10分)已知函数f(x) = 2x + 1,求f(f(x))的表达式。
北京市2023-2024学年高一下学期期中考试数学试题含答案
2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。
重庆市2023-2024学年高一下学期期中考试数学试卷含答案
重庆市2023-2024学年高一(下)期中数学试卷(答案在最后)一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.(5分)已知复数,则的虚部是()A.﹣i B.﹣1C.i D.12.(5分)设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是()A.若m∥n,m∥α,则n∥αB.若α∥β,m⊂α,n⊂β,则m∥nC.若m∥n,m⊥α,则n⊥αD.若α⊥β,m⊂α,n⊂β,则m⊥n3.(5分)在△ABC中,b=6,c=3,A=60°,则此三角形外接圆面积为()A.9B.9πC.36D.36π4.(5分)已知向量满足,向量与的夹角为,则在方向上的投影向量为()A.B.C.D.5.(5分)如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为自豪的发现,我们来重温这个伟大发现,圆柱的表面积与球的表面积之比为()A.B.2C.D.6.(5分)如图,在矩形ABCD中,AB=2AD,E,F分别为BC,CD的中点,G为EF中点,则=()A.B.C.D.7.(5分)嵩岳寺塔位于河南郑州登封市嵩岳寺内,历经1400多年风雨侵蚀,仍巍然屹立,是中国现存最早的砖塔.如图,为测量塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点C与D,现测得∠BCD=30°,∠BDC=45°,CD=32m,在C点测得塔顶A的仰角为60°,则塔的总高度为()A.B.C.D.8.(5分)在正四棱台ABCD﹣A1B1C1D1中,AB=2A1B1=4,侧棱,若P为B1C1的中点,则过B,D,P三点截面的面积为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
(多选)9.(3分)已知复数z=2﹣3i,其中i是虚数单位,则下列结论正确的是()A.z的模等于13B.z在复平面内对应的点位于第四象限C.z的共轭复数为﹣2﹣3iD.若z(m+4i)是纯虚数,则m=﹣6(多选)10.(3分)设向量,,则下列叙述错误的是()A.若与的夹角为钝角,则k<2且k≠﹣2B.的最小值为2C.与共线的单位向量只有一个为D.若,则或(多选)11.(3分)在长方体ABCD﹣A1B1C1D1中,BC=2AB=2BB1=6,点E为棱BC上靠近点C的三等分点,点F是长方形ADD1A1内一动点(含边界),且直线B1F,EF与平面ADD1A1所成角的大小相等,则()A.A1F∥平面BCC1B1B.三棱锥F﹣BB1E的体积为4C.存在点F,使得A1F∥B1ED.线段A1F的长度的取值范围为[,]三、填空题:本题共3小题,每小题5分,共15分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
振阳公学2012—2013学年第二学期期中考试高一数学试题(考试时间:120分钟 试卷分值:150分)第Ⅰ卷一、选择题(本大题共10小题,每小题5分,共50分)1. 在ABC ∆中,若::1:2:3A B C ∠∠∠=,则::a b c 等于( )A.1:2:3B.3:2:1C.2D.2 2.不等式x 2-2x +3<0的解集是( )A.{x |-1<x <3}B.{x |-3<x <1}C.{x |x <-3或x >1}D.∅ 3.数列{}n a 的通项公式32-=n a n 则=+31a a ( )A .0B .2C .5D .-14.等比数列{a n }中,a 3=7,前3项之和S 3=21, 则公比q 的值为( )A .1B .-21C .1或-21D .-1或215.在等差数列{a n }中,若a 1+a 2+a 12+a 13=24,则7a 为( ).A .6B .7C .8D .96.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为( ) A .0 B .6 C .9 D .15 7.在△ABC 中,222a b c bc =++ ,则A 等于( )A .60°B .45°C .120°D .30° 8.在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( )A 、钝角三角形B 、直角三角形C 、锐角三角形D 、不能确定 9.设0<<b a ,则下列不等式中不成立的是( )A .b a 11>B .a b a 11>-C .b a ->D .b a ->-10.若称na 1+a 2+…+a n为n 个正数a 1+a 2+…+a n 的“均倒数”已知数列{a n }的各项均为正,且其前n 项的“均倒数”为12n -1则数列{a n }的通项公式为( ).A .2n -1B .4n -3C .4n -1D .4n -5第Ⅱ卷 非选择题(共100分)二、填空题:本大题共5小题,每小题5分,共25分,把答案填在横线上。
11.若数列{}n a 满足:11=a ,121+=n n a a ,n =1,2,3,….则=⋅⋅⋅⋅⋅⋅++n a a a 21 . 12.不等式022>++bx ax 的解集是(-21,31)则a +b 的值是 . 13.已知△ABC 的三个内角A 、B 、C 成等差数列,且边a=4,c=3,则△ABC 的面积等于 _______14.已知数列{}n a 的前n 项和23n n S =-,则数列{}n a 的通项公式为 . 15.在△ABC 中∠C =60°,a 、b 、c 分别为∠A 、∠B 、∠C 的对边则ca bc b a +++= . 三、解答题:本大题共6小题,共75分。
解答应写出必要的文字说明、证明过程及演算步骤。
16.(本小题满分12分) 已知1)1()(2++-=x aa x x f ,(I )当21=a 时,解不等式0)(≤x f ;(II )若0>a ,解关于x 的不等式0)(≤x f 。
17.(本小题满分12分)数列}{n a 满足11=a ,111122n na a +=+(*N n ∈)。
(I )求证1n a ⎧⎫⎨⎬⎩⎭是等差数列;(II )若331613221>⋅⋅⋅⋅⋅⋅+++n n a a a a a a ,求n 的取值范围。
18.(本小题满分12分) 已知ABC △1,且sin sin A B C +=. (I )求边AB 的长;(II )若ABC △的面积为1sin 6C ,求角C 的度数.19.(本小题满分13分) 如图1渔船甲位于岛屿A 的南偏西60方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/小时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(I )求渔船甲的速度; (II )求sin α的值.60 AB C 东西 北 α20.(本小题满分13分)在等差数列}{n a 中,首项11=a ,数列}{n b 满足,21nan b ⎪⎭⎫⎝⎛=641321=b b b(I )求数列}{n a 的通项公式;(II )求22211<⋅⋅⋅⋅⋅⋅++n n b a b a b a21.(本小题满分13分)在等比数列{a n }中,a n >0(n ∈N *),公比q ∈(0,1),且a 1a 5+2a 3a 5+a 2a 8=25,a 3与a 5的等比中项为2.(I )求数列{a n }的通项公式;(II )设b n =log 2a n ,数列{b n }的前n 项和为S n ,当S 11+S 22+…+S nn 最大时,求n 的值.振阳公学2012—2013学年第二学期期中考试高一数学试题答案一、选择题二、填空题11.12-n ;12.-14; 13; 14. 11,12,2n n n a n --=⎧=⎨≥⎩; 15. 1;16. 解:(I )当21=a 时,有不等式0125)(2≤+-=x x x f ,∴0)2)(21(≤--x x ,∴不等式的解为:}221|{≤≤∈x x x ……………………5分(II )∵不等式0))(1()(≤--=a x a x x f当10<<a 时,有a a >1,∴不等式的解集为}1|{a x a x ≤≤;当1>a 时,有a a <1,∴不等式的解集为}1|{a x ax ≤≤;当1=a 时,不等式的解为1=x 。
……………………12分17. 解:(I )由111122n na a +=+可得:1112n n a a +=+所以数列}1{n a 是等差数列,首项111=a ,公差2d =……………………2分∴ 12)1(111-=-+=n d n a a n ∴121-=n a n ……………………6分 (II )∵)121121(21)12)(12(11+--=+-=+n n n n a a n n∴)12112151313111(2113221+--++-+-=++++n n a a a a a a n n 11(1)22121nn n =-=++ ∴162133n n >+ 解得16n > 解得n 的取值范围:*{|16,}n n n N >∈………………12分 18. (本小题满分12分)解:(I )由题意及正弦定理,得1AB BC AC ++= ①,BC AC += ②, ……………………4分两式相减,得1AB =. ………………………6分(II )由ABC △的面积C C AC BC sin 61sin 21=⋅⋅,得31=⋅AC BC ,…………8分由余弦定理,得BCAC AB BC AC C ⋅-+=2cos 222 …………………10分2122)(22=⋅-⋅-+=BC AC AB BC AC BC AC 所以60C =.………12分19.(本小题满分13分)解:(I )依题意,120BAC ∠=,12AB =,10220AC =⨯=,BCA α∠=.在△ABC 中,由余弦定理,得2222cos BC AB AC AB AC BAC =+-⨯⨯∠ ……………………4分22122021220cos120784=+-⨯⨯⨯=.解得28BC =.………5分所以渔船甲的速度为142BC=海里/小时.答:渔船甲的速度为14海里/小时.…………………7分(II )在△ABC 中,因为12AB =,120BAC ∠=,28BC =,BCA α∠=,由正弦定理,得sin sin120AB BCα=.…………………10分即12sin1202sin 28AB BC α⨯=== 答:sin α的值为14. ……………12分20.(本小题满分13分)n a n b a )21(,11== ,【解】(1)设等差数列}{n a 的公差为d ,.)21(,)21(,21,)21(,12131211d d a n b b b b a n ++===∴==∴由641321=b b b ,解得d=1. .1)1(1n n a n =⋅-+=∴…………6分(2)由(1)得.)21(n n b =设n n n n n b a b a b a T )21()21(3)21(2211322211⋅++⋅+⋅+⋅=+++=则.)21()21(3)21(2)21(1211432+⋅++⋅+⋅+⋅=n n n T 两式相减得.)21()21()21()21(2121132+⋅-++++=n n n n T n n n n n n n T 2212)21(2211])21(1[21211--=⋅---⋅=∴-+.又 2.2221222111<+++∴<---n n n n b a b a b a n又…………13分21.(本小题满分13分) 解:(1)∵a 1a 5+2a 3a 5+a 2a 8=25,∴a 23+2a 3a 5+a 25=25.又a n >0,∴a 3+a 5=5. 又a 3与a 5的等比中项为2,∴a 3a 5=4. 而q ∈(0,1),∴a 3>a 5.∴a 3=4,a 5=1,q =12,a 1=16. ∴a n =16×⎝ ⎛⎭⎪⎫12n -1=25-n. ……………6分(2)b n =log 2a n =5-n , ……………8分∴b n +1-b n =-1, ∴{b n }是以4为首项,-1为公差的等差数列.∴S n =n -n 2,S n n =9-n 2,……………9分∴当n ≤8时,S n n>0;当n =9时,S n n =0;当n >9时,S n n<0; ∴n =8或9时,S 11+S 22+…+S nn最大.……………13分60 ABC东南西北 α。