七年级数学上册有理数及其运算综合练习题59

合集下载

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)

2022-2023学年北师大版七年级数学上册《第2章有理数及其运算》单元综合选择专项练习题(附答案)1.盐城市图书馆现有馆藏纸质图书1600000余册.数据1600000用科学记数法表示为()A.0.16×107B.1.6×107C.1.6×106D.16×105 2.2022的倒数是()A.﹣2022B.C.2022D.﹣3.﹣|﹣6|的相反数是()A.﹣6B.C.﹣D.64.下列运算错误的是()A.﹣2+2=0B.2﹣(﹣2)=0C.﹣(﹣)=1D.﹣(﹣2)=2 5.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A.+20元B.﹣20元C.+30元D.﹣30元6.实数a的绝对值是,a的值是()A.B.﹣C.±D.±7.一只蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,则点A表示的数是()A.3B.﹣3C.0D.±38.下列各数在数轴上所对应的点与原点的距离最远的是()A.2B.1C.﹣1.5D.﹣39.下列各组数中,互为相反数的是()A.|+1|与|﹣1|B.﹣(﹣1)与1C.|﹣(﹣3)|与﹣|﹣3|D.﹣|+2|与+(﹣2)10.数轴上的点B到原点的距离是6,则点B表示的数为()A.12或﹣12B.6C.﹣6D.6或﹣611.算式+﹣(﹣)之值为何?()A.B.C.D.12.计算(﹣1)×()的结果是()A.1B.﹣1C.D.﹣13.某单位开展了“健步迎冬奥,一起向未来”职工健步走活动,职工每天健步走5000步即为达标.若小王走了7205步,记为+2205步;小李走了4700步,记为()A.﹣4700步B.﹣300步C.300步D.4700步14.已知|a|=1,b是的相反数,则a+b的值为()A.或B.C.D.或15.(﹣1)2022的相反数是()A.﹣1B.2022C.﹣2022D.116.计算(﹣+﹣)×(﹣24)的结果是()A.1B.﹣1C.10D.﹣1017.下列计算中,正确的是()A.|﹣2|=﹣2B.(﹣1)2=﹣2C.﹣7+3=﹣4D.6÷(﹣2)=3 18.若a是最大的负整数,b是绝对值最小的有理数,c是倒数等于它本身的自然数,则a2021+2020b+c2019的值为()A.2021B.2020C.2019D.019.计算:(﹣1)2022+(﹣1)2021的结果是()A.﹣2B.2C.0D.﹣120.用简便方法计算﹣(9+)×17时,最合适的变形是()A.﹣(10﹣)×17B.﹣(9﹣)×17C.﹣(10+)×17D.﹣9×17+×1721.下列运算正确的是()A.B.﹣24+22÷20=﹣20÷20=﹣1C.D.22.下列结论正确的是()A.互为相反数的两个数的商为﹣1B.在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1C.当|x|=﹣x,则x<0D.带有负号的数一定是负数23.下列各对数中,数值相等的是()A.﹣28与(﹣2)8B.(﹣3)7与﹣37C.﹣3×23与﹣33×2D.﹣(﹣2)3与﹣(﹣3)224.下列各组数中,数值相等的是()A.34和43B.﹣42和(﹣4)2C.﹣23和(﹣2)3D.(﹣2×3)2和﹣2×3225.已知119×21=2499,则119×212﹣2498×21=()A.11B.21C.41D.3126.在(﹣5)2、﹣(﹣2.9)、﹣72、|﹣3|、0、、﹣1中,非负数共有()A.2个B.3个C.4个D.5个27.一架飞机的原飞行高度是8000米,然后飞机上升300米,又下降200米,这时飞机的飞行高度是()A.8000米B.8100米C.8200米D.8300米28.符号“f”表示一种运算,它对一些数的运算结果如下:(1)f(1)=2,f(2)=4,f(3)=6…;(2)f()=2,f()=3,f()=4….利用以上规律计算:f(2022)﹣f()等于()A.2021B.2022C.D.29.下列说法正确的是()A.数据0.80精确到百分位B.14185用科学记数法表示(精确到百位)为1.42×104 C.数据2.002×1011可以表示为20020亿D.66.8万用科学记数法表示为6.68×105 30.(多选题)某工厂生产工艺品,以每天生产35个为基本量,实际每天生产量与前一天相比有增减(上周最后一天生产量恰好是基本量,超产记为正、减产记为负).如表是本周一至周五的生产情况:星期一二三四五增减(单位:个)﹣1﹣4+7+2﹣6根据记录的数据,该厂本周每天生产产量超过基本量35个的是()A.星期二B.星期三C.星期四D.星期五参考答案1.解:1600000=1.6×106.故选:C.2.解:2022的倒数是.故选:B.3.解:﹣|﹣6|=﹣6,﹣6的相反数是6,∴﹣|﹣6|的相反数是6.故选:D.4.解:A:﹣2+2=0,故A正确;B:2﹣(﹣2)=2+2=4,故B错误;C:﹣(﹣)=+=1,故C正确;D:﹣(﹣2)=2,故D正确.故选:B.5.解:∵收入50元,记作“+50元”.且收入跟支出意义互为相反.∴支出20元,记作“﹣20元”.故选:B.6.解:∵|a|=,∴a=±.故选:D.7.解:∵由题意知蚂蚁沿数轴从原点向右移动了3个单位长度到达点A,首先点A表示的数是正数,又与原点相距三个单位长度,∴点A表示的数是3,故选:A.8.解:A.2到原点的距离是2个长度单位,不符合题意;B.1到原点的距离是1个长度单位,不符合题意;C.﹣1.5到原点的距离是1.5个长度单位,不符合题意;D.﹣3到原点的距离是3个长度单位,符合题意;∴在数轴上所对应的点与原点的距离最远的点表示的数是﹣3.故选:D.9.解:A选项,1与1不是相反数,故该选项不符合题意;B选项,1与1不是相反数,故该选项不符合题意;C选项,3与﹣3是相反数,故该选项符合题意;D选项,﹣2与﹣2不是相反数,故该选项不符合题意;故选:C.10.解:∵点B到原点的距离是6,∴点B表示的是±6,故选:D.11.解:+﹣(﹣)==()+()=﹣+1=.故选:A.12.解:原式=﹣×=﹣1.故选:B.13.解:∵5000步达标地,7205步记为+2205步,∴4700﹣5000=﹣300(步),即4700步记为﹣300步,故选:B.14.解:∵|a|=1,∴a=±1,∵b是的相反数,∴b=,∴当a=1,b=时,a+b=1+=,当a=﹣1,b=时,a+b=﹣1+=﹣,综上所述:a+b=或﹣.故选:A.15.解:(﹣1)2022=1,1的相反数是﹣1.故选:A.16.解:(﹣+﹣)×(﹣24)=×(﹣24)﹣×(﹣24)+×(﹣24)﹣×(﹣24)=﹣22+28+(﹣18)+13=1,故选:A.17.解:A、|﹣2|=2,故本选项计算错误,不符合题意;B、(﹣1)2=1,故本选项计算错误,不符合题意;C、﹣7+3=﹣4,故本选项计算正确,符合题意;D、6÷(﹣2)=﹣3,故本选项计算错误,不符合题意;故选:C.18.解:根据题意知,a=﹣1,b=0,c=1,则原式=(﹣1)2021+2020×0+12019=﹣1+1=0,故选:D.19.解:(﹣1)2022+(﹣1)2021=1+(﹣1)=0,故选:C.20.解:﹣(9+)×17=﹣(10﹣)×17,故选项A正确,符合题意,故选:A.21.解:∵2÷8×=,∴选项A不符合题意;∵﹣24+22÷20=﹣24+=﹣23,∴选项B不符合题意;∵(﹣2)××(﹣5)=5,∴选项C符合题意;∵6÷()=6×=,∴选项D不符合题意,故选:C.22.解:A选项,0的相反数是0,0÷0没有意义,故该选项不符合题意;B选项,在数轴上与表示数4的点相距3个单位长度的点对应的数是7或1,故该选项符合题意;C选项,当|x|=﹣x,则x≤0,故该选项不符合题意;D选项,﹣(﹣2)=2,故该选项不符合题意;故选:B.23.解:A选项,﹣28<0,(﹣2)8>0,故该选项不符合题意;B选项,(﹣3)7=﹣37,故该选项符合题意;C选项,﹣3×23=﹣3×8=﹣24,﹣33×2=﹣27×2=﹣54,故该选项不符合题意;D选项,﹣(﹣2)3=﹣(﹣8)=8,﹣(﹣3)2=﹣9,故该选项不符合题意;故选:B.24.解:∵34=81,43=64,∴34≠43,因此选项A不符合题意;∵﹣42=﹣16,(﹣4)2=16,∴﹣42≠(﹣4)2,因此选项B不符合题意;∵﹣23=﹣8,(﹣2)3=﹣8,∴﹣23=(﹣2)3,因此选项C符合题意;∵(﹣2×3)2=36,﹣2×32=﹣18,∴(﹣2×3)2≠﹣2×32,因此选项D不符合题意;故选:C.25.解:119×212﹣2498×212=119×212﹣(119×21﹣1)×21=119×212﹣119×212+21=21.故选:B.26.解:(﹣5)2=25,﹣(﹣2.9)=2.9,﹣72=﹣49,|﹣3|=3,非负数有:25,2.9,3,0,共5个,故选:D.27.解:根据题意得8000+300﹣200=8100(米).所以这时飞机的飞行高度是8100米,故选:B.28.解:由(1)知f(2022)=2022×2=4044,由(2)知f()=2022,∴f(2022)﹣f()=4044﹣2022=2022,故选:B.29.解:∵数据0.80精确到百分位,∴选项A符合题意;∵14185用科学记数法表示(精确到百位)为1.42万或1.42×104,∴选项B符合题意;∵数据2.002×1011可以表示为2002亿,∴选项C不符合题意;∵66.8万用科学记数法表示为6.68×105,∴选项D符合题意,故选:ABD.30.解:星期二:35﹣1﹣4=30(个),星期三:30+7=37(个),星期四;37+2=39(个),星期五:39﹣6=33(个).∴该厂本周每天生产产量超过基本量35个的是星期三、星期四.故选:BC.。

北师大七年级数学上册第2章有理数及其运算测试卷

北师大七年级数学上册第2章有理数及其运算测试卷

《第二章有理数及其运算》章末测试卷一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣32.2的相反数是()A.B.C.﹣2 D.23.(3分)﹣5的绝对值是()A.5 B.﹣5 C.D.﹣4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣68.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=99.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作.12.已知|a|=4,那么a=.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是.14.比较大小:3223.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.18.计算:﹣8﹣6+22﹣9.19.计算:﹣8÷(﹣2)+4×(﹣5).四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?21.计算:(﹣+﹣)×(﹣12).22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10.(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?参考答案一、选择题(本大题10小题,每小题3分,共30分)1.在1,0,2,﹣3这四个数中,最大的数是()A.1 B.0 C.2 D.﹣3【考点】有理数大小比较.【分析】根据正数大于0,0大于负数,可得答案.【解答】解:﹣3<0<1<2,故选:C.【点评】本题考查了有理数比较大小,正数大于0,0大于负数是解题关键.2.2的相反数是()A.B.C.﹣2 D.2【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:2的相反数是﹣2,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.3.﹣5的绝对值是()A.5 B.﹣5 C.D.﹣【考点】绝对值.【分析】根据绝对值的性质求解.【解答】解:根据负数的绝对值等于它的相反数,得|﹣5|=5.故选A.【点评】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.4.﹣2的倒数是()A.2 B.﹣2 C.D.﹣【考点】倒数.【分析】根据倒数的定义,若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:∵﹣2×()=1,∴﹣2的倒数是﹣.故选D.【点评】主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数,属于基础题.5.下列说法正确的是()A.带正号的数是正数,带负号的数是负数B.一个数的相反数,不是正数,就是负数C.倒数等于本身的数有2个D.零除以任何数等于零【考点】有理数.【分析】利用有理数的定义判断即可得到结果.【解答】解:A、带正号的数不一定为正数,例如+(﹣2);带负号的数不一定为负数,例如﹣(﹣2),故错误;B、一个数的相反数,不是正数,就是负数,例如0的相反数是0,故错误;C、倒数等于本身的数有2个,是1和﹣1,正确;D、零除以任何数(0除外)等于零,故错误;故选:C.【点评】此题考查了有理数,熟练掌握有理数的定义是解本题的关键.6.在有理数中,绝对值等于它本身的数有()A.1个 B.2个 C.3个 D.无穷多个【考点】绝对值.【分析】根据绝对值的意义求解.【解答】解:在有理数中,绝对值等于它本身的数有0和所有正数.故选D.【点评】本题考查了绝对值:若a>0,则|a|=a;若a=0,则|a|=0;若a<0,则|a|=﹣a.7.比﹣2大3的数是()A.1 B.﹣1 C.﹣5 D.﹣6【考点】有理数的加法.【分析】先根据题意列出算式,然后利用加法法则计算即可.【解答】解:﹣2+3=1.故选:A.【点评】本题主要考查的是有理数的加法法则,掌握有理数的加法法则是解题的关键.8.下列算式正确的是()A.3﹣(﹣3)=6 B.﹣(﹣3)=﹣|﹣3|C.(﹣3)2=﹣6 D.﹣32=9【考点】有理数的乘方;相反数;有理数的减法.【分析】根据有理数的减法和有理数的乘方,即可解答.【解答】解:A、3﹣(﹣3)=6,正确;B、﹣(﹣3)=3,﹣|﹣3|=﹣3,故本选项错误;C、(﹣3)2=9,故本选项错误;D、﹣32=﹣9,故本选项错误;故选:A.【点评】本题考查了有理数的减法和有理数的乘方,解决本题的关键是熟记有理数的乘方和有理数的减法.9.据报道,2014年第一季度,广东省实现地区生产总值约1.36万亿元,用科学记数法表示为()A.0.136×1012元B.1.36×1012元C.1.36×1011元D.13.6×1011元【考点】科学记数法—表示较大的数.【分析】根据科学记数法的表示方法:a×10n,可得答案.【解答】解:1.36万亿元,用科学记数法表示为1.36×1012元,故选:B.【点评】本题考查了科学记数法,科学记数法中确定n的值是解题关键,指数n 是整数数位减1.10.近似数2.7×103是精确到()A.十分位B.个位C.百位D.千位【考点】近似数和有效数字.【分析】由于2.7×103=2700,而7在百位上,则近似数2.7×103精确到百位.【解答】解:∵2.7×103=2700,∴近似数2.7×103精确到百位.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起,到这个数完为止,所有这些数字叫这个数的有效数字.二、填空题(本大题6小题,每小题4分,共24分)11.如果温度上升3℃记作+3℃,那么下降3℃记作﹣3℃.【考点】正数和负数.【分析】此题主要用正负数来表示具有意义相反的两种量:上升记为正,则下降就记为负.【解答】解:∵温度上升3℃记作+3℃,∴下降3℃记作﹣3℃.故答案为:﹣3℃.【点评】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.12.已知|a|=4,那么a=±4.【考点】绝对值.【分析】∵|+4|=4,|﹣4|=4,∴绝对值等于4的数有2个,即+4和﹣4,另外,此类题也可借助数轴加深理解.在数轴上,到原点距离等于4的数有2个,分别位于原点两边,关于原点对称.【解答】解:∵绝对值等于4的数有2个,即+4和﹣4,∴a=±4.【点评】绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.本题是绝对值性质的逆向运用,此类题要注意答案一般有2个,除非绝对值为0的数才有一个为0.13.在数轴上,与表示﹣3的点距离2个单位长度的点表示的数是﹣5或﹣1.【考点】数轴.【专题】探究型.【分析】由于所求点在﹣3的哪侧不能确定,所以应分在﹣3的左侧和在﹣3的右侧两种情况讨论.【解答】解:当所求点在﹣3的左侧时,则距离2个单位长度的点表示的数是﹣3﹣2=﹣5;当所求点在﹣3的右侧时,则距离2个单位长度的点表示的数是﹣3+2=﹣1.故答案为:﹣5或﹣1.【点评】本题考查的是数轴的特点,即数轴上右边的点表示的数总比左边的大.14.比较大小:32>23.【考点】有理数的乘方;有理数大小比较.【专题】计算题.【分析】分别计算32和23,再比较大小即可.【解答】解:∵32=9,23=8,∴9>8,即32>23.故答案为:>.【点评】本题考查了有理数的乘方以及有理数的大小比较,是基础知识要熟练掌握.15.若(a﹣1)2+|b+2|=0,那么a+b=﹣1.【考点】非负数的性质:偶次方;非负数的性质:绝对值.【分析】根据非负数的性质列式求出a、b,然后相加即可得解.【解答】解:根据题意得,a﹣1=0,b+2=0,解得a=1,b=﹣2,所以,a+b=1+(﹣2)=﹣1.故答案为:﹣1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.16.观察下列依次排列的一列数:﹣2,4,﹣6,8,﹣10…按它的排列规律,则第10个数为20.【考点】规律型:数字的变化类.【分析】观察不难发现,这列数的绝对值是从2开始的连续偶数,并且第偶数个数是正数,第奇数个数是负数,然后写出第10个数即可.【解答】解:∵﹣2,4,﹣6,8,﹣10…,∴第10个数是正数数,且绝对值为2×10=20,∴第10个数是20,故答案为:20.【点评】本题是对数字变化规律的考查,比较简单,难点在于从绝对值和符号两个部分考虑求解.三、解答题(一)(本大题3小题,每小题6分,共18分)17.把下列各数在数轴上表示出来,并用“>“号连结起来.﹣3,﹣1.5,﹣1,2.5,4.【考点】有理数大小比较;数轴.【分析】先在数轴上表示各个数,再比较即可.【解答】解:4>2.5>﹣1>﹣1.5>﹣3.【点评】本题考查了有理数的大小比较,数轴的应用,能正确在数轴上表示各个数是解此题的关键,注意:在数轴上表示各个数,右边的数总比左边的数大.18.计算:﹣8﹣6+22﹣9.【考点】有理数的加减混合运算.【分析】直接进行有理数的加减运算.【解答】解:原式=﹣23+22=﹣1.【点评】本题考查有理数的运算,属于基础题,注意运算的顺序是关键.19.计算:﹣8÷(﹣2)+4×(﹣5).【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘除运算,再计算加减运算即可得到结果.【解答】解:原式=4﹣20=﹣16,故答案为:﹣16【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.四、解答题(二)(本大题3小题,每小题7分,共21分)20.小强有5张卡片写着不同的数字的卡片:他想从中取出2张卡片,使这2张卡片上数字乘积最大.你知道应该如何抽取吗?最大的乘积是多少吗?【考点】规律型:数字的变化类.【分析】分析几个数可知要使抽取的数最大,需同时抽两个最大正数或两个最小的负数,即可使乘积最大.【解答】解:抽取﹣3和﹣8.最大乘积为(﹣3)×(﹣8)=24.【点评】两个负数的乘积为正数,且这两个负数越小,其乘积越大.21.计算:(﹣+﹣)×(﹣12).【考点】有理数的混合运算.【专题】计算题.【分析】根据有理数的混合运算的运算方法,应用乘法分配律,求出算式的值是多少即可.【解答】解:(﹣+﹣)×(﹣12)=(﹣)×(﹣12)+×(﹣12)﹣×(﹣12)=2﹣9+5=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法运算定律的应用.22.计算:﹣22+3×(﹣1)4﹣(﹣4)×2.【考点】有理数的混合运算.【专题】计算题;实数.【分析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.【解答】解:原式=﹣4+3+8=7.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.五、解答题(三)(本大题3小题,每小题9分,共27分)23.若|a|=5,|b|=3,求a+b的值.【考点】有理数的加法;绝对值.【分析】|a|=5,则a=±5,同理b=±3,则求a+b的值就应分几种情况讨论.【解答】解:∵|a|=5,∴a=±5,同理b=±3.当a=5,b=3时,a+b=8;当a=5,b=﹣3时,a+b=2;当a=﹣5,b=3时,a+b=﹣2;当a=﹣5,b=﹣3时,a+b=﹣8.【点评】正确地进行讨论是本题解决的关键.规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.24.某班抽查了10名同学的期末成绩,以80分为基准,超出的记作为正数,不足的记为负数,记录的结果如下:+8,﹣3,+12,﹣7,﹣10,﹣3,﹣8,+1,0,+10(1)这10名同学中最高分数是多少?最低分数是多少?(2)这10名同学的平均成绩是多少.【考点】正数和负数.【分析】(1)根据正负数的意义解答即可;(2)求出所有记录的和的平均数,再加上基准分即可.【解答】解:(1)最高分为:80+12=92分,最低分为:80﹣10=70分;(2)8﹣3+12﹣7﹣10﹣3﹣8+1+0+10=8+12+1+10+0﹣3﹣7﹣10﹣3﹣8=31﹣31=0,所以,10名同学的平均成绩80+0=80分.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.25.一辆汽车沿着南北方向的公路来回行驶,某天早晨从A地出发,晚上最后到达B地,约定向北正方向(如:+7表示汽车向北行驶7千米),当天行驶记录如下:+18,﹣9,+7,﹣14,﹣6,12,﹣6,+8.(单位:千米)问:(1)B地在A地的何方,相距多少千米?(2)若汽车行驶1千米耗油0.35升,那么这一天共耗油多少升?【考点】正数和负数.【专题】应用题.【分析】(1)把当天记录相加,然后根据正数和负数的规定解答即可;(2)先求出行驶记录的绝对值的和,再乘以0.35计算即可得解.【解答】解:(1)18﹣9+7﹣14﹣6+12﹣6+8=45﹣35=10,所以,B地在A地北方10千米;(2)18+9+7+14+6+12+6+8=80千米80×0.35=28升.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.我爸爸告诉我,你现在翻的一页书都是将来要数的一张张钞票,所以不让你学习的人,就是在抢你的财富,不想要的都是傻子。

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(包含答案解析)

一、选择题1.2020年是我国在航天方面收获满满的一年,12月19日,中国嫦娥五号任务月球样品正式交接.嫦娥五号任务是“探月工程”的第六次任务,也是中国航天迄今为止最复杂,难度最大的任务之一.其有着非常重要的意义,实现中国开展航天活动以来的四个“首次”:首次在月球表面自动采样;首次从月面起飞;首次在38万公里外的月球轨道上进行无人交会对接;首次带着月壤以接近第二宇宙速度返回地球.38万公里用科学记数法表示为( )A .3.8×103公里B .3.8×104公里C .3.8×105公里D .38×104公里 2.已知数a ,b 在数轴上对应点的位置如图所示,则下列结论不正确的是( )A .a +b <0B .a ﹣b >0C .b <﹣a <a <﹣bD .b a>0 3.有理数比较大小错误的是( )A .21-<B .1123-<-C .2|6|(2)->-D .1033->- 4.已知12320,,,x x x x ⋅⋅⋅都是不等于0的有理数,若111x y x =,则1y 等于1或1-;若12212x x y x x =+,则2y 等于2或2-或0;若320122012320x x x x y x x x x =+++⋅⋅⋅+,则20y 所有可能等于的值的绝对值之和等于( ) A .0B .110C .210D .220 5.若a ,b ,c ,m 都是不为零的有理数,且23++=a b c m ,2a b c m ++=,则b 与c 的关系是( )A .互为相反数B .互为倒数C .相等D .无法确定 6.国家统计局2020年10月19日发布数据,初步核算,前三季度国内生产总值约为72万亿元,按可比价格计算,同比增长0.7%,其中72万亿用科学记数法表示为( ) A .140.7210⨯ B .127.210⨯ C .137.210⨯ D .127210⨯ 7.如图,在数轴上,点A 表示数1,现将点A 沿数轴作如下移动,第一次将点A 向左移动3个单位长度到达点1A ,第二次将点1A 向右移动6个单位长度到达点2A ,第三次将点2A 向左移动9个单位长度到达点3A ,…,按照这种移动规律进行下去,第2021次移动到点2021A ,那么点2021A 所表示的数为( )A .3029-B .3032-C .3035-D .3038- 8.有理数a ,b 在数轴上对应点的位置如图所示,下列选项正确的是( )A .0a b +>B .0ab >C .a b <-D .0b a -> 9.若有理数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .2a >-B .a b >-C .0ab <D .a b < 10.在数轴上从左到右有,,A B C 三点,其中1AB =,2BC =,如图所示,设点,,A B C 所对应数的和是x ,则下列说法错误的是( )A .若以点A 为原点,则x 的值是4B .若以点B 为原点,则x 的值是1C .若以点C 为原点,则x 的值是4-D .若以BC 的中点为原点,则x 的值是2- 11.2020年新冠疫情的出现,加速推动了教育信息化进程.根据中国互联网络信息中心统计数据显示,截至2020年6月,我国在线教育用户规模达38000万人,同比增长63.7%.将38000用科学记数法表示应为( )A .38×103B .3.8×104C .3.8×105D .0.38×105 12.有理数a ,b 在数轴上的对应点的位置如图所示,则下列式子中正确的是( )①0a b <<;②a b <;③0ab >;④a b a b ->+A .①②B .①④C .②③D .③④二、填空题 13.已知()2210a b -++=,则()2003a b +=______.14.一个数的倒数为﹣2,则这个数的相反数是_____.15.如图,在3×3的九个格子中填入9个数字,当每行、每列及每条对角线的3个数字之和都相等时,我们把这个数表称为三阶幻方.若﹣2、﹣1、0、1、2、3、4、5、6这9个数也能构成三阶幻方,则此时每行、每列及每条对角线的3个数字之和都为_____.16.规定*是一种运算符号,且a*b=ab-2a ,例1*2=1×2-2×1=0,则4*(-2*3)=_.17.在-1.0426中用数字3替换其中的一个非零数字后,使所得的数最大,则被替换的数字是________.18.若2302|()|y x ++-=,则x y +=________.19.如图,数轴上点A ,B ,C 对应的有理数分别是a ,b ,c ,2OA OC OB ==,且24a b c ++=-,则a b b c -+-=______.20.一百货大楼地上共有30层,地下共有3层,若某人乘电梯从地下2层升至地上16层,则电梯一共升了______________层.三、解答题21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58) 22.计算(1)2125824(3)3-+-+÷-⨯ (2)71113()2461224-+-⨯ 23.计算:(1)2151()()32624+-÷-; (2)(﹣2)3×(﹣2+6)﹣|﹣4|.24.在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“六合数”.定义:对于一个自然数,如果这个数除以7余数为4,且除以5余数为2,则称这个数为“六合数”.例如:32744÷=⋅⋅⋅,32562÷=⋅⋅⋅,所以32是“六合数”;18724÷=⋅⋅⋅,但18533÷=⋅⋅⋅,所以18不是“六合数”.(1)判断39和67是否为“六合数”?请说明理由;(2)求大于200且小于300的所有“六合数”.25.计算:(1)711164348248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭(2)()()2202143421524293⎛⎫-⨯-+-÷-÷⨯- ⎪⎝⎭ 26.元旦放假时,凡凡一家三口一起乘小轿车去探望爷爷,奶奶和姥爷,姥姥.早上从家里出发,向西走了4千米到超市买东西,然后又向西走了3.5千米到爷爷家,下午从爷爷家出发向东走了9千米到姥爷家,晚上返回家里.(1)若以凡凡家为原点,向东为正方向,用1个单位长度表示1千米,请将超市、爷爷家A B C表示出来﹔和姥爷家的位置在下面数轴上分别用点、、(2)超市和姥爷家相距多少千米?(3)若小轿车每千米耗油0.08升,求凡凡一家从出发到返回家,小轿车的耗油量.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【详解】解:38万公里=380000公里=3.8×105米,故选:C.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.D解析:D【分析】根据数轴上a、b的位置结合有理数的运算法则即可判断.【详解】解:由数轴可知:b<0<a,|b|>|a|,∴﹣b>a,∴a+b<0,a﹣b>0,b<0,b<﹣a<0<a<﹣b.a故选:D.【点睛】本题考查数轴的定义,解题的关键是正确理解数轴与有理数之间的关系,本题属于基础题型.3.D解析:D【分析】根据有理数的比较大小的法则可得答案.【详解】解:A 、21-<,不符合题意;B 、1123-<-,不符合题意; C 、2|6|=6(=42)->-,不符合题意;D 、1033-<-,原选项错误,故符合题意; 故选:D .【点睛】 此题主要考查了有理数的比较大小,关键是掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.4.D解析:D【分析】根据绝对值的意义,推理出y 20的所有可能的取值,从而计算绝对值之和即可.【详解】 解:若111x y x =,则1y 等于1或-1; 若12212x x y x x =+,则2y 等于2或2-或0; (320122012320)x x x x y x x x x =+++⋅⋅⋅+, 若y 20中有20项为1,0项为-1,则y 20=20,若y 20中有19项为1,1项为-1,则y 20=18,…以此类推,若y 20中有0项为1,20项为-1,则y 20=-20,∴y 20的所有可能的取值为-20,-18,…,0,…,18,20,则y 20的这些所有的不同的值的绝对值的和等于0+(2+4+…+20)×2=220,故选D .【点睛】本题考查了绝对值的意义,有理数的混合运算,发现规律是解题关键.5.A【分析】由题可得232a b c a b c ++=++,则可得到b 与c 的关系,即可得到答案.【详解】,,,a b c m 为不为零的有理数2a b c m ++=,2a b c m ++=∴232a b c a b c ++=++∴ 0b c +=∴,b c 互为相反数故选:A .【点睛】本题考查了代数式的换算,相反数的性质,熟练掌握是解题关键.6.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数;当原数的绝对值<1时,n 是负整数.【详解】解:72万亿=720000亿=72000000000000=7.2×1013.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.7.C解析:C【分析】从A 的序号为奇数的情形中,寻找解题规律求解即可.【详解】∵A 表示的数为1,∴1A =1+(-3)×1=-2,∴2A =-2+(-3)×(-2)=4,∴3A =4+(-3)×3=-5= -2+(-3),∴4A =-5+(-3)×(-4)=7,∴5A =7+(-3)×(-5)=-8= -2+(-3)×2,∴2021A = -2+(-3)×1011=-3035,故选C.本题考查了数轴上动点运动规律,抓住序号为奇数时数的表示规律是解题的关键.8.C解析:C【分析】根据有理数a,b在数轴上的位置逐项进行判断即可.【详解】解:由有理数a,b在数轴上的位置可知,b<-1<0<a<1,且|a|<|b|,因此a+b<0,故A不符合题意;ab<0,故B不符合题意;a+b<0,即a<-b,故C符合题意;b<a,即b-a<0,故D不符合题意;故选:C.【点睛】本题考查数轴表示数的意义,有理数的加、减、乘法运算,掌握计算法则是正确判断的前提.9.C解析:C【分析】>.根据数轴可知a<-2<0<b<2,即可得到a<-b,ab<0,a b【详解】由数轴可知:a<-2<0<b<2,>,∴a<-b,ab<0,a b故选:C.【点睛】此题考查利用数轴比较数的大小,判断式子的符号,掌握数轴上数的大小比较法则是解题的关键.10.C解析:C【分析】利用数轴的意义将各选项进行分析判断即可.【详解】解:A.若以A为原点,则B、C对应的数为1,3,则x=0+1+3=4,故选项A正确,不符合题意;B.若以B为原点,则A、C对应的数为-1,2,则x=0-1+2=1,故选项B正确,不符合题意;C.若以C为原点,则A、C对应的数为-3,-2,则x=0-2-3=-5≠-4,故选项C错误,符合题意;D. 若以BC的中点为原点,由于AB=1,BC=2,故B,C对应的数为-1,1,因为AB=1,所以A的对应数为-2,则x=-1+1-2=-2,故选项D正确,不符合题意.故选:C.【点睛】本题考查数轴表示数的意义和方法,理解有理数的意义,确定点A、B、C所表示的数是正确解答的关键.11.B解析:B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将数据38000用科学记数法表示应为3.8×104.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.A解析:A【分析】先由数轴可得a<0<b,且|a|<|b|,再判定即可.【详解】解:由图可得:a<0<b,且|a|<|b|,∴ab<0,a-b<a+b,∴正确的有:①②;故选:A.【点睛】本题主要考查了数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大.二、填空题13.1【分析】首先利用非负数的性质得出a=2b=﹣1进一步代入按照混合运算的运算顺序计算得出答案即可【详解】解:∵|a﹣2|+(b+1)2=0∴a﹣2=0b+1=0解得a=2b=﹣1∴(a+b)2003解析:1【分析】首先利用非负数的性质得出a=2,b=﹣1,进一步代入按照混合运算的运算顺序计算得出答案即可.【详解】解:∵|a﹣2|+(b+1)2=0,∴a﹣2=0,b+1=0,解得a=2,b=﹣1,∴(a+b)2003=12003=1故答案:1【点睛】此题考查代数式求值,非负数的性质,有理数的乘方,根据非负数的性质求得字母的数值是解决问题的前提.14.【分析】直接利用倒数以及相反数的定义得出答案【详解】解:∵一个数的倒数为﹣2∴这个数是:﹣∴这个数的相反数是:故答案为:【点睛】本题主要考查了倒数和相反数的性质准确计算是解题的关键解析:1 2【分析】直接利用倒数以及相反数的定义得出答案.【详解】解:∵一个数的倒数为﹣2,∴这个数是:﹣12,∴这个数的相反数是:12.故答案为:12.【点睛】本题主要考查了倒数和相反数的性质,准确计算是解题的关键.15.【分析】把﹣2﹣10123456这9个数相加除以3即可【详解】解:把﹣2﹣10123456这9个数相加除以3得:(﹣2﹣1+0+1+2+3+4+5+6)=6故答案为:6【点睛】本题考查了幻方的构造熟解析:【分析】把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3即可.【详解】解:把﹣2、﹣1、0、1、2、3、4、5、6这9个数相加除以3得:13(﹣2﹣1+0+1+2+3+4+5+6)=6,故答案为:6.【点睛】本题考查了幻方的构造,熟练掌握有理数的混合运算,准确理解幻方的意义是解题的关键.16.-16【分析】结合题意根据有理数混合运算的性质计算即可得到答案【详解】根据题意得:故答案为:-16【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质从而完成求解解析:-16【分析】结合题意,根据有理数混合运算的性质计算,即可得到答案.【详解】根据题意得:()-4*2*3()=⨯--⨯42*324()()=⨯-⨯-⨯--423228⎡⎤⎣⎦()4648=⨯----⎡⎤⎣⎦()=⨯--428=--88=-16故答案为:-16.【点睛】本题考查了有理数运算的知识;解题的关键是熟练掌握有理数混合运算的性质,从而完成求解.17.4【分析】根据两个负数绝对值大的其值反而小比较被替换的数的绝对值的大小得到答案【详解】解:被替换的数是-30426-10326-10436-10423|-10326|<|-10423|<|-1043解析:4【分析】根据两个负数,绝对值大的其值反而小比较被替换的数的绝对值的大小,得到答案.【详解】解:被替换的数是-3.0426,-1.0326,-1.0436,-1.0423,|-1.0326|<|-1.0423|<|-1.0436|<|-3.0426|,∴最大的数是-1.0326,∴使所得的数最大,则被替换的数字是4,故答案为:4.【点睛】本题考查的是有理数的大小比较,掌握有理数的大小比较法则:正数都大于0;负数都小于0;正数大于一切负数,两个负数,绝对值大的其值反而小是解题的关键.18.【分析】根据绝对值与平方数的非负性求解【详解】解:由题意可得:x-2=0y+3=0∴x=2y=-3∴x+y=2-3=-1故答案为-1【点睛】本题考查绝对值与平方数的非负性由绝对值和平方数的非负性可得解析:1-【分析】根据绝对值与平方数的非负性求解.【详解】解:由题意可得:x-2=0,y+3=0,∴x=2,y=-3,∴x+y=2-3=-1,故答案 为-1.【点睛】本题考查绝对值与平方数的非负性,由绝对值和平方数的非负性可得绝对值和平方数的和为0时,绝对值与平方数均为0是解题关键.19.8【分析】根据得代入即可求出a 和c 的值再根据绝对值的性质化简即可求出结果【详解】解:∵∴∵∴即∴∴故答案是:8【点睛】本题考查数轴的性质和绝对值的性质解题的关键是掌握数轴上的点表示有理数的性质和化简 解析:8【分析】根据2OA OC OB ==得2c a b =-=-,代入24a b c ++=-即可求出a 和c 的值,再根据绝对值的性质化简a b b c -+-,即可求出结果.【详解】解:∵2OA OC OB ==,∴2c a b =-=-,∵24a b c ++=-,∴4a c c -+=-,即4a =-,∴4c =, ∴()448a b b c b a c b c a -+-=-+-=-=--=.故答案是:8.【点睛】本题考查数轴的性质和绝对值的性质,解题的关键是掌握数轴上的点表示有理数的性质和化简绝对值的方法.20.17【分析】地下为负地上为正所以可以看做从-2层上升到+16层由于没有0层所以应该再减去1计算即可求得【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层故答案为:17【点睛】本题主解析:17【分析】地下为负,地上为正,所以可以看做从-2层上升到+16层,由于没有0层,所以应该再减去1,计算即可求得.【详解】16-(-2)-1=18-1=17(层)∴电梯一共升了17层.故答案为:17【点睛】本题主要考查正负数的应用及有理数的运算,先根据数的意义确定出正负再进行计算,易错点是从地下1层到地上1层只上升了1层.三、解答题21.(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.(1)113-;(2)-19【分析】(1)有理数的混合运算,先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的;(2)使用乘法分配律使得计算简便.【详解】解:(1)2125824(3)3 -+-+÷-⨯=11 4324()33 -++⨯-⨯=8 433 -+-=11 3 -(2)71113 ()24 61224-+-⨯=71113242424 61224-⨯+⨯-⨯=-28+22-13=-19【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.23.(1)-8;(2)-36【分析】(1)除法转化为乘法,再利用乘法分配律展开,进一步计算即可;(2)先计算乘方和绝对值、括号内的减法,再计算乘法,最后计算减法即可.【详解】解:(1)原式=215()(24) 326+-⨯-=﹣16﹣12+20=﹣8;(2)(﹣2)3×(﹣2+6)﹣|﹣4|=(﹣8)×4﹣4=﹣32﹣4=﹣36.【点睛】本题考查了有理数的混合运算,解题关键是熟练的运用有理数的运算法则进行计算.24.(1)39不是“六合数”, 67是“六合数”;理由见解析;(2)207,242,277【分析】(1)根据“六合数”的定义即可求解;(2)根据“六合数”的定义即可求解;【详解】解:(1)39÷7=5…4,但39÷5=7…4,所以39不是“六合数”;67÷7=9…4,67÷5=13…2,所以67是“六合数”.(2)大于200且小于300的数除以7余数为4的有:200,207,214,221,228,235,242,249,256,263,270,277,284,291,298,其中除以5余数为2的有:207,242,277.故大于200且小于300的所有“六合数”有207,242,277.【点睛】考查了整数问题的综合运用,本题是一个新定义题,关键是根据新定义的特征和仿照样例进行解答,主要考查学生的自学能力.25.(1)394-;(2)-9 【分析】(1)原式根据有理数的加减法可以解答本题;(2)原式先计算有理数的乘方和化简绝对值,再进行乘除法运算,最后进行加减法运算即可得到答案.【详解】解:(1)711164348248⎛⎫⎛⎫⎛⎫⎛⎫---+--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 711164348248=-+-- 711164438824⎛⎫⎛⎫=--+- ⎪ ⎪⎝⎭⎝⎭ 11114=-+ 394=- (2)()()2202143421524293⎛⎫-⨯-+-÷-÷⨯- ⎪⎝⎭ =4415164899-⨯+÷-÷⨯ 945164849=-+÷-⨯⨯ 548=-+-9=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(1)见解析;(2)5.5千米;(3)1.44升【分析】(1)先计算超市、爷爷家和姥爷家在数轴上表示的数,再根据有理数与数轴上点的关系解答即可;(2)数轴上右边点表示的数减去左边点表示的数就是两点间的距离;(3)先计算凡凡一家从出发到返回家共走了多少路,再计算耗油量.【详解】解:(1)由题意得,点A 表示的数是-4;点B 表示的数是-5-3.5=-7.5;点C 表示的数是-7.5+9=1.5;点,,A B C 即为如图所示.(2)1.5-(-4)=5.5千米.答:超市和姥爷家相距5.5千米;(3)4 3.59 1.50.08() 1.44+++⨯=(升).答:小轿车的耗油1.44升.【点睛】本题主要考查了数轴和有理数的混合运算,题目难度不大,理解题意并利用数轴是解决本题的关键.。

七年级数学上册第二章有理数及其运算单元测试题含答案

七年级数学上册第二章有理数及其运算单元测试题含答案

七年级数学上册有理数及其运算单元测试题一、选择题(每小题3分,共30分) 1.若规定向东走为正,则-8 m 表示( ) A .向东走8 m B .向西走8 m C .向西走-8 m D .向北走8 m2.数轴上点A ,B 表示的数分别为5,-3,它们之间的距离可以表示为( )A .-3+5B .-3-5C .|-3+5|D .|-3-5| 3.下面与-3互为倒数的数是( ) A .-13 B .-3 C.13D .34.如图1,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是()图15.国家提倡“低碳减排”.某公司计划在海边建风能发电站,发电站年均发电量为213000000度,将数据213000000用科学记数法表示为( )A .213×106B .21.3×107C .2.13×108D .2.13×1096.下列说法错误的有( ) ①-a 一定是负数; ②若|a |=|b |,则a =b ; ③一个有理数不是整数就是分数; ④一个有理数不是正数就是负数. A .1个 B .2个 C .3个 D .4个7.如图2所示,数轴上两点A ,B 分别表示有理数a ,b ,则下列四个数中最大的是()图2A.a B .b C.1a D.1b8.已知x -2的相反数是3,则x 2的值为( )A .25B .1C .-1D .-259.把一张厚度为0.1 mm 的纸对折8次后的厚度接近于( ) A .0.8 mm B .2.6 cm C .2.6 mm D .0.18mm10.在某一段时间内,计算机按如图3所示的程序工作,如果输入的数是2,那么输出的数是()图3A.-54 B .54 C .-558 D .558 请将选择题答案填入下表:第Ⅱ卷 (非选择题 共90分)二、填空题(每小题3分,共18分)11.-2的相反数是________,-0.5的倒数是________. 12.绝对值小于2018的所有整数之和为________.13.如图4所示,有理数a ,b 在数轴上对应的点分别为A ,B ,则a ,-a ,b ,-b 按由小到大的顺序排列是________________.图414.若两个数的积为-20,其中一个数比-15的倒数大3,则另一个数是________.15.若数轴上的点A 表示的有理数是-3.5,则与点A 相距4个单位长度的点表示的有理数是__________.16.若|x|=5,y 2=4,且xy<0,则x +y =________. 三、解答题(共72分)17.(6分)把下列各数填入相应的集合中:-3.1,3.1415,-13,+31,0.618,-227,0,-1,-(-3).正数集合:{ …}; 整数集合:{ …}; 负数集合:{ …}; 负分数集合:{ …}.18.(6分)画出数轴,用数轴上的点表示下列各数,并用“<”将它们连接起来.-5,2.5,-52,0,312.19.(8分)计算: (1)-24×⎝ ⎛⎭⎪⎫-56+38-112;(2)-9+5×(-6)-(-4)2÷(-8);(3)0.25×(-2)2-⎣⎢⎡⎦⎥⎤4÷⎝ ⎛⎭⎪⎫-232+1+(-1)2018;(4)-42÷⎝ ⎛⎭⎪⎫-135-⎣⎢⎡⎦⎥⎤56×⎝ ⎛⎭⎪⎫-34-⎝ ⎛⎭⎪⎫-123.20.(8分)规定一种新的运算:a ☆b =a ×b -a -b 2+1,例如:3☆(-4)=3×(-4)-3-(-4)2+1.请你计算下列各式的值:(1)2☆5; (2)(-2)☆(-5).21.(10分)某食品厂从生产的袋装食品中抽出20袋样品,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数表示,数据记录如下表:(1)样品的平均质量比标准质量多还是少?多或少多少克? (2)若标准质量为每袋450克,则抽检的总质量是多少克?22.(10分)在数轴上有三个点A ,B ,C ,回答下列问题:图523.(12分)一名足球守门员练习折返跑,从球门线出发,向前记为正,返回记为负,他的记录如下(单位:米):+5,-3,+10,-8,-6,+12,-10. (1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线的最远距离是多少? (3)守门员全部练习结束后,他共跑了多少米?24.(12分)在数轴上点A 表示数a ,点B 表示数b ,点C 表示数c ,b 是最小的正整数,且a ,c 满足|a +2|+(c -7)2=0.(1)填空:a =________,b =________,c =________; (2)画出数轴,并把A ,B ,C 三点表示在数轴上;(3)P 是数轴上任意一点,点P 表示的数是x ,当PA +PB +PC =10时,x 的值为多少?七年级数学上册有理数及其运算单元测试题答案1.B 2.D 3.A 4.C 5.C 6.C 7.D 8.B 9.B 10.C 11.2 -2 12.0 13.-a <b <-b <a 14.10 15.-712或1216.3或-317.解:正数集合:{3.1415,+31,0.618,-(-3),…}; 整数集合:{+31,0,-1,-(-3),…}; 负数集合:{-3.1,-13,-227,-1,…};负分数集合:{-3.1,-13,-227,…}.18.图略 -5<-52<0<2.5<31219.(1)13 (2)-37 (3)-8 (4)101220.解:(1)2☆5=2×5-2-52+1=-16.(2)(-2)☆(-5)=(-2)×(-5)-(-2)-(-5)2+1=-12. 21.解:(1)[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]÷20=1.2(克).答:样品的平均质量比标准质量多,多1.2克.(2)20×450+[(-5)×1+(-2)×4+0×3+1×4+3×5+6×3]=9024(克).答:若标准质量为每袋450克,则抽检的总质量是9024克. 22.(1)-1 (2)0.5 (3)-323或-923.解:(1)因为(+5)+(-3)+(+10)+(-8)+(-6)+(+12)+(-10)=0,所以守门员最后回到了球门线的位置. (2)因为5+(-3)=2, 2+10=12,12+(-8)=4,4+(-6)=-2,-2+12=10,10+(-10)=0, 所以守门员离开球门线的最远距离为12米.(3)|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=54(米).答:他共跑了54米.24.解:(1)由题意可知a +2=0,c -7=0, 解得a =-2,c =7.因为b 是最小的正整数,所以b =1. 故答案为-2,1,7. (2)画出数轴如图所示:(3)因为PA +PB +PC =10,所以|x +2|+|x -1|+|x -7|=10. 当x ≤-2时,-x -2+1-x +7-x =10, 解得x =-43(舍去).当-2<x ≤1时,x +2+1-x +7-x =10, 解得x =0.当1<x ≤7时,x +2+x -1+7-x =10, 解得x =2.当x >7时,x +2+x -1+x -7=10, 解得x =163(舍去).综上所述,当PA +PB +PC =10时,x 的值是0或2.。

北师大版七年级上册数学第二章综合同步练习题

北师大版七年级上册数学第二章综合同步练习题

第二章有理数及其运算一、选择题(每小题3分,共30分)1、A为数轴上表示-1的点,将点A在数轴上向右平移3个单位长度到点B,则点B所表示的实数为()A.3 B.2 C.-4 D.2或-42、如果|a|=-a,那么a一定是()A.正数 B.负数 C.非正数 D.非负数3、一个数是10,另一个数比10的相反数小2,则这两个数的和为()A.18 B.-2 C.-18 D.24、下列各式的值等于5的是 ( )(A) |-9|+|+4|; (B) |(-9)+(+4)|;(C) |(+9)―(―4)|; (D) |-9|+|-4|.5、如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米 B.+50米C.可能是+50米,也可能是-50米 D.以上都不对6、下面的说法错误的是().A.0是最小的整数 B.1是最小的正整数C.0是最小的自然数 D.自然数就是非负整数7、四位同学画数轴如下图所示,你认为正确的是()(D)8、一个有理数的绝对值等于其本身,这个数是( )A 、正数B 、非负数C 、零D 、负数9、绝对值大于或等于1,而小于4的所有的正整数的和是( )A.8B.7C.6D.5 10、式子(21-103+52)×4×25=(21-103+52)×100=50-30+40中用的运算律是( )(A )乘法交换律及乘法结合律; (B )乘法交换律及分配律; (C )加法结合律及分配律; (D )乘法结合律及分配律. 二、填空题:(每题3分,共18分)11、52-的绝对值是 ,相反数是 ;12、有理数1.7,-17,0,725-,-0.001,-29,2003和-1中,负数有 个,其中负整数有 个,负分数有 个.、 13、数轴上表示有理数-3.5与4.5两点的距离是 . 14、比较大小:(1)-2 2;(2)-1.5 0; (3)43- 54-(填“>” 或“<” )15、一天早晨的气温是-5℃,中午又上升了10℃,半夜又下降了8℃,则半夜的气温是 .16、李明与王伟在玩一种计算的游戏,计算的规则是bc ad dbc a -=,李明轮到计算1253,根据规则1253=3×1-2×5=3-10=-7,现在轮到王伟计算5362,请你帮忙算一算,得 . 三、作图题(6分):19、在数轴上表示下列各数,并比较它们的大小.3,-1.5,213-,0,2.5,-4.四、计算下列各题(20题每题5分 21题6分 共26分) 20、(1))75.2()412(21152--+--- (2) -374×(-132)×(-432)(3)(-73)×(12-0.5) ×(-829) (4)()3.5-+()2.3-()5.2--()8.4+-21、列式计算:求绝对值大于1而不大于5的所有负整数...的和.五、应用题(20分)22、一辆汽车沿着一条南北方向的公路来回行驶。

北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)

北师大版七年级数学上册 第2章 有理数及其运算 单元测试卷(含解析)

北师大版七年级数学上册第 2章有理数及其运算单元测试卷一、选择题(本大题共10小题,共30分)1. 如果“盈利5%”记作+5%,那么−3%表示( )A. 盈利2%B. 亏损8%C. 亏损3%D. 少赚2%2. 在有理数−3,0,3,4中,最小的有理数是( )A. −3B. 0C. 3D. 43. 下列运算正确的是( )A. −22=4B. (−213)3=−8127 C. (−12)3=−18 D. (−2)3=−64. −22−(−2)4的值是( )A. −20B. 16C. −16D. −125. 数轴上点A 、B 表示的数分别是−3、8,它们之间的距离可以表示为A. −3+8B. −3−8C. |−3+8|D. |−3−8|6. 下列说法中正确的有( )①同号两数相乘,符号不变;②几个因数相乘,积的符号由负因数的个数决定;③互为相反数的两数相乘,积一定为负;④两个有理数的积的绝对值等于这两个有理数的绝对值的积. A. 1个B. 2个C. 3个D. 4个7. 高度每增加1千米,气温就下降2℃,现在地面气温是−10℃,那么离地面高度为7千米的高空的气温是( ) A. −4℃B. −14℃C. −24℃D. 14℃8. 一个数的立方是它本身,那么这个数是( )A. 0B. 0或1C. −1或1D. 0或−1或19. 为解决“最后一公里”的交通接驳问题,平谷区投放了大量公租自行车供市民使用.据统计,目前我区共有公租自行车3 500辆.将3 500用科学记数法表示应为( ) A. 0.35×104B. 3.5×103C. 3.5×102D. 35×10210. 计算:3−2×(−1)=( )二、填空题(本大题共6小题,共24分)11.若规定一种运算:a∗b=ab+a−b,则1∗(−2)=___________.12.绝对值小于2的所有整数的和是______.13.如果向南走5米,记作+5米,那么向北走8米应记作______米.14.在实数范围内定义运算“☆”,其规则为:a☆b=a2−b2,则(4☆3)☆6=__________。

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章  有理数及其运算 练习题(有答案)

北师大版数学七年级上册 第二章 有理数及其运算 练习题(有答案)2.1 有理数基础题知识点1 认识正数与负数1.(连云港中考)下列各数中;为正数的是(A)A .3B .-12C .-2D .02.(临沂中考)四个数-3;0;1;2;其中负数是(A)A .-3B .0C .1D .2 3.在-1;0;1;2这四个数中;既不是正数也不是负数的是(B) A .-1 B .0 C .1 D .24.下列各数:-101.2;+18;0.002;-60;0;-45;+3.2;属于正数的有+18;0.002;+3.2;属于负数的有-101.2;-60;-45.知识点2 用正、负数表示具有相反意义的量5.(咸宁中考)冰箱冷藏室的温度零上5 ℃;记作+5 ℃;保鲜室的温度零下7 ℃;记作(B) A .7 ℃ B .-7 ℃ C .2 ℃ D .-12 ℃ 6.下列不具有相反意义的是(C) A .前进5 m 和后退5 m B .节约3 t 和浪费3 tC .身高增加2 cm 和体重减少2 kgD .超过5 g 和不足5 g7.若火箭发射点火前5秒记作-5秒;则火箭发射点火后10秒应记作(D) A .-10秒 B .-5秒 C .+5秒 D .+10秒8.如果+80 m 表示向东走80 m;那么-60 m 表示向西走60__m . 知识点3 有理数的概念及分类9.在0;1;-2;-3.5这四个数中;为负整数的是(C) A .0 B .1 C .-2 D .-3.510.有理数可按正、负性质分类;也可按整数、分数分类: ①按正、负性质分类: ②按整数、分数分类:有理数⎩⎪⎨⎪⎧正有理数⎩⎪⎨⎪⎧正整数正分数0负有理数⎩⎪⎨⎪⎧负整数负分数有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧正整数0负整数分数⎩⎪⎨⎪⎧正分数负分数 11.下列各数:3;-5;-12;0;2;0.97;-0.21;-6;9;23;85;1;其中正数有7个;负数有4个;正分数有2个;负分数有2个.12.如图是数学果园里的一棵“有理数”知识树;请仔细辨别分类;把各类数填在它所属的相应横线上.中档题13.在数-5;3;0;-32;100;0.4中;非负数有(A)A .4个B .3个C .2个D .1个 14.下列说法正确的是(D) A .+2是正数;但3不是正数 B .一个数不是正数就是负数 C .含有负号的数就是负数 D .-0.25是负分数15.请按要求填出相应的两个有理数:(1)既是正数也是分数:212;34(答案不唯一);(2)既不是负数也不是分数:2;0(答案不唯一). 16.“一只闹钟;一昼夜误差不超过±12秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况: 赵力减少25% 肖刚增加10% 王辉减少17% 李玉增加5% 田红增加8% 陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率. 解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%;肖刚+10%;王辉-17%;李玉+5%;田红+8%;陈佳-12%.18.请用两种不同的分类标准将下列各数分类:-15;+6;-2;-0.9;1;35;0;314;0.63;-4.95.解:分类一:整数:-15;+6;-2;1;0;分数:-0.9;35;314;0.63;-4.95.分类二:正数:+6;1;35;314;0.63;0;负数:-15;-2;-0.9;-4.95.19.小米家住黄河边的某市;黄河大堤高出某市区20米;另有铁塔高约58米;是该市的一大景观;小米和好朋友小华、玲玲出去玩;小米站在黄河大堤上;玲玲站在地面放风筝;顽皮的小华则爬上了铁塔顶;小米说:“以大堤为基准;记为0米;则玲玲所在的位置高为-20米;小华所在位置高为+58米.”小华说:“以铁塔顶为基准;记为0米;则玲玲所在的位置高为-58米;小米所在的位置高为-38米.”玲玲说:“小华的位置比我高58米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时;由于“基准”(0米点)的选法不同;表示的结果也不同;小米以大堤为基准;玲玲所在的位置高为-20米;小华所在位置高为38米.综合题20.将一串有理数按下列规律排列;回答下列问题:(1)在A处的数是正数还是负数?(2)负数排在A、B、C、D中的什么位置?(3)第2 017个数是正数还是负数?排在对应于A、B、C、D中的什么位置?解:(1)在A处的数是正数.(2)B和D位置是负数.(3)第2 017个数是负数;排在对应于B的位置.2.2 数轴基础题知识点1 认识数轴1.关于数轴;下列说法最准确的是(D) A .一条直线B .有原点、正方向的一条直线C .有单位长度的一条直线D .规定了原点、正方向、单位长度的直线 2.下列各图中;所画数轴正确的是(D)知识点2 在数轴上表示数 3.如图;在数轴上点A 表示(A)A .-2B .2C .±2D .04.在如图的数轴上;表示-2.75的点是(D)A .点EB .点FC .点GD .点H5.在数轴上表示数-3;0;5;2;-1的点中;在原点右边的有(C) A .0个 B .1个 C .2个 D .3个6.在数轴上;表示-2的点在原点的左侧;它到原点的距离是2个单位长度. 7.画数轴;并在数轴上表示下列各数:2;-2.5;0;13;-4.解:如图:知识点3 利用数轴比较有理数的大小 8.如图;下列说法中正确的是(B)A .a >bB .b >aC .a >0D .b >09.(成都中考)在-3;-1;1;3四个数中;比-2小的数是(A)A .-3B .-1C .1D .310.已知有理数x;y 在数轴上的位置如图所示;则下列结论正确的是(C)A .x>0>yB .y>x>0C .x<0<yD .y<x<011.把下列各数在数轴上表示出来;并用“<”把各数连接起来:-212;4;-4;0;412.解:如图;大小关系为:-4<-212<0<4<412.中档题12.下列语句中;错误的是(B)A .数轴上;原点位置的确定是任意的B .数轴上;正方向可以是从原点向右;也可以是从原点向左C .数轴上;单位长度可根据需要任意选取D .数轴上;与原点的距离等于8的点有两个13.(济宁中考)在0;-2;1;12这四个数中;最小的数是(B)A. 0 B .-2 C. 1 D.1214.数轴上的点A;B;C;D 分别表示a;b;c;d 四个数;已知A 在B 的左侧;C 在A;B 之间;D 在B 的右侧;则下列式子成立的是(A)A .a<c<b<dB .a<b<c<dC .a<d<c<bD .a<c<d<b15.将一刻度尺如图所示放在数轴上(数轴的单位长度是1 cm);刻度尺上的“0 cm ”和“15 cm ”分别对应数轴上的-3.6和x;则(C)A .9<x <10B .10<x <11C .11<x <12D .12<x <1316.若数轴上的点A 表示+3;点B 表示-4.2;点C 表示-1;则点A 和点B 中离点C 较远的是点A . 17.如图所示;数轴上的点A 向左移动2个单位长度得到点B;则点B 表示的数是-1.18.小红在做作业时;不小心将墨水洒在一个数轴上;如图所示;根据图中标出的数值;判断被墨迹盖住的整数共有多少个?解:因为-13<-12.6<-12;-8<-7.4<-7;所以此段整数有-12;-11;-10;-9;-8共5个;同理10<10.6<11;17<17.8<18;所以此段整数有11;12;13;14;15;16;17共7个;所以被墨迹盖住的整数共有5+7=12(个).19.如图;点A 表示的数是-4.(1)在数轴上表示出原点O ; (2)指出点B 所表示的数;(3)在数轴上找一点C;它与点B 的距离为2个单位长度;那么点C 表示什么数? 解:(1)如图. (2)点B 表示3. (3)点C 表示1或5.综合题20.(1)借助数轴;回答下列问题.①从-1到1有3个整数;分别是-1、0、1;②从-2到2有5个整数;分别是-2、-1、0、1、2;③从-3到3有7个整数;分别是-3、-2、-1、0、1、2、3; ④从-200到200有401个整数;⑤从-n 到n(n 为正整数)有(2n +1)个整数;(2)根据以上规律;直接写出:从-2.9到2.9有5个整数;从-10.1到10.1有21个整数;(3)在单位长度是1厘米的数轴上随意画出一条长为1 000厘米的线段AB;求线段AB 盖住的整点的个数.解:1 000个或1 001个.2.3 绝对值基础题知识点1 相反数的概念1.(河南中考)-13的相反数是(B)A .-13 B.13C .-3D .32.相反数等于本身的数为(C)A .正数B .负数C .0D .非负数 3.下列各组数中互为相反数的是(D) A .2与-3B .-3与-13C .2 016与-2 015D .-0.25与144.下列说法中正确的是(C) A .一个数的相反数是负数 B .0没有相反数C .只有一个数的相反数等于它本身D .表示相反数的两个点;可以在原点的同一侧 5.16和-16互为相反数;-2 017的相反数是2__017;1的相反数是-1. 知识点2 绝对值的意义及计算6.在数轴上表示-2的点到原点的距离等于(A) A .2 B .-2 C .±2 D .4 7.(安徽中考)-2的绝对值是(B)A .-2B .2C .±2 D.128.若|-a|=5;则a 的值是(D)A .-5B .5 C.15D .±59.-3的绝对值是3;-|-2.5|=-2.5;绝对值是6的数是±6. 10.计算:|4|+|0|-|-3|=1. 知识点3 绝对值的性质11.任何一个有理数的绝对值一定(D) A .大于0 B .小于0 C .不大于0 D .不小于0 12.在有理数中;绝对值等于它本身的数有(D) A .一个 B .两个 C .三个 D .无数个 13.(1)①正数:|+5|=5;|12|=12; ②负数:|-7|=7;|-15|=15; ③零:|0|=0;(2)根据(1)中的规律发现:不论正数、负数和零;它们的绝对值一定是非负数;即|a|≥0. 知识点4 利用绝对值比较有理数的大小 14.下列各式中正确的是(D)A .|-3|>|-4|B .-2>|-5|C .0>|-0.000 1|D .|-89|>-91015.用“>”或“<”填空: (1)-7<-6.5; (2)-3>-4;(3)-5<-4.中档题16.如果a 与1互为相反数;那么|a|等于(C) A .2 B .-2 C .1 D .-1 17.下列说法正确的是(D) A .-|a|一定是负数B .只有两个数相等时它们的绝对值才相等C .若|a|=|b|;则a 与b 相等D .若一个数小于它的绝对值;则这个数为负数18.(南京中考)数轴上点A;B 表示的数分别是5;-3;它们之间的距离可以表示为(D) A .-3+5 B .-3-5 C .|-3+5| D .|-3-5|19.如果a>0;b<0;a<|b|;那么a 、b 、-a 、-b 的大小顺序是(A) A .-b>a>-a>b B .a>b>-a>-b C .-b>a>b>-a D .b>a>-b>-a20.绝对值小于6的整数有11个;它们分别是±5;±4;±3;±2;±1;0;绝对值大于3且小于6的整数是±5;±4.21.(河北中考改编)若有理数m;n 满足|m -2|+|2 017-n|=0;则m +n =2__019. 22.比较下列各对数的大小: (1)0和|-2|; 解:0<|-2|.(2)-45和-23;解:-45<-23.(3)-(-4)和|-4|. 解:-(-4)=|-4|.23.计算:(1)|+223|×|-9|;解:原式=83×9=24.(2)|-34|÷|-178|.解:原式=34×815=25.24.光明奶粉每袋质量为500克;在质量检测中;若质量超出标准质量2克记作+2克;若质量低于标准质量3克以上;(1)这10(2)质量最大的是哪袋?它的实际质量是多少? 解:(1)第4袋和第6袋不合格.(2)质量最大的是第9袋;实际质量是505克.综合题25.已知a;b;c为有理数;且它们在数轴上的位置如图所示.(1)试判断a;b;c的正负性;(2)在数轴上分别标出a;b;c的相反数的位置;(3)根据数轴化简:①|a|=-a;②|b|=b;③|c|=c;④|-a|=-a;⑤|-b|=b;⑥|-c|=c.(4)若|a|=5.5;|b|=2.5;|c|=7;求a;b;c的值.解:(1)a为负;b为正;c为正.(2)如图.(4)a=-5.5;b=2.5;c=7.小专题(一) 绝对值的应用类型1 利用绝对值比较大小 1.比较下面各对数的大小: (1)-0.1与-0.2;解:因为|-0.1|=0.1;|-0.2|=0.2;且0.1<0.2;所以-0.1>-0.2.(2)-45与-56;解:因为|-45|=45=2430;|-56|=56=2530;且2430<2530; 所以-45>-56.2.比较下列各对数的大小:(1)-821与-|-17|;解:-|-17|=-17;因为|-821|=821;|-17|=17=321;且821>17;所以-821<-|-17|.(2)-2 0152 016与-2 0162 017.解:因为⎪⎪⎪⎪⎪⎪-2 0152 016=2 0152 016;⎪⎪⎪⎪⎪⎪-2 0162 017=2 0162 017;且2 0152 016<2 0162 017; 所以-2 0152 016>-2 0162 017.类型2 巧用绝对值的性质求字母的值3.已知|x -3|+|y -5|=0;求x +y 的值. 解:由|x -3|+|y -5|=0;得 x -3=0;y -5=0. 解得x =3;y =5. 所以x +y =3+5=8.4.若x 的相反数是-3;|y|=5;且x <y;求y -x 的值. 解:因为x 的相反数是-3;所以x =3. 因为|y|=5;所以y =±5. 因为x <y;所以x =3;y =5. 所以y -x =5-3=2.类型3 绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正;向北为负;他这天下午行车里程如下(单位:千米):+15;-3;+14;-11;+10;+4;-26.若汽车耗油量为0.1 L/km;这天下午汽车共耗油多少升?解:0.1×(|+15|+|-3|+|+14|+|-11|+|+10|+|+4|+|-26|)=8.3(L).6.在活动课上;有6名学生用橡皮泥做了6个乒乓球;直径可以有0.02毫米的误差;超过规定直径的毫米数记(1)(2)指出哪个同学做的乒乓球质量最好;哪个同学做的质量最差?(3)请你对6名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解:(1)张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用;对误差来说绝对值越小越好.小专题(二) 三种方法比较有理数的大小方法1 利用数轴比较大小1.如图;在数轴上有a;b;c;d 四个点;则下列说法正确的是(C)A .a>bB .c<0C .b<cD .-1>d2.有理数a 在数轴上对应的点如图所示;则a;-a;-1的大小关系是(C)A .-a<a<-1B .-a<-1<aC .a<-1<-aD .a<-a<-1 3.大于-2.5而小于3.5的整数共有(A) A .6个 B .5个 C .4个 D .3个4.在数轴上表示下列各数;并把这些数用“>”连接起来.3.5;3.5的相反数;-12;绝对值等于3的数;最大的负整数.解:各数分别为:3.5;-3.5;-12;±3;-1.在数轴上表示如图:这些数由大到小用“>”连接为:3.5>3>-12>-1>-3>-3.5.5.点A 、B 在数轴上的位置如图所示;它们分别表示数a 、b.(1)请将a;b;1;-1四个数按从小到大的顺序排列起来;(2)若将点B 向右移动3个单位长度;请将a 、b 、-1三个数按从小到大的顺序排列起来. 解:(1)b<-1<a<1. (2)-1<a<b.方法2 利用比较大小的法则比较大小 6.下列各式成立的是(B)A .-1>0B .3>-2C .-2<-5D .1<-27.(安徽中考)在-4;2;-1;3这四个数中;比-2小的数是(A) A .-4 B .2 C .-1 D .38.(西双版纳中考)若a =-78;b =-58;则a;b 的大小关系是a <b(填“>”“<”或“=”).9.已知数:0;-2;1;-3;5. (1)用“>”把各数连接起来; 解:5>1>0>-2>-3.(2)用“<”把各数的相反数连接起来; 解:-5<-1<0<2<3.(3)用“>”把各数的绝对值连接起来. 解:|5|>|-3|>|-2|>|1|>|0|. 方法3 利用特殊值比较大小10.如图;数轴上的点表示的有理数是a;b;则下列式子正确的是(B)A .-a <bB .a <bC .|a|<|b|D .-a <-b11.a;b 两数在数轴上的对应点的位置如图;下列各式正确的是(D)A.b>a B.-a<bC.|a|>|b| D.b<-a<a<-b2.4 有理数的加法第1课时 有理数的加法法则基础题知识点1 有理数的加法法则1.下列各式的结果;符号为正的是(C)A .(-3)+(-2)B .(-2)+0C .(-5)+6D .(-5)+5 2.(天津中考)计算(-3)+(-9)的结果是(B) A .12 B .-12 C .6 D .-6 3.(梅州中考)计算(-3)+4的结果是(C) A .-7 B .-1 C .1 D .7 4.已知a;b 两数互为相反数;则a +b =(C) A .2a B .2b C .0 D .1 5.下列结论不正确的是(D) A .若a>0;b>0;则a +b>0 B .若a<0;b<0;则a +b<0C .若a>0;b<0;且|a|>|b|;则a +b>0D .若a<0;b>0;且|a|>|b|;则a +b>06.在每题的横线上填写和的符号或结果. (1)(+3)+(+5)=+(3+5)=8; (2)(-3)+(-5)=-(3+5)=-8; (3)(-16)+6=-(16-6)=-10; (4)(-6)+8=+(8-6)=2; (5)(-2 015)+0=-2__015. 7.计算:(1)(-4)+(-6); 解:原式=-10.(2)(-12)+5; 解:原式=-7.(3)0+(-12);解:原式=-12.(4)(-2.5)+(-3.5). 解:原式=-6.知识点2 有理数加法的应用8.小明家冰箱冷冻室的温度为-5 ℃;调高4 ℃后的温度为(C) A .4 ℃ B .9 ℃ C .-1 ℃ D .-9 ℃9.一个物体在数轴上做左右运动;规定向右为正;按下列方式运动;列出算式表示其运动后的结果: (1)先向左运动2个单位长度;再向右运动7个单位长度.列式:-2+7; (2)先向左运动5个单位长度;再向左运动7个单位长度.列式:-5+(-7). 10.某人某天收入265元;支出200元;则该天节余65元.11.已知飞机的飞行高度为10 000 m;上升3 000 m 后;又上升了-5 000 m;此时飞机的高度是8__000m.中档题12.(玉林、防城港中考)下面的数中;与-2的和为0的是(A) A .2 B .-2 C.12 D .-1213.有理数a 、b 在数轴上对应的位置如图所示;则a +b 的值(A)A .大于0B .小于0C .小于aD .大于b 14.如果两个数的和是正数;那么(D) A .这两个数都是正数 B .一个为正;一个为零C .这两个数一正一负;且正数的绝对值较大D .必属上面三种情况之一15.一个数是25;另一个数比25的相反数大-7;则这两个数的和为(B) A .7 B .-7 C .57 D .-5716.若x 是-3的相反数;|y|=5;则x +y 的值为(D) A .2 B .8C .-8或2D .8或-217.已知A 地的海拔高度为-53米;而B 地比A 地高30米;则B 地的海拔高度为-23米. 18.如图;三个小球上的有理数之和等于-2.19.计算: (1)32+(-32); 解:原式=0.(2)116+(-4);解:原式=-256.(3)715+(-235);解:原式=+(715-235)=435.(4)-8.75+(-314).解:原式=-(8.75+314)=-12.20.已知有理数a;b;c 在数轴上的位置如图所示;请根据有理数的加法法则判断下列各式的正负性:①a ;②b ;③-c ;④a +b ;⑤a +c ;⑥b +c ;⑦a +(-b). 解:①③⑦为正;②④⑤⑥为负.综合题21.若|a -2|与|b +5|互为相反数;求a +b 的值.解:因为|a-2|与|b+5|互为相反数; 所以|a-2|+|b+5|=0.所以a=2;b=-5.所以a+b=2+(-5)=-3.第2课时 有理数的加法运算律基础题知识点1 有理数的加法运算律1.计算314+(-235)+534+(-825)时;用运算律最为恰当的是(B)A .[314+(-235)]+[534+(-825)]B .(314+534)+[(-235)+(-825)]C .[314+(-825)]+[(-235)+534]D .[(-235)+534]+[314+(-825)]2.计算512+(+4.71)+712+(-6.71)的结果为(D)A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算:(-2)+(+3)+(-5)+(+4).解:原式=(-2)+(-5)+(+3)+(+4)(加法交换律) =[(-2)+(-5)]+[(+3)+(+4)](加法结合律) =(-7)+(+7) =0.4.在计算323+(-2.53)+(-235)+3.53+(-23)时;比较简便的计算方法是先计算323+(-23)和(-2.53)+3.53. 5.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1) =[(-0.8)+(-0.7)+(-2.1)]+1.2 =-3.6+1.2=-2.4; (2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56. 6.运用加法的运算律计算下列各题: (1)24+(-15)+7+(-20);解:原式=(24+7)+[(-15)+(-20)] =31+(-35) =-4.(2)18+(-12)+(-18)+12;解:原式=[18+(-18)]+[(-12)+12] =0+0 =0.(3)137+(-213)+247+(-123).解:原式=(137+247)+[(-213)+(-123)]=4+(-4) =0.知识点2 有理数加法运算律的应用7.李老师的银行卡中有5 500元;取出1 800元;又存入1 500元;又取出2 200元;这时银行卡中还有3__000元钱.。

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套精编

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套精编

北师大版七年级数学上第二章有理数及其运算同步练习1.数怎么不够用了一、选择题1.下面说法中正确的是().A.一个数前面加上“-”号,这个数就是负数 B.0既不是正数,也不是负数C.有理数是由负数和0组成 D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米 B.+50米 C.可能是+50米,也可能是-50米 D.以上都不对3.下面的说法错误的是().A.0是最小的整数 B.1是最小的正整数 C.0是最小的自然数 D.自然数就是非负整数二、填空题1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______.三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数.2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示?6.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?2.数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数 B.负数 C.0 D.没有这样的数2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的() A.左侧 B.右侧 C.左侧或者右侧 D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数 B.大于另一个数的相反数C.等于另一个数的相反数 D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.()3.数轴就是规定了原点和正方向的直线.()4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450;(3)0.1,,0.9,,1,0.3.找出下列各数的相反数(1)-0.05 (2)(3)(4)-1000 4.如图,说出数轴上A、B、C、D四点分别表示的数的相反数,并把它们分别用标在数轴上.5.在数轴上,点A表示的数是-1,若点B也是数轴上的点,且AB的长是4个单位长度,则点B表示的数是多少?3.绝对值:一、选择题1.如果,则() A. B. C. D.2.下面说法中正确的是()A.若,则 B.若,则C.若,则 D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则 B.若和都是负数,且有,则C.若,且,则 D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则()A.这一点表示的数的相反数是5 B.这一点表示的数的绝对值是5C.这一点表示的数是5 D.这一点表示的数是-5二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________.三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37, 0,,-385.7.2.把下列一组数用“>”连起来-999,,, 0.01,.3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小.5.计算下面各式的值(1)-(-2);(2)-(+2).4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数 B.一定小于其中的一个加数C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A. B.(-2)+(+2)=4C. D.(-71)+0=-713.如图,下列结论中错误的是()A. B. C. D.二、填空题1.两个负数相加其和为___________数. 2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5).3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16);(5);(6)(7)4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱?5.一小商店一周的盈亏情况如下(亏为负):单位:元星期周一周二周三周四周五周六周日盈亏情况128.3 -25.6 -15 27 -7 36.5 98(1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少?5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数 B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数2.下面说法中错误的是()A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数C.零减去一个数就等于这个数的相反数 D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数 B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题1.请举例说明两个数的差不一定小于被减数.2.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4)3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6)4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?城市名称哈尔滨长春沈阳北京大连最高温度2℃3℃3℃10℃6℃最低温度-12℃-10℃-8℃2℃-2℃5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点.6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到()A.1.17+32+23 B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23) D.1.17-(+32)-(+23)2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和 B.-2-1-3可以说是2,-1,-3的和C.-2-1-3是连减运算不能说成和 D.-2-1-3=-2+3-13.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________ ;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2);(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003.4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加月份一月二月三月四月五月六月体重变化情况/千克-2.5 +2 -3.5 -3 +1.5 -2(1)小胖1~6是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?6.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负姓名小光小月小华小刚与小明体重的差数/千克+5 -4 -1 +3(1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):月份一月二月三月四月五月六月七月八月九月十月十一月销售量变化情况/+10 +5 +2 0 -3 -4 -10 -12 +5 +4 +5.8 千克(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克?8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6 B.任何数和0相乘都等于0 C.若,则 D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0 B.小于0 C.大于或等于0 D.小于或等于03.若,其a、b、c()A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0 二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘;2.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________,12×(-7)-2=_________,98×(-9)+2=_________,123×(-7)-3=_________. 987×(-9)+3=_________.__________________________. __________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________. 3.4. 5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2) 2.计算:3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30 (2)8×3+12÷4=-94.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)10.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以() 2.( )3.因为,所以有任何有理数的平方都是正数.()4.(n是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?3.若a是正数,请设计一个问题,使计算的结果是.4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+…+19的值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍?11.有理数的混合运算: 一、选择题1.若,,则有( ) .A.B. C. D.2.已知,当时,,当时,的值是( ) .A. B.44 C.28 D.173.如果,那么的值为( ) A.0 B.4 C.-4 D.2 4.代数式取最小值时,值为( ) .A.B.C.D.无法确定5.六个整数的积,互不相等,则 ( ) A.0 B.4 C.6 D.86.计算所得结果为( ) .A.2 B.C.D.二、填空题1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________.5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5);(6).2.计算:3.当n为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.日期 1 2 3 4 5 6水表读数(吨)15.16 15.30 15.50 15.62 15.79 15.96问:(1)这6B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()(3)表示数和的位置由下图所确定,若使,则表示数c的点的位置应在原点的右侧.()2.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系.3.分别表示数和的点在数轴上的位置如图所示.(1);(2)表示数的点在数轴上运动时,将发生怎样的变化.。

北师大版七年级数学上册 第二章 有理数及其运算 检测题(解析版)

北师大版七年级数学上册  第二章 有理数及其运算  检测题(解析版)

第二章有理数及其运算检测题一.选择题1.已知a是最大的负整数,b是绝对值最小的数,c是最小的正整数,则a+b+c等于()A.2B.﹣2C.0D.﹣62.下列各数中与4相等的是()A.﹣22B.(﹣2)2C.﹣|﹣4|D.﹣(+4)3.|﹣|的相反数是()A.﹣B.C.﹣D.4.下列各数中,是负整数的是()A.﹣6B.3C.0D.5.下列四个数中,是正整数的是()A.﹣2B.﹣1C.1D.6.在﹣2,﹣1,0,﹣0.01,3五个数中,最小数是()A.0B.﹣1C.﹣0.01D.﹣27.﹣的倒数是()A.B.﹣C.D.﹣8.点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)b﹣a<0;(2)|a|<|b|;(3)a+b>0;(4)>0.其中正确的是()A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)9.在1,﹣2,3,﹣4这四个数中,绝对值最小的数为()A.1B.3C.﹣2D.﹣410.在数轴上表示﹣1的点与表示2的点之间的距离是()A.﹣2B.1C.2D.3二.填空题11.若零上8℃记作+8℃,则零下6℃记作℃.12.预计到2025年我国高铁运营里程将达到38000公里.将数据38000用科学记数法表示为.13.的相反数是.14.如图,数轴上A、B两点所表示的数分别是﹣4和2,点C是线段AB的中点,则点C 所表示的数是.15.2017年,随州学子尤东梅参加《最强大脑》节目,成功完成了高难度的项目挑战,展现了惊人的记忆力.在2019年的《最强大脑》节目中,也有很多具有挑战性的比赛项目,其中《幻圆》这个项目充分体现了数学的魅力.如图是一个最简单的二阶幻圆的模型,要求:①内、外两个圆周上的四个数字之和相等;②外圆两直径上的四个数字之和相等,则图中两空白圆圈内应填写的数字从左到右依次为和.三.解答题16.有个填写运算符号的游戏:在“1□2□6□9”中的每个□内,填入+,﹣,×,÷中的某一个(可重复使用),然后计算结果.(1)计算:1+2﹣6﹣9;(2)若1÷2×6□9=﹣6,请推算□内的符号;(3)在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,直接写出这个最小数.17.计算:(﹣6)2×(﹣).18.已知,数轴上三个点A、O、B.点O是原点,固定不动,点A和B可以移动,点A 表示的数为a,点B表示的数为b.(1)若AB移动到如图所示位置,计算a+b的值.(2)在图的情况下,B点不动,点A向左移动3个单位长,写出A点对应的数a,并计算b﹣|a|.(3)在图的情况下,点A不动,点B向右移动15.3个单位长,此时b比a大多少?请列式计算.19.如图,已知A,B两点在数轴上,点A在原点O的左边,表示的数为﹣10,点B在原点的右边,且BO=3AO.点M以每秒3个单位长度的速度从点A出发向右运动.点N 以每秒2个单位长度的速度从点O出发向右运动(点M,点N同时出发).(1)数轴上点B对应的数是,点B到点A的距离是;(2)经过几秒,原点O是线段MN的中点?(3)经过几秒,点M,N分别到点B的距离相等?20.计算(1)﹣+(﹣)﹣(﹣)﹣(2)(﹣3)2﹣()2÷+6÷|﹣|321.某食品厂从生产的袋装食品中抽取20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:(1)这批样品的质量比标准质量多还是少?多或少几克?(2)若每袋标准质量为450克,则抽样检测的总质量是多少?22.有理数a ,b ,c 在数轴上的位置如图所示请化简:﹣|a |﹣|b +2|+2|c |﹣|a +b |+|c ﹣a |.23.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为AB =|a ﹣b |.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与﹣2的距离是3,那么a = .(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=.(4)对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.第二章有理数及其运算检测题参考答案与试题解析一.选择题1.【分析】根据题意确定出a,b,c的值,代入原式计算即可求出值.【解答】解:根据题意得:a=﹣1,b=0,c=1,则a+b+c=﹣1+0+1=0,故选:C.【点评】此题考查了有理数的加法,有理数,以及绝对值,熟练掌握运算法则是解本题的关键.2.【分析】各项计算得到结果,即可做出判断.【解答】解:A、原式=﹣4,不相同;B、原式=4,相同;C、原式=﹣4,不相同;D、原式=﹣4,不相同,故选:B.【点评】此题考查了有理数的乘方,绝对值,相反数,熟练掌握有理数的乘方,绝对值,相反数的意义是解本题的关键.3.【分析】先把所给的式子化简,再根据相反数的定义得出即可.【解答】解:∵|﹣|=,∴|﹣|的相反数是﹣,故选:A.【点评】本题主要考查相反数和绝对值的求法,先进行正确化简是解题的关键.4.【分析】根据负整数的定义即可判定选择项.【解答】解:A、﹣6为负整数,故选项正确;B、3为正整数,故选项错误;C、0不是正数,也不是负数,故选项错误;D、为正分数,故选项错误.故选:A.【点评】本题主要考查了实数的相关概念及其分类方法,然后就可以熟练进行判断,难度适中.5.【分析】正整数是指既是正数又是整数,由此即可判定求解.【解答】解:A、﹣2是负整数,故选项错误;B、﹣1是负整数,故选项错误;C、1是正整数,故选项正确;D、是非正整数,故选项错误.故选:C.【点评】此题主要考查正整数概念,解题主要把握既是正数还是整数两个特点,比较简单.6.【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣2<﹣1<﹣0.01<0<3,∴在﹣2,﹣1,0,﹣0.01,3五个数中,最小数是﹣2.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.7.【分析】直接利用倒数的定义得出答案.【解答】解:﹣的倒数是:﹣.故选:B.【点评】此题主要考查了倒数,正确把握倒数的定义是解题关键.8.【分析】根据图示,可得﹣3<a<0,b>3,据此逐项判断即可.【解答】解:根据图示,可得﹣3<a<0,b>3,∴(1)b﹣a>0,故错误;(2)|a|<|b|,故正确;(3)a+b>0,故正确;(4)<0,故错误.故选:B.【点评】此题主要考查了绝对值的含义和求法,以及数轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围.9.【分析】根据绝对值的定义先求出这四个数的绝对值,再找出绝对值最小的数即可.【解答】解:∵|1|=1,|﹣2|=2,|3|=3,|﹣4|=4,∴这四个数中,绝对值最小的数是1,故选:A.【点评】此题考查了有理数的大小比较和绝对值,掌握绝对值的定义是本题的关键,是一道基础题.10.【分析】可借助数轴直接得结论,亦可用右边点表示的数减去左边点表示的数得结论.【解答】解:表示﹣1的点与表示2的点间距离为:2﹣(﹣1)=3.故选:D.【点评】本题考查了数轴上两点间的距离,数轴上两点间的距离=右边点表示的数﹣左边点表示的数.二.填空题11.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:根据正数和负数表示相反的意义,可知如果零上8℃记作+8℃,那么零下6℃记作﹣6℃.故答案为:﹣6.【点评】本题考查了正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【解答】解:38000用科学记数法表示应为3.8×104,故答案为:3.8×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【分析】根据相反数的意义,即可求解;【解答】解:的相反数是﹣;故答案为﹣;【点评】本题考查相反数;熟练掌握相反数的求法是解题的关键.14.【分析】根据A、B两点所表示的数分别为﹣4和2,利用中点公式求出线段AB的中点所表示的数即可.【解答】解:∵数轴上A,B两点所表示的数分别是﹣4和2,∴线段AB的中点所表示的数=(﹣4+2)=﹣1.即点C所表示的数是﹣1.故答案为:﹣1【点评】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.15.【分析】根据题意要求①②可得关于所要求的两数的两个等式,解出两数即可.【解答】解:设图中两空白圆圈内应填写的数字从左到右依次为a,b∵外圆两直径上的四个数字之和相等∴4+6+7+8=a+3+b+11①∵内、外两个圆周上的四个数字之和相等∴3+6+b+7=a+4+11+8②联立①②解得:a=2,b=9∴图中两空白圆圈内应填写的数字从左到右依次为2,9故答案为:2;9.【点评】此题比较简单,主要考查了有理数的加法,主要依据题中的要求①②列式即可以求解.三.解答题16.【分析】(1)根据有理数的加减法可以解答本题;(2)根据题目中式子的结果,可以得到□内的符号;(3)先写出结果,然后说明理由即可.【解答】解:(1)1+2﹣6﹣9=3﹣6﹣9=﹣3﹣9=﹣12;(2)∵1÷2×6□9=﹣6,∴1××6□9=﹣6,∴3□9=﹣6,∴□内的符号是“﹣”;(3)这个最小数是﹣20,理由:∵在“1□2□6﹣9”的□内填入符号后,使计算所得数最小,∴1□2□6的结果是负数即可,∴1□2□6的最小值是1﹣2×6=﹣11,∴1□2□6﹣9的最小值是﹣11﹣9=﹣20,∴这个最小数是﹣20.【点评】本题考查有理数的混合运算,解答本题得关键是明确有理数混合运算的计算方法.17.【分析】原式先计算乘方运算,再利用乘法分配律计算即可求出值.【解答】解:原式=36×(﹣)=18﹣12=6.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【分析】(1)由图可知,点A表示的数a,点B表示的数b,即可求得a+b的值.(2)由B点不动,点A向左移动3个单位长,可得数a,再根据绝对值求得即可.(3)点A不动,点B向右移动15.3个单位长,可知数b,再列式计算解得.【解答】解:(1)由图可知:a=﹣10,b=2,∴a+b=﹣8故a+b的值为﹣8.(2)由B点不动,点A向左移动3个单位长,可得a=﹣13,b=2∴b﹣|a|=b+a=2﹣13=﹣11故a的值为﹣13,b﹣|a|的值为﹣11.(3)∵点A不动,点B向右移动15.3个单位长∴a=﹣10 b=17.3∴b﹣a=17.3﹣(﹣10)=27.3故b比a大27.3.【点评】本题考查了数轴、绝对值,当a是负有理数时,a的绝对值是它的相反数﹣a.19.【分析】(1)根据点A表示的数为﹣10,OB=3OA,可得点B对应的数,点B对应的数减去点A对应的数就是点B到点A的距离;(2根据题意列方程解答即可;(3)根据题意分M,N在B点同侧异侧列方程解答即可.【解答】解:(1)因为点A表示的数为﹣10,OB=3OA,所以OB=3OA=30,30﹣(﹣10)=40.故B对应的数是30,点B到点A的距离是40,故答案为:30,40;(2)设经过y秒,原点O是线段MN的中点,根据题意得﹣10+3y+2y=0,解得y=2.答:经过几秒,原点O是线段MN的中点;(3)设经过x秒,点M、点N分别到点B的距离相等,根据题意得3x﹣40=30﹣2x或10+3x=2x,解得x=14或x=10.答:经过14秒或10秒,点M、点N分别到点B的距离相等.【点评】此题主要考查了一元一方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.20.【分析】(1)根据有理数的加减法可以解答本题;(2)根据有理数的乘除法和加减法可以解答本题.【解答】解:(1)﹣+(﹣)﹣(﹣)﹣==﹣;(2)(﹣3)2﹣()2÷+6÷|﹣|3=9﹣+6÷=9﹣2+6×=9﹣2+=.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.21.解:(1)根据题意得:﹣5×1﹣2×4+0×3+1×4+3×5+6×3=﹣5﹣80+4+15+18=24(克),则这批样品的质量比标准质量多,多24克;(2)根据题意得:20×450+24=9024(克),则抽样检测的总质量是9024克.22.根据题意得:﹣3<a<﹣2,﹣1<b<0,1<c<2,则b+2>0,a+b<0,c﹣a<0,则化简得:a﹣(b+2)+2c+(a+b)+(c﹣a)=a+3c﹣2.23.解:(1)点A在数轴上表示3,点B在数轴上表示2,那么AB=|3﹣2|=1,故答案为:1;(2)根据题意得,|a+2|=3,解得a=1或﹣5.故答案为:1或﹣5;(3)如果数轴上表示数a的点位于﹣4和2之间,那么|a+4|+|a﹣2|=﹣a+4+a+2=6.故答案为:6;(4)|x﹣3|+|x﹣6|表示数x到3和6两点的距离之和,如果求最小值,则x一定在3和6之间,则最小值为3.。

北师大版数学七年级上册第二章有理数与其运算练习题(有答案)

北师大版数学七年级上册第二章有理数与其运算练习题(有答案)

第二章有理数及其运算2.1有理数基础题知识点 1认识正数与负数1.( 连云港中考 ) 下列各数中,为正数的是(A)1A. 3B.-2C.- 2D. 0 2.( 临沂中考 ) 四个数- 3, 0,1, 2,其中负数是 (A)A.- 3 B . 0C. 1D. 2 3.在- 1, 0, 1, 2 这四个数中,既不是正数也不是负数的是(B) A.- 1B. 0C. 1D. 24.下列各数:- 101.2 ,+ 18,0.002418,0.002 ,+ 3.2 ;属于负数的有,- 60,0,-,+ 3.2 ,属于正数的有+54- 101.2 ,- 60,-.5知识点 2用正、负数表示具有相反意义的量5.( 咸宁中考 ) 冰箱冷藏室的温度零上 5 ℃,记作+ 5 ℃,保鲜室的温度零下 7℃,记作 (B) A.7 ℃B.-7 ℃C.2 ℃D.- 12 ℃6.下列不具有相反意义的是(C)A.前进 5 m 和后退 5 mB.节约 3 t和浪费 3 tC.身高增加 2 cm 和体重减少 2 kgD.超过 5 g 和不足 5 g7.若火箭发射点火前 5 秒记作- 5 秒,则火箭发射点火后10 秒应记作 (D)A.- 10 秒B.-5秒C.+5秒D.+ 10 秒8.如果+ 80 m 表示向东走80 m,那么- 60 m 表示向西走 60__m.知识点 3有理数的概念及分类9.在 0, 1,- 2,- 3.5 这四个数中,为负整数的是 (C)A. 0B. 1C.- 2D.- 3.510.有理数可按正、负性质分类,也可按整数、分数分类:①按正、负性质分类:②按整数、分数分类:正整数正整数正有理数正分数整数有理数0有理数负整数负整数分数正分数负有理数负分数负分数1211.下列各数: 3,- 5,-2,0, 2, 0.97 ,- 0.21 ,- 6,9,3, 85, 1,其中正数有 7 个,负数有 4 个,正分数有 2 个,负分数有 2 个.12.如图是数学果园里的一棵“有理数”知识树,请仔细辨别分类,把各类数填在它所属的相应横线上.中档题313.在数- 5, 3, 0,-2, 100, 0.4 中,非负数有 (A)A.4 个B.3 个C.2 个D.1 个14.下列说法正确的是(D)A.+ 2 是正数,但 3 不是正数B.一个数不是正数就是负数C.含有负号的数就是负数D.- 0.25 是负分数15.请按要求填出相应的两个有理数:1 3(1)既是正数也是分数: 22,4( 答案不唯一 ) ;(2)既不是负数也不是分数: 2, 0( 答案不唯一 ) .16.“一只闹钟,一昼夜误差不超过±12 秒.”这句话的含义是:闹钟走一天的时间比标准时间最多慢12 秒或最多快12秒.17.下面是几个家庭五月份用电支出比上月支出变化情况:赵力减少25%肖刚增加10%王辉减少17%李玉增加5%田红增加8%陈佳减少12%分别用正、负数写出这几家五月用电支出比上月支出的增长率.解:这六家五月用电支出比上月支出的增长率分别为:赵力-25%,肖刚+ 10%,王辉- 17%,李玉+ 5%,田红+ 8%,陈佳- 12%.18.请用两种不同的分类标准将下列各数分类:3 1-15,+ 6,- 2,- 0.9 , 1,5, 0, 34, 0.63 ,- 4.95.解:分类一:整数:-15,+ 6,- 2, 1, 0;31分数:- 0.9 ,5, 34, 0.63 ,- 4.95.3 1分类二:正数:+ 6, 1,5, 34, 0.63 ;0;负数:- 15,- 2,- 0.9 ,- 4.95.19.小米家住黄河边的某市,黄河大堤高出某市区20 米,另有铁塔高约58 米,是该市的一大景观,小米和好朋友小华、玲玲出去玩,小米站在黄河大堤上,玲玲站在地面放风筝,顽皮的小华则爬上了铁塔顶,小米说:“以大堤为基准,记为 0 米,则玲玲所在的位置高为- 20 米,小华所在位置高为+ 58 米.”小华说:“以铁塔顶为基准,记为 0 米,则玲玲所在的位置高为- 58 米,小米所在的位置高为- 38 米.”玲玲说:“小华的位置比我高 58 米.”他们谁说得对?解:小华和玲玲说得对.理由:用正、负数表示具有相反意义的量时,由于“基准”(0 米点 ) 的选法不同,表示的结果也不同,小米以大堤为基准,玲玲所在的位置高为-20 米,小华所在位置高为38 米.综合题20.将一串有理数按下列规律排列,回答下列问题:(1)在 A 处的数是正数还是负数?(2)负数排在 A、 B、C、 D 中的什么位置?(3) 第 2 017 个数是正数还是负数?排在对应于A、 B、 C、D 中的什么位置?解: (1) 在 A 处的数是正数.(2)B 和 D位置是负数.(3) 第 2 017 个数是负数,排在对应于 B 的位置.2.2数轴基础题知识点 1认识数轴1.关于数轴,下列说法最准确的是(D)A.一条直线B.有原点、正方向的一条直线C.有单位长度的一条直线D.规定了原点、正方向、单位长度的直线2.下列各图中,所画数轴正确的是(D)知识点 2在数轴上表示数3.如图,在数轴上点 A 表示 (A)A.- 2B. 2C.± 2D. 04.在如图的数轴上,表示- 2.75 的点是 (D)A.点E B.点FC.点 G5.在数轴上表示数-A.0 个C.2 个D.点 H3, 0, 5,2,- 1 的点中,在原点右边的有B.1 个D.3 个(C)6.在数轴上,表示- 2 的点在原点的左侧,它到原点的距离是7.画数轴,并在数轴上表示下列各数:2 个单位长度.12,- 2.5 ,0,3,- 4.解:如图:知识点 3利用数轴比较有理数的大小8.如图,下列说法中正确的是(B)A. a> b B. b> aC. a> 0D. b> 09.( 成都中考A.- 3) 在- 3,- 1, 1,3 四个数中,比-B.- 12 小的数是C. 1(A)D. 310.已知有理数x, y 在数轴上的位置如图所示,则下列结论正确的是(C)A. x>0>y B. y>x>0C. x<0<y D. y<x<011 11.把下列各数在数轴上表示出来,并用“<”把各数连接起来:-2, 4,- 4, 0, 4.解:如图,大小关系为:-11 4<- 22< 0<4< 42.中档题12.下列语句中,错误的是(B)A.数轴上,原点位置的确定是任意的B.数轴上,正方向可以是从原点向右,也可以是从原点向左C.数轴上,单位长度可根据需要任意选取D.数轴上,与原点的距离等于8 的点有两个1(B) 13.( 济宁中考 ) 在 0,- 2, 1,这四个数中,最小的数是2A. 0B.- 2 C. 11 D.214.数轴上的点 A, B, C, D分别表示 a, b, c, d 四个数,已知A在 B的左侧, C在 A,B 之间, D在 B的右侧,则下列式子成立的是 (A)A. a<c<b<d B. a<b<c<dC. a<d<c<b D. a<c<d<b15.将一刻度尺如图所示放在数轴上( 数轴的单位长度是 1 cm) ,刻度尺上的“ 0 cm”和“ 15 cm ”分别对应数轴上的- 3.6和 x,则 (C)A. 9< x< 10B. 10< x<11C. 11< x<12D. 12< x<1316.若数轴上的点 A 表示+ 3,点 B 表示- 4.2 ,点 C 表示- 1,则点17.如图所示,数轴上的点 A 向左移动 2 个单位长度得到点B,则点A和点 B 中离点B 表示的数是-C较远的是点1.A.18.小红在做作业时,不小心将墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断被墨迹盖住的整数共有多少个?解:因为- 13<- 12.6 <- 12,- 8<- 7.4 <- 7,所以此段整数有-12,- 11,- 10,- 9,- 8 共 5 个;同理 10< 10.6 < 11,17< 17.8 < 18,所以此段整数有11,12,13,14,15,16,17 共 7 个,所以被墨迹盖住的整数共有5+7= 12( 个) .19.如图,点 A 表示的数是- 4.(1)在数轴上表示出原点 O;(2)指出点 B 所表示的数;(3) 在数轴上找一点 C,它与点解: (1) 如图.B 的距离为 2 个单位长度,那么点C表示什么数?(2)点 B表示 3.综合题20.(1) 借助数轴,回答下列问题.①从- 1 到 1 有 3 个整数,分别是-1、 0、 1;②从-2到2有5个整数,分别是-2、- 1、 0、 1、 2;③从-3到3有7个整数,分别是-3、- 2、- 1、 0、 1、2、 3;④从- 200 到 200有 401 个整数;⑤从- n 到 n(n 为正整数 ) 有(2n + 1)个整数;(2)根据以上规律,直接写出:从-2.9 到 2.9 有 5 个整数,从- 10.1 到 10.1 有 21 个整数;(3)在单位长度是 1 厘米的数轴上随意画出一条长为 1 000 厘米的线段 AB,求线段 AB盖住的整点的个数.解: 1 000 个或 1 001 个.2.3绝对值基础题知识点 1相反数的概念11.( 河南中考 ) -的相反数是 (B)311A.-3 B. 3C.- 3D. 3 2.相反数等于本身的数为(C)A.正数B.负数C. 0D.非负数3.下列各组数中互为相反数的是(D)1A.2 与- 3B.- 3 与-31C. 2 016 与- 2 015D.- 0.25 与44.下列说法中正确的是(C)A.一个数的相反数是负数B. 0 没有相反数C.只有一个数的相反数等于它本身D.表示相反数的两个点,可以在原点的同一侧115.6和-6互为相反数;- 2 017 的相反数是 2__017; 1 的相反数是- 1.知识点 2绝对值的意义及计算6.在数轴上表示- 2 的点到原点的距离等于(A)A. 2B.- 2C.± 2D. 47.( 安徽中考 ) - 2的绝对值是 (B)A.- 2B. 2C.± 21 D.28.若 | - a| = 5,则 a 的值是 (D)1A.- 5B. 5 C. 5D.± 59.- 3 的绝对值是3;- | - 2.5|=- 2.5 ;绝对值是 6 的数是± 6.10.计算: |4| + |0| -| - 3| =1.知识点 3绝对值的性质11.任何一个有理数的绝对值一定(D)A.大于 0B.小于 0C.不大于 0D.不小于 012.在有理数中,绝对值等于它本身的数有(D)A.一个B.两个C.三个D.无数个13.(1) ①正数: | + 5| = 5, |12|= 12;②负数: | - 7| = 7,| - 15| =15;③零: |0| = 0;(2) 根据 (1)中的规律发现:不论正数、负数和零,它们的绝对值一定是非负数,即|a| ≥ 0.知识点 4利用绝对值比较有理数的大小14.下列各式中正确的是 (D)A.| -3| >| -4|B.- 2> | -5|89C. 0> | - 0.000 1|D.| -9| >-1015.用“>”或“<”填空:(1) - 7<- 6.5;(2) - 3>- 4;(3) - 5<- 4.中档题16.如果 a 与 1 互为相反数,那么 |a| 等于 (C)A. 2B.- 2C. 1D.- 117.下列说法正确的是 (D)A.- |a| 一定是负数B.只有两个数相等时它们的绝对值才相等C.若 |a| =|b|,则 a 与 b 相等D.若一个数小于它的绝对值,则这个数为负数18.( 南京中考 ) 数轴上点 A, B 表示的数分别是5,- 3,它们之间的距离可以表示为 (D)A.- 3+ 5B.- 3- 5C.| -3+ 5|D. | -3- 5|19.如果 a>0, b<0, a<|b|,那么 a、 b、- a、- b 的大小顺序是 (A)A.- b>a>- a>b B. a>b>- a>- bC.- b>a>b>- a D. b>a>- b>- a20.绝对值小于 6 的整数有11 个,它们分别是±5,± 4,± 3,± 2,± 1,0;绝对值大于 3 且小于 6 的整数是± 5,± 4.21.( 河北中考改编) 若有理数m, n 满足 |m- 2| + |2 017 -n| = 0,则 m+ n= 2__019.22.比较下列各对数的大小:(1)0 和 | -2| ;解: 0<| - 2|.4 2(2)-5和-3;4 2解:- <- .5 3(3)-( -4)和| -4|.解:- (-4)=| -4|.23.计算:2(1)|+2 |×|-9|;38解:原式=3× 9= 24.3-7|.(2)| - | ÷|148382解:原式=4×15= 5.以上,则这袋奶粉视为不合格产品.现抽取10 袋样品进行质量检测,结果如下:( 单位:克 )袋号12345678910记作- 203- 4- 3- 5445- 3(1)这 10 袋奶粉中,有哪几袋不合格?(2)质量最大的是哪袋?它的实际质量是多少?解: (1) 第 4 袋和第 6 袋不合格.(2)质量最大的是第 9 袋,实际质量是 505 克.综合题25.已知 a,b, c 为有理数,且它们在数轴上的位置如图所示.(1)试判断 a, b, c 的正负性;(2)在数轴上分别标出 a, b,c 的相反数的位置;(3)根据数轴化简:①|a| =- a;② |b| = b;③ |c| = c;④| - a| =- a;⑤ | - b| = b;⑥ | - c| = c.(4)若 |a| =5.5 , |b| = 2.5 ,|c| = 7,求 a, b,c 的值.解:(1)a 为负, b 为正, c 为正.(2)如图.(4)a =- 5.5 , b= 2.5 , c= 7.小专题 ( 一)绝对值的应用类型 1利用绝对值比较大小1.比较下面各对数的大小: (1) - 0.1 与- 0.2 ;解:因为 | - 0.1| = 0.1 , | -0.2| = 0.2 ,且 0.1 < 0.2 ,所以- 0.1 >- 0.2.4 5 (2) -与-;5644 245 5 25解:因为 | -5| =5=30,| -6| =6=30,24 25且30<30,4 5所以- 5>- 6.2.比较下列各对数的大小: (1) - 8与-|-1|;21 71 1 解:- | -7| =- 7,881 1 3 8 1因为 | - 21| = 21, | -7| = 7= 21,且 21> 7,所以-8 21<- |1- 7|.2 0152 016(2) - 2 016 与-2017.2 015 2 015 2 0162 016解:因为 -2 016 =2 016, -2 017 = 2 017 ,2 015 2 016且2 016<2 017,2 015 >- 2 016所以- .2 016 2 017类型 2巧用绝对值的性质求字母的值3.已知 |x -3| + |y -5| = 0,求 x + y 的值. 解:由 |x -3| + |y -5| = 0,得 x - 3= 0, y - 5= 0. 解得 x = 3, y = 5. 所以 x + y = 3+ 5= 8.4.若 x 的相反数是- 3, |y| =5,且 x <y ,求 y -x 的值.解:因为 x 的相反数是- 3,所以 x = 3. 因为 |y| = 5,所以 y =± 5. 因为 x < y ,所以 x =3, y = 5. 所以 y - x = 5- 3= 2.类型 3绝对值在生活中的应用5.司机小李某天下午的营运全是在南北走向的鼓楼大街进行的.假定向南为正,向北为负,他这天下午行车里程如下 ( 单位:千米 ) :+ 15,- 3,+ 14,- 11,+ 10,+ 4,- 26. 若汽车耗油量为0.1 L/km ,这天下午汽车共耗油多少升?解: 0.1 × (| +15| +| -3| +| +14| +| -11| +| + 10| +| +4| + | -26|)= 8.3(L).6.在活动课上,有 6 名学生用橡皮泥做了 6 个乒乓球,直径可以有0.02毫米的误差,超过规定直径的毫米数记作正数,不足的记为负数,检查结果如下表:做乒乓李明张兵王敏余佳赵平蔡伟球的同学检测结果+ 0.031- 0.017+ 0.023- 0.021+ 0.022- 0.011(1)请你指出哪些同学做的乒乓球是合乎要求的?(2)指出哪个同学做的乒乓球质量最好,哪个同学做的质量最差?(3)请你对 6 名同学做的乒乓球质量按照最好到最差排名;(4)用学过的绝对值知识来说明以上问题.解: (1) 张兵、蔡伟.(2)蔡伟做的乒乓球质量最好、李明做的乒乓球质量最差.(3)蔡伟、张兵、余佳、赵平、王敏、李明.(4)这是绝对值在实际生活中的应用,对误差来说绝对值越小越好.小专题 ( 二)三种方法比较有理数的大小方法 1 利用数轴比较大小1.如图,在数轴上有 a, b, c,d 四个点,则下列说法正确的是 (C)A. a>b B. c<0C. b<c D.- 1>d2.有理数 a 在数轴上对应的点如图所示,则a,- a,- 1 的大小关系是 (C)A.- a<a<- 1B.- a<- 1<aC. a<- 1<- a D. a<- a<- 13.大于- 2.5 而小于 3.5的整数共有 (A)A.6 个B.5 个C.4 个D.3 个4.在数轴上表示下列各数,并把这些数用“>”连接起来.13. 5, 3.5 的相反数,-2,绝对值等于3的数,最大的负整数.1解:各数分别为: 3.5 ,- 3.5 ,-,± 3,-1.在数轴上表示如图:1这些数由大到小用“>”连接为: 3.5 >3>-2>- 1>- 3>- 3.5.5.点 A、 B 在数轴上的位置如图所示,它们分别表示数a、b.(1)请将 a, b, 1,- 1 四个数按从小到大的顺序排列起来;(2)若将点 B 向右移动 3 个单位长度,请将 a、 b、- 1 三个数按从小到大的顺序排列起来.解:(1)b< - 1<a<1.(2)- 1<a<b.方法 2利用比较大小的法则比较大小6.下列各式成立的是(B)A.- 1>0B. 3>- 2C.- 2<- 5 7.( 安徽中考A.- 4D. 1<- 2) 在- 4, 2,- 1,3 这四个数中,比-B.2C.- 12 小的数是D. 3(A)8.( 西双版纳中考) 若75a=- 8,b=- 8,则a, b 的大小关系是a< b( 填“>”“<”或“=”) .9.已知数: 0,- 2,1,- 3,5. (1)用“ >”把各数连接起来;解: 5>1>0>- 2>- 3.(2)用“ <”把各数的相反数连接起来;解:- 5<-1<0<2<3.(3)用“ >”把各数的绝对值连接起来.解: |5|>|-3|>|-2|>|1|>|0|.方法 3利用特殊值比较大小10.如图,数轴上的点表示的有理数是a, b,则下列式子正确的是(B)A.- a< b B. a<bC. |a| < |b|D.- a<- b11.a, b 两数在数轴上的对应点的位置如图,下列各式正确的是(D)A. b> a B.- a< bC. |a| > |b|D. b<- a< a<- b2.4有理数的加法第 1课时有理数的加法法则基础题知识点 1 有理数的加法法则1.下列各式的结果,符号为正的是(C)A.( -3) +( -2)B.( -2) +0C.( -5) +6D.( -5) +52.( 天津中考 ) 计算 ( - 3) + ( -9) 的结果是 (B)A. 12B.- 12C. 6D.- 63.( 梅州中考 ) 计算 ( - 3) + 4 的结果是 (C)A.- 7B.- 1C. 1D. 74.已知 a,b 两数互为相反数,则a+ b= (C)A. 2a B. 2bC. 0D. 15.下列结论不正确的是 (D)A.若 a>0, b>0,则 a+ b>0B.若 a<0, b<0,则 a+ b<0C.若 a>0, b<0,且 |a|>|b|,则 a+ b>0D.若 a<0, b>0,且 |a|>|b|,则 a+ b>06.在每题的横线上填写和的符号或结果.(1)( +3) +( +5) =+ (3 + 5)=8;(2)( -3) +( -5) =- (3 + 5)=- 8;(3)( - 16) + 6=- (16 - 6) =- 10;(4)( - 6) +8=+ (8 - 6) = 2;(5)( - 2 015) + 0=- 2__015.7.计算:(1)( -4) +( -6) ;解:原式=- 10.(2)( - 12) + 5;解:原式=- 7.1(3)0 +( -2) ;1解:原式=-.(4)( - 2.5) + ( - 3.5) .解:原式=- 6.知识点 2有理数加法的应用8.小明家冰箱冷冻室的温度为-A.4 ℃5 ℃,调高B.9 ℃4 ℃后的温度为(C)C.- 1℃D.- 9℃9.一个物体在数轴上做左右运动,规定向右为正,按下列方式运动,列出算式表示其运动后的结果:(1)先向左运动 2 个单位长度,再向右运动7 个单位长度.列式:-2+ 7;10 .某人某天收入 265 元,支出 200 元,则该天节余 65 元.11 .已知飞机的飞行高度为 10 000 m ,上升 3 000 m 后,又上升了-5 000 m ,此时飞机的高度是 8__000m.中档题12 .( 玉林、防城港中考 ) 下面的数中,与- 2 的和为 0 的是 (A) A . 2 B .- 2 C. 1 12 D .-213 .有理数 a 、 b 在数轴上对应的位置如图所示,则 a + b 的值 (A)A .大于 0B .小于 0C .小于 aD .大于 b14.如果两个数的和是正数,那么 (D)A .这两个数都是正数B .一个为正,一个为零C .这两个数一正一负,且正数的绝对值较大D .必属上面三种情况之一 15 .一个数是 25,另一个数比 25 的相反数大- 7,则这两个数的和为 (B) A . 7 B .- 7 C . 57 D .- 5716 .若 x 是- 3 的相反数, |y| = 5,则 x + y 的值为 (D)A . 2B . 8C .-8或 2D .8 或- 217 .已知 A 地的海拔高度为-53 米,而 B 地比 A 地高 30 米,则 B 地的海拔高度为-23 米.18 .如图,三个小球上的有理数之和等于-2.19.计算:3 3 (1)+(- );22解:原式= 0.1(2)1 6+( -4);5解:原式=- 26.13(3)7 5+ ( - 25) ;13解:原式=+ (7 5- 25)3 = 45.1(4) -8.75 +( -34).1解:原式=- (8.75 + 34)=- 12.20.已知有理数a, b,c 在数轴上的位置如图所示,请根据有理数的加法法则判断下列各式的正负性:①a;② b;③- c;④ a+ b;⑤ a+ c;⑥ b+ c;⑦ a+ ( -b) .解:①③⑦为正;②④⑤⑥为负.综合题21.若 |a - 2| 与 |b + 5| 互为相反数,求a+ b 的值.解:因为 |a - 2| 与 |b + 5| 互为相反数,所以 |a - 2| + |b + 5| = 0.所以 a= 2, b=- 5.所以 a+ b= 2+ ( - 5) =- 3.第 2 课时 有理数的加法运算律基础题知识点 1有理数的加法运算律1 3 32 1.计算 3+( -2 ) +5 +( - 8 ) 时,用运算律最为恰当的是 (B)4545133 2A . [3 4+ ( -25)] + [5 4+ ( - 85)]1 3 32 B .(3 4+54) +[( -25) +( -85)] 1 2 3 3 C . [3 4+ ( -85)] + [( - 25) +54]3 3 1 2D .[( -2 ) +5 ] +[34 +( -8 )]5 4557 + ( -6.71) 的结果为 (D)2.计算 +( + 4.71)+1212A .-2B .3C .-3D .-13.在下面的计算过程后面填上运用的运算律. 计算: (-2)+(+3)+(-5)+(+4).解:原式= ( -2) +( -5) +( +3) +( +4)( 加法交换律 )= [( - 2) +( - 5)] +[( + 3) +( + 4)]( 加法结合律 )= ( -7) + (+7) = 0.2 3 22 2 4.在计算3 + ( - 2.53)+ ( - 2 ) + 3.53 + ( - ) 时,比较简便的计算方法是先计算3 +( - ) 和 (-2.53) +3.53 .3 5 3335.计算:(1)( - 0.8) + 1.2 + ( - 0.7) +( - 2.1) = [( - 0.8) + ( - 0.7) + ( - 2.1)] + 1.2 =- 3.6 + 1.2 =- 2.4 ; (2)32.5 + 46+ ( - 22.5)= [32.5 + ( - 22.5)] + 46= 10+46= 56. 6.运用加法的运算律计算下列各题: (1)24 + ( -15) + 7+( - 20) ;解:原式= (24 + 7) + [( - 15) + ( - 20)] = 31+ ( - 35) =- 4.(2)18 + ( -12) + ( -18) + 12;解:原式= [18 + ( -18)] + [( -12) + 12]= 0+ 0 = 0.3 14 2(3)1 7+ ( - 23) + 27+( - 13) .3 4 12解:原式= (1 7 +27) +[( -23) +( -13)] = 4+( -4) = 0.知识点 2 有理数加法运算律的应用7.李老师的银行卡中有5 500 元,取出 1 800 元,又存入 1 500 元,又取出 2 200 元,这时银行卡中还有 3__000元钱.8.检修小组从 A 地出发,在东西路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中行驶记录如下 ( 单位:千米 ) :- 4,+ 7,- 9,+ 8,+ 6,- 4,- 3. 那么收工时距 A 地东 1 千米. ( 说明方向和距离 ) 9.某公司 2016 年前四个月盈亏的情况如下 ( 盈余为正 ) :- 160.5 万元,- 120 万元,+ 65.5 万元, 280 万元.试问 2016 年前四个月该公司总的盈亏情况.解: ( - 160.5) + ( -120) + ( +65.5) + 280= [( - 160.5) + ( + 65.5)] +[( - 120) + 280]= ( - 95) +160= 65( 万元 ).答:盈余 65 万元.中档题10 .下列算式正确的是 (B) A .3+( - 2)=2+ 3B .4+( - 6)+3= (-6) + 4+3C . [5 + ( -2)] + 4=[5 + ( -4)] + 2151 5D. 6+( -1)+( +6) =( 6+ 6) +( + 1)115 111 .计算 0.75 + ( - 4 ) + 0.125 + ( - 7) +( - 48) 的结果是 (B)5 5C .522 A . 6B .- 67 D .- 57 7712 .已知 a +c =- 2 016 , b + ( - d) = 2 017 ,则 a + b + c + ( - d) =1.13 .上周五某股民小王买进某公司股票1 000 股,每股 35 元,下表为本周内每日股票的涨跌情况(单位:元 ):星期 一 二 三 四 五每股涨跌+ 4+ 4.5-1- 2.5- 6则在星期五收盘时,每股的价格是 34 元.14 .用适当方法计算:(1)0.36 + ( - 7.4) +0.5 + ( -0.6) + 0.14 ;解:原式= (0.36 + 0.14) + [( -7.4)+ ( - 0.6)] +0.5= 0.5 + ( -8) + 0.5 =- 7.(2)( -51) +( +12) +( -7) +( -11) +( + 36) ;解:原式= [( -51) +( -7) +( -11)] +[( +12)+ ( +36)]=- 69+ 48=- 21.1 11 (3)( -1) +2+( - 3) + 6;1 1 1解:原式= ( -1) +[ 2+( -3) + 6]1 =( -1) +32=- .33 1 1) +5 .(4)3 + (-8 )+(+ 2 ( -1 )3115解:原式= [3 4+ ( + 22)] + [( - 86) + ( -16)]1=64+ ( - 10)3=- 34.15.每袋大米的标准重量为50 千克, 10 袋大米称重记录如下:+ 1.2 ,- 0.4 ,+ 1,0,- 1.1 ,- 0.5 ,+ 0.3 ,+0.5 ,- 0.6 ,- 0.9( 超过记为正,不足记为负) .问这 10 袋大米总计超过多少千克或不足多少千克?10 袋大米的总重量是多少千克?解: 1.2 + ( - 0.4) + 1+0+ ( - 1.1) + ( - 0.5) + 0.3 + 0.5 + ( - 0.6) + ( - 0.9) = (1.2 + 1+ 0+ 0.3 + 0.5) + [( - 0.4)+( -1.1) +( -0.5) +( - 0.6) +( -0.9)] =3+( -3.5) =- 0.5( 千克 ) ,50× 10+ ( - 0.5) = 499.5( 千克 ) .答:这 10 袋大米总计不足 0.5 千克, 10 袋大米的总重量是499.5 千克.综合题16.一只小虫从某点 O出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为 ( 单位:厘米 ) :+ 5,- 3,+ 10,- 8,- 6,+ 12,- 10. 问:(1) 小虫最后是否回到出发点O?(2)小虫离开出发点 O最远是多少厘米?(3)在爬行过程中,如果每爬行1 厘米奖励 2 粒芝麻,则小虫一共得到多少粒芝麻?解: (1)( +5) + ( -3) + ( +10) +( -8) +( -6) +( +12) +( - 10) = [( +5) +( +12)] +[( - 3) +( - 8)+( -6)] +[( + 10) + ( - 10)] =17+ ( -17) + 0=0( 厘米 ) .答:小虫最后回到出发点O.(2) 小虫每次爬行后分别到达位置为:+5,+ 2,+ 12,+ 4,- 2,+ 10, 0. 故小虫离开出发点O最远是 12 厘米.(3)2 ×(| +5| +| -3| +| +10| +| -8| +| -6| +| +12| +| -10|) =108( 粒) .答:小虫一共得到108 粒芝麻.2.5有理数的减法基础题知识点 1有理数的减法法则1.( 甘孜中考 ) 计算 2- 3 的结果是 (B)A.- 5B.- 1C. 1D.5 2.( 天津中考 ) 计算 ( - 2) - 5 的结果等于 (A)A.- 7B.- 3C. 3D.7 3.与- 3 的差为0 的数是 (B)A. 3B.- 311C. 3D.-34.已知 a,b 在数轴上的位置如图所示,则a- b 的结果的符号为 (B)A.正B.负C. 0D.无法确定5.下列计算正确的是 (B)A.( -14) -( +5) =- 9B.0-( - 3)=3C.( -3) -( -3) =- 6D.|5 -3| =- (5 -3)6.计算:(1)( - 6) -9;(2)( -6) -( -9) ;解:原式=- 15.解:原式= 3.(3)0 - 57;(4)( -2.8) - 2;解:原式=- 57.解:原式=- 4.8.(5)1.8 - ( - 2.6);(6)(12-2 )-4 .33解:原式= 4.4.解:原式=- 7.知识点 2 有理数减法的应用7.( 宁夏中考 ) 某地一天的最高气温是8℃,最低气温是- 2 ℃,则该地这天的温差是(A)A.10 ℃B.- 10 ℃C.6 ℃D.-6 ℃8.甲地的海拔是150 m,乙地的海拔是130 m,丙地的海拔是-105 m,甲地的海拔最高,丙地的海拔最低,最高的地方比最低的地方高255 米,丙地比乙地低 235 米.9.某日,北京、大连等 6 个城市的最高气温与最低气温记录如下表,哪个城市温差最大?哪个城市温差最小?分别是多少?城市北京大连哈尔滨沈阳武汉长春最高气温12℃ 6 ℃ 2 ℃ 3 ℃18 ℃ 3 ℃最低气温2℃- 2 ℃-12 ℃- 8 ℃ 6 ℃-10 ℃解:北京: 12- 2= 10( ℃ ) ;大连: 6- (-2) = 8(℃) ;哈尔滨: 2-( -12) =14( ℃) ;沈阳: 3- (-8) = 11(℃) ;武汉: 18-6= 12( ℃) ;长春: 3- ( - 10)=13( ℃) .所以哈尔滨温差最大,为14 ℃;大连温差最小,为8 ℃.中档题10.如图,数轴上 A 点表示的数减去 B 点表示的数,结果是(B)A. 8B.- 8C. 2D.- 211.下列说法正确的是(D)A.减去一个数,等于加上这个数B.零减去一个数仍得这个数C.两个相反数相减得零D.在有理数加法或减法中,和不一定比加数大,被减数不一定比减数或差大12.当 x>0,y<0, |x|>|y| 时, x、 x+ y、x- y、 y 中最大的是 (C)A. x B. x+ yC. x- y D. y13.如果- 2+△=- 6,那么“△”表示的数是- 4.14.( 济南中考 ) 计算: | - 7- 3| = 10.15.填空: (1)( - 5) -5=- 10; (2)15 -28=- 13;11(3)0 -2=-2; (4)12 - ( - 13) = 25.16.北京与巴黎两地的时差是- 7( 带正号的数表示同一时间比北京早的小时数) ,如果现在北京时间是7:00,那么巴黎的时间是0: 00.17.武汉地区 2 月 5 日早上 6 时的气温为- 1 ℃,中午12 时为 3 ℃,晚上11 时为- 4 ℃,中午 12时比早上 6 时高4℃,晚上 11 时比早上低 3℃ .18.计算:4 2(1)( -3) -( -3) ;4 2解:原式= ( -3) +( +3)4 2=- ( 3-3)2=-.31 1(2)( -23) -( -32) ;1 1解:原式= ( -2 ) +3327=.6(3)3 -( - 8)-( - 7)-18;解:原式= 3+ 8+ 7+ ( - 18)=0.(4)( - 5) -( - 7)-( -6) -10.解:原式= ( - 5)+ 7+ 6+ ( -10)=- 2.高度相差多少?解: 8 844 - ( - 392) = 8 844 + 392= 9 236(m) .答:两处高度相差9 236 m.20.已知有理数a, b,c 在数轴上的位置如图所示,请判断下列各式的正负性:(1)a - b; (2)a - c;(3)c - b.解: (1) 为正. (2) 为正. (3) 为负.综合题21.若 a、 b、 c 是有理数, |a| = 3, |b| = 10, |c| = 5,且 a、 b 异号, b、 c 同号,求 a- b- ( - c) 的值.解:由题意,当 a=- 3, b=10, c= 5 时,a- b- ( - c) =- 3-10- ( -5) =- 8;当 a= 3, b=- 10,c=- 5 时,a- b- ( - c) = 3- ( - 10) - 5=8.2.6有理数的加减混合运算第 1 课时有理数的加减混合运算基础题知识点有理数的加减混合运算1.计算 (2 -3) + ( - 1) 的结果是 (A)A.- 2B. 0C. 1D. 22.计算 ( - 25) - ( - 16) + 2 的结果是 (B)A. 7B.- 7C. 8D.- 8733.- 3 减去-5与-5的和的结果是(D)1911A.-5B.-5C.- 5D.- 114.已知 a=- 12, b=- 2, c=2,则 |a| + |b| - |c| 等于 (A)11A. 12B.-1211C. 52D.-25.某天上午 6: 00 虹桥水库的水位为 30.4 米,到上午11: 30 水位上涨了 5.3 米,到下午 6:00 水位下跌了 0.9米,则到下午 6: 00 水位为 (B)A.26 米B. 34.8 米C. 35.8 米D. 36.6 米6.计算:(1)( -9) -( +6) +( -8) -( -10) =- 13;(2)1 -2+ 3- 4+ 5-6=- 3.7.若 a= 5,b=- 3, c=- 7,则 a- b+c 的值为 1.8.某地一天早晨的气温是-7 ℃,中午气温上升了 11℃,下午又下降了9 ℃,晚上又下降了 5 ℃,则晚上的温度为-10℃.9.计算:12(1) 3-3+ 1;1解:原式=-3+ 12= .367(2)( -13) +( -13) -2;解:原式=- 1- 2=- 3.(3)5 - 9+ 7- 4;解:原式= (5 + 7) -(9 + 4)=12- 13=- 1.1112(4) -2+( -6) -( -4) -( +3) .2 12解:原式=-3+4-313=-12.中档题10.计算 ( -5) - ( + 3) + ( - 9) - ( - 7) +1,所得结果正确的是(B) A.- 10B.- 9C. 8D.- 2311.设A. 2a 是最大的负整数, b 是绝对值最小的有理数,B. 1c 是最小的正整数,则b- c+ a 的值是(D)C.- 1D.- 212.- 7,- 12,+ 2 的和比它们的绝对值的和小A.- 38B.- 4(D)C.4D.3813.小明近期几次数学测试成绩如下:第一次88 分,第二次比第一次高8 分,第三次比第二次低12 分,第四次又比第三次高10 分,那么小明第四次测试成绩是(C)A.93 分B.78 分C.94 分D.84 分14.河里的水位第一天上升了 6 厘米,第二天下降了 5 厘米,第三天又下降了 3 厘米,第四天上升了7 厘米,则第四天河水水位比刚开始时的水位上升了 5 厘米.15.根据如图所示的程序计算,若输入的值为1,则输出的值为- 5.16.计算:(1)( -49) -( +91) -( -5) +( -9) ;解:原式=- 49- 91+ 5- 9=- 144.(2)- 7.2 -0.9 - 5.6 + 1.7 ;解:原式=- 8.1 - 5.6 + 1.7=- 13.7 +1.7=- 12.25(3)( -5) + ( -6) - ( -4.9) - 0.6.37 493解:原式=-30+10-546=15.小明:,4.5) 3.2,1.1) 1.4小红:,8)2,-6)- 7解:小明:- 4.5 + 3.2 - 1.1 + 1.4 =- 1,小红:- 8+ 2- ( - 6) - 7=- 7.因为- 7<-1,所以小红的结果小,为胜者.综合题18.若“三角”表示运算a- b+ c,“方框”表示运算x- y+z+ w,求+表示的运算,并计算结果.解:根据题意得:+= (1-1+1)+ [( -2) -3+( - 6) +3] =( -1)+(-8)=-81.4261212第 2 课时有理数加减混合运算中的简便计算基础题知识点有理数加减混合运算中的简便计算5351.计算-+(-2) 的结果是 (C)6885511 A.- 36B.- 26C.- 26D.26 2.计算 ( - 3)+( +2.5) + ( -0.5) +4- (-3) 的结果是 (B)A. 3B. 6C. 7D. 942113.计算: 1+5-( +3) -( -5) -( +13) =0.4.计算: (1)- 4.27 + 3.8 - 0.73 + 1.2 =0;131461(2)8 4+ 67- 34+ 57-37= 137.5.计算:(1)- 8- 6+ 22- 9;解:原式=- 23+ 22=- 1.(2)0 - 16+( - 29) -( - 7) -( + 11) .解:原式=- 16- 29+ 7- 11=- 56+ 7=- 49.中档题6.计算:1312(1)2 + 6+( -2)+(-5 );3535解:原式= [21132+ (-2 )] +[6+( -5 )] 33551=0+ 151=15.137(2)0.25+(-8)-4-|-8|.1 1 37解:原式=4-8-4-81 317=( 4-4) -( 8+8)1=-2-13=-.27.某气象站每天下午 4 点需要测量一次气温,下面是某地星期一至星期五气温变化情况,该地上个星期日下午4点的气温是 12 ℃ . 求该地星期五下午 4 点的气温.星期一二三四五气温的变升降升升降化( 与前0.2 ℃0.7 ℃0.3 ℃0.8 ℃0.6 ℃一天比较 )解:由题意,得(0.2 - 0.7 + 0.3 +0.8 - 0.6)+ 12=(0.2 + 0.3 + 0.8) + ( - 0.7 - 0.6) +12=1.3 - 1.3 + 12=12.答:该地星期五下午 4 点的气温是 12℃.综合题8.(1) 有 1、2、 3、, 11、 12 共 12 个数字,请在每两个数字之间添上“+”或“-”,使它们的和为 0;(2) 有 1、2、3、, 2 015 、2 016 共 2016个数字,请在每两个数字之间添上“+”或“-”,使它们的和为0;(3)根据 (1)(2) 的规律,试判断能否在 1、 2、 3、, 2 016、 2 017,共 2 017 个数字的每两个数字之间添上“+”或“-”,使它们的和为 0. 若能,请说明添法;若不能,请说明理由.解: (1)1 -2+ 3- 4+ 5- 6-7+ 8- 9+10- 11+12= 0.( 答案不唯一 )(2)1 与 2 016 是正的, 2 与 2 015 是负的; 3 与 2 014 是正的, 4 与 2 013是负的;依次类推,1007 与 1010 是正的, 1 008 与 1 009 是负的.即: 1- 2+3- 4+, + 1 007 - 1 008 -1 009 +1 010 -, - 2 013 +2 014-2 015 +2 016 =0.(3) 不能,因为由 (1)(2)可知:数字的总个数应该是偶数个.第 3课时有理数加减混合运算的应用基础题知识点有理数加减混合运算的应用1.某运动员先后参加了 10 次百米竞赛,成绩的变化情况如下表( 第一次成绩为10.8 秒) :序号2345678910成绩( 与+ 0.1+ 0.1- 0.3+ 0.5-0.1- 0.3+0.2- 0.3+ 0.2前一次相比 )请问这位运动员跑10 次百米竞赛的平均成绩为(A)A. 10.91 秒B. 10.92 秒C. 10.93 秒D. 10.94 秒2.下表为张先生家的一张存折的一部分,从表中可知,截止2017 年 3 月 2 日,此张存折还结余4__800 元.日期摘要存入(+)/ 支出(-)余额操作柜员20161020现存+5 800 5 800aklj20161220现取-2 000aklj20170302现存+1 000aklj3.检查一商店某水果罐头 10 瓶的质量,超出记为“+” ,不足记为“-” ,情况如下:- 3 克,+ 2 克,- 1 克,- 5 克,- 2 克,+ 3 克,- 2 克,+ 3 克,+ 1 克,- 1 克.(1)总的情况是超出还是不足?超出或不足多少?(2)这些罐头平均超出或不足为多少?(3)最多与最少相差是多少?解: (1) - 3+ 2- 1-5- 2+ 3-2+ 3+ 1-1=- 5( 克 ) ,即总的情况是不足 5 克.(2)5÷ 10=0.5( 克 ) ,即平均不足 0.5 克.(3)3- ( - 5) = 8( 克 ) ,即最多与最少相差8 克.中档题4.红星中学初一 (1) 班学生期末数学平均成绩是90 分.(1)下表给出了该班 6 名同学的成绩情况,试完成下表:姓名小新小雪小丽丁丁小天小亮成绩9188908610085成绩与平均+1- 20-4+ 10- 5成绩的差值(2)谁的成绩最好?谁的成绩最差?(3)成绩最好的比成绩最差的高多少分?解: (2) 小天成绩最好,小亮成绩最差.(3)100 - 85= 15( 分 ) .综合题5.小明去一水库进行水位变化的实地测量,他取警戒线作为0 m,记录了这个水库一周内的水位变化情况( 测量前一天的水位达到警戒水位,单位:m):10 月10 月10 月10 月10 月10 月10 月时间5 日6 日7 日8 日9 日10 日11 日水位- 0.2+ 0.13- 0.1+0.14- 0.25+ 0.15+ 0.15变化 (m)注:正号表示水位比前一天上升,负号表示水位比前一天下降.(1)这一周内,哪一天水库的水位最高?哪一天水库的水位最低?它们位于警戒线水位之上,还是位于警戒线水位之下,与警戒线水位的距离分别是多少?(2)与测量前一天比,一周内水库的水位是上升了,还是下降了?(3)以警戒线水位为 0 点,用折线统计图表示这一周的水位变化情况.解: (1) 这一周内, 10 月 5 日的水位最高,是+0.15 m , 10 月 10 日的水位最低,是-0.13 m ; 10 月 5 日水位位于警戒线之上,距离是0.15 m ; 10 月 10 日水位位于警戒线之下,距离是0.13 m.(2)与测量前一天比,一周内水库的水位是上升了.(3)折线统计图如图.周周练 (2.1 ~ 2.6)( 时间: 45 分钟满分:100分)一、选择题 ( 每小题 3 分,共 24 分 )1.( 甘孜中考 ) - 3 的绝对值是 (C)11A. 3B.-3C. 3D.- 32.( 河南中考 ) 下列各数中,最小的数是(D)1A. 0 B. 31C.-3D.- 33.( 梅州中考 ) 计算 ( - 3) + 4 的结果是 (C)A.- 7B.- 1C. 1D.74.下面说法正确的是 (D)A.两数之和不可能小于其中的一个加数B.两数相加就是它们的绝对值相加C.两个负数相加,和取负号,绝对值相减D.不是互为相反数的两个数,相加不能得零5.( 哈尔滨中考 ) 哈市某天的最高气温为28 ℃,最低气温为21 ℃,则这一天的最高气温与最低气温的差为(C)A.5 ℃B.6 ℃C.7 ℃D.8 ℃6.下列各式中,其和等于 4 的是 (D)1 1A.(-1 )+(-2 )4 41 5 3B.3 -5 -| -7 |28413C.( -2) -( -4) +235D.( -4) +0.125 -( -48)7.( 宁波中考 ) 杨梅开始采摘啦!每筐杨梅以 5 千克为基准,超过的千克数记为正数,不足的千克数记为负数,记录如图.则这 4 筐杨梅的总质量是 (C)A. 19.7千克B. 19.9千克C. 20.1千克D. 20.3千克8.已知有理数 a, b, c 在数轴上的位置如图,则下列结论错误的是(C)A. c- a< 0B. b+ c< 0C. a+ b- c< 0D. |a + b| = a+ b二、填空题 ( 每小题 4 分,共 24 分 )9.如果将低于警戒线水位0.27 m 记作- 0.27 m ,那么+ 0.42 m 表示高于警戒线水位0.42__m.10.按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”号分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是酥脆.威化咸味甜味酥脆+ 10(g)- 8.5(g)+5(g)- 3(g)11. 从- 5 中减去- 1,- 3, 2 的和,所得的差是-3.12.如果 a 的相反数是最小的正整数, b 是绝对值最小的数,那么a+b=- 1, b- a= 1.13.一只小虫从数轴上表示- 1 的点出发,先向左爬行 2 个单位长度,再向右爬行 5 个单位长度到点C,则点 C 表示的数是 2.14.已知 |m| = 15, |n| = 27,且 m+ n>0,则 m- n=- 12 或- 42.三、解答题 ( 共 52 分)15.(8 分 ) 将下列各数填在相应的集合里:31+6,- 2,- 0.9 ,- 15, 1,5, 0, 34, 0.63 ,- 4.92.15316.(8分 ) 在数轴上表示下列各数:-2, | - 2| ,- ( - 3) , 0,2,- ( +2) ,并用“ <”将它们连接起来.解:在数轴上表示数略.315-( +2)< -2<0<| - 2|< 2<- ( -3) .17.(16 分 ) 计算:(1)( -10) +( +7) ;解:原式=- 3.5 1(2)( +2) -( -3) ;176(3)12 - ( -18) + ( -7) - 15;解:原式= 12+ 18-(7 + 15)=30- 22=8.12411(4)2+(-3)-(-5)+(-2)-(+3).11214解:原式= ( 2-2) +(-3-3) +5=0-1+451=-5.(1)求 a, b 的值;(2)求 8- a+ b- c 的值.解: (1) 因为 a 的相反数是3, b 的绝对值是7,所以 a=- 3, b=± 7.(2)因为 a=- 3, b=± 7, c 与 b 的和是- 8,所以当 b=7 时, c=- 15,当 b=- 7 时, c=- 1.当 a=- 3, b= 7, c=- 15 时,8- a+ b- c= 8- ( -3) + 7-( - 15) =33;当 a=- 3, b=- 7, c=- 1 时,8- a+ b- c= 8- ( -3) + ( -7) - ( - 1) = 5.19.(10 分 ) 某自行车厂本周计划每天生产100 辆自行车,由于工人实行轮休,每天上班人数不一定相等,实际每天产量与计划产量对比如下表:( 超出的辆数为正数,不足的辆数为负数)星期一二三四五六日增减-5+4-3+4+10-2-15(1)本周总产量与计划产量相比,增加( 或减少 ) 了多少辆?(2)日平均产量与计划产量相比,增加( 或减少 ) 了多少辆?解: (1)( -5) +4+( -3) +4+10+( -2)+( -15) =- 7( 辆) .答:本周总产量与计划产量相比,减少了7 辆.(2)( - 7) ÷7=- 1( 辆 ) .答:日平均产量与计划产量相比,减少了 1 辆.。

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题(含答案)

北师大版七年级数学上册第二章 有理数及其运算 计算题专题练习题专题(一) 有理数的加减运算1、计算:(-2)+3+1+(-3)+2+(-4).解:原式=[(-2)+2]+[3+(-3)]+1+(-4)=0+0+1+(-4)=-3.2、计算:(+9)-(+10)+(-2)-(-8)+3.解:原式=9-10-2+8+3=(9+8+3)-(10+2)=20-12=8.3、计算:(1)-23-35+78-13-25+18; 解:原式=(-23-13)+(-35-25)+(78+18) =-1-1+1=-1.(2)-479-(-315)-(+229)+(-615). 解:原式=[-479-(+229)]+[-(-315)+(-615)] =-7-3=-10.4、计算:|-0.75|+(-3)-(-0.25)+|-18|+78. 解:原式=0.75-3+0.25+18+78=(0.75+0.25)+(18+78)-3 =1+1-3=-1.5、计算:-156+(-523)+2434+312. 解:原式=(-1-56)+(-5-23)+(24+34)+(3+12) =[(-1)+(-5)+24+3]+[(-56)+(-23)+34+12] =21+(-14) =2034. 6、计算:634+313-514-312+123. 解:原式=6+34+3+13-5-14-3-12+1+23=(6+3-5-3+1)+(34+13-14-12+23) =2+1=3.7、计算:(1)(-7)-(+5)+(-4)-(-10);解:原式=-7-5-4+10=-6.(2)3.5-4.6+3.5-2.4;解:原式=(3.5+3.5)+(-2.4-4.6)=7-7=0.(3)-9+6-(+11)-(-15);解:原式=-9+6-11+15=(-9-11)+(6+15)=-20+21=1.(4)12+(-23)+45+(-12)+(-13); 解:原式=[12+(-12)]+[(-23)+(-13)]+45=0+(-1)+45=-15.(5)-478-(-512)+(-412)-318;解:原式=-478+512-412-318=(-478-318)+(512-412) =-8+1=-7.(6)0.25+112+(-23)-14+(-512); 解:原式=14+112+(-23)-14+(-512) =(14-14)+[112+(-23)+(-512)] =-1.(7)|-12|-(-2.5)-(-1)-|0-212|; 解:原式=12+2.5+1-212=(12+1)+(2.5-212) =112.(8)-205+40034+(-20423)+(-112); 解:原式=(-205)+400+34+(-204)+(-23)+(-1)+(-12) =(400-205-204-1)+(34-23-12)=-10+(-512) =-10512.(9)0+1-[(-1)-(-37)-(+5)-(-47)]+|-4|; 解:原式=1-[(-1)+37-5+47]+4 =1-[(-1+37+47)-5]+4 =10.(10)-12-16-112-120-130-142-156-172; 解:原式=-(12+16+112+120+130+142+156+172) =-(1-12+12-13+13-14+14-15+15-16+16-17+17-18+18-19) =-(1-19) =-89.(11)1-2-3+4+5-6-7+8+…+97-98-99+100.解:原式=(1-2)+(-3+4)+(5-6)+(-7+8)+…+(97-98)+(-99+100) =-1+1-1+1-…-1+1=0.8、观察下列各式:12=11×2=1-12,16=12×3=12-13,112=13×4=13-14,…,根据规律完成下列各题.(1)19×10=19-110; (2)计算12+16+112+120+…+19 900的值为99100.专题(二) 有理数的混合运算1、计算:531×(-29)×(-2115)×(-412). 解:原式=-531×29×3115×92=-(531×3115)×(29×92) =-13×1 =-13.2、计算:(14-16+124)×(-48). 解:原式=14×(-48)-16×(-48)+124×(-48) =-12+8-2=-6.3、计算:4×(-367)-3×(-367)-6×367. 解:原式=-367×(4-3+6) =-27.4、计算:(16-27+23)÷(-542). 解:原式=(16-27+23)×(-425) =16×(-425)-27×(-425)+23×(-425) =-75+125-285=-235.5、计算:(能用简便方法的尽量用简便方法计算)(1)-0.75×(-112)÷(-214); 解:原式=-34×(-32)×(-49)=-12.(2)-(3-5)×32÷(-1)3;解:原式=-(-2)×9÷(-1)=-2×9÷1=-18.(3)(-1.5)×45÷(-25)×34; 解:原式=32×45×52×34=94.(4)-14+16÷(-2)3×(-3-1);解:原式=-1+16÷(-8)×(-4)=-1+8=7.(5)(-5)÷(-127)×(-214)÷7; 解:原式=-5×79×94×17=-54.(6)0.7×1949+234×(-14)+0.7×59+14×(-14); 解:原式=0.7×(1949+59)-14×(234+14) =0.7×20-14×3=-28.(7)391314×(-14); 解:原式=(40-114)×(-14)=40×(-14)-114×(-14) =-560+1=-559.(8)1318÷(-7); 解:原式=1318×(-17) =(14-78)×(-17) =-2+18=-178.(9)12.5×6.787 5×18+1.25×678.75×0.125+0.125×533.75×18; 解:原式=(12.5×6.787 5+1.25×678.75+0.125×533.75)×18=[125×(0.678 75+6.787 5+0.533 75)]×18=125×8×18=125.(10)(-5)-(-5)×110÷110×(-5); 解:原式=(-5)-(-5)×110×10×(-5)=-5-25=-30.(11)(-42)÷(223)2+512×(-16)-(-0.5)2; 解:原式=(-16)÷649-1112-14=-94-1112-14=-4112.(12)148÷(38-56+14); 解:因为(38-56+14)÷148=(38-56+14)×48 =38×48-56×48+14×48 =18-40+12=-10,所以148÷(38-56+14)=-110.(13)(-12)÷(-4)-27÷(-3)×(-13); 解:原式=3-9×13=3-3=0.(14)(-2)3-16×(38-1)+2÷(12―14―16). 解:原式=-8-16×38+16+2÷(612-312-212) =-8-6+16+2÷112=2+24=26.。

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)

北师大版七年级数学上册《第二章有理数及其运算》单元测试卷(附答案)一、选择题1.−3的绝对值是()A.3B.13C.−13D.−32.2022年春季开学后,济南市的天气突然降温,2月16日的最高气温是2℃,最低气温是−4℃,那么这天的温差是()A.6℃B.−6℃C.2℃D.−2℃3.−|−2021|的相反数为()A.−2021B.2021C.−12021D.1 20214.党的十八大以来,以习近平同志为核心的党中央重视技能人才的培育与发展.据报道,截至2021年底,我国高技能人才超过65000000人,将数据65000000用科学记数法表示为()A.6.5×106B.65×106C.0.65×108D.6.5×1075.下列说法中,错误的是()A.数轴上表示−3的点距离原点3个单位长度B.规定了原点、正方向和单位长度的直线叫做数轴C.有理数0在数轴上表示的点是原点D.表示十万分之一的点在数轴上不存在6.下列各式:①−(−2);②−|−2|;③−22;④(−2)2,计算结果为负数的个数有()A.4个B.3个C.2个D.1个7.小明在写作业时不慎将两滴墨水滴在数轴上,如图所示,此时墨迹盖住的整数共有()个.A.3B.4C.5D.68.计算:1−(+2)+3−(+4)+5−(+6)+⋯−(+2022)=()A.2022B.−2022C.−1011D.10119.若|x|=7,|y|=9,则x−y为()A.±2和±16B.±16C.−2和−16D.±210.有理数a,b在数轴上对应的位置如图所示,则()A.|a|<|b|B.ab>0C.a+b<0D.a−b>0 11.如图,a,b,c,d,e,f均为有理数,图中各行,各列及两条对角线上三个数的和都相等,则a−b+c−d+e−f的值为()A.1B.−3C.7D.812.一只小球落在数轴上的某点P0,第一次从P0向左跳1个单位到P1,第二次从P1向右跳2个单位到P2,第三次从P2向左跳3个单位到P3,第四次从P3向右跳4个单位到P4……若按以上规律跳了100次时,它落在数轴上的点P100所表示的数恰好是2022,则这只小球的初始位置点P0所表示的数是()A.−1971B.1971C.−1972D.197213.已知|x|=6,y2=4,且xy<0.则x+y的值为()A.4B.−4C.4或−4D.2或−214.某路公交车从起点经过A,B,C,D站到达终点,各站上、下乘客人数如下表所示(用正数表示上车的人数,负数表示下车的人数)站点起点A B C D终点上车人数x1512750下车人数0−3−4−10−11−29若此公交车采用一票制,即每位上车乘客无论哪站下车,车票都是2元,问该车这次出车共收入()A.114元B.228元C.78元D.56元二、填空题15.A、B为同一数轴上两点,且A、B两点间的距离为3个单位长度,若点A所表示的数是-1,则点B所表示的数是.16.设a为最小的正整数,b为最大的负整数,c是绝对值最小的有理数,则a−b+c的值为 .17.体育课上规定时间内仰卧起坐的满分标准为46个,高于标准的个数记为正数.如某同学做了50个记作“+4”,那么“-5”表示这位同学作了 个.18.有理数 a 、 b 在数轴上的位置如图所示,则下列各式:①a +b >0 ;②a −b >0 ;③b >a ;④ab <0 ;⑤|b −a|=a −b 正确的有 .(填式子前面的序号即可)19.《九章算术》中注有“今两算得失相反,要令正负以名之”.大意是:今有两数若其意义相反,则分别叫做正数与负数.若水位上升2m 记作 +2 m ,则下降1m 记作 m .三、计算题20.计算题(1)−20+(−14)−(−18);(2)(−38−16+34)×(−24);(3)−8÷2×(−12)×0.25;(4)−14−8÷(−4)×|−6+4|.21.计算:(1)9+5×(−3)−(−2)2÷4; (2)(−5)3×[2−(−6)]−300÷5(3)(−13)×3÷3×(−13);(4)(−14−56+89)÷(−16)2+(−2)2×(−14)22.(1)12+(−5)−7−(−24)(2)(−36)×(13−12)+16÷(−2)3四、解答题23.阅读下面文字:对于(−556)+(−923)+1734+(−312)可以按如下方法进行计算:原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)]=[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)]=0+(−5 4)=−54.上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,请你计算:(−202156)+(−202023)+404223+(−112)24.在数轴上表示下列各数:5,3.5,−212,−1,并把它们用“<”连接起来.25.如图,数轴上点A表示的有理数为﹣4,点B表示的有理数为6,点P从点A出发以每秒2个单位长度的速度在数轴上沿由A到B方向运动,当点P到达点B后立即返回,仍然以每秒2个单位长度的速度点运动至点A停止运动,设运动时间为t(单位:秒).(1)当t=2时,点P表示的有理数为.(2)当点P与点B重合时t的值为.(3)①在点P由A到点B的运动过程中,点P与点A的距离为.(用含t的代数式表示)②在点P由点A到点B的运动过程中,点P表示的有理数为.(用含t的代数式表示)(4)当点P表示的有理数与原点距离是2的单位长度时,t的值为.26.某公路检修队乘车从A地出发,在南北走向的公路上检修道路,规定向南走为正,向北走为负,从出发到收工时所行驶的路程记录如下(单位:千米):+3,-8,+4,+7,-6,+8,-7,+10.(1)问收工时,检修队在A地哪边?据A地多远?(2)问从出发到收工时,汽车共行驶多少千米?(3)在汽车行驶过程中,若每行驶1千米耗油0.2升,则汽车共耗油多少升?27.高速公路养护小组,乘车沿东西向公路巡视维护,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米):+17,−9,+7,−15,−3,+11,−6,−8,+5(1)养护小组最后到达的地方在出发点的哪个方向?距出发点多远?(2)若汽车耗油量为0.5升/千米,则这次养护共耗油多少升?五、综合题28.某公司6天内货品进出仓库的吨数如下:(“+”表示进库,“−”表示出库)+21,−32,−16,+35,−38(1)经过这6天,仓库里的货品是(填“增多了”还是“减少了”).(2)经过这6天,仓库管理员结算发现仓库里还有货品460吨,那么6天前仓库里有货品多少吨?(3)如果进出的装卸费都是每吨5元,那么这6天要付多少元装卸费?29.已知数轴上三点M,O,N对应的数分别为−1,0,3,点P为数轴上任意一点,其对应的数为x(1)MN的长为;(2)如果点P到点M、点N的距离相等,那么x的值是;(3)数轴上是否存在点P,使点P到点M、点N的距离之和是8?若存在,直接写出x的值;若不存在,请说明理由(4)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动,设t分钟时点P到点M、点N的距离相等,求t 的值30.李强靠勤工俭学的收入维持上大学的费用.下面是他某一周的收支情况表(收入为正,支出为负,单位为元)周一周二三四五六日+15+100+20+15+10+14-8-12-19-10-9-11-8(1)到这个周末,李强有多少节余?(2)照这样,李强一个月(按30天计算)能有多少节余?(3)按以上的支出水平,李强一个月(按30天计算)至少有多少收入才能维持正常开支?31.已知a 是最大的负整数,b 是15的倒数,c 比a 小1,且a 、b 、c 分别是A 、B 、C 在数轴上对应的数.若动点P 从点A 出发沿数轴正方向运动,动点Q 同时从点B 出发也沿数轴负方向运动,点P 的速度是每秒3个单位长度,点Q 的速度是每秒1个单位长度.(1)在数轴上标出点A 、B 、C 的位置;(2)运动前P 、Q 两点间的距离为 ;运动t 秒后,点P ,点Q 运动的路程分别为 和 ;(3)求运动几秒后,点P 与点Q 相遇?(4)在数轴上找一点M ,使点M 到A 、B 、C 三点的距离之和等于11,直接写出所有点M 对应的数.32.有理数a ,b ,c 在数轴上的位置如图所示(1)a 0;b 0;c 0. (2)化简|a|+|a +b|−|c −b|.33.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩加工厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个).星期 一 二 三 四 五 六 日 增减+100−200+400−100−100+350+150(1)根据记录可知前三天共生产多少个口罩;(2)产量最多的一天比产量最少的一天多生产多少个;(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是多少元?34.出租车司机小主某天下午营运全是在南北走向的公路上进行的.如果向南记作“+”,向北记作“﹣”,他这天下午行车情况如下:(单位:千米) ﹣2,+5,﹣8,﹣3,+6,﹣2(1)小王将最后一名乘客送到目的地时,小王在下午出车的出发地的什么方向?距下午出车的出发地多远?(2)若出租车每公里耗油0.3升,求小王回到出发地共耗油多少升?(3)若规定每趟车的起步价是10元,且每趟车3千米以内(含3千米)只收起步价;若超过3千米,除收起步价外,超过的每千米(不足1千米按1千米计算)还需收4元钱,小王今天是收入是多少元?答案解析部分1.【答案】A2.【答案】A3.【答案】B4.【答案】D5.【答案】D6.【答案】C7.【答案】D8.【答案】C9.【答案】A10.【答案】C11.【答案】C12.【答案】D13.【答案】C14.【答案】A15.【答案】2或-416.【答案】217.【答案】4118.【答案】②④⑤19.【答案】-120.【答案】(1)解:原式=−20−14+18=−34+18 =−16;(2)解:原式=−38×(−24)−16×(−24)+34×(−24)=9+4−18=−5;(3)解:原式=−4×(−12)×14=4×12×14=12;(4)解:原式=−1−(−2)×2=−1−(−4) =−1+4=3.21.【答案】(1)解:9+5×(−3)−(−2)2÷4=9−15−4÷4 =9−15−1=−7(2)解:(−5)3×[2−(−6)]−300÷5=−125×8−60 =−1000−60 =−1060(3)解:(−13)×3÷3×(−13)=−1×13×(−13) =19(4)解:(−14−56+89)÷(−16)2+(−2)2×(−14)=(−14−56+89)×36+4×(−14) =−14×36−56×36+89×36−56=−9−30+32−56=−6322.【答案】(1)解:12+(−5)−7−(−24)=12−5−7+24 =12−12+24=24;(2)解:(−36)×(13−12)+16÷(−2)3=(−36)×13−(−36)×12+16÷(−8)=−12+18+(−2) =4.23.【答案】解:原式=[(−2021)+(−56)]+[(−2020)+(−23)]+(4042+23)+[−1+(−12)]=(−2021−2020+4042−1)+(−56−23+23−12)=0+(−4 3)=−43.24.【答案】解:数轴如图所示:用“<”连接起来:−212<−1<3.5<5.25.【答案】(1)0(2)5(3)2t;2t﹣4(4)1,3,7,926.【答案】(1)解:+3-8+4+7-6+8-7+10=11(千米).故收工时,检修队在A地南边,距A地11千米远.(2)解:|+3|+|-8|+|+4|+|+7|+|-6|+|+8|+|-7|+|+10|=53(千米).故汽车共行驶53千米.(3)解:53+11=64(千米),64×0.2=12.8(升).故汽车共耗油12.8升.27.【答案】(1)解:+17-9+7-15-3+11-6-8+5+16=+15(千米)答:养护小组最后到达的地方在出发点的东边,距出发点15千米远;(2)解:(17+|-9|+7+|-15|+|-3|+11+|-6|+|-8|+5+16)×0.5=48.5(升)答:这次养护共耗油48.5升.28.【答案】(1)减少了(2)解:460+50=510(吨)答:6天前仓库里有货品510吨.(3)解:21+32+16+35+38+20=162(吨)则装卸费为:162×5=810(元).答:这6天要付810元装卸费.29.【答案】(1)4(2)1(3)解:①当点P 在点M 的左侧时根据题意得:−1−x +3−x =8解得:x =−3②P 在点M 和点N 之间时,则x −(−1)+3−x =8,方程无解,即点P 不可能在点M 和点N 之间③点P 在点N 的右侧时解得:x =5∴x 的值是−3或5;(4)解:设运动t 分钟时,点P 到点M ,点N 的距离相等,即PM =PN点P 对应的数是−t ,点M 对应的数是−1−2t ,点N 对应的数是3−3t①当点M 和点N 在点P 同侧时,点M 和点N 重合所以−1−2t =3−3t ,解得t =4,符合题意②当点M 和点N 在点P 异侧时,点M 位于点P 的左侧,点N 位于点P 的右侧(因为三个点都向左运动,出发时点M 在点P 左侧,且点M 运动的速度大于点P 的速度,所以点M 永远位于点P 的左侧)故PM =−t −(−1−2t )=t +1,PN =(3−3t )−(−t )=3−2t所以t +1=3−2t ,解得t =23,符合题意综上所述,t 的值为23或430.【答案】(1)解:根据题意列得:(+15)+(-8)+(+10)+(-12)+0+(-19)+(+20)+(-10)+(+15)+(-9)+(+10)+(-11)+(+14)+(-8)=7则李强有7元的节余;(2)解:30×(7÷7)=30则李强一个月能有30元的节余;(3)解:根据题意列得:(-8)+(-12)+(-19)+(-10)+(-9)+(-11)+(-8)=-77 ∴至少支出77元,即每天至少支出11元则一个月至少有330元的收入才能维持正常开支.31.【答案】(1)解:∵a 是最大的负整数∴a=-1∵b 是15的倒数∴b=5∵c 比a 小1∴c=-2如图所示:(2)6;3t ;t(3)解:依题意有3t+t=6解得t=1.5.故运动1.5秒后,点P 与点Q 相遇;(4)解:设点M 表示的数为x ,使P 到A 、B 、C 的距离和等于11①当M 在C 点左侧,(-1)-x+5-x+(-2)-x=11.解得x=-3,即M 对应的数是-3.②当M 在线段AC 上,x-(-2)-1-x+5-x=11解得:x=-5(舍);③当M 在线段AB 上(不含点A ),x-(-1)+5-x+x-(-2)=11解得x=3,即M 对应的数是3.④当M 在点B 的右侧,x-(-1)+x-5+x-(-2)=11解得:x=133(舍)综上所述,点M 表示的数是3或-3.32.【答案】(1)<;<;>(2)解:由题意得,a<b<0<c∴a<0,a+b<0,c−b>0∴|a|+|a+b|−|c−b|=−a−a−b−c+b=−2a−c.33.【答案】(1)解:(+100−200+400)+3×5000=15300(个).故前三天共生产15300个口罩;(2)解:+400−(−200)=600(个).故产量最多的一天比产量最少的一天多生产600个;(3)解:5000×7+(100−200+400−100−100+350+150)=35600(个)0.2×35600=7120(元).故本周口罩加工厂应支付工人的工资总额是7120元.34.【答案】(1)解:-2+5-8-3+6-2=-4(千米)∴小王将最后一名乘客送到目的地时,小王在下午出车的出发地的北方,距下午出车的出发地4千米.(2)解:|-2|+|5|+|-8|+|-3|+|6|+|-2|=26(千米)26×0.3=7.8(升)∴小王回到出发地共耗油7.8升.(3)解:根据出租车收费标准,可知小王今天是收入是10+[10+(5-3)×4]+[10+(8-3)×4]+10+[10+(6-3)×4]+10=100(元)∴小王今天是收入是100元.。

北师大版七年级数学上册第二章有理数及其运算综合测试试卷(含答案详解)

北师大版七年级数学上册第二章有理数及其运算综合测试试卷(含答案详解)

七年级数学上册第二章有理数及其运算综合测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、北京与莫斯科的时差为5小时,例如,北京时间13:00,同一时刻的莫斯科时间是8:00,小丽和小红分别在北京和莫斯科,她们相约在各自当地时间9:00~17:00之间选择一个时刻开始通话,这个时刻可以是北京时间()A.10:00 B.12:00 C.15:00 D.18:002、如图,数轴上点A,B表示的数互为相反数,且AB=4,则点A表示的数是()A.4 B.-4 C.2 D.-23、数轴上表示-3的点到原点的距离是()A.-3 B.3 CD.134、212⎛⎫--⎪⎝⎭的倒数是()A.-4 B.14-C.14D.45、若a<0<b<c,则()A .a +b +c 是负数B .a +b -c 是负数C .a -b +c 是正数D .a -b -c 是正数6、徐志摩的《泰山日出》一文描写了“泰山佛光”壮丽景象.若1月份的泰山山脚平均气温为9℃,山顶平均气温为-2℃,则山脚平均气温与山顶平均气温的温差是( )A .11℃B .-11℃C .7℃D .-7℃7、地球绕太阳公转的速度约为110000km/h ,数字110000用科学记数法表示应为( )A .61.110⨯B .41110⨯C .51.110⨯D .60.1110⨯8、实数a ,b 在数轴上对应点的位置如图所示,下列判断正确的是( )A .||1a <B .0ab >C .0a b +>D .11a ->9、数轴上,把表示2的点向左平移3个单位长度得到的点所表示的数是( ).A .-5B .-1C .1D .5 10、计算2019202020222 1.5(1)3⎛⎫-⨯⨯- ⎪⎝⎭的结果是( ) A .23 B .32 C .23- D .32- 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、1米长的小棒,第1次截去一半,第二次截去剩下部分的一半,如此截下去,第8次后剩下的小棒长_______________米.2、巴黎与北京的时间差为﹣7时(正数表示同一时刻比北京时间早的时数),如果北京时间是7月2日14:00,那么巴黎时间是_________.3、给出下列各数:4.443,0,3.1159,1000-,722,其中有理数的个数是m ,非负数的个数是n ,则m n +=______. 4、计算:()06--=_________.5、某工厂前年的产值为500万元,去年比前年的产值增加了10%,如果今年的产值估计比去年也增加了10%,那么该工厂今年的产值将是__________万元.三、解答题(5小题,每小题10分,共计50分)1、计算: (1)40+123()634-+×12; (2)(﹣1)2021+|﹣9|×23+(﹣3)÷15. 2、据不完全统计,某市至少有6×105个水龙头漏水,这些水龙头每月流失的总水量约1.68×105立方米.(1)每个水龙头每月的漏水量约多少立方米?(结果精确到0.1立方米)(2)如果该市每立方米水费是1.9元,这些水龙头一年漏水量的总水费是多少万元?3、阅读材料,探究规律,完成下列问题.甲同学说:“我定义了一种新的运算,叫*(加乘)运算.“然后他写出了一些按照*(加乘)运算的运算法则进行运算的算式:()()2*35++=+;()()1*910--=+;()()3*69-+=-;()()4*48+-=-;()0*11+=;()0*77-=.乙同学看了这些算式后说:“我知道你定义的*(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)请你根据甲同学定义的*(加乘)运算的运算法则,计算下列式子:()()27-*-=______;()()43+*-=______;()05*-=______.请你尝试归纳甲同学定义的*(加乘)运算的运算法则:两数进行*(加乘)运算时,__________________________________.特别地,0和任何数进行*(加乘)运算, ________________________.(2)我们知道有理数的加法满足交换律和结合律,这两种运算律在甲同学定义的*(加乘)运算中还适用吗?请你任选一个运算律,判断它在*(加乘)运算中是否适用,并举例验证.(举一个例子即可)4、某检修小组乘一辆汽车沿东西走向的公路检修线路,约定向东走为正,某天从A 地出发到收工时,行走记录如下(单位:km )15+,2-,5+,1-,10+,3-,2-,12+,4+,5-,6+(1)收工时,检修小组在A 地的哪一边,距A 地多远?(2)若汽车每千米耗油3升,已知汽车出发时邮箱里有180升汽油,问收工前是否需要中途加油?若加,应加多少升?若不加,还剩多少升汽油?5、数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.例如:从“形”的角度看:|31|-可以理解为数轴上表示 3 和 1 的两点之间的距离;|31|+可以理解为数轴上表示 3 与﹣1 的两点之间的距离.从“数”的角度看:数轴上表示 4 和﹣3 的两点之间的距离可用代数式表示为: 4-(-3) . 根据以上阅读材料探索下列问题:(1)数轴上表示 3 和 9 的两点之间的距离是 ;数轴上表示 2 和﹣5 的两点之间的距离是 ;(直接写出最终结果)(2)①若数轴上表示的数 x 和﹣2 的两点之间的距离是 4,则 x 的值为 ;②若 x 为数轴上某动点表示的数,则式子|1||3|x x ++-的最小值为 .-参考答案-一、单选题1、C【分析】根据北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,逐项判断出莫斯科时间,即可求解.【详解】解:由北京与莫斯科的时差为5小时,二人通话时间是9:00~17:00,所以A. 当北京时间是10:00时,莫斯科时间是5:00,不合题意;B. 当北京时间是12:00时,莫斯科时间是7:00,不合题意;C. 当北京时间是15:00时,莫斯科时间是10:00,符合题意;D. 当北京时间是18:00时,不合题意.故选:C【考点】本题考查了有理数减法的应用,根据北京时间推断出莫斯科时间是解题关键.2、D【解析】【分析】根据数轴上点A ,B 表示的数互为相反数,可设点A 表示的数是a ,则点B 表示的数是a - ,从而得到4a a --= ,即可求解.【详解】解:∵数轴上点A ,B 表示的数互为相反数,∴可设点A 表示的数是a ,则点B 表示的数是a - ,∵AB =4,∴4a a --= ,解得:2a =- .【考点】本题主要考查了相反数的性质,数轴上两点间的距离,利用数形结合思想解答是解题的关键.3、B【解析】【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.【详解】解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B.【考点】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.4、A【解析】【分析】根据有理数的乘方和倒数定义计算即可.【详解】解:211=24⎛⎫---⎪⎝⎭,14-的倒数为-4;故选:A.【考点】本题考查了有理数的乘方和倒数的定义,解题关键是明确倒数的定义,熟练运用相关法则进行计算.5、B【解析】【分析】根据有理数加减法法则可判定求解.【详解】解:∵a <0<b <c ,∴a +b +c 可能是正数,负数,或零,故A 选项说法错误;b -c =b +(-c )为负数,∴a +b -c 是负数,故B 选项说法正确;a -b +c 可能是正数,负数,或零,故C 选项说法错误;a -b -c 是负数,故D 选项说法错误;故选:B .【考点】本题主要考查有理数的加减法,掌握有理数加减法法则是解题的关键.6、A【解析】【分析】根据题意,用最高温度减去最低温度即可.【详解】解:∵山脚平均气温为9℃,山顶平均气温为-2℃,∴山脚平均气温与山顶平均气温的温差是()9211--=℃,故选:A .本题考查了有理数减法的应用,理解题意是解题的关键.7、C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值>1时, n 是正数,当原数的绝对值<1时,n 是负数.【详解】将110000用科学记数法表示为:51.110⨯,故选:C .【考点】本题考查科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<, n 为整数,表示时关键要正确确定a 的值以及n 的值.8、D【解析】【分析】直接利用a ,b 在数轴上位置进而分别分析得出答案.【详解】解:由数轴上a 与1的位置可知:||1a >,故选项A 错误;因为a <0,b >0,所以0ab <,故选项B 错误;因为a <0,b >0,所以0a b +<,故选项C 错误;因为a <0,则11a ->,故选项D 正确;【考点】此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键.9、B【解析】【分析】根据数轴上点的坐标特点及平移的性质解答即可.【详解】解:根据题意:数轴上2所对应的点为A,将A点左移3个单位长度,得到点的坐标为2-3=-1,故选:B.【考点】本题考查了数轴上的点与实数对应关系及图形平移的性质等有关知识.10、D【解析】【分析】根据乘方的意义进行简便运算,再根据有理数乘法计算即可.【详解】解:201920202022 21.5(1)3⎛⎫-⨯⨯-⎪⎝⎭,=2019202021.513⎛⎫-⨯⨯ ⎪⎝⎭=2020201922 1.5 1.533-⨯⋅⋅⋅⨯⨯⨯⋅⋅⋅⨯个个, =2019221.5 1.51.533-⨯⋅⋅⋅⨯⨯⨯个, =32-, 故选:D .【考点】本题考查了有理数的混合运算,解题关键是熟练依据乘方的意义进行简便运算,准确进行计算.二、填空题1、1256【解析】【分析】第1次剩下的小棒长为12,第2次剩下的小棒长为211()42=,确定变化规律计算即可. 【详解】∵第1次剩下的小棒长为12,第2次剩下的小棒长为211()42=, ∴第8次后剩下的小棒长为81()2=1256, 故答案为:1256. 【考点】 本题考查了规律探索问题,正确理解题意,探索发现其中的规律是解题的关键.2、7月2日7时【解析】【分析】【详解】比7月2日14:00晚七小时就是7月2日7时.故答案为:7月2日7时.3、9.【解析】【分析】根据有理数是有限小数或无限循环小数,可得m 的值,根据大于或等于零的数是非负数,可得n 的值,根据有理数的加法,可得答案.【详解】解:因为4.443,0,3.1159,1000-,722,是有理数, 所以m 5=,因为4.443,0,3.1159,722是非负数, 所以n 4=,所以m n 549+=+=,故答案为:9.【考点】本题考查了有理数,利用了有理数的定义是解题的关键.4、6【解析】【分析】根据负有理数的减法法则计算即可.【详解】()--=+=.06066故答案为:6.【考点】本题考查负有理数的减法计算,关键在于熟练掌握计算法则.5、605.【解析】【分析】先求出去年的产值=前年的产值×(1+增长率),再用公式今年的产值=去年的产值×(1+增长率),求出今年的产值.【详解】解:去年比前年的产值增加了10%,去年的产值为:500×(1+10%)=550万元,今年的产值估计比去年也增加了10%,今年的产值为:550×(1+10%)=605万元.故答案为:605.【考点】本题考查增长率问题,掌握增长率的解题方法,抓住第二年的产值=第一年的产值×(1+增长率)是解题关键.三、解答题1、 (1)43(2)﹣10【解析】(1)解:40+123()634-+×12=40+16×12﹣23×12+34×12=40+2﹣8+9 =43;(2)解:(﹣1)2021+|﹣9|×23+(﹣3)÷15=(﹣1)+9×23+(﹣3)×5=(﹣1)+6+(﹣15)=﹣10.【考点】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.2、(1)0.3立方米;(2)383.04万元【解析】【分析】【详解】【分析】(1)根据除法的意义列式计算即可;(2)根据“单价×数量=总价”列式计算即可.(1)(1.68×105)÷(6×105)≈0.3(立方米);每个水龙头每月的漏水量约0.3立方米;(2)1.68×105×12×1.9÷10000=383.04(万元).答:这些水龙头一年漏水量的总水费约383.04万元.3、 (1) +9 7- 5 同号得正,异号得负,并把绝对值相加 等于这个数的绝对值(2)加乘运算满足交换律,不满足结合律,举例见解析.【解析】【分析】(1)根据题干提供的运算特例的运算特点分别进行计算,再归纳可得:加乘运算的运算法则;(2)对于加乘运算的交换律, 可举例()()35,-*-()()53,-*-进行运算后再判断,对于加乘运算的结合律,可举例()()035,*-*-⎡⎤⎣⎦035, 进行运算后再判断即可.(1)解:根据加乘运算的运算法则可得: ()()279-*-=+;()()437+*-=-;()055*-=.归纳可得:两数进行*(加乘)运算时,同号得正,异号得负,并把绝对值相加.特别地,0和任何数进行*(加乘)运算,等于这个数的绝对值.(2)解:加法的交换律仍然适用,例如:()()358,-*-=()()538,-*-=所以()()()()3553,-*-=-*-故加法的交换律仍然适用.加法的结合律不适用,例如:()()()035358,*-*-=*-=-⎡⎤⎣⎦035088,所以()()()()035035,*-*-≠*-*-⎡⎤⎡⎤⎣⎦⎣⎦故加法的结合律不适用.【考点】本题考查的是新定义运算,同时考查的是有理数的加法运算,绝对值的含义,理解新定义,归纳总结运算法则是解本题的关键.4、(1)东边,39千米;(2)需要中途加油,应加15升.【解析】【分析】(1)将所有数相加,根据计算结果即可得出答案.(2)将所有行驶数据的绝对值相加得出行驶总里程,每千米油耗乘总里程得出总油耗,和180比较大小得出答案.【详解】解:(1)15(2)5(1)10(3)(2)124(5)639+-++-++-+-+++-+=(千米)收工时,检修小组在A 地的东边,距A 地39千米.(2)1525110321245665+-++-++-+-+++-+=(千米)365=195⨯(升),195180>,195180=15-(升)收工前需要中途加油,应加15升.【考点】本题考查了有理数加减乘除混合运算的实际应用,读懂题意并准确计算是解题关键.5、 (1)6,7;(2)①-6或2;②4【解析】【分析】(1)直接根据数轴上两点之间的距离求解即可;(2)①根据数轴上两点之间的距离公式列绝对值方程,然后解方程即可;②由于所给式子表示x 到-1和3的距离之和,当x 在-1和3之间时和最小,故只需求出-1和3的距离即可.(1)解:数轴上表示 3 和 9 的两点之间的距离是|9-3|=6,数轴上表示 2 和﹣5 的两点之间的距离是|2-(-5)|=7,故答案为:6,7;(2)解:①根据题意,得:|x -(-2)|=4,∴|x +2|=4,∴x +2=-4或x +2=4,解得:x =-6或x =2,故答案为:-6或2;②∵|1||3|x x ++-表示x 到-1和3的距离之和,∴当x 在-1和3之间时距离和最小,最小值为|-1-3|=4,故答案为:4.【考点】本题考查数轴上两点之间的距离,会灵活运用数轴上两点之间的距离解决问题是解答的关键.。

七年级数学第二章有理数及其运算测试题及答案

七年级数学第二章有理数及其运算测试题及答案

七上第二章《有理数及其运算》综合测试一、选一选(每小题3分;共30分)1.下表是我国几个城市某年一月份的平均气温;其中气温最低的城市是()A.哈尔滨 B.广州 C.武汉 D.北京2.下列各数中互为相反数的是()A.12与0.2 B.13与-0.33 C.124D.5与-(-5)3.对于(-2)4与-24;下列说法正确的是()A.它们的意义相同B.它的结果相等C.它的意义不同;结果相等D.它的意义不同;结果不等4.下列四个数中;在-2到0之间的数是()A.-1 B. 1 C.-3 D.3 5.下列计算错误的是()A.4=0.0001B.3÷9×(-19)=-3C.8÷(-14)=-32D.3×23=246.若x是有理数;则x2+1一定是()17.在数轴上与-3的距离等于4的点表示的数是 ( ) A .1B .-7C .1或-7D .无数个8.两个有理数的积是负数;和也是负数;那么这两个数( ) A. 都是负数B. 其中绝对值大的数是正数;另一个是负数C. 互为相反数D. 其中绝对值大的数是负数;另一个是正数9.一个有理数的绝对值等于其本身;这个数是( )A 、正数B 、非负数C 、零D 、负数 10.四个互不相等整数的积为9;则和为( ) A .9 B .6 C .0 D .3- 二、填一填(每小题3分;共30分)1.一天早晨的气温是-5℃;中午又上升了10℃;半夜又下降了8℃;则半夜的气温是________.2.用“<”“=”或“>”号填空:-2_____098- _____109- -(+5) _____-(-|-5|) 3.计算:737()()848-÷-= ;232(1)---= .4.若a 与-5互为相反数;则a =_________;若b 的绝对值是21-;则b =_________. 5.如果n >0;那么nn = ;如果nn =-1;则n 0。

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套

北师大版七年级数学上册第二章有理数及其运算练习题及答案全套

北师大版七年级数学上第二章有理数及其运算同步练习 1.数怎么不够用了一、选择题 1.下面说法中正确的是(). A.一个数前面加上“-”号,这个数就是负数B.0既不是正数,也不是负数C.有理数是由负数和0组成D.正数和负数统称为有理数2.如果海平面以上200米记作+200米,则海平面以上50米应记作().A.-50米B.+50米C.可能是+50米,也可能是-50米D.以上都不对3.下面的说法错误的是().A.0是最小的整数B.1是最小的正整数C.0是最小的自然数D.自然数就是非负整数二、填空题 1.如果后退10米记作-10米,则前进10米应记作________;2.如果一袋水泥的标准重量是50千克,如果比标准重量少2千克记作-2千克,则比标准重量多1千克应记为________;3.车轮如果逆时针旋转一周记为+1,则顺时针旋转两周应记为______. 三、判断题1.0是有理数.()2.有理数可以分为正有理数和负有理数两类.()3.一个有理数前面加上“+”就是正数.()4.0是最小的有理数.()四、解答题1.写出5个数(不许重复),同时满足下面三个条件.(1)其中三个数是非正数;(2)其中三个数是非负数;(3)5个数都是有理数. 2.如果我们把海平面以上记为正,用有理数表示下面问题.一架飞机飞行高于海平面9630米;(2)潜艇在水下60米深.3.如果每年的12月海南岛的气温可以用正数去表示,则这时哈尔滨的气温应该用什么数来表示?4.某种上市股票第一天跌0.71%,第二天涨1.25%,各应怎样表示?5.如果海平面以上我们规定为正,地面的高度是否都可以用正数为表示? 16.一学生参加一次智力竞赛,其中考五个题,记分标准是这样定的,如果答对一题得1分,答错或不答都扣1分,该生得了3分,问其答对了几个题?数轴一、选择题1.一个数的相反数是它本身,则这个数是()A.正数B.负数C.0 D.没有这样的数 2.数轴上有两点E和F,且E在F的左侧,则E点表示的数的相反数应在F点表示的数的相反数的()A.左侧 B.右侧 C.左侧或者右侧D.以上都不对3.如果一个数大于另一个数,则这个数的相反数()A.小于另一个数的相反数 B.大于另一个数的相反数 C.等于另一个数的相反数D.大小不定二、填空题1.如果数轴上表示某数的点在原点的左侧,则表示该数相反数的点一定在原点的________侧;2.任何有理数都可以用数轴上的________表示;3.与原点的距离是5个单位长度的点有_________个,它们分别表示的有理数是_______和_______;4.在数轴上表示的两个数左边的数总比右边的数___________.三、判断题1.在数轴离原点4个单位长度的数是4.()2.在数轴上离原点越远的数越大.() 3.数轴就是规定了原点和正方向的直线.() 4.表示互为相反数的两个点到原点的距离相等.()四、解答题1.写出符合下列条件的数(1)大于而小于1的整数;(2)大于-4的负整数;(3)大于-0.5的非正整数.2.在数轴上表示下列各数,并把各数用“<”连结起来.(1)7,-3.5,0,-4.5,5,-2,3.5;(2)-500,-250,0,300,450; 2(3)0.1,,0.9,,1,0. 3.找出下列各数的相反数(1)-0.05 (2)(3)(4)-1000 A、B、C、D 标4.如图,说出数轴上四点分别表示的数的相反数,并把它们分别用在数轴上. ABABB5.在数轴上,点表示的数是-1,若点也是数轴上的点,且的长是4个单位长度,则点表示的数是多少? 3.绝对值:一、选择题1.如果,则()A. B. C. D. 2.下面说法中正确的是()A.若,则B.若,则C.若,则D.若,则3.下面说法中正确的是()A.若和都是负数,且有,则B.若和都是负数,且有,则C.若,且,则D.若都是正数,且且,则4.数轴上有一点到原点的距离是5,则() A.这一点表示的数的相反数是5B.这一点表示的数的绝对值是5 C.这一点表示的数是5D.这一点表示的数是-5 二、填空题1.已知某数的绝对值是,则是______或_______;2.绝对值最小的有理数是________;3.一个数的相反数是8,则这个数的绝对值是_________;4.已知数轴上有一点到原点的距离是3,则这点所表示的数的绝对值是________,这点所表示的数是________. 3三、判断题1.有理数的绝对值总是正数.()2.有理数的绝对值就等于这个有理数的相反数.()3.两个有理数,绝对值大的数反而小.()4.两个正有理数,绝对值大的数较小.()5.()四、解答题1.求下列各数的绝对值,并把它们用“<”连起来-2.37,0,,-385.7.2.把下列一组数用“>”连起来-999,,,0.01,. 3.计算下列各式的值(1);(2);(3);(4)4.如图,比较和的绝对值的大小. 5.计算下面各式的值(1)-(-2);(2)-(+2). 4.有理数的加法:一、选择题1.两个有理数的和()A.一定大于其中的一个加数B.一定小于其中的一个加数 C.和的大小由两个加数的符号而定 D.和的大小由两个加数的绝对值而定2.下面计算错误的是()A. B.(-2)+(+2)=4C. D.(-71)+0=-71 3.如图,下列结论中错误的是()4A. B. C. D.二、填空题 1.两个负数相加其和为___________数.2.互为相反数的两个数的和是___________.3.绝对值不等的异号两个数相加,其和的符号与绝对值__________的加数的符号相同.三、解答题1.如图,请用表示与的和.2.计算(1);(2)(-0.19)+(-3.12);(3);(4);(5). 3.计算(1)(-12.56)+(-7.25)+3.01+(-10.01)+7.25;(2)0.47+(-0.09)+0.39+(-0.3)+1.53;(3);(4)23+(-72)+(-22)+57+(-16); 5(5);(6)(7) 4.一名外地民工10天的收支情况如下(收入为正):30元,-17元,21元,-5元,-3元,18元,-21元,45元,-10元,28元.这10天内这名外地民工净收入多少钱? 5.一小商店一周的盈亏情况如下(亏为负):单位:元星期周一周二周三周四周五周六周日 6盈亏情况 128.3 -25.6 -15 27 -7 36.5 98 (1)计算出小商店一周的盈亏情况;(2)指出盈利最多一天的盈利额.6.在-49,-48,-47,…,2003这一串数中(1)前99个连续整数的和是多少?(2)前100个连续整数的和是多少? 5.有理数的减法:一、选择题1.下面说法中正确的是()A.在有理数的减法中,被减数一定要大于减数B.两个负数的差一定是负数C.正数减去负数差是正数 D.两个正数的差一定是正数 2.下面说法中错误的是() A.减去一个数等于加上这个数的相反数 B.减去一个数等于减去这个数的相反数 C.零减去一个数就等于这个数的相反数D.一个数减去零仍得这个数3.甲数减乙数差大于零,则()A.甲数大于乙数B.甲数大于零,乙数也大于零C.甲数小于零,乙数也小于零 D.以上都不对二、填空题1.比-3比2的数是__________,比-3少2的数是__________;2.;3..三、判断题1.若,则;()2.若成立,则;()3.若,则()四、解答题 1.请举例说明两个数的差不一定小于被减数. 72.如图,根据图中与的位置确定下面计算结果的正负.(1);(2);(3);(4) 3.计算(1)2.7-(-3.1);(2)0.15-0.26;(3)(-5)-(-3.5);(4);(5);(6) 4.1998年4月2日,长春等5个城市的最高气温与最低气温记录如下表,哪个城市的温差最大?哪个城市的温差最小?城市名称哈尔滨长春沈阳北京大连最高温度 2℃ 3℃ 3℃ 10℃ 6℃最低温度-12℃-10℃-8℃2℃-2℃5.求数轴上表示两个数的两点间的距离.(1)表示的点与表示的点.(2)当时,表示数的点与表示的点. 6.有理数的加减混合运算:一、选择题1.在1.17-32-23中把省略的“+”号填上应得到() A.1.17+32+23 B.-1.17+(-32)+(-23)C.1.17+(-32)+(-23)D.1.17-(+32)-(+23) 2.下面说法中正确的是()A.-2-1-3可以说是-2,-1,-3的和B.-2-1-3可以说是2,-1,-3的和 8C.-2-1-3是连减运算不能说成和D.-2-1-3=-2+3-1 3.下面说法中错误的是()A.有理数的加减混合运算都可以写成有理数的加法运算B.-5-(-6)-7不能应用加法的结合律和交换律C.如果和都是的相反数,则D.有理数的加减混合运算都可以写成有理数的减法运算二、填空题1.把下列式子变成只含有加法运算的式子.(1)-9-(-2)+(-3)-4=___________;(2).2.把下列各式写成省略加号的形式.(1)-7-(-15)+(-3)-(-4)=____________;(2)3.计算:(1)-5+7-15-4+2=_______________;(2)-0.5+4.3-9.6-1.8=_____________;(3)三、解答题:1.计算(1);(2);(3);(4)2.计算(1);(2); 9(3);(4)3.计算:(1);(2)-1999+2000-2001+2002-2003. 4.小胖去年年末称体重是75千克,今年一月份小胖开始减肥,下面是小胖今年上半年体重的变化情况:负数表示比上月减少,正数表示比上月增加月份一月二月三月四月五月六月-3.5 -3 +1.5 -2 体重变化情况/千克-2.5 +2 (1)小胖1~6月中哪个月的体重最重,是多少?(2)小胖1~6月中哪个月的体重最轻,是多少?(3)小胖6月份的体重较比去年年末是增加了还是减少了,是多少?5.存折中有2676元,取出1082元,又存入600元,在不考虑利息的情况下,你能算出存折中还有多少元钱吗?106.某校初一抽出5名同学测量体重,小明体重是55千克,其他4名同学的体重和小明体重的差数如下表:比小明重记为正,比小明轻记为负姓名小光小月小华小刚-4 -1 +3 与小明体重的差数/千克+5 (1)哪几名同学的体重比小明重,重多少?(2)哪几名同学的体重比小明轻,轻多少?(3)写出最重和最轻的两个同学的体重,并说明这两名同学之间的体重相差多少?7.某百货商场的某种商品预计在今年平均每月售出500千克,一月份比预计平均月售出额多10千克记为+10千克,以后每月销售量和其前一个月销售量比较,其变化如下表(前11个月):月份一月二月三月四月五月六月七月八月九月十月十一月销售量变化情况/+10 +5 +2 0 -3 -4 -10 -12 +5 +4 +5.8 千克(1)每月的销售量是多少?(2)前11个月的平均销售是多少?(3)要达到预计的月平均销售量,12月份还需销售多少千克? 8.有理数的乘法:一、选择题1.下面说法中正确的是()A.因为同号相乘得正,所以(-2)×(-3)×(-1)=6B.任何数和0相乘都等于0 C.若,则D.以上说法都不正确2.已知,其中有三个负数,则()A.大于0 B.小于0 C.大于或等于0 D.小于或等于0 a、b、c3.若,其() A.都大于0 B.都小于0 C.至少有一个大于0 D.至少有一个小于0 二、填空题1.两个数相乘,同号得___________,异号得_________,并把_________相乘; 112.一个数和任何数相乘都得0,则这个数是_________;3.若干个有理数相乘,其积是负数,则积中负因数的个数是_________数.4.先填空,然后补写一个有同样特点的式子.(1)1×(-7)-1=_________,(2)9×(-9)+1=___________, 12×(-7)-2=_________, 98×(-9)+2=_________,123×(-7)-3=_________.987×(-9)+3=_________. __________________________. __ ________________________.9.有理数的除法:一、填空题1.0.25的倒数是___________-,-0.125的倒数是________,_________的倒数是;2.倒数与本身相等的数有____________.3.4.5.6.(4、5、6填“>,<,=”号)二、解答题1.计算:(1)(2)2.计算: 3.在下面不正确的算式中添加负号与括号,使等式成立.(1)8×3+12÷4=-30 (2)8×3+12÷4=-9 4.计算(1);(2)(-12)÷(-4)÷(-3)÷(-3);(3);(4)1210.有理数的乘方;一、填空题1.把(-5)×(-5)×(-5)写成幂的形式是_________,底数是__________,指数是__________;2.平方等于它本身的数是_________;3.4.________的立方等于64,_________的平方等于64;5.一个数的平方等于它的绝对值,这个数是_________;6.二、判断题1.因为,所以()2.( ) 3.因为,所以有任何有理数的平方都是正数.()n4.(是正整数)()三、解答题: 1.计算题(1)(2)(3)2.任何整数的平方的个位数都不可能是哪些数字?a3.若是正数,请设计一个问题,使计算的结果是. 4.计算1+3,1+3+5,1+3+5+7,…并找出规律,利用这个规律求1+3+5+ (19)值.5.把一个木棍第一次折成两节,第二次同时折这两节就得到四节,……,依次这样进行下去,当折十次时,将得到多少节木棍? 1311.有理数的混合运算: 一、选择题1.若,,则有() .A. C. D. B.2.已知,当时,,当时,的值是() .A. B.44 C.28 D.17 ,那么的值为() A.0 B.4 C.-4 D.2 3.如果B.C.D.无法确定4.代数式取最小值时,值为() .A.() 5.六个整数的积,互不相等,则A.0 B.4 C.6 D.8 6.计算所得结果为() .A.2 B. C. D.二、填空题 1.有理数混合运算的顺序是__________________________.2.已知为有理数,则____0,____0,____0.(填“>”、“<”或“≥”=)3.平方得16的有理数是_________,_________的立方等于-8.4.__________. 5.一个负数减去它的相反数后,再除以这个负数的绝对值,所得商为__________.6.1-(-2)×(-3)÷3=____________;7.1-(-2)÷(-3)×3=____________.三、解答题:1.计算(1);(2);(3);(4);(5); 14(6).2.计算:n3.当为奇数时,计算的值.4.试设计一个问题,使问题的计算结果是.5.某户搬入新楼,为了估计一下该月的用水量(按30天计算).对该月的头6天水表的显示数进行了记录,如下表:而在搬家之前由于搞房屋装修等已经用了15吨水.日期1 2 3 4 5 6 水表读数(吨) 15.16 15.30 15.50 15.62 15.79 15.96 问:(1)这6在每天的用水量;(2)这6天的平均日用水量;(3)这个月大约需要用多少吨水.B组6.判断题(1)有理数和,如果,且,则.()(2)有理数和,如果,且,则()c,则表示数的点的位置应在原点的右(3)表示数和的位置由下图所确定,若使侧.() 152.如图是2002年6月的日历.用一个长方形框四个数,请你认真观察框的四个数之间存在的关系.3.分别表示数和的点在数轴上的位置如图所示.(1);将发生怎样的变化.(2)表示数的点在数轴上运动时, 16。

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(有答案解析)

(好题)初中数学七年级数学上册第二单元《有理数及其运算》测试卷(有答案解析)
(1)若数轴上一点P(异于点B),且PA=AB,则P点表示的数为;
(2)若数轴上有一点Q,使QA=3QB,求Q点表示的数;
(3)若将此纸条沿两条折痕处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折(n≥2)次后,再将其展开,请直接写出最左端的折痕和最右端的折痕之间的距离(用含n的式子表示,可以不用化简).
【详解】
解:由数轴可得a<0,c>b>0,|c|>|a|>|b|,
∴① ,故①错误;
②∵c>b,∴b-c<0,∵a<0,∴ ,故②错误;
③∵a<0,∴ ,∵c>b>0,∴ , ,∴ ,故③正确;
④∵a<0,b>0,∴a-b<0,∴|a-b|=b-a,∵a<0,c>0,且|c|>|a|,∴c+a>0,∴|c+a|=c+a,∵c>b>0,∴b-c<0,∴|b-c|=c-b,∴ ,故④正确.
A. B. C. D.
6.国家统计局2020年10月19日发布数据,初步核算,前三季度国内生产总值约为72万亿元,按可比价格计算,同比增长 ,其中72万亿用科学记数法表示为()
A. B. C. D.
7.已知数 的大小关系如图所示,下列选项中正确的有()个
① ② ③ ④
A.0B.1
C.2D.3
8.在以 为原点的数轴上,存在点 , ,满足 ,若点 表示的数为 ,则点 表示的( )
【点睛】
考查了考查了用数字表示事件和有理数的运算.本题是以古代“结绳计数”为背景,按满六进一计算读书的天数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.

北师大版七年级上册数学 第二章 有理数及其运算 单元综合测试(含解析)

北师大版七年级上册数学 第二章 有理数及其运算 单元综合测试(含解析)

第二章有理数及其运算单元综合测试一.选择题1.下列说法中,正确的为()A.一个数不是正数就是负数B.0是最小的数C.正数都比0大D.﹣a是负数2.如图,A,B,C,D是数轴上的四个点,其中最适合表示数π的点是()A.点A B.点B C.点C D.点D3.下列说法正确的是()A.若两个数的绝对值相等,则这两个数必相等B.若两数不相等,则这两数的绝对值一定不相等C.若两数相等,则这两数的绝对值相等D.两数比较大小,绝对值大的数大4.若x=|﹣2|,|y|=3,则x﹣y的值为()A.﹣1B.5C.﹣1或5D.±1或±55.将式子﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)写成省略加号的形式,正确的是()A.﹣+5﹣+6﹣10B.﹣﹣5﹣+6﹣10C.﹣5﹣+6﹣10D.+5﹣+6﹣106.下列计算:①;②;③(﹣0.2)3=0.008;④﹣32=9;⑤.其中正确的是()A.1个B.2个C.3个D.4个7.如果|a+2|+(b﹣1)2=0,那么(a+b)2019的值等于()A.1B.﹣2019C.﹣1D.20198.2020年是“双11”的第12个年头,受前期疫情影响消费习惯发生大幅改变以及直播电商的快速发展,今年双11人们消费热情空前高涨.阿里巴巴数据显示,在11日0分26秒,天猫双11达到58.3万笔/秒的订单创建新峰值.把58.3万这个数据用科学记数法表示为()A.583×103元B.5.83×106元C.5.83×105元D.0.583×106元9.下列变形正确的是()A.B.C.D.10.设,利用等式(n≥3),则与A最接近的正整数是()A.18B.20C.24D.25二.填空题11.若上升15米记作+15米,那么下降2米记作米.12.点A表示数轴上的一个点,将点A向右移动5个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是.13.数轴上有点A和点B,点A到原点的距离为m,点B到原点的距离为n,且点B在点A 的左边,若m<n,则点A与点B的距离等于.14.比较大小:﹣﹣;﹣(﹣0.3)|﹣|.(填“<”,“=”,“>”)15.如图,化简代数式|b﹣a|﹣|a﹣1|+|b+2|的结果是.16.把(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)写成省略加号和的形式为.17.以下四个数:﹣22、(﹣1)3、﹣(+5).(﹣)2其中正数有个.18.若a、b互为相反数,c、d互为倒数,那么(a+b)2+|﹣cd|=.19.在长为20米、宽为15米的长方形地面上修筑一条宽度为2米的道路(图中阴影部分),余下部分作为耕地,则耕地面积为平方米.20.有一种“二十四点”游戏,其游戏规则是:任取四个1~13之间的自然数,将这四个数(每个数用且只用﹣次)进行加减乘除四则运算,使其结果等于24.例如1,2,3,4可作运算:(1+2+3)×4=24(注意上述运算与4×(1+2+3)应视作相同方法的运算).现有四个有理数3,4,6,10,运用上述规则写出三种不同方法的运算式,使其结果等于24,运算式如下:①,②.③.另有四个数1,3,5,13,可通过运算式使其结果等于24.三.解答题21.某检修小组从A地出发,在东西走向的马路上检修线路.如果规定向东行驶为正,向西行驶为负,一天中7次行驶的情况记录如下(单位:千米):第一次第二次第三次第四次第五次第六次第七次﹣4+7﹣9+8+6﹣5﹣2(1)这一天检修小组行驶的路程是多少?(2)求收工时距A地多远?在A地的正东方向还是正西方向?说明理由.22.计算:(1)(﹣3)+40+(﹣32)+(﹣8);(2)(﹣)÷(﹣)×(﹣);(3)(﹣24)×()+(﹣2)3;(4)﹣(﹣3)2+(﹣5)3÷(﹣2)2﹣18×|﹣(﹣)2|;(5)﹣12019﹣[﹣3×(2÷3)2﹣÷22].23.若非零数a、b互为相反数,c、d互为倒数,|m|=3,求(cd)2016+(a+b)2017+()2018+m的值.24.解答下列各题.(1)已知a、b互为倒数,c、d互为相反数,|x|=|﹣2|,求2x2﹣(ab﹣3c﹣3d)+|ab+3|的值.(2)已知当x=﹣3时,代数式ax3+bx+1的值为8,求当x=3时,代数式ax3+bx+1的值.25.规定运算△为:若a>b,则a△b=a+b;若a<b,则a△b=a×b;若a=b,则a△b=a﹣b+1.(1)计算6△(﹣4)的值;(2)计算[(﹣2)△3]+(4△4)+(7△5)的值.26.已知有理数a,b,c在数轴上的位置如图,且|a|=|b|.(1)求﹣﹣+的值.(2)化简|a﹣c|﹣2|2a﹣b|﹣.参考答案一.选择题1.解:A、0既不是正数也不是负数,故本选项不合题意;B、负数比0小,故本选项不合题意;C、正数都比0大,说法正确,故本选项符合题意;D、当a≤0时,﹣a是非负数,故本选项不合题意;故选:C.2.解:因为无理数π大于3,在数轴上表示大于3的点为点D;故选:D.3.解:A、若两个数的绝对值相等,则这两个数相等或互为相反数,故本选项不合题意;B、若两数不相等,则这两数的绝对值一定不相等,说法错误,互为相反数的两个数的绝对值相等,故本选项不合题意;C、若两数相等,则这两数的绝对值相等,说法正确,故本选项符合题意;D、两数比较大小,绝对值大的数大,说法错误,如0与﹣1,0的绝对值小于﹣1的绝对值,0>﹣1,故本选项不合题意.故选:C.4.解:∵x=|﹣2|,|y|=3,∴x=2,y=±3,当x=2,y=3时,x﹣y=2﹣3=﹣1;当x=2,y=﹣3时,x﹣y=2﹣(﹣3)=5,综上所述,x﹣y的值为﹣1或5.故选:C.5.解:﹣(+)﹣(﹣5)+(﹣)﹣(﹣6)+(﹣10)=﹣+5﹣+6﹣10.故选:A.6.解:①,正确;②()2=,故本选项不正确;③(﹣0.2)3=﹣0.008,故本选项不正确;④﹣32=﹣9,故本选项不正确;⑤﹣(﹣)2=﹣,故本选项不正确;其中正确的是①;故选:A.7.解:根据题意得,a+2=0,b﹣1=0,解得a=﹣2,b=1,∴(a+b)2019=(﹣2+1)2019=﹣1.故选:C.8.解:58.3万=583000=5.83×105.故选:C.9.解:A、乘除混合运算,从左到右依次计算,故A选项错误;B、除法没有分配律,故B选项错误;C、根据乘方定义,故C选项错误;D、多个数相乘,从左到右依次计算,故正确;故选:D.10.解:利用等式(n≥3),代入原式得:=48×(++…+﹣)=12×(1﹣++…+)=12×[(1++…+)﹣(+…+)]=12×(1+)而12×(1+)≈25故选:D.二.填空题11.解:若上升15米记作+15米,那么下降2米记作﹣2米.故答案为:﹣2.12.解:0+4﹣5=﹣1.故点A表示的数是﹣1.故答案为:﹣1.13.解:∵点A到原点的距离为m,点B到原点的距离为n,且点B在点A的左边,m<n,∴﹣n<0<m或﹣n<﹣m<0,当﹣n<0<m时,点A与点B的距离为m﹣(﹣n)=m+n,当﹣n<﹣m<0时,点A与点B的距离为﹣m﹣(﹣n)=﹣m+n,故答案为:m+n或﹣m+n.14.解:∵||=,|﹣|=,,∴;∵﹣(﹣0.3)=0.3,||=,∴﹣(﹣0.3)<|﹣|.故答案为:<;<.15.解:由有理数a、b、c在数轴上的位置,可得,﹣1<b<0,1<a<2,所以有b﹣a<0,a﹣1>0,b+2>0,因此|b﹣a|﹣|a﹣1|+|b+2|=a﹣b﹣(a﹣1)+(b+2)=a﹣b﹣a+1+b+2=3,故答案为:3.16.解:(﹣3)﹣(+4)﹣(﹣6)+(﹣7)+(+2)=﹣3﹣4+6﹣7+2.故答案为:﹣3﹣4+6﹣7+2.17.解:﹣22=﹣4,(﹣1)3=﹣1,﹣(+5)=﹣5,(﹣)2=,所以四个数中正数有1个.故答案为1.18.解:∵a、b互为相反数,c、d互为倒数,∴a+b=0,cd=1,∴原式=02+1=1.故答案为:1.19.解:根据题意可得,耕地面积为20×15﹣2×(20+15﹣2)=234平方米.答:耕地面积为234平方米.20.解:①(10﹣4)×3+6=6×3+6=18+6=24;②3×(4﹣6+10)=3×8=24;③3×6﹣4+10=18﹣4+10=24.(13﹣5)×3×1=8×3×1=24.故答案为:(10﹣4)×3+6=24;3×(4﹣6+10)=24;3×6﹣4+10=24;(13﹣5)×3×1.三.解答题21.解:(1)这一天检修小组行驶的路程为:4+7+9+8+6+5+2=41(千米),所以这一天检修小组行驶的路程为41千米;(2)﹣4+7﹣9+8+6﹣5﹣2=+1,故收工时在A的东面,距A地1千米.22.解:(1)原式=(﹣3﹣32﹣8)+40=(﹣43)+40=﹣3;(2)原式=﹣××=﹣;(3)原式=﹣24×﹣24×(﹣)﹣24×﹣8=﹣3+8﹣6﹣8=﹣9;(4)原式=﹣9﹣125×﹣18×=﹣9﹣20﹣2=﹣31;(5)原式=﹣1﹣(﹣﹣)=﹣1+=.23.解:根据题意得:a+b=0,=﹣1,cd=1,m=3或﹣3,当m=3时,原式=1+0+1+3=5;当m=﹣3时,原式=1+0+1﹣3=﹣1.24.解:(1)∵a、b互为倒数,c、d互为相反数,|x|=|﹣2|,∴ab=1,c+d=0,x2=4,∴2x2﹣(ab﹣3c﹣3d)+|ab+3|=2x2﹣[ab﹣3(c+d)]+|ab+3|=2×4﹣(1﹣3×0)+|1+3|=8﹣(1﹣0)+4=8﹣1+4=7+4=11;(2)∵当x=﹣3时,代数式ax3+bx+1的值为8,∴a×(﹣3)3+b×(﹣3)+1=8,∴﹣27a﹣3b=7,∴27a+3b=﹣7,当x=3时,ax3+bx+1=a×33+3b+1=27a+3b+1,=﹣7+1=﹣6.25.解:(1)由题意可得,6△(﹣4)=6+(﹣4)=2;(2)由题意可得,[(﹣2)△3]+(4△4)+(7△5)=(﹣2)×3+(4﹣4+1)+(7+5)=(﹣6)+1+12=(﹣5)+12=7.26.解:(1)由数轴可知:a<c<0<b,∴abc>0,则原式=﹣﹣+=﹣1﹣1+1+1=0;(2)∵a<c<0<b,且|a|=|b|>|c|,∴a﹣c<0,2a﹣b<0,a﹣c﹣b<0,则原式=c﹣a+2(2a﹣b)+=a﹣b+c.。

初中数学初一有理数及其运算知识点及练习题(K12教育文档)

初中数学初一有理数及其运算知识点及练习题(K12教育文档)

初中数学初一有理数及其运算知识点及练习题(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(初中数学初一有理数及其运算知识点及练习题(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为初中数学初一有理数及其运算知识点及练习题(word版可编辑修改)的全部内容。

⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数初中数学有理数及其运算知识点及练习题【知识点汇总】1、2、数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

3、任何一个有理数,都可以用数轴上的一个点来表示.(反过来,不能说数轴上所有的点都表示有理数)4、如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0)5、在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等. 数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

6、绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.数a 的绝对值记作|a |。

7、正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a 8、绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数; 互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即|a|≥0越来越大9、比较两个负数的大小,绝对值大的反而小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

-3.5 ,-4 ,8 ,4 ,-6二、-38.5的绝对值是( ),6.3的相反数是( )。

三、49.5的绝对值是( ),7.8的相反数是( ),-4.5的倒数是( )。

四、|-41.5|=( ),(-2)2=( )。

五、计算。

1 2(-—)+(-—)-(-10) 26+[(-2)2+(-1)]7 71 1 10—-(-—)+(-—)4+(-13)+7+(-20)3 4 91(-0.9)×—÷(-300) (-2)2+52(-1)150581 1 1(-—)÷(-—+—)×0 28×[(-2)2-(-4]9 6 2(—-—)-(-—) 10+(-25)-5+(-14)4 2 38 1(—+—)×(-80) (-3)2+22(-1)22997 6(-1)×(-16) 9÷(-19) -12-(-5)1 1(-—)+(-—) -12-[-2+(-16-7)] (-3)3-125 217-15+(-11)-(-25) -1.8-(-5)-(-0.3)-6.32 1 1 43 6 (—-—)+(—+—) 2.5+(-—)-(-6.3)+—9 6 5 5 5 5-4 ,-4.25 ,1 ,0.5 ,-6二、38.5的绝对值是( ),-9.1的相反数是( )。

三、-11的绝对值是( ),7.9的相反数是( ),10的倒数是( )。

四、|-7.5|=( ),(0)2=( )。

五、计算。

1 4(-—)+(-—)-(-6) 1×[(-1)2-(-5)]7 71 1 4—-(-—)-(-—)18+(-25)+4-(-17)8 2 51(-0.3)÷—×(-10) (-2)4-13(-1)160641 1 1(-—)÷(-—+—)×0 29×[(-2)3+(-5]9 2 8(—+—)÷(-—) 2-(-27)-9+(-13)5 4 83 1(—+—)×(-30) (-5)3-42(-1)25524 6(-19)×(-15) 20-(-15) -5.5+(-1.5)1 1(-—)÷(-—) -12-[1-(-4-1)] (-2)3-238 540+17-(-24)-(-24) -7.4+(-9)+(-2)-3.52 1 1 2 8 7 (—-—)+(—-—) 1.6-(-—)+(-1.8)+—3 6 7 5 5 5-2.5 ,-5 ,2 ,-1 ,-8二、-43的绝对值是( ),-0.4的相反数是( )。

三、-7.5的绝对值是( ),0.9的相反数是( ),-1.5的倒数是( )。

四、|-45.5|=( ),(2)3=( )。

五、计算。

2 3(-—)+(-—)-(-4) 15÷[(-4)2-(-1)]7 77 1 1—-(-—)-(-—)13-(-13)+6-(-19)8 6 51(-0.9)×—÷(-20) (-2)3+42(-1)200031 1 1(-—)÷(-—-—)×0 9×[(-3)3+(-5]4 5 2(—-—)-(-—) 12+(-25)-10+(-12)6 5 86 2(—+—)×(-30) (-4)3-42(-1)18315 3(-10)×(-20) 12-(-9) -3.5+(-14.5)1 1(-—)÷(-—) 17+[-5-(-16+8)] (-3)4-435 3-9-6+(-24)-(-13) 8.8-(-3)-(-3)+72 1 1 1 63 (—-—)+(—+—) 9.5-(-—)-(-9.8)+—9 5 5 5 5 5-1 ,-5 ,6 ,3.5 ,-7二、0.5的绝对值是( ),-1.7的相反数是( )。

三、46.5的绝对值是( ),9.4的相反数是( ),-2的倒数是( )。

四、|-49|=( ),(-2)2=( )。

五、计算。

1 1(-—)-(-—)+(-7) 8+[(-1)3-(-3)]7 75 1 1—+(-—)+(-—)3-(-14)+2+(-18)4 8 31(-0.7)×—÷(-4) (-4)3-23(-1)219281 1 1(-—)÷(-—+—)×0 28×[(-3)3-(-2]9 7 9(—+—)×(-—) 14-(-24)+1×(-19)5 4 41 8(—-—)×(-60) (-4)2+23(-1)22082 7(-6)÷(-20) 1-(-14) -4-(-15)1 1(-—)+(-—) 17-[4-(-5+8)] (-2)3+532 411-18+(-30)+(-26) 1.6+(-9.2)-(-0.6)-9.62 1 1 1 4 4 (—-—)+(—-—) 4.4+(-—)+(-3.4)+—9 5 9 7 5 5-2.5 ,-3.75 ,10 ,0 ,-9二、8.5的绝对值是( ),7.4的相反数是( )。

三、-6的绝对值是( ),-4.8的相反数是( ),3的倒数是( )。

四、|12.5|=( ),(2)3=( )。

五、计算。

2 5(-—)-(-—)-(-10) 29÷[(-2)2+(-1)]7 75 1 1—-(-—)+(-—)29+(-19)+9-(-17)6 4 51(-0.5)÷—÷(-9) (-1)3+52(-1)140191 1 1(-—)÷(-—+—)×0 24×[(-2)3+(-3]4 9 6(—-—)÷(-—) 6-(-30)+2×(-11)3 6 37 6(—+—)×(-30) (-1)4+43(-1)11118 5(-7)+(-15) 12×(-6) -8.5+(-4)1 1(-—)-(-—) 19+[2+(-15+9)] (-2)4+348 9-24+2+(-14)-(-15) -4.1+(-3.7)+(-4.3)+0.52 1 1 1 8 6(—+—)-(—+—) 4.5-(-—)-(-5.1)+—5 2 9 7 5 5-3.5 ,-3.5 ,7 ,-3 ,2二、-42.5的绝对值是( ),-7.9的相反数是( )。

三、-19.5的绝对值是( ),-3.6的相反数是( ),5的倒数是( )。

四、|47.5|=( ),(3)2=( )。

五、计算。

6 1(-—)+(-—)-(-8) 6×[(-3)3÷(-1)]7 73 1 2—+(-—)+(-—)3+(-18)+8-(-18)4 2 31(-0.9)×—÷(-600) (-4)2+23(-1)127191 1 1(-—)÷(-—-—)×0 21+[(-3)2-(-1]7 7 3(—+—)+(-—) 7-(-14)+7+(-12)5 7 31 5(—+—)×(-100) (-4)3-33(-1)24923 6(-8)-(-5) 16×(-17) 9.5+(-6)1 1(-—)×(-—) 5+[-2-(-1-3)] (-5)4-338 434+17+(-2)-(-22) 8.8+(-7)+(-1.6)-0.62 1 1 1 9 9 (—-—)+(—+—) 3.8-(-—)-(-4.5)+—7 7 7 7 5 5-4.5 ,-2.5 ,3 ,-4.5 ,4二、44的绝对值是( ),10的相反数是( )。

三、15.5的绝对值是( ),-7.5的相反数是( ),-6.5的倒数是( )。

四、|-47.5|=( ),(1)2=( )。

五、计算。

3 3(-—)-(-—)-(-6) 6×[(-1)2÷(-5)]7 75 1 1—+(-—)+(-—)7-(-23)-3-(-10)6 8 91(-0.6)×—÷(-500) (-4)3+53(-1)214821 1 1(-—)÷(-—-—)×0 5÷[(-4)3÷(-2]7 9 6(—+—)×(-—) 26+(-28)-5×(-15)8 2 81 1(—-—)×(-60) (-4)3+42(-1)17328 2(-4)-(-7) 8÷(-3) -15-(-14.5)1 1(-—)-(-—) 16+[0-(-15+2)] (-1)3+243 914+16-(-3)+(-5) -2-(-4.9)-(-3.5)+6.72 1 13 3 6 (—-—)+(—+—) 6.2-(-—)+(-1.4)-—9 3 2 7 5 5-3 ,-2 ,1 ,-4.5 ,7二、40的绝对值是( ),-0.7的相反数是( )。

三、-28的绝对值是( ),-2.7的相反数是( ),-6.5的倒数是( )。

四、|33.5|=( ),(1)2=( )。

五、计算。

2 1(-—)-(-—)-(-9) 17÷[(-3)2-(-1)]7 76 1 1—+(-—)-(-—)23-(-21)-6×(-18)7 2 71(-0.3)÷—×(-900) (-3)2-43(-1)202361 1 1(-—)÷(-—+—)×0 10×[(-4)3+(-1]6 4 6(—+—)×(-—) 21-(-14)+4+(-18)2 4 29 7(—+—)×(-50) (-5)3+52(-1)15808 6(-13)-(-18) 9÷(-1) -5-(-3.5)1 1(-—)×(-—) 1+[-5-(-18+1)] (-4)3+426 9-18+14+(-14)+(-26) 9.4+(-8.4)+(-2.9)+1.52 1 1 1 9 9 (—-—)+(—-—) 8.3-(-—)-(-3.5)-—3 8 9 7 5 5-2 ,-3 ,7 ,1 ,-5二、-36的绝对值是( ),5.7的相反数是( )。

三、-41的绝对值是( ),-8.5的相反数是( ),-7的倒数是( )。

四、|-47.5|=( ),(-3)2=( )。

五、计算。

2 4(-—)+(-—)+(-3) 23÷[(-1)2×(-4)]7 78 1 4—-(-—)-(-—)19-(-24)+2-(-19)7 4 31(-0.6)×—÷(-3) (-4)3-23(-1)117091 1 1(-—)÷(-—+—)×0 29÷[(-4)3-(-3]2 8 7(—+—)-(-—) 20+(-14)-9-(-18)7 3 48 3(—+—)×(-20) (-2)2+23(-1)16257 2(-16)-(-2) 6+(-3) -0.5-(-13)1 1(-—)-(-—) 9+[-2+(-18-9)] (-5)3-525 2-25+16-(-20)-(-10) -0.1-(-3)+(-3.9)-6.42 1 1 1 4 1 (—-—)-(—-—) 1.3+(-—)-(-9.9)+—3 7 3 5 5 5-4 ,-1.25 ,9 ,-3 ,2二、43的绝对值是( ),0.2的相反数是( )。

相关文档
最新文档