现代调制解调技术及其传输特性的仿真实验

合集下载

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现

QPSK和16QAM调制下MIMO-OFDM系统Matlab仿真实现一、引言MIMO-OFDM系统是一种融合了多输入多输出(MIMO)和正交频分复用(OFDM)技术的无线通信系统,能够显著提高数据传输速率和系统可靠性。

在MIMO-OFDM系统中,调制方式的选择对系统性能具有重要的影响。

QPSK和16QAM是两种常用的调制方式,它们在MIMO-OFDM系统中的应用对系统的性能和效率有着明显的影响。

本文将针对QPSK和16QAM调制下的MIMO-OFDM系统进行Matlab仿真实现,以研究两种调制方式对系统性能的影响。

二、MIMO-OFDM系统基本原理MIMO-OFDM系统由MIMO技术和OFDM技术组成。

MIMO技术利用多个天线发射和接收信号,通过空间分集和空间复用的方式提高系统的性能和可靠性。

而OFDM技术将带宽分成多个子载波,并采用正交调制方式传输数据,能够有效克服多径干扰和频率选择性衰落,提高系统的抗干扰能力和频谱利用率。

MIMO-OFDM系统将MIMO技术和OFDM技术结合,充分发挥两者的优势,实现了高速率和高可靠性的无线通信。

1. Matlab仿真环境搭建需要在Matlab环境中搭建MIMO-OFDM系统的仿真环境。

在Matlab中,可以使用Communications Toolbox和Wireless Communications Toolbox工具箱来搭建MIMO-OFDM系统的仿真环境。

通过这些工具箱,可以方便地构建MIMO通道模型、OFDM调制器和解调器等系统组件,并进行参数设置和仿真运行。

2. QPSK调制方式在QPSK调制方式下,将复数信号映射到星座图上,每个符号点代表两个比特。

QPSK调制方式可以实现较高的传输速率和频谱利用率,适用于高速率和大容量的无线通信场景。

在MIMO-OFDM系统中,QPSK调制方式通常用于传输速率要求较高的场景,例如视频传输和高速数据传输等。

2. MIMO-OFDM系统仿真实现与QPSK调制方式类似,利用Matlab中的Wireless Communications Toolbox,可以进行16QAM调制下MIMO-OFDM系统的仿真实现。

现代通信原理BPSK仿真实验

现代通信原理BPSK仿真实验

通信原理BPSK仿真实验一、实验题目利用仿真软件实现BPSK的调制解调,并仿真分析其在高斯信道下的误码性能。

二、实验原理调制过程:信号的产生采用键控法。

原理:用二进制单极性脉冲控制开关选择0相位载波和π相位载波的输出。

解调过程:相干解调。

必须采用相干解调的方式,从接收到的已调信号中提取本地载波,与信号相乘后通过低通滤波器,抽样判决后得到基带信号。

三、实验仿真1、实验系统2、各模块设置系统时钟设置:Sample Rate:5000Hz Stop Time=1{系统中使用的滤波器为巴特沃斯滤波器}(一)以下四个模块为调制过程,产生BPSK信号。

●模块0:产生频率为50Hz的单极性脉冲,控制开关。

●模块1:开关由单极性脉冲控制对两种相位的正弦波进行选择。

(Gate delay=0 Ctrl thresh=1 ) ●模块2和3:生成正弦波,作为载波。

(二)以下模块主要为从接收到的已调信号中提取本地载波。

●模块25:高斯白噪声(Mean=0v Std Dev=1v)●模块30:放大器:增益Gain=-30dB●模块24:带通滤波器,设置在解调之前。

通带为430-570Hz。

●模块23:幂函数,次数为2,将接收到的以调信号平方。

●模块11:带通滤波器(998-1002Hz;BP Filter Order=3)为获取1000Hz的正弦波●模块10:分频器对输入信号进行2分频,为获取500Hz的正弦波●模块15:带通滤波器(490-510Hz;BP Filter Order=3)为获取500Hz的正弦波作为本地载波。

(三)解调过程和抽样判决●模块9和17:组成解调器。

BPSK信号与本地载波通过乘法器,在经过低通滤波器(60Hz恢复数字基带信号对应的模拟信号。

●模块19:非门,判决作用。

●模块20:采样器,采样频率为50Hz。

●模块21:保持器,采样后经保持器得到恢复的波形。

(四)误码性能分析●模块27:误码率图标(Trails=1000)●模块29:终止符(误码=6个)●模块31:终值显示符●模块32:数字延迟器(Delay:20000)3、系统波形分析及相关参数分析模块4:输入波形模块26:BPSK信号可以看到键控法产生的BPSK信号,第一张图中竖着的白线为相位反相点,在第二张放大后的图中可以清晰的看到信号相位相反的地方。

基于SYSTEMVIEW的QAM调制与解调的仿真研究

基于SYSTEMVIEW的QAM调制与解调的仿真研究

基于SYSTEMVIEW的QAM调制与解调的仿真研究随着无线通信技术的不断发展,调制解调技术在数字通信中起着至关重要的作用。

其中,QAM(Quadrature Amplitude Modulation)调制方式是一种常用的调制技术,具有较高的数据传输速率和抗干扰能力。

为了更好地理解和研究QAM调制与解调技术,本文将基于SYSTEMVIEW软件进行仿真研究。

1.系统模型搭建首先,需要搭建QAM调制系统的仿真模型。

在SYSTEMVIEW软件中,可以使用信号源模块生成基带信号,然后通过QAM调制器模块将基带信号调制成QAM信号。

接收端则需要使用QAM解调器模块将接收到的QAM信号解调成基带信号,最后通过信号处理模块实现数据的处理和分析。

整个系统包括了调制器、解调器、信号处理器等多个部分,相互协作完成信号的传输和处理过程。

2.仿真参数设置在搭建系统模型之后,需要设置仿真参数以进行实验。

主要包括QAM调制方式(如16QAM、64QAM等)、信号源的参数设置(如频率、幅度等)、信道的噪声模型(如加性高斯白噪声)、仿真时间等。

通过调整这些参数,可以观察系统在不同条件下的性能表现,如误码率、信噪比等。

3.仿真实验分析进行实验时,可以观察QAM信号在调制和解调过程中的波形、频谱等特征,同时还可以通过误码率曲线、信噪比曲线等指标来评价系统的性能。

对于不同的QAM调制方式和信道条件,可以比较它们在传输效率和抗干扰能力上的区别,从而为实际应用提供参考。

4.优化与改进在仿真实验的基础上,还可以进一步对系统进行优化和改进。

例如,可以尝试不同的调制方式、信号处理算法、信道编解码方案等,以提高系统的性能和稳定性。

通过反复的仿真和实验,可以逐步完善QAM调制系统,使其更适合现代通信需求。

综上所述,基于SYSTEMVIEW的QAM调制与解调的仿真研究能够帮助我们更深入地理解这一调制技术的原理和应用,为无线通信领域的研究和发展提供有益的参考和支持。

实验2:am调制及解调仿真

实验2:am调制及解调仿真

实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制〔AM〕。

在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

m〔t〕为取值连续的调制信号,c〔t〕为正弦载波。

下列图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。

对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。

下列图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真〔1〕原理图〔2〕仿真图〔3〕仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进展线性搬移,低通滤波器是滤除高频局部,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。

③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。

振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。

2、AM解调方式的MATLAB Simulink仿真〔1〕原理图〔2〕仿真图〔3〕仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和 product1是对已调信号的频谱进展线性搬移,低通滤波器是滤除信号的高频局部以得到原始信号。

调制解调实验报告

调制解调实验报告

调制解调实验报告一、实验目的本次调制解调实验的主要目的是深入理解调制解调的基本原理和技术,通过实际操作和观察实验现象,掌握常见调制解调方式的性能特点,并能够对实验结果进行分析和总结。

二、实验原理1、调制的概念调制是将原始信号(基带信号)的某些特征按照一定的规则变换到另一个信号(已调信号)的过程。

其目的是为了使信号能够在特定的信道中有效传输,例如增加信号的抗干扰能力、实现频谱搬移等。

2、常见的调制方式(1)幅度调制(AM):使载波的幅度随基带信号的变化而变化。

(2)频率调制(FM):使载波的频率随基带信号的变化而变化。

(3)相位调制(PM):使载波的相位随基带信号的变化而变化。

3、解调的概念解调是调制的逆过程,从已调信号中恢复出原始基带信号。

三、实验设备与器材1、信号发生器用于产生不同频率和幅度的基带信号。

2、调制器模块实现对基带信号的调制功能。

3、解调器模块用于对已调信号进行解调,恢复出原始基带信号。

4、示波器用于观察输入输出信号的波形。

5、频谱分析仪用于分析信号的频谱特性。

四、实验步骤1、连接实验设备按照实验电路图,将信号发生器、调制器、解调器、示波器和频谱分析仪等设备正确连接。

2、产生基带信号使用信号发生器产生一定频率和幅度的正弦波作为基带信号。

3、幅度调制实验(1)设置调制器的参数,如载波频率、调制深度等。

(2)观察示波器上已调信号的幅度变化,并与基带信号进行对比。

(3)使用频谱分析仪观察已调信号的频谱分布。

4、频率调制实验(1)调整调制器的参数,实现频率调制。

(2)在示波器上观察已调信号的频率变化。

(3)通过频谱分析仪分析频率调制信号的频谱。

5、相位调制实验(1)设置调制器进行相位调制。

(2)观察已调信号的相位变化情况。

(3)用频谱分析仪查看相位调制信号的频谱特征。

6、解调实验(1)将已调信号输入解调器。

(2)调整解调器的参数,使解调输出尽可能接近原始基带信号。

(3)在示波器上比较解调输出信号与原始基带信号。

基于MATLAB的2ASK数字调制与解调的系统仿真

基于MATLAB的2ASK数字调制与解调的系统仿真

基于MATLAB的2ASK数字调制与解调的系统仿真一、本文概述随着信息技术的飞速发展,数字通信在现代社会中扮演着日益重要的角色。

作为数字通信中的关键技术之一,数字调制技术对于提高信号传输的可靠性和效率至关重要。

在众多的数字调制方式中,2ASK (二进制振幅键控)因其实现简单、抗干扰能力强等优点而备受关注。

本文旨在通过MATLAB软件平台,对2ASK数字调制与解调系统进行仿真研究,以深入理解和掌握其基本原理和性能特点。

本文首先介绍了数字调制技术的基本概念,包括数字调制的基本原理、分类和特点。

在此基础上,重点阐述了2ASK调制与解调的基本原理和实现方法。

通过MATLAB编程,本文实现了2ASK调制与解调系统的仿真模型,并进行了性能分析和优化。

在仿真研究中,本文首先生成了随机二进制信息序列,然后利用2ASK调制原理对信息序列进行调制,得到已调信号。

接着,对已调信号进行信道传输,模拟了实际通信系统中的噪声和干扰。

在接收端,通过2ASK解调原理对接收到的信号进行解调,恢复出原始信息序列。

通过对比分析原始信息序列和解调后的信息序列,本文评估了2ASK 调制与解调系统的性能,并讨论了不同参数对系统性能的影响。

本文的仿真研究对于深入理解2ASK数字调制与解调原理、优化系统性能以及指导实际通信系统设计具有重要意义。

通过MATLAB仿真平台的运用,本文为相关领域的研究人员和实践工作者提供了一种有效的分析和优化工具。

二、2ASK数字调制技术原理2ASK(二进制振幅键控)是一种数字调制技术,主要用于数字信号的传输。

它的基本思想是将数字信号(通常是二进制信号,即0和1)转换为模拟信号,以便在模拟信道上进行传输。

2ASK调制的关键在于根据数字信号的不同状态(0或1)来控制载波信号的振幅。

在2ASK调制过程中,当数字信号为“1”时,载波信号的振幅保持在一个较高的水平;而当数字信号为“0”时,载波信号的振幅降低到一个较低的水平或者为零。

现代调制解调技术及其传输特性的仿真实验概要

现代调制解调技术及其传输特性的仿真实验概要

内容要求1目录目录按章、节、条三级标题编写,要求标题层次清晰。

目录中的标题要与正文中标题一致。

2正文2.1 项目概述通过工程训练,理解调制解调是通信系统中实现通信信号传输与接收的核心技术之一,掌握现代通信系统中常用的QPSK、M-QAM、OFDM等现代调制解调技术的原理、实现过程、性能分析方法等。

内容:(1)调制解调原理的仿真。

在Matalab中建立基于QPSK、M-QAM及OFDM调制解调技术的通信系统仿真模型,并通过该模型观察不同信道条件下发射端和接收端的星座图、误码性能。

(2)无线调制解调系统仿真实验。

将已调制信号进行脉冲成形后加载到无线通信信道(可在matlab中采用理论上的AWGN、瑞利、莱斯、Nakagami-M等信道模型进行模拟),在接收端进行解调处理,对信号频谱、功率谱,星座图和误码性能等进行对比、分析。

(3)光纤调制解调系统实验。

将已调制信号进行脉冲成形后加载到实际的光纤通信信道,在接收端进行解调处理,并对信号频谱、功率谱,星座图和误码性能等进行分析。

2.2 报告主体2.2.1 背景2.2.2 项目组成一、在Matalab中建立基于QPSK、M-QAM及OFDM调制解调技术的通信系统仿真模型,并通过该模型观察不同信道条件下发射端和接收端的星座图、误码性能。

(一)、QPSK1 QPSK 原理四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。

QPSK 是在M=4时的调相技术,它规定了四种载波相位,分别为45°, 135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载 波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数 字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称 为双比特码元。

每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。

实验2:am调制与解调仿真

实验2:am调制与解调仿真

实验2:AM调制与解调仿真一、实验目的1、掌握AM的调制原理和MATLAB Simulink仿真方法2、掌握AM的解调原理和MATLAB Simulink仿真方法二、实验原理1、AM调制原理所谓调制,就是在传送信号的一方将所要传送的信号附加在高频振荡上,再由天线发射出去。

这里高频振荡波就是携带信号的运载工具,也叫载波。

振幅调制,就是由调制信号去控制高频载波的振幅,直至随调制信号做线性变化。

在线性调回系列中,最先应用的一种幅度调制是全条幅或常规调幅,简称为调制(AM)。

在频域中已调波频谱是基带调制信号频谱的线性位移;在时域中,已调波包络与调制信号波形呈线性关系。

m(t)为取值连续的调制信号,c(t)为正弦载波。

下图为AM调制原理图:2、AM解调原理从高频已调信号中恢复出调制信号的过程为解调,又称为检波。

对于振幅调制信号,解调就是从它的幅度变化上提取调制信号的过程,解调是调制的逆过程。

下图为AM解调原理图:三、实验步骤1、AM调制方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Constant和Add 以及低通滤波器,sine wave2和product1是对已调信号频谱进行线性搬移,低通滤波器是滤除高频部分,得到原始信号②调制后调制后信号加上了2v的偏置,频率变大了,幅度随时间在不断的呈现周期性变化,在1~2.5之间,大于调制前的幅度。

③模拟信号的调制是将要发送的模拟信号附加到高频振荡上,再由天线发射出去,这里的高频振荡就是载波。

振幅调制就是由调制信号去控制高频振荡的振幅,直至随调制信号做线性变化。

2、AM解调方式的MATLAB Simulink仿真(1)原理图(2)仿真图(3)仿真分析①调制器Sine wave2和product1是低通滤波器,Sine wave2 和product1是对已调信号的频谱进行线性搬移,低通滤波器是滤除信号的高频部分以得到原始信号。

模拟通信调制解调技术的仿真实现

模拟通信调制解调技术的仿真实现

模拟通信调制解调技术的仿真实现通信调制解调技术是实现数据传输过程中信号的转换和恢复的关键技术。

它包括调制过程和解调过程,通过调制将数字信号转换为模拟信号进行传输,然后再通过解调将模拟信号转换为数字信号进行处理。

本文将介绍一种通信调制解调技术的仿真实现,并详细讨论其原理和步骤。

该通信调制解调技术使用的是频移键控(FSK)调制解调方法。

FSK 是一种块编码方案,将不同频率的载波信号用于表示数字信息。

其原理是通过改变载波频率的方式来表示不同的数字信号,一般使用两个频率来表示“0”和“1”,这两个频率被称为频率分量。

调制过程:2.创建两个载波信号,分别对应于低频率和高频率。

这里我们选择频率为f1的载波信号表示低频率,频率为f2的载波信号表示高频率。

3.将FSK数字序列与载波信号进行调制,即将低频率和高频率对应到相应的载波信号上。

将低频率频率分量与f1载波信号相乘,将高频率频率分量与f2载波信号相乘,得到模拟调制信号。

解调过程:1.接收到模拟调制信号后,通过滤波器对其进行滤波,滤除非调制信号部分。

2.创建两个频率为f1和f2的参考载波信号。

3.对滤波器输出的信号进行参考载波信号的相乘与相加,得到两路混频信号。

4.将两路混频信号通过低通滤波器提取出基带信号,得到解调后的数字序列。

以上就是FSK调制解调技术的仿真实现过程。

在实际应用中,我们可以使用数学软件(如MATLAB)来进行仿真实现。

以MATLAB为例,以下是FSK调制解调技术的MATLAB仿真代码示例:```matlab%调制过程bits = [1 0 1 0 1 0]; % 待传输的数字序列t=0:0.001:1;%时间序列,步长为0.001f1=1000;%低频率f2=2000;%高频率fsk_signal = []; % FSK调制信号for i = 1:length(bits)if bits(i) == 0fsk_signal = [fsk_signal sin(2*pi*f1*t)]; % 低频率频率分量elsefsk_signal = [fsk_signal sin(2*pi*f2*t)]; % 高频率频率分量endend%解调过程received_signal = fsk_signal; % 接收到的调制信号filtered_signal = filter(h, received_signal); % 滤波器处理carriers = [sin(2*pi*f1*t); sin(2*pi*f2*t)]; % 参考载波信号demod_signal = []; % 解调后的数字序列for i = 1:length(filtered_signal)/length(t)corrs = sum(carriers.*repmat(filtered_signal((i-1)*length(t)+1:i*length(t)), 2, 1)); % 相乘与相加if corrs(1) > corrs(2)demod_signal = [demod_signal 0]; % 低频率elsedemod_signal = [demod_signal 1]; % 高频率endenddisp(demod_signal); % 输出解调后的数字序列```通过以上代码,我们可以对FSK调制解调技术进行仿真实现。

数字调制技术仿真毕业实习报告

数字调制技术仿真毕业实习报告

数字调制技术仿真毕业实习报告一、实习背景及目的随着现代通信技术的快速发展,数字调制技术在无线通信、有线通信以及卫星通信等领域发挥着越来越重要的作用。

作为一种将数字信号转换为适合在传输介质上传播的模拟信号的技术,数字调制技术具有抗干扰能力强、传输效率高等优点。

为了更好地理解和掌握数字调制技术,我选择了数字调制技术仿真作为毕业实习课题。

本次实习的主要目的是通过仿真实验,深入研究数字调制技术的基本原理,掌握数字调制解调过程,并分析不同数字调制方案的性能。

二、实习内容与过程在实习过程中,我使用了MATLAB软件作为主要的仿真工具。

首先,我对数字调制技术的基本原理进行了学习和研究,包括幅移键控(ASK)、频移键控(FSK)、相移键控(PSK)和正交幅度调制(QAM)等常见调制方式的原理和特点。

然后,我根据这些调制方式编写MATLAB仿真程序,实现了数字信号的调制和解调过程。

在仿真实验中,我主要关注了以下几个方面:1. 调制方式的选择与实现:根据不同的实验需求,我选择了合适的调制方式,如2ASK、4FSK、8PSK和16QAM等,并利用MATLAB编写程序实现了这些调制方式的仿真。

2. 信道模型的建立:为了分析不同信道条件下数字调制技术的性能,我建立了加性高斯白噪声(AWGN)信道、瑞利衰落信道和莱斯衰落信道等模型,并引入了相应的信道衰落参数。

3. 性能分析与评估:通过比较不同调制方式在相同信道条件下的误码率(BER)性能,我分析了调制方式对通信系统性能的影响。

同时,我还研究了信道衰落、信噪比(SNR)等因素对数字调制技术性能的影响。

三、实习成果与总结通过本次实习,我深入了解了数字调制技术的基本原理,掌握了数字调制解调过程,并分析了不同数字调制方案的性能。

仿真实验结果表明:1. 随着调制阶数的增加,数字调制技术的传输效率不断提高,但误码率也随之增加。

因此,在实际应用中需要根据具体的通信场景选择合适的调制方式。

模拟线性调制系统的仿真【实验报告】和【实验指导】

模拟线性调制系统的仿真【实验报告】和【实验指导】

实验一:模拟线性调制系统仿真一、实验目的:1、掌握模拟调制系统的调制和解调原理;2、理解相干解调。

二、实验内容:1、编写AM 、DSB 、SSB 调制,并画出时域波形和频谱图。

2、完成DSB 调制和相干解调。

三、实验步骤1、线性调制1) 假定调制信号为m t ,载波c ()cos 2πm f t =()cos 2πc t f t =,f m =1kHz ,f c =10kHz ; 绘制调制信号和载波的时域波形(保存为图1-1)。

2) 进行DSB 调制,;进行AM 调制,DSB ()()()s t m t c t =⋅[]AM ()1()()s t m t c t =+⋅;绘制DSB 已调信号和AM 已调信号的波形,并与调制信号波形进行对照(保存为图1-2)。

3) 用相移法进行SSB 调制,分别得到上边带和下边带信号,SSB 11ˆ()()()()()22Q s t m t c t m t c t =⋅⋅ ,ˆ()sin 2πm m t f t =,()sin 2πQ c c t f t =。

4) 对载波、调制信号、DSB 已调信号、AM 已调信号和SSB 已调信号进行FFT 变换,得到其频谱,并绘制出幅度谱(保存为图1-3)。

2、DSB 信号的解调1) 用相干解调法对DSB 信号进行解调,解调所需相干载波可直接采用调制载波。

2) 将DSB 已调信号与相干载波相乘。

3) 设计低通滤波器,将乘法器输出中的高频成分滤除,得到解调信号。

4) 绘制低通滤波器的频率响应(保存为图1-4)。

5) 对乘法器输出和滤波器输出进行FFT 变换,得到频谱。

6) 绘制解调输出信号波形;绘制乘法器输出和解调器输出信号幅度谱(保存为图1-5)。

7) 绘制解调载波与发送载波同频但不同相时的解调信号的波形,假定相位偏移分别为ππππ,,,8432(保存为图1-6)。

四、实验思考题1、与调制信号比较,AM 、DSB 和SSB 的时域波形和频谱有何不同?2、低通滤波器设计时应考虑哪些因素?3、采用相干解调时,接收端的本地载波与发送载波同频不同相时,对解调性能有何影响?五、提示:1、Matlab只能处理离散值,所以调制信号、载波、已调信号和解调信号都是用离散序列表示的。

用MatLab仿真通信原理系列实验

用MatLab仿真通信原理系列实验

用MatLab仿真通信原理系列实验一、引言通信原理是现代通信领域的基础理论,通过对通信原理的研究和仿真实验可以更好地理解通信系统的工作原理和性能特点。

MatLab作为一种强大的数学计算软件,被广泛应用于通信原理的仿真实验中。

本文将以MatLab为工具,介绍通信原理系列实验的仿真步骤和结果。

二、实验一:调制与解调1. 实验目的通过MatLab仿真,了解调制与解调的基本原理,并观察不同调制方式下的信号特征。

2. 实验步骤(1)生成基带信号:使用MatLab生成一个基带信号,可以是正弦波、方波或任意复杂的波形。

(2)调制:选择一种调制方式,如调幅(AM)、调频(FM)或相移键控(PSK),将基带信号调制到载波上。

(3)观察调制后的信号:绘制调制后的信号波形和频谱图,观察信号的频谱特性。

(4)解调:对调制后的信号进行解调,还原出原始的基带信号。

(5)观察解调后的信号:绘制解调后的信号波形和频谱图,与原始基带信号进行对比。

3. 实验结果通过MatLab仿真,可以得到不同调制方式下的信号波形和频谱图,观察到调制后信号的频谱特性和解调后信号的还原效果。

可以进一步分析不同调制方式的优缺点,为通信系统设计提供参考。

三、实验二:信道编码与解码1. 实验目的通过MatLab仿真,了解信道编码和解码的基本原理,并观察不同编码方式下的误码率性能。

2. 实验步骤(1)选择一种信道编码方式,如卷积码、纠错码等。

(2)生成随机比特序列:使用MatLab生成一组随机的比特序列作为输入。

(3)编码:将输入比特序列进行编码,生成编码后的比特序列。

(4)引入信道:模拟信道传输过程,引入噪声和干扰。

(5)解码:对接收到的信号进行解码,还原出原始的比特序列。

(6)计算误码率:比较解码后的比特序列与原始比特序列的差异,计算误码率。

3. 实验结果通过MatLab仿真,可以得到不同编码方式下的误码率曲线,观察不同信道编码方式对信号传输性能的影响。

8PSK调制以及解调的SIMULINK仿真图解析

8PSK调制以及解调的SIMULINK仿真图解析

摘要8PSK意为正交相移键控,是一种数字调制方式。

四相相移键控信号简称“8PSK”。

在数字信号的调制方式中8PSK是目前最常用的一种数字信号调制方式,它具有较高的频谱利用率、较强的抗干扰性、在电路上实现也较为简单。

调制技术是通信领域里非常重要的环节,一种好的调制技术不仅可以节约频谱资源而且可以提供良好的通信性能。

8PSK调制是一种具有较高频带利用率和良好的抗噪声性能的调制方式,在数字移动通信中已经得到了广泛的应用。

本次设计在理解8PSK调制解调原理的基础上应用MATLAB语言来完成仿真,仿真出了8PSK 的调制以及解调的仿真图,包括已调信号的波形,解调后的信号波形,眼图和误码率。

在仿真的基础上分析比较了各种调制方法的性能,并通过比较仿真模型与理论计算的性能,证明了仿真模型的可行性。

在现代通信系统中,调制与解调是必不可少的重要手段。

所谓调制,就是把信号转换成适合在信道中传输的形式的一种过程。

解调则是调制的相反过程,而从已调制信号中恢复出原信号。

本课程设计主要介绍通过进行8PSK调制解调的基带仿真,对实现中影响该系统性能的几个重要问题进行了研究。

针对8PSK的特点,调制前后发生的变化,加上噪声后波形出现的各种变化,通过星座图、眼图、波形图等来观察。

关键字:8PSK ;调制解调; MATLAB ;分析与仿真目录摘要 (1)前言 (3)1 绪论 (4)1.1通信技术的历史和发展 (4)1.2数字调制的发展现状和趋势 (4)1.3 设计要求 (5)2 8PSK调制解调的基本原理设计 (6)2.1 8PSK数字调制原理 (6)2.2 8PSK的解调原理 (7)2.3、高斯噪声、眼图 (8)3 无线信道 (9)3.1 信道的概述 (9)3.2 无线信道 (9)4 8PSK仿真图形分析 (10)4.1 MATLAB软件的介绍 (10)4.2 8PSK调制解调系统的仿真 (11)4.2.1 8PSK调制解调 (11)4.2.3 误码率及眼图 (13)4.2.4 菜单设计 (16)总结 (17)参考文献 (18)致谢 (19)附录 (20)前言信息化的社会,数字技术快速发展,数字器件也广泛的利用,数字信号的处理技术也越来越重要。

信号调制与解调技术实验

信号调制与解调技术实验

信号调制与解调技术实验在通信领域中,信号调制与解调技术扮演着至关重要的角色。

通过对信号的调制与解调过程,可以实现信号的传输和接收。

本文将介绍信号调制与解调技术的基本原理及其在实验中的应用。

一、引言信号调制与解调技术是指将用于传输的数字或模拟信号转换为适合传输介质的调制信号,并在接收端将其解调还原为原始信号的过程。

它是实现信号传输的关键环节,广泛应用于无线通信、有线通信以及多媒体通信等领域。

二、信号调制技术1. 调制的概念调制是指将原始信号通过改变某些特定参数的方式,将其转换为适合传输的调制信号。

常见的调制方式包括频率调制、振幅调制和相位调制。

2. 频率调制频率调制是通过改变信号的频率来实现调制。

常见的频率调制方式有频移键控调制(FSK)、频率调制(FM)和最小频移键控调制(MSK)等。

在实验中,可以通过调节信号的频率来模拟频率调制的过程,并观察信号在传输过程中的变化。

3. 振幅调制振幅调制是通过改变信号的振幅来实现调制。

常见的振幅调制方式有调幅(AM)和双边带调幅(DSB-AM)等。

在实验中,可以通过改变信号的振幅来模拟振幅调制的过程,并观察信号在传输过程中的变化。

4. 相位调制相位调制是通过改变信号的相位来实现调制。

常见的相位调制方式有调相(PM)、相移键控调制(PSK)和四相相移键控调制(QPSK)等。

在实验中,可以通过改变信号的相位来模拟相位调制的过程,并观察信号在传输过程中的变化。

三、信号解调技术1. 解调的概念解调是指将经过调制后的信号恢复为原始信号的过程。

通过解调技术,可以将信号从传输介质中提取出来,并还原为原始信号。

2. 直接解调技术直接解调技术是指将调制信号直接进行解调。

常见的直接解调方式有包络检波和相干解调等。

在实验中,可以通过直接解调技术来还原经过调制后的信号,并观察解调效果。

3. 相干解调技术相干解调技术是指利用与原始信号保持相干的参考信号,进行解调的过程。

常见的相干解调方式有相干解调和相关解调等。

实验1模拟线性调制系统仿真实验

实验1模拟线性调制系统仿真实验

实验一模拟线性调制系统(AM)一,实验目的:1,掌握模拟调制系统的调制和解调原理。

2,理解相干解调。

二,实验内容和结果:1,编写AM、DSB、SSB调制,并画出时域波形和频谱图。

2,完成DSB调制和相干解调。

1.1模拟线性调制系统(AM)2.2抑制载波双边带调制(DSB)2.3单边带调制(SSB)三、实验分析通过模拟仿真这三种幅度调制信号,可以了解这三种调制各有自己的优缺点。

AM优点是接收设备简单,缺点是率利用率低,抗干扰能力差。

DSB优点是功率利用率低,接收设备较复杂。

SSB优点是功率利用率和频带利用率都较高,抗干扰能力和选择性衰落能力均优于AM,缺点是发送设备和接收设备丢复杂。

SSB信号的实现比AM、DSB要复杂的多,但是SSB调制载传输时,可以节省发射功率,只有AM、DSB的一半,因此,它目前已成为短波通信中一种重要的调制方式。

评价一个模拟系统的好坏,最终要看解调器的输出信噪比。

定义为:解调器输出有用信号的平均功率与解调器输出噪声的平均功率之比。

SSB系统中,信号与噪声有相同的表示形式,所以,相干解调过程中,信号和噪声的正交分量均被抑制,故信噪比没有改善。

其值为1。

而DSB调制系统中,其制度增益为2,系统的抗噪声性能胜于SSB调制系统四、实验体会这次实验是通信原理课程的第一个实验,因为是第一次接触COMMSIM 2001这个软件,肯定会有一些陌生感,首先在安装方面都出现了问题,在实验中,对器件和操作都不明白,幸好老师的实验指导书写得很详细,所以按照指导书的步骤一步一步进行完成了实验,当波形图出来的那一刻,心里也是很激动的,虽然只是一个很小的实验,所以总的来说,本次实验算是成功的,同时也希望下次的实验能做的更完美。

通信原理实验

通信原理实验

通信原理实验通信原理是现代通信领域的基础知识,通过实验可以更加直观地了解通信原理的相关概念和技术。

本次实验将涉及到模拟调制解调实验、数字调制解调实验以及信道编码和解码实验。

首先,我们将进行模拟调制解调实验。

模拟调制是指利用模拟信号进行调制的过程,而模拟解调则是将调制后的信号还原成原始信号的过程。

在实验中,我们将学习调幅调制(AM)、调频调制(FM)和调相调制(PM)的原理,并通过实验验证调制后的信号特性和解调的效果。

接下来,我们将进行数字调制解调实验。

数字调制是指利用数字信号进行调制的过程,而数字解调则是将调制后的信号还原成原始数字信号的过程。

在实验中,我们将学习脉冲编码调制(PCM)、正交振幅调制(QAM)和频移键控(FSK)等数字调制技术,并通过实验验证数字调制解调的原理和性能。

最后,我们将进行信道编码和解码实验。

信道编码是为了提高通信系统抗干扰能力和改善信道传输质量而对数字信号进行编码的过程,而信道解码则是将经过编码的信号进行解码还原的过程。

在实验中,我们将学习卷积码和纠错码的原理,以及信道编码和解码的实际应用。

通过以上实验,我们可以更加深入地理解通信原理的基本原理和技术,为今后的学习和研究打下坚实的基础。

希望大家能够认真对待本次实验,积极参与实验操作,加深对通信原理的理解和掌握,为将来的学习和工作打下坚实的基础。

总结,通过本次实验,我们对通信原理的模拟调制解调、数字调制解调以及信道编码和解码等方面有了更深入的了解。

希望大家能够在实验中认真学习,掌握相关技术,为今后的学习和工作打下坚实的基础。

同时也希望大家能够在实验中加强合作,共同进步,共同提高。

谢谢大家的参与!。

模拟调制与解调实验报告

模拟调制与解调实验报告

模拟调制与解调实验报告
一、实验目的:理解调制原理;
掌握通信原理实验箱和示波器的使用方法;
二、实验器材:通信原理实验箱,示波器,连接线若干
三、实验原理:幅度调制是由调制信号去控制高频载波幅度,使之随调制信号作线性变化的过程。

正弦波为:c(t)=A )cos(ϕωτ+
调制信号为:s m ()t =A ()t t m c ωcos
则已调信号:
()()()[]
c c m M M A s ωωωωω-++=2 在波形上已调信号的幅度随基带信号的规律呈正比变化,在频率上,完全是基带频率的简单搬移。

因此,幅度调制又称线性调制。

相干解调也是同步检波,即把在载频位置的已调信号搬回原始基带位置,为了无失真的恢复原基带信号,接收端必须提供一个与接收的已调载波严格同步的本地载波,与已调信号相乘后,经低通滤波器取出低频分量,即可得到原始的基带调制信号。

实验步骤:将实验箱对应的开关打开,将正弦信号借入示波器,调出对应波形,调节幅度,频率旋钮观察波形变化,将正弦信号改为方波信号重复上述步骤;将正弦波借入到实验箱模拟调制区的基带信号处,调制信号接入调制信号处,将输出接入示波器,调出图像,调节幅度频率旋钮观察波形变化。

将调制信号输入到解调端口,观察示波器的正弦波形,并与原始
信号波形相比较。

实验结果:
正弦载波:
调制载波:
调制后的波形:
解调后的波形:。

实验三、模拟调制与解调

实验三、模拟调制与解调

实验三、模拟调制与解调一、实验目的1、学习用MATLAB 进行模拟调制与解调的方法。

2、理解各种模拟调制解调系统的性能。

3、掌握幅度调制和角度调制的仿真方法。

二、实验设备与器件1、 计算机2、 MATLAB 软件三、实验原理与步骤一)、调幅1、AM 信号的仿真与解调项目1、给定消息信号)4sin()2cos()(t e t t x tππ-+=,100≤≤t ,使用该信号以AM 方式调制一个载波频率为300Hz ,幅度为1的正弦载波,试求:(1)消息信号的频谱和已调信号的频谱。

(2)消息信号的功率和已调信号的功率。

clear allts=0.001;t=0:ts:10-ts;fs=1/ts;df=fs/length(t);msg=randint(100,1,[-3,3],123);msg1=msg*ones(1,fs/10);msg2=reshape(msg1.',1,length(t));Pm=fft(msg2)/fs;f=-fs/2:df:fs/2-df;subplot(2,1,1)plot(f,fftshift(abs(Pm))) ;xlabel('李啊兴');title('消息信号频谱')A=1;fc=300;Sam=(A+msg2).*(cos(2*pi*fc*t)+exp(-t).*sin(4*pi*fc*t));Pam=fft(Sam)/fs;subplot(2,1,2)plot(f,fftshift(abs(Pam))); xlabel('李啊兴');title('AM 信号频谱')axis([-500 500 0 23])Pc=sum(abs(Sam).^2)/length(Sam)Ps=Pc-A^2/2eta=Ps/PcPc =2.3077Ps =1.8077eta =0.7833项目2、用Simulink 重做项目1。

AM—调制与解调仿真

AM—调制与解调仿真

引言本次实践开设的计算机课程设计为软件仿真,利用matla b编写程序建立M文件对计算机实验进行仿真。

随着通信技术的发展日新月异,通信系统也日趋复杂,在通信系统的设计研发过程中,软件仿真已成为必不可少的一部分.随着信息技术的不断发展,涌现出了许多功能强大的电子仿真软件,如Work be enc h、Pr ote l、Sys temview 、Matlab 等。

虚拟实验技术发展迅速,应用领域广泛,一些在现实世界无法开展的科研项目可借助于虚拟实验技术完成,例如交通网的智能控制、军事上新型武器开发等。

调制就是使一个信号(如光等)的某些参数(如振幅、频率等)按照另一个欲传输的信号(如声音、图像等)的特点变化的过程.解调是调制的逆过程,它的作用是从已调波信号中取出原来的调制信号。

对于幅度调制来说,解调是从它的幅度变化提取调制信号的过程。

对于频率调制来说,解调是从它的频率变化提取调制信号的过程。

在信号和模拟通信的中心问题是要把载有消息的信号经系统加工处理后,送入信道进行传送,从而实现消息的相互传递.消息是声音、图像、文字、数据等多种媒体的集合体。

把消息通过能量转换器件,直接转变过来的电信号称为基带信号。

A M是调幅(Amplitud eModu lation),用AM 调制与解调可以在电路里面实现很多功能,制造出很多有用又实惠的电子产品,为我们的生活带来便利.用MAT LAB 仿真工具仿真的AM 调制解调与解调器抗干扰性能分析的工作原理和工作过程,完成对调制与解调过程的分析以及相干解调器的抗干扰性能的分析.通过对波形图的分析给出不同信噪比情况下的解调结果对比.寻找最佳调试解调途径已相当重要。

其中将数字信息转换成模拟形式称调制,将模拟形式转换回数字信息称为解调。

本文主要的研究内容是了解AM 信号的数学模型及调制方式以及其解调的方法在不同的信噪比情况下的解调结果.先从AM 的调制研究,其次研究A M的解调以及一些有关的知识点,得出AM 信号的数学模型及其调制与解调的框图和调制解调波形图,然后利用MATLAB 编程语言实现对A M信号的调制与解调,给出不同信噪比情况下的解调结果对比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

内容要求1目录目录按章、节、条三级标题编写,要求标题层次清晰。

目录中的标题要与正文中标题一致。

2正文2.1 项目概述通过工程训练,理解调制解调是通信系统中实现通信信号传输与接收的核心技术之一,掌握现代通信系统中常用的QPSK、M-QAM、OFDM等现代调制解调技术的原理、实现过程、性能分析方法等。

内容:(1)调制解调原理的仿真。

在Matalab中建立基于QPSK、M-QAM及OFDM调制解调技术的通信系统仿真模型,并通过该模型观察不同信道条件下发射端和接收端的星座图、误码性能。

(2)无线调制解调系统仿真实验。

将已调制信号进行脉冲成形后加载到无线通信信道(可在matlab中采用理论上的AWGN、瑞利、莱斯、Nakagami-M等信道模型进行模拟),在接收端进行解调处理,对信号频谱、功率谱,星座图和误码性能等进行对比、分析。

(3)光纤调制解调系统实验。

将已调制信号进行脉冲成形后加载到实际的光纤通信信道,在接收端进行解调处理,并对信号频谱、功率谱,星座图和误码性能等进行分析。

2.2 报告主体2.2.1 背景2.2.2 项目组成一、在Matalab中建立基于QPSK、M-QAM及OFDM调制解调技术的通信系统仿真模型,并通过该模型观察不同信道条件下发射端和接收端的星座图、误码性能。

(一)、QPSK1 QPSK 原理四相相移调制是利用载波的四种不同相位差来表征输入的数字信息,是四进制移相键控。

QPSK 是在M=4时的调相技术,它规定了四种载波相位,分别为45°, 135°,225°,315°,调制器输入的数据是二进制数字序列,为了能和四进制的载 波相位配合起来,则需要把二进制数据变换为四进制数据,这就是说需要把二进制数 字序列中每两个比特分成一组,共有四种组合,即00,01,10,11,其中每一组称 为双比特码元。

每一个双比特码元是由两位二进制信息比特组成,它们分别代表四进制四个符号中的一个符号。

QPSK 中每次调制可传输2个信息比特,这些信息比特是通过载波的四种相位来传递的。

解调器根据星座图及接收到的载波信号的相位来判断发送端发送的信息比特。

以π/4 QPSK 信号来分析当输入的数字信息为“10”码元时,输出已调载波⎪⎭⎫ ⎝⎛+4ππ2cos c t f A (2-1) 当输入的数字信息为“00”码元时,输出已调载波⎪⎭⎫ ⎝⎛+43ππ2cos c t f A (2-2)当输入的数字信息为“01”码元时,输出已调载波⎪⎭⎫ ⎝⎛+45ππ2cos c t f A (2-3) 当输入的数字信息为“11”码元时,输出已调载波⎪⎭⎫ ⎝⎛+47ππ2cos c t f A (2-4)QPSK 调制框图QPSK 调制规则接收机收到某一码元的QPSK 信号可表示为:yi(t)=a cos(2πfct+φn) 其中 (2-5).47π,45π,43π,4π=nϕQPSK 解调原理分析由QPSK 的解调框图得到:(2-6)(2-7)(2-8)(2-9)QPSK 信号解调器的判决准则)π2cos()()()(c n i B A t f a t y t y t y ϕ+===c c c π()cos(2π)cos(2π)sin(4π)sin 222B n n na az t a f t f t f t φφφ-=++=++nB n A at x a t x ϕϕsin 2)(,cos 2)(==n n c c n c A at f a t f t f a t z ϕϕϕcos 2)π4cos(2π2cos )π2cos()(++=+=QPSK通过改变已调信号的相位信息进行对数字信号的调制。

设置不同的初相位来区别不同的数字码符,而其解调过程需通过相位信息进行。

首先产生一系列随机的01码序列,之后每两个码字分为一组进行判别、映射画出星座图,使序列通过高斯声在进行解调制,画出星座图,从中观察信噪比对于码元传输的影响。

以下是QPSK 采用理论上的AWGN信道模型进行的仿真(二)、M-QAM1 QAM简介正交振幅调制(QAM)是一种矢量调制,它是将输入比特先映射(一般采用格雷码)到一个复平面(星座)上,形成复数调制符号。

正交调幅信号有两个相同频率的载波,但是相位相差90度(四分之一周期,来自积分术语)。

一个信号叫I信号,另一个信号叫Q信号。

从数学角度将一个信号可以表示成正弦,另一个表示成余弦。

两种被调制的载波在发射时已被混和。

到达目的地后,载波被分离,数据被分别提取然后和原始调制信息相混和。

这样与之作幅度调制(AM)相比,其频谱利用率高出一倍。

QAM是用两路独立的基带信号对两个相互正交的同频载波进行抑制载波双边带调幅,利用这种已调信号的频谱在同一带宽内的正交性,实现两路并行的数字信息的传输。

该调制方式通常有二进制QAM(4QAM)、四进制QAM(l6QAM)、八进制QAM(64QAM)、…,对应的空间信号矢量端点分布图称为星座图,分别有4、16、64、…个矢量端点。

目前QAM最高已达到1024QAM。

样点数目越多,其传输效率越高。

但并不是样点数目越多越好,随着样点数目的增加,QAM系统的误码率会逐渐增大,所以在对可靠性要求较高的环境,不能使用较多样点数目的QAM。

对于4QAM,当两路信号幅度相等时,其产生、解调、性能及相位矢量均与4PSK相同。

a 4QAM星座图b 16QAM星座图QAM采用格雷编码,采用格雷码的好处在于相邻相位所代表的两个比特只有一位不同,由于因相位误差造成错判至相邻相位上的概率最大,故这样编码使之仅造成一个比特误码的概率最大。

下图以16QAM为例,显示了编码:16QAM编码2、 16QAM调制解调原理16QAM是两路4ASK信号的叠加,其演变方式可以有以下两种:(1)正交调幅法,由两路独立的正交4ASK信号叠加而成;图3-3 正交调幅(2)复合相移法,由两路独立的QPSK信号叠加而成。

图中虚线大圆上的4个大黑点表示第一个QPSK信号矢量的位置,在这4个位置上可以叠加上第二个QPSK矢量,后者的位置用虚线小圆上的4个小黑点表示。

复合相移法在QAM体制中,信号的振幅和相位作为两个独立的参量同时受到调制。

这种信号的一个码元可以表示为S k(t)=A k cos(ω0t+θk) kT<t≤(k+1)T 式3-1 式中,k取整数;Ak和 k分别可以取多个离散值。

上式可以展开为S k(t)=A k cosθk cosω0t—A k sinθk sinω0t 式3-2令Xk=Akcosθk Yk=-Aksinθk则信号表示式变为S k(t)= X k cosω0t+Y k sinω0t式3-3Xk和Yk也是可以取多个离散值的变量。

从上式看出,k(t)可以看作是两个正交的振幅键控信号之和。

本课题采用了正交调幅法。

在发送端调制器中串/并变换使得信息速率为Rb的输入二进制信号分成两个速率为Rb/2的二进制信号,2/4电平转换将每个速率为Rb/2的二进制信号变为速率为Rb/8的电平信号,然后分别与两个正交载波相乘,再相加后即得16QAM 信号。

正交调制原理框图解调是调制的逆过程,在接收端解调器中可以采用正交的相干解调方法。

接受到的信号分两路进入两个正交的载波的相干解调器,再分别进入判决器形成L进制信号并输出二进制信号,最后经并/串变换后得到基带信号。

下图为16QAM解调框图:相干解调原理框图3、MQAM调制介绍及本仿真程序的几点说明MQAM可以用正交调制的方法产生,本仿真中取M=16或64,即幅度和相位相结合的2. QAM 仿真与分析一个正交幅度调制的信号采用两个正交载波,每一个载波被一个独立的信息比特序列所调制。

而其幅度可以看作是一系列电平集合,这些电平通过将比特序列映射为信号振幅获得,而我所做的仿真中采用了 3 个电平,并且映射的时候没有采用函数库里自带的modulate 和demodulate 函数进行调制与解调。

首先将产生的一系列01 比特流进行进制的划分,其划分根据log2M其中M 是调制的数,如16、64、128 等等。

这里再将分好组的比特数据进行坐标映射,画出星座图。

在解调的过程中采用区域判别的方法,首先进行判决门限的划定,之后进行比较画出星座图。

这种方法只做了16QAM,64QAM与此相同就不做陈述,对64QAM 采用内部函数的调用方式。

下面对16和64QAM的采用理论上的AWGN信道模型进行的调制与解调和信噪比对误码率的影响进行分析。

加噪声的16QAM16QAM误码率加噪声的64QAM(三)、OFDM正交频分复用(OFDM)技术与频分复用(FDM)技术非常相似。

OFDM技术是将高速的数据流通过串/并变换,分配到速率相对较低的若干个子信道中进行传输,不同的是,OFDM的频谱利用率更高。

与FDM的主要区别有以下几方面:1)在平常的广播中,每一个基站在不同的频率上发送信号,有效地运用FDM来保证每个站点的分割隔,广播中每个站点都没同位和同步。

但在OFDM信号内所有的子载波都在时间和频率上同步,使得子载波间的干扰被严格控制。

这些复用的子载波载在频域中交错重叠,又因为调制的正交性且采用循环前缀作为保护间隔,所以不会发生载波间干扰(ICI)。

2)对于FDM 系统而言,传输的信号必须在两个信道之间存在频率间隔来防止干扰,因此,降低了劝不动频谱利用率。

而OFDM 的子载波正交复用技术大大提高了频谱利用率,如图2-1所示。

图2-1 FDM 与OFDM 频率利用率的比较OFDM 是一种多载波传输技术,可以被看作一种调制技术,也可以被看作一种复用技术。

多载波传输是把数据流分解成若干子比特流,这样每个子数据流将有低得多的比特速率,用这样的低比特速率形成的低速率多状态符号再去调制相应的子载波,构成了多个低速率符号并行发送的传输系统。

3.1 OFDM 的基本原理一个完整的OFDM 系统原理如下图2.1-1所示。

OFDM 的主要思想是将串行数据并行地调制在多个正交的子载波上,由此可以降低每个子载波的码传统的频分复用(FDM )多载波调制正交频分复用(OFDM )多载波调制元速率,增大码元的符号周期,提高系统的抗衰落和抗干扰能力,而且由于每个子载波的正交性,大大提高了频谱的利用率,因此非常适合移动场合中的高速传输。

图2.1-1 OFDM 系统在发送端,输入的高速率数据流经过信道编码和交织后,再通过调制映射产生调制信号,插入导频信号后,经过串/并变换变成N 个并行的低速率数据流,这样每N 个并行数据构成一个OFDM 符号。

经快速反傅里叶变换(IFFT)对每个OFDM 符号的N 个数据进行调制,变成时域信号为:[]∑-===102)()()(N m Nnmj e m X m X IFFT n x π n=0,1, ……,N-1(2-1)式中:m 为频域上的离散点;n 为时域上的离散点;N 为载波数目。

相关文档
最新文档