小学数学总复习知识点——数与代数概念部分
小学数学数与代数知识点汇总
小学数学数与代数知识点汇总一、数与运算1.数的认识:自然数、整数、有理数、实数2.顺序数的比较:大小比较、比大小的符号3.加法与减法:加法和减法的意义、加法和减法的性质、整数的加减法4.乘法与除法:乘法和除法的意义、乘法和除法的性质、整数的乘除法5.数的倍数和因数:整数的倍数、整数的因数、公倍数、最大公约数、最小公倍数6.小数:小数的读法、小数的比较、小数的四则运算7.分数:分数的意义、分数的大小比较、分数的加减法、分数的乘除法8.百分数:百分数的意义、百分数的相互转化、百分数的加减乘除二、代数式和方程1.代数式的认识:代数式的定义、代数式的运算、多项式2.代数式的计算:代数式的约分、代数式的化简、代数式的展开与因式分解3.代数式的应用:根据实际问题编写代数式、代数式的求值4.方程的认识:方程的定义、方程的解、解方程的意义、解方程的方法5.解一元一次方程:一元一次方程的解法、方程的意义、方程的实际应用6.解一元一次不等式:一元一次不等式的解法、不等式的意义、不等式的实际应用7.解一元一次方程组:一元一次方程组的解法、方程组的意义、方程组的实际应用三、数的性质和运算1.数的分类:分数、小数、整数及其运算2.数的性质:数的大小比较、数的相反数、数的绝对值、数的相反数与绝对值的关系3.定量关系:数与长度的关系、数与面积的关系、数与体积的关系4.倍数与公约数:整数的倍数和倍数的性质、整数的公约数和公约数的性质5.比例:比例的意义、比例的性质、比例的应用6.百分数:百分数的意义、百分数的相互转化、加减乘除百分数的方法7.降幂与乘方:降幂与升幂的意义、乘方及其运算法则、次乘方的意义和运算四、数据的应用1.数据的收集:问卷调查、实地调查、统计资料2.数据的整理:频数表、频数图、折线图3.数据的分析:数据的中心趋势、数据的离散程度、数据的比较4.数据的应用:数据的解读、数据的预测、数据的比较和判断五、几何基础1.点、线、面:基本图形的认识、基本图形的命名2.直线与线段:直线、线段、射线的认识和性质3.角的认识:角的定义、角的分类、角的性质4.三角形:三角形的分类、三角形的性质、等腰三角形、等边三角形5.四边形:平行四边形的性质、矩形的性质、菱形的性质、正方形的性质6.圆:圆的性质、圆的周长和面积7.空间几何图形:长方体、正方体、棱柱、棱锥、棱台、球体等的性质六、图形的应用1.图形的绘制:使用尺规作图仪器绘制图形2.图形的变换:平移、旋转、对称、放缩等图形的变换3.图形的投影:直线的平行投影、线段的视、上、右投影、线段的和、差投影以上是小学数学中的数与代数知识点汇总,希望对你的学习有所帮助。
数与代数主要知识点
数与代数主要知识点数与代数是数学的基础,是数学研究的重要分支。
它们在数学中扮演着重要的角色,涉及到许多重要的概念和方法。
本文将介绍数与代数的主要知识点,包括数的性质、代数方程、函数与图像等内容。
一、数的性质数是数学中最基本的概念,包括自然数、整数、有理数和实数等。
数的性质是研究数学问题的基础,它们具有以下重要性质:1. 数的比较性质:数可以比较大小,可以使用大于、小于和等于等符号进行比较。
2. 数的运算性质:数可以进行加法、减法、乘法和除法等运算,遵循相应的运算规则。
3. 数的性质:数具有交换律、结合律和分配律等性质,这些性质在数学中起到重要的作用。
二、代数方程代数方程是数与代数中的重要概念,它是一种含有未知数的等式。
代数方程的解是使得方程成立的未知数的值。
在代数方程中,我们可以使用代数的方法来求解未知数的值。
代数方程的求解过程中,可以运用因式分解、配方法、根号法等多种方法,求得方程的解。
三、函数与图像函数是数与代数中的重要概念,它描述了两个变量之间的关系。
函数可以用数学表达式表示,其中包含自变量和因变量。
函数的图像是函数在坐标系中的表示,它可以直观地展示函数的特点和性质。
函数的图像可以帮助我们理解函数的变化规律,找到函数的最大值、最小值和零点等重要信息。
四、等差数列与等比数列等差数列与等比数列是数与代数中常见的数列。
等差数列是指数列中相邻两项之间的差值相等的数列,它具有明显的规律性。
等差数列在数学中有广泛的应用,可以用于求和、推导等。
等比数列是指数列中相邻两项之间的比值相等的数列,它也具有明显的规律性。
等比数列在数学中也有重要的应用,可以用于求和、推导等。
五、复数复数是数与代数中的重要概念,它是由实数和虚数构成的数。
复数可以用复数形式表示,其中实部和虚部分别用实数表示。
复数在数学中有广泛的应用,可以用于求解代数方程、计算电路等。
复数具有加法、减法、乘法和除法等运算规则,也有自己的共轭和模等概念。
小学数学数与代数部分知识点
小学数学数与代数部分知识点数和数的运算一概念(一)整数1 整数的意义自然数和0都是整数。
2 自然数我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a 。
如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。
倍数和约数是相互依存的。
因为35能被7整除,所以35是7的倍数,7是35的约数。
一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。
例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一个数的末三位数能被8(或125)整除,这个数就能被8(或125)整除。
例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
小学数学数与代数知识点整理
小学数学数与代数知识点整理第一章数和数的运算一、概念(一)整数1 整数的意义:自然数和0都是整数。
2 自然数:我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
3计数单位:一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4 数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5数的整除:整数a除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b 能整除a ;如果数a能被数b(b ≠ 0)整除,a就叫做b的倍数,b就叫做a的因数(或a的因数)。
倍数和因数是相互依存的。
如:因为35能被7整除,所以35是7的倍数,7是35的因数。
(1)一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
例如:10的因数有1、2、5、10,其中最小的因数是1,最大的因数是10。
(2)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
3的倍数有:3、6、9、12……其中最小的倍数是3 ,没有最大的倍数。
(3)常用规律:①个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。
②个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。
③一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。
④一个数各位数上的和能被9整除,这个数就能被9整除。
能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。
⑤一个数的末两位数能被4(或25)整除,这个数就能被4(或25)整除。
例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
⑥能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
小学数学数与代数知识点整理
小学数学数与代数知识点整理一、数的大小和比较1.数的比较:数的大小关系,如大于、小于、等于。
2.数的顺序:自然数、整数、有理数的大小顺序。
二、数的性质和运算1.数的分类:自然数、整数、有理数、无理数。
2.数的性质:奇数、偶数、质数、合数。
3.数的运算:加法、减法、乘法、除法的基本概念和运算规则。
4.数的整除性:倍数、约数、公因数、最大公约数等概念。
三、数的分数表示和运算1.分数的概念:分子、分母、真分数、假分数。
2.分数与整数的运算:加法、减法、乘法、除法。
3.分数相比较:大小比较和等值判断。
四、数的小数表示和运算1.小数的定义:小数点的概念。
2.小数的读法和写法:整数、小数部分的读法和写法。
3.小数与分数的相互转化。
4.小数运算:加法、减法、乘法、除法。
五、数的倍数和约数1.倍数的概念:一个数能整除另一个数。
2.约数的概念:一个数能被另一个数整除。
3.最大公约数:两个数公共的约数中最大的那个数。
4.最小公倍数:两个数公共的倍数中最小的那个数。
六、数的代数式和数的应用1.代数式的概念:数、字母和运算符号的组合。
2.代数式的计算:代数式的加减乘除运算。
3.代数式的应用:通过代数式解决实际问题。
七、数的方程式1.方程式的概念:等号连接的代数式。
2.一元一次方程式:解方程的方法和步骤。
3.方程式的应用:通过方程式解决实际问题。
八、数的图形的认识与应用1.数的图形的概念:点、线、面。
2.平凡形的认识:正方形、长方形、三角形、圆形、梯形等。
3.图形的属性:边、角、面积、周长等。
4.图形的运算:图形的加法和减法。
总结:小学数学数与代数知识点主要包括数的大小和比较、数的性质和运算、数的分数表示和运算、数的小数表示和运算、数的倍数和约数、数的代数式和数的应用、数的方程式以及数的图形的认识与应用等内容。
在学习过程中,要注重理论与实践相结合,通过解决实际问题来巩固所学知识。
同时,要培养学生的计算和推理能力,让他们能够自主思考和解决问题。
小学数学数与代数知识点汇总
小学数学《数与代数》知识点汇总(一)数的认识1整数【正数、0、负数】一、一个物体也没有,用0表示。
0和1、2、3……都是自然数。
自然数是整数。
二、最小的一位数是1,最小的自然数是0。
三、零上4摄氏度记作+4℃;零下4摄氏度记作-4℃。
“+4”读作正四。
“-4”读作负四。
+4也可以写成4。
四、像 +4、19、+8844这样的数都是正数。
像-4、-11、-7、-155这样的数都是负数。
五、0既不是正数,也不是负数。
正数都大于0,负数都小于0。
六、通常情况下,比海平面高用正数表示,比海平面低用负数表示。
七、通常情况下,盈利用正数表示,亏损用负数表示。
八、通常情况下,上车人数用正数表示,下车人数用负数表示。
九、通常情况下,收入用正数表示,支出用负数表示。
十、通常情况下,上升用正数表示,下降用负数表示。
2小数【有限小数、无限小数】一、分母是10、100、1000……的分数都可以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……二、整数和小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位。
每相邻两个计数单位间的进率都是10。
三、每个计数单位所占的位置,叫做数位。
数位是按照一定的顺序排列的。
四、小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。
五、根据小数的性质,通常可以去掉小数末尾的“0”,把小数化简。
六、比较小数大小的一般方法:先比较整数部分的数,再依次比较小数部分十分位上的数,百分位上的数,千分位上的数,从左往右,如果哪个数位上的数大,这个小数就大。
七、把一个数改写成用“万”或“亿”作单位的数,在万位或亿位右边点上小数点,再在数的后面添写“万”字或“亿”字。
八、求小数近似数的一般方法:1先要弄清保留几位小数;2根据需要确定看哪一位上的数;3用“四舍五入”的方法求得结果。
九、整数和小数的数位顺序表:3分数【真分数、假分数】一、把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
小学数学数与代数知识大全
小学数学数与代数知识大全数学是一门学科,其中包含了许多与数和代数相关的知识。
对于小学生来说,数与代数是他们日常学习中必须掌握的基础知识。
本文将介绍小学数学中与数与代数相关的重要概念和技巧。
一、基础数学知识1. 数的概念:数用来表示事物的多少,分为整数、分数和小数等不同类型。
整数包括正整数、负整数和零,分数由分子和分母组成,小数是指有限或无限循环小数。
2. 数的比较与排序:学习如何比较大小,使用比较符号(大于、小于、等于)进行数的比较;学习如何按照大小排序一组数。
3. 数的运算:学习加法、减法、乘法和除法的运算规则和性质,掌握基本的运算技巧与口算能力。
4. 四则运算:掌握加法、减法、乘法和除法的联合运算,灵活运用这些运算进行复杂的计算。
5. 数的倍数与因数:理解倍数和因数的概念,学习如何求一个数的倍数和因数,掌握最大公因数与最小公倍数的计算方法。
二、代数知识1. 代数符号:学习代数术语和代数符号的含义及使用方法,如:求和、求差、乘号、除号、等号等。
2. 字母代数:引入字母代表数,学习字母代数的含义和运算规则,能够进行简单的代数运算。
3. 简单方程:学习方程的概念和解方程的基本方法,掌握求解一元一次方程的技巧,如:凑项法、配方法等。
4. 分式运算:理解分式的概念和运算规则,能够进行分式的加、减、乘、除运算,学习简单分式方程的解法。
5. 代数式的展开与因式分解:学习代数式的展开与因式分解的方法,掌握公式展开与因式分解的技巧,如:二次方三项式的展开、二次差平方公式等。
三、数与代数技巧1. 应用题解决思路:学习运用数学知识解决实际问题的思维方式与方法,培养灵活运用数与代数知识的能力。
2. 逻辑推理与问题解决:发展逻辑思维,训练运用数与代数知识解决问题的能力,培养观察、分析、推理、判断和解决问题的能力。
3. 综合运用:通过综合运用所学的数与代数知识,解决综合性的数学问题,提高综合运算能力。
总结:小学数学的数与代数知识是学习数学的基础,掌握这些知识对于学生未来的学习和发展至关重要。
小学数学数与代数知识点整理
小学数学数与代数知识点整理小学数学是培养学生基本数学思维和逻辑推理能力的重要阶段,它涵盖了数与代数、几何、统计与概率等多个知识领域。
下面整理了小学数学中数与代数的主要知识点。
一、数的认识与应用1.自然数的认识:自然数的概念、自然数的顺序、自然数的性质(奇偶性、整除性)2.整数的认识:正整数、负整数、零的认识与比较、整数的加减运算、整数的乘除运算3.分数的认识:分数的概念、分数的大小比较与排序、分数的加减运算、分数的乘除运算4.小数的认识:小数的概念、小数的大小比较与排序、小数的加减运算、小数的乘除运算5.有理数的认识:有理数的概念、有理数的加减乘除运算二、数字的整体认识1.数的拆分与组合:数的合成与分解、数的逆运算2.数轴与数线图:数轴的认识与使用,数轴上数的位置与大小关系的判断三、四则运算1.加法:数的加法原理、加法的属性(交换律、结合律、零元素、相反数)2.减法:数的减法原理、减法的换位、反运算3.乘法:数的乘法原理、乘法的属性(交换律、结合律、零因子、单位元素)4.除法:数的除法原理、除法与乘法的关系、除法的应用与技巧四、整数的应用1.整数的加减运算:分析问题、运算规则、实际应用2.整数的乘除运算:分析问题、运算规则、实际应用五、分数的应用1.分数与长短比例:分数的应用、分数之间的比较、比例的概念与性质2.分数的混合运算:分数的加减乘除运算、应用问题的分析与解决六、小数的应用1.小数与图形的关系:小数的应用、小数的位置与比较2.小数的四则运算:小数的加减乘除运算、实际问题的分析与解决七、代数初步1.代数式的认识:代数式的概念、字母与数的关系、字母表示数的意义2.代数式的计算:代数式的加减乘除运算、应用问题的建立与解决3.解方程:一次方程的概念与解法、解方程的实际应用八、数与代数的综合应用1.数学建模:实际问题的数学描述与建模、模型的分析与求解2.数与代数在几何中的应用:几何中的数值关系、问题解决3.数与代数在统计与概率中的应用:统计与概率问题的分析与解决、应用中的数值计算以上为小学数学中数与代数的主要知识点,在学习这些知识点的同时,应注重培养学生的逻辑思维和问题解决能力。
数与代数的知识点
数与代数的知识点数与代数是数学中的两个重要分支,它们是数学的基础,并在各个领域应用广泛。
下面将介绍数与代数的主要知识点。
一、数的概念与性质1.自然数与整数:自然数是从1开始逐一增加的整数,整数包括自然数以及其相反数和0。
2.有理数与无理数:有理数是可以表示为两个整数的比,无理数是不能表示为有理数的数。
3.实数与虚数:实数包括有理数和无理数,虚数是不能表示为实数的数。
二、运算与运算性质1.加减乘除:四则运算包括加法、减法、乘法和除法,它们有特定的运算规则和性质。
2.二次根式与分数指数:二次根式表示平方根,分数指数表示根号。
3.运算律与法则:例如交换律、结合律、分配律等都是数的运算律。
三、整式与分式1.整式:整式由字母与常数经过四则运算组成,例如多项式、幂函数等。
2.分式:分式由两个整式相除得到,它由分子和分母组成,可以进行化简与运算。
四、方程与不等式1.一元一次方程:一元一次方程是含有一个未知数的一次方程,解方程就是求使等式成立的未知数的值。
2.一元二次方程:一元二次方程是含有一个未知数的二次方程,可以通过配方法、公式法等求解。
3.不等式:不等式是含有不等号的关系表达式,可以通过图像或运算法则求解。
五、函数与图像1.函数的概念:函数是一个量与另一个量之间的关系,可以用公式、图像或表格来表示。
2. 一次函数:一次函数是函数的一种,其表达式为y=ax+b,其中a 和b为常数。
3. 二次函数与指数函数:二次函数是函数的一种,其表达式为y=ax^2+bx+c,指数函数是以常数为底的幂函数。
4.对数函数与三角函数:对数函数是指对数与指数函数的反函数,三角函数包括正弦、余弦、正切等。
六、排列与组合1.排列:排列是指从给定的一组元素中选取若干个元素按照一定的顺序排列的方法总数。
2.组合:组合是指从给定的一组元素中选取若干个元素,不考虑顺序的方法总数。
3.阶乘与二项式定理:阶乘是指n!=n×(n-1)×(n-2)×...×2×1,二项式定理是关于多项式展开的公式。
数与代数的知识点
数与代数的知识点数与代数是数学中非常重要的两个概念,它们在数学的发展和应用中起着重要的作用。
本文将介绍数与代数的基本概念,包括数的分类、数的运算、代数的基本概念和代数方程的解法等内容。
一、数的分类数是用来计量和表示数量关系的工具,根据数的性质和特点,可以将数分为不同的类型。
1. 自然数自然数是最基本的数,包括0和所有正整数,用符号N表示。
自然数用于计数,例如1、2、3等。
2. 整数整数包括自然数以及它们的相反数和0,用符号Z表示。
整数可以用来表示正负关系,例如-3、-2、-1、0、1、2、3等。
3. 有理数有理数是可以表示为两个整数的比值的数,包括整数和分数,用符号Q表示。
有理数可以用来表示分数和小数,例如1/2、3/4、0.5等。
4. 无理数无理数是不能表示为两个整数的比值的数,它们的小数部分是无限不循环的。
无理数包括开根号后无限不循环的小数,例如π、√2等。
5. 实数实数包括有理数和无理数,用符号R表示。
实数可以表示所有数的集合,包括整数、分数和无限不循环的小数。
二、数的运算数的运算是数学中的基本操作,包括加法、减法、乘法和除法。
下面分别介绍这些运算。
1. 加法加法是将两个数合并为一个数的运算,用符号+表示。
例如,1 + 2= 3。
2. 减法减法是从一个数中减去另一个数的运算,用符号-表示。
例如,3 - 2 = 1。
3. 乘法乘法是将两个数相乘得到一个新的数的运算,用符号×表示。
例如,2 × 3 = 6。
4. 除法除法是将一个数分为若干等份的运算,用符号÷表示。
例如,6 ÷ 3= 2。
三、代数的基本概念代数是研究数与数之间的关系和运算规律的数学分支,它引入了未知数和符号表示,使得数学问题可以用代数式和方程来表示和求解。
1. 代数式代数式是由数、未知数和运算符号组成的表达式,它可以表示数与数之间的关系。
例如,3x + 2y是一个代数式,其中x和y是未知数。
小学数学数与代数知识点归纳汇总
小学数学数与代数知识点归纳汇总数与代数是小学数学的一大重要内容,它包括了数的认识、数的运算、数的应用以及代数的基础知识。
下面将对小学数与代数的知识点进行归纳汇总。
一、数的认识1.自然数:自然数是最基本的数,包括0和正整数。
2.整数:在自然数的基础上添加了负整数。
3.分数:分数是整数除法的结果,由分子和分母组成。
4.小数:小数是有限小数和无限循环小数的统称。
5.百分数:将数值表示为百分数形式。
6.负数:负数是表示比零更小的数。
二、数的运算1.加减运算:加法是将两个数的值进行相加,减法是用一个数减去另一个数。
2.乘除运算:乘法是将两个数相乘,除法是一个数除以另一个数。
3.乘方运算:乘方是一个数自乘若干次。
4.多位数的加减乘除运算:多位数的运算需要先进行位数对齐再进行运算。
5.逆运算:加法的逆运算是减法,减法的逆运算是加法,乘法的逆运算是除法,除法的逆运算是乘法。
三、数的应用1.排列与组合:排列是指从给定的元素中按照一定规则选取若干个元素进行排序,组合是从给定的元素中按照一定规则选取若干个元素不进行排序。
2.数据统计:包括数据的收集、整理、画图以及数据的分析与总结。
3.平均数:平均数是一组数据的总和除以数据的个数。
4.画图:小学数学中常常涉及到的画图内容包括直线、曲线、圆、矩形、三角形、长方体等。
四、代数的基础知识1.代数式:代数式是用字母表示数的式子。
2.字母代数式:用字母代表数的代数式。
3.代数式的运算:包括代数式的加减乘除运算。
4.代数方程与解方程:代数方程是含有未知数的等式,解方程是求方程的解。
5.代数不等式:代数不等式是含有不等号的代数式。
6.平方与平方根:平方是一个数自乘两次,平方根是一个数的的算术平方根。
7.正比例与反比例:正比例是两个量成正比,反比例是两个量成反比。
8.函数与方程:函数是两个变量之间的一种特殊关系,方程是含有未知数的等式。
以上就是小学数与代数的知识点的简要归纳汇总。
通过学习这些知识点,可以帮助学生建立数学思维、培养逻辑思维能力,为深入学习高中阶段的数学打下坚实的基础。
小学数学数与代数知识点
小学数学数与代数知识点1.自然数与整数:自然数是从1开始的数,用N表示。
自然数集合是一个无限集合。
整数由正整数、0和负整数组成,用Z表示。
2.定义和性质:自然数有加法和乘法运算,满足结合律、交换律、分配律等性质。
零是加法的单位元,即对于任意自然数n,n+0=0+n=n。
乘法有单位元1,即对于任意自然数n,n×1=1×n=n。
加法和乘法满足交换律和结合律。
3.数的比较和排序:通过数的大小可以进行比较和排序,比较时大于用“>”表示,小于用“<”表示,等于用“=”表示。
可以通过图形和数轴对数进行排序,数轴上靠右的数较大,靠左的数较小。
4.相反数和绝对值:对于任意整数a,存在唯一的整数-b,使得a+b=0,称-b为a的相反数,记作-a。
绝对值是一个非负数,表示一个数与0的距离。
对于任意实数a,记作,a,有以下性质:①若a≥0,则,a,=a。
②若a<0,则,a,=-a。
③,a,≥0,且,a,=0的充分必要条件是a=0。
5.加减法运算:加法是将两个数相加,得到一个和。
减法是从一个数中减去另一个数,得到一个差。
加法和减法具有逆运算的性质。
对于任意实数a,b,c,有以下性质:①加法交换律:a+b=b+a。
②减法定义:a-b=a+(-b)。
③减法的逆运算:a+(-a)=0,a-0=a。
④加法和减法的结合律:(a+b)+c=a+(b+c),(a-b)-c=a-(b+c)。
6.乘法和除法运算:乘法是将两个数相乘,得到一个积。
除法是将一个数分成若干等分,得到一个商。
乘法和除法具有逆运算的性质。
对于任意实数a,b,c(其中b≠0,c≠0),有以下性质:①乘法交换律:a×b=b×a。
②除法定义(不考虑除0):a÷b=a×(1÷b)。
③除法的逆运算:a×(1÷a)=1,a÷1=a。
④乘法和除法的结合律:(a×b)×c=a×(b×c),(a÷b)÷c=a÷(b÷c)。
二年级数与代数的知识点二年级数学知识点-数与代数
一、数的概念
1、数的定义:数是用来表示数量的符号。
根据状况可以分为实数、
虚数等类别。
2、数的概念:数字是用来表示数量的符号,它有一定的大小和数量。
3、常用的数:从0到10的整数、负数、小数和分数等。
二、数的运算
1、加法:加法是把两个数字相加,获得一个新的结果。
2、减法:减法是把一个数减去另一个数,以获得新的结果。
3、乘法:乘法是把一个数乘以另一个数,以获得新的结果。
4、除法:除法是把一个数除以另一个数,以获得新的结果。
三、代数概念
1、代数的定义:代数是一门计算和研究因变量及其关系的学科。
代
数与数学有很多相似之处,但是两者之间也有许多不同之处。
2、代数的基本概念:代数涉及的基本概念包括常数、变量、系数、项、方程、式等。
3、代数的运算:代数运算主要包括加减、乘除和求幂等,其中求幂
是计算平方根或次方的运算。
四、代数应用
1、求解一元二次方程:一元二次方程是一个有一个未知数的二次方程,它的解可以用根式法、秦九韶算法或费马小定理来求解。
2、二元一次方程解法:二元一次方程是一个由两个未知数组成的一次方程,它主要用逐步法、消元法、等号法来求解。
3、求解抛物线方程:抛物线方程是一个由二次项组成的方程。
数与代数主要知识点
数与代数主要知识点
数与代数是数学的主要分支之一,主要涉及数的性质和数字运算,以及基本的代数运算和代数方程。
其中的主要知识点包括:
1. 数的性质:整数、分数、小数、正数、负数、实数等不同类型的数,以及它们的大小比较和排列顺序。
2. 数的运算:加法、减法、乘法、除法等基本运算,以及它们的运算
规则和性质,如交换律、结合律、分配律等。
3. 数的方幂与开平方:指数、幂运算、平方、立方等概念,以及对数
和指数函数。
4. 代数表达式和代数方程:变量、常数以及它们之间的运算关系,如
代数式、代数方程、等式、不等式等。
5. 代数运算:代数式的合并、展开和化简,多项式的加减乘除等基本
运算。
6. 一元一次方程和一元一次不等式:一次方程的解的求法,以及方程
和不等式在图像上的表示和解的范围。
7. 二元一次方程组和二元一次不等式组:两个未知数的方程组和不等
式组的解的求法,以及它们在平面上的图像表示和解的范围。
8. 分式:分子、分母以及它们之间的运算关系,如分式的化简、约分、通分等。
9. 根式:根号、开平方、平方根等概念,以及根式的化简和求值。
10. 因式分解和整式运算:多项式的因式分解和合并,以及多项式的
乘法和除法运算。
这些是数与代数的主要知识点,通过学习它们,可以帮助我们更
好地理解数的性质和运算规律,以及解决各种数学问题。
《数与代数》知识点整理
《数与代数》知识点整理数与代数是数学的基础课程,涵盖了数的性质和运算、代数方程、函数与图像等内容。
以下是《数与代数》的一些重要知识点整理。
1.自然数、整数、有理数和实数:自然数是最基本的数,包括正整数和0。
整数是自然数的扩展,包括正整数、负整数和0。
有理数是可以表示为两个整数之比的数,包括整数和分数。
实数是可以表示在数轴上的所有数。
2.数的运算:加法、减法、乘法和除法是数的基本运算。
加法是将两个数相加得到和;减法是从一个数中减去另一个数得到差;乘法是将两个数相乘得到积;除法是将一个数除以另一个数得到商。
3.数的性质:数的性质包括奇偶性、质数与合数、约数与倍数、整除关系等。
奇数是不能被2整除的数,偶数是能被2整除的数。
质数是只有1和本身两个因数的数,合数是除了1和本身还有其他因数的数。
约数是整除一个数的整数,倍数是一个数的整数倍。
4.代数方程:代数方程是包含未知数的等式,具有解的方程被称为方程组。
代数方程的解是能够使方程成立的值。
一元一次方程是未知数的一次方程,形式为ax+b=0,其中a和b是常数。
一元二次方程是未知数的二次方程,形式为ax^2+bx+c=0,其中a、b和c是常数。
5.函数与图像:函数是数学中的一个重要概念,将一个自变量的值与一个因变量的值建立起对应关系。
函数的图像是函数的几何图形表示,通常表示在平面直角坐标系上。
函数的图像可以通过确定函数的值和自变量的值绘制出来,也可以通过函数的性质和变化规律进行分析。
6.指数与对数:指数是幂的一种表达方式,指数运算包括乘方、开方和幂运算。
对数是幂运算的逆运算,用来求解指数运算中的未知数。
7.连分数:连分数是一种特殊形式的分数,其中分子是一个整数,分母是一个整数加一个分数。
连分数可以无限展开,且有一些特殊的性质和应用。
8.三角比:三角比是指角度和三角函数之间的关系,常用的三角函数有正弦、余弦和正切。
三角比可以用来解决与角度相关的问题,例如计算角度的大小等。
小学数学知识要点之数与代数——数的认识
小学数学知识要点之数与代数——数的认识数的认识数学是一门抽象而又实用的学科,而数与代数是数学中最基础的概念之一。
小学数学的教学中,数的认识是其核心内容之一。
本文将介绍小学数学知识要点之数与代数,帮助孩子们更好地理解与运用数与代数的概念。
1.基本概念数是用来计数和度量的工具,能够表示事物的多少或大小。
我们熟悉的阿拉伯数字0、1、2、3、4、5、6、7、8、9就是用来表示数的基本符号。
数字可以用来计算、比较和描述事物的属性。
比如:有3个苹果、5只小鸟,这些都是数的应用。
2.数的分类数可以分为自然数、整数、分数和小数等几种类型。
(1) 自然数是从1开始逐一增加并没有终止的数,用N表示,如1、2、3、4、5等。
(2) 整数包括了自然数及其相反数和零,用Z表示,如-3、-2、-1、0、1、2、3等。
(3) 分数是用两个整数表示的一个除法式,其中分母是非零整数,分子和分母之间用斜杠“/”连接,如1/2、3/4、5/6等。
(4) 小数是用数字和小数点表示的数,小数点后面有无限多个数字,如0.5、1.2、3.14159等。
3.数的运算数的运算是小学数学的基础内容,主要包括加法、减法、乘法和除法。
(1) 加法是指对两个或多个数进行相加的操作,用加号“+”表示,如2 +3 = 5。
(2) 减法是指从一个数中减去另一个数的操作,用减号“-”表示,如5 - 3 = 2。
(3) 乘法是指将两个或多个数相乘的操作,用乘号“×”表示,如2 × 3 = 6。
(4) 除法是指将一个数分成若干等分的操作,用除号“÷”表示,如6÷ 2 = 3。
4.代数的基础代数是数学中研究数与数之间的关系的一门学科。
在小学数学中,代数主要包括代数式、代数方程和代数函数等内容。
(1) 代数式是由数、变量和运算符号组成的数学表达式,用来表示数与数之间的关系,如2x + 3y。
(2) 代数方程是指包含未知数的等式,通过求解方程可以得到未知数的值,如2x + 3 = 7。
数与代数主要知识点(一)
数与代数主要知识点(一)数与代数主要1. 数的基本概念•自然数:从1开始的正整数,用N表示。
•整数:包括自然数、0和负整数,用Z表示。
•有理数:可以表示为两个整数的比值,用Q表示。
•实数:包括有理数和无理数,用R表示。
•复数:包括实部和虚部的数,用C表示。
2. 数的运算•加法:数与数的相加,用”+“表示。
•减法:数与数的相减,用”-“表示。
•乘法:数与数的相乘,用”*“表示。
•除法:数与数的相除,用”/“表示。
3. 数的性质•交换律:加法和乘法满足交换律,即a + b = b + a,a * b = b * a。
•结合律:加法和乘法满足结合律,即(a + b) + c = a + (b +c),(a * b) * c = a * (b * c)。
•分配律:乘法对加法满足分配律,即a * (b + c) = a * b + a * c。
4. 代数方程•代数方程:含有未知数的等式,如2x + 3 = 7。
•方程的解:使得等式成立的未知数的值,如x = 2。
•一元一次方程:只含有一个未知数的一次方程,如ax + b = 0。
•一元二次方程:含有一个未知数的二次方程,如ax^2 + bx + c = 0。
•系数:方程中未知数的系数,如ax。
5. 代数函数•函数:一种特殊的关系,每一个自变量(x)都对应一个唯一的函数值(y)。
•一次函数:函数的最高次数为1的函数,表示为y = kx + b。
•二次函数:函数的最高次数为2的函数,表示为y = ax^2 + bx + c。
•指数函数:函数的自变量为指数的函数,表示为y = a^x。
•对数函数:函数的自变量为函数值的对数的函数,表示为y = loga(x)。
6. 代数运算•多项式运算:对多项式进行加法、减法和乘法的运算。
•因式分解:将多项式表示为因子的乘积的形式。
•方程求解:将方程化为等式,并求得未知数的值。
以上是数与代数主要的知识点,包括数的基本概念、运算规则,代数方程和函数的基本概念,以及代数运算的方法。
小学数与代数部分知识点
小学数与代数部分知识点(1)自然数:0、1、2、3、4……都是自然数。
自然数可以表示物体的个数或次数。
自然数的个数是无限的, 最小的自然数是0,没有最大的自然数。
(2)0:一个物体也没有,用0表示。
0是最小的自然数。
0还有其他多种用法,在写数记数中,可以用0来占位;在测量活动中,用0表示起点;在相反意义量的记录中,用0作分界点。
(3)负数:比0小的数是负数,比0大的数是正数。
0既不是正数,也不是负数。
(4)小数:分母是10、100、1000……的十进分数可以写成小数。
(5)分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
两个数相除的商可以用分数表示。
分数单位:把单位“1”平均分成若干份,表示这样的一份的数叫做分数单位。
(6)百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数又叫做百分比或百分率。
百分数是一种特殊的分数。
二、数的联系1、整数与小数:整数和小数在计数方法上是一致的,都是用十进制计数法记录的。
整数可以根据小数的基本性质改写成小数。
2、小数与分数:小数就是分母是10、100、1000……的十进分数,小数是特殊的分数。
3、分数与百分数:百分数虽然在形式上与分数是类似的,但在意义上有明显的不同。
百分数只能表示一个数是另一个数的百分之几,所以也叫做百分比(百分率),而分数不仅可以表示一个数是另一个数的几分之几,也可以用来表示一个具体的数量。
4、正数与负数:以0为分界点,比0大的数就是正数,比0小的数就是负数。
正数可以有正整数、正分数;负数可以有负整数、负分数。
0既不是正数,也不是负数。
三、数位顺序表1、数位、位数和计数单位:整数与小数都是按照十进制计数法写出的数,个、十、百……以及十分之一、百分之一……都是计数单位,各个计数单位所占的位置,叫做数位。
一个自然数数位的个数,叫做位数,如170096是一个六位数;小数位数是以小数点右边的数位多少来定的,如170096.302是一个三位小数2、多位数的读法、写法:多位数从个位起,每四位分为一级,可分为个级、万级、亿级。
小学数与代数概念大全
小学数与代数概念大全小学数与代数概念大全一、整数自然数是表示物体数量的数,最小的自然数是“0”。
自然数也是整数,是正整数与负整数的分界线。
质数是只有“1”和它本身两个因数的数,最小的质数是“2”。
合数是除了“1”和它本身以外还有别的因数的数,最小的合数是“4”。
注意:1只有一个因数,就是它本身,既不是质数,也不是合数。
互质数是只有公因数“1”的两个数。
公因数是两个数公有的因数,公倍数是两个数公有的倍数。
质因数是把一个合数分解成几个质数相乘的形式,这几个质数叫作这个合数的质因数。
分解质因数是把一个合数分解成几个质数相乘的形式,这个过程叫做分解质因数。
特征:能被2整除数的个位上的数字是2、4、6、8;能被3整除数的各位上的数字之和是3的倍数;能被5整除数的个位上的数字是5;能被9整除数的各位上的数字之和是9的倍数;能被4或25整除数的末两位上的数是4或25的倍数;能被8或125整除数的末三位数是8或125的倍数。
偶数是可以被2整除的自然数,也叫做双数。
奇数是不能被2整除的自然数,也叫做单数。
二、小数小数的基本性质是在小数末尾添上“0”或去掉“0”,小数的大小不变。
有限小数是小数部分的位数是有限的。
无限小数是小数部分的位数是无限的。
无限循环小数是小数部分的数位有规律的。
无限不循环小数是小数部分没规律,又叫无理数。
纯循环小数是从小数部分第一位开始循环。
混循环小数是不是从小数部分第一位开始循环。
循环节是从小数部分的某一位起,依次不断重复一个或几个数字,这些数字叫做循环节。
三、分数分数是把单位“1”平均分成若干份,表示这样的一份或几分的数。
分数的加减法则是同分母的分数相加减,只把分子相加减,分母不变。
异分母的分数相加减,先通分,然后再加减。
1.分数大小的比较:如果分母相同,则分子大的分数大,分子小的分数小。
如果分母不同,则需要先通分,再进行比较。
如果分子相同,分母大的分数反而小。
2.分数乘法:如果要将一个分数乘以一个整数,只需要将分数的分子乘以整数即可,分母不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
总复习(数与代数概念部分)一、数的意义:1、整数:像—3、—2、—1、0、1、2、3……这样的数统称为整数。
整数的个数是无限的。
没有最小的整数,也没有最大的整数,自然数是整数的一部分。
2、自然数:用来表示物体个数的数。
像1、2、3、4、5……叫做自然数。
一个物体也没有用0表示。
自然数的个数是无限的,最小的自然数是0,没有最大的自然数。
3、小数:把整数“1”平均分成10份、100份、1000份……这样的一份或几份的数是十分之几、百分之几、千分之几……可以用小数表示。
4、小数的分类:(1)纯小数和带小数:整数部分是o的小数叫做纯小数,整数部分不是o的小数叫做带小数。
(2)有限小数和无限小数:小数部分的位数是有限的小数叫做有限小数;小数部分的位数是无限的小数叫做无限小数。
(3)循环小数:一个小数,从小数部分的某一位起一个数字或几个数字依次不断地重复出现,这样的小数叫做循环小数。
(4)循环节:一个循环小数的小数部分,依次不断重复出现的数字叫做这个小数的循环节。
(5)纯循环小数和混循环小数:循环节从小数部分第一位开始的,叫做纯循环小数;循环节不是从第一位开始的,叫做混循环小数。
5、计数单位:个、十、百、千·····以及十分之一、百分之一、千分之一·····都是计数单位。
6、数位:各个计数单位所占的位置叫做数位。
7、十进制计数法:“十进制计数法”是世界各国最常用的一种计数方法。
它的特点是每相邻的两个计数单位之间的进率都是“十”就是10个较低的计数单位可以进成一个较高的计数单位(既通常说的“逢十进一”),这种以“十”为基础进位的计数方法,叫做十进制计数法。
8、整数和小数数位顺序表:9、分数:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
(1)分数单位:把单位“1”平均分成若干份,表示这样的一份的数就是这个分数的分数单位。
(2)分数的分类:真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子等于分母的分数叫做假分数,假分数≧110、百分数:表示一个数是另一个数的百分之几的数叫做百分数,百分数也叫百分率或百分比。
百分数的分数单位是1%。
百分数的分母是100。
11、分数和百分数的关系:分数既可以表示一个数(后面可加数量单位);也可以表示两个数的比(两数之间的关系)。
而百分数只表示一个数占另一个数的百分比(两数之间的关系),不能表示具体的数。
因此百分数不带单位。
12、正数和负数:像1/3、+2、0.5、+4.5…这样的数叫做正数;像―1/2、―5.5、―6…这样的数叫做负数。
(不能认为:一个数的前面加上“+”号这个数就是正数,也不能认为:一个数的前面加上“—”号这个数就是负数)。
比如:“—a”这个数我们就不能判断是负数,因为a可能:是正数、是负数、0都有可能;所以我们无法判断。
自然数是等于或大于0的整数,也可以说是不小于0的整数,既是非负整数。
0既不是正数也不是负数。
二、数的读法和写法。
1、读法:从高位到低位,一级一级的往下读,每一级末尾的0都不读出来,其他数位的连续的几个0都只读一个。
2、写法:从高位到低位,一级一级的往下写,哪一个数位上一个单位也没有,就在那个数为上写0。
(一)、小数的读法与写法:读法:通常是整数部分按整数的读法去读,小数点读作“点”,小数部分按从左向右的顺序只读出数字。
写法:写小数时,整数部分按整数部分的写法去写,小数点写在个位的右下角,小数部分按从左向右的顺序依次写出每一个数位上的数字。
(二)、分数的读法与写法:读法:读分数时,先读分数的分母,再读“分之”最后读分子。
读带分数时,要先读整数部分,再读“又”字,最后按分数部分的读法读分数部分。
(分数线的读法:“分之”),写法:写分数时,要先写分数线,再写分母,最后写分子,写带分数时,要先写整数部分,再写分数部分,整数部分要对其分数线,二者要紧凑。
(三)、百分数的读法与写法:读法:百分数的读法与分数相同。
写法:百分数通常不写成分数形式,而是在原来的分子后面加上百分号“%”来表示。
写百分数时,先写分子,再写百分号。
(四)、数的大小比较:1、整数的大小比较:比较两个整数的大小,首先要看它们的位数,如果位数不相同,那么位数多的那个数就大;如果位数相同,就先从高位比起,相同数位上的数大的那个数就大;2、小数的大小比较:先比较它们的整数部分,整数部分大的那个数就大;整数部分相同的,十分位上数大的那个数就大;十分位上的数字相同,百分位上的数大那个数就大。
…以此类推。
3、分数的大小比较:分母相同的分数,分子大的那个分数就大;(因为分母相同,分数单位就相等,分子大的就意味着含有的分数单位多。
);分子相同的分数相比较,分母小的那个分数大。
(分子相同含有的分数单位数相同,分母小的分数分数单位就大)分子、分母都不同的分数相比较,先通分,转化成同分母分数后,再比较大小。
4、正数和负数的大小比较:负数都比正数小。
0大于一切负数,0小于一切正数。
5、两个负数相比较:如果a>b(a、b均为正数),则-a<-b。
就是在不看负数符号的情况下:数大的那个数反而小。
三、数的性质:1、分数的基本性质:分数的分子和分母同时乘上或者除以相同的数(0除外),分数的大小不变。
(注意:分数的分数单位有变化,分子、分母都有变化)2、约分和通分:把一个分数化成和原分数相等的,且分子分母都比原分数小的的分数叫做约分;把异分母分数分别化成和原分数相等的同分母分数,叫做通分。
3、最简分数:分子和分母只有公因数1的分数叫做最简分数。
4、小数的基本性质:小数的末尾添上或去掉0,小数的大小不变。
(注意:小数的位数有变化,精确度有变化。
)5、小数点的位置移动引起小数的大小变化规律:小数点每向右移动一位、两位、三位···这个数就扩大到原来的10倍、100倍、1000倍···;小数点每向左移动一位、两位、三位···该数就缩小到原数的1/10、1/100、1/1000···。
四、数的改写:1、把多位数改写成以”万“或者以”亿”单位的数。
(1)直接改写:把多位数改写成以”万“或者以”亿”单位的数,先把原来的小数点向左移动4位或者8位,再在数后面加上“万”或“亿”字,中间用“=”连接。
(2)省略尾数改写成近似数:先用“四舍五入法”省略万位或者亿位后面的尾数,再在这个数的后面写上“万”字或者“亿”字。
得出的是近似数,中间用“≈”连接。
2、求小数的近似数:根据要求,要把小数保留到哪一位,就把这一位后面的尾数按照“四舍五入法”省略,中间用“≈”。
3、小数、分数、百分数的互化:小数化成分数方法:先看小数点后面有几位小数,就在1的后面添上几个0做分母,原来的小数去掉小数点后做分子。
能约分的要约成最简分数。
分数化成小数方法:用分子除以分母。
小数化成百分数的方法:把小数的小数点向右移动两位,(位数不足时用0补足)同时在后面添上“%”。
百分数化成小数的方法:把百分数的分子的小数点向左移动两位,同时去掉后面的“%”。
百分数化成分数的方法:先把百分数的改写成分母是100的分数,然后约成最简分数。
分数化成百分数的方法:先把分数化成小数,在把小数化成百分数。
4、判断一个分数能否化成有限小数的方法:一个最简分数,如果分母中除了含有质因数2和5以外,不含有其它质因数,这个分数就能化成有限小数;如果分母中含有了2和5以外的其他质因数,这个分数就不能化成有限小数。
五、数的整除:1、整除:整数a除以整数b(b≠0),除得的商正好是整数且没有余数,我们就说数a能被数b整除。
(也可以说b能整除a)。
2、因数和倍数:如果a×b=c(a、b、c都是非0整数)那么a、b就叫做c的因数,c就叫做a、b的倍数。
一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。
一个数的倍数的个数是无限的,其中最小的倍数是它本身,没有最大的倍数。
3、公因数和最大公因数:几个数的公有的因数,叫做这几个数的公因数;其中最大的一个叫做这几个数的最大公因数。
4、公倍数和最小公倍数:几个数公有的倍数,叫做这几个数的公倍数;其中最小的那个数叫做这几个数的最小公倍数。
5、求两个数的最大公因数的方法:一般采用列举法,就是把两个数的因数一一列举出来,然后找出两个数的公因数,其中最大的那个数就是这两个数最大公因数。
也可以采用短除法。
短除法求最大公因数的方法:把两个数写在的横线上,先用着这两个数的公有质因数做除数,如果两个数的商是互质数,除数就是这两个数的所得的商就是这两个数的最大公因数。
如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数连乘起来,所得的积就是这两个数的最大公因数。
6、求两个数的最小公倍数的方法:一般也采用列举法,把两个数的倍数数根据需要按从小到大的顺序列举一部分,然后找出两个数的公有的倍数,其中最小的那个公倍数就是这两个数的最小公倍数。
也可以采用短除法。
短除法求最小公倍数的方法:把两个数写在的横线上,先用着这两个数的公有质因数做除数,所得的商写在横线下的相对应的位置,如果两个数的商是互质数,就把除数和最后的两个商连乘起来,所得的积就是这两个数的最小公倍数;如果两个数的商不互质,就按照上面的方法继续除,直到两个数的商最后是互质数为止,然后把所有的除数和最后所得商连乘起来,所得的积就是这两个数的最小公倍数。
7、求两个数的最大公因数和最小公倍数的特殊方法:如果两个数中,较大数是较小数的倍数,较小数就是较大数的因数,则较大数是这两个数的最小公倍数;较小数是这两个数的最大公因数。
如果两个数是互质数,则它们的最大公因数是1,最小公倍数是这两个数的乘积。
8、奇数和偶数、在自然数中,是2的倍数的数叫做偶数,不是2的倍数的数叫做奇数,最小的偶数是0,最小的奇数是1。
9、2、5、3的倍数的特征。
(1)2的倍数的特征:个位上是0、2、4、6、8的数都是2的倍数。
(2)5的倍数的特征:个位上是0或5的数都是5的倍数。
(3)3的倍数特征:一个数各个数位上的数字的和是3的倍数,这个数就是3的倍数。
10、质数和合数:一个数,如果只有1和它本身两个因数,这样的数叫做质数(或素数);一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
质数有且只有两个因数,合数至少有三个因数。
1既不是质数也不数合数。
11、质因数与分解质因数:每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的质因数。
把一个合数用质数相乘的形式表示出来,就是分解质因数。