八年级数学下册期中教学质量检测试题

合集下载

人教版八年级下册数学《期中检测试卷》(含答案)

人教版八年级下册数学《期中检测试卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x –2<4C. 1x <2D. 4x –3<2y –72. 在△ABC 中,已知CA =CB ,∠A =45°,BC =5,则AB 的长为( ) A. 2 B. 5 C. 52 D. 253. 不等式3x ≥-的解集在数轴上表示为( ) A. B. C. D.4. 到三角形三条边距离都相等的点是这个三角形的( )A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点5. 等腰三角形的一个角是40°,则它的底角是( ) A. 40° B. 40°或70° C. 80°或70° D. 70° 6. 如果a b >,那么下列不等式中正确是( )A 2323a b +>+ B. 55a b < C. 22a b ->- D. 22a b -<- 7. 下列命题的逆命题是假命题的是( )A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除8. 如图,点D 、E 分别在△ABC 的边AC 、BC 上,且DE 垂直平分AC ,若△ABE 的周长为13,AD =5,则△ABC 的周长是( )A. 18B. 23C. 21D. 269. 对于任意实数a 、b ,定义一种运算:a ※b =ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x >2,则不等式的解为( )A. x >1B. x >2C. x <1D. x <210. 如图,△ABC 是等边三角形,AB=12,点D 是BC 边上任意一点,DE ⊥AB 于点E ,DF ⊥AC 于点F ,则BE+CF 的长是( )A. 6B. 5C. 12D. 8二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号) 13. 如图,已知OA =OB =OC ,BC ∥AO ,若∠A =36°,则∠B 度数为_____.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.三.解答题15. 解不等式:1﹣3(x ﹣1)<8﹣x .16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.23. 如图,△ABC 中,AB =AC ,D 为BC 边中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示: 品名 厂家批发价(元/个)商场零售价(元/个) 篮球 140180 足球 110140(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个? 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明答案与解析一.选择题(共10小题)1. 下列不等式中,属于一元一次不等式的是( )A. 4>1B. 3x–2<4C. 1x<2 D. 4x–3<2y–7[答案]B[解析][分析]根据一元一次不等式的概念,从未知数的次数、个数及不等式两边的代数式是否为整式的角度来解答.[详解]A、不含未知数,错误;B、符合一元一次不等式的定义,正确;C、分母含未知数,错误;D、含有两个未知数,错误.故选B.2. 在△ABC中,已知CA=CB,∠A=45°,BC=5,则AB的长为( )C. D.[答案]C[解析][分析]根据等腰直角三角形的性质利用特殊角的三角函数值求解即可;[详解]解:∵CA=CB,∠A=45°,∴∠B=∠A=45°,∴∠C=90°,∵BC=5,BC=,故选:C.[点睛]本题主要考查了解直角三角形的应用,准确计算是解题的关键.x≥-的解集在数轴上表示为()3. 不等式3A. B. C. D.[答案]A[解析][分析]根据不等式解集的表示方法即可判断.x≥-的解集在数轴上表示为[详解]3故选A.[点睛]此题主要考查不等式解集的表示,解题的关键是熟知不等式的在数轴上的表示方法.4. 到三角形三条边的距离都相等的点是这个三角形的()A. 三条中线的交点B. 三条高的交点C. 三条边的垂直平分线的交点D. 三条角平分线的交点[答案]D[解析]分析]根据角的平分线上的点到角的两边的距离相等可得答案.[详解]解:∵角平分线上的点到角的两边的距离相等,∴到三角形的三边的距离相等的点是三条角平分线的交点.故选:D.[点睛]该题考查的是角平分线的性质,因为角的平分线上的点到角的两边的距离相等,所以到三角形的三边的距离相等的点是三条角平分线的交点.5. 等腰三角形的一个角是40°,则它的底角是( )A. 40°B. 40°或70°C. 80°或70°D. 70°[答案]B[解析][分析]分40︒的角为等腰三角形的顶角和40︒的角为等腰三角形的底角两种情况,再根据三角形的内角和定理、等腰三角形的定义即可得.[详解]根据等腰三角形的定义,分以下两种情况:(1)当40︒的角为等腰三角形的顶角时, 则底角18040702;(2)当40︒的角为等腰三角形的底角时,则底角为40︒;综上,它的底角是40︒或70︒,故选:B .[底角]本题考查了等腰三角形的定义、三角形的内角和定理,依据题意,正确分两种情况讨论是解题关键. 6. 如果a b >,那么下列不等式中正确的是( )A. 2323a b +>+B. 55a b <C. 22a b ->-D. 22a b -<- [答案]A[解析][分析]根据不等式性质解答即可;[详解]解:∵a >b∴22a b >∴2323a b +>+,则A 正确∵a >b∴5a >5b ;22a b -<-;22a b ->-故B 、C 、D 错误 故应选A[点睛]本题考查了不等式的性质来,解答关键是注意不等号改变方向的条件.7. 下列命题的逆命题是假命题的是()A. 同旁内角互补,两直线平行B. 偶数一定能被整除C. 如果两个角是直角,那么这两个角相等D. 如果一个数能被整除,那么这个数也能被整除[答案]C[解析][分析]先写出各命题的逆命题,分析是否为真命题,从而利用排除法得出答案.[详解]解:(1)逆命题为:两条直线被第三条直线所截,如果这两条直线平行,那么同旁内角互补,是真命题;(2)逆命题为:能被2整除的数是偶数,是真命题;(3)逆命题为:如果两个角相等,那么它们是直角,是假命题;(4)逆命题为:如果一个数能被8整除,那么这个数也能被4整除,是真命题.故选C[点睛]此题主要考查了命题的逆命题和命题的真假判断,判断命题的真假关键是要熟悉课本中的性质定理.8. 如图,点D、E分别在△ABC的边AC、BC上,且DE垂直平分AC,若△ABE的周长为13,AD=5,则△ABC 的周长是( )A. 18B. 23C. 21D. 26[答案]B[解析][分析]根据线段垂直平分线性质可得AC=2AD,AE=CE,根据三角形周长得AB+AC=13,故△ABC的周长为AB+BC+AC;[详解]解:∵DE垂直平分AC,AD=5,∴AC=2AD=10,AE=CE,∵△ABE的周长为13,∴AB+BE+AE=AB+CE+BE=AB+AC=13,∴△ABC的周长为AB+BC+AC=13+10=23,故选:B.[点睛]考核知识点:线段垂直平分线.理解线段垂直平分线性质和三角形周长公式是关键.9. 对于任意实数a、b,定义一种运算:a※b=ab﹣a+b﹣2.例如,2※5=2×5﹣2+5﹣2=11.请根据上述的定义解决问题:若不等式2※x>2,则不等式的解为( )A. x>1B. x>2C. x<1D. x<2[答案]B[解析][分析]根据新定义运算的公式计算即可;[详解]解:∵2※x>2,∴2x﹣2+x﹣2>2,解得x>2,故选:B.[点睛]本题主要考查了新定义运算,准确理解和计算是解题的关键.10. 如图,△ABC是等边三角形,AB=12,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F,则BE+CF的长是()A. 6B. 5C. 12D. 8[答案]A[解析][分析]先设BD=x,则CD=20-x,根据△ABC是等边三角形,得出∠B=∠C=60°,再利用三角函数求出BE和CF的长,即可得出BE+CF 的值.[详解]设BD=x ,则CD=20-x ,∵△ABC 是等边三角形,∴∠B=∠C=60°.∴BE=cos60°•BD=2x , 同理可得,CF= 122x -, ∴BE+CF= 12622x x -+=. 故选A .[点睛]本题考查的是等边三角形的性质,及锐角三角函数的知识,难度不大,有利于培养同学们钻研和探索问题的精神.二.填空题(共4小题)11. 将不等式“62x +>-”化为“x a >”的形式为:__________.[答案]8x >-.[解析][分析]将不等式两边同时减去6,即可得到答案.[详解]62x +>-,26x ∴>--,即8x >-,故答案为:8x >-.[点睛]本题考查不等式的基本性质,不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.12. 在△ABC 中,若∠C =90°,∠B =30°,BC =5,则AB 的长为_____.(结果保留根号)[答案 [解析][分析]设AC=x,则AB=2x,再根据勾股定理求出x的值,进而得出结论.[详解]解:如图,设AC=x,∵在△ABC中,∠C=90°,∠B=30°,∴AB=2AC=2x,由勾股定理得:AC2+BC2=AB2,即x2+52=(2x)2,解得:x=533,即AB=2×533=1033,故答案为:1033.[点睛]本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.13. 如图,已知OA=OB=OC,BC∥AO,若∠A=36°,则∠B的度数为_____.[答案]72°[解析][分析]根据OA=OC,得到∠ACO=∠A,又因为BC∥AO,推出∠BCA=∠A,求出∠BCO的度数,再根据OB=OC,得到∠B=∠OCB,即可解决本题.[详解]解:∵OA=OC∴∠ACO=∠A=36°∵BC∥AO∴∠BCA=∠A=36°∴∠BCO=72°∵OB=OC∴∠B=∠OCB=72°故答案为:72°.[点睛]本题主要考查了平行线的性质以及等腰三角形的性质,熟悉平行线以及等腰三角形的性质是解决本题的关键.14. 一个篮球队共打了12场比赛,其中赢的场数比平的场数要多,平的场数比输的场数要多,则这个篮球队贏了的场数最少为_____.[答案]5[解析][分析]设这个篮球队赢了x场,则最多平(x-1)场,最多输(x-2)场,由该篮球队共打12场比赛,即可得出关于x的一元一次不等式,解之取其中的最小值即可得出结论.[详解]解:设这个篮球队赢了x场,则最多平(x﹣1)场,最多输(x﹣2)场,根据题意得:x+(x﹣1)+(x﹣2)≥12,解得:x≥5.∴这个篮球队最少贏了5场.故答案为:5.[点睛]考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.三.解答题15. 解不等式:1﹣3(x﹣1)<8﹣x.[答案]x>﹣2[解析][分析]先去括号,移项,再合并同类项,系数化为1,即可求得不等式的解集.[详解]解:1﹣3(x﹣1)<8﹣x去括号得,1﹣3x+3<8﹣x移项得,﹣3x+x<8﹣3﹣1合并同类项得,﹣2x<4系数化为1得,x>﹣2故此不等式的解集为:x>﹣2.[点睛]本题主要考查不等式的解法,熟练不等式的解法以及注意不等号符号的改变是解决本题的关键.16. 已知:线段AB和AB外一点C.求作:AB的垂线,使它经过点C(要求:尺规作图,保留作图痕迹,不写作法).[答案]详见解析.[解析][分析]根据过直线外一点作一直直线垂线的方法即可得出结论.[详解]解:如图所示,直线CD即为所求.[点睛]本题考查作图-基本作图,解题关键是熟知线段垂直平分线的作法.17. 已知:如图,△ABO是等边三角形,CD∥AB,分别交AO、BO的延长线于点C、D.求证:△OCD是等边三角形.[答案]证明见解析[解析][分析]根据OA=OB,得∠A=∠B=60°;根据AB∥DC,得出对应角相等,从而求得∠C=∠D=60°,根据等边三角形的判定就可证得结论.[详解]解:∵OA=OB,∴∠A=∠B=60°,又∵AB∥DC,∴∠A=∠C=60°,∠B=∠D=60°,∴△OCD是等边三角形.[点睛]本题考查等边三角形的判定.18. 用反证法求证:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,∠1是△ABC的一个外角.求证:∠1=∠A+∠B.[答案]见解析[解析][分析]首先假设三角形的一个外角不等于与它不相邻的两个内角的和,根据三角形的内角和等于180°,得到矛盾,所以假设不成立,进而证明三角形的一个外角等于与它不相邻的两个内角的和.[详解]已知:如图,∠1是△ABC的一个外角,求证:∠1=∠A+∠B,证明:假设∠1≠∠A+∠B,△ABC中,∠A+∠B+∠2=180°,如下图所示:∴∠A+∠B=180°﹣∠2,∵∠1+∠2=180°,∴∠1=180°﹣∠2,∴∠1=∠A+∠B,与假设相矛盾,∴假设不成立,∴原命题成立即:∠1=∠A+∠B.[点睛]本题考查了反证法的运用,反证法的一般解题步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确.19. 已知关于x的方程4(x+2)-5=3a+2的解不大于12,求字母a的取值范围[答案]1a[解析][详解]解:∵4(x+2)-5=3a+2,∴4x+8-5=3a+2∴x=3a-1 4,∴3a-14≤12,∴a≤1.20. 如图,在△ABC中,∠ACB=90°,D为AB边上的一点,∠BCD=∠A=30°,BC=4cm,求AD的长.[答案]6cm.[解析]分析]根据含30度角的直角三角形性质求出BC和BD,再相减即可.[详解]∵△ABC中∠ACB=90°,∠A=30°,BC=4cm,∴AB=2BC=8cm,∠B=60°,∵∠BCD=∠A=30°,∴∠B+∠BCD=60°+30°=90°,∴∠CDB=90°,∴BD=12BC=2cm,∴AD=AB-BD=8cm-2cm=6cm.[点睛]此题考查含30度角的直角三角形性质的应用,解题关键在于掌握在直角三角形中,如果有一个角等于30度,那么它所对的直角边等于斜边的一半.21. 已知x是1+12x+≥2﹣73x+的一个负整数解,请求出代数式(x+1)2﹣4x的值.[答案]9或4[解析][分析]先利用不等式的性质解出不等式,再得出不等式的负整数解,最后将其代入代数式求解即可.[详解]解:不等式去分母得:6+3x+3≥12﹣2x﹣14,移项合并得:5x≥﹣11,解得:x≥﹣2.2,∴不等式的负整数解为﹣2,﹣1,当x=﹣2时,原式=(-2+1)2-4×(-2)=1+8=9;当x=﹣1时,原式=(-1+1)2-4×(-1)=4.故代数式(x+1)2﹣4x的值为9或4.[点睛]本题考查了不等式解法以及求代数式的值,掌握基本运算法则是解题的关键.22. 如图,四边形ABCD中,∠BCD=90°,AD⊥DB,DE=BE,BD平分∠ABC,连接EC,若∠A=30°,DB=4,求EC的长.[答案]27[解析][分析]利用已知得出在Rt△BCD中,∠A=30°,DB=4,在直角△DEC中利用勾股定理进而得出EC的长.[详解]如图,∵AD⊥DB,∠A=30°,∴∠1=60°,∵BD平分∠ABC,∴∠3=∠1=60°,∴∠4=30°,又∵∠BCD=90°,DB=4,∴BC=12BD=2,22BD BC3∴∠CDE=∠2+∠4=90°,∵DE=BE,∠1=60°,∴DE=DB =4, ∴EC=22DE CD +=224(23)+=27.[点睛]此题主要考查了勾股定理、含30度角的直角三角形、角平分线的性质等知识点.解题时须注意勾股定理应用的前提条件是在直角三角形中.23. 如图,△ABC 中,AB =AC ,D 为BC 边的中点,DE ⊥AB .(1)求证:∠BAC =2∠EDB ;(2)若AC =6,DE =2,求△ABC 的面积.[答案](1)见解析;(2)S △ABC =12.[解析][分析](1)根据等腰三角形的性质得到∠DAC =∠DAB ,AD ⊥BC 根据余角的性质即可得到结论;(2)根据三角形的面积公式和三角形的中线把三角形面积分为面积相等的两部分即可得到结论.[详解](1)∵AB =AC ,D 为BC 边的中点∴AD ⊥BC ,12BAD CAD BAC ∠=∠=∠ ∴∠B +∠BAD =90°∵DE ⊥AB∴∠B +∠EDB =90°∴1EDB BAD BAC 2∠=∠=∠ 即∠BAC =2∠EDB(2)∵AB =AC =6,DE =2∴16262ABD S =⨯⨯=∵D为BC边的中点∴S△ADC=S△ADB=6∴S△ABC=12[点睛]本题考查等腰三角形“三线合一”,同角的余角相等.在等腰三角形中,顶角的角平分线,底边的中线,底边的高线,三条线互相重合.熟练掌握这一性质是解决此题的关键.24. 某体育用品商场采购员到厂家批发购进篮球和足球共100个,两种球厂家的批发价和商场的零售价如表所示:(1)若付款总额不得超过12800元,则该采购员最多可购进篮球多少个?(2)若商场把100个球全部售出,为使商场的利润不低于3400元,采购员最少可购进篮球多少个?[答案](1)60只;(2)40个.[解析][分析](1)设采购员购进篮球x个,则足球购进为(100-x)个,根据表格的批发价,列出不等式即可解决本题;(2)设篮球a个,则足球是(100﹣a)个,一个篮球的利润为40元,一个足球的利润为30元,再分别乘对应的数量,相加后大于等于3400,列出不等式,即可解决.[详解]解:(1)设采购员购进篮球x个,根据题意得:140x+110(100﹣x)≤12800解得x≤60所以x的最大值是60.答:采购员最多购进篮球60个;(2)设篮球a个,则足球是(100﹣a)个根据题意得:(180﹣140)a+(140﹣110)(100﹣a)≥3400解得:a≥40则采购员最少可购进篮球40个.答:采购员最少可购进篮球40个.[点睛]本题主要考查了一元一次不等式的应用题,能够读懂题意以及合理的设出未知数是解决本题的关键. 25. 已知:如图,ADC 中, AD CD = , 且//, AB DC CB AB ⊥于, B CE AD ⊥交AD 的延长线于.(1)求证: ;CE CB =(2)如果连结BE ,请写出BE 与AC 的关系并证明[答案](1)详见解析;(2) AC 垂直平分BE[解析][分析](1)证明AC 是∠EAB 的角平分线,根据角平分线的性质即可得到结论;(2)先写出BE 与AC 的关系,再根据题意和图形,利用线段的垂直平分线的判定即可证明.[详解](1)证明:∵AD=CD ,∴∠DAC=∠DCA ,∵AB ∥CD ,∴∠DCA=∠CAB ,∴∠DAC=∠CAB ,∴AC 是∠EAB 的角平分线,∵CE ⊥AE ,CB ⊥AB ,∴CE=CB ;(2)AC 垂直平分BE ,证明:由(1)知,CE=CB ,∵CE ⊥AE ,CB ⊥AB ,∴∠CEA=∠CBA=90°,在Rt △CEA 和Rt △CBA 中,CE CB AC AC =⎧⎨=⎩, ∴Rt △CEA ≌Rt △CBA (HL ),∴AE=AB ,CE=CB ,∴点A 、点C 在线段BE 的垂直平分线上, ∴AC 垂直平分BE .[点睛]本题考查等腰三角形的性质、角平分线的性质、线段垂直平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答.。

八年级下学期数学期中考试试卷含答案(共5套,人教版)

八年级下学期数学期中考试试卷含答案(共5套,人教版)

人教版八年级第二学期期中考试试卷数学试题校区 班级 姓名本试卷考试时间为:90分钟 满分为:100分一、选择题(每题3分,共24分)1.下列各组数据中的三个数,可作为三边长构成直角三角形的是A .4,5,6B .2,3,4C .11,12,13D .8,15,17 2.方程0)1()23(22=++--x x x 的一般形式是A .0552=+-x x B . 0552=++x x C . 05-52=+x x D . 052=+x 3.用配方法解方程2410x x --=,方程应变形为A .2(2)3x +=B .2(2)5x += C .122=-)(x D .2(2)5x -=4.2016年国内某地产公司投资破8亿元,连续两年增长后,2018年国内地产投资破9.5亿元, 设这两年平均地产投资年平均增长率为x ,根据题意,所列方程中正确的是A .819.52=+)(xB .8-19.52=)(xC .9.5218=+)(xD .9.5182=+)(x 5.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,且DE ∥AC ,CE ∥BD ,若AC =2,则四边形OCED的周长为A .16B .8C .4D .25题图 6题图 7题图6.如图,△ABC 中,AB =AC =12,BC =8,AD 平分∠BAC 交BC 于点D ,点E 为AC 的中点,连接DE ,则△CDE 的周长是A .20B .16C .13D .127.如图,在平行四边形ABCD 中,AB=3,AD =5,∠BCD 的平分线交BA 的延长线于点E ,则AE 的长为 A .3 B .2.5 C .2 D .1.58.为了研究特殊四边形,李老师制作了这样一个教具(如下左图):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、 B 与D 两点之间分别用一根橡皮筋拉直固定. 课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如下右图). 观察所得到的四边形,下列判断正确的是 A .∠BCA =45° B .BD 的长度变小 C .AC =BD D .AC ⊥BDA BCDDCBA →二、填空题(每题3分,共24分)9.若关于x 的方程042=-+-a x x 有两个不相等的实数根,写出一个满足条件的整数a 的值:a =____________.10.如下图,作一个以数轴的原点为圆心,长方形对角线为半径的圆弧,交数轴于点A ,则点A 表示的数是____________.11.在平面直角坐标系中,四边形AOBC 是菱形。

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)

2024年人教版八年级数学下册期中考试卷(附答案)一、选择题:5道(每题1分,共5分)1. 下列哪个选项是勾股定理的正确表达?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^22. 在直角三角形中,如果一个角是30度,那么它的对边长度是斜边长度的多少?A. 1/2B. 1/3C. 1/4D. 1/63. 下列哪个选项是平行四边形的性质?A. 对边相等B. 对角相等C. 对角线互相平分D. 所有选项都正确4. 下列哪个选项是正方形的性质?A. 对边平行B. 四个角都是直角C. 对角线相等D. 所有选项都正确5. 下列哪个选项是圆的性质?A. 半径相等B. 直径相等C. 圆心到圆上任意一点的距离相等D. 所有选项都正确二、判断题5道(每题1分,共5分)1. 勾股定理只适用于直角三角形。

()2. 平行四边形的对角线互相平分。

()3. 正方形的对角线相等且互相垂直。

()4. 圆的半径是圆心到圆上任意一点的距离。

()5. 圆的直径是圆上任意两点之间的距离。

()三、填空题5道(每题1分,共5分)1. 勾股定理的表达式是:a^2 + b^2 = ______。

2. 平行四边形的对角线互相平分,所以它的对角线长度是______。

3. 正方形的四个角都是______度。

4. 圆的半径是圆心到圆上______的距离。

5. 圆的直径是圆上______点之间的距离。

四、简答题5道(每题2分,共10分)1. 简述勾股定理的内容。

2. 简述平行四边形的性质。

3. 简述正方形的性质。

4. 简述圆的性质。

5. 简述圆的直径和半径之间的关系。

五、应用题:5道(每题2分,共10分)1. 在直角三角形ABC中,已知AC = 6cm,BC = 8cm,求AB的长度。

2. 在平行四边形ABCD中,已知AB = 10cm,BC = 8cm,求CD的长度。

人教版八年级下册数学《期中检测试题》(含答案)

人教版八年级下册数学《期中检测试题》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的)1. 下列式子中,是分式的是()A.12a-B.3xπ-C. ﹣3xD.2xy+2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<26. 下列说法正确的是()A. 对角线相等四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 358. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 22﹣2C. 23﹣2D. 26﹣49. 若关于x方程333x m mx x++--=3的解为正数,则m的取值范围是()A. m<92B. m<92且m≠32C. m>﹣94D. m>﹣94且m≠﹣3410. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()5 B. 3 C. 213二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-值_____.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ 13. 若分式2||123x x x ---值为0,则x 的值为_____. 14. 如图,点D 是等边△ABC 外部一点,∠ADC =30°,BD =8,则四边形ABCD 面积的最小值为_____.三、解答题(共9小题,计58分)15. 因式分解:(1)x 3﹣8x 2+16x ;(2)x (x 2﹣5)﹣4x .16. 解不等式组253(2)123x x x x +≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来. 17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. 18. 如图,四边形ABCD 中,∠A =∠C =90°,若AB =BC .求证:BD 平分∠ABC .19. 已知在平面直角坐标系中,A (﹣2,0)、B (3,﹣1)、C (2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC ;(2)将△ABC 平移,使得平移后点C 的对应点为原点,A 、B 的对应点分别为A 1,B 1,请作出平移后的△A 1B 1O ,并直接写出平移的距离为 ;(3)将△ABC 绕点A 逆时针旋转90°,得到△AB 2C 2,B 、C 的对应点分别为B 2、C 2,请作出△AB 2C 2,并求出B 2、C 2点的坐标.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=12BC,连接DE,F是AD的中点,连接CF.(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A、B两种品牌消毒酒精捐赠当地医院,已知A品牌消毒酒精每桶的价格比B品牌消毒酒精每桶的价格多20元,用3000元购进A品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A品牌消毒酒精每桶的价格和B品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A,B两种品牌消毒酒精共40桶,其中A品牌消毒酒精的数量不低于B品牌消毒酒精数量的一半,小明有几种购买方案?22. 如图,两个一次函数y=kx+b与y=mx+n的图象分别为直线l1和l2,l1与l2交于点A(1,p),l1与x轴交于点B(﹣2,0),l2与x轴交于点C(4,0)(1)填空:不等式组0<mx+n<kx+b解集为;(2)若点D和点E分别是y轴和直线l2上的动点,当p=32时,是否存在以点A、B、D、E为顶点的四边形是平行四边形?若存在,请求出点E的坐标;若不存在,请说明理由.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.答案与解析一、选择题(共10小题,每小题3分,计30分每小题只有一个选项是符合题意的) 1. 下列式子中,是分式的是( ) A. 12a - B. 3x π- C. ﹣3x D. 2x y + [答案]A[解析][分析]利用分式定义可得答案.[详解]解:A 、12a -的分母含字母,是分式,故此选项符合题意; B 、3x π-的分母不含字母,不是分式,是整式,故此选项不合题意; C 、﹣3x 的分母不含字母,不是分式,是整式,故此选项不合题意; D 、2x y +的分母不含字母,不是分式,是整式,故此选项不合题意; 故选:A .[点睛]本题考查分式的定义,熟练掌握分式的定义是解答本题的关键.判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.注意π不是字母,是常数,所以分母中含π的代数式不是分式,是整式.2. 我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:根据轴对称图形与中心对称图形的概念求解.解:A 、不是轴对称图形,也不是中心对称图形.故错误;B 、轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3. 若a<b,则下列不等式变形正确的是()A. ﹣3a<﹣3bB. a﹣3>b﹣3C. am<bmD. 2a<2b[答案]D[解析][分析]根据不等式的性质逐一进行判断即可.[详解]解:∵a<b,∴﹣3a>﹣3b,故A错误;∵a<b,∴a﹣3<b﹣3,故B错误;∵a<b,当m>0时,am<bm,故C错误;∵a<b,∴2a<2b,故D正确.故选:D.[点睛]本题考查了不等式的性质,掌握知识点是解题关键.4. 如图,在△ABC中,DE是AC的垂直平分线,分别交BC,AC于D,E两点,若∠B=80°,∠C=35°,则∠BAD 的度数为()A. 65°B. 35°C. 30°D. 25°[答案]C[解析][分析]根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.[详解]解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=35°,∵∠B=80°,∠C=35°,∴∠BAC=65°,∴∠BAD=∠BAC﹣∠DAC=65°﹣35°=30°,故选:C.[点睛]本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.5. 已知点A(x+3,2﹣x)在第四象限,则x的取值范围是()A. x>2B. x>﹣3C. ﹣3<x<2D. x<2[答案]A[解析][分析]根据第四象限内点的坐标特征得到3020xx+>⎧⎨-<⎩,然后解不等式组即可.[详解]解:∵点A(x+3,2﹣x)在第四象限,∴30 20 xx+>⎧⎨-<⎩,解得x>2. 故选:A.[点睛]本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6. 下列说法正确的是()A. 对角线相等的四边形是平行四边形B. 一组对边平行,另一组对边相等的四边形是平行四边形C. 一组对边相等,一组对角相等的四边形是平行四边形D. 一组对边平行且相等的四边形是平行四边形[答案]D[解析][分析]根据平行四边形的判定方法分别对各个选项进行判断即可.[详解]解:∵对角线互相平分的四边形是平行四边形,∴选项A不符合题意;∵一组对边平行,另一组对边相等的四边形不一定是平行四边形,∴选项B不符合题意;C、∵一组对边相等,一组对角相等的四边形不一定是平行四边形,∴选项C不符合题意;∵一组对边平行且相等的四边形是平行四边形,∴选项D符合题意;故选:D.[点睛]本题考查了平行四边形的判定;熟练掌握平行四边形的判定方法是解题的关键.7. 如图,平行四边形ABCD的周长为52,对角线AC,BD相交于点O,点E是CD的中点,BD=18,则△DOE的周长是( )A. 22B. 26C. 31D. 35[答案]A[解析][分析]利用平行四边形的性质,三角形中位线定理即可解决问题.[详解]解:∵平行四边形ABCD的周长为52,∴BC+CD=26,∵OD=OB,DE=EC,∴OE+DE=12(BC+CD)=13,∵BD=18,∴OD=12BD=9,∴△DOE的周长为13+9=22.故选:A.[点睛]本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理.8. △ABC与△DBC如图放置,已知,∠ABC=∠BDC=90°,∠A=60°,BD=CD=22,将△ABC沿BC方向平移至△A'B'C'位置,使得A'C边恰好经过点D,则平移的距离是()A. 1B. 2﹣2C. 3﹣2D. 6﹣4[答案]C[解析][分析]过点D作DJ⊥BC于J,根据勾股定理求出BC,利用等腰直角三角形的性质求出DJ、BJ、JC,利用平行线分线段成比例定理求出JC′即可解决问题.[详解]解:过点D作DJ⊥BC于J.∵DB =DC =2∠BDC =90°,∴BC ()()222222+4,DJ =BJ =JC =2,∵∠ABC =90°,∠A =60°,∴∠ACB =30°,∴AC=2AB ,∵AB 2+42=(2AB)2,∴A′B′=AB 43, ∵DJ//A′B′, ∴DJ A B ''=C J C B''', 434C J ', ∴C′J =3∴JB′=4﹣3,∴BB′=2﹣(4﹣3=3 2.故选:C .[点睛]本题考查了平移的性质,直角三角形的性质,等腰三角形的性质,勾股定理,以及平行线分线段成比例定理.9. 若关于x 的方程333x m m x x++--=3的解为正数,则m 的取值范围是( ) A. m <92B. m <92且m≠32C. m >﹣94 D. m >﹣94且m≠﹣34 [答案]B[解析][详解]解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.10. 如图,△ABC中,∠ACB=90°,点D,E分别在BC,AC边上,且AE=4,BD=6,分别连接AD,BF,点M,N 分别是AD,BE的中点,连接MN,则线段MN的长()A. 5B. 3C. 32D. 13[答案]D[解析][分析]取AB的中点F,连接NF、MF,根据直角三角形的性质得到∠CAB+∠CBA=90°,根据三角形中位线定理分别求出MF、NF,以及∠MFN=90°,根据勾股定理计算,得到答案.[详解]解:取AB的中点F,连接NF、MF,△ABC中,∵∠ACB=90°,∴∠CAB+∠CBA=90°, ∵AM=MD,AF=FB,∴MF是△ABD的中位线,∴MF=12BD=3,MF//BC,∴∠AFM=∠CBA,同理,NF=12AE=2,NF//AC,∴∠BFN=∠CAB,∴∠AFM+∠BFN=∠CAB+∠CBA=90°,∴∠MFN=90°,∴MN故选:D.[点睛]本题考查了三角形的中位线,平行线的性质,以及勾股定理等知识,三角形的中位线平行于第三边,并且等于第三边的一半.二、填空题(共4小题,每小题3分,计12分)11. 已知a﹣b=2,则222a bab+-的值_____.[答案]2[解析][分析]根据完全平方公式解答即可.[详解]解:∵a﹣b=2,∴222a bab +-=2222a ab b-+=2 ()2a b -=222=2,故答案为:2.[点睛]本题主要考查了完全平方公式,熟记公式是解答本题的关键.12. 若凸n 边形的内角和为1440°,则从一个顶点出发引的对角线条数是_____ [答案]7[解析][分析]根据凸n 边形的内角和为1440°,求出凸n 边形的边数,即可得出从一个顶点出发可引出(n ﹣3)条对角线.[详解]解:∵凸n 边形的内角和为1440°, ∴(n ﹣2)×180°=1440°,解得:n =10,∴:10﹣3=7.故答案为:7.[点睛]本题考查多边形内角和定理,解题关键是根据多边形内角和定理求出凸n 边形的边数.13. 若分式2||123x x x ---的值为0,则x 的值为_____. [答案]1[解析][分析]根据分子为零列出方程求解,然后验证分母是否为0可得答案.[详解]解:∵分式2||123x x x ---的值为0, ∴|x|﹣1=0,∴x=±1,当x=1时,x 2﹣2x ﹣3=-4≠0,当x=-1时,x 2﹣2x ﹣3=0,∴x =1,故答案为:1.[点睛]本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:①分子的值为0,②分母的值不为0,这两个条件缺一不可.14. 如图,点D是等边△ABC外部一点,∠ADC=30°,BD=8,则四边形ABCD面积的最小值为_____.[答案]163﹣16[解析][分析]过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,根据全等三角形的判定得△ABD≌△ACE,设等边三角形ABC的边长为a,等边三角形ADE的边长为b,根据等边三角形的性质、全等三角形的性质,得到四边形ABCD面积的表达式,进而即可求解.[详解]解:过点D作DE⊥DC,且使得DE=DA,连接AE;过点A作AM⊥CD于点M,如下图所示:∵DE⊥DC,∴∠EDC=90°,∵∠ADC=30°,∴∠EDA=60°,∵DE=DA,∴三角形ADE是等边三角形,∴AD =AE ,∠DAE =60°,∴∠CAE =∠CAD +∠DAE =∠CAD +60°,∵△ABC 是等边三角形,∴AB =AC ,∠BAC =60°,∴∠BAD =∠BAC +∠CAD =60°+∠CAD ,∴∠BAD =∠CAE ,在△ABD 与△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△ACE (SAS ),∴CE =BD ,∵BD =8,∴CE =8,设等边三角形ABC 的边长为a ,等边三角形ADE 的边长为b ,直角三角形DEC 中,CE =8,DE =b ,∴2264DC b =-,在直角三角形AMD 中,∠ADC =30°,AD =b ,∴AM =12b , ∴DM =32b , ∴CM =264b -﹣32b , 在直角三角形ACM 中,222AC AM CM =+,∴222213()(64)22a b b b =+--, ∵ABCD S 四边形=S △ABC +S △ACD =12×a×32 a +12DC·AM=12×a×32a +12×12b×264b -, =222313()(64)422b b b ⎡⎤+--⎢⎥⎣⎦ +14b 264b -==∴当b²=32时,即b=,ABCDS四边形最小值1322⨯16,故答案为:16.[点睛]本题主要考查全等三角形的判定与性质、等边三角形的性质、旋转的性质,解题关键是根据题意求出边之间的关系.三、解答题(共9小题,计58分)15. 因式分解:(1)x3﹣8x2+16x;(2)x(x2﹣5)﹣4x.[答案](1)x(x﹣4)2;(2)x(x+3)(x﹣3).[解析][分析](1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.[详解]解:(1)原式=x(x2﹣8x+16)=x(x﹣4)2;(2)原式=x(x2﹣5﹣4)=x(x+3)(x﹣3).[点睛]此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16. 解不等式组253(2)123x xx x+≤+⎧⎪-⎨≤⎪⎩,并把解集在数轴上表示出来.[答案]﹣1≤x≤3,数轴见解析[解析][分析]先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分即可得到不等式组的解集,然后画数轴表示即可.[详解]解:253(2)123x x x x +≤+⎧⎪⎨-≤⎪⎩①②, 由①式得x≥﹣1,由②得x≤3,所以﹣1≤x≤3, .[点睛]本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.17. 先化简,再求值:(m +252m +-)324m m -÷-,其中m =﹣1. [答案]﹣2m ﹣6,﹣4.[解析][分析] 把m +2看成21m +,先计算括号里面的,再算乘法,化简后代入求值. [详解]解:(m +252m +-)324m m -÷- =(2512m m +--)()223m m-⋅-, ()2224523m m m m---=⋅--, ()()()332223m m m m m-+-=⋅-- =﹣2(m +3)=﹣2m ﹣6,当m=﹣1时,原式=﹣2×(﹣1)﹣6=2﹣6=﹣4.[点睛]本题考查了分式的化简求值.掌握分式的加减乘除运算是关键.18. 如图,四边形ABCD中,∠A=∠C=90°,若AB=BC.求证:BD平分∠ABC.[答案]详见解析[解析][分析]利用HL证明Rt△ABD≌Rt△CBD可得∠ADB=∠CDB,进而证明结论.[详解]证明:∵∠A=∠C=90°,在Rt△ABD和Rt△CBD中,AB=BC,BD=BD,∴Rt△ABD≌Rt△CBD(HL),∴∠ADB=∠CDB,∴BD平分∠ABC.[点睛]本题主要考查全等三角形的判定与性质,证明Rt△ABD≌Rt△CBD是解题的关键.19. 已知在平面直角坐标系中,A(﹣2,0)、B(3,﹣1)、C(2,2),格中每一格表示一个单位长度,请解答以下问题:(1)求作出△ABC;(2)将△ABC平移,使得平移后点C的对应点为原点,A、B的对应点分别为A1,B1,请作出平移后的△A1B1O,并直接写出平移的距离为;(3)将△ABC绕点A逆时针旋转90°,得到△AB2C2,B、C的对应点分别为B2、C2,请作出△AB2C2,并求出B2、C2点的坐标.[答案](1)作图见解析;(2)22;(3)作图见解析;B2(﹣4,4),C2(﹣1,5)[解析][分析](1)根据点的坐标作出三角形即可;(2)分别作出A,B的对应点A1,B1即可;(3)分别作出B,C的对应点B2、C2即可.[详解]解:(1)如图,△ABC即为所求;(2)如图△A1B1O即为所求,平移的距离为22;故答案22.(3)如图△A B2C2即为所求B2、C2点的坐标分别为(﹣4,4),(﹣1,5)[点睛]本题考查了作图-旋转变换,平移变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20. 如图,平行四边形ABCD中,延长BC至E,使得CE=1BC,连接DE,F是AD的中点,连接CF.2(1)求证:四边形CEDF是平行四边形:(2)若AB=8,AD=10,∠B=60°,求四边形ABCF的面积.[答案](1)证明见解析;(2)3[解析][分析](1)由平行四边形的性质得AD//BC,且AD=BC,证出DF=CE,即可得出四边形CEDF是平行四边形;(2)过点D作DH⊥BE于点H,由直角三角形的性质得CH=12CD=4,DH3CH=3由梯形面积公式即可得出答案.[详解](1)证明:在ABCD中,AD//BC,且AD=BC.∵F是AD的中点,∴AF=DF=12 AD.又∵CE=12 BC,∴DF=CE,∵DF//CE,∴四边形CEDF是平行四边形;(2)如图,过点D作DH⊥BE于点H.在ABCD中,∵∠B=60°,AD//BC,∴∠B=∠DCE=60°,CD=AB=8,BC=AD=10, ∴∠CDH=30°,∴CH=12CD=4,DH22843由(1)得:AF=12AD=5,∴四边形ABCF的面积=12(AF+BC)×DH=12(5+10)×33.[点睛]本题考查了平行四边形的判定与性质、勾股定理、含30°角的直角三角形的性质、梯形面积公式等知识;熟练掌握平行四边形的判定与性质是解题的关键.21. “抗击疫情,八方支援”截至2020年2月19日,全国已有278支医疗队、32395名医务人员从各地驰援湖北,小明和爸爸经过商量打算用自己的压岁钱购买A 、B 两种品牌消毒酒精捐赠当地医院,已知A 品牌消毒酒精每桶的价格比B 品牌消毒酒精每桶的价格多20元,用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同.(1)A 品牌消毒酒精每桶的价格和B 品牌消毒酒精每桶的价格各是多少元?(2)小明计划用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半,小明有几种购买方案?[答案](1)A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)5种[解析][分析](1)设B 品牌消毒酒精每桶价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据“用3000元购进A 品牌消毒酒精和用1800元购进B 品牌消毒酒精数量相同”列出方程求解即可;(2)设购买A 品牌消毒酒精m 桶,根据“用不超过1560元的压岁钱购进A ,B 两种品牌消毒酒精共40桶,其中A 品牌消毒酒精的数量不低于B 品牌消毒酒精数量的一半”列出一元一次不等式组,求解即可.[详解]解:(1)设B 品牌消毒酒精每桶的价格为x 元,A 品牌消毒酒精每桶的价格为(x +20)元,根据题意得, 3000180020x x=+, 解得,x =30,经检验:x =30是原分式方程的解,且符合题意,∴x +20=30+20=50,答:A 品牌消毒酒精每桶的价格是50元,B 品牌消毒酒精每桶的价格是30元;(2)设购买A 品牌消毒酒精m 桶,则购买B 品牌消毒酒精(40﹣m )桶,根据题意得,5030(40)15601(40)2m m m m +-≤⎧⎪⎨≥-⎪⎩, 解得,40183m ≤≤ , ∵m 为正整数,∴m =14或m =15或m =16或m =17或m =18,∴共有5种购买方案.[点睛]本题考查了分式方程的应用和一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题意,列出方程和不等式组是解题的关键.22. 如图,两个一次函数y =kx +b 与y =mx +n 的图象分别为直线l 1和l 2,l 1与l 2交于点A (1,p ),l 1与x 轴交于点B (﹣2,0),l 2与x 轴交于点C (4,0)(1)填空:不等式组0<mx +n <kx +b 的解集为 ;(2)若点D 和点E 分别是y 轴和直线l 2上的动点,当p =32时,是否存在以点A 、B 、D 、E 为顶点的四边形是平行四边形?若存在,请求出点E 的坐标;若不存在,请说明理由.[答案](1)1<x <4;(2)E 点为(3,12),(﹣1,52),(﹣3,72). [解析][分析](1)观察图象即可求解; (2)已知点A 、B 、C 时,用待定系数法分别求出直线AB 与AC 的解析式;点A 、B 、D 、E 为顶点的四边形是平行四边形,有三种情况:①四边形ABDE 为平行四边形;②四边形EBDA 是平行四边形;③四边形EBAD 为平行四边形.[详解]解:(1)由图象可知满足0<mx +n <kx +b 的部分为A 点与C 点之间的部分,∴1<x <4;(2)∵p =32, ∴A (1, 32), 将点A 与B 代入y =kx +b ,得3220k b k b ⎧=+⎪⎨⎪-+=⎩,∴121k b ⎧=⎪⎨⎪=⎩,∴y =12x +1, 将点A 与点C 代入y =mx +n ,得3240m n m n ⎧+=⎪⎨⎪+=⎩, ∴122m n ⎧=-⎪⎨⎪=⎩,∴y =﹣12x +2, ①如图1:当四边形ABDE 为平行四边形时,∵E 在直线l 2上,此时,BD ∥AC ,∴BD 所在直线解析式为y =﹣12x ﹣1, ∴D (0,﹣1),∵DE∥AB,∴DE所在直线解析式为y=12x﹣1,∵﹣12x+2=12x﹣1,可得x=3,∴E(3,12);②如图2:当四边形EBDA是平行四边形时, 则有BD∥AC,∴BD所在直线解析式为y=﹣12x﹣1,∴D(0,﹣1),∴AD的直线解析为y=52x+1,∵AD∥BE,∴BE所在直线解析为y=52x+5,∵﹣12x+2=52x+5,解得x=﹣1,∴E(﹣1,52 );③如图3:当四边形EBAD为平行四边形时,设D(0,a),E(m,﹣12m+2),此时AE的中点M的横坐标为12m +,BD中点M的横坐标为﹣1,∴﹣1=12m +,∴m=﹣3,∴E(﹣3,72 );综上所述:满足条件的E点为(3,12),(﹣1,52),(﹣3,72).[点睛]本题考查一次函数的综合应用;熟练掌握代入法求函数解析式,平行四边形的性质与直线平行的关系灵活结合是解题的关键.23. 已知:在△ABC中,AB=AC=5,BC=6,将△ABC绕点C顺时针旋转,得到△A1B1C,旋转角为α(0°≤α≤360°).(1)如图①,当α=60°时,连接A1B交B1C于点D,则A1B的长是;(2)如图②,当点B1在线段BA的延长线上时,求线段AB1的长;(3)如图③,点E是BC上的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,线段EF1的长是否存在最大值和最小值?若存在请求出线段EF1长度的最大值与最小值的差;若不存在,请说明理由.[答案](1)4+33;(2)115;(3)存在;365.[解析][分析](1)根据旋转的性质可知△BCB1是等边三角形,根据线段的垂直平分线的判定得A1B垂直平分线段CB1,利用勾股定理求出BD、A1D即可解决问题;(2)过A作AF⊥BC于F,过C作CE⊥AB于E,利用面积法求出CE的长,根据勾股定理求出BE的长,进而可求线段AB1的长;(3)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.[详解]解:(1)如图1中,∵CB=CB1,∠BCB1=60°,∴△BCB1是等边三角形,∴BC=BB1,∵A1C=A1B1,∴A1B垂直平分线段CB1,∴A1B⊥B1C,B1D=DC.∵△BCB1是等边三角形,BD是高,BC=6,∴∠CBD=30°,∴CD=12BC=3,∴BD =2263-=33, 在Rt △A 1DC 中,A 1D =221AC CD -=2254-=4, ∴A 1B =A 1D +BD =4+33,故答案为4+33;(2)过A 作AF ⊥BC 于F ,过C 作CE ⊥AB 于E ,如图2:∵AB =AC ,AF ⊥BC ,BC =6,∴BF =CF =3,∴AF=2253=4-,∴S △ABC =12BC ×AF=12. ∵B 1C =BC =6, ,CE ⊥AB ,∴B 1B =2BE ,∵EC =2ABC S AB ∆=245, ∴BE=2224186=55⎛⎫- ⎪⎝⎭,则BB 1=365, 故AB 1=365﹣5=115; (3)如图3,过C 作CF ⊥AB 于F ,此时在Rt △BFC 中,∵112 2ABCAB CF S⋅==,∴CF=245,∴CF1=245,如图,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,此时EF1的最小值为245﹣3=95;如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;此时EF1=EC+CF1=3+6=9,∴线段EF1最大值与最小值的差为9﹣95=365.[点睛]此题考查了旋转的性质、等边三角形的判定、等腰三角形的性质、线段的垂直平分线的判定和性质、勾股定理、三角形的面积等知识,关键是根据旋转的性质和三角形的面积公式进行解答.。

人教版八年级下册数学《期中检测题》及答案

人教版八年级下册数学《期中检测题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.使二次根式3a -有意义的的取值范围是( ) A. 3a > B. 3a < C. 3a ≥ D. 3a ≤2.下列各式中,是最简二次根式是( )A. 12 B. 5 C. 18 D. 2a3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为()A. 1B. 3C. 5D. 34.下列运算正确的是( )A. 325+=B. 326⨯=C. 2(31)31-=-D. 225353-=-5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 46.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =,则AB 长为( )A. 2B. 3C. 4D. 438.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A 278cmB. ()24330cm + C. 21210cm D. 22410cm 10.如图,在□ABCD 中,ABAC ,若AB=4,AC=6,则BD 的长是( )A. 11B. 10C. 9D. 811.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD ,并在A 与C 、B 与D 两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC ,用左手向右推动框架至AB ⊥BC (如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A. B. C. D.13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 210D. 814.将四根长度相等细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22二、填空题15.若23a =-,则241a a -+的值为__________.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC 经过两次折叠,得到边AB ,BC ,CA 上的点D ,E ,F .折叠方法如下:如图2,(1)AC 边向BC 边折叠,使AC 边落在BC 边上,得到折痕交AB 于D ;(2)C点向AB 边折叠,使C 点与D 点重合,得到折痕交BC 边于E ,交AC 边于F .则下列结论:①四边形DECF 一定是矩形,②四边形DECF 一定是菱形,③四边形DECF 一定是正方形.其中错误的是__________(填序号)三、解答题20.计算:(1)148(12)3-+ (2)2(221)243-+÷21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n + 2mn ;②当3m =,3n =时,m n + 2mn ;③当12m =,12n =时,m n + 2mn ; ④当4m =,1n =时,m n + 2mn ;⑤当5m =,3n =时,m n + 2mn ;⑥当13m =,12n =时,m n + 2mn ;则关于m n +与2mn 之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值. 25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH与AE的数量关系,并证明.答案与解析一、选择题1.有意义的取值范围是( )A. 3a >B. 3a <C. 3a ≥D. 3a ≤[答案]D[解析][分析]根据二次根式有意义的条件可得30a -≥,再解不等式即可.[详解]由题意得:30a -≥,解得:3a ≤,故选:D .[点睛]本题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 2.下列各式中,是最简二次根式的是( )[答案]B[解析][分析]判断一个二次根式是不是最简二次根式的方法,是逐个检查定义中的两个条件①被开方数不含分母②被开方数不含能开的尽方的因数或因式,据此可解答.[详解](1)A 被开方数含分母,错误.(2)B 满足条件,正确.(3) C 被开方数含能开的尽方的因数或因式,错误.(4) D 被开方数含能开的尽方的因数或因式,错误.所以答案选B.[点睛]本题考查最简二次根式的定义,掌握相关知识是解题关键.3.如图,点E 在正方形ABCD 的边AB 上,若正方形ABCD 的面积是3,2EC =,那么EB 的长为( )A. 1B. 3C. 5D. 3[答案]A[解析][分析] 先根据正方形的性质得出∠B =90°,BC 2=3,然后在Rt △BCE 中,利用勾股定理即可求出EB 的长.[详解]解:解:∵四边形ABCD 是正方形,∴∠B =90°,∴EB 2=EC 2-BC 2,又∵正方形ABCD 的面积=BC 2=3,2EC =, ∴2231EB =-=故选:A .[点睛]本题主要考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.即如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.4.下列运算正确的是( ) 325=326=C. 231)31-=- 225353-=-[答案]B[解析][分析]根据二次根式的性质、运算法则及完全平方公式对各选项进行分析即可.[详解]解:A 、32+无法计算,故此选项不合题意; B 、326⨯=,正确; C 、2(31)3231423-=-+=-,故此选项不合题意; D 、2253164-==,故此选项不合题意.故选:B .[点睛]此题主要考查了二次根式的性质、运算法则及完全平方公式的应用,正确化简二次根式是解题关键. 5.如图,在△ABC 中,AB=3,BC=6,AC=4,点D,E 分别是边AB,CB 的中点,那么DE 的长为( )A. 1.5B. 2C. 3D. 4[答案]B[解析] ∵点,分别是边AB ,CB 的中点,114222DE AC ∴==⨯= .故选B. 6.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A. 90°B. 60°C. 45°D. 30°[答案]C[解析] 试题分析:根据勾股定理即可得到AB,BC,AC 的长度,进行判断即可. 试题解析:连接AC,如图:根据勾股定理可以得到:510.∵525210)2.∴AC 2+BC 2=AB 2.∴△ABC 是等腰直角三角形.∴∠ABC=45°.故选C .考点:勾股定理.7.已知直角三角形ABC 中,30A ∠=,90C =∠,若23AC =则AB 长为( )A. 2B. 3C. 4D. 3[答案]C[解析][分析]根据 cos AC A AB∠=计算. [详解]解:∵∠A=30°,∠C=90°,AC=3 ∴ 3cos cos30,2AC A AB ∠=︒== ∴23 4.3AB == 故选:.[点睛]本题考查了三角函数,熟练运用三角函数关系是解题的关键8.如图所示□ABCD ,再添加下列某一个条件, 不能判定□ABCD 是矩形的是( )A. AC=BDB. AB ⊥BCC. ∠1=∠2D. ∠ABC=∠BCD[答案]C[解析][分析]根据矩形的判定定理逐项排除即可解答. [详解]解:由对角线相等的平行四边形是矩形,可得当AC=BD 时,能判定口ABCD 是矩形;由有一个角是直角的平行四边形是矩形,可得当AB ⊥BC 时,能判定口ABCD 是矩形;由平行四边形四边形对边平行,可得AD//BC ,即可得∠1=∠2,所以当∠1=∠2时,不能判定口ABCD 是矩形; 由有一个角是直角的平行四边形是矩形,可得当∠ABC=∠BCD 时,能判定口ABCD 是矩形.故选答案为C .[点睛]本题考查了平行四边形是矩形的判定方法,其方法有①有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线互相平分且相等的四边形是矩形.9.如图,从一个大正方形中截去面积为230cm 和248cm 的两个正方形,则剩余部分的面积为( )A. 278cmB. (24330cm C. 210cm D. 22410cm [答案]D[解析][分析] 根据题意利用正方形的面积公式即可求得大正方形的边长,则可求得阴影部分的面积进而得出答案.[详解]从一个大正方形中裁去面积为30cm2和48cm2的两个小正方形,+=+,大正方形的边长是30483043留下部分(即阴影部分)的面积是:()2+--=++--=(cm2).304330483083034830482410故选:D.[点睛]本题主要考查了二次根式的应用、完全平方公式的应用,正确求出阴影部分面积是解题关键.10.如图,在□ABCD中,ABAC,若AB=4,AC=6,则BD的长是()A. 11B. 10C. 9D. 8[答案]B[解析][分析]利用平行四边形的性质可知AO=3,在Rt△ABO中利用勾股定理可得BO=5,则BD=2BO=10.[详解]解:∵四边形ABCD是平行四边形,∴BD=2BO,AO=OC=3.在Rt△ABO中,利用勾股定理可得:22+=345∴BD=2BO=10.故选B.[点睛]本题主要考查了平行四边形的性质、勾股定理.解题的技巧是平行四边形转化为三角形问题解决.11.为了研究特殊四边形,李老师制作了这样一个教具(如图1):用钉子将四根木条钉成一个平行四边形框架ABCD,并在A与C、B与D两点之间分别用一根橡皮筋拉直固定,课上,李老师右手拿住木条BC,用左手向右推动框架至AB⊥BC(如图2)观察所得到的四边形,下列判断正确的是( )A. ∠BCA =45°B. AC =BDC. BD 的长度变小D. AC ⊥BD[答案]B[解析][分析]根据矩形的性质即可判断;[详解]解:∵四边形ABCD 是平行四边形,又∵AB ⊥BC ,∴∠ABC =90°,∴四边形ABCD 是矩形,∴AC =BD .故选B . [点睛]本题考查平行四边形的性质.矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.如图,矩形ABCD 中,是BC 中点,作AEC ∠的角平分线交AD 于点,若3AB =,8AD =,则FD 的长度为( )A.B. C. D.[答案]B[解析][分析]求出∠AFE=∠AEF ,推出AE=AF ,求出BE ,根据勾股定理求出AE ,即可求出AF ,即可求出答案[详解]∵四边形ABCD 是矩形,∴AD=BC=8,AD ∥BC ,∴∠AFE=∠FEC ,∵EF 平分∠AEC ,∴∠AEF=∠FEC ,∴∠AFE=∠AEF ,∴AE=AF ,∵E 为BC 中点,BC=8,∴BE=4,在Rt △ABE 中,AB=3,BE=4,由勾股定理得:AE=5,∴AF=AE=5,∴DF=AD−AF=8−5=3故选:B[点睛]本题考查了矩形的性质, 等腰三角形的判定与性质, 直角三角形中利用勾股定理求边长. 13.如图,在四边形ABCD 中,//AD BC ,90D ∠=,8AD =,6BC =,分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A. 42B. 6C. 10D. 8[答案]A[解析][分析]连接FC ,根据基本作图,可得OE 垂直平分AC ,由垂直平分线的性质得出AF =FC .再根据ASA 证明△FOA ≌△BOC ,那么AF =BC =3,等量代换得到FC =AF =3,利用线段的和差关系求出FD =AD -AF =1.然后在直角△FDC 中利用勾股定理求出CD 的长.[详解]解:如图,连接FC ,∵点O 是AC 的中点,由作法可知,OE 垂直平分AC ,∴AF =FC .∵AD ∥BC ,∴∠F AO =∠BCO .在△FOA 与△BOC 中,FAO BCO OA OCAOF COB ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△FOA ≌△BOC (ASA ),∴AF =BC =6,∴FC =AF =6,FD =AD -AF =8-6=2.在△FDC 中,∵∠D =90°,∴CD 2+DF 2=FC 2,∴CD 2+22=62,∴CD =42故选:A .[点睛]本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF 与DF 是解题的关键.14.将四根长度相等的细木条首尾顺次相接,用钉子钉成四边形ABCD ,转动这个四边形可以使它的形状改变.当60B ∠=时,如图(1),测得3AC =;当90B =∠时,如图(2),此时AC 的长为( )A. 32B. 23C. 3D. 22[答案]A[解析][分析] 图(1)中根据有一个角是60°的等腰三角形是等边三角形即可求得BC ,图2中根据勾股定理即可求得正方形的对角线的长.[详解]如图(1)中,连接AC ,∵∠B=60°,AB=BC ,∴△ABC 为等边三角形,∴AC=AB=BC=3,如图(2)中,连接AC ,∵AB=BC=CD=DA=3,∠B=90°,∴四边形ABCD 是正方形,∴22223332AB BC ++=故选:A .[点睛]本题考查了正方形的性质和判定,菱形的性质,勾股定理以及等边三角形的判定和性质,利用等边三角形的判定确定边长是关键.二、填空题15.若23a =-,则241a a -+的值为__________.[答案]0[解析][分析]利用完全平方公式变形得:()224123a a a -+=--,再代入求值即可得到答案.[详解]解:()224123a a a -+=--, ()22323330,=---=-=故答案为:[点睛]本题考查是利用因式分解求代数式的值,同时考查了二次根式的乘法的运算,掌握完全平方公式的变形是解题的关键.16.如图,在平行四边形ABCD 中,65A ∠=,DC DB =,则CDB ∠=__________.[答案]50°[解析][分析]由平行四边形ABCD 中,易得∠C =∠A ,又因为DB =DC ,所以∠DBC =∠C ,根据三角形内角和即可求出CDB ∠.[详解]解:∵四边形ABCD 是平行四边形,∴∠C =∠A =65°,∵DB =DC ,∴∠DBC =∠C =65°,∴180218026550CDB C ∠=︒-∠=︒-⨯︒=︒,故答案为:50°.[点睛]此题是平行四边形的性质与等腰三角形的性质的综合,解题时注意特殊图形的性质应用.17.如图,点P (-2,3),以点O 为圆心,以OP 的长为半径画弧,交x 轴的负半轴于点A ,则点A 的坐标为__________.[答案]()13,0- [解析][分析]根据勾股定理求得PO 的长度,从而确定点A 的坐标.[详解]解:由题意可知:222313OP OA ==+= ∴A 点坐标为:()130-,故答案:()130-,. [点睛]本题考查实数与数轴,掌握勾股定理计算公式,利用数形结合思想解题是关键.18.如图,在菱形ABCD 中,过点C 作CE BC ⊥交对角线BD 于点,且DE CE =,若AB 6=,则DE =_________.[答案2[解析][分析]根据菱形的性质及等腰三角形的性质可知∠BEC=2∠EDC=2∠EBC ,从而可求∠EBC=30°,在Rt △BCE 中可求EC 值,由DE=EC 可求DE 的长.[详解]∵四边形ABCD是菱形,∴CD=BC=AB=6,∴∠EDC=∠EBC,∵DE=CE,∴∠EDC=∠ECD,∴∠BEC=2∠EDC=2∠EBC,在Rt△BCE中,∠EBC+∠BEC=90°,∴∠EBC=30°,∴3BC tan30623EC=⋅︒=⨯=,∴DE=EC=2,故答案为:2.[点睛]本题主要考查了菱形的性质、等腰三角形的判定和性质、解直角三角形的应用;熟练掌握菱形的性质,得出∠EBC=30°是解题的关键.19.在数学课上,老师提出如下问题:如图1,将锐角三角形纸片ABC经过两次折叠,得到边AB,BC,CA上的点D,E,F.折叠方法如下:如图2,(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D;(2)C 点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.则下列结论:①四边形DECF一定是矩形,②四边形DECF一定是菱形,③四边形DECF一定是正方形.其中错误的是__________(填序号)[答案]①③[解析][分析]根据折叠的性质可知,CD和EF互相垂直且平分,即可得到结论.详解]解:连接DF、DE,DC、EF相交于点O,根据折叠的性质得,CD ⊥EF ,且OD=OC ,OE=OF ,∴四边形DECF 是菱形.菱形DECF 因条件不足,无法证明是正方形.故答案为:①③[点睛]本题考察了菱形的判定以及折叠的性质,灵活运用即可.三、解答题20.计算:(114812)3(2)2(221)243+[答案](153;(2)922- [解析][分析](1)先化简成最简二次根式,再根据二次根式加减法法则计算即可;(2)先利用完全平方公式展开,再根据二次根式混合运算法则计算即可得答案. [详解](1481(12)3-+=3323-=533; (2)2(221)243+=28=942+22=922-. [点睛]本题考查了二次根式的运算,熟练掌握运算法则是解题关键.21.(1)如图1,在Rt ABC 中,90C =∠,2BC =,4AC =,求AB 的长.(2)如图2,在ABC 中,3AB =,6AC =,120A ∠=,求BC 的长.[答案](1)25;(2)37[解析][分析](1)根据勾股定理计算,得到答案;(2)作CD ⊥AB 交BA 的延长线于点D ,根据直角三角形的性质求出AD ,根据勾股定理求出CD ,再根据勾股定理计算即可.[详解]解:(1)在Rt △ABC 中,∠C =90°, ∴AB =222242AC BC +=+=25;(2)作CD ⊥AB 交BA 的延长线于点D ,∵∠BAC =120°,∴∠DCA =30°,∴AD =12AC =3,∴CD =22AC AD -=226333-=,∵BD =AD+AB =6,∴在Rt △CDB 中,BC =2237CD BD +=.[点睛]本题考查的是勾股定理、含30°的直角三角形的性质,解题关键在于正确做出辅助线,求线段长度. 22.在平行四边形ABCD 中,用尺规作图ABC ∠的角平分线(不用写过程,留下作图痕迹),交DC 边于点H ,若6BC =,12DH HC =,求平行四边形ABCD 的周长.[答案]30[解析][分析]利用基本作图作BH 平分∠ABC ,则∠ABH =∠CBH ,再利用平行四边形的性质得到CD ∥AB ,AB=CD ,AD=BC=6,接着证明∠CBH =∠BHC 得到CH =BC =6,所以DH=3,然后计算平行四边形ABCD 的周长.[详解]如图,BH 为所作.∵BH 平分∠ABC ,∴∠ABH =∠CBH ,∵四边形ABCD 为平行四边形,∴CD ∥AB ,AB =CD ,AD =BC =6,∴∠ABH =∠BHC ,∴∠CBH =∠BHC ,∴CH =BC =6,∵DH =12CH , ∴DH =3,∴平行四边形ABCD 周长=2(BC+CD )=2×(6+9)=30.[点睛]本题考查了作图-基本作图和平行四边形的性质,等腰三角形的判定和性质.解决本题的关键是熟记平行四边形的性质.23.如图,是ABC ∆的边AC 上一点,//BE AC ,DE 交BC 于点,若FB FC =.(1)求证:四边形CDBE 是平行四边形;(2)若BD AC ⊥,5EF EB ==,求四边形CDBE 的面积.[答案](1)见解析;(2)3[解析][分析](1)首先利用ASA 得出△DCF ≌△EBF ,进而利用全等三角形的性质得出CD =BE ,即可得出四边形CDBE 是平行四边形;(2)由BD ⊥AC ,四边形CDBE 是平行四边形,可推出四边形CDBE 是矩形,由F 为BC 的中点,求出BC ,根据勾股定理即可求得CE ,由矩形面积公式即可求得结论.[详解](1)证明:∵BE ∥AC ,∴∠ACB =∠CBE ,在△DCF 和△EBF 中,DCF EBF FC FBCFD BFE ∠∠⎧⎪=⎨⎪∠∠⎩==, ∴△DCF ≌△EBF (ASA ),∴CD =BE ,∵BE ∥CD ,∴四边形CDBE 是平行四边形;(2)∵BD ⊥AC ,四边形CDBE 是平行四边形,∴四边形CDBE 是矩形,在Rt △CEB 中,F 为BC 的中点,∴BC=DE=2EF=10,∴CE 2=BC 2BE 2=10252=75,∴CE =∴四边形CDBE 的面积=BEEC =.[点睛]本题主要考查了平行四边形的判定,全等三角形的判定与性质,矩形的判定和性质,勾股定理的应用,得出△DCF ≌△EBF 是解题关键.24.(1)填空:(只填写符号:,,><=)①当2m =,2n =时,m n +②当3m =,3n =时,m n +③当12m =,12n =时,m n +④当4m =,1n =时,m n +⑤当5m =,3n =时,m n +⑥当13m =,12n =时,m n +则关于m n +与之间数量关系的猜想是 .(2)请证明你的猜想;(3)实践应用:要制作面积为1平方米的长方形镜框,直接利用探究得出的结论,求出镜框周长的最小值.[答案](1)①=,②=,③=,④>,⑤>,⑥>, m n +≥,≥);(2)见解析;(3)4[解析][分析](1)①-⑥分别代入数据进行计算即可得解;(2)根据非负数的性质,(m n -)2≥0,再利用完全平方公式展开整理即可得证; (3)镜框为正方形时,周长最小,然后根据正方形的面积求出边长,即可得解. 探究证明:根据非负数的性质, [详解](1)①当m =2,n =2时,由于224+=,2224⨯=,所以m n +=2mn ;②当m =3,n =3时,由于336+=,2336⨯=,所以m n +=2mn ;③当m =14,n =14时,由于111442+=,1112442⨯=,所以m n +=2mn ; ④当m =4,n =1时,由于415+=,2414⨯=,所以m n +>2mn ;⑤当m =5,n =12时,由于111522+=,125102⨯=,所以m n +>2mn ; ⑥当m =13,n =6时,由于119633+=,126223⨯=,所以m n +>2mn ; 则关于2m n +与mn 之间数量关系的猜想是m n +≥2mn (≥,≥); (2)证明:根据非负数的性质(m n -)2≥0,∴m2mn +n≥0,整理得,m n +≥2mn ;(3)面积为1平方米的长方形镜框长与宽相等,即为正方形时,周长最小,所以,边长为1,周长为1×4=4.[点睛]本题考查了二次根式的应用,完全平方公式的应用,准确进行运算判断出两个算式的大小关系是解题的关键.25.如图,在四边形ABCD 中,//AD BC ,连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(1)补全图形;(2)求证:DF EF =.[答案](1)见解析;(2)见解析.[解析][分析](1)根据题目连接AC ,按要求分别作出BM 、CN 即可解答;(2)过点D 作DG //AB ,由平行四边形判定和性质可得CE =CE ,DG //CE ,再证明△GDF ≌△CEF (ASA )即可得出结论.[详解](1)解:如图所示:连接AC ,过B 点作AC 的平行线BM ,过C 点作AB 的平行线CN ,BM ,CN 交于点E ,连接DE 交BC 于F .(2)证明:过点D 作DG //AB ,∵AD //BC ,DG //AB ,∴四边形ADGB 是平行四边形,∴AB =DG ,∵BE //AC ,AB //CE ,∴四边形BACE 是平行四边形,∴CE =AB ,DG //CE∴DG =CE ,∠GDF =∠CEF ,∵在△GDF 和△CEF 中,GDF CEF GFD CFE DG CE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△GDF ≌△CEF (AAS ),∴DF =EF .[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等.26.如图,在正方形ABCD 中,E 是边AB 上的一动点(不与点A 、B 重合),连接DE ,点A 关于直线DE 的对称点为F ,连接EF 并延长交BC 于点G ,连接DG ,过点E 作EH ⊥DE 交DG 的延长线于点H ,连接BH . (1)求证:GF=GC ;(2)用等式表示线段BH 与AE 的数量关系,并证明.[答案](1)证明见解析;(2)BH=2AE ,理由见解析.[解析][分析](1)连接DF .根据对称的性质可得AD FD =.AE FE =.证明ADE FDE △≌△,根据全等三角形的性质得到DAE DFE ∠=∠.进而证明Rt DCG △≌Rt DFG △,即可证明.(2)在AD 上取点M 使得AM AE =,连接ME .证明DME ≌EBH △,根据等腰直角三角形的性质即可得到线段BH 与AE 的数量关系.[详解](1)证明:连接DF .∵,关于DE 对称.∴AD FD =.AE FE =.在ADE 和FDE 中.AD FD AE FE DE DE =⎧⎪=⎨⎪=⎩∴ADE FDE △≌△∴DAE DFE ∠=∠.∵四边形ABCD 是正方形∴90A C ∠=∠=︒.AD CD =∴90DFE A ∠=∠=︒∴18090DFG DFE ∠=︒-∠=︒∴DFG C ∠=∠∵AD DF =.AD CD =∴DF CD =在Rt DCG △和Rt DFG △.DC DF DG DG =⎧⎨=⎩∴Rt DCG △≌Rt DFG △∴CG FG =. (2)2BH AE =.证明:在AD 上取点M 使得AM AE =,连接ME .∵四这形ABCD 是正方形.∴AD AB =.90A ADC ∠=∠=︒.∵DAE △≌DFE △∴ADE FDE ∠=∠同理:CDG FDG ∠=∠∴11145222EDG EDF GDF ADF CDF ADC ∠=∠+∠=∠+∠=∠=︒∵DE EH ⊥∴90DEH ∠=︒∴18045EHD DEH EDH ∠=︒-∠-∠=︒∴EHD EDH ∠=∠∴DE EH =.∵90A ∠=︒∴90ADE AED ∠+∠=︒∵90DEH ∠=︒∴90AED BEH ∠+∠=︒∴ADE BEH ∠=∠∵AD AB =.AM AE =∴DM EB =在DME 和EBH △中DM EB MDE BEH DE EH =⎧⎪∠=∠⎨⎪=∠⎩∴DME ≌EBH △∴ME BH =在Rt AME △中,90A ∠=︒,AE AM =.∴ME∴BH .[点睛]本题是四边形的综合题,考查了正方形的性质,轴对称的性质,全等三角形的性质与判定,等腰直角三角形的性质与判定等知识此题综合性较强,难度较大,注意掌握辅助线的作法,注意数形结合思想的应用.。

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。

2. 3x+5y=10,求y的值。

3. 4x2y=6,求x的值。

4. 5x+3y=15,求y的值。

5. 2x4y=8,求x的值。

6. 3x+5y=10,求y的值。

7. 4x2y=6,求x的值。

8. 5x+3y=15,求y的值。

9. 2x4y=8,求x的值。

10. 3x+5y=10,求y的值。

三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。

辽宁省抚顺市新宾县2023-2024学年八年级下学期期中教学质量检测数学试题

辽宁省抚顺市新宾县2023-2024学年八年级下学期期中教学质量检测数学试题

辽宁省抚顺市新宾县2023-2024学年八年级下学期期中教学质量检测数学试题一、单选题1.下列二次根式是最简二次根式的是( )A B C D2x 的取值范围是( )A .1x ≥B .1x ≥-C .1x ≤D .1x ≤- 3.在单位长度为1的正方形网格中,下面的三角形是直角三角形的是( ) A .B .C .D .4.下列说法正确的是( )A .菱形的四个内角都是直角B .矩形的对角线互相垂直C .正方形的每一条对角线平分一组对角D .平行四边形是轴对称图形5.如图,Rt ABC △中,9086C AC CB ∠=︒==,,,AB 的垂直平分线分别交AB ,AC 于点D ,E ,则线段CE 的长为( )A .74B .2C .154D .2546.有一辆装货的汽车,为了方便装运货物,使用了如图所示的钢架,其中90ACB ∠=︒,1.2m AC =,0.9m BC =,则AB 的长为( )A .1.2mB .1.5mC .1.8mD .15m7.如图,AC 和BD 是菱形ABCD 的对角线,若再补充一个条件能使其成为正方形,下列条件:①AC BD =;②AC BD ⊥;③222AB AD BD +=;④ACD ADC ∠=∠,其中符合要求的是( )A .①②B .①③C .②③D .②④8.如图,在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线.若4CD =,则AB 的长为( )A .2B .4C .6D .89.如图,在Rt △ABC 中,90ACB ∠=︒,点D ,E 分别是边AB ,BC 的中点,延长AC 至F ,使12CF AC =,若10AB =,则EF 的长是( )A .4.8B .6C .5D .410.如图,分别以ABC V 的三边AB BC 、,AC 为边向外侧作正方形AFGB .正方形BHLC .正方形ACDE ,连接EF ,再过A 作AK BC ⊥于K .延长KA 交EF 于点M .①BHLO AFGB S S ACDE S +=正方形正方形正方形;②EM MF =;③当3,5,90AB BC BAC ==∠=︒时,20S =阴影部分.其中正确的结论共有( )个.A .0B .1C .2D .3二、填空题11.计算的结果等于.12.在直角坐标系中,点()43P -,到原点的距离是.13与最简二次根式a =.14.如图,在Rt ABC △中,90C ∠=︒,5AB =,3BC =,以点B 为圆心,BC 的长为半径画弧,交AB 于点D ,再以点A 为圆心,AD 为半径画弧,交AC 于点E ,则CE 的长为.15.如图所示,在边长为2的菱形ABCD 中,60DAB ∠=︒,点E 为AB 中点,点F 是AC 上一动点,则EF BF +的最小值为.三、解答题16.计算:2-+-;17.已知1x ,1y ,求代数式22x xy y -+的值.18.如图,长方形ABCD 的长为(1)长方形ABCD 的周长是多少?(2)在长方形ABCD 19.如图,点O 是菱形ABCD 对角线的交点,过点C 作CE OD ∥,过点D 作DE AC ∥,CE 与DE 相交于点E .求证:四边形OCED 是矩形.20.如图,在△ABC 中,AB =4,AC =3,BC =5,DE 是BC 的垂直平分线,DE 分别交BC 、AB 于点D 、E.(1)求证:△ABC 为直角三角形.(2)求AE 的长.21.如图,在四边形ABCD 中,,AB DC AB AD =∥,对角线,AC BD 交于点,O AC 平分BAD ∠,过点C 作CE AB ⊥,交AB 的延长线于点E .(1)求证:四边形ABCD 是菱形.(2)若13,10AB BD ==,求CE 的长.22.某校八年(1)班的小华和小轩学习了“勾股定理”之后,为了测得风筝的垂直高度CE ,他们进行了如下操作:①测得水平距离BD 的长为12米:②根据手中剩余线的长度计算出风筝线BC 的长为20米:③牵线放风筝的小明的身高为1.62米.(1)求风筝的垂直高度CE :(2)如果小明想风筝沿CD 方向再上升4米,则他应该再放出多少来线?23.【三角形中位线定理】已知:在ABC V 中,点D 、E 分别是边AB AC 、的中点.直接写出DE 和BC 的关系;【应用】如图②,在四边形ABCD 中,点E 、F 分别是边AB AD ,的中点,若5BC =,3CD =,2EF =,45AFE ∠=︒.求ADC ∠的度数;【拓展】如图③,在四边形ABCD 中,AC 与BD 相交于点E ,点M ,N 分别为AD BC ,的中点,MN 分别交AC BD 、于点F 、G ,EF EG =.求证:BD AC =.。

人教版数学八年级下册《期中检测题》附答案解析

人教版数学八年级下册《期中检测题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( ) A. B. C. D.2.下列四组线段中,可以构成直角三角形的是( )A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 1,2,3 3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形5. 如图,已知在△ABC中,CD 是AB 边上的高线,BE 平分∠ABC ,交CD 于点E,BC=5,DE=2,则△BCE的面积等于( )A 10 B. 7 C. 5 D. 46.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 27.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则所有正方形的面积的和是( 2)cm .A. 28B. 49C. 98D. 1478.如图,分别以直角ABC 斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论:①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A ①②③ B. ②③④ C. ①③④ D. ①②④二、填空题9.若直角三角形的两直角边的长分别为a 、b ,3a -(b ﹣4)2=0,则该直角三角形的斜边长为_____. 10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .11.如图,在正方形ABCD 的外侧,作等边三角形ADE ,则∠BED =____度.12.如图,□ABCD 的对角线AC 、BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是_______.13.如图:在Rt ABC ∆中,CD 是斜边AB 上中线,若20A ∠=︒,则BDC ∠=_________.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.18.已知:如图,GB =FC ,D 、E 是BC 上两点,且BD =CE ,作GE ⊥BC ,FD ⊥BC ,分别与BA 、CA 的延长线交于点G ,F .求证:GE =FD .19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.20.如图,已知四边形ABCD 是平行四边形,点E 、B 、D 、F 在同一直线上,且BE=DF .求证:AE ∥CF .21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.22.已知:如图,在平行四边形ABCD 中,E 、F 分别为边AB 、CD 的中点,BD 是对角线,AG//DB 交CB 的延长线于G .(1)求证:△ADE ≌△CBF ;(2)若四边形BEDF 是菱形,求证四边形AGBD 是矩形.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.26.如图,在平行四边形ABCD中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在BC 上由点B向点C 出发,速度为每秒2cm;点Q 在边AD上,同时由点D 向点A 运动,速度为每秒1cm ,当点P 运动到点C时,P 、Q 同时停止运动,连接PQ,设运动时间为t秒.(1)当t为何值时四边形ABPQ 为平行四边形?(2)当t为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?(3)连接AP ,是否存在某一时刻t,使∆ABP 为等腰三角形?并求出此刻t的值.答案与解析一、选择题1.下列图形中,是轴对称图形,但不是中心对称图形的是( )A. B. C. D.[答案]B[解析]试题分析:在一个平面内,如果一个图形沿一条直线折叠,直线两旁部分能够完全重合,这样的图形叫做轴对称图形;在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,这样的图形叫做中心对称图形.根据定义可得:A、C、D既是轴对称图形,也是中心对称图形,只有B是轴对称图形,但不是中心对称图形.考点:轴对称图形、中心对称图形.2.下列四组线段中,可以构成直角三角形的是()A. 6,15,17B. 1.5,2,2.5C. 5,10,12D. 12,3[答案]B[解析][分析]根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判断即可.[详解]解:、22261517+≠,该三角形不是直角三角形,不合题意;、222+=,该三角形是直角三角形,符合题意;1.522.5、222+≠,该三角形不是直角三角形,不合题意;51012、222+≠,该三角形不是直角三角形,不合题意.123故选:B[点睛]本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( )A. 88°,108°,88°B. 88°,104°,108°C. 88°,92°,92°D. 88°,92°,88°[答案]D[解析][分析]两组对角分别相等的四边形是平行四边形,根据所给的三个角的度数可以求出第四个角,然后根据平行四边形的判定方法验证即可.[详解]解: 当三个内角度数依次是88°,108°,88°时,第四个角是76°,故A 不是平行四边形; 当三个内角度数依次是88°,104°,108°时,第四个角是60°,故B 不是平行四边形;当三个内角度数依次是88°,92°,92°时,第四个角是88°,而C 中相等的两个角不是对角,故C 不是平行四边形;,当三个内角度数依次是88°,92°,88°时,第四个角是92°,D 中满足两组对角分别相等,故D 是平行四边形. 故选D .[点睛]此题主要考查平行四边形的判定:两组对角分别相等的四边形是平行四边形.注意角对应的位置关系,并不是有两组角相等的四边形就是平行四边形.4.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A. 当AB BC =时,它是菱形B. 当AC BD ⊥时,它是菱形C. 当90ABC ︒∠=时,它是矩形D. 当AC BD =时,它是正方形 [答案]D[解析][分析]根据特殊平行四边形的判定方法判断即可.[详解]解:有一组邻边相等的平行四边形是菱形,A 选项正确;对角线互相垂直的平行四边形是菱形,B 选项正确;有一个角是直角的平行四边形是矩形,C 选项正确;对角线互相垂直且相等的平行四边形是正方形,D 选项错误.故答案为D[点睛]本题考查了特殊平行四边形的判定方法,熟练掌握特殊平行四边形与平行四边形之间的关系是判定的关键.5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE 的面积等于( )A. 10B. 7C. 5D. 4[答案]C[解析] 试题分析:如图,过点E 作EF⊥BC 交BC 于点F,根据角平分线的性质可得DE=EF=2,所以△BCE 的面积等于1152522BC EF ⨯⨯=⨯⨯=,故答案选C .考点:角平分线的性质;三角形的面积公式.6.已知,如图,长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( )A. 6cm 2B. 8 cm 2C. 10 cm 2D. 12 cm 2[答案]A[解析][分析]首先根据翻折的性质得到ED=BE,用AE表示出ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE 的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.[详解]解:∵将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知:AB2+AE2=BE2.∴32+AE2=(9﹣AE)2.解得:AE=4cm.∴△ABE的面积为:12×3×4=6(cm2).故选:A.[点睛]此题主要考查了图形的翻折变换和学生的空间想象能力,解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.7.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则所有正方形的面积的和是(2)cm.A. 28B. 49C. 98D. 147[答案]D[解析][分析]根据勾股定理即可得到正方形A 的面积加上B 的面积等于E 的面积,同理,C,D 的面积的和是F 的面积,E,F 的面积的和是M 的面积.即可求解.[详解]解:根据勾股定理可得:S A +S B =S E ,S C +S D =S M ,S E +S F =S M所以,所有正方形的面积的和是正方形M 的面积的3倍:即49×3=147cm 2.故选D[点睛]理解正方形A,B 的面积的和是E 的面积是解决本题的关键.若把A,B,E 换成形状相同的另外的图形,这种关系仍成立.8.如图,分别以直角ABC 的斜边AB ,直角边AC 为边向ABC 外作等边ABD △和等边ACE △,F 为AB 的中点,DE 与AB 交于点G ,EF 与AC 交于点H ,90ACB ∠=︒,30BAC ∠=︒.给出如下结论: ①EF ⊥AC ; ②四边形ADFE 为菱形; ③4AD AG =; ④14FH BD =; 其中正确结论的是( )A. ①②③B. ②③④C. ①③④D. ①②④[答案]C[解析][分析] 根据已知先判断ABC EFA ∆≅∆,则AEF BAC ∠=∠,得出EF AC ⊥,由等边三角形的性质得出30BDF ∠=︒,从而证得DBF EFA ∆≅∆,则AE DF =,再由FE AB =,得出四边形ADFE 为平行四边形而不是菱形,根据平行四边形的性质得出4AD AG =,从而得到答案.[详解]解:ACE ∆是等边三角形,60EAC ∴∠=︒,AE AC =,30BAC ∠=︒,90FAE ACB ∴∠=∠=︒,2AB BC =, F 为AB 的中点,2AB AF ∴=,BC AF ∴=,ABC EFA ∴∆≅∆,FE AB ∴=,30AEF BAC ∠=∠=︒,又∵60EAC ∠=︒,EF AC ∴⊥,故①正确,EF AC ⊥,90ACB ∠=︒,//HF BC ∴, F 是AB 的中点,12HF BC ∴=, 12BC AB =,AB BD =, 14HF BD ∴=,故④说法正确;AD BD =,BF AF =,90DFB ∴∠=︒,30BDF ∠=︒,90FAE BAC CAE ∠=∠+∠=︒,DFB EAF ∴∠=∠,EF AC ⊥,30AEF ∴∠=︒,BDF AEF ∴∠=∠,()DBF EFA AAS ∴∆≅∆,AE DF ∴=,FE AB =,四边形ADFE 为平行四边形,AE EF ≠,四边形ADFE 不是菱形;故②说法不正确;∵四边形ADFE 为平行四边形,12AG AF ∴=, 14AG AB ∴=, AD AB =,则4AD AG =,故③说法正确,综上所述:正确结论的是①③④.故选.[点睛]本题考查了菱形的判定和性质,以及全等三角形的判定和性质,解决本题需先根据已知条件先判断出一对全等三角形,然后按排除法来进行选择.二、填空题9.若直角三角形的两直角边的长分别为a 、b ,(b ﹣4)2=0,则该直角三角形的斜边长为_____. [答案]5[解析][分析]直接利用偶次方的性质以及二次根式的性质得出a ,b 的值,再利用勾股定理得出斜边长.[详解]()240b -=, 3,4a b ∴==.5=.故答案为5.[点睛]本题主要考查了勾股定理以及二次根式的性质,正确得出a ,b 的值是解题关键.10.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm,则菱形的边长是______cm .[答案[解析]分析:根据菱形的面积公式求出另一对角线的长.然后因为菱形的对角线互相垂直平分,利用勾股定理求出菱形的边长.详解:由菱形的面积公式,可得另一对角线长12×2÷4=6,∵菱形的对角线互相垂直平分,根据勾股定理可得菱形的边长=22cm.23=13故答案为13.点睛:此题主要考查菱形的性质和菱形的面积公式,关键是掌握菱形的两条对角线互相垂直.11.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED=____度.[答案]45[解析][分析]根据正三角形和正方形的性质可得∠EAB=150°,AE=AB,,从而得出∠AEB的大小,进而得出∠BE D的大小.[详解]∵四边形ABCD是正方形,△AED是正三角形∴∠EAD=60°,∠AED=60°,∠DAB=90°,AE=AD=AB∴△AEB是等腰三角形,∠EAB=150°∴∠AEB=∠ABE=15°∴∠BED=45°故答案为:45°[点睛]本题考查正方形和正三角形的性质,解题关键利用正三角形和正方形的性质,得出∠AEB=∠ABE.12.如图,□ABCD的对角线AC、BD交于点O,点E是AD的中点,△BCD的周长为18,则△DEO的周长是_______.[答案]9.[解析][详解]试题分析:解:∵E 为AD 中点,四边形ABCD 是平行四边形,∴DE=AD=BC ,DO=BD ,AO=CO ,∴OE=CD , ∵△BCD 的周长为18,∴BD+DC+BC=18,∴△DEO 的周长是DE+OE+DO=(BC+DC+BD )=×18=9,故答案为9.考点:平行四边形的性质;三角形中位线定理.13.如图:在Rt ABC ∆中,CD 是斜边AB 上的中线,若20A ∠=︒,则BDC ∠=_________.[答案]40︒[解析][分析] 先根据直角三角形斜边中线的性质得出12CD AD AB ==,则有20DCA A ∠=∠=︒,最后利用三角形外角的性质即可得出答案.[详解]∵在Rt ABC ∆中,CD 是斜边AB 上的中线,, ∴12CD AD AB ==.∵20A ∠=︒,∴20DCA A ∠=∠=︒,∴40BDC DCA A ∠=∠+∠=︒.故答案为:40︒.[点睛]本题主要考查直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质,掌握直角三角形斜边中线的性质,等腰三角形的性质和三角形外角的性质是解题的关键.14.生活经验表明:靠墙摆放梯子时,若梯子底端离墙约为梯子长度的13时,则梯子比较稳定.现有一长度为9 m 的梯子,当梯子稳定摆放时,它的顶端能到达8.5 m 高的墙头吗?____(填“能”或“不能”).[答案]不能[解析][分析]根据梯子的长度得到梯子距离墙面的距离,然后用勾股定理求出梯子的顶端距离地面的高度后与8.5比较即可作出判断.[详解]解:∵梯子底端离墙约为梯子长度的13,且梯子的长度为9米, ∴梯子底端离墙约为梯子长度为9×13=3米,==∵8.5<,∴梯子的顶端不能到达8.5米高的墙头.故答案为:不能.[点睛]本题考查了勾股定理的应用,解题的关键是根据习惯和告诉的梯子的长度求出梯子的底端距离墙面的距离.15.给出五种图形:①矩形;②菱形;③等腰三角形(腰与底边不相等);④等边三角形;⑤平行四边形(不含矩形、菱形),其中可用两块能完全重合的含有30°角的三角板拼成的所有图形是________.[答案]①③④⑤[解析][分析]当把完全重合含有30角的两块三角板拼成的图形有三种情况:①把短直角边重合拼图;②把长直角边重合拼图;③把斜边重合拼图;可得六种拼图,进行判断即可.[详解]解:如图,把完全重合的含有30角的两块三角板拼成的图形共有六种情况,其中可以拼出等边三角形,等腰三角形(腰与底边不相等),矩形,平行四边形(不含矩形、菱形).故答案为:①③④⑤.[点睛]本题考查了图形的剪拼接,关键是在解题时要注意分类讨论,得出拼成的所有图形.16.如图,OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 1=2;再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2…依此法继续作下去,得20142015OP P S ∆=____.[答案]20152[解析][分析] 根据勾股定理和已知条件,找出线段长度的变化规律,从而求出2014OP 的长度,然后根据三角形的面积公式求面积即可.[详解]解:∵OP=1,过P 作PP 1⊥OP 且PP 1=1,得OP 12212OP PP +=再过P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2221123OP PP +=又过P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3222234OP P P +=∴P n P n+1=1,OP n 1n +∴P 2014P 2015=1,OP 2014201412015+=∴20142015OP P S ∆=12P 2014P 2015·OP 20142015故答案为:20152.[点睛]此题考查的是利用勾股定理探索规律题,找到线段长度的变化规律并归纳公式是解决此题的关键.三、解答题17.已知一个正多边形内角和比外角和多720°,求此多边形的边数及每一个内角的度数.[答案]8边形,每一个内角为135°[解析][分析]先根据内外角和的关系,得出内角和,再利用内角和公式确定边数,最后得出每一个内角大小.[详解]∵内角和比外角和多720°∴内角和=720°+360°=1080°设多边形的边数为n则:(n-2)×180=1080解得:n=8∵是正多边形∴每个内角=1080135 8︒=︒[点睛]本题考查多边形的内角和公式,解题关键是通过外角和求解出内角和的大小.18.已知:如图,GB=FC,D、E是BC上两点,且BD=CE,作GE⊥BC,FD⊥BC,分别与BA、CA的延长线交于点G,F.求证:GE=FD.[答案]见详解[解析][分析]根据“HL ”证明Rt △GEB ≌Rt △FDC ,问题得证.[详解]解:证明:∵BD=CE ,∴BE=CD ,∵GE ⊥BC ,FD ⊥BC ,∴∠GEB=∠FDC=90°,∵GB =FC ,∴Rt △GEB ≌Rt △FDC ,∴GE =FD .[点睛]本题考查了三角形全等的证明,当三角形为直角三角形时,直角可以作为一个条件应用,也可以考虑用“HL ”进行证明.19.如图,已知菱形ABCD 的对角线相交于点O ,延长AB 至点E ,使BE=AB ,连接CE .∠E =50°,求∠BAO 的大小.[答案]40BAO ∠=︒[解析][分析]先证明四边形BECD 是平行四边形,得到50ABO E ∠=∠=︒,再根据菱形性质得到AC BD ⊥,根据直角三角形两锐角互余得到40BAO ∠=︒.[详解]证明:四边形ABCD 是菱形,AB CD ∴=,//AB CD ,又BE AB =,BE CD ∴=,//BE CD ,四边形BECD 是平行四边形,//BD CE ∴,50ABO E ∴∠=∠=︒,又四边形ABCD 是菱形,AC BD ∴⊥,9040BAO ABO∴∠=︒-∠=︒.[点睛]本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.20.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE∥CF.[答案]AE∥CF(过程见详解)[解析][分析]根据平行四边形的对边相等可得AB=CD,AB∥CD,再根据两直线平行,内错角相等可得∠ABD=∠CDB,然后求出∠ABE=∠CDF,再利用“SAS”证明△ABE和△CDF全等,根据全等三角形对应角相等证明即可.[详解]解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ABD=∠CDB,∴180°﹣∠ABD=180°﹣∠CDB,即∠ABE=∠CDF,在△ABE和△CDF中,∵AB CDABE CDF BE DF=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS).∴∠E=∠F,∴AE∥CF.[点睛]本题考查平行四边形的性质;全等三角形的判定和性质及平行线的判定.21.在如图的方格纸中,△ABC 的三个顶点都在格点上.(1)若111A B C ∆与△ABC 关于点成中心对称,请画出111A B C ∆.(2)求四边形11ABA B 的面积.[答案](1)见解析;(2)14.[解析][分析](1)根据中心对称的定义,找到各点的对应点,然后顺次连接即可;(2)根据平行四边形的面积公式求解即可.[详解](1)如图;(2)由图可知:AB=A 1B 15A 1B=AB 1=7,∴四边形11ABA B 是平行四边形,∴四边形11ABA B 的面积是72⨯=14.[点睛]本题考查了中心对称的性质,以及平行四边形的判定与性质,熟练掌握中心对称的性质是解答本题的关键.22.已知:如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG//DB交CB的延长线于G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求证四边形AGBD是矩形.[答案](1)见详解;(2)见详解.[解析][分析](1)证三角形全等根据边角边即可证明;(2)先证明ADBG是平行四边形再证明有一个角是直角的平行四边形是矩形即可证明;[详解](1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠BAD=∠C,AD//BC,又∵E、F分别为边AB、CD的中点,∴AE=12AB,CF=12CD,∴AE=CF,∴△ADE≌△CBF(SAS);(2)∵AD//BC,AG//DB,∴四边形AGBD是平行四边形,∵四边形BEDF是菱形,∴BE=DE,∵E、F分别为边AB、CD的中点, ∴AE=BE,∴BE=DE=AE,∴∠ADE=∠EAD,∠EDB=∠EBD,∵∠EAD+∠EDA+∠EDB+∠EBD=180°,∴∠EDA+∠EDB=90°,∴∠ADB=90°,∴四边形ADBG是矩形,[点睛]本题考查平行四边形的性质,菱形的性质,矩形的判定和性质,勾股定理等知识,解题的关键是熟练掌握基本知识型.23.如图,铁路MN和公路PQ在点O处交汇,∠QON=30°.公路PQ上A处距离O点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN上沿ON方向以72千米/时的速度行驶时,(1)A处是否会受到火车的影响,并写出理由(2)如果A处受噪音影响,求影响的时间.[答案](1)见解析;(2)16秒.[解析][分析](1)过点A作AC⊥ON,求出AC的长,即可判断是否受影响;(2)设当火车到B点时开始对A处有噪音影响,直到火车到D点噪音才消失,根据勾股定理即可求出BD的长,即可求出影响的时间.[详解](1)如图,过点A作AC⊥ON,AB=AD=200米,∵∠QON=30°,OA=240米,∴AC=120米<200,故受到火车的影响,(2)当火车到B点时开始对A处有噪音影响,此时AB=200,∵AB=200,AC=120,利用勾股定理得出BC=160,同理CD=160.即BD=320米,∴影响的时间为3201620秒.[点睛]此题主要考查勾股定理的应用,解题的关键是熟知勾股定理的应用.24.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)求∠PED的度数.[答案](1)见解析;(2)45°[解析][分析](1)根据正方形的性质四条边都相等可得BC=CD,对角线平分一组对角,可得∠ACB=∠ACD,然后利用“边角边”证明△PBC和△PDC全等,根据全等三角形对应边相等可得PB=PD,然后等量代换即可得证;(2)根据全等三角形对应角相等可得∠PBC=∠PDC,根据等边对等角可得∠PBC=∠PEB,从而得到∠PDC=∠PEB,再根据∠PEB+∠PEC=180°,求出∠PDC+∠PEC=180°,然后根据四边形的内角和定理求出∠DPE=90°,判断出△PDE是等腰直角三角形,根据等腰直角三角形的性质求解即可.[详解](1)∵四边形ABCD是正方形,∴BC=CD,∠ACB=∠ACD,在△PBC和△PDC中,∵BC CDACB ACD PC PC=∠=∠=⎧⎪⎨⎪⎩,∴△PBC≌△PDC(SAS),∴PB=PD,∵PE=PB,∴PE=PD;(2)∵四边形ABCD是正方形,∴∠BCD=90°,∵△PBC≌△PDC,∴∠PBC=∠PDC,∵PE=PB,∴∠PBC=∠PEB,∴∠PDC=∠PEB,∵∠PEB+∠PEC=180°,∴∠PDC+∠PEC=180°,在四边形PECD中,∠EPD=360°−(∠PDC+∠PEC)−∠BCD=360°−180°−90°=90°,又∵PE=PD,∴△PDE是等腰直角三角形,∴∠PED=45°.[点睛]本题主要考查正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质,熟练掌握正方形的性质,三角形全等的判定和性质定理,四边形的内角和等于360°以及等腰直角三角形的性质是解题的关键.25.已知四边形ABCD是正方形,点P在直线BC上,点G在直线AD上(P,G不与正方形顶点重合,且在CD 的同侧),PD=PG,DF⊥PG于点H,交直线AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时.①请直接写出线段DG与PC的数量关系(不要求证明);②求证:四边形PEFD是菱形;(2)如图2,当点P与点G分别在线段BC与线段AD延长线上时,请猜想四边形PEFD是怎样的特殊四边形,并证明你的猜想.[答案](1)①DG=2PC,理由见解析;②见解析;(2)四边形PEFD是菱形,理由见解析.[解析][分析](1)①结论:DG=2PC,如图1中,作PM⊥AD于M.只要证明四边形PMDC是矩形,推出PC=DM,再证明MG=MD即可解决问题.②由四边形PMDC是矩形得CD=PM,由△ADF≌△MPG,推出PG=PF,进而可得DP=PF,再证明DF∥PE,推出四边形PEFD是平行四边形,再结合PD=PE即可证明四边形PEFD是菱形;(2)如图2中,作PM⊥AD于M.则四边形CDMP是矩形,CD=PM,由△ADF≌△MPG,推出DP=PG=PE =PF,再证明DF∥PE,推出四边形PEFD是平行四边形,由PD=PE,即可证明四边形PEFD是菱形.[详解]解:(1)①结论:DG=2PC.理由:如图1中,作PM⊥AD于M.∵四边形ABCD是正方形,∴∠C=∠CDM=∠DMP=90°,AD=CD,∴四边形DCPM是矩形,∴PC=DM,∵PD=PG,PM⊥DG,∴MG=MD,∴DG=2PC.线段DG与PC的数量关系为DG=2PC.②∵四边形CDMP 矩形,∴CD =PM ,∵AD =CD ,∴AD =PM ,∵DF ⊥PG ,∴∠DAF =∠PMG =∠GHD =90°,∴∠ADF +∠AFD =90°,∠ADF +∠PGM =90°,∴∠AFD =∠PGM ,在△ADF 和△MPG 中,AFD PGM FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GMP ,∴DF =PG∵PG =PE =PD ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.(2)结论:四边形PEFD 是菱形.理由:如图2中,作PM ⊥AD 于M .则四边形CDMP 是矩形,CD =PM ,∵∠DAF =∠PMG =∠DHG =90°,∴∠ADF +∠AFD =90°,∠G +∠GDH =90°,∵∠ADF =∠GDH ,∴∠AFD =∠G ,∵AD =CD ,CD =PM ,∴AD =PM ,在△ADF 和△MPG 中,AFD G FAD PMG AD PM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△MPG ,∴DP =PG =PE =PD ,∵∠FHG =∠EPG =90°,∴DF ∥PE ,∴四边形PEFD 是平行四边形,∵PD =PE ,∴四边形PEFD 是菱形.[点睛]本题考查旋转变换、等腰三角形的性质、正方形的性质、全等三角形的判定和性质、菱形的判定等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,属于中考常考题型. 26.如图,在平行四边形 ABCD 中,AB = 6cm ,BC = 12cm ,∠B = 30︒,点P 在 BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点 D 向点 A 运动,速度为每秒1cm ,当点 P 运动到点C 时,P 、Q 同时停止运动,连接 PQ ,设运动时间为t 秒.(1)当t 为何值时四边形 ABPQ 为平行四边形?(2)当t 为何值时,四边形 ABPQ 的面积是四边形 ABCD 的面积的四分之三?(3)连接 AP ,是否存在某一时刻t ,使∆ABP 为等腰三角形?并求出此刻t 的值.[答案](1)当4t =时,四边形ABPQ 是平行四边形;(2)当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在,当3t =333,ABP ∆为等腰三角形[解析][分析](1)利用平行四边形的对边相等得AQ BP =,建立方程求解即可;(2)分别表示出四边形ABPQ 和四边形ABCD 面积,利用面积关系即可求出;(3)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.[详解]解:(1)由P 、Q 的运动方式得:(2)=BP t cm ,DQ t =cm ,∵当点P 运动到点C 时,P 、Q 同时停止运动,∴06t <≤,在平行四边形 ABCD 中,BC = 12cm ,∴12AD BC ==cm ,则(12)=-AQ t cm ,若四边形 ABPQ 为平行四边形,则BP AQ =,即212=-t t ,解得:4t =,∴当4t =时,四边形ABPQ 是平行四边形;(2)如图 1,过点作AE BC ⊥于,在Rt ABE △中,30B ∠=︒,6AB =cm ,3AE ∴=cm ,四边形ABCD 是平行四边形,BC = 12cm ,∴12336=⋅=⨯=ABCD S BC AE cm 2,由(1)得:(2)=BP t cm ,(12)=-AQ t cm ,∴S 四边形ABPQ =113()(212)3(18)222+⋅=+-⨯=+BP AQ AE t t t cm 2, 若四边形ABPQ 的面积是四边形ABCD 的面积的四分之三, 即33183624+=⨯t ,解得:6t =, ∴当6t =时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三;(3)存在某一时刻t ,使ABP △为等腰三角形,若ABP △为等腰三角形,则AB BP =或AP BP =或AB AP =, ①当AB BP =时,则6BP =cm ,即26t =,解得:3t =;②当AP BP =时, 如图 2 ,过作PM 垂直于AB ,垂足为点M ,∵AP BP =,PM ⊥AB , ∴132==BM AB cm , 30B ∠=︒,∴23BP =cm ,则223=t ,解得:3t =,③当AB AP =时,如图3,∵AB AP =,AE BC ⊥,∴E 为BP 中点,则BP =2BE ,在Rt ABE △中,30B ∠=︒,6AB =cm ,AE =3cm , ∴33BE =,263==BP BE ,则263=t 解得:33t =,所以,当3t =3或33,ABP ∆为等腰三角形.[点睛]本题是四边形综合题,主要考查了平行四边形的性质、含30的直角三角形的性质,等腰三角形的定义,解题的关键是熟练运用这些性质和运用分类讨论的思想思考问题.。

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】

八年级数学下册期中测试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( )A .2k <B .2k >C .0k >D .0k <2.已知:将直线y=x ﹣1向上平移2个单位长度后得到直线y=kx+b ,则下列关于直线y=kx+b 的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小3.若正多边形的一个外角是60︒,则该正多边形的内角和为( )A .360︒B .540︒C .720︒D .900︒4.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.对于任意的x 值都有227221x M N x x x x +=++-+-,则M ,N 值为( ) A .M =1,N =3B .M =﹣1,N =3C .M =2,N =4D .M =1,N =46.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm7.关于x 的一元二次方程2(1)210k x x +-+=有两个实数根,则k 的取值范围是( )A .0k ≥B .0k ≤C .0k <且1k ≠-D .0k ≤且1k ≠-8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .9.如图,将△ABC 绕点C 顺时针旋转90°得到△EDC .若点A ,D ,E 在同一条直线上,∠ACB=20°,则∠ADC 的度数是( )A .55°B .60°C .65°D .70°10.如图,AB ∥EF ,CD ⊥EF ,∠BAC=50°,则∠ACD=( )A .120°B .130°C .140°D .150°二、填空题(本大题共6小题,每小题3分,共18分)1.若△ABC 三条边长为a ,b ,c ,化简:|a -b -c |-|a +c -b |=__________.2.已知222246140x y z x y z ++-+-+=, 则()2002x y z --=_______.3.因式分解:a 2-9=_____________.4.如图为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=_________5.如图是一张长方形纸片ABCD ,已知AB=8,AD=7,E 为AB 上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP ),使点P 落在长方形ABCD 的某一条边上,则等腰三角形AEP 的底边长是_____________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x =+-- (2)2531242x x x-=---2.先化简,再求值:2222222a ab b a ab a b a a b-+-÷--+,其中a ,b 满足2(2)10a b -+=.3.已知28x px ++与23x x q -+的乘积中不含3x 和2x 项,求,p q 的值.4.如图,Rt △ABC 中,∠C=90°,AD 平分∠CAB ,DE ⊥AB 于E ,若AC=6,BC=8,CD=3.(1)求DE 的长;(2)求△ADB 的面积.5.如图,某市有一块长为()3a b +米,宽为()2a b +米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座雕像,求绿化的面积是多少平方米?并求出当3,2a b ==时的绿化面积?6.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y (千克)与该天的售价x (元/千克)满足如下表所示的一次函数关系. 销售量y (千克) …34.8 32 29.6 28 … 售价x (元/千克) … 22.6 24 25.2 26 …(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、B7、D8、D9、C10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2b-2a2、03、(a+3)(a ﹣3)4、135°5、56、42.三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =- 2、1a b-+,-1 3、3p =,1q =.4、(1)DE=3;(2)ADB S 15∆=.5、(5a 2+3ab )平方米,63平方米6、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.。

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下册《期中检测试卷》(含答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一、选择题1.若a>b,则下列不等式成立的是( )A. a2>b2B. 1﹣a>1﹣bC. 3a﹣2>3b﹣2D. a﹣4>b﹣32.如图,在Rt△ABD中,∠BDA=90°,AD=BD,点E在AD上,连接BE,将△BED绕点D顺时针旋转90°,得到△ACD,若∠BED=65°,则∠ACE的度数为( )A. 15°B. 20°C. 25°D. 30°3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形4.下列命题是真命题是( )A. 如果x2>0,则x>0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等5.如图,在等边△ABC中,点D、E分别是BC、AB边上的点,且AE=BD,AD与CE交于点F,则∠DFC的度数为( )A. 45°B. 60°C. 65°D. 75°6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24 B. 20 C. D.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. 10.若31x x +-有意义,则x 的取值范围是__. 11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.13.若一个长方形长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.14.如图,在△ABC 中,AB =5,AC =3,AD 、AE 分别是它的角平分线和中线,过点C 作CG ⊥AD ,垂足为点F ,连接EF ,则EF =__.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)19.在平面直角坐标系中,△ABC 位置如图所示,三个顶点的坐标分别为:A (1,2)、B (2,3)、C (3,0).(1)现将△ABC 先向左平移5个单位长度,再向上平移2个单位长度,得到△A 1B 1C 1,请在平面直角坐标系中画出△A 1B 1C 1.(2)此时平移的距离是 ;(3)在平面直角坐标系中画出△ABC 关于点O 成中心对称的△A 2B 2C 2.20.某市为治理污水,需要铺设一段全长为3000m污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).答案与解析一、选择题1.若a >b ,则下列不等式成立的是( )A. a 2>b 2B. 1﹣a >1﹣bC. 3a ﹣2>3b ﹣2D. a ﹣4>b ﹣3[答案]C[解析][分析]根据不等式的基本性质即可判断.[详解]A :当a b < 时不成立,错误;B :0a b <<时不成立,错误;C :符合不等式的基本性质,正确;D :33a b ->- ,错误.故答案选:C[点睛]本题考查不等式的基本性质,理解不等式的基本性质是解题关键.2.如图,在Rt△ABD 中,∠BDA=90°,AD=BD,点E 在AD 上,连接BE,将△BED 绕点D 顺时针旋转90°,得到△ACD ,若∠BED=65°,则∠ACE 的度数为( )A. 15°B. 20°C. 25°D. 30°[答案]B[解析][分析] 根据旋转的性质得出:65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形,从而求解.[详解]∵90BDA ∠=︒,将△BED 绕点D 顺时针旋转90°,得到△ACD ,∠BED=65°∴65BED ACD ∠=∠=︒,EDC ∆是等腰直角三角形∴45ECD ∠=︒∴20ACE ACD ECD ∠=∠-=︒故答案选:B[点睛]本题考查旋转的性质,掌握相关的线段与角度的转换是解题关键.3.一个多边形的内角和与外角和的比为5:2,则这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形[答案]C[解析][分析]根据多边形的外角和为360︒和内角和公式()1802n ︒- 进行求算即可.[详解]∵一个多边形内角和与外角和的比为5:2,且多边形的外角和为360︒∴这个多边形的内角和为900︒∴()1802=900n ︒-︒∴7n =故答案选:C[点睛]本题考查多边形内角和公式与多边形外角和,掌握多边形内角和公式以及多边形的外角和为360︒是解题关键.4.下列命题是真命题的是( )A. 如果x 2>0,则x >0B. 平行四边形是轴对称图形C. 等边三角形是中心对称图形D. 一条直角边相等且另一条直角边上的中线相等的两个直角三角形全等[答案]D[解析][分析]根据不等式的性质、轴对称图形、中心对称图形和全等三角形的判定进行一一判断即可.[详解]A :当0x <时,满足20x >,错误;B :根据轴对称图形的概念知:平行四边形不是轴对称图形,错误;C :根据中心对称图形的概念知:等边三角形不是中心对称图形,错误;D :如图:当,AC DF AG DH ==时:∴()ACG DFH HL ∆≅∆∴CG FH =∴CB FE =∴()ACB DFE SAS ∆≅∆ ,D 正确故答案选:D[点睛]本题考查不等式的性质、轴对称图形、中心对称图形和全等三角形的判定,掌握相关的性质与概念以及判定方法是解题关键.5.如图,在等边△ABC 中,点D 、E 分别是BC 、AB 边上点,且AE =BD ,AD 与CE 交于点F ,则∠DFC 的度数为( )A. 45°B. 60°C. 65°D. 75°[答案]B[解析][分析] 根据题目中的条件判断ABD CAE ∆≅∆,再利用外角定理得出DFC FAC ACF ∠=∠+∠,转化角度从而得出答案.[详解]∵ABC ∆是等边三角形,且AE BD =∴,60AB AC B EAC =∠=∠=︒∴ABD CAE ∆≅∆(SAS)∴BAD ACF ∠=∠∴=60DFC FAC ACF FAC BAD BAC ∠=∠+∠∠+∠=∠=︒故答案选:B .[点睛]本题考查等边三角形的性质以及全等三角形的判定,掌握相关的角度转化是解题关键.6.一项工程,甲独做ah 完成,乙单独做bh 完成,甲、乙两人一起完成这项工程所需的时间为( ) A. 1a b +h B. (a +b )h C. a b ab +h D. ab a b+h [答案]D[解析][分析]设工作总量为单位“1”,分别表示出甲乙的工作效率,再根据工作总量=工作效率×工作时间建立方程即可求解.[详解]解:设工作总量为单位“1”, 设甲、乙两人一起完成这项工程所需的时间为xh∵甲独做ah 完成,乙单独做bh 完成 ∴甲乙的工作效率分别为11,a b根据题意可得:111x a b ⎛⎫+=⎪⎝⎭ 解得:ab x a b=+ 故答案选:D[点睛]本题考查一元一次方程工程问题,将工作总量设为单位“1”以及建立等量关系是解题关键. 7.已知3x y +=,12xy =,则多项式2233+x y 值为( ). A. 24B. 20C.D.[答案]A[解析]试题解析:∵x +y =3,2229x xy y ∴++=, 12xy =, ()223339124.x y ∴+=-=故选A.8.如图,在△ABC 中,∠A=90°,AB=AC=6,点D 是BC 中点,点E 、F 分别在AB 、AC 上,且BE=AF,则四边形AEDF 的面积为( )A. 6B. 7C. 62D. 9[答案]D[解析][分析] 连接AD ,根据等腰直角三角形的性质以及BE=AF 得出ADE CDF ∆≅,将四边形AEDF 的面积转化为三角形ADC 的面积再进行求解.[详解]解:连接AD ,如图:∵∠A=90°,AB=AC=6,点D 是BC 中点,BE=AF∴,45,AE CF BAD B C AD BD DC =∠=∠=∠=︒==∴ADE CDF ∆≅(SAS )∴12AED ADF CFD ADF ADC ABC AEDF S S S S S S S ∆∆∆∆∆∆=+=+==四 又∵166182ABC S ∆== ∴1=92ABC AEDF S S ∆=四 故答案选:D[点睛]本题考查等腰直角三角形的性质以及三角形全等的性质与判定,掌握相关的线段与角度的转化是解题关键.二、填空题9.不等式组21023x x x +>⎧⎨>-⎩的正整数解为__. [答案]1,2[解析][分析]分别解不等式求出公共部分,然后求正整数解.[详解]解:21023x x x +>⎧⎨>-⎩①②由①得:12x >- 由②得:3x < ∴不等式组的解集为:132x -<< ∴正整数解为:1,2故答案为:1,2.[点睛]本题考查一元一次不等式组的整数解,掌握不等式组的求解是解题关键.10.若1x -有意义,则x 的取值范围是__. [答案]x ≥﹣3且x ≠1[解析][分析]根据二次根式和分式有意义的条件进行求算.[详解]二次根式有意义的条件是被开方数是非负数:303x x +≥⇒≥-分式有意义的条件是分母不为零:101x x -≠⇒≠∴x 的取值范围是:3x ≥-且1x ≠故答案为:3x ≥-且1x ≠.[点睛]本题考查了式子有意义的条件,掌握二次根式有意义的条件是被开方数是非负数、分式有意义的条件是分母不为零是解题关键.11.如图,在△ABC 中,∠B =45°,∠C =30°,AB 的垂直平分线分别交BC 、AB 于点D 、E ,AC 的垂直平分线分别交BC 、AC 于点F 、G ,DF =1,则BC =__.[答案]3+3[解析][分析]过点D 作DH AF ⊥交AF 于H,根据∠B =45°,∠C =30°,以及DE,FG 分别为AB,AC 的垂直平分线得出60,30AFD DAF ∠=︒∠=︒,再根据特殊角解直角三角形即可.[详解]过点D 作DH AF ⊥交AF 于H,如图:∵45,30B C ∠=︒∠=︒,DE,FG 分别为AB,AC 的垂直平分线∴,,,AD BD AF FC B BAD C FAC ==∠=∠∠=∠∴60,30AFD DAF ∠=︒∠=︒又∵1DF =∴13,222FH DH AD AH ====∴2AD BD AF FC AH HF ====+=∴BC 的长为:故答案为:[点睛]本题考查垂直平分线的性质以及直角三角形中特殊角的应用,掌握相关的线段与角的转化是解题关键.12.若关于x 的一次函数y =x +3a ﹣12的图象与y 轴的交点在x 轴上方,则a 的取值范围是__.[答案]a >4[解析][分析]根据函数关系式求出与y 轴的交点,再根据图象与y 轴的交点在x 轴上方建立不等式求解.[详解]对于关于x 的一次函数y =x +3a ﹣12令0x =,解得:312y a =-∴该图象与y 轴的交点为()0,312a -又∵图象与y 轴的交点在x 轴上方∴3120a ->解得:4a >故答案为:4a >[点睛]本题考查了一次函数与y 轴的交点特征,掌握一次函数与y 轴的交点求算是解题关键.13.若一个长方形的长、宽分别为a 、b ,周长为12,面积为8,则a 2b +ab 2=__.[答案]48[解析]分析]根据一个长方形长、宽分别为a 、b ,周长为12,面积为8,可以得到a+b 的值和ab 的值,从而可以得到a 2b+ab 2的值.[详解]解:∵一个长方形的长、宽分别为a、b,周长为12,面积为8,∴2(a+b)=12,ab=8,∴a+b=6,ab=8,∴a2b+ab2=ab(a+b)=8×6=48,故答案为:48.[点睛]本题考查因式分解的应用,解题的关键是明确题意,求出a+b的值和ab的值.14.如图,在△ABC中,AB=5,AC=3,AD、AE分别是它的角平分线和中线,过点C作CG⊥AD,垂足为点F,连接EF,则EF=__.[答案]1[解析][分析]首先证明AG=AC,再证明EF是△BCG的中位线,根据EF=12BG即可解决问题.[详解]解:∵∠DAG=∠DAC,AD⊥AFC,∴∠AFC=∠AFG=90°,∴∠AGC+∠GAF=90°,∠ACG+∠CAF=90°, ∴∠AGC=∠ACG,∴AG=AC=3,GF=FC,∵BE=CE,∴EF=12BG=12(ABAG)=12×(53)=1,故答案为:1.[点睛]本题考查三角形中位线定理、等腰三角形的判定和性质、角平分线的定义,中线的定义等知识,解题的关键是根据已知条件证明△AGC 是等腰三角形,属于中考常考题型.15.若x 2﹣mx +9是个完全平方式,则m 的值是__.[答案]±6 [解析][分析]根据完全平方公式:()2222a ab b a b ±+=± 去分类讨论即可.[详解]完全平方公式:()2222a ab b a b ±+=± ∴()2293x mx x -+=±∴6m =±故答案为:6±[点睛]本题考查完全平方公式,掌握相关公式是解题关键.16.如图,在平行四边形ABCD 中,AB =6,AD =9,AF 平分∠BAD 交BC 于点E ,交DC 的延长线于点F ,BG ⊥AF 于点G ,BG =42,EF =12AE ,则△CEF 的周长为__.[答案]8[解析][分析]判断出△ADF 是等腰三角形,△ABE 是等腰三角形,DF 的长度,继而得到EC 的长度,在Rt △BGE 中求出GE ,继而得到AE ,求出△ABE 的周长,根据EF=12AE ,求出EF 即可得出△EFC 的周长. [详解]∵在▱ABCD 中,AB=CD=6,AD=BC=9,∠BAD 的平分线交BC 于点E ,∴∠BAF=∠DAF ,∵AB ∥DF ,AD ∥BC ,∴∠BAF=∠F=∠DAF ,∠BAE=∠AEB ,∴AB=BE=6,AD=DF=9,∴△ADF 是等腰三角形,△ABE 是等腰三角形,∵AD ∥BC ,∴△EFC 是等腰三角形,且FC=CE ,∴EC=FC=9﹣6=3,在△ABG 中,BG ⊥AE ,AB=6,BG=,∴=2,∴AE=2AG=4, 又∵12EF AE =, ∴EF=2,∴△CEF 的周长为EF+CE+CF=2+3+3=8.故答案为:8.[点睛]本题考查等腰三角形的判定与性质;平行四边形的性质和勾股定理的应用. 三、解答题17.(1)解不等式组:()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩(2)先化简再求值:2224224422a a a a a a a ⎛⎫-+-÷ ⎪-+--⎝⎭,请从0,1,2中选择一个合适的数作为a 的值. [答案](1)﹣1≤x <2;(2)12a +,13[解析][分析](1)分别解每一个不等式,再求出公共部分;(2)先将式子进行化简,再代入求值.[详解](1)()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩①② 由①得:()()2213516x x --+≤ ,解得:1x ≥- ;由②得:2x <∴不等式组的解集为:12x -≤<(2)原式=()()()()22222222a a a a a a a ⎡⎤-+--⨯⎢⎥-+-⎢⎥⎣⎦=()222a a a a a -⨯-+ =12a + 根据题意:不能取0,2 ∴当1a =时,原式=11=1+23 [点睛]本题考查一元一次不等式组以及分式的化简求值,注意分式化简求值最终取值需满足分母不为零. 18.分解因式:(1)(x 2+x )2﹣(5x +9)2 (2)(m ﹣1)3﹣2(1﹣m )2+(m ﹣1)[答案](1)(x +3)2(x 2﹣4x ﹣9);(2)(m ﹣1)(m ﹣2)2[解析][分析](1)利用平方差公式进行因式分解,即可得到答案;(2)先提公因式,然后利用完全平方公式进行因式分解,即可得到答案.[详解]解:(1)原式=(x 2+x +5x +9)(x 2+x ﹣5x ﹣9)=(x +3)2(x 2﹣4x ﹣9);(2)原式=(m ﹣1)[(m ﹣1)2﹣2(m ﹣1)+1]=(m ﹣1)(m ﹣2)2.[点睛]本题考查了因式分解,解题的关键是熟练掌握提公因式、平方差公式、完全平方公式进行因式分解.19.在平面直角坐标系中,△ABC的位置如图所示,三个顶点的坐标分别为:A(1,2)、B(2,3)、C(3,0).(1)现将△ABC先向左平移5个单位长度,再向上平移2个单位长度,得到△A1B1C1,请在平面直角坐标系中画出△A1B1C1.(2)此时平移的距离是;(3)在平面直角坐标系中画出△ABC关于点O成中心对称的△A2B2C2.[答案](1)见解析;(229[解析][分析](1)利用点平移的坐标规律写出点A、B、C平移后的对应点A1、B1、C1,然后描点即可得到△A1B1C1.(2)利用勾股定理计算;(3)利用关于原点对称的点的坐标特征写出点A、B、C的对应点A2、B2、C2,然后描点即可得到△A2B2C2.[详解]解答:解:(1)如图,△A1B1C1为所作;(2)225229+=29(3)如图,△A2B2C2为所作.[点睛]本题考查了作图−旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了平移变换.20.某市为治理污水,需要铺设一段全长为3000m的污水排放管道,为了尽量减少施工对城市交通所造成的影响,实际施工时每天的工效比原计划增加25%,结果提前天完成这一任务,实际每天铺设多长管道?[答案]实际每天铺设25m长管道.[解析]试题分析:解:设原计划每天铺设x m管道,则实际每天铺设5 (125%)4x x +=,故300030003054x x-=,解得x=20.经检验,x=20是原方程的解,且符合题意,5254x∴=,∴实际每天铺设25m长管道.考点:分式方程应用点评:本题难度中等,主要考查学生运用分式方程解决工程问题的实际应用能力.注意检验增根情况.21.暑假期间,两名家长计划带领若干名学生去旅游,他们联系了报价均为每人1000元的两家旅行社,经协商,甲旅行社的优惠条件是:两名家长全额收费,学生都按七折收费;乙旅行社的优惠条件是家长、学生都按八折收费.假设这两位家长带领x名学生去旅游,他们应该选择哪家旅行社?[答案]①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社[解析][分析]设甲旅行社的收费为y1,乙旅行社的收费为y2,然后讨论:若y1>y2,y1=y2,y1<y2,分别求出对应的x的取值范围,即可判断选择哪家旅行社.[详解]解:设甲旅行社的收费为y1,乙旅行社的收费为y2,根据题意得,y1=2×1000+0.7×1000x=700x+2000,y2=(x+2)×0.8×1000=800x+1600,若y1>y2,即700x+2000>800x+1600,解得x<4;若y1=y2,即700x+2000=800x+1600,解得x=4;若y1<y2,即700x+2000<800x+1600,解得x>4.∴①当这两位家长带领的学生数少于4人去旅游,他们应该选择乙家旅行社;②当这两位家长带领的学生数为4人去旅游,他们选择甲、乙两家旅行社一样;③当这两位家长带领的学生数多于4人去旅游,他们应该选择甲家旅行社.[点睛]本题考查了一次函数的应用:根据题意列出一次函数关系式y=kx+b(k≠0),然后比较函数值的大小得到对应的x的取值范围,从而确定省钱的方案.22.如图,在△ABC中,∠ACB=90°,CD⊥AB垂足为D,AE平分∠CAB交CD于点F,交BC于点E,EH⊥AB,垂足为H,连接FH.求证:(1)CF=CE(2)四边形CFHE是平行四边形.[答案](1)见解析;(2)见解析.[解析][分析](1)利用垂直的定义结合角平分线的性质以及互余的性质得出∠4=∠5,进而得出答案;(2)根据题意分别得出CF∥EH,CF=EH,进而得出答案.[详解]证明(1)如图所示:∵∠ACB=90°,CD⊥AB垂足为D,∴∠1+∠5=90°,∠2+∠3=90°,又∵∠AE平分∠CAB,∴∠1=∠2,∴∠3=∠5,∵∠3=∠4,∴∠4=∠5,∴CF=CE;(2)∵AE平分∠CAB,CE⊥AC,EH⊥AB,∴CE=EB,由(1)知,CF=CE,∴CF=EH,∵CD⊥AB,EH⊥AB,∴∠CDB=90°,∠EHB=90°,∴∠CDB=∠EHB,∴CD∥EH,即CF∥EH,∴四边形CFHE是平行四边形.[点睛]本题考查了平行四边形的性质、角平分线性质等知识点的应用,熟练应用等腰三角形的性质是解题关键.23.如图,在△ABC中,∠ACB=90°,AC=BC,D为BC中点,DE⊥AB,垂足为点E,过点B作BF∥AC交DE的延长线于点F,连接CF、AF、AD,AD与CF交于点G.(1)求证:△ACD≌△CBF;(2)AD与CF的关系是;(3)求证:△ACF是等腰三角形;(4)△ACF可能是等边三角形吗? (填“可能”或“不可能”).[答案](1)见解析;(2)AD=CF,且AD⊥CF;(3)见解析;(4)不可能[解析][分析](1)∠CAB=∠CBA=45︒,且BF∥AC,则∠FBE=∠CAB=45︒,则∠DBF=90︒,又DE⊥AB,则∠BDE=45︒,则△BDF为等腰直角三角形,∴DB=BF,又D为BC中点,所以CD=BF.即可证明△ACD≌△CBF.(2)由△ACD≌△CBF可判断,AD=CF,又∠CAD=∠BCF,则∠CGD=90︒,所以AD⊥CF.(3)由(1)知AB垂直平分DF,由三线合一知△ADF是等腰三角形,则AD=AF,由(2)知AD=CF,所以AF=CF,即可证明.(4)在Rt△A C D中易知,AD>AC,又AD=AF=CF,所以△ACF不可能是等边三角形.[详解](1)证明:∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵BF∥AC,∴∠FBE=∠CAB=45°,∴∠CBF=90°,又DE⊥AB,∴∠FDB=45°,∴∠DFB=45°,∴BD=BF,又D为BC中点,∴CD=BF,在△ACD和△CBF中,CD BF ACD CBF AC BC =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF ;(2)∵△ACD ≌△CBF ,∴AD =CF ,∠CAD=∠BCF ∴∠CAD+∠CDA=∠BCF+∠CDA=90︒ ∴AD ⊥CF故答案为:AD =CF 且AD ⊥CF ;(3)由(2)知∵DF ⊥AE ,DE =EF ,由三线合一可知,△ADF 是等腰三角形 ∴AD =AF ,∵AD =CF ,∴AF =CF ,∴△ACF 是等腰三角形;(4)在Rt △ACF 中,AC <AD , 由(2)知,AD=AF∴AC <AF ,∴△ACF 不可能是等边三角形, 故答案为:不可能.[点睛]本题考查了三角形的全等的判定和性质,等腰三角形的判定等知识点,熟练掌握相关知识点是解题关键.。

(试卷)2023-2024学年度八年级第二学期期中试试卷

(试卷)2023-2024学年度八年级第二学期期中试试卷

2023—2024学年度第一学期期中教学质量评估八年级数学(试卷)一、选择题(本大题10小题,每小题3分,共30分)1.下列数字中,属于最简二次根式的是(▲)A .23aB .10C .12D .312.以下列四组数为一个三角形的边长,其中能构成直角三角形的是(▲)A .2,2,3B .6,8,10C .6,7,9D .4,4,53.一场暴雨过后,垂直于地面的一棵树在距地面2m 处折断,树尖恰好碰到地面,经测量树根与倒后的树尖的距离是4m ,则树高为(▲)A .m B .m C .(23+2)m D .+2)m4.下列条件中能判定四边形ABCD 是平行四边形的是(▲)A .∠A =∠B ,∠C =∠DB .AB =AD ,CB =CDC .AB =CD ,AD =BC D .AB ∥CD ,AD =BC5.已知直角三角形两边的长为3和4,则此三角形的周长为(▲).A.12B .7+C .12或7+D .以上都不对6.如图,正方形ABCD 中,AE 垂直于BE ,且AE =3,BE =4,则阴影部分的面积是(▲)A .16B .18C .19D .21第6题图第7题图第8题图第9题图7.如图,在平行四边形ABCD 中,AD =2AB ,CE 平分∠BCD 交AD 边于点E ,且AE =3,则AB 的长为(▲)A .4B .3C .D .28.如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,若AE =4,AF =6,平行四边形ABCD 的周长为40.则平行四边形ABCD 的面积为(▲)A .24B .36C .40D .489.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点D 落在点D ′处,则重叠部分△AFC 的面积为(▲)A .6B .8C .10D .1210.如图,在四边形ABCD 中,∠ABC =90°,AD ∥BC ,AE ∥CD 交BC 于E ,AE 平分∠BAC ,AO =CO ,AD =DC =2,下面结论:①AC =2AB ;②AB =3;③S △ADC =2S △ABE ;④BO ⊥AE .其中正确的有(▲)A .1个B .2个C .3个D .4个二、填空题(本大题5小题,每小题3分,共15分)11x 的取值范围为▲;12.在湖的两侧有A ,B 两个消防栓,为测定它们之间的距离,小明在岸上任选一点C ,并量取了AC 中点D 和BC 中点E 之间的距离为16米,则A ,B 之间的距离应为▲米.第10题图第12题图第13题图第15题图13.如图,以Rt △ABC 的三边向外作正方形,若最大正方形的边长为6cm ,以AC 为边的正方形的面积为25,则AB 长为▲.14.已知菱形的两条对角线长分别为4和9,则菱形的面积为▲.15.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC =2,CE =6.H 是AF 的中点.那么CH 的长▲.三、解答题(一)(本大题3小题,每小题8分,共24分)16.计算:()1011 3.142π-⎛⎫----- ⎪⎝⎭17.如图,在平行四边形ABCD 中,E ,F 分别是AD,BC的中点,求证:四边形AFCE 是平A B C DEF G H K行四边形.18.小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多了1m ,当他把绳子的下端拉开5m 后,发现下端刚好接触地面,求旗杆的高。

人教版八年级下册数学《期中检测试题》附答案解析

人教版八年级下册数学《期中检测试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各式:3,2x ,32,2)2(x x +≥-其中二次根式的个数为( )A. B. C. D.2. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 3 3. 下列计算正确是( )A. 239-=B. ()233=C. ()233-=-D. 239=4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形5. 下列命题中,真命题是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 247. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π 8. 计算:()910232()3+⨯-=( ) A. 23+ B. 23- C. 23-+ D. 23--9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 83D. 310. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A. B. C. D.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.12. 若实数a 、b 满足240a b ++-=,则a b=_____. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.16. 如图,小明在A 时测得某树的影长为2m,B 时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.18. 如图,ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?22. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC 的面积.(2)在图2中画△DEF ,DE 、EF 、DF 三边的长分别为2、8、10①判断三角形形状,说明理由.②求这个三角形的面积.(直接写出答案)23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F 分别是梯形ABCD 的两腰AB 和CD 的中点,即EF 为梯形ABCD 的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.答案与解析第I卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.x≥-其中二次根式的个数为()2)A. B. C. D.[答案]C[解析][分析]根据二次根式的定义逐一进行判断即可得答案.[详解∵x2≥0,x≥-是二次根式,x≥-,∵x≥-2,∴x+2≥0,2)2)综上二次根式有三个,故选C.a≥的式子是二次根式是解题的关键.[点睛]本题考查了二次根式的判断,)02. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. , 3[答案]B[解析]试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3. 下列计算正确的是( )A. 239-=B. ()233=C. ()233-=-D. 239=[答案]B[解析][分析]根据二次根式运算法则即可求解.[详解]A .23-,二次根号下不能为负,故A 选项错误B .()233=,故B 选项正确 C .()233-=,故C 选项错误D .233=,故D 选项错误故选:B[点睛]本题考查了二次根式的运算法则,二次根式的性质,被开方数要大于零.4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 [答案]A[解析][分析]连接BD 、AC ,根据中位线定理可得四边形是平行四边形,即可得到结果;[详解]如图所示,连接AC 、BD ,∵E 、F 、G 、H 是四边形ABCD 各边的中点,∴∥∥EH BD FG ,12EH FG BD ==, ∴四边形EFGH 是平行四边形,故答案选A .[点睛]本题主要考查了中点四边形的知识点,准确构造三角形,借助中位线求解是解题的关键. 5. 下列命题中,真命题的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形[答案]D[解析][分析]根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.[详解]对角线互相垂直且平分的四边形是菱形,故A 是假命题;对角线互相垂直平分且相等的四边形是正方形,故B 是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .[点睛]本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24[答案]B[解析][分析] 根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的14,再由平行四边形的面积得出答案即可.[详解]∵四边形ABCD 为平行四边形,∴OA =OC ,OB =OD ,∴111646244BOC ABC ABCD S S S ===⨯⨯=, 故选:B .[点睛]本题考查了平行四边形的面积和性质,解题的关键是掌握平行四边形的性质:对角线互相平分. 7. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π[答案]D[解析][分析]根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积问题得解.[详解]∵在Rt ABC 中,90ACB ∠=︒,8AB =,∴22264AC BC AB +==, ∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, ∴()2222212111188888S S AC BC AC BC AB πππππ+=+=+==. 故选:D .[点睛]本题主要考查了勾股定理的应用,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8. 计算:(91022(+⨯-=( )A. 2B. 2C. 2-D. 2-[答案]B[解析][分析]逆用同底数幂的乘法法则把(102-转化成((922-⨯-,然后运用积的乘方运算法则以及平方差公式计算即可.[详解](91022(⨯99((222(=+⨯⨯ 9(222(⎡⎤=+⨯-⎣⎦2=-故选:B .[点睛]本题考查了同底数幂的乘法,积的乘方,二次根式,平方差公式的应用,逆用同底数幂的乘法法则把()1023-转化成()()92323-⨯-是解题的关键. 9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 3D. 3[答案]C[解析] [分析] 通过正方形的面积求出边长为48,根据图形之间的联系求出空白小正方形的边长3-233即可求解.[详解]解:∵正方形ABCD 的面积是48,∴3∵3∴333∴空白小正方形的边长333∴小正方形的周长为3故选C .[点睛]本题考查了正方形的面积与边长;解题的关键是能够观察出图形之间的联系. 10. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A.B. C. D.[答案]C[解析][分析] 首先分别求得几个平行四边形的面积,即可得到规律:第n 个平行四边形的面积为1922n ,继而求得答案. [详解]解:∵在矩形ABCD 中,AB=12,AC=20,∴22201216-=,∴S 矩形ABCD =AB•BC=192,OB=OC ,∵以OB ,OC 为邻边作第1个平行四边形OBB 1C ,∴平行四边形OBB 1C 是菱形,OA 1是△ABC 的中位线, 可知111122OA AB OB ==, ∴112OB AB ==, ∴111116129622OBB C S BC OB ==⨯⨯=, 111111111612482222A B C C S BC OB ==⨯⨯⨯=, ∴第n 个平行四边形面积为:1922n , ∴第6个平行四边形的面积是:619232=, 故选:C .[点睛]此题考查了平行四边形的性质以及矩形的性质,通过计算找到规律是解题的关键.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.[答案]x 2≥[解析][详解]试题分析:根据题意,使二次根式2x -有意义,即x ﹣2≥0,解得x≥2.故答案是x≥2.[点睛]考点:二次根式有意义的条件.12. 若实数a 、b 满足240a b ++-=,则a b =_____. [答案]﹣12 [解析]根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. [答案]24[解析]已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为24.14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.[答案]90A ∠=︒ (答案不唯一)[解析][分析]根据矩形的判定条件进行添加即可;[详解]根据判定条件:有一个角是90︒的平行四边形是矩形,只要有一个内角是90︒即可得出答案, 故90A ∠=︒(答案不唯一).[点睛]本题主要考查了矩形的判定,准确理解判定条件是解题的关键.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.[答案][解析][分析]根据折叠的性质可得AE=A′E ,AB=A′B′,在Rt △A′B′E 中,根据勾股定理即可得到AE 的长.[详解]∵四边形ABCD 矩形,∴AB=CD=4,∠B=90,由折叠性质可得AE=A′E ,AB=A′B′=4,∠B′A′E=∠B=90,在Rt △A′B′E 中,A′B′2+A′E 2=B′E 2,42+A′E2=(10-2-A′E)2,解得A′E=3,即AE的长为3.故答案为:3.[点睛]本题考查了折叠的性质,矩形的性质以及勾股定理的应用,熟练掌握折叠的性质是关键.16. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.[答案]4[解析][分析]根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.[详解]如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有EDDC=DCFD;即DC2=EDFD,代入数据可得DC 2=16,DC =4;故答案为4.[点睛]本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.[答案](1)25;(2)1[解析][分析](1)根据二次根式的加减运算法则计算即可;(2)根据二次根式的乘法运算法则结合平方差公式计算即可.[详解]解:()1原式53525=+- 4525=-25=.()2原式()()22227=- 87=-1=. [点睛]本题考查二次根式的运算,熟练掌握二次根式四则运算的法则是解题的关键.18. 如图,在ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.[答案]证明见解析.[解析][分析]根据平行四边形的性质可得//,//AD BC AB CD ,再通过//EF AB 可判定四边形ABFE 是平行四边形,可得EF=CD .[详解]证明:四边形ABCD 是平行四边形,//,//AD BC AB CD ∴//,EF AB//,EF CD ∴四边形CDEF 是平行四边形EF CD ∴=.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.[答案](1)证明见解析;(2)菱形BDEF 的周长为20cm .[解析][分析](1)由D 、E 、F 分别是BC 、AC 、AB 边上的中点,根据三角形中位线的性质,可得EF ∥BC ,ED ∥AB ,EF=12BC ,DE=12AB ,又由AB=BC ,即可证得四边形BDEF 是菱形; (2) 由三角形中位线的性质,可求得BF 的长,进而求得周长为4BF .[详解]解:(1)证明:D E F 、、分别是BC AC AB 、、边上的中点,// ,//,EF BC DE AB ∴ 11,22EF BC DE AB ==, 四边形BDEF 是平行四边形,又,AB BC =,DE EF ∴=平行四边形BDEF 是菱形.(2)10,AB =且是AB 边上的中点,15,2BF AB cm ∴== 由(1)知,四边形BDEF 是菱形,菱形BDEF 的周长为44520=⨯=BF cm .故答案为:20cm .[点睛]此题考查了菱形的判定与性质以及三角形中位线的性质.注意掌握三角形中位线定理的应用是解此题的关键.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.[答案]这块空地的面积是224m .[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]连接AC ,90ADC ∠=︒,222224325AC AD DC ∴=+=+=12,13BC m AB m ==,22222251216913AC BC AB ∴+=+===,90ACB ∴∠=︒,()211512342422ACB ACD S S m ∴-=⨯⨯-⨯⨯= 这块空地的面积是224m .[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键,同时考查了直角三角形的面积公式.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?[答案]相等,BE AF ⊥,理由见解析[解析][分析]由DE =CF 可得AE =DF ,则可得△DAF ≌△ABE ,然后根据全等三角形的对应角相等可得出BE 与AF 的关系.[详解]解:BE =AF ,BE ⊥AF ;理由:∵四边形ABCD是正方形,∴AD=CD,DE=CF,∴AE=DF,又∠BAE=∠D=90°,AB=AD,∴△BAE≌△ADF∴BE=AF,∠ABE=∠F AD,∵∠ABE+∠AEB=90°,∴∠F AD+∠AEB=90°,∴BE⊥AF.故BE=AF,BE⊥AF.[点睛]本题考察了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.22. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2、810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)[答案](1)72;(2)画图见解析;①△DEF 是直角三角形,理由见解析;②2 [解析] 试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE 、EF 、DF 的长分别为2、8、10,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE =2,EF =22,DF =10,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形.△DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.[答案](1)证明见解析;(2)332EF =.[解析][分析](1)如图(见解析),先根据直角三角形的性质可得12CE AB =,12DE AB =,从而可得CE DE =,再根据等腰三角形的判定可得CDE △是等腰三角形,然后根据等腰三角形的三线合一即可得证;(2)先分别求出CE 、CF 的长,再结合(1)的结论,利用勾股定理即可得.[详解](1)如图,连接EC 和ED点是AB 的中点,90ACB ADB ∠=∠=︒在Rt ABC 中,12CE AB = 在Rt ABD △中,12DE AB = CE DE ∴=CDE ∴是等腰三角形又点是CD 的中点,即EF 是等腰CDE △的底边CD 上的中线EF CD ∴⊥;(2)26AB CD ==3CD ∴= 由(1)已证:132CE AB == 又点是CD 的中点1322CF CD ∴== 则在Rt CEF 中,由勾股定理得:22332EF CE CF =-=.[点睛]本题考查了直角三角形的性质、等腰三角形的判定与性质、勾股定理等知识点,掌握理解等腰三角形的三线合一是解题关键.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F分别是梯形ABCD的两腰AB和CD的中点,即EF为梯形ABCD的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:[答案]猜想:12EF AD BC;////EF AD BC;已知:如图,,E F分别是梯形ABCD的两腰AB和的中点;求证:12EF AD BC;////EF AD BC;证明见解析.[解析][分析]根据题意写出猜想、已知和求证.连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG 的中位线,利用三角形的中位线定理即可证得.[详解]猜想:12EF AD BC;////EF AD BC已知:如图,,E F分别是梯形ABCD的两腰AB和的中点.求证:12EF AD BC;////EF AD BC.证明:如图,连接AF并延长交BC于点G.∵AD∥BC,点F是CD中点,∴∠DAF=∠G,DF=FC,在△ADF和△GCF中,DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GCF (AAS ),∴AF=FG ,AD=CG .又∵点E 是AB 中点,∴EF 是ABG 的中位线,∴EF ∥BG ,EF=12BG , 即EF ∥AD ∥BC ,EF=12(AD+BC). [点睛]本题是通过猜想并且证明梯形的中位线定理,考查了三角形中位线定理,全等三角形的判定和性质,通过辅助线转化成三角形的中位线的问题是解题的关键.25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.[答案](1),2,016t t t ≤≤;(2)966S t =-;(3)163t =;(4)当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形.[解析][分析](1)按照路程等于速度乘以时间,求解AQ ,BP ;时间最小为0,最大为点Q 动到点D 所花费的时间;(2)通过做垂直辅助线,根据已知条件并结合三角形面积公式求解本题(3)根据等腰三角形以及矩形的性质,结合三线合一以及路程公式求解本题;(4)本题需要根据动点情况分类讨论,并结合平行四边形性质列方程求解.[详解](1)∵距离=速度时间,Q 的运动速度为1,P 的运动速度为2,运动时间为t ,∴AQ=t ,BP=2t .∵AD=16,当点Q 运动到点D 时,动点停止运动,∴t 最大值为16,最小值为0,故016t ≤≤.(2)如图,过点作PM QD ⊥,∵//,90AD BC A ∠=︒,∴四边形ABPM 矩形,∴PM=AB=12.又∵AQ=t∴16QD t =-.()11161296622QDP S QD PM t t =••=⨯-⨯=-△. (3)由上一问可知四边形ABPM 是矩形,2AM BP t ∴==.又PD PQ =,2DM QM AM AQ BP AQ t t t ∴==-=-=-=,216AD AM DM t t =+=+=即316t =,163t ∴=. (4)当在线段BC 上时,因为平行四边形PCDQ ,则DQ PC =,∵16DQ t =-,212PC t =-,16212t t ∴-=-,解得:5t =;当在BC 延长线上时,同理:DQ=PC ,221PC t =-,16221t t ∴-=-, 解得:373t =; 综上所述:当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形. [点睛]本题考查几何动点问题,首先需要对运动路径有清晰理解,并且利用未知数表示未知线段,求解时具体问题具体分析,如本题主要利用面积公式,平行四边形性质求解,动点问题通常需要分类讨论.。

人教版八年级下册数学《期中检测试题》及答案

人教版八年级下册数学《期中检测试题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(48分)1.下列各式中,正确的是( ) A. 2(3)3-=- B. 233-=- C. 2(3)3±=± D. 23=3±2.下列二次根式中,是最简二次根式的是( ).A. 2xyB. 2abC. 12D. 422x x y + 3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm4. 顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A. 邻边不等的平行四边形B. 矩形C. 正方形D. 菱形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108° 6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A. k >0,b >0B. k >0,b <0C. k <0,b >0D. k <0,b <08.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A. 2B. 2.2C. 2.4D. 2.59.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A. 2016B. 2017C. 2018D. 201910.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +611.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52C.332D. 512.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.14.矩形两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.17.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为_____.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.三、解答题19.计算: ①4545842+-+; ②12xy x y⨯÷ 20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中35x =+. 21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC =34,CD =5,BC =13,求△ABC 的面积.DE AC AE与DE相交23.如图,在菱形ABCD中,对角线AC、BD相交于点O过A作AE//BD,过D作//,于点E.求证:四边形AODE为矩形.24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x(h),两车之的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC所表示y与x的函数关系式,并写出自变量x的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.答案与解析一、单选题(48分)1.下列各式中,正确的是( )A. 3=-B. 3=-C. 3=±D. 3±[答案]B[解析][分析]如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果.[详解]解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误;故选B .[点睛]本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.2.下列二次根式中,是最简二次根式的是( ).A. [答案]A[解析][详解]根据最简二次根式的意义,可知是最简二次根式=不是最简二次根式. 故选A.3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A 2cm B. 3cm C. 4cm D. 5cm[答案]A[解析][分析]根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.[详解]根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.[点睛]主要考查了勾股定理解直角三角形.4. 顺次连接矩形ABCD各边的中点,所得四边形必定是( )A. 邻边不等平行四边形B. 矩形C. 正方形D. 菱形[答案]D[解析]试题解析:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=12AC,FG=EH=12BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD, ∴EF=GH=FG=EH,∴四边形EFGH是菱形.考点:中点四边形.5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108°[答案]B[解析][分析] 因为平行四边形对边平行,由两直线平行,同旁内角互补,已知∠C ,可求∠ABC ,又BE 平分∠ABC ,故12ABE ABC ∠=∠ [详解]∵AB ∥CD ,∴∠ABC+∠C=180°,把∠C=108°代入,得∠ABC=180°-108°=72°.又∵BE 平分∠ABC ,∴∠CBE=12∠ABC=12•72°=36°. 又∵AD ∥BC ,∴∠AEB=∠EBC=36°故选B .[点睛]本题直接通过平行四边形性质的应用,判断出正确的选项,属于基础题.6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)[解析][分析]根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.[详解]令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0[答案]C[解析][分析]根据一次函数的图象与系数的关系进行解答即可.[详解]∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.[点睛]本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A. 2B. 2.2C. 2.4D. 2.5[解析][分析]根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.[详解]连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选C.[点睛]本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.9.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( ) 2016201720182019[解析][分析]由勾股定理求出各边,再观察结果的规律.[详解]∵OP=1,OP 1=2 OP 2=3,OP 3=4=2,∴OP 4=5,…,OP 2018=2019.故选D[点睛]本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键. 10.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +6[答案]D[解析][分析] 平移时的值不变,只有发生变化.再把相应的点的坐标代入即可得解.[详解]解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+∴直线AB 解析式是26y x =-+.故选:D[点睛]本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移值不变.11.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52 3325[答案]D[解析][分析] 连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可.[详解]如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,CF=32∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF =25-∵H 是AF 的中点,∴CH=12AF=12×255故选D .[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地的距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]观察图象坐标轴和函数图象表示的意义,再根据问题判断.[详解]观察横坐标,可知,汽车比摩托提前一小时到达目的地①对;观察纵坐标,可知A,B两地距离20km②对;根据图象汽车速度1803=60 km/h,摩托车速度180204-=40km/h,③错.根据图象,两条函数图象交点横坐标是1,1小时后汽车走了60 km,摩托走了40 km,故汽车距离B地40 km,故④对.汽车和摩托都是匀速运动,故⑤错.故答案选B.[点睛]此类问题,一定要先观察直角坐标系横纵坐标表示的实际意义,函数图象表示的实际意义,如果是s-t图,一次函数图象k表示的是速度.s表示路程,t表示时间.二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.[答案]a<b[解析][分析]先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.[详解]∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为a<b.[点睛]本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.14.矩形的两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.[答案]24[解析]分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=12BD=12AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为24.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.[答案]y=-0.5x+3[解析]此题首先分别求出A,B两个点的坐标,得到OA,OB的长度,再根据勾股定理求出AB,再求出OB′,然后根据已知得到BM=B′M,设BM=x,在Rt△B′OM中利用勾股定理求出x,这样可以求出OM,从而求出了M的坐标,最后用待定系数法求直线的解析式.解:当x=0时,y=8;当y=0时,x=6,∴OA=6,OB=8,∴AB=10,根据已知得到BM=B'M,AB'=AB=10,∴OB'=4,设BM=x,则B'M=x,OM=8﹣x,在直角△B'MO中,x2=(8﹣x)2+42,∴x=5,∴OM=3,设直线AM的解析式为y=kx+b,把M(0,3),A(6,0)代入其中得:∴k=﹣,b=3,∴y=﹣x+3.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.[答案]46 xy=⎧⎨=-⎩[解析]根据一次函数和二元一次方程组的关系,可知方程组的解为两个一次函数的交点的坐标,故可知方程组的解为46 xy=⎧⎨=-⎩.故答案为46 xy=⎧⎨=-⎩17.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.[答案]3[分析]由菱形的性质可得AB=BC ,且∠B=60°,可得AC=AB=3,由正方形的性质可得AC=EF=3.[详解]解:∵四边形ABCD 是菱形∴AB=BC ,且∠B=60°,∴△ABC 是等边三角形,∴AB=AC=3,∵四边形ACEF 是正方形,∴AC=EF=3故答案为3[点睛]本题考查了正方形的性质,菱形的性质,等边三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.[答案]±2[解析][分析]求出直线与坐标轴的交点坐标或坐标表达式,根据三角形的面积公式建立关系式,即可求出k 的值.[详解]直线与y 轴的交点坐标为(0,﹣4),与x 轴的交点坐标为(4k,0), 则与坐标轴围成的三角形的面积为14442k⨯⨯=, 解得k=±2, 经检验,k=±2是方程的解且符合题意,故答案:±2. [点睛]本题考查了一次函数与坐标轴的交点与相关三角形的面积问题,要熟悉函数与坐标轴的交点的求法.三、解答题19.计算:①②[答案]①2.[解析][分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则,0,0)0,0)a a b a b b ==≥>)进行化简即可. [详解]解:①原式==②原式===2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中3x =[答案]13x -. [解析][分析]先算括号内的,然后再将除法变为乘倒数的形式化简,最后代值.[详解]原式=22522(3)x x x x +-+⎛⎫⋅ ⎪+-⎝⎭13x =-;当3x =+,原式===[点睛]本题考查分式的化简,注意分式中能够因式分解时,尽量先因式分解,可简化计算.21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.[答案](1)3m =;(2)1m =;(3)728y x =-[解析][分析](1)将x=0,y=0代入函数即可求得m 的值;(2)根据题意可得两直线斜率相等,即213m +=,然后求解即可;(3)先求得函数解析式,再根据“左加右减”进行变形即可.[详解]解:(1)将x=0,y=0代入函数(21)3y m x m =++-得:30m -=,则3m =;(2)∵函数(21)3y m x m =++-图像平行于直线33y x =-,∴213m +=则1m =;(3)当3m =时,函数解析式为:7y x =,平移后:7(4)728y x x =-=-.[点睛]本题主要考查一次函数的性质,解此题的关键在于熟练掌握其知识点.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC CD =5,BC =13,求△ABC 的面积.[答案]752 [解析][分析]由于CD ⊥AB,CD 为Rt △ADC 和Rt △BCD 的公共边,在这两个三角形中利用勾股定理可求出AD 和BD 的长,然后根据三角形面积公式求得即可.[详解]解:∵CD ⊥AB,∴∠CDA=∠BDC=90°在Rt △ADC 中,AD 2=AC 2﹣CD 2,在Rt △BCD 中,BD 2=BC 2﹣CD 2,∵AC=34 ,CD=5,BC=13,∴AD=3425-=3,BD=22135-=12,∴AB=15,∴S △ABC =12AB•CD=752. [点睛]本题考查了勾股定理的运用,根据勾股定理求得AB 的长是解题的关键.23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O 过A 作AE//BD ,过D 作//,DE AC AE 与DE 相交于点E .求证:四边形AODE 为矩形.[答案]见解析[解析][分析]根据菱形的性质,可知AC ⊥BD ,利用平行的性质,推导得出∠OAE=90°,∠ODE=90°,从而证矩形.[详解]∵四边形ABCD 是菱形∴∠AOD=90°∵AE ∥BD∴∠EAO=90°∵DE ∥AC∴∠EDO=90°∴四边形AODE 是矩形.[点睛]本题考查证矩形,用到了菱形的性质和平行线的性质,解题关键是得出∠AOD=90°. 24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.[答案](1)幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)幸福牌买20根,平安牌的买40根时最省钱,见解析[解析][分析](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据:“2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元”列方程组求解即可;(2)首先根据“平安牌跳绳的数量不少于幸福牌跳绳数量的2倍”确定自变量的取值范围,然后得到有关总费用和幸福牌跳绳之间的关系得到函数解析式,确定函数的最值即可.[详解](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据题意,得:2313254x y x y +⎧⎨+⎩==,解得:815x y ⎧⎨⎩==, 答:幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)设购进幸福牌跳绳m 根,总费用为W 元,根据题意,得:W=8m+15(60-m )=-7m+900,∵-7<0,∴W 随m 增大而减小,又∵2m≤60-m ,解得:m≤20,而m 为正整数,∴当m=20时,W 最小=-7×20+900=760, 此时60-20=40,答:幸福牌买20根,平安牌的买40根时最省钱.[点睛]此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x (h ),两车之的距离为y (km ),图中的折线表示y 与x 之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC 所表示的y 与x 的函数关系式,并写出自变量x 的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.[答案](1)150km h ,75km h ;(2)225900y x =-(46x ≤≤ );(3)经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[解析][分析](1)由图可知甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;可得慢车12h的行程为900km,即可求出慢车速度;两车出发后经4小时相遇,即可求出快车速度.(2)先求出B、C点坐标,即可求出线段BC所表示的y与x的函数关系式与自变量x的取值范围.(3)已知第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地,得第二列开车速度为150(km/h),设第二列快车与慢车相遇时,距离甲地为x米,90075150x x-=,解得x=300,快车出发后3002150=小时,与慢车相遇.[详解]∵甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;∴慢车12h的行程为900km,所以速度为:900÷12=75(km/h), ∵两车出发后经4小时相遇,∴快车速度为:900÷4−75=150(km/h);故答案为:150(km/h),75(km/h)(2)∵B(4,0),快车速度为:150km/h,∴900÷150=6(小时),C点纵坐标为:75×6=450,∴C(6,450),设线段BC表示的关系为:y=kx+b(4⩽x⩽6),∴40 6450k bk b+=⎧⎨+=⎩解得:k=225,b=−900∴线段BC的函数表达式为:y=225x−900(4⩽x⩽6);故答案为:y=225x−900(4⩽x⩽6)(3)∵第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地∴第二列开车速度为150(km/h)设第二列快车与慢车相遇时,距离甲地为x米,∵第二列快车与慢车同时到达各自的目的地∴900 75150 x x-=解得x=300∴快车出发后3002150小时,与慢车相遇.故答案为:经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[点睛]本题考查了一次函数的实际应用—路程问题,解题的关键是能读懂一次函数图象,分段函数每段表示的意义,从中获取已知条件.。

广西壮族自治区北海市合浦县2023-2024学年八年级下学期期中数学试题(含答案)

广西壮族自治区北海市合浦县2023-2024学年八年级下学期期中数学试题(含答案)

2023-2024学年度第二学期期中教学质量检测八年级数学卷(考试时间:120分钟,满分:120分)2024年5月一、选择题(每小题3分,共36分)1.平行四边形都具有的性质是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边相等2.在直角三角形中,若直角边为6和8,则斜边为()A .7B .8C .9D .103.已知直角三角形30°角所对的直角边长为5,则斜边的长为()A .5B .10C .8D .124.小明要判断一块平行四边形木板是否是矩形,以下测量方法正确的是( )A .测量两组对边是否相等B .测量一组邻边是否相等C .测量对角线是否相等D .测量对角线是否互相垂直5.一个三角形的三边长分别为9,12,15,则它的面积为()A .135B .90C .108D .546.在四边形ABCD 中,且,若,则的度数是()A .56°B .65°C .114°D .124°7.如图,中,,DE 为AB 的垂直平分线,,则()第7题图A .4B .8C .D .8.矩形具有而菱形不一定具有的性质是( )A .对角线相等B .对角线互相垂直C .对角线互相平分D .对角线相等且互相垂直9.如图,三条公路把A 、B 、C 三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,使集贸市场到三条公路的距离相等,则这个集贸市场应建在()第9题图A .在AC 、BC 两边高线的交点处B .在AC 、BC 两边中线的交点处C .在、两内角平分线的交点处D .在AC 、BC 两边垂直平分线的交点处10.等腰梯形的上底是2cm ,腰长是4cm ,一个底角是60°,则等腰梯形的下底是()AB CD ∥AB CD =56B ∠=︒C ∠Rt ABC △90ACB ∠=︒2CD DE ==AB=A ∠B ∠A .5cmB .6cmC .7cmD .8cm11.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,若,,则菱形ABCD 的边长为()第11题图A .B .C .8D .1012.如图,动点P 从点A 出发,沿着圆柱的侧面移动到BC 的中点S ,若,点P 移动的最短距离为5,则圆柱的底面周长为()第12题图A .4B .4πC .8D .10二、填空题(每小题2分,共12分)13.已知一个多边形的内角和是2340°,则这个多边形的边数是______.14.等腰梯形的上底是10cm ,下底是16cm ,高是4cm ,则等腰梯形的周长为______cm .15.如图,要测量池塘两岸相对的A ,B 两点间的距离,可以在池塘外选一点C ,连接AC ,BC ,分别取AC ,BC 的中点D ,E ,测得m ,则AB 的长是______m .第15题图16.如图,在中,,D 是AC 的中点.若,则______.第16题图17.如图,中,AE 平分,若cm ,cm ,则的周长为______.16AC =8BD=6BC =50DE =Rt ABC △90ABC ∠=︒8BD =AD =ABCD BAD ∠3CE =4AB =ABCD第17题图18.如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B '处,若,,,则矩形ABCD 的面积是______.第18题图三、解答题(共72分,解答应写出文字说明、证明过程或演算步骤)19.(6分)如图,在中,,,F 是AB 延长线上一点,点E 在BC 上,且.求证:.20.(6分)如图,在中,于点E ,于点F ,且,求证:是菱形.21.(10分)一个多边形的每一个内角都相等,且每个外角都等于和它相邻的内角的一半.(1)求这个多边形是几边形;(2)求这个多边形的内角和.22.(10分)如图,已知在梯形ABCD 中,,,,E 是BC 边的中点,AE 、BD 相交于点F .(1)求证:四边形AECD 是平行四边形;(2)设边CD 的中点为G ,连接EG .求证:四边形FEGD 是矩形.23.(10分)如图,在平行四边形ABCD 中,过点D 作于点E ,点F 在CD 边上,,2AE =6DE =60EFB ∠=︒ABC △CB AB ⊥45BAC ∠=︒AE CF =ABE CBF ≌△△ABCD AE BC ⊥CF AB ⊥AE CF =ABCD AD BC ∥AD AB =2BC AD =DE AB ⊥CF AE =连接AF ,BF .(1)求证:四边形BFDE 是矩形;(2)若AF 平分,,,求四边形BFDE 的面积.24.(10分)如图,长方形ABCD 中,,,P 为AD 上一点,将沿BP 翻折至,BE 与CD 相交于点G ,PE 与CD 相交于点O ,且.(1)求证:;(2)求AP 的长.25.(10分)已知BD 垂直平分AC ,,.(1)求证:四边形ABDF 是平行四边形;(2)若,,,求AC 的长.26.(10分)【问题情境】已知在四边形ABCD 中,M 为边AD 上一点(不与点A ,D 重合),连接BM ,将沿BM 折叠得到,点A 的对应点为点N .【问题初探】(1)如图(1),若四边形ABCD 是正方形,点N 落在对角线BD 上,连接AN 并延长交CD 于点G ,写出与相等的角:______(写出一个即可):【拓展变式】(2)如图(2),若四边形ABCD 是矩形,点N 恰好落在AB 的垂直平分线EF 上,EF 与BM 交于点G .求证:是等边三角形;【问题解决】(3)如图(3),若四边形ABCD 是平行四边形,,,点N 落在线段BC 上,P 为AB 的中点,连接DP ,PN ,DN ,求的面积.2023—2024学年度第二学期期中教学质量检测DAB ∠3CF =5DF =4AB =3BC =ABP △EBP △OE OD =DP EG =BCD ADF ∠=∠AF AC ⊥14AF =13DF =15AD =ABM △NBM △DGA ∠GMN △24BC AB ==60ABC ∠=︒PND △八年级数学参考答案及评分标准一、选择题(每小题3分,共36分)BDBCDDDACBAC二、填空题(每小题2分,共12分)13.15 14.36 15.100 16.8 17.22 18.三、解答题(共72分,解答应写出文字说明、证明过程或演算步骤)19.证明:∵,∴…1分∵,∴,…2分∴为等腰直角三角形,∴……3分在和中,,…5分∴(HL )…………6分20.证明:∵于点E ,于点F ,∴…1分在与中,…4分∴(AAS ),∴…5分∵四边形ABCD 是平行四边形,∴是菱形.…6分21.解:(1)设多边形的每一个内角为x,则每一个外角为,…2分由题意得,解得,,,…4分这个多边形的边数为,…5分答:这个多边形是六边形……6分(2)由(1)知,该多边形是六边形,∴内角和…9分答:这个多边形的内角和为720°.…10分22.证明:(1)∵,∴…2分分∵,E 是BC 边的中点,即…4分∴四边形AECD 是平行四边形;…5分(2)如图,连接GE ,由(1)知…6分CB AB ⊥90ABC FBC ∠=∠=︒45BAC ∠=︒45BCA BAC ∠=︒=∠ABC △AB CB =Rt ABE △Rt CBF △AE CFAB CB =⎧⎨=⎩Rt Rt ABE CBF ≌△△AE BC ⊥CF AB ⊥90CFB AEB ∠=∠=︒ABE △CBF △B B CFB AEB AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩ABE CBF ≌△△BC BA =ABCD 12x 11802x x +=︒120x =︒1602x =︒360660=()62180720=-⨯︒=︒AD BC ∥AD EC ∥2BC AD =AD EC =四边形AECD 是平行四边形,∴又∵点E 是BC 的中点,点G 是CD 的中点,∴,即∴四边形DFEG 是平行四边形…7分∵在梯形ABCD 中,,∴,又∵,∴,∴,即BF 是的平分线.…8分∵,E 是BC 边的中点,∴,∴,∴,即…9分∴平行四边形FEGD 是矩形.…10分23.(1)证明:∵四边形ABCD 是平行四边形,∴,,…1分又∵,∴,∴四边形BFDE 是平行四边形,…3分∵,∴,…4分∴四边形BFDE 是矩形.…5分(2)解:∵AF 平分,,∴,,∴,…6分∵,∴,…7分∵,,∴,…9分∴矩形BFDE 的面积是:.10分24.(1)证明:∵四边形ABCD 是长方形,∴,,…1分∵将沿BP 翻折至,BE 与CD 相交于点G ,PE 与CD 相交于点O ,∴…2分在和中,…4分∴(ASA ),∴,…5分(2)解:∵,,∴,即,∴…6分设,则,,……………7分∴,,在中,根据勾股定理得:…8分即,解得,∴…10分25.(1)证明:∵BD 垂直平分AC ,∴,, (1)分FE DG∥EG BD ∥EG FD ∥AD BC ∥12∠=∠AD AB =13∠=∠23∠=∠ABE ∠2BC AD =AD BE =AB BE =BF AE ⊥90DFE ∠=︒DF EB ∥AB CD =CF AE =DF BE =DE AB ⊥90DEB ∠=︒DAB ∠DC AB ∥DAF FAB ∠=∠DFA FAB ∠=∠DAF DFA ∠=∠5DF =5AD FD ==3AE CF ==DE AB⊥4DE ==5420DF DE ⋅=⨯=90A D ∠=∠=︒4AB CD ==3AD BC ==ABP △EBP △90A E D ∠=∠=∠=︒PDO △GEO △D EOD OE DOP EOG ∠=∠⎧⎪=⎨⎪∠=∠⎩PDO GEO ≌△△OG OP =PD EG =OP OG =OD OE =OD OG OE OP +=+DG PE =DG PE PA ==AP x =3PD EG x ==-DG AP x ==()431BG BE EG x x =-=--=+4CG DC DG x =-=-Rt BCG △222BC CG BG +=()()222341x x +-=+ 2.4x = 2.4AP =AB BC =AD DC =在与中,…2分∴(SSS ),∴,…3分∵,∴,∴,∵,,∴,…4分∴四边形ABDF 是平行四边形;…5分(2)解:∵四边形ABDF 是平行四边形,∴,,…6分设,则,由勾股定理得,…8分即解得:,…9分即,∴,∴.…10分26.解:(1)∵四边形ABCD 是正方形,点N 落在对角线BD 上,∴,∴,∴(答案不唯一);...2分(2)∵EF 垂直平分线段AB ,∴,,,由折叠的性质可知,∴,∴,∴ (3)∵四边形ABCD 是矩形,EF 垂直平分线段AB ,∴,∴…4分由折叠的性质可知,∴…5分∴为等边三角形;…6分(3)连接AN ,由折叠的性质得AB =BN …7分∵,∴为等边三角形,∵,∴,∵P 为AB 的中点,∴,延长PN 至点G ,使得,连接CG ,在中,…8分∴,,∵四边形ABCD 是平行四边形,,,∴,∵,,∴,…9分∴,∴,∴D ,C ,G 三点共线,∴,ADB △CDB △AB BC AD DC DB DB =⎧⎪=⎨⎪=⎩ADB CDB ≌△△BCD BAD ∠=∠BCD ADF ∠=∠BAD ADF ∠=∠AB FD ∥BD AC ⊥AF AC ⊥AF BD ∥14BD AF ==13AB DF ==BE x =14DE x =-2222AB BE AD DE -=-()2222131514x x -=--5x =5BE=12AE ===224AC AE ==90ADG DAB ∠=∠=︒90DGA DAG DAG BAG ∠+∠=∠+∠=︒DGA BAG ∠=∠12BE AE AB ==EF BC ∥90BEF ∠=︒AB BN =12BE BN =30BNE ∠=︒60MGN MBN BNE ∠=∠+∠=︒AD EF ∥60AMB MGN ∠=∠=︒60AMB GMN ∠=∠=︒60GMN MGN ∠=∠=︒GMN △60ABC ∠=︒ABN △24BC AB ==2BN AB ==NP AB ⊥PN GN =Rt BPN △60ABC ∠=︒112BP BN ==PN ==24BC AB ==AB BN =BN CN =PN GN =PNB GNC ∠=∠BNP CNG ≌△△90BPN CGN ∠=∠=︒CG BP ∥PN DG ⊥∴,∴,∴.…10分(其他解法参照给分)1CG BP ==3DG CD CG =+=11322PND S DG PN =⋅=⨯=△。

人教版八年级下册数学《期中检测试题》及答案解析

人教版八年级下册数学《期中检测试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线2.式子21xx -在实数范围内有意义的条件是( ) A. 1x ≥B. 1x >C. 0x <D. 0x ≤3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2B. 3,4C. 5,2D. 5,44.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =-B. 2b =-C. 1b =-D. 2b =5.若m 是关于x 方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16B. 12C. 20D. 306.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,若ED =6cm ,那么HF 的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=528.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B.1a - C. 1a -D. 1a --9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3+1B.7+1 C. 23+1 D. 27+110.已知如图,矩形ABCD 中AB=4cm ,BC=3cm ,点P 是AB 上除A ,B 外任一点,对角线AC ,BD 相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2二.填空题(共10小题)11.如果y 44x x --则2x +y 值是_______. 12.小明用S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A3,A3关于y轴对称点A4,……,按此规律,则点A2019的坐标为_____.17.三角形的每条边的长都是方程2680-+=的根,则三角形的周长是.x x18.如图,若菱形ABCD的顶点A.B的坐标分别为(6,0),(﹣4,0),点D在y轴正半轴上,则点C的坐标是_____.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.20.如图,在矩形ABCD中,BC=4,点F是CD边上的中点,点E是BC边上的动点.将△ABE沿AE折叠,点B 落在点M处;将△CEF沿EF折叠,点C落在点N处.当AB的长度为_____时,点M与点N能重合时.三.解答题(共7小题)21.计算(1)220-5+35(2)3112-41144⎛⎫⨯ ⎪ ⎪⎝⎭22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表: 输入汉字个数(个) 132 133 134 135 136 137 甲班人数人) 1 0 2 4 1 2 乙班人数(人) 014122请分别判断下列同学是说法是否正确,并说明理由. (1)两个班级输入汉字个数的平均数相同; (2)两个班学生输入汉字的中位数相同众数也相同; (3)甲班学生比乙班学生的成绩稳定.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)26. 如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,AB ⊥AC ,AB=3cm ,BC=5cm .点P 从A 点出发沿AD 方向匀速运动速度为lcm/s ,连接PO 并延长交BC 于点Q .设运动时间为t (s )(0<t <5) (1)当t 为何值时,四边形ABQP 是平行四边形?(2)设四边形OQCD 的面积为y (cm 2),当t=4时,求y 的值.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =; (2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.答案与解析一.选择题(共10小题)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是( )A. 赵爽弦图B. 笛卡尔心形线C. 科克曲线D. 斐波那契螺旋线[答案]C [解析] [分析]根据把一个图形绕某一点旋转180,如果旋转后图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.[详解]A 、不是轴对称图形,是中心对称图形,故此选项错误; B 、是轴对称图形,不是中心对称图形,故此选项错误; C 、是轴对称图形,是中心对称图形,故此选项正确; D 、不是轴对称图形,不是中心对称图形,故此选项错误; 故选C .[点睛]此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.1x -在实数范围内有意义的条件是( ) A 1x ≥ B. 1x >C. 0x <D. 0x ≤[答案]B [解析] [分析]根据二次根式有意义的条件即可求出答案. [详解]]解:由题意可知:x-1>0, ∴x >1, 故答案为:x >1[点睛]本题考查二次根式及分式有意义的条件,解题的关键是熟练运用二次根式有意义的条件,本题属于基础题型.3.已知一组数据a,b,c 的平均数为5,方差为4,那么数据a ﹣2,b ﹣2,c ﹣2的平均数和方差分别是.( ) A. 3,2 B. 3,4C. 5,2D. 5,4[答案]B [解析]试题分析:平均数为(a−2 + b−2 + c−2 )=(3×5-6)=3;原来的方差:;新的方差:,故选B.考点: 平均数;方差.4.命题“关于x 的一元二次方程210x bx ++=,必有实数解”是假命题.则在下列选项中,可以作为反例的是( ) A. 3b =- B. 2b =-C. 1b =-D. 2b =[答案]C [解析][详解]∵方程210x bx ++=,必有实数解,22440b ac b ∴-=-≥ ,解得:2b ≤-或2b ≥,又∵命题“关于的一元二次方程210x bx ++=,必有实数解”是假命题,∴可以作为反例的是1b =-,故选C . 5.若m 是关于x 的方程x 2﹣2012x ﹣1=0的根,则(m 2﹣2012m +3)•(m 2﹣2012m +4)的值为( ) A. 16 B. 12C. 20D. 30[答案]C [解析][分析]根据一元二次方程的解的定义得到m2﹣2012m﹣1=0,变形得m2﹣2012m=1,然后整体代入的方法计算.[详解]解:根据题意得程m2﹣2012m﹣1=0,所以m2﹣2012m=1,所以(m2﹣2012m+3)•(m2﹣2012m+4)=(1+3)(1+4)=20.故选:C.[点睛]本题考查一元二次方程的解以及整体代入思想,掌握整体代入思想是解题的关键.6.如图,D,E,F分别是△ABC各边的中点,AH是高,若ED=6cm,那么HF的长为( )A. 5 cmB. 6 cmC. 10 cmD. 不能确定[答案]B[解析][分析]根据D、E、F分别是△ABC各边的中点,可知DE为△ABC的中位线,根据DE的长度可求得AC的长度,然后根据直角三角形斜边的中线等于斜边的一半,可得HF=12AC,即可求解.[详解]∵D、E分别是△ABC各边的中点, ∴DE为△ABC的中位线,∵ED=6cm,∴AC=2DE=2×6=12(cm),∵AH⊥CD,且F为AC的中点,∴HF=12AC=6cm.故选:B.[点睛]此题考查三角形的中位线定理、直角三角形斜边中线定理,熟记定理并熟练运用解题是关键.7.我国政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价后,由每盒60元下调至52元,若设每次平均降价的百分率为x ,由题意可列方程为( ) A. 52+52x 2=60 B. 52(1+x )2=60 C. 60﹣60x 2=52 D. 60(1﹣x )2=52[答案]D [解析] [分析]若设每次平均降价的百分率为x ,根据某种药品经过两次降价后,由每盒60元下调至52元,可列方程求解. [详解]解:设每次平均降价的百分率为x , 60(1﹣x )2=52. 故选:D .[点睛]本题考查列一元二次方程,关键设出下降的生产率,经过两次变化,从而可列出方程. 8.把代数式()111a a--中的1a -移到根号内,那么这个代数式等于()A. 1a --B. 1a -C. 1a -D. 1a --[答案]A [解析]试题解析:(a-1)11a -=-(1-a)11a-=1a --. 故选A .9.如图,菱形ABCD 的边长为2,且∠ABC =120°,E 是BC 的中点,P 为BD 上一点,且△PCE 的周长最小,则△PCE 的周长的最小值为( )A.3 B.7+1 37+1[答案]B[解析][分析]由菱形ABCD中,∠ABC=120°,易得△BCD是等边三角形,继而求得∠ADE的度数;连接AE,交BD于点P;首先由勾股定理求得AE的长,即可得△PCE周长的最小值=AE+EC.[详解]解:∵菱形ABCD中,∠ABC=120°,∴BC=CD=AD=2,∠C=180°﹣∠ABC=60°,∠ADC=∠ABC=120°,∴∠ADB=∠BDC=12∠ADC=60°,∴△BCD是等边三角形, ∵点E是BC的中点,∴∠BDE=12∠BDC=30°,∴∠ADE=∠ADB+∠BDE=90°,∵四边形ABCD是菱形,∴BD垂直平分AC,∴P A=PC,∵△PCE的周长=PC PE CE++,若△PCE的周长最小,即PC+PE最小,也就是P A+PE最小,即A,P,E三点共线时,∵DE=CD•sin60°=3,CE=12BC=1,∴在Rt△ADE中,227AE AD DE=+=,∴△PCE周长为:PC+PE+CE=P A+PE+CE=AE+CE=71+,故选:B.[点睛]本题考查了菱形的性质、最短路线问题、等边三角形的性质,熟练掌握菱形的性质,并能进行推理计算是解决问题的关键.10.已知如图,矩形ABCD中AB=4cm,BC=3cm,点P是AB上除A,B外任一点,对角线AC,BD相交于点O ,DP ,CP 分别交AC ,BD 于点E ,F 且△ADE 和BCF 的面积之和4cm 2,则四边形PEOF 的面积为( )A. 1cm 2B. 1.5cm 2C. 2cm 2D. 2.5cm 2[答案]A [解析]试题解析:因为4AEDBFCS S+=2cm ,所以2EOD FOCS S+=2cm ,而3CODS=2cm ,所以6231PEOF S =--=四边形2cm ,故本题应选A.二.填空题(共10小题)11.如果y 44x x --则2x +y 的值是_______. [答案]9 [解析]解:由题意得x=4,y=1,则2x +y=9. 12.小明用S 2= 110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2]计算一组数据的方差,那么x 1+x 2+x 3+…+x 10=______. [答案]30 [解析] [分析]根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和. [详解]解:∵S 2=110[(x 1﹣3)2+(x 2﹣3)2+…+(x 10﹣3)2], ∴平均数为3,共10个数据, ∴x 1+x 2+x 3+…+x 10=10×3=30. 故答案为30.[点睛]本题考查了方差的知识,牢记方差公式是解答本题的关键,难度不大. 13.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m 2+3m +n =_____.[答案]5.[解析][分析]根据根与系数的关系可知m+n=﹣2,又知m是方程的根,所以可得m2+2m﹣7=0,最后可将m2+3m+n变成m2+2m+m+n,最终可得答案.[详解]解:∵设m、n是一元二次方程x2+2x﹣7=0的两个根,∴m+n=﹣2,∵m是原方程的根,∴m2+2m﹣7=0,即m2+2m=7,∴m2+3m+n=m2+2m+m+n=7﹣2=5,故答案为:5.[点睛]本题考查了根与系数的关系,熟练掌握一元二次方程根与系数的关系是解决本题的关键.14.如图所示,在长为50米,宽为30米的长方形地块上,有纵横交错的几条小路(图中阴影部分),宽均为1米,其他部分均种植花草.则种植花草的面积是____________米²;[答案]1421[解析][分析]如图,根据平移的性质,种植花草的面积等于图中小矩形的面积,根据矩形的面积公式计算即可.[详解]如图,根据平行的性质,种植花草的面积等于图中小矩形的面积,∴种植花草的面积=(50-1)(30-1)=1421m2.故答案1421.[点睛]本题考查了图形的平移的性质,把小路进行平移,得到种植花草的面积等于图中小矩形的面积是解题的关键.15.如图,E为▱ABCD边AD上一点,将△ABE沿BE翻折得到△FBE,点F在BD上,且EF=DF,若∠BDC=81°,则∠C=_____.[答案]66°.[解析][分析]折叠就有全等,就有相等的边和角,根据平行四边形的性质和等腰三角形的性质,可以把要求的角转化在一个三角形中,由三角形的内角和列方程解得即可.[详解]解:∵四边形ABCD是平行四边形,∴∠A=∠C,AD∥BC,AB∥CD,∴∠ADF=∠FBC,∠ABD=∠BDC=81°,∵EF=FD,∴∠FED=∠FDE,由折叠得:∠ABE=∠EBF=12∠ABD=40.5°,∠A=∠EFB,设∠C=x,则∠DBC=∠ADB=12x,在△BDC中,由内角和定理得:81°+x+12x=180°,解得:x=66°,故答案为:66°.[点睛]本题考查折叠的性质、平行四边形的性质以及三角形内角和定理等内容,解题的关键是折叠的性质的运用.16.直角坐标系中,已知A(3,2),作点A关于y轴对称点A1,点A1关于原点对称点A2,点A2关于x轴对称点A 3,A 3关于y 轴对称点A 4,……,按此规律,则点A 2019的坐标为_____. [答案](3,2). [解析] [分析]根据题目已知条件,写出A 1、A 2、A 3的坐标,找出规律,即可解决问题. [详解]解:作点A 关于y 轴对称点为A 1,是(﹣3,2); 作点A 1关于原点的对称点为A 2,是(3,﹣2); 作点A 2关于x 轴的对称点为A 3,是(3,2). 显然此为一循环,按此规律,2019÷3=673, 则点A 2019的坐标是(3,2), 故答案为:(3,2).[点睛]本题考查了关于原点对称的点的坐标,关于坐标轴对称点的坐标,解答此题需熟悉:两个点关于x 轴对称,则横坐标不变,纵坐标互为相反数;两个点关于y 轴对称,则横坐标互为相反数,纵坐标不变;两个点关于原点对称,则横坐标、纵坐标都是互为相反数.17.三角形的每条边的长都是方程2680x x -+=的根,则三角形的周长是 . [答案]6或10或12 [解析] [分析]首先用因式分解法求得方程根,再根据三角形的每条边的长都是方程2680x x -+=的根,进行分情况计算. [详解]由方程2680x x -+=,得=2或4. 当三角形的三边是2,2,2时,则周长是6; 当三角形的三边是4,4,4时,则周长是12;当三角形的三边长是2,2,4时,2+2=4,不符合三角形的三边关系,应舍去; 当三角形的三边是4,4,2时,则三角形的周长是4+4+2=10. 综上所述此三角形的周长是6或12或10.18.如图,若菱形ABCD 的顶点A .B 的坐标分别为(6,0),(﹣4,0),点D 在y 轴正半轴上,则点C 的坐标是_____.[答案](﹣10,8)[解析][分析]由菱形的性质可求AB=AD=10,OA=6,由勾股定理可得OD=8,即可求点C坐标.[详解]解:∵菱形ABCD的顶点A,B的坐标分别为(6,0),(﹣4,0),∴AB=AD=10,OA=6,∴228=-=,OD AD OA∴点D(0,8),∵CD∥AB,∴CD=10,∴点C(﹣10,8),故答案为:(﹣10,8).[点睛]本题考查菱形的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.19.如图,四边形ABCD和四边形ACEF都是平行四边形,EF经过点D,若平行四边形ABCD的面积为S1,平行四边形ACEF的面积为S2,则S1与S2的大小关系为S1_____S2.[答案]=.[解析][分析]由题意可知2ABCDABCSS=,2ACEFADC SS =△,而S △ABC =S △ADC ,进而可得S 1与S 2的大小关系.[详解]解:∵四边形ABCD 和四边形ACEF 都是平行四边形, ∴2ABCDABCSS=,2ACEFADC SS =△,∵S △ABC =S △ADC , ∴S 1=S 2, 故答案为:=.[点睛]本题考查了平行四边形的性质以及三角形面积公式的运用,熟记平行四边形被一条对角线分成的两个三角形面积相等是解题的关键.20.如图,在矩形ABCD 中,BC =4,点F 是CD 边上的中点,点E 是BC 边上的动点.将△ABE 沿AE 折叠,点B 落在点M 处;将△CEF 沿EF 折叠,点C 落在点N 处.当AB 的长度为_____时,点M 与点N 能重合时.[答案]2. [解析] [分析]设AB =CD =2m .在Rt △ADF 中 利用勾股定理构建方程即可解决问题. [详解]解:设AB =CD =2m .由题意:BE =EM =EC =2,CF =DF =FM =m ,AN =AM =2m , ∴AF =3m ,∵四边形ABCD 是矩形, ∴AD =BC =4,在Rt △ADF 中,∵AD 2+DF 2=AF 2, ∴42+m 2=(3m )2, 解得2m =或2-(舍弃),∴AB =2m =故答案为.[点睛]本题考查折叠的性质,解题的关键是根据勾股定理构建方程求解.三.解答题(共7小题)21.计算(1)(2[答案](1)(2)14[解析] [分析](1)先化简,再合并同类二次根式;(2)先算乘法,再化简二次根式,然后合并即可.[详解]解:(1)-=2255+3-(2111=244-. [点睛]本题考查了二次根式的化简与运算,属于基础题型,熟练掌握二次根式的运算法则和化简的方法是解题的关键. 22.解下列方程: (1)(x ﹣1)(x ﹣3)=8; (2)2(x ﹣3)2=x 2﹣9.[答案](1)x 1=5,x 2=﹣1;(2)x 1=3,x 2=9. [解析] [分析](1)先去括号,把方程化为一般形式,再根据因式分解法即可求出答案;(2)利用平方差公式将等号右边因式分解,再移项,提取公因式x-3即可求出答案.[详解]解:(1)(x﹣1)(x﹣3)=8,整理得,x2﹣4x﹣5=0,分解因式得:(x-5)(x+1)=0,则x-5=0或x+1=0,解得:x1=5,x2=﹣1;(2)2(x﹣3)2=x2﹣9,分解因式得:(x﹣3)(x﹣9)=0,则x﹣3=0或x﹣9=0,解得:x1=3,x2=9.[点睛]本题考查了解一元二次方程﹣因式分解法:就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).23.甲、乙两班举行电脑汉字输入比赛,各选10名选手参赛,各班参赛学生每分钟输入汉字个数统计如下表:请分别判断下列同学是说法是否正确,并说明理由.(1)两个班级输入汉字个数的平均数相同;(2)两个班学生输入汉字的中位数相同众数也相同;(3)甲班学生比乙班学生的成绩稳定.[答案]说法(1)(3)正确,说法(2)错误.[解析][分析]根据平均数、中位数、众数以及方差的计算方法,分别求出,就可以分别判断各个说法是否正确.[详解]解:(1)由平均数的定义知,甲班学生的平均成绩为:13213421354136137213510+⨯+⨯++⨯=,乙班学生的平均成绩为:13313441351362137213510+⨯++⨯+⨯=,所以他们的平均数相同.故说法(1)正确;(2)甲班学生的成绩按从小到大排列:132、134、134、135、135、135、135、136、137、137,可见其中位数是135;乙班学生的成绩按从小到大排列:133、134、134、134、134、135、136、136、137、137,可见其中位数是134.5,所以两组学生成绩的中位数不相同,甲班学生成绩的众数是135,乙班学生成绩的众数是134,所以两组学生成绩的众数不相同; 故说法(2)错误;(3)2222221=[(132135)2(134135)4(135135)(136135)2(137135)]210S ⨯-+-+-+-+-=甲, 2222221=[(133135)4(134135)(135135)2(136135)2(137135)] 2.710S ⨯-+-+-+-+-=甲, ∴甲班学生比乙班学生的成绩方差小, ∴甲班学生比乙班学生的成绩稳定. 故说法(3)正确;故答案为:说法(1)(3)正确,说法(2)错误.[点睛]本题考查平均数、方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);一组数据中出现次数最多的数据叫做众数;一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差2222121[()()()]n S x x x x x x n=-+-+⋯+-,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.24.如图,平行四边形ABCD ,对角线,AC BD 交于点,点,E F 分别是,AB BC 的中点,连接EF 交BD 于,连接OE(1)证明:四边形COEF 是平行四边形(2)点是哪些线段的中点,写出结论,并选择一组给出证明.[答案](1)见解析;(2)G 是线段OB 的中点,也是EF 的中点,证明见解析[解析][分析](1)根据三角形的中位线定理可得EF 与AC 的数量关系和位置关系,再由平行四边形的性质即可证得EF 与CO 的关系,进一步即可证得结论;(2)根据三角形中位线定理即可得出结论.[详解]解:(1)证明:∵,E F 分别是,AB BC 中点,∴EF AC 且12EF AC =, ∵ABCD 是平行四边形,∴AO CO =,∴CO EF =,∴四边形COEF 是平行四边形.(2)G 是线段OB 的中点,也是EF 的中点.证明:∵EF AC ,E 为AB 中点,∴G 为OB 中点.∴FG 、GE 分别是△BCO 、△BAO 的中位线, ∴11,22FG CO GE AO ==, ∵AO =CO ,∴FG GE =,即G 为EF 的中点.[点睛]本题考查了平行四边形的判定和三角形的中位线定理,熟练掌握平行四边形的判定方法和三角形的中位线定理是解题的关键.25.某汽车销售公司4月份销售某厂家的汽车,在一定范围内每部汽车的进价与销售量有如下关系;若当月仅售出1辆汽车,则该部汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,月底厂家根据销售量一次性返利给销售公司,销售量在10辆以内(含10辆),每辆返利0.6万元;销售量在10辆以上,每辆返利1.2万元.(1)若该公司当月售出3辆汽车,则每辆汽车的进价为________万元;(2)若该公司当月售出5辆汽车,且每辆汽车售价为元,则该销售公司该月盈利________万元(用含的代数式表示).(3)如果汽车的售价为25.6万元/辆,该公司计划当月盈利16.8万元,那么需要售出多少辆汽车?(盈利销售利润+返利)[答案](1)24.6;(2)(5m -121);(3)7[解析][分析](1)根据题意每多售出1辆,所有售出的汽车的进价均降低0.2万元/辆,即可得出当月售出3辆汽车时,每辆汽车的进价;(2)先表示出当月售出5辆汽车时每辆汽车的进价,再根据利润=售价-进价即可求得该月盈利;(3)首先表示出每辆汽车的销售利润,再利用当0≤x≤10,当x>10时,分别得出答案.[详解]解:(1)∵当月仅售出1辆汽车,则该辆汽车的进价为25万元,每多售出1辆,所有售出的汽车的进价均降低0.1万元/辆,∴该公司当月售出3辆汽车,则每辆汽车的进价为25-2×0.2=24.6万元;故答案为:24.6;(2)∵当月售出5辆汽车,∴每辆汽车的进价为25-4×0.2=24.2万元,∴该月盈利为5(m-24.2)=5m-121,故答案为:(5m-121);(2)设需要售出x辆汽车,由题意可知,每辆汽车的销售利润为:25.6-[25-0.2(x-1)]=(0.2x+0.4)(万元),当0≤x≤10,根据题意,得x•(0.2x+0.4)+0.6x=16.8,整理,得x2+5x-84=0,解这个方程,得x1=-12(不合题意,舍去),x2=7,当x>10时,根据题意,得x•(0.2x+0.4)+1.2x=16.8,整理,得x2+8x-84=0,解这个方程,得x1=-14(不合题意,舍去),x2=6,因为6<10,所以x2=6舍去.答:需要售出7辆汽车.[点睛]此题主要考查了一元二次方程的应用,根据题意正确表示出每部汽车的销售利润是解题关键.26.如图,在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=3cm,BC=5cm.点P从A点出发沿AD方向匀速运动速度为lcm/s,连接PO并延长交BC于点Q.设运动时间为t(s)(0<t<5)(1)当t为何值时,四边形ABQP是平行四边形?(2)设四边形OQCD的面积为y(cm2),当t=4时,求y的值.[答案](1)当t=2.5s 时,四边形ABQP 是平行四边形,理由详见解析;(2)5.4cm 2.[解析][分析](1)求出AP BQ =和//AP BQ ,根据平行四边形的判定得出即可;(2)先求出高AM 和ON 的长度,再求出DOC ∆和OQC ∆的面积,再求出答案即可.[详解](1)当 2.5t s =时,四边形ABQP 是平行四边形,理由如下:∵四边形ABCD 是平行四边形∴//,,5,,AD BC AB CD AD BC cm AO CO AO OC =====∴PAO QCO ∠=∠在APO ∆和CQO ∆中,PAO QCO AO CO POA QOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()APO CQO ASA ∆≅∆∴ 2.5AP CQ cm ==, 2.5()1AP t s == ∵5BC cm =∴5 2.5 2.5BQ cm cm cm AP =-==即,//AP BQ AP BQ =∴四边形ABQP 是平行四边形故当 2.5t s =时,四边形ABQP 是平行四边形;(2)过A 作AM BC ⊥于M ,过O 作ON BC ⊥于N∵,3,5AB AC AB cm BC cm ⊥==∴在Rt ABC ∆中,由勾股定理得:224AC BC AB cm =-=由三角形的面积公式得:1122BAC S AB AC BC AM ∆=⋅=⋅,即1134522AM ⨯⨯=⨯ ∴ 2.4AM cm =∵,ON BC AM BC ⊥⊥∴//AM ON∵AO OC =∴MN CN =∴1 1.22ON AM cm == 在BAC ∆和DCA ∆中,AC AC BC AD AB CD =⎧⎪=⎨⎪=⎩∴()BAC DCA SSS ∆≅∆∴21346()2DCA BAC S S cm ∆∆==⨯⨯= ∵AO OC =∴DOC ∆的面积为2132DCA S cm ∆= 当4t s =时,4AP CQ cm ==∴OQC ∆的面积为21 1.24 2.4()2cm ⨯⨯= ∴23 2.4 5.4()y cm =+=故y 的值为25.4cm .[点睛]本题考查了平行四边形的性质和判定、三角形的面积、全等三角形的性质和判定等知识点,能综合运用定理进行推理是解此题的关键.27.阅读下面材料,并回答下列问题:小明遇到这样一个问题,如图,在ABC ∆中,//DE BC 分别交AB 于点,交AC 于点.已知,3,5CD BE CD BE ⊥==,求BC DE +的值.小明发现,过点作//EF DC ,交BC 的延长线于点,构造BEF ∆,经过推理和计算能够使问题得到解决(如图)请你回答:(1)证明:DE CF =;(2)求出BC DE +的值;(3)参考小明思考问题的方法,解决问题;如图,已知ABCD 和矩形,ABEF AC 与DF 交于点,G AC BF DF ==.求AGF ∠的度数.[答案](1)详见解析;34(3)60[解析][分析](1)由DE ∥BC ,EF ∥DC ,可证得四边形DCFE 是平行四边形,从而问题得以解决;(2)由DC ⊥BE ,四边形DCFE 是平行四边形,可得Rt △BEF ,求出BF 的长,证明BC+DE=BF ;(3)连接AE ,CE ,由四边形ABCD 是平行四边形,四边形ABEF 是矩形,易证得四边形DCEF 是平行四边形,继而证得△ACE 是等边三角形,问题得证.[详解](1)证明:∵DE ∥BC ,EF ∥DC ,∴四边形DCFE 是平行四边形.∴DE=CF .(2)解:由于四边形DCFE 是平行四边形,∴DE=CF ,DC=EF ,∴BC+DE=BC+CF=BF .∵DC ⊥BE ,DC ∥EF ,∴∠BEF=90°.在Rt △BEF 中,∵BE=5,CD=3,∴BF=22225=3=34BE EF ++.(3)连接AE ,CE ,如图.∵四边形ABCD 是平行四边形, ∴AB ∥DC .∵四边形ABEF 是矩形, ∴AB ∥FE ,BF=AE . ∴DC ∥FE .∴四边形DCEF 是平行四边形. ∴CE ∥DF .∵AC=BF=DF ,∴AC=AE=CE .∴△ACE 是等边三角形. ∴∠ACE=60°.∵CE ∥DF ,∴∠AGF=∠ACE=60°.[点睛]本题考查了平行四边形的判定与性质、矩形的性质、等边三角形的判定与性质以及勾股定理.连接AE 、CE 构造等边三角形是关键.。

人教版八年级下册数学《期中检测卷》(含答案)

人教版八年级下册数学《期中检测卷》(含答案)

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题1. 下列根式中,不是最简二次根式是( ) A. 5 B. 33 C. 12 D. 102. 下列运算正确的是( )A. 111x y x y +=+ B. 2353()p q p q -=- C. a b ab ⋅=,(0,0)≥≥a b D.222()a b a b +=+3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105°4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20D. 3,1,2 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角7. 如图,已知四边形ABCD 是正方形,E 是AB 延长线上一点,且BE=BD ,则∠BDE 的度数是()A. 22.5°B. 30°C. 45°D. 67.5°8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A 13 B. 22 C. 4 D. 109. 如图,在22 的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()A. 5B. 322C.355D.3210. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示:册数0 1 2 3 4人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是211. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055+C. 25D. 521 12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210二、填空题13. 计算:218-=__________.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________. 15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.17. 如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=24,BD=10,则菱形ABCD的高DE=____.18. 如图,在矩形ABCD中,AB=3,AD=4,点P在AD上,PE⊥AC于E,PF⊥BD于F,则PE+PF等于_____.三、解答题19. 计算:①4545842+-+;②12xy xy⨯÷20. 如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD直角三角形.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.平均数中位数众数九()1班85 85九()2班80()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.22. 如图,一架长5米的梯子AB,顶端B靠在墙上,梯子底端A到墙的距离AC=3米.(1)求BC的长;(2)梯子滑动后停在DE位置,当AE为多少时,AE与BD相等?23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.∠交AD于点F,AEBF于点O,交BC于点E,连接EF.24. 已知,如图,在平行四边形ABCD中,BF平分ABC(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD的面积.25. 阅读下面的文字,解答问题:大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,但是由于1<2<2,所以2的整数部分为1,将2减去其整数部分1,差就是小数部分21-,根据以上的内容,解答下面的问题:(1)5的整数部分是______,小数部分是______;(2)12+的整数部分是______,小数部分是_____;+整数部分是x,小数部分是y,求x﹣3y的值.(3)若设2326. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.答案与解析一、选择题1. 下列根式中,不是最简二次根式的是( )A. B.C. D.[答案]C[解析][分析]根据最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式,由此判断各选项可得出答案.[详解]解:A ,不符合题意;B 、3是最简二次根式,不符合题意;C 不是最简二次根式,符合题意;D 是最简二次根式,不符合题意;故选:C .[点睛]本题考查最简二次根式的知识,属于基础题,注意掌握二次根式的满足的两个条件. 2. 下列运算正确的是( )A. 111x y x y +=+B. 2353()p q p q -=- =,(0,0)≥≥a b D. 222()a b a b +=+[答案]C[解析][分析]根据分式的加、减法法则,积的乘方,实数的运算法则求解即可.[详解]解:选项A :11++=+=y x x y x y xy xy xy,故选项A 错误; 选项B :2363()-=-p q p q ,故选项B 错误;选项C :当,a b 均大于等于0时=故选项C 正确;选项D :222()+2+=+a b a b ab ,故选项D 错误故答案为:C.[点睛]本题考查了分式的加减运算、整式的乘除、实数的运算等,熟练的掌握运算法则是解决此类题的关键. 3. 在□ABCD 中,∠A :∠B=7:2,则∠C 的度数是( ).A. 70°B. 280°C. 140°D. 105° [答案]C[解析][分析]由平行四边形ABCD 可知∠A+∠B=180°,依据∠A :∠B=7:2,可求得∠A 的度数,根据∠A=∠C 即可求得∠C 的度数.[详解]∵四边形ABCD 为平行四边形,∴∠A+∠B=180°,∠A=∠C ,∵∠A :∠B=7:2,∴∠A=180°×79=140°, ∴∠C=140°,故选:C .[点睛]本题主要考查了平行四边形的性质,解题时注意平行四边形的对角相等,邻角互补.4. 判断下列几组数能作为直角三角形的三边长的是( )A. 8,10,7B. 2,3,4C. 12,15,20 1,2 [答案]D[解析][分析]验证选项中每组数据,看两条较短边的平方和是否等于最长边的平方,若等于则为直角三角形,否则就不是直角三角形.[详解]解:选项A :两条较短边平方和为:7²+8²=49+64=113≠10²,故选项A 错误;选项B :两条较短边平方和为:2²+3²=13≠4²,故选项B 错误;选项C :两条较短边平方和为:12²+15²=144+225=369≠20²,故选项C 错误选项D :两条较短边平方和为:1²+(3)²=4=2²,故选项D 正确.故答案为:D.[点睛]本题考查勾股定理的逆定理,如果两条较短边的平方和等于最长边的平方,则此三角形为直角三角形. 5. 如图,菱形ABCD 中,130D ∠=︒,则1∠=( )A. 30B. 25︒C. 20︒D. 15︒[答案]B[解析][分析] 直接利用菱形的性质得出//DC AB ,1DAC ∠=∠,进而结合平行四边形的性质得出答案.[详解]解:四边形ABCD 是菱形,//DC AB ∴,1DAC ∠=∠,130D ∠=︒,18013050DAB ∴∠=︒-︒=︒,11252DAB ∴∠=∠=︒. 故选:B .[点睛]此题主要考查了菱形的性质,正确得出DAB ∠的度数是解题关键.6. 下列性质中,矩形不一定具有的是( )A. 对角线相等B. 对角线互相平分C. 4个内角相等D. 一条对角线平分一组对角[答案]D[解析][分析]本题主要应用矩形的性质,即对角线相等且互相平分,四个角都是直角,对边平行且相等,进行解答即可.[详解]解:B是一般的平行四边形的性质,A、C都是矩形特有的性质,D是菱形的性质,矩形不一定具有;故选:D.[点睛]本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,但是菱形特有的性质,矩形不一定具有.7. 如图,已知四边形ABCD是正方形,E是AB延长线上一点,且BE=BD,则∠BDE的度数是()A. 22.5°B. 30°C. 45°D. 67.5°[答案]A[解析][分析]由条件可得BE=BD,即得∠BED=∠BDE,根据正方形性质得∠ABD=45°,∠BED+∠BDE=∠ABD=45°,从而求得∠BDE.[详解]解:∵正方形ABCD,AD=AB,∴∠ABD=45°,∵BE=BD,∴∠BED=∠BDE,∴∠BED+∠BDE=∠ABD=45°,∴2∠BDE=45°,∴∠BDE=22.5°,故选:A.[点睛]本题考查了正方形的性质、等腰三角形底角相等的性质,根据∠BED=∠BDE和∠BED+∠BDE=∠ABD=45°是解题的关键.8. 如图,在矩形COED 中,点D 的坐标是(2,3),则CE 的长是()A. 13B. 22C. 4D. 10[答案]A[解析][分析]直接利用D点坐标再利用勾股定理得出DO的长,再利用矩形性质得出答案.[详解]解:如图,连接OD,∵点D的坐标是(2,3),∴22+1323∵四边形OEDC是矩形,∴13故选:A.[点睛]此题主要考查了矩形的性质,正确应用勾股定理是解题关键.9. 如图,在22⨯的方格中,小正方形的边长是1,点、、都在格点上,则AC边上的高为()532235 D. 32[答案]C[解析][分析] 先用间接法求出△ABC 的面积,然后求出AC 的长度,根据面积公式即可求出AC 边上的高.[详解]解:根据题意,得:11132211212422222ABC S ∆=⨯-⨯⨯-⨯⨯⨯=--=, ∵22125AC =+=又12ABC S AC h ∆=•, ∴AC 边上的高:3223525ABC S h AC∆⨯===;故选:C.[点睛]本题考查了勾股定理与网格问题,解题的关键是利用勾股定理求出AC 的长度,以及间接法求出△ABC 的面积.10. 在“朗读者”节目的影响下,某中学开展了“好书伴我成长”读书活动.为了解5月份八年级300名学生读书情况,随机调查了八年级50名学生读书的册数,统计数据如下表所示: 册数0 1 2 3 4 人数 4 12 16 17 1关于这组数据,下列说法正确的是( )A. 中位数是2B. 众数是17C. 平均数是2D. 方差是2[答案]A[解析]试题解析:察表格,可知这组样本数据的平均数为:(0×4+1×12+2×16+3×17+4×1)÷50=;∵这组样本数据中,3出现了17次,出现的次数最多,∴这组数据的众数是3;∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是2,∴这组数据的中位数为2,故选A.考点:1.方差;2.加权平均数;3.中位数;4.众数.11. 如图,长方形的长为15,宽为10,高为20,点离点的距离为5,蚂蚁如果要沿着长方形的表面从点爬到点,需要爬行的最短距离是()A. 35B. 1055C. 25D. 21[答案]C[解析][分析]要求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.[详解]解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如第1个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:∴AB=2222BD AD++,=1520=25只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如第2个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10;在直角三角形ABD中,根据勾股定理得:∴AB=2222++,BD AD=1025=529只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如第3个图:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30;在直角三角形ABC中,根据勾股定理得:∴AB=2222=305=537++,AC BC∵25<529<537,∴蚂蚁爬行的最短距离是25,故选:C.[点睛]本题主要考查勾股定理的应用,两点之间线段最短,关键是将长方体侧面展开,然后利用两点之间线段最短解答.12. 如图,矩形ABCD 中,22BC =,42AB =,点是对角线AC 上的一动点,以BP 为直角边作等腰Rt BPQ ∆(其中90PBQ ∠=︒),则PQ 的最小值是( )A. 8105B. 855C. 25D. 210[答案]B[解析][分析]根据题意可得当BP 最短时,PQ 值最小,即BP ⊥AC 时,PQ 最小.利用面积法计算BP 长度,即可得PQ 长度.[详解]解:∵△BPQ 是等腰直角三角形,若PQ 最小,则BP 值最小即可.∵点P 是对角线AC 上的一动点,B 点是定点,∴当BP ⊥AC 时,BP 最短.在Rt △ABC 中,AC=22210AB BC += ,根据三角形的面积公式,11224221022BP ⨯⨯=⨯⨯,解得4105BP =, 此时PQ 的最小值为22855BP BQ +=.故选B.[点睛]此题考查矩形的性质、勾股定理以及垂线段最短,解题的关键是根据图形特征转化最短线段.二、填空题13. 计算:218-=__________.[答案]22-[解析][分析]先将18化成最简二次根式,然后再进行加减运算即可.[详解]解:原式=23222-=-.故答案为:22-.[点睛]本题考查二次根式的加减运算,熟练掌握运算法则是解决此类题的关键.14. 已知直角三角形一个锐角60°,斜边长为4,那么此直角三角形斜边上的的高是________.[答案]3[解析][分析]由直角三角形中30°角所对的直角边等于斜边的一半,可求出30°角对应的直角边,再由勾股定理可知求出另一直角边,进而求出斜边上的高.[详解]解:如下图所示,BC=4,∠B=30°,∠C=60°由直角三角形中,30°角所对的直角边等于斜边的一半知:AC=12BC=2由勾股定理知:2222=422 3.-=-=AB BC AC在Rt△ABH中,AH=123故答案为:3.[点睛]本题考查了直角三角形中30°角所对的直角边等于斜边的一半、勾股定理等相关知识,熟练掌握直角三角形的性质是解题的关键.15. 如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要___________米长.[答案]14[解析][分析]根据平移的性质,地毯的长度实际是所有台阶的长加上台阶的高,因此结合题目的条件可得出答案.[详解]根据平移不改变线段的长度,可得地毯的长=台阶的长+台阶的高,则红地毯至少要6+22106-=6+8=14米.故答案为14[点睛]本题考查了生活中平移知识的应用,利用勾股定理求出台阶的水平长度是关键.16. 如图,Rt ABC 中,90 28ACB A D ∠=︒∠=,,是AB 的中点,则DCB ∠=________________度.[答案]62[解析][分析]根据直角三角形斜边上的中线等于斜边的一半可知CD AD =,根据等腰三角形的性质可知A ACD ∠=∠,进而即可得解.[详解]∵在Rt ABC ∆中,D 是AB 的中点 ∴12CD AD DB AB === ∴ADC ∆是等腰三角形∴A ACD ∠=∠∵28A ∠=︒∴28ACD ∠=︒∵90ACB ∠=︒∴902862DCB ∠=︒-︒=︒故答案为:62.[点睛]本题主要考查了直角三角形斜边上中线的性质,以及等腰三角形性质等相关知识,熟练掌握三角形的相关知识是解决本题的关键.17. 如图,菱形ABCD 中,对角线AC 与BD 相交于点O ,且AC =24,BD =10,则菱形ABCD 的高DE =____.[答案]12013[解析][分析]由菱形的性质求出AO 、BO 的值,再由勾股定理求出AB 的值,然后根据面积法即可求出DE 的值.[详解]∵四边形ABCD 是菱形,∴AC ⊥BD ,AO=12,BO=5,∴AB=2251213+=,∵1122AB DE OA BD ⋅=⋅, ∴12×13×DE=12×12×10, ∴DE=12013.故答案12013. [点睛]此题考查了菱形的性质,勾股定理,属于基础题,解答本题的关键是掌握菱形的基本性质:菱形的四条边都相等;菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角.18. 如图,在矩形ABCD 中,AB=3,AD=4,点P 在AD 上,PE ⊥AC 于E ,PF ⊥BD 于F ,则PE+PF 等于_____.[答案]125[解析][分析] [详解]解:设AC 与BD 相交于点O ,连接OP ,过D 作DM ⊥AC 于M ,∵四边形ABCD 是矩形,∴,AC=BD ,∠ADC=90°.∴OA=OD . ∵AB=3,AD=4,∴由勾股定理得:22345+= .∵1134522ACD S DM ∆=⨯⨯=⨯⋅ ,∴DM=125. ∵AOD APO DPO S S S ∆∆∆=+,∴111222AO DM AO PE DO PF ⋅⋅=⋅+⋅ . ∴PE+PF=DM=125.故选B . 三、解答题19. 计算: ①4545842+-+; ②12xy x y⨯÷ [答案]①7522+;②2.[解析]分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则(,(0,0)(0,0)a a a b ab a b a b b b ⋅==≥>)进行化简即可. [详解]解:①原式=45352242+-+=7522+;②原式=12xy x y⋅÷ =21=2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20. 如图,在Rt △ABC 中,∠BCA =90°,AC =12,AB =13,点D 是Rt △ABC 外一点,连接DC ,DB ,且CD =4,BD =3.(1)求BC 的长;(2)求证:△BCD 是直角三角形.[答案](1)5;(2)详见解析.[解析][分析](1)在Rt△ABC中,根据勾股定理即可求得BC的长;(2)利用勾股定理逆定理即可证明△BCD是直角三角形.[详解](1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=BC2,∴△BCD是直角三角形.[点睛]本题考查勾股定理及其逆定理.勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握定理是解题关键.21. 朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级()1、()2班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩(满分为100分)如图所示.()1根据图示填写表格;()2结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;()3如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.[答案](1)详见解析;(2)九()1班成绩好些;(3)九()1班的成绩更稳定,能胜出.[解析][分析]()1由条形图得出两班的成绩,根据中位数、平均数及众数分别求解可得;()2由平均数相等得前提下,中位数高的成绩好解答可得;()3分别计算两班成绩的方差,由方差小的成绩稳定解答.[详解]解:()1九()1班5位同学的成绩为:75、80、85、85、100,其中位数为85分;九()2班5位同学的成绩为:70、100、100、75、80,九()2班的平均数为70100100758085(5++++=分),其众数为100分,补全表格如下:平均数中位数众数九()1班85 85 85 九()2班85 80 100 ()2九()1班成绩好些,两个班的平均数都相同,而九()1班的中位数高,在平均数相同的情况下,中位数高的九()1班成绩好些.()3九()1班的成绩更稳定,能胜出.()(22222211[(7585)(8085)(8585)(8585)10085)70(5S ⎤=⨯-+-+-+-+-=⎦九分2), ()(22222221[(7085)(10085)(10085)(7585)8085)160(5S 九⎤=⨯-+-+-+-+-=⎦分2), ()()2212S S 九九∴<,九()1班的成绩更稳定,能胜出.[点睛]本题考查了平均数、中位数、众数和方差的意义即运用方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.22. 如图,一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米.(1)求BC 的长;(2)梯子滑动后停在DE 的位置,当AE 为多少时,AE 与BD 相等?[答案](1)4m ;(2)1m.[解析][分析](1)直接在Rt △ABC 中应用勾股定理即可作答;(2)先设AE=x,然后根据题意用x 表示出CD 和CE 的长,然后使用勾股定理即可完成解答.[详解]解:(1)∵一架长5米的梯子AB ,顶端B 靠在墙上,梯子底端A 到墙的距离AC =3米,∴BC 2253-(m ),答:BC 的长为4m ;(2)当BD =AE ,则设AE =x ,故(4-x )2+(3+x )2=25解得:x 1=1,x 2=0(舍去),故AE=1m.[点睛]本题主要考查了勾股定理得应用,正确的找到直角三角形和相应边的长是解答本题的关键.23. 正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.[答案](1)见解析;(2)5 2 .[解析][分析](1)由折叠可得DE=DM,∠EDM为直角,可得出∠EDF+∠MDF=90°,由∠EDF=45°,得到∠MDF为45°,可得出∠EDF=∠MDF,再由DF=DF,利用SAS可得出三角形DEF与三角形MDF全等,由全等三角形的对应边相等可得出EF=MF;(2)由第一问的全等得到AE=CM=1,正方形的边长为3,用AB-AE求出EB的长,再由BC+CM求出BM的长,设EF=MF=x,可得出BF=BM-FM=BM-EF=4-x,在直角三角形BEF中,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即为EF的长.[详解](1)∵△DAE逆时针旋转90°得到△DCM∴DE=DM ∠EDM=90°∴∠EDF + ∠FDM=90°∵∠EDF=45°∴∠FDM =∠EDM=45°∵DF= DF∴△DEF≌△DMF∴EF=MF …(2) 设EF=x ∵AE=CM=1∴ BF=BM-MF=BM-EF=4-x∵ EB=2在Rt △EBF 中,由勾股定理得222EB BF EF +=即2222(4)x x +-=解之,得 52x = 24. 已知,如图,在平行四边形ABCD 中,BF 平分ABC ∠交AD 于点F ,AEBF 于点O ,交BC 于点E ,连接EF .(1)求证:四边形ABEF 是菱形;(2)若AE=6,BF=8,CE=3,求四边形ABCD 的面积.[答案](1)答案见解析;(2)1925. [解析][分析] (1)由BF 平分∠ABC 得到∠ABF=∠EBF ,由AD ∥BC ,得到∠EBF=∠AFB ,进而得到△ABF 为等腰三角形,得到AB=AF ;由AE ⊥BF ,可证明△ABO ≌△EBO ,得到BE=AB ,进而可证明四边形ABEF 为菱形;(2)由(1)中四边形ABEF 为菱形,过A 点作AH ⊥BC 于H 点,根据菱形等面积法求出AH 的长,进而求出平行四边形ABCD 的高,进而求出其面积.[详解]解:(1)证明:∵四边形ABCD 为平行四边形,且F 在AD 上,E 在BC 上∴AF ∥BE∴∠EBF=∠AFB∵BF 是∠ABE 的角平分线∴∠EBF=∠ABF∴∠ABF=∠AFB∴△ABF 为等腰三角形,且AF=AB又AE ⊥BF ,∴∠AOB=∠EOB=90°在△AOB 和△EOB 中:=90⎧∠=∠⎪=⎨⎪∠=∠⎩ABO EBO BO BOAOB EOB ,∴△AOB 和△EOB(ASA) ∴AB=BE又AB=AF∴BE=AF ,且BE ∥AF ,∴四边形ABEF 为平行四边形又AB=BE ,∴四边形ABEF 为菱形.(2)过A 点作AH ⊥BC 于H 点,如下图所示∵四边形ABEF 为菱形∴AE ⊥BF ,且BO=12BF=4,OE=12AE=3 ∴在Rt △BOE 中:2222==43=5++BE BO OE 由菱形等面积法:1=2⨯⨯BE AH BF AE ,代入数据得: AH=245∴平行四边形ABCD 的高为245 ∴24192==(53)55平行四边形⨯+⨯=ABCD S BC AH . 故答案为:1925. [点睛]本题考查了菱形的判定方法、菱形的面积公式等,熟练掌握特殊四边形的判定方法及性质是解决此类题的关键.25. 阅读下面的文字,2是无理数,而无理数是无限不循环小数,2的小数部分我们不可能全部地写出来,但是由于12<2,21,21,差就是1,根据以上的内容,解答下面的问题:(1的整数部分是______,小数部分是______;(2)1+的整数部分是______,小数部分是_____;(3)若设2+整数部分是x,小数部分是y,求x的值.[答案]解:(1)22;(2)21;(3.[解析][分析](1)的取值范围即可得答案;(2)的取值范围,再得出的取值范围,即可得答案;(3)先估算出,得出x、y的值,再代入求值即可.[详解](1)∵4<5<9,即,2,-2.故答案为22(2)∵1<2<4,∴<2,∴<3,的整数部分是2,-1.故答案为21(3)∵1<3<4,∴,∴,∵2+x,小数部分是y,∴x=3,y=-1,∴x﹣3y=3-3(3-1)=3.[点睛]此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算,“夹逼法”是估算的一般方法,也是常用方法.26. 如图,在边长为10的菱形ABCD中,对角线BD=16,对角线AC,BD相交于点G,点O是直线BD上的动点,OE⊥AB于E,OF⊥AD于F.(1)求对角线AC的长及菱形ABCD的面积.(2)如图①,当点O在对角线BD上运动时,OE+OF的值是否发生变化?请说明理由.(3)如图②,当点O在对角线BD的延长线上时,OE+OF的值是否发生变化?若不变,请说明理由;若变化,请探究OE,OF之间的数量关系.[答案](1)12;96 (2)答案见解析(3)答案见解析[解析][分析](1)根据菱形的对角线互相垂直平分求出BG,再利用勾股定理列式求出AG,然后根据AC=2AG计算即可得解;再根据菱形的面积等于对角线乘积的一半列式计算即可得解;(2)连接AO,根据S△ABD=S△ABO+S△ADO列式计算即可得解;(3)连接AO,根据S△ABD=S△ABO-S△ADO列式整理即可得解.[详解]解:(1)在菱形ABCD中,AG=CG,AC⊥BD,BG=12BD=12×16=8,由勾股定理得AG22221086AB BG--=, 所以AC=2AG=2×6=12.所以菱形ABCD的面积=12AC·BD=12×12×16=96.(2)不发生变化.理由如下:如图①,连接AO,则S△ABD=S△ABO+S△AOD,所以12BD·AG=12AB·OE+12AD·OF,即12×16×6=12×10·OE+12×10·OF.解得OE+OF=9.6,是定值,不变.(3)发生变化.如图②,连接AO,则S△ABD=S△ABO-S△AOD,所以12BD·AG=12AB·OE-12AD·OF.即12×16×6=12×10·OE-12×10·OF.解得OE-OF=9.6,是定值,不变.所以OE+OF的值发生变化,OE,OF之间的数量关系为OE-OF=9.6.[点睛]本题主要考查了菱形性质,主要利用了菱形的对角线互相垂直平分的性质,(2)(3)作辅助线构造出两个三角形是解题的关键.。

人教版八年级下册数学《期中检测题》含答案解析

人教版八年级下册数学《期中检测题》含答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共16小题)1.,必须满足( ) A. 52x ≥-B. 52x ≤-C. 为任何实数D. 为非负数2.下列根式中, ( )3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环B. 9.5环C. 9.4环D. 9.3环4.下列运算正确的是( )213C. =D. 25.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲B. 乙X. 丙∆. 丁6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限7.已知一次函数y kx b =+图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <8.关于12的叙述,错误..的是( ) A.12是有理数B. 面积为12的正方形的边长是12C.12=23D. 在数轴上可以找到表示12的点9.如图,在平面直角坐标系中,矩形ABCD 的顶点A (6,0),C (0,4)点D 与坐标原点O 重合,动点P 从点O 出发,以每秒2个单位的速度沿O ﹣A ﹣B ﹣C 的路线向终点C 运动,连接OP 、CP ,设点P 运动的时间为t 秒,△CPO 的面积为S ,下列图象能表示t 与S 之间函数关系的是( )A.B.C.D.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是( ) A. 平均数、中位数 B. 众数、中位数C. 平均数、方差D. 中位数、方差11.估计1832⨯+的运算结果应在( ) A. 1到2之间B. 2到3之间C. 3到4之间D. 4到5之间12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( ) A. 3B. 4C. 5D. 913.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( ) A. m >-1B. m <1C. -1<m <1D. -1≤m≤115.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( ) A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______. 18.函数()125m y m x-=-+是关于的一次函数,则m =__________.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________. 20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.三.解答题(共5小题)21.计算:(1)(π﹣3)0205(﹣1)﹣1; (2)2(253)(52)(52)--22.已知函数y =(2m +1)x +m -3. (1)若函数图象经过原点,求m 值(2)若函数的图象平行于直线y =3x -3,求m 的值(3)若这个函数是一次函数,且y 随着x 增大而减小,求m 的取值范围.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到学生人数为________,图2中的值为_________.(2)本次调查获取样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.25.如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在线段OA和射线AC上运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)是否存在点M,使△OMC的面积是△OAC的面积的14?若存在求出此时点M的坐标;若不存在,说明理由.答案与解析一.选择题(共16小题)1.,必须满足()A.52x≥- B.52x≤- C. 为任何实数 D. 为非负数[答案]A[解析][分析]根据二次根式有意义的条件可得2x+5≥0,再解不等式即可.[详解],则2x+5≥0,解得:52x≥-.故选A.[点睛]本题考查二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.2.下列根式中,( )[答案]C[解析][分析]首先根据二次根式的化简法则将二次根式化简,经化简后如果被开方数相同,则能进行合并.[详解]A、原式=3,合并;B、原式;C、原式,;D、原式,故选C.3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为( ) A. 9.6环 B. 9.5环C. 9.4环D. 9.3环[答案]A [解析] [分析]根据题目中的数据和加权平均数的计算方法,可以求得小明这10次射击的平均成绩. [详解]解:小明这10次射击的平均成绩为:110(10×6+9×4)=9.6(环), 故选:A .[点睛]本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法. 4.下列运算正确的是( )213C. =D. 2[答案]C [解析] [分析]根据同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质逐一判断即可.[详解]A .不是同类二次根式,故本选项错误;B . ≠213,故本选项错误;C . ()428=⨯⨯=⨯=故本选项正确;D . 2-2,故本选项错误.故选C .[点睛]此题考查的是二次根式的运算,掌握同类二次根式的定义、二次根式的乘、除法公式和二次根式的性质是解决此题的关键.5.甲、乙、丙、丁四人各进行了6次跳远测试,他们的平均成绩相同,方差分别是S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45,则跳远成绩最稳定的是( ) A. 甲 B. 乙C. 丙D. 丁[答案]D [解析] [分析]根据方差的意义求解可得.[详解]解:∵S 甲2=0.65,S 乙2=0.55,S 丙2=0.50,S 丁2=0.45, ∴S 丁2<S 丙2<S 乙2<S 甲2, ∴跳远成绩最稳定的是丁, 故选:D .[点睛]本题主要考查方差,解题的关键是掌握方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好. 6.对于函数22y x =-+,下列结论正确的是( ) A. 它的图像必经过点(1,2)- B. 当1x >时,0y <C. 的值随值的增大而增大D. 的图像经过第一、二、三、象限[答案]B [解析] [分析]根据一次函数的定义以及性质对各项进行判断即可. [详解]A.将1x =-代入22y x =-+中,解得4y =,错误;B.当1x =时0y =,因为20-<,所以y 随着x 的增大而减小,即当1x >时,0y <,正确;C. 因为20-<,所以y 随着x 的增大而减小,错误;D.该函数图象经过第一、二、四象限,错误; 故答案为:B .[点睛]本题考查了一次函数的问题,掌握一次函数的定义以及性质是解题的关键.7.已知一次函数y kx b =+的图象如图所示,则不等式0kx b +<的解集为( )A. 5x >B. 5x <C. 4x >D. 4x <[答案]C [解析] [分析]根据图象得出一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小,再得出不等式的解集即可. [详解]解:∵从图象可知:一次函数图象和x 轴的交点坐标为(4,0),y 随x 的增大而减小, ∴不等式kx+b <0的解集是x >4, 故选:C .[点睛]本题考查了一次函数与一元一次不等式、一次函数的性质等知识点,能熟记一次函数的性质是解此题的关键.8.12的叙述,错误..的是( ) 12是有理数B. 面积为1212 12=3D. 12的点 [答案]A [解析]12,A 项错误,故答案选A. 考点:无理数.9.如图,在平面直角坐标系中,矩形ABCD的顶点A(6,0),C(0,4)点D与坐标原点O重合,动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,连接OP、CP,设点P运动的时间为t 秒,△CPO的面积为S,下列图象能表示t与S之间函数关系的是( )A.B.C.D.[答案]B[解析][分析]根据动点运动的起点位置、关键转折点,结合排除法,可得答案.[详解]解:∵动点P从点O出发,以每秒2个单位的速度沿O﹣A﹣B﹣C的路线向终点C运动,△CPO的面积为S∴当t=0时,OP=0,故S=0∴选项C、D错误;当t=3时,点P和点A重合,∴当点P在从点A运动到点B的过程中,S的值不变,均为12,故排除A,只有选项B符合题意.故选:B.[点睛]本题考查了动点问题的函数图象,数形结合及正确运用排除法,是解题的关键.10.某校航模兴趣小组共有30位同学,他们的年龄分布如下表:由于表格污损,15和16岁人数不清,则下列关于年龄的统计量可以确定的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差[答案]B[解析][分析]由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.[详解]由表可知,年龄为15岁与年龄为16岁的频数和为3051510--=,故该组数据的众数为14岁,中位数为:1414142+=(岁),关于年龄的统计量不会发生改变的是众数和中位数,故选B.[点睛]考查频数(率)分布表,加权平均数,中位数,众数,掌握中位数以及众数概念是解题的关键.11.1832( )A 1到2之间 B. 2到3之间 C. 3到4之间 D. 4到5之间[答案]C[解析][分析]先计算出原式,再进行估算即可.[详解的数值在1-2之间,所以3-4之间.故选C .12.样本数据4,m ,5,n ,9的平均数是6,众数是9,则这组数据的中位数是( )A. 3B. 4C. 5D. 9[答案]C[解析][分析]先判断出m ,n 中至少有一个是9,再用平均数求出12m n +=,即可求出这两个数,由中位数的定义排序后求中位数即可.[详解]解:∵一组数据4,m ,5,n ,9的众数为9,∴m ,n 中至少有一个是9,∵一组数据4,m ,5,n ,9的平均数为6, 45965m n ++++= ∴12m n +=∴m ,n 中一个是9,另一个是3∴这组数按从小到大排列为:3,4,5,9,9.∴这组数的中位数为:5.故选:C.[点睛]本题考查了众数、平均数和中位数的知识.能结合平均数和众数的定义对这组数据正确分析是解决此题的关键.13.A ,B 两地相距20km ,甲乙两人沿同一条路线从 地到 地,如图反映的是二人行进路程 (km )与行进时间()之间的关系,有下列说法:①甲始终是匀速行进,乙的行进不是匀速的;②乙用了4个小时到达目的地;③乙比甲先出发1小时;④甲在出发4小时后被乙追上,在这些说法中,正确的有( )A. 1个B. 2个C. 3个D. 4个[答案]A[解析][分析] 根据题意结合图象依次判断即可.[详解]①甲始终是匀速行进,乙的行进不是匀速的,正确;②乙用了4个小时到达目的地,错误;③乙比甲先出发1小时,错误;④甲在出发4小时后被乙追上,错误,故选:A.[点睛]此题考查一次函数图象,正确理解题意,会看函数图象,将两者结合是解题的关键.14.直线y=-2x+m 与直线y=2x -1的交点在第四象限,则m 的取值范围是( )A. m >-1B. m <1C. -1<m <1D. -1≤m≤1[答案]C[解析] 试题分析:联立,解得,∵交点在第四象限,∴,解不等式①得,m >﹣1,解不等式②得,m <1,所以,m 的取值范围是﹣1<m <1.故选C .考点:两条直线相交或平行问题.15.直线:(3)2l y m x n =-+-(, 为常数)的图象如图,化简:︱3m -244n n -+( )A. 5m n --B. 5C. -1D. 5m n +-[答案]A[解析] [详解]根据一次函数图像可得: 30m -<, 20n ->,解得3m <, 2n >,所以︱3m -()22443232325n n m n m n m n m n -+=--=---=--+=--, 故选A .. 16.在平面直角坐标系中,已知直线y =﹣34x +3与x 轴、y 轴分别交于A 、B 两点,点C 在线段OB 上,把△ABC 沿直线AC 折叠,使点B 刚好落在x 轴上,则点C 的坐标是( )A. (0,﹣34) B. (0,43) C. (0,3) D. (0,4)[答案]B[解析][分析]设C (0,n ),过C 作CD ⊥AB 于D ,先求出A ,B 的坐标,分别为(4,0),(0,3),得到AB 的长,再根据折叠的性质得到AC 平分∠OAB ,得到CD =CO =n ,DA =OA =4,则DB =5﹣4=1,BC =3﹣n ,在Rt △BCD 中,利用勾股定理得到n 的方程,解方程求出n 即可.[详解]解:设C (0,n ),过C 作CD ⊥AB 于D ,如图,对于直线y =﹣34x+3, 当x =0,得y =3;当y =0,x =4,∴A (4,0),B (0,3),即OA =4,OB =3,∴AB =5,又∵坐标平面沿直线AC 折叠,使点B 刚好落在x 轴上,∴AC 平分∠OAB ,∴CD =CO =n ,则BC =3﹣n ,∴DA =OA =4,∴DB =5﹣4=1,在Rt △BCD 中,DC 2+BD 2=BC 2,∴n 2+12=(3﹣n )2,解得n =43, ∴点C 的坐标为(0,43). 故选:B .[点睛]本题考查了求直线与坐标轴交点的坐标的方法:分别令x=0或y=0,求对应的y 或x 的值;也考查了折叠的性质和勾股定理. 二.填空题(共4小题)17.将直线21y x =-向上平移个单位,得到直线_______.[答案]23y x =+[解析][分析]根据平移k 不变,b 值加减即可得出答案.[详解]平移后解析式为:y=2x−1+4=2x+3,故答案为y=2x+3[点睛]此题考查一次函数图象与几何变换,解题关键在于掌握平移的性质18.函数()125m y m x-=-+是关于的一次函数,则m =__________. [答案]-2[解析][分析]根据一次函数y=kx+b 的定义条件是:k 、b 为常数,k≠0,自变量次数为1,即可得出m 的值.[详解]根据一次函数的定义可得:m-2≠0,|m|-1=1,由|m|-1=1,解得:m=-2或2,又m-2≠0,m≠2,则m=-2.故答案为:-2.[点睛]此题考查一次函数的定义,解题关键在于掌握其定义,难度不大,注意基础概念的掌握.19.已知x 1,x 2,x 3的平均数x =10,方差s 2=3,则2x 1,2x 2,2x 3的平均数为__________,方差为__________.[答案] (1). 20 (2). 12[解析] ∵x =10, ∴1233x x x ++=10, 设21x ,22x ,23x 的方差为, 则1232223x x x y ++==2×10=20, ∵22221231(10)(10)(10)3s x x x ⎡⎤=-+-++⎣⎦ ,∴22221231(2)(2)(2)S x y x y x y n '⎡⎤=-+-+-⎣'⎦ =132221234(10)4(10)4(10)x x x ⎡⎤-+-++⎣⎦ =4×3=12.故答案为20;12.点睛:本题考查了当数据加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变,平均数也加或减这个数;当乘以一个数时,方差变成这个数的平方倍,平均数也乘以这个数.20.如图,直线142y x =+与坐标轴交于A,B 两点,在射线AO 上有一点P ,当△APB 是以AP 为腰的等腰三角形时,点P 的坐标是________________.[答案]()()3,0,458,0-[解析][分析]把x=0,y=0分别代入函数解析式,即可求得相应的y 、x 的值,则易得点A 、B 的坐标;根据等腰三角形的判定,分两种情况讨论即可求得.[详解]当y=0时,x=-8,即A(-8,0),当x=0时,y=4,即B(0,4),∴OA=8,OB=4在Rt △ABO 中,2245AO BO +=若5则5∴点5若AP'=BP',在Rt △BP'O 中,BP'2=BO 2+P'O 2=16+(AO-BP')2.∴BP'=AP'=5∴OP'=3∴P'(-3,0)综上所述:点故答案为([点睛]本题考查了一次函数图象上点的坐标特征,等腰三角形的性质,利用分类思想解决问题是解题的关键.三.解答题(共5小题)21.计算:(1)(π﹣3)0(﹣1)﹣1;(2)2--[答案](1)-2;(2)[解析][分析](1)先计算零指数幂、计算二次根式的除法和负整数指数幂,再计算加减可得;(2)先利用完全平方公式和平方差公式计算,再计算加减可得.[详解]解:(1)原式=1﹣1=1﹣2﹣1=﹣2;(2)原式=﹣(5﹣2)= 3=20+.[点睛]本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.22.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值(2)若函数的图象平行于直线y=3x-3,求m的值(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围.[答案](1)m=3;(2)m=1;(3)m<﹣1.2[解析]试题分析:(1)把原点坐标(0,0)代入函数关系式,即可求得m的值;(2)根据图象平行的一次函数的一次项系数相同即可得到关于m的方程,解出即可;(3)根据一次函数的性质即可得到关于m的不等式,解出即可.(1)由题意得,,;(2)由题意得,,;(3)由题意得,,考点:本题考查的是一次函数的性质点评:解答本题的关键是熟练掌握一次函数的性质:当时,y随x的增大而增大;当时,y随x的增大而减小.23.我校八年级有800名学生,在体育中考前进行一次排球模拟测试,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为________,图2中的值为_________.(2)本次调查获取的样本数据的平均数是__________,众数是________,中位数是_________.(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?[答案](1)①50;②28;(2)①10.66;②12;③11;(3)我校八年级模拟体测中得12分的学生约有256人;[解析][分析](1)求直方图中各组人数和即可求得跳绳得学生人数,利用百分比的意义求得m即可;(2)利用平均数、众数、中位数的定义求解即可;(3)利用总人数乘以对应的百分比即可求得;[详解](1)本次抽取到的学生人数为:4+5+11+14+16=50(人);m%=1450x100%=28%,∴=28;故答案为:①50;②28;(2)观察条形统计图得,本次调查获取的样本数据的平均数849510111114121610.6650x⨯+⨯+⨯+⨯+⨯==,∴本次调查获取的样本数据的平均数为10.66,∵在这组样本数据中,12出现了16次,∴众数为12,∵将这组数据按从小到大排列后,其中处于中间位置的两个数都为11,∴中位数为:11+11=11 2,(3)800×32%=256人;答:我校八年级模拟体测中得12分的学生约有256人;[点睛]本题主要考查了中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图,掌握中位数、众数、平均数的定义,条形统计图,用样本估计总体,扇形统计图是解题的关键.24.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.[答案](1)A奖品的单价是10元,B奖品的单价是15元;(2)当购买A种奖品75件,B种奖品25件时,费用W 最小,最小为1125元.[解析]试题分析:(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x的取值范围,由一次函数的性质就可以求出结论.试题解析:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得 3260{5395x y x y +=+=, 解得:1015x y =⎧⎨=⎩. 答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W=10m+15(100-m)=-5m+1500∴()515001150{? 3100m m m -+≤≤-, 解得:70≤m≤75.∵m 是整数,∴m=70,71,72,73,74,75.∵W=-5m+1500,∴k=-5<0,∴W 随m 的增大而减小,∴m=75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元. 考点:1.一次函数的应用;2.二元一次方程组的应用;3.一元一次不等式组的应用. 25.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点M 在线段OA 和射线AC 上运动.(1)求直线AB 的解析式.(2)求△OAC 的面积.(3)是否存在点M ,使△OMC 的面积是△OAC 的面积的14?若存在求出此时点M 的坐标;若不存在,说明理由.[答案](1)y =﹣x +6;(2)S △OAC =12;(3)存在,M 的坐标是:M 1(1,12)或M 2(1,5)或M 3(﹣1,7) [解析][分析](1)利用待定系数法即可求得函数的解析式;(2)求得C 的坐标,即OC 的长,利用三角形的面积公式即可求解;(3)当△OMC 的面积是△OAC 的面积的14时,根据面积公式即可求得M 的横坐标,然后代入解析式即可求得M 的坐标.[详解]解:(1)设直线AB 的解析式是y kx b =+, 根据题意得:4260k b k b +=⎧⎨+=⎩, 解得:16k b =-⎧⎨=⎩, 则直线的解析式是:y x 6=-+;(2)在y =﹣x +6中,令x =0,解得:y =6,OAC 1S 64122∆=⨯⨯=; (3)设OA 解析式是y =mx ,则4m =2, 解得:1m 2=, 则直线的解析式是:12y x =, ∵当△OMC 的面积是△OAC 的面积的14时, ∴当M 的横坐标是1414⨯=, 在12y x =中,当x =1时,y =12,则M 的坐标是1(1,)2; 在y x 6=-+中,x =1则y =5,则M 的坐标是(1,5).则M的坐标是:M1(1,12)或M2(1,5).当M的横坐标是:﹣1,在y x6=-+中,当x=﹣1时,y=7,则M的坐标是(﹣1,7);综上所述:M坐标是:M1(1,12)或M2(1,5)或M3(﹣1,7).[点睛]本题主要考查了用待定系数法求函数的解析式以及三角形面积求法等知识,利用M点横坐标为±1分别求出是解题关键.。

人教版数学八年级下册《期中检测卷》及答案

人教版数学八年级下册《期中检测卷》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求) 1.下列图形既是轴对称图形又是中心对称图形的是( )A. 平行四边形B. 等边三角形C. 等腰梯形D. 圆2.等腰三角形一个角是50°,则它的底角的度数为( )A 50° B. 50°或 80° C. 50°或 65° D. 65°3.若a <b ,则下列不等式不一定成立的是()A. a +2<b +2B. 2a <2bC. 22a bD. a 2<b 24.△ABC 中,∠B =50°,∠A =80°,若AB =6,则AC =( ) A. 6B. 8C. 5D. 135. 下列命题,假命题是( )A. 有一个内角等于60°的等腰三角形是等边三角形B. 有一个角是40°,腰相等两个等腰三角形全等C. 在直角三角形中,最大边的平方等于其他两边的平方和D. 三角形两个内角平分线的交点到三边的距离相等6. 如图.在Rt△A BC 中,∠A=30°,DE 垂直平分斜边AC,交AB 于D,E 是垂足,连接CD,若BD=1,则AC 的长是( )A. 2B. 2C. 4D. 47.某市出租车的收费标准是:起步价为8元(即行驶距离不超过3km ,都需付8元车费),超过3km 后,每增加1km,加收1.5元(不足1km按1km计算).某人从甲地到乙地经过的路程是xkm,出租车费为15.5元,那么x 的最大值是()A. 11B. 8C. 7D. 58.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A. 14B. 7C. ﹣2D. 29.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )A. x>﹣2B. x<﹣2C. x>﹣5D. x<﹣5∠=,将ABP绕点A逆时针旋转后,能与ACP'重合,如果AP3=,那么PP'的长10.ABC中,BAC90等于()A. 3B. 32C. 23D. 不能确定二、填空题(每题4分,共16分)11.如图,△ABC与△BDE都是等腰直角三角形,若△ABC经旋转后能与△BDE重合,则旋转中心是________,旋转了_______°.12.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是_____.13.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E, 则△AEC的周长等于________.14.如图,在△ABC 中∠ACB =90°,AC=BC ,AE 是BC 边上的中线CF ⊥AE ,垂足为F ,BD ⊥BC 交CF 的延长线于D .若AC =12cm ,则BD =______.三、解答题(本大题共6小题,共54分,答题时应写出文字说明、证明过程或演算步骤) 15.(1)解不等式:()21132x x +-≥+,并把它的解集表示在数轴上;(2)解不等式组()32211163x x x x ⎧+>-⎪⎨-->⎪⎩,并写出它的所有非负整数解. 16.如图,在建立平面直角坐标系网格纸中,每个小方格都是边长为1个单位长度的小正方形,△ABC 的顶点均在格点上,点P 的坐标为(-1,0).(1)把△ABC 绕点P 旋转180°得到△A’B’C’,作出△A’B’C’;(2)把△ABC 向右平移7个单位长度得到△A ″B ″C ″,作出△A ″B ″C ″;(3)△A’B’C’与△A ″B ″C ″是否成中心对称?若是,则找出对称中心P’,并写出其坐标;若不是,请说明理由. 17.已知关于x ,y 的方程组232x y m x y m+=-⎧⎨-=⎩的解,x ,y 均为负数. (1)求m 的取值范围;(2)化简:|m-5|+|m+1|18.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.19.在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?20.如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.四、填空题(每小题4分,共20分)21.不等式组1013xa x+>⎧⎪⎨-<⎪⎩的解集是1x>-,则a的取值范围是________.22.一个面积为63的等腰三角形,它的一个内角是30°,则以它的腰长为边长的正方形面积为_______.23.如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形三边距离之和PD+PE+PF的值是______.24.如图,△ABC是一个边长为1的等边三角形,BB1是△ABC的高,B1B2是△ABB1的高,B2B3是△AB1B2的高,……B n-1B n是△AB n-2B n-1的高,则B4B5的长是________,猜想B n-1B n的长是________.25.如图,在Rt△ABC中,∠ACB=90°,将△ABC绕顶点C逆时针旋转得到△A′B′C,M是BC中点,P是A′B′的中点,连接PM,若BC=2,∠BAC=30°,则线段PM的最大值是_____.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?27.如图,在平面直角坐标系中,点A、B的坐标分别是(0,8),(6,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.(1)求直线BC的函数表达式;(2)把直线BC向左平移,使之经过点A',求平移后直线的函数表达式.28.已知Rt△ABC中,∠BAC=90°,AB=AC,点E为△ABC内一点,连接AE,CE,CE⊥AE,过点B作BD⊥AE,交AE的延长线于D.(1)如图1,求证BD=AE;(2)如图2,点H为BC中点,分别连接EH,DH,求∠EDH的度数;(3)如图3,在(2)的条件下,点M为CH上的一点,连接EM,点F为EM的中点,连接FH,过点D作DG⊥FH,交FH的延长线于点G,若GH:FH=6:5,△FHM的面积为30,∠EHB=∠BHG,求线段EH的长.答案与解析一、选择题(每题3分,共30分.下列各小题给出的四个选项中,只有一个符合题目要求)1.下列图形既是轴对称图形又是中心对称图形的是()A. 平行四边形B. 等边三角形C. 等腰梯形D. 圆[答案]D[解析][分析]根据轴对称图形与中心对称图形的概念解答即可.[详解]解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,不是中心对称图形;D、是轴对称图形,是中心对称图形.故选:D.[点睛]本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.等腰三角形一个角是50°,则它的底角的度数为( )A. 50°B. 50°或80°C. 50°或65°D. 65°[答案]C[解析][分析]分这个角为底角和顶角两种情况讨论即可.[详解]当底角为50°时,则底角为50°,当顶角为50°时,由三角形内角和定理可求得底角为:65°,所以底角为50°或65°,故选C.[点睛]本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论.3.若a <b ,则下列不等式不一定成立的是()A. a +2<b +2B. 2a <2bC. 22a bD. a 2<b 2[答案]D[解析][分析]根据不等式的性质逐一判断即可.[详解]解:A 、两边都加2,不等号的方向不变,故A 不符合题意;B 、两边都乘以2,不等号的方向不变,故B 不符合题意;C 、两边都除以2,不等号的方向不变,故C 不符合题意;D 、当a <b <0时,a 2>b 2,故D 符合题意;故选:D .[点睛]本题考查了不等式的性质,熟练掌握不等式的性质是解题关键.4.△ABC 中,∠B =50°,∠A =80°,若AB =6,则AC =( ) A. 6B. 8C. 5D. 13 [答案]A[解析][分析]由已知条件先求出∠C 的度数是50°,根据等角对等边的性质求解即可.[详解]解:∵∠A =80°,∠B =50°,∴∠C =180°﹣80°﹣50°=50°,∴∠C =∠B ,∴AC =AB =6.故选:A .[点睛]本题考查了三角形的内角和及等腰三角形的判定,求出∠C 的度数是解题的关键.5. 下列命题,假命题是( )A. 有一个内角等于60°的等腰三角形是等边三角形B. 有一个角是40°,腰相等的两个等腰三角形全等C. 在直角三角形中,最大边的平方等于其他两边的平方和D. 三角形两个内角平分线的交点到三边的距离相等[答案]B[解析]试题分析:利用等边三角形的判定定理,勾股定理以及角平分线的性质定理即可判断.解:A、是等边三角形的判定定理,正确;B、40°的角可能是顶角也可能是底角,故是假命题,选项错误;C、根据勾股定理即可得到,故正确;D、根据角平分线上的点到角的两边的距离相等,即可得到,故正确.故选B、考点:命题与定理.6. 如图.在Rt△ABC中,∠A=30°,DE垂直平分斜边AC,交AB于D,E是垂足,连接CD,若BD=1,则AC的长是( )A. 2B. 2C. 4D. 4[答案]A[解析]试题分析:∵∠A=30°,∠B=90°,∴∠ACB=180°-30°-90°=60°,∵DE垂直平分斜边AC,∴AD=CD,∴∠A=∠ACD=30°,∴∠DCB=60°-30°=30°,∵BD=1,∴CD=AD=2,∴AB=1+2=3,在△BCD中,由勾股定理得:CB=3,在△ABC中,由勾股定理得:AC=222 3.AB BC+=考点:1.线段垂直平分线的性质;2. 含30度角的直角三角形的性质7.某市出租车的收费标准是:起步价为8元(即行驶距离不超过3km,都需付8元车费),超过3km后,每增加1km,加收1.5元(不足1km按1km计算).某人从甲地到乙地经过的路程是xkm,出租车费为15.5元,那么x 的最大值是()A. 11B. 8C. 7D. 5[答案]B[解析][分析]根据等量关系,即(经过的路程﹣3)×1.5+起步价8元≤15.5,列出不等式求解.[详解]解:根据题意可知:(x﹣3)×1.5+8≤15.5,解得:x≤8.即此人从甲地到乙地经过的路程最多为8km.故选:B.[点睛]考查了一元一次不等式的应用.解题的关键是正确理解题意,找出题目中的不等关系.8.关于x的一元一次不等式≤﹣2的解集为x≥4,则m的值为( )A. 14B. 7C. ﹣2D. 2[答案]D[解析][分析]解不等式得到x≥12m+3,再列出关于m的不等式求解.[详解]23m x-≤﹣2,m﹣2x≤﹣6, ﹣2x≤﹣m﹣6,x≥12m+3,∵关于x的一元一次不等式23m x-≤﹣2的解集为x≥4,∴12m+3=4,解得m=2.故选D.考点:不等式的解集9.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为( )A. x>﹣2B. x<﹣2C. x>﹣5D. x<﹣5[答案]A[解析][分析]函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),求不等式3x+b>ax﹣3的解集,就是看函数在什么范围内y1=3x+b的图像在函数y2=ax﹣3的图象上面,据此进一步求解即可.[详解]从图像得到,当x>﹣2时,y1=3x+b的图像对应的点在函数y2=ax﹣3的图像上面,∴不等式3x+b>ax﹣3的解集为:x>﹣2.故选:A.[点睛]本题主要考查了一次函数与不等式的综合运用,熟练掌握相关方法是解题关键.10.ABC中,BAC90∠=,将ABP绕点A逆时针旋转后,能与ACP'重合,如果AP3=,那么PP'的长等于()A. 3B. 32C. 3D. 不能确定[答案]B[解析][分析]由AB 旋转后和AC 重合,得出旋转角是90,又旋转前后长度不变,得出等腰直角三角形APP',根据勾股定理求出即可.[详解]解:如图:根据旋转的旋转可知:PAP'BAC 90∠∠==,AP AP'3==, 根据勾股定理得:22PP'3332=+=,故选B .[点睛]本题考查了旋转的旋转,勾股定理,等腰直角三角形等知识点的应用,根据旋转的性质得出:旋转角相等,对应点到旋转中心的距离相等,得到的APP'是一个等腰直角三角形,是解此题的关键,再根据勾股定理求解即可.二、填空题(每题4分,共16分)11.如图,△ABC 与△BDE 都是等腰直角三角形,若△ABC 经旋转后能与△BDE 重合,则旋转中心是________,旋转了_______°.[答案] (1). B (2). 45[解析][分析]由于△ABC 与△DBE 都是等腰直角三角形,由此可以得到∠ABC 与∠DBE 都是45°,如果△ABC 经过旋转后能与△DBE 重合,那么根据旋转的性质即可确定旋转中心及旋转角.[详解]解:∵△ABC 与△BDE 都是等腰直角三角形,∠ACB 与∠DEB 都是直角,点C 在DB 上,∴∠ABC 与∠DBE 都是45°,而△ABC 经过旋转后与△DBE 重合,那么旋转中心为点B ,旋转角为∠DBE ,∴旋转角度为45°.故答案为:B,45.[点睛]此题主要考查了旋转的性质及等腰直角三角形的性质,首先根据旋转的性质确定旋转中心、旋转角,然后利用等腰直角三角形的性质即可解决问题.12.已知点P(m﹣2,2m﹣1)在第二象限,则实数m的取值范围是_____.[答案]12<m<2.[解析][分析]根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.[详解]解:∵点P(m﹣2,2m﹣1)在第二象限,∴20210mm-<⎧⎨->⎩①②,解不等式①得,m<2,解不等式②得,m>12,所以,不等式组的解集是12<m<2,故答案为12<m<2.[点睛]本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).13.如图,在△ABC中,AB=a,AC=b,BC边上的垂直平分线DE交BC、AB分别于点D、E, 则△AEC的周长等于________.[答案]a+b.[解析]考点:线段垂直平分线的性质.分析:要求三角形的周长,知道AC=b,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.解答:解:∵ED垂直且平分BC,∴BE=CE.∵AB=a,∴EC+AE=a,∵AC=b.∴△AEC的周长为:AE+EC+AC=a+b,故答案为a+b.点评:本题考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等),难度一般.进行线段的有效转移是解决本题的关键.14.如图,在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线CF⊥AE,垂足为F,BD⊥BC交CF的延长线于D.若AC=12cm,则BD=______.[答案]6cm[解析][分析]证明△CDB≌△AEC(AAS),得出BD=CE,根据中线求出CE,即可得出答案.[详解]解:∵BD⊥BC,∴∠CBD=90°,∴∠D+∠BCD=90°,∵CF⊥AE,∴∠AEC +∠BCD =90°,∴∠D =∠AEC ,在△CDB 和△AEC 中,D AEC DBC ACE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CDB ≌△AEC (AAS ),∴BD =CE ,∵AE 是边BC 上的中线,AC =BC =12,∴CE =12BC =6, ∴BD =6.故答案:6cm .[点睛]本题考查了全等三角形的判定和性质、直角三角形的性质、等腰直角三角形的性质等知识,解题的关键是证明三角形全等,属于中考常考题型.三、解答题(本大题共6小题,共54分,答题时应写出文字说明、证明过程或演算步骤) 15.(1)解不等式:()21132x x +-≥+,并把它的解集表示在数轴上;(2)解不等式组()32211163x x x x ⎧+>-⎪⎨-->⎪⎩,并写出它的所有非负整数解. [答案](1)x ≤-1.数轴表示见解析;(2)不等式组的解集为:-4<x <73.不等式组的非负整数解为:0,1,2. [解析][分析](1)先去括号,移项,合并同类项,把x 的系数化为1,再把x 的取值范围在数轴上表示出来即可;(2)分别求出各不等式的解集,再求出其公共部分,在其解集范围内找出x 的非负整数解即可.[详解](1)()21132x x +-≥+,去括号得,2x+2-1≥3x+2,移项得,2x-3x≥2-2+1,合并同类项,-x≥1,把x 的系数化为1得,x≤-1.在数轴上表示为:;(2)() 32211163x xx x⎧+>-⎪⎨-->⎪⎩①②,由①得,x>-4;由②得,x<73,故此不等式组的解集为:-4<x<73.所以,不等式组的非负整数解为:0,1,2.[点睛]本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.如图,在建立平面直角坐标系的网格纸中,每个小方格都是边长为1个单位长度的小正方形,△ABC的顶点均在格点上,点P的坐标为(-1,0).(1)把△ABC绕点P旋转180°得到△A’B’C’,作出△A’B’C’;(2)把△ABC向右平移7个单位长度得到△A″B″C″,作出△A″B″C″;(3)△A’B’C’与△A″B″C″是否成中心对称?若是,则找出对称中心P’,并写出其坐标;若不是,请说明理由.[答案](1)见解析;(2)见解析;(3)P'(2.5,0)[解析][分析](1)根据网格结构找出点A、B、C绕点P旋转180°的对应点A′、B′、C′位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C平移后的对应点A″、B″、C″的位置,然后顺次连接即可;(3)利用观察对应点的连线即可求解.[详解]解:(1)如图,△A'B'C'即为所求;(2)如图,A''B''C''即为所求;(3)如图,P'(2.5,0).[点睛]本题考查的是作图﹣旋转变换和平移变换,熟知图形旋转的性质及平移的性质是解答此题的关键.17.已知关于x,y的方程组232x y mx y m+=-⎧⎨-=⎩的解,x,y均为负数.(1)求m的取值范围;(2)化简:|m-5|+|m+1|[答案](1)﹣1<m<1;(2)6[解析][分析](1)先利用加减消元法求出方程组的解,再根据x,y均为负数列出关于m的不等式组,再解不等式组即可;(2)根据﹣1<m<1可得m﹣5<0,m+1>0,由此即可化简|m-5|+|m+1|得到答案.[详解]解:(1)232x y mx y m+=-⎧⎨-=⎩①②①+②得:3x=3m﹣3 解得x=m﹣1,把x=m﹣1,代入②得:y=﹣m﹣1∵x,y均为负数,∴1010 mm-<⎧⎨--<⎩③④由③得m<1,由④得m>﹣1,∴不等式组的解集为﹣1<m<1,∴m的取值范围为﹣1<m<1;(2)∵﹣1<m<1,∴m﹣5<0,m+1>0,∴|m﹣5|+|m+1|=5﹣m+m+1=6.[点睛]本题考查了二元一次方程组的解法和一元一次不等式组的解法以及绝对值的化简,熟练掌握二元一次方程组及一元一次不等式组的解法是解决本题的关键.18.如图,AD为△ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G.(1)求证:AD垂直平分EF;(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.[答案](1)证明见解析;(2)AG=3DG,理由见解析.[解析][分析](1)、根据角平分线的性质得出DE=DF,∠AED=∠AFD=90°,从而得出∠DEF=∠DFE,则∠AEF=∠AFE,从而说明AE=AF,即点A、D都在EF的垂直平分线上,得出答案;(2)、根据∠BAC=60°,AD平分∠BAC得出AD=2DE,根据∠EGD=90°,∠DEG=30°得出DE=2DG,从而说明AD=4DG,即AG=3DG.[详解](1)、∵AD 为△ABC 的角平分线,DE ⊥AB ,DF ⊥AC , ∴DE=DF ,∠AED=∠AFD=90°, ∴∠DEF=∠DFE ,∴∠AEF=∠AFE ,∴AE=AF ∴点A 、D 都在EF 的垂直平分线上,∴AD 垂直平分EF .(2)、AG=3DG .∵∠BAC=60°,AD 平分∠BAC ,∴∠EAD=30°,∴AD=2DE ,∠EDA=60°,∵AD ⊥EF ,∴∠EGD=90°,∴∠DEG=30°∴DE=2DG ,∴AD=4DG , ∴AG=3DG . 考点:(1)、角平分线的性质;(2)、中垂线的性质.19.在今年年初,新型冠状病毒在武汉等地区肆虐,为了缓解湖北地区的疫情,全国各地的医疗队员都纷纷报名支援湖北,某方舱医院需要8组医护人员支援,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人,若每组人数比预定人数少分配一人,则总数不够90人,那么预定每组分配的人数是多少人?[答案]12[解析][分析]首先设预定每组分配x 人,根据题意可得不等式为:(预定每组分配的人数+1)×组数>100;(预定每组分配的人数﹣1)×组数<90,由此可得到不等式组,解不等式组后,取整数解即可.[详解]解:设预定每组分配x 人,根据题意得:8(1)1008(1)90x x +>⎧⎨-<⎩, 解得:11.5<x <12.25.∵x 为整数,∴x =12.答:预定每组分配的人数是12人.[点睛]此题主要考查了一元一次不等式组的应用,弄清题意,根据题目中的不等关系列出相应的不等式组是解决本题的关键.20.如图,在△ABC 中,AB =AC =2,∠B =∠C =40°,点D 在线段BC 上运动(D 不与B 、C 重合),连接AD ,作∠ADE =40°,DE 交线段AC 于E .(1)当∠BDA =115°时,∠EDC = °,∠DEC = °;点D 从B 向C 运动时,∠BDA 逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.[答案](1)25°,115°,小;(2)当DC=2时,△ABD≌△DCE,见解析;(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,见解析[解析][分析](1)根据∠BDA=115°以及∠ADE=40°,即可得出∠EDC=180°﹣∠ADB﹣∠ADE,进而求出∠DEC的度数,(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△ABD≌△DCE,(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形.[详解]解:(1)∠EDC=180°﹣∠ADB﹣∠ADE=180°﹣115°﹣40°=25°,∠DEC=180°﹣∠EDC﹣∠C=180°﹣40°﹣25°=115°,∠BDA逐渐变小;故答案为:25°,115°,小;(2)当DC=2时,△ABD≌△DCE,理由:∵∠C=40°,∴∠DEC+∠EDC=140°,又∵∠ADE=40°,∴∠ADB+∠EDC=140°,∴∠ADB=∠DEC,又∵AB=DC=2,∴△ABD≌△DCE(AAS),(3)当∠BDA的度数为110°或80°时,△ADE的形状是等腰三角形,理由:∵∠BDA =110°时,∴∠ADC =70°,∵∠C =40°,∴∠DAC =70°,∠AED =∠C +∠EDC =30°+40°=70°,∴∠DAC =∠AED ,∴△ADE 的形状是等腰三角形;∵当∠BDA 的度数为80°时,∴∠ADC =100°,∵∠C =40°,∴∠DAC =40°,∴∠DAC =∠ADE ,∴△ADE 的形状是等腰三角形.[点睛]本题考查了等腰三角形的判定及性质、全等三角形的判定及性质,熟练掌握性质定理是解题的关键.四、填空题(每小题4分,共20分)21.不等式组10103x a x +>⎧⎪⎨-<⎪⎩的解集是1x >-,则a 的取值范围是________. [答案]13a ≤-[解析][详解]解不等式10x +>,得1x >-,解不等式103a x -<,得3x a >,∵不等式组的解集为1x >-,则31a ≤-,∴13a ≤-22.一个面积为3,它的一个内角是30°,则以它的腰长为边长的正方形面积为_______. [答案]324[解析][分析]分两种情形讨论:①当30度角是等腰三角形的顶角,②当30度角是等腰三角形的底角,分别作腰上的高即可.[详解]解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=12AB=12a,∴12•a•12a=63,∴a2=243,∴△ABC的腰长为边的正方形的面积为243.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a, ∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,∵在Rt△ABD中,∠D=90°,∠BAD=60°,∴BD=32a,∴12•a•32a=63,∴a2=24,∴△ABC的腰长为边的正方形的面积为24.故答案为:243或24.[点睛]本题考查了正方形的性质、等腰三角形的性质以及含30°的直角三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.23.如图,在边长为2的正三角形ABC中,已知点P是三角形内任意一点,则点P到三角形三边距离之和PD+PE+PF的值是______.[答案3[解析][分析]连接AP、BP、CP,过点A作AH⊥BC于点H,先利用勾股定理求得AH的长,再分别求出△APC、△APB、△BPC的面积,而三个三角形的面积之和等于△ABC面积,由此等量关系可求出到三角形的三边距离之和PD+PE+PF等于△ABC的高AH,进而可得答案.[详解]解:如图,连接AP、BP、CP,过点A作AH⊥BC于点H,∵正三角形ABC边长为2,AH⊥BC,∴BH=CH=1,∴AH2222213AB BH--=∵S△BPC=12BC PD,S△APC=12AC PE,S△APB=12AB PF,∴S△ABC=111222BC PD AC PE AB PF++,∵AB=BC=AC,∴S△ABC=11()22BC PD PE PF BC AH++=,∴PD+PF+PE=AH3故答案为:3.[点睛]本题考查了等边三角形的性质及三角形的面积公式,正确运用等面积法是解决本题的关键. 24.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.[答案] (1).332 (2). 32n [解析][分析] 根据等边三角形性质得出AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=32,求出△ABC 的面积是34;求出1138ABB BCB S S ==根据三角形的面积公式求出B 1B 2=34,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 333=,B 3B 433=B 4B 533=,推出B n ﹣1B n =32n . [详解]解:∵△ABC 是等边三角形,∴BA =AC ,∵BB 1是△ABC 的高,∴AB 1=CB 1=12,∠AB 1B =∠BB 1C =90°,由勾股定理得:BB 1=;∴△ABC 的面积是12×1=;∴1112ABB BCB S S ==⨯,12=×1×B 1B 2,B 1B 2由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,2313112422B B =⨯⨯⨯,B 2B 3=8,B 3B 4=16,B 4B 5…,B n ﹣1B n故答案为:32,2n . [点睛]本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.25.如图,在Rt △ABC 中,∠ACB =90°,将△ABC 绕顶点C 逆时针旋转得到△A ′B ′C ,M 是BC 的中点,P 是A ′B ′的中点,连接PM ,若BC =2,∠BAC =30°,则线段PM 的最大值是_____.[答案]3.[解析][分析]连接PC.先依据直角三角形斜边上中线的性质求出PC=2,再依据三角形的三边关系可得到PM≤PC+CM,由此可得到PM的最大值为PC+CM.[详解]解:如图连接PC.在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故答案为3.[点睛]本题考查旋转性质,直角三角形的性质、三角形的三边关系,解题的关键是掌握本题的辅助线的作法.五、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.2020年年初,在我国湖北等地区爆发了新型冠状病毒引发的肺炎疫情,对此湖北武汉率先采取了“封城”的措施,为了解决武汉市民的生活物资紧缺问题,某省给武汉捐献一批水果和蔬菜共435吨,其中蔬菜比水果多97吨.(1)求蔬菜和水果各有多少吨?(2)某慈善组织租用甲、乙两种货车共16辆,已知一辆甲车同时可装蔬菜18吨,水果10吨;一辆乙车同时可装蔬菜16吨,水果11吨;若将这批货物一次性运到武汉,有哪几种租车方案?请你帮忙设计出来.(3)若甲种货车每辆需付燃油费1600元,乙种货车每辆需付燃油费1200元,应选(2)中的那种方案,才能使所付的燃油费最少?最少的燃油费是多少元?[答案](1)蔬菜有266吨,水果有169吨;(2)有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(3)选择(2)中的方案一租车,才能使所付的费用最少,最少费用是21200元.[解析][分析](1)设水果有m吨,则蔬菜有(m+97)吨,根据水果和蔬菜共435吨列出方程求解即可;(2)设租用甲种货车x辆,则租用乙种货车为(16﹣x)辆,然后根据装运的蔬菜和水果数不少于所需要运送的吨数列出一元一次不等式组,求解后再根据x是正整数设计租车方案;(3)分别求出三种方案的燃油费用,比较即可得解.[详解]解:(1)设水果有m吨,则蔬菜有(m+97)吨,根据题意得m+(m+97)=435,解得m=169,∴m+97=266,答:蔬菜有266吨,水果有169吨;(2)设租用甲种货车x辆,则租用乙种货车为(16﹣x)辆,根据题意得1816(16)266 1011(16)169x xx x+-⎧⎨+-⎩①②,由①得x≥5,由②得x≤7,∴5≤x≤7,∵x为正整数,∴x=5或6或7,因此,有3种租车方案:方案一:租甲种货车5辆,乙种货车11辆;方案二:租甲种货车6辆,乙种货车10辆;方案三:租甲种货车7辆,乙种货车9辆;(3)当x=5时,16﹣5=11辆,5×1600+11×1200=21200元;当x=6时,16﹣6=10辆,6×1600+10×1200=21600元;当x=7时,16﹣7=9辆,7×1600+9×1200=22000元.∵21200<21600<22000,∴方案一所付费用最少,答:选择(2)中的方案一租车,才能使所付的费用最少,最少费用是21200元.[点睛]本题考查了一元一次方程和一元一次不等式组的应用,读懂题目信息,找出题中等量关系及不等量关系,列出方程及不等式组是解题的关键.27.如图,在平面直角坐标系中,点A、B的坐标分别是(0,8),(6,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A'处,折痕所在直线交y轴正半轴于点C.(1)求直线BC的函数表达式;(2)把直线BC向左平移,使之经过点A',求平移后直线的函数表达式.[答案](1)y=﹣12x+3;(2)y=﹣12x﹣2.[解析][分析](1)在Rt△OAB中,OA=8,OB=6,用勾股定理计算出AB=10,再根据折叠的性质得BA′=BA=10,CA′=CA,则OA′=BA′﹣OB=4,设OC=t,则CA=CA′=8﹣t,在Rt△OA′C中,根据勾股定理得到t2+42=(8﹣t)2,解得t=3,则C点坐标为(0,3),然后利用待定系数法确定直线BC的函数表达式即可;(2)由(1)可知点A′的坐标为(﹣4,0),根据平移的性质可设平移后的直线为y=﹣12x+m,再将(﹣4,0)代入即可求得平移后直线的函数表达式.[详解]解:(1)∵A(0,8),B(6,0), ∴OA=8,OB=6,在Rt△OAB中,AB10.∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处, ∴BA′=BA=10,CA′=CA,∴OA′=BA′﹣OB=10﹣6=4.设OC=t,则CA=CA′=8﹣t,在Rt△OA′C中,∵OC2+OA′2=CA′2,∴t2+42=(8﹣t)2,解得t=3,∴C点坐标为(0,3),设直线BC的解析式为y=kx+b,把B(6,0)、C(0,3)代入得603k bb+=⎧⎨=⎩,解得123kb⎧=-⎪⎨⎪=⎩,∴直线BC的解析式为y=﹣12x+3;(2)∵OA′=4,∴点A′的坐标为(﹣4,0)∵把直线BC向左平移,使之经过点A',∴设平移后直线的函数表达式为y=﹣12x+m,将(﹣4,0)代入,得0=2+m,解得m=﹣2,∴平移后直线函数表达式为y=﹣12x﹣2.[点睛]本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理和待定系数法求一次函数解析式以及一次函数图像平移的性质,熟练掌握一次函数的图像性质以及勾股定理是解决本题的关键.。

安徽省芜湖市部分学校2022-2023学年八年级下学期期中教学质量检测数学试题

安徽省芜湖市部分学校2022-2023学年八年级下学期期中教学质量检测数学试题

安徽省芜湖市部分学校2022-2023学年八年级下学期期中教学质量检测数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .3B .3-3.如图,ABCD Y 的对角线AC A .OA OC =,AC BD=C .AB CD ∥,AD BC=BCD BAD ∠=∠A.2B.9.如图①,某超市为了吸引顾客,在超市门只离地高控制的门铃A,人只要移至该门口临”.如图②,一个身高1.5m门铃A的距离为()A.7m B.6m10.如图,在△ABC中,AB=6,AC=8,BC三角形,下列结论中:①AB⊥AC;②四边形=20.正确的个数是()④S四边形AEFDA.1个B.2个C.3个D.4个二、填空题13.如图,在Rt ABC中史上称为“希波克拉底月牙14.如图,在ABC中,AB边上的动点,点D三、解答题15.计算:11 28125-⎛⎫⨯--- ⎪⎝⎭.17.在四边形ABCD 中,AB 求四边形ABCD 的面积.18.如图,E ,F 是四边形ABCD 求证:(1)CFD AEB ≌;(2)四边形ABCD 是平行四边形.19.如图,90AOB ∠=︒,OA 点A 出发沿着AO 方向匀速滚向点球,恰好在点C 处截住了小球.(1)小丽站在海边的一块岩石上,眼睛离海平面的高度刚露出海平面,求此时(2)判断下面说法是否正确,并说明理由:泰山海拔约为1500m 看到大海.21.观察下列算式:①1312⨯+=;②(1)写出第⑥个等式(2)猜想第n 个等式(3)计算:131⨯+22.如图,ABC (1)求证:90BAC ∠=︒;(2)点P 为BC 上一点,连接AP ,若23.在ABCD Y 中,45C ∠=︒,AD 合),连接AP ,过点P 作EP AP ⊥(1)如图①,当点P 为线段CD 的中点时,求证:PA =(2)如图②,当点P 在线段CD 上时,求证:DE DA -=。

人教版八年级下册数学 期中质量检测试卷 (1)(含答案)

人教版八年级下册数学 期中质量检测试卷 (1)(含答案)

-11-1-11-11ACD人教版八年级下册数学 期中质量检测试卷 (1)(含答案)评分:一、单选题(本大题共8小题,每小题3分,共24分) 1.下列图形中,不是轴对称图形的是( )A B C D2.由a ﹥b 得到an 2﹥bn 2成立的条件是( ) A .n ﹥0B .n <0C .n≠0D .n 是任意实数3.一个图形无论经过平移还是旋转,有以下说法:①对应线段平行;②对应线段相等;③对应角相等;④不改变图形的形状和大小,其中正确的有( ) A .①②③B .①②④C .①③④D .②③④4.下列式子从左到右变形是因式分解的是( ) A .a 2+4a -12=a(a -4)-12 B .a 2+4a -12=(a -2)(a +6) C .(a -2)(a +6)=a 2+4a -12 D .a 2+4a -12 =(a +2)2-165.把不等式组⎩⎨⎧≤+->321x x 的解集表示在数轴上,下列选项正确的是( )A .B .C .D .6.等腰三角形一腰上的高与另一腰的夹角为40°,则其顶角为( ) A .50°B .130°C .40°或130°D .50°或130°7.如图所示,将Rt △ABC 绕其直角顶点C 按顺时针方向旋转90°后得到Rt △DEC ,连接AD ,若 ∠B=65°,则∠ADE=( ) A .20°B .25°C .30°D .35°8.如图,将直角边AC=6cm ,BC=8cm 的直角△ABC 纸片折叠,使点B 与点A 重合,折痕为DE, 则CD 等于( ) A .47 B .322 C .425 D .35A PCOD BB D CAE-2 -2 Oy =3x +b y =ax -3xyC EADB第7题图 第8题图二、填空题(本大题共8小题,每小题3分,共24分)9.已知点P (-2,3)关于原点的对称点为M (a ,b ),则a +b= .10.如图,已知:函数y=3x +b 和y =ax -3的图象交于点P (-2,-5),则根据图象可得不等式3x+b >ax -3的解集是 .11.已知关于x 的不等式⎩⎨⎧--≥-0>125a x x 无解,则a 的取值范围是 .12.如图,在△ABC 中,∠ACB=90°,BE 平分∠ABC ,DE ⊥AB 于点D ,如果AC=3cm ,那么AE+DE=.13.已知直线x y 2=向上平移一个单位长度后得到的直线是 .14.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC ∥OB 交OA 于C ,若PC=10,则PD= . 15.如图,DE 是AB 的垂直平分线,AB=8,△ABC 的周长是18,则△ADC 的周长是 . 16.O 为坐标原点,A (1,1),在x 轴上找一点P ,使三角形AOP 为等腰三角形,符合条件的点P 有个.第10题图 第12题图 第14题图 第15题图三、解答题(写出必要的说明过程,解答步骤)(共52分)AOBC第1图2BCAO17.(4分)因式分解:234ab a -18.(4分)解不等式,并把解集用数轴表示出来.1629312≤+--x x19.(6分)求满足不等式组⎪⎩⎪⎨⎧--≤--x x x x 23<31218)2(3的所有整数解.20.(6分)如图,在△ABC 中,∠ABC 与∠ACB 的平分线交于点O . (1)如图1,已知∠A =90°,求∠BOC 的度数; (2)如图2,设∠A =m °,求∠BOC 的度数.AB图1AB图221.(6分)如图,在5×5的正方形网格中,每个小正方形的边长都为1,请在所给网格中按下列要求画出图形.一条线段AB的两端点落在格点(即小正方形的顶点)上,且长度为22;(1)在图1中画以AB为边的一个等腰△ABC,使点C在格点中,且另两边的长都是无理数;(2)在图2中画以AB为边的一个呈中心对称图形的四边形,其顶点都在格点上,各边长都是无理数.22.(8分)如图,AB=BC,AB⊥BC于B,FC⊥BC于C,E为BC上一点,BE=FC,请探求AE与BF的关系,并说明理由.AFDB E C24 -2 -2O 24D ABC Q y x23.(8分)如图,在平面直角坐标系中,长方形ABCD 的边BC ∥x 轴,如果A 点坐标是(-1,22),C 点坐标是(3,-22).(1)直接写出B 点和D 点的坐标;(2)将这个长方形先向右平移1个单位长度长度,再向下平移2个单位长度,得到长方形A 1B 1C 1D 1,请你写出平移后四个顶点的坐标;(3)如果Q 点以每秒2个单位长度的速度在长方形ABCD 的边上从A 出发到C 点停止,沿着A ﹣D ﹣C 的路径运动,那么当Q 点的运动时间是4秒时,△BCQ 的面积是多少?请求出来.24.(10分)“绿水青山就是金山银山”,为保护生态环境,A ,B 两村准备各自清理所属区域养鱼网箱和捕鱼网箱,每村参加清理人数及总开支如下表: 村庄 清理养鱼网箱人数/人清理捕鱼网箱人数/人总支出/元 A 15 9 57000 B101668000(1)若两村清理同类渔具的人均支出费用一样,求清理养鱼网箱和捕鱼网箱的人均支出费用各是多少元;(2)在人均支出费用不变的情况下,为节约开支,两村准备抽调40人共同清理养鱼网箱和捕鱼网箱,要使总支出不超过102000元,且清理养鱼网箱人数小于清理捕鱼网箱人数,则有哪几种分配清理人员方案?八年级 数学试卷参考答案1.C2.C3.D4.B5.B6.D7.A8.C9. -1 10. x ﹥-2 11. a≥3 12. 3cm 13. y=2x+1 14. 5 15. 10 16. 417.原式=a(4a 2-b 2)=a(2a+b)(2a-b)18.解:不等式两边都乘以6,得 4x-2-(9x+2)≤6,去括号得 -5x-4≤6, 移项得 -5x ≤10解得 x≥-2(解不等式正确3分) 数轴表示1分19.解:解不等式(1)得x≥-1,……2分解不等式(2)得x<2, ……4分∴不等式组的解为 -1≤x<2 ……5分所以原不等式组的整数解是-1、0、1 ……6分 20.(1) ∠A=90°∴∠ABC+∠ACB=90°又OB 、OC 为∠ABC 与∠ACB 的角平分线∴∠OBC=21∠ABC,∠OCB=21∠ACB ∴∠OBC+∠OCB=21∠ABC+21∠ACB=45° ∴∠BOC=135° ………3分(2) ∠A=m°∴∠ABC+∠ACB=180°-m°又OB 、OC 为∠ABC 与∠ACB 的角平分线∴∠OBC=21∠ABC,∠OCB=21∠ACB ∴∠OBC+∠OCB=21∠ABC+21∠ACB=21(180°-m°)∴∠BOC=180°-21(180°-m°)=90°+21m° ………6分21.(答案不是唯一的,每问3分,正确画图2分,正确指出1分)22.AE=BF 且AE ⊥BF(正确做出判断给2分,一个1分)然后,证AE=BF (由证△ABE ≅△BCF得到)… 2分,证AE ⊥BF (由证∠FBE +∠AEB=90°得到)…4分(证明过程略) 23.(1)B(-1,-22),D(3,22)(2分);(2)A 1(0,2) B 1(0,-32) C 1(4,-32) D 1(4,2);(4分) (3)当Q 运动4秒时,Q 点在CD 上,此时△BCQ 的高为4+42-42=4,所以S △BCQ =21BC×4=8.(2分)24.解:(1)设清理养鱼网箱的人均费用为x 元,清理捕鱼网箱的人均费用为y 元,…………………………………… 1分根据题意,得:⎩⎨⎧=+=+68000161057000915y x y ,……… … 2分解得:⎩⎨⎧==30002000y x ,……………………………… 3分答:清理养鱼网箱的人均费用为2000元,清理捕鱼网箱的人均费用为3000元;………………………………………………… 4分(2)设m 人清理养鱼网箱,则(40﹣m )人清理捕鱼网箱,………… 5分 根据题意,得:⎩⎨⎧-≤-+m m m m 40<102000)40(30002000, ………………………… 6分解得:18≤m<20,…… 7分∵m为整数,∴m=18或m=19,……… 8分则分配清理人员方案有两种:方案一:18人清理养鱼网箱,22人清理捕鱼网箱;………… 9分方案二:19人清理养鱼网箱,21人清理捕鱼网箱.………… 10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009—2010学年第二学期期中教学质量检测
八年级数学(人教版)
(16—18章)
考生注意:1.本卷共6页,总分120分,考试时间90分钟。

2.答题前请将密封线左侧的项目填写清楚。

3.答案请用蓝、黑色钢笔或圆珠笔填写。

1 A 、y =2.函数y A .03.2(3x -A .6-4.如果把分式中x 和y 都扩大10倍,那么分式52x y x
+的值( ) A 、扩大10倍 B .缩小10倍 C .扩大2倍 D .不变
5、2244
xy y x x --+的结果是 ( ) A .2x x + B .2x x - C .2y x + D .2
y x - 6.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角 形.若正方形A 、B 、C 、D 的边长分别是3、5、2、3,则最大正方形E 的面积是( )
A.13 B.26 C.47 D.94
7.方程11
2
22
x
x x
-
+=
--
的解为 ( )
A.x=2 B.x=4 C.x=3 D.无解
8.如图,四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为16,则BE=()
A.2 B.3 C.4 D.5
9
10
A作x轴的垂线交x轴于点B,连接BC,则△ABC的面积等于 ( )
A.2 B.4 C.6 D.8
11.在一个可以改变体积的密闭容器内装有一定质量的二氧化碳,当改变容器的体积时,气体的密度也会随之改变,密度p(单位:kg/m3)是体积y(单位:m3)的反比例
函数,它的图象如图所示,当V=10m3时,气体的密度是 ( )
A.5kg/m3 B.2kg/m3 C.100k / m3 D.1kg / m3
12.某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效 率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套? 在这个问题中,设计划每天加工x 套,则根据题意可得方程为 ( )
A .16040018(120%)x x +=+
B 、16040016018(120%)x x
-+=+ C .
1604001601820%x x -+= D 、40040016018(120%)x x
-+=+
13.当14、点1516则
17、如图,若点A 在反比例函数()k y k x
=
≠的图象上,AM x ⊥轴于点M ,△AMO 的 面积为3,则k=________.
18、直角三角形纸片的两直角边长分别为6,8,现将△ABC如图那样折叠,使点A与
点B重合,折痕为DE,则AE的长为________
19.(本题
20、(本题8分)当x 为何值时,
424x x --的值与54
x x --的值相等。

21、(本题9分)如图,四边形ABCD 中,AB=3,BC=4,CD=12,AD=13,且∠B=90°.求四边
形ABCD 的面积
22、(本题?分)如图所示,在平面直角坐标系中,一次函数1y kx =+的图象与反比例函 数9y x
=的图象在第一象限相交于点A ,过点A 分别作x 轴、y 轴的垂线,垂足为点 B 、C 如果四边形OBAC 是正方形,求一次函数的解析式.
23.(本题10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°.D 为AB边上一点.
求证:(1)△ACE≅△BCD;
(2)AD2+DB2=DE2.
24.(本题10分)从A地到B地的距离是160公里,一辆公共汽车驶出2小时以后,又从A地驶出一辆小汽车,且小汽车和公共汽车的速度比是3:1.已知小汽车比公共汽车早40分钟到达B地,求小汽车与公共汽车的速度.
25.(本题12分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释
放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:
(1)写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;
(2)据测定,当空气中每立方米的含药量降低到0.45毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进人教室?
26、(本题12分)已知,如图:反比例函数k y x
=
的图象经过点A (b )过点A 作x
轴的垂线,垂足为B ,AOB S ∆=。

(1)求k ,b 的值; (2)若一次函数1y ax =+的图象经过点A ,且与x 轴交于M ,求AM 的长。

相关文档
最新文档