word完整版八年级下册勾股定理重点归纳推荐文档

合集下载

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结
1. 勾股定理的表述:直角三角形的斜边的平方等于两直角边的平方和。

2. 勾股定理的符号表示:设直角三角形的两直角边分别为a、b,斜边为c,则勾股定理可以表示为 c² = a² + b²。

3. 斜边、直角边的关系:斜边是直角三角形的最长边,而直角边分为两个,其中一条是斜边对应的直角边,另一条是与斜边相邻的直角边。

4. 勾股数:满足勾股定理的自然数称为勾股数。

例如,3、4、5是一个勾股数组。

5. 勾股数的性质: a、b、c是勾股数,则它们之间必定存在等比关系,即 b/a、c/a、c/b是分数(不含整数的部分)。

6. 勾股定理的应用:勾股定理可以用于求解直角三角形的边长、判断三角形是否为直角三角形、证明三角形相似等。

7. 勾股定理的证明:勾股定理有多种证明方法,常用的有几何证明、代数证明和三角函数证明。

8. 勾股定理的拓展:勾股定理可以推广到多维空间的直角坐标系中,即 n维空间的勾股定理。

9. 勾股定理的应用举例:例如,可以用勾股定理计算一个直角三角形的斜边长,可以用勾股定理证明两个三角形相似,还可以用勾股定理解决一些几何问题。

总之,勾股定理是初中数学中重要的几何定理之一,了解和掌握勾股定理的相关知识点对于解决直角三角形相关的问题和理解几何性质有重要意义。

最新人教版八年级下学期数学《勾股定理》知识点归纳

最新人教版八年级下学期数学《勾股定理》知识点归纳

勾股定理知识点归纳和题型归类一.知识归纳1.勾股定理:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c +=2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法,用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理常见方法如下:方法一:4EFGH S S S ∆+=正方形正方形ABCD,2214()2ab b a c ⨯+-=,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab cab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++,所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABES S ab c ∆∆=+=⋅+梯形,化简得证 3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形 4.勾股定理的应用cbaHG F EDCBAbacbac cabcaba bcc baE D CBA①已知直角三角形的任意两边长,求第三边 在ABC ∆中,90C ∠=︒,则c b a②知道直角三角形一边,可得另外两边之间的数量关系 ③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;若222a b c +<,时,以a ,b ,c 为三边的三角形是钝角三角形;若222a b c +>,时,以a ,b ,c为三边的三角形是锐角三角形;②定理中a ,b ,c 及222a b c +=只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足222a c b +=,那么以a ,b ,c 为三边的三角形是直角三角形,但是b 为斜边③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形 6.勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c +=中,a ,b ,c 为正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n 组勾股数:丢番图发现的:式子nm n m mn n m>+-(,2,2222的正整数)毕达哥拉斯发现的:122,22,1222++++n n n n n (1>n 的整数)柏拉图发现的:1,1,222+-n nn (1>n 的整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8..勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论. 9.勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决. 题型一:直接考查勾股定理 例1.在ABC ∆中,90C ∠=︒. ⑴已知6AC =,8BC =.求AB 的长 ⑵已知17AB =,15AC =,求BC 的长题型二:应用勾股定理建立方程 例2.⑴在ABC ∆中,90ACB ∠=︒,5AB =cm ,3BC =cm ,CD AB ⊥于D ,CD = ⑵已知直角三角形的两直角边长之比为3:4,斜边长为15,则这个三角形的面积为⑶已知直角三角形的周长为30cm ,斜边长为13cm ,则这个三角形的面积为例3.如图ABC ∆中,90C ∠=︒,12∠=∠, 1.5CD =, 2.5BD =,求AC 的长例4.如图Rt ABC ∆,90C ∠=︒3,4AC BC ==,分别以各边为直径作半圆,求阴影部分面积21EDCBA题型三:实际问题中应用勾股定理例5.如图有两棵树,一棵高8cm ,另一棵高2cm ,两树相距8cm ,一只小鸟从一棵树的树梢飞到另一棵数的树梢,至少飞了 m 。

八年级数学下册《勾股定理》知识点总结

八年级数学下册《勾股定理》知识点总结
2.S平行四边形=ah a为平行四边形的边,h为a上的高)
3.S梯形=(a+b)h=Lh(a、b为梯形的底,h为梯形的高,L为梯形的中位线)
四常识:
※1.若n是多边形的边数,则对角线条数公式是:
2.规则图形折叠一般“出一对全等,一对相似”
3.如图:平行四边形、矩形、菱形、正方形的从属关系
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆……注意:线段有两条对称轴
∠AB=90°
D⊥AB
6、常用关系式
由三角形面积公式可得:AB D=A B
7、直角三角形的判定
1、有一个角是直角的三角形是直角三角形。
2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。
3、勾股定理的逆定理:如果三角形的三边长a,b,有关系,那么这个三角形是直角三角形。
8、命题、定理、证明
(2)、在直角三角形中,30°角所对的直角边等于斜边的一半。
∠A=30°
可表示如下:B= AB
∠=90°
(3)、直角三角形斜边上的中线等于斜边的一半
∠AB=90°
可表示如下:D= AB=BD=AD
D为AB的中点
、摄影定理
在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

勾股定理(知识点+题型分类练习)(word文档物超所值)

勾股定理(知识点+题型分类练习)(word文档物超所值)

A B Ca c 弦股勾勾股定理(知识点)【知识要点】1. 勾股定理的概念:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么 a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方。

常用关系式由三角形面积公式可得:AB·CD=AC·BC2. 勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形,其中为斜c 边。

3. 勾股数:①满足a 2+b 2=c 2的三个正整数叫做勾股数(注意:若a ,b ,c 、为勾股数,那么ka ,kb ,kc 同样也是勾股数组。

)②记住常见的勾股数可以提高解题速度,如;;;;8,15,17等3,4,56,8,105,12,137,24,25③用含字母的代数式表示组勾股数:n (为正整数);221,2,1n n n -+2,n ≥n (为正整数)2221,22,221n n n n n ++++n (,为正整数)2222,2,m n mn m n -+,m n >m n 4.判断直角三角形:(1)有一个角为90°的三角形是直角三角形。

(2)有两个角互余的三角形是直角三角形。

(3)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

(4)如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用勾股定理逆定理判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边);若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)A5.直角三角形的性质(1)直角三角形的两个锐角互余。

可表示如下:∠C=90°∠A+∠B=90°⇒ (2)在直角三角形中,30°角所对的直角边等于斜边的一半。

(word完整版)初二数学--勾股定理讲义(经典)

(word完整版)初二数学--勾股定理讲义(经典)

第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。

(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。

②有一个角是45°的直角三角形是等腰直角三角形。

③直角三角形斜边的中线等于斜边的一半。

(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。

(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。

(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。

word完整版勾股定理知识点梳理推荐文档

word完整版勾股定理知识点梳理推荐文档

勾股定理知识点梳理1•直角三角型有哪些特殊的性质 ;①角,直角三角型的两锐角互余;②边,直角三角形两直角边的平方和等于斜边的平方,用符号表示:在Rt △ ABC 中,a 2b 2c 2;③面积,两种计算面积的方法。

2. 如何判定一个三角形是直角三角形呢?①有一个内角为直角的三角形是直角三角形;3 •勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理; 联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4. 互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设, 命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

5. 勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即 正整数时,称a ,b ,c 为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5 ; 6,8,10 ; 5,12,13 ; 7,24,25 , 8,15,17 ;方法 四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 S 4 — ab c 2 2ab c 2 2大正万形面积为 S (a b) a 2ab b 所以a 2 b 2 c 2、、… 1 112、 方法三:S 梯形 (a b) (a b) , S 梯形2S ADE S ABE 2 ab c ,化简得证2 2 2果三角形的三边长为a 、b 、c 满足 a 6d ,那么这个三角形是直角三角形②两个内角互余的三角形是直角三角形; ③如这样的两个命题叫做互逆a 2b 2c 2 中,a , b , c 为9,40,41 等 6.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4SS正方形EFGHS正方形ABCD ,(ba)2c 2,化简可证.baBb C一.典型例题类型一:勾股定理的直接用法1、在 Rt A ABC 中,/ C=90°⑴已知 a=6, c=10,求 b , (2)已知 a=40, b=9,求 c ; (3)已知 c=25, b=15,求 a. 思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾 股定理的变形使用。

(完整word版)勾股定理知识点梳理(良心出品必属精品)

(完整word版)勾股定理知识点梳理(良心出品必属精品)

第17章勾股定理知识梳理——汇森中学刘明17.1勾股定理知识点一:勾股定理勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么222+=,即直角三角形两直角边的平方和等于斜边的平方.a b c勾股定理揭示了直角三角形的三边关系,已知a,b,c,(c为斜边长)中的任意两条边的长度,利用此定理可以求出第三条边的长度.运用勾股定理的前提条件是在直角三角形中,并借助直角明确直角边和斜边勾股定理的变形公式:222=-,c=a=b c a=-,222a c bb=.例1.在Rt ABCBC cm=,8=,求AC的长.∆中,90C∠=°,10AB cm知识点二:勾股定理的探索与证明勾股定理的证明方法有许多种,现在给出集中常见的证明方法:证明一:著名的希腊数学家欧几里得在巨著《几何原本》中,给出了一个很好的证明.做三个边长分别为a ,b ,c 的正方形,把他们拼成如图所示的形状,使H 、C 、B三点在一条直线上,连接BF 、CD .过C 作CL DE ⊥,交AB 于点M ,交DE 于点L .,,AF AC AB AD FAB CAD ==∠=∠,FAB CAD ∴∆≅∆.于长FAB ∆的面积等于212a ,CAD ∆的面积等方形ADLM 的面积的一半,∴长方形ADLM 的面积=2a .同理可证,长方形MLEB 的面积=2b .正方形ADEB 的面积=长方形ADLM 的面积+长方形MLEB 的面积,∴222c a b =+,即222a b c +=.证明二:用拼图的方法验证勾股定理 用拼图的方法验证勾股定理的思路是:①图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4EFGHS S S ∆+=正方形正方形ABCD ,2214()2ab b a c ⨯+-=,化简可证.cbaHG F EDCB A方法二:bacbac cabcab四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证a bcc baE D CBA例2:如果每一小方格表示1平方厘米,那么可以得到:正方形P的面积= 平方厘米;正方形Q的面积= 平方厘米;正方形R的面积= 平方厘米;正方形P、Q、R的面积之间的关系是;由此,我们得出直角三角形ABC的三边的长度之间存在关系 .(n为大于1的正整数)的线段例3知识点四:勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.例4. 台风是一种自然灾害,它以台风中心为圆心在周围数十千米范围内形成气旋风暴,有极强的破坏力,如图,据气象观测,距沿海某城市A的正南方向220千米B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心现正以15千米/时的速度沿北偏东30º方向往C移动,且台风中心风力不变,若城市所受风力达到或走过四级,则称为受台风影响.(1)该城市是否会受到这交台风的影响?请说明理由.(2)若会受到台风影响,那么台风影响该城市持续时间有多少?(3)该城市受到台风影响的最大风力为几级?类型一:利用勾股定理计算线段的长例1:如图所示,在四边形ABCD中,︒=DBC,3∠90=∠90BAD,︒AD=,4AB=,BC=,求CD.12变式训练1:在ABC ∆中,20,15,AB AC BC ==边上的高AD 为12,求ABC ∆的周长.类型二:勾股定理解决三角形中的折叠问题例2:如图,有一张直角三角形纸片,两直角边6,8AC cm BC cm ==,将ACD ∆折叠,使点C 与点E 重合,折痕为AD ,则CD 等于 .ABCE D变式训练2:如图,把矩形ABCD沿直线BD向上折叠,使点C落在C’的位置上,已知3BC=,重合部分△EBD的面积为.AB=,7类型三:勾股定理在空间图形中的应用例3:有一根长170cm的木棒,放在长、宽、高分别是30cm,40cm,120cm的木箱中,露在外边的长度至少为cm.DA变式训练3:一根筷子长度为17cm,斜放在半径为3cm的圆柱形水杯内,露在水杯外面的部分AD的长为7cm,则水杯高AC= cm.类型四:勾股定理的规律探索题例4:张老师在一次“探究性学习”课中,设计了如下数表:(1)分别观察a、b、c与n之间的关系,并用含自然数n (n>1)的代数式表示:a = ,b = ,c =(2)猜想:以a、b、c为边的三角形是否为直角三角形?并证明你的猜想.变式训练4:若正整数a、b、c满足方程a2+b2=c2,则称这一组正整数(a、b、c)为“商高数”,下面列举五组“商高数”:(3,4,5),(5,12,13),(6,8,10),(7,24,25),(12,16,20),注意这五组“商高数”的结构有如下规律:根据以上规律,回答以下问题:(1)商高数的三个数中,有几个偶数,几个奇数?(2)写出各数都大于30的两组商高数.用两个正整数m、n(m>n)表示一组商高数,并证明你的结论.例5:如图,直线 L过正方形 ABCD 的顶点 B , 点A、C到直线 L 的距离分别是 1 和 2 , 则正方形的ABCD的面积是 .变式训练5:在直线l上依次摆放着七个正方形(如图).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4= .类型六:勾股定理的实际应用例6:如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?ABC DL变式训练6:一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?AABA O类型七:用勾股定理巧求最短距离例7:如图,一只蚂蚁沿棱长为a的正方体表面从顶点A爬到顶点B,则它走过的最短路程为 .变式训练7:如图,长方体的长为15,宽10,高为20,点B与点C的距离为5,一只蚂蚁如果沿着长方体的表面从点A爬到点B,需要爬行的最短距离是 .∙∙AB17.2勾股定理的逆定理知识点一:互逆命题与互逆定理1.互逆命题:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个命题就叫做它的逆命题.注:(1)任何一个命题都有逆命题,它们互为逆命题,“互逆”是指两个命题之间的关系;(2)把一个命题的题设和结论交换,就得到它的逆命题;(3)原命题成立,它的逆命题不一定成立.2.互逆定理有些命题的正确性是通过推理证实的,这样的真命题叫定理.如果一个定理的逆命题经过证明是真命题,那么它也是一个定理,这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.例1:写出下列命题的逆命题:(1)对顶角相等;(2)两个锐角的和是钝角.知识点二:勾股定理的逆定理如果三角形的两边的平方和等于第三条边的平方,那么这个三角形是直角三角形,这就是勾股定理的逆定理,即如果直角三角形的三边长,,a b c满足222+=,那么这个三角形是直角三角形.a b c利用勾股定理的逆定理判断一个三角形是否是直角三角形的一般步骤:(1)确定三角形的最长边;(2)分别计算出最长边的平方与另两边的平方和;(3)比较最长边的平方与另两边的平方和是否相等,若相等,则说明这个三角形是直角三角形,且最长边的对角就是直角.例2:判断由线段,,a b c组成的三角形是不是直角三角形.(1)7,24,25===;a b ca b c===;(2)0.3,0.4,0.5(3)2,3,4===.a b c知识点三:勾股数满足222+=的三个正整数,称为勾股数.a b c常见的勾股数:3,4,5; 5,12,13; 6,8,10; 7,24,25; 8,15,17;9,40,41;11,60,61; 12,16,20; 15,20,25. 另外,勾股数的倍数也是勾股数.例3:根据下列条件,判断由线段,,a b c组成的三角形是不是直角三角形(1)7,24,25a b c===;a b c===;(2)8,15,19(3)0.6,0.8, 1.0===.a nb nc na b c===;(4)3,4,5类型一:判断三角形是否是直角三角形例1:在ABC ∆中,22a m n =-,2b mn =,22c m n =+,其中m 、n 是正整数,且m n >,试判断ABC ∆是否是直角三角形.变式训练1:若ABC ∆的三边,,a b c 满足条件222338102426a b c a b c +++=++,试判定ABC ∆的形状.类型二:勾股定理及其逆定理的综合应用例2:如图,在正方形ABCD 中,F 为DC 的中点,E 为BC 上一点,且EC=41BC ,求证:∠EFA=90︒.AB DCFE变式训练2:如图,是一种四边形的零件,东东通过测量,获得了如下数据:AB=4cm,•BC=12cm,CD=13cm,AD=3cm,东东想计算这种零件的面积,你认为东东还需测出哪些数据?请你写出这些数据并帮东东算出这种零件的面积.变式训练3:如图,在△ABC中,∠ACB=90°,AC=BC,P是△ABC内的一点,且PB=1,PC=2,PA=3,求∠BPC的度数.C类型三:利用勾股定理逆定理解决航海中问题例3:“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?①“远航”号航行的距离是多少海里?②“海天”号航行的距离是多少海里?③“远航”号航行的距离和“海天”号航行的距离与两船之间的距离满足什么关系?④根据以上各题你能知道“海天”号沿哪个方向航行吗?变式训练4:如图,南北向MN 以西为我国领海,以东为公海.上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以13海里/时的速度偷偷向我领海驶来,便立即通知正在MN 线上巡逻的我国反走私艇B.已知A 、C 两艇的距离是13海里,A 、B 两艇的距离是5海里;反走私艇测得离C 艇的距离是12海里.若走私艇C 的速度不变,最早会在什么时间进入我国领海?************勾股定理中考链接*************1.(2013巴中)若直角三角形的两直角边长为a 、b,且满足,则该直角三角形的斜边长为 .A M C B2.(2013雅安)在平面直角坐标系中,已知点A (﹣,0),B (,0),点C在坐标轴上,且AC+BC=6,写出满足条件的所有点C的坐标.离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=.试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的长度和最短,则此时AM+NB=()A.6 B.8 C.10 D.124.(2013湘西州)如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.(1)求DE的长;(2)求△ADB的面积.考点:角平分线的性质;勾股定理5.(2013柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A. B. C. D.考点:角平分线的性质;三角形的面积;勾股定理6.(2013鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.考点:三角形中位线定理;勾股定理.7.(2013鞍山)△ABC中,∠C=90°,AB=8,cosA=,则BC的长.考点:锐角三角函数的定义;勾股定理.8.(2013绍兴)在平面直角坐标系中,O是原点,A是x轴上的点,将射线OA绕点O旋转,使点A与双曲线y=上的点B重合,若点B的纵坐标是1,则点A的横坐标是.考点:坐标与图形变化-旋转;反比例函数图象上点的坐标特征.9.(2013莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是.考点:勾股定理10.(2013包头)如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C=度.考点:勾股定理的逆定理;正方形的性质;旋转的性质.11.(2013株洲)已知四边形ABCD是边长为2的菱形,∠BAD=60°,对角线AC与BD交于点O,过点O的直线EF交AD于点E,交BC于点F.(1)求证:△AOE≌△COF;(2)若∠EOD=30°,求CE的长.考点:菱形的性质;全等三角形的判定与性质;等边三角形的判定与性质;含30度角的直角三角形;勾股定理.12.(2013襄阳)在一张直角三角形纸片中,分别沿两直角边上一点与斜边中点的连线剪去两个三角形,得到如图所示的直角梯形,则原直角三角形纸片的斜边长是.考点:图形的剪拼;勾股定理.13.(2008年广东湛江市)如图9所示,已知AB为⊙O的直径,CD是弦,且AB CD于点E.连接AC、OC、BC .(1)求证:∠ACO=∠BCD .(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.考点:圆;勾股定理第14章 勾股定理单元测试一、选择题1. 三角形的三边长分别为6,8,10,它的最短边上的高为( )A. 6B. 4.5C. 2.4D. 82. 下面几组数:①7,8,9;②12,9,15;③m 2 + n 2, m 2–n 2, 2mn (m ,n 均为正整数,m >n );④2a ,12+a ,22+a .其中能组成直角三角形的三边长的是( )A. ①②B. ②③C. ①③D. ③④3. 三角形的三边为a 、b 、c ,由下列条件不能判断它是直角三角形的是( )A .a:b:c=8∶16∶17B . a 2-b 2=c 2C .a 2=(b+c)(b-c)D . a:b:c =13∶5∶12 4. 三角形的三边长为ab c b a 2)(22+=+,则这个三角形是( )A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形.5.已知一个直角三角形的两边长分别为3和4,则第三边长是( ) A .5 B .25 C .7 D .5或7 6.已知Rt △ABC 中,∠C=90°,若a+b=14cm ,c=10cm ,则Rt △ABC 的面积是( )A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm 27.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定8. 放学以后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40米/分,小红用15分钟到家,小颖20分钟到家,小红和小颖家的直线距离为( )A .600米 B. 800米 C. 1000米 D. 不能确定9.直角三角形的三边是,,a b a a b -+,并且,a b 都是正整数,则三角形其中一边的长可能是( )A .61B . 71C .81D . 9110. 已知,如图,长方形ABCD 中,AB=3,AD=9,将此长方形折叠,使点B与点D 重合,折痕为EF ,则△ABE 的面积为( A.6B.8C.10D.12二、填空题11. 在△ABC 中,∠C=90°, AB =5,则2AB +2AC +2BC =_______. 12. 如图,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那F第10题图13.直角三角形两直角边长分别为5和12,则它斜边上的高为_______.14.直角三角形的三边长为连续偶数,则这三个数分别为__________.15.如图,一根树在离地面9米处断裂,树的顶部落在离底部12米处.树折断之前有______米.16.如图所示,是一个外轮廓为矩形的机器零件平面示意图,根据图中标出尺寸(单位:mm)计算两圆孔中心A和B的距离为.17.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2米,梯子的顶端B到地面的距离为7米.现将梯子的底端A向外移动到A’,使梯子的底端A’到墙根O的距离等于3米,同时梯子的顶端 B下降至 B’,那么 BB’的值:①等于1米;②大于1米5;③小于1米.其中正确结论的序号是.18.小刚准备测量河水的深度,他把一根竹竿插到离岸边1.5m远的水底,竹竿高出水面0.5m,把竹竿的顶端拉向岸边,竿顶和岸边的水面刚好相齐,河水的深度为 . 三、解答题19.图1、图2中的每个小正方形的边长都是1,在图1中画出一个面积是3的直角三角形;在图2中画出一个面积是5的四边形.20.已知a 、b 、c 是三角形的三边长,a =2n 2+2n ,b =2n +1,c =2n 2+2n +1(n 为大于1的自然数),试说明△ABC 为直角三角形.21. 如图,铁路上A 、B 两点相距25km, C 、D 为两村庄,若DA=10km,CB=15km ,DA ⊥AB 于A ,CB ⊥AB 于B ,现要在AB 上建一个中转站E ,使得C 、D 两村到E 站的距离相等.求E 应建在距A 多远处?图1图222. 如图,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?E BCAD23.如图,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东40°航行,乙船向南偏东50°航行,3小时后,甲船到达C岛,乙船到达B 岛.若C、B两岛相距60海里,问乙船的航速是多少?24. 如图,已知在△ABC中,AD、AE分别是BC边上的高和中线,AB=9cm,AC=7cm,BC=8m,求DE的长.AB CDE25. 如图所示的一块地ABCD,已知AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m,,求这块地的面积.CDA B。

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结

初二下学期数学勾股定理知识点总结
数学勾股定理是初中数学中的一个重要知识点,它是描述直角三角形的边之间的关系的定理。

下面是初二下学期数学勾股定理的知识点总结:
1. 勾股定理的表达方式:
a² + b² = c²
其中,a、b为直角三角形的两个直角边,c为直角三角形的斜边(斜边就是斜边对应的直角三角形的边)。

2. 勾股定理适用的条件:
只适用于直角三角形,即该三角形有一个内角为90度的三个内角的其中一个内角。

3. 勾股定理的推论及性质:
- 斜边是直角边中最长的一边。

- 如果三角形的三个边长满足勾股定理,那么这个三角形一定是直角三角形。

- 两个边的平方和等于第三边的平方,只能成立在直角三角形中。

4. 勾股定理的应用:
- 用勾股定理求直角三角形的边长:当给定两个直角边的边长,可以利用勾股定理求解斜边的边长。

- 判定三角形是否为直角三角形:当给定三角形的三个边长,可以利用勾股定理判断该三角形是否为直角三角形。

以上是初二下学期数学勾股定理的知识点总结,掌握了这些知识点,可以帮助你更好地理解和应用勾股定理。

八年级数学下册知识点总结 勾股定理

八年级数学下册知识点总结 勾股定理

第十八章勾股定理知识点一:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2=c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题知识点二:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2=c2,那么这个三角形是直角三角形。

要点诠释:用勾股定理的逆定理判定一个三角形是否是直角三角形应注意:(1)首先确定最大边,不妨设最长边长为:c;(2)验证c2与a2+b2是否具有相等关系,若c2=a2+b2,则△ABC是以∠C为直角的直角三角形(若c2>a2+b2,则△ABC是以∠C为钝角的钝角三角形;若c2<a2+b2,则△ABC为锐角三角形)。

知识点三:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

知识点四:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

规律方法指导1.勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

2.勾股定理反映的是直角三角形的三边的数量关系,可以用于解决求解直角三角形边边关系的题目。

3.勾股定理在应用时一定要注意弄清谁是斜边谁直角边,这是这个知识在应用过程中易犯的主要错误。

4. 勾股定理的逆定理:如果三角形的三条边长a,b,c有下列关系:a2+b2=c2,•那么这个三角形是直角三角形;该逆定理给出判定一个三角形是否是直角三角形的判定方法.5.•应用勾股定理的逆定理判定一个三角形是不是直角三角形的过程主要是进行代数运算,通过学习加深对“数形结合”的理解.我们把题设、结论正好相反的两个命题叫做互逆命题。

(完整word版)勾股定理全章知识点总结大全,推荐文档

(完整word版)勾股定理全章知识点总结大全,推荐文档

勾股定理全章知识点总结大全一•基础知识点:1:勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方。

(即:a2+b2= c2)要点诠释:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1 )已知直角三角形的两边求第三边(在ABC中,C 90,贝廿 c V a2~b , b 7c2~a2, a 7c2~b2)(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3 )利用勾股定理可以证明线段平方关系的问题2:勾股定理的逆定理如果三角形的三边长:a、b、c,则有关系a2+b2 =c2,那么这个三角形是直角三角形。

要点诠释:勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时应注意:(1 )首先确定最大边,不妨设最长边长为:c ;(2)验证c2与a2+b2是否具有相等关系,若c2 =a2+b2,则厶ABC是以/C为直角的直角三角形(若c2>a2+b2,则△ AB(是以/C为钝角的钝角三角形;若c2<a2+b2,则△ AB(为锐角三角形)。

(定理中a,b,c及a2 b2 c2只是一种表现形式,不可认为是唯一的,如若三角形三边长a , b,c满足a2 c2 b2,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边)3:勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理;联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。

4:互逆命题的概念如果一个命题的题设和结论分别是另一个命题的结论和题设,这样的两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个叫做它的逆命题。

--WORD 格式--专业资料--可编辑---Bb C5:勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形进过割补拼接后,只要没有重叠,没有空隙, 面积不会改变②根据同一种图形的面积不同的表示方法,列出等 式,推导出勾股定理 常见方法如下:方法二: 四个直角三角形的面积与小正方形面积的和等于大正 方形的面积.四个直角三角形的面积与小正方形面积的 和口^为 S 4 1ab c22ab c 22大正方形面积为S (a b)2a 22ab b 2所以 a 2b 2c 2方法三:S弟形?a b) (a b),S 梯形 2S ADE S ABE 2 ?ab,化间得^证6:勾股数① 能够构成直角三角形的三边长的三个正整方法一:4SS正方形EFGHS正方形ABCD,4 £ab (b a)2 c2,化简可证.baabbaDbA a数称为勾股数,即a2 b2 c2中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5 ;6,8,10 : 5,12,13 : 7,24,25 等③用含字母的代数式表示n组勾股数:n2 1,2n,n2 1(n 2,n为正整数);2n 1,2n2 2n,2 n2 2n 1 (n ^为正整数)m2 n2,2mn,m2 n2(m n, m n 为正整数)二、规律方法指导1 •勾股定理的证明实际采用的是图形面积与代数恒等式的关系相互转化证明的。

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点归纳

八年级下册勾股定理知识点和典型例习题一、基础知识点: 1.勾股定理内容:直角三角形两直角边的平方和等于斜边的平方;表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么222a b c += 2.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下: 方法一:4EFGH S S S ∆+=正方形正方形ABCD ,,化简可证.方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形的面积与小正方形面积的和为221422S ab c ab c =⨯+=+ 大正方形面积为222()2S a b a ab b =+=++ 所以222a b c +=方法三:1()()2S a b a b =+⋅+梯形,2112S 222ADE ABE S S ab c ∆∆=+=⋅+梯形,化简得证3.勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在ABC ∆中,90C ∠=︒,则22c a b +,22b c a -,22a c b =-②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实际问题 5.勾股定理的逆定理如果三角形三边长a ,b ,c 满足222a b c +=,那么这个三角形是直角三角形,其中c 为斜边①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b +与较长边的平方2c 作比较,若它们相等时,以a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级下册勾股定理知识点和典型例习题4 •勾股定理的应用①已知直角三角形的任意两边长,求第三边在b -c 2 a 2 , a ■. c 2 b 2②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些实 际问题 5 .勾股定理的逆定理如果三角形三边长a , b , c 满足a 2 b 2 c 2,那么这个三角形是直角三角形,其中 c 为斜边① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过 数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和a 2b 2与较长边的平方c 2作比较,若它们相等时,以 a ,b ,c 为三边的三角形是直角三角形;否则,就不是直角三角形。

② 定理中a , b , c 及a 2 b 2 c 2只是一种表现形式,不可认为是唯一的,如若三角形三边长a ,b ,c 满足a 2 c 2b 2,那么以a , b ,c 为三边的三角形是直角三角形,但是 b 为斜边③ 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直 角三角形6 .勾股数① 能够构成直角三角形的三边长的三个正整数称为勾股数,即a 2 b 2 c 2中,a , b , c 为正整数时,称a , b ,c 为一组勾股数② 记住常见的勾股数可以提高解题速度,如 3,4,5 ; 6,8,10 ; 5,12,13; 7,24,25 , 8,15,17等③ 用含字母的代数式表示 n 组勾股数:一、基础知识点:1•勾股定理内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为a ,b ,斜边为c ,那么2 •勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法 用拼图的方法验证勾股定理的思路是① 图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一:4S S 正方形 EFGH S 正方形 ABCD ,方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积•四个直角三角形 的面积与小正方形面积1ab 22ab c 2S (a b)2a 2 2ab b 2所以a 2b 21(a b) (a 23 •勾股定理的适用范围勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝角 三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形方法三:s 梯形 b), S 弟形 2S ADE S ABE1 2 ab 2-c 2,化简得证 2ABC 中, C 90 ,贝U c ■. a 2 b 2 ,,化简可证.DCa 大正方形面 积为b二、经典例题精讲题型一:直接考查勾股定理例1 •在ABC 中,C 90 .⑴已知AC 6 , BC 8 .求AB的长⑵已知AB 17, AC 15,求BC的长分析:直接应用勾股定理a2『J解:⑴ AB AC2—BC2 10 ⑵ BC . AB2—AC2 8题型二:利用勾股定理测量长度例题1如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。

把实物模型转化为数学模型后, 直角边长,求另外一条直角边的长度,可以直接利用勾股定理!根据勾股定理AC+BC=AB,即AC+92=152,所以AC=144,所以AC=12.例题2如图(8),水池中离岸边D点1.5米的C处,直立长着一根芦苇,出水部分拉到岸边,它的顶端B恰好落到D点,并求水池的深度AC..已知斜边长和一条BC的长是0.5米,把芦苇解析:同例题1 一样,先将实物模型转化为数学模型,如图 2.由题意可知△ ACD中,/ ACD=90 ,在Rt △ AC D中,只知道CD=1.5,这是典型的利用勾股定理“知二求的类型。

标准解题步骤如下(仅供参考)2 2 2 2n 1,2n,n 1 (n 2, n 为正整数); 2n 1,2n 2n,2n 2n 1 (n 为正整数);m2 n2,2mn,m2 n2(m n, m , n为正整数)7.勾股定理的应用勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题. 在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解.8•勾股定理逆定理的应用勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比较而得到错误的结论.9•勾股定理及其逆定理的应用勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体•通常既要通过逆定理判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:雷2解:如图2,根据勾股定理,A C+C D^AD J设水深AC= x 米,那么AD=AB=AC+CB=0.5X2+1.52= ( x+0.5 ) 2解之得x=2. 故水深为2米.题型三:勾股定理和逆定理并用1例题3如图3,正方形ABCD中, E是BC边上的中点,F是AB上一点,且FB - AB那么△ DEF是直角三角形4吗?为什么?解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。

仔细读题会意可以发现规律,没有任何条件,1我们也可以开创条件,由FB - AB可以设AB=4a,那么BE=CE=2a,AF=3 a,BF= a,那么在Rt △ AFD、Rt△ BEF4和Rt △ CDE中,分别利用勾股定理求出DF,EF和DE的长,反过来再利用勾股定理逆定理去判断△DEF是否是直角三角形。

详细解题步骤如下:解:设正方形ABCD的边长为4a,则BE=CE=2a,AF=3 a,BF= a在Rt △ CDE中,Dh=cD+C匚=(4a)2+(2 a)2=20 a2同理Eh=5a2, DF 2=25a2在△ DEF中,EF2+ DE2=5a2+ 20a2=25a2=DF2DEF是直角三角形,且/ DEF=90 .•••△注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。

题型四:利用勾股定理求线段长度例题4如图4,已知长方形ABCD中AB=8cm,BC=10cm在边CD上取一点E,将△ ADE折叠使点D恰好落在BC边上的点F,求CE的长.解析:解题之前先弄清楚折叠中的不变量。

合理设元是关键。

解:根据题意得Rt △ ADE^ Rt △ AEF•••/ AFE=90 , AF=10cm, EF=DE设CE=xcm,贝U DE=EF=CID CE=8- X在Rt△ ABF中由勾股定理得:A B'+BF2=A^,I卩82+BF2=102,• BF=6cm • CF=BC- BF=10— 6=4(cm)在Rt △ ECF中由勾股定理可得:2 2 2 2 2 2 2EF =CE+CF,即(8 —X)=X +4 /. 64 —16x+x=2+16 • x=3(cm),即CE=3 cm注:本题接下来还可以折痕的长度和求重叠部分的面积。

题型五:利用勾股定理逆定理判断垂直例题5如图5,王师傅想要检测桌子的表面AD边是否垂直与AB边和CD边,他测得cN)C BD 23217)A) 9EDABC4 C8 D 5 D3 B7 CA 、6B 第7题F6, & 11 A : 4, 5, 65, 12 1,1 ,2AD=80cm AB=60cm BD=100cm AD 边与AB 边垂直吗?怎样去验证 AD 边与CD 边是否垂直?移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?转化为数学模型,如图 6所示,A 点表示控制灯,BM 表示人的高度,BC// MN,BCL AN 当头(B 点)距离A 有5米时,求BC 的长度。

已知 AN=4.5米,所以AC=3米,由勾股定理,可计算 B C=4米.即使要走到离门4米的时候灯刚好打开。

解析:由于实物一般比较大,长度不容易用直尺来方便测量。

我们通常截取部分长度来验证。

如图 4,矩形ABCD 表示桌面形状,在 AB 上截取AM=12cm 在AD 上截取AN=9cm 想 想为什么要设为这两个长度?),连结MN 测量MN 的长度。

解析: 首先要弄清楚人走过去,是头先距离灯5米还是脚先距离灯5米,可想而知应该是头先距离灯5米。

题型六:关于翻折问题BE 的长. AD 是厶ABC 的中线,/ ADC=45°,把厶ADC 沿直线AD 翻折,点C 落在点C'的位置,BC=4求BC'如图,矩形纸片 ABCD 的边AB=10cm , BC=6cm, E 为BC 上一点,将矩形纸片沿 AE 折叠,点B 恰好落在CD 边上 的点G 处,求 变式:如图, 的长•三、勾股定理练习题 (一)、选择题①如果MN=15则AM+AN=MN,所以AD 边与AB 边垂直;2 2 2 2 2 2②如果 MNa z 15,则 9 +12=81+144=225, a 225,即 9+12 工 a ,所以/ A 不是直角。

例题6有一个传感器控制的灯,安装在门上方,离地高 4.5米的墙上,任何东西只要 1、下列各组数中,能构成直角三角形的是( 2、在 Rt △ ABC 中,/ C = 90°, a = 12, b = 16,则 c 的长为()A 4、在 Rt △ ABC 中,/ C = 90°,/ B = 45° ,c = 10,贝U a 的长为()A : 5 B :<10 C : ;50D12,则底边上的高为( 26 B : 18 C : 20 D : 3、在平面直角坐标系中,已知点P 的坐标是(3,4),则OP 的长为(7、已知,如图长方形 ABCD 中, AB=3cm AD=9cm5 、已知 Rt △ ABC 中,/ C=90°,若 a+b=14cm c=10cm ,则 Rt △ ABC 的面积是()2 2 2 2A 、24cmB 、36cmC 、48cmD 、60cm6、若等腰三角形的腰长为 10,底边长为将此长方形折叠,使点 B 与点D 重合,折痕为EF ,则厶ABE、 2 2—2 2)A 、3cm B 、4cm C 、6cm D 、12cm8、若厶 ABC 中, AB 13cm, AC 15cm ,高 AD=12,则 BC 的长为 A 、14 B 、4 C 、14或4 D 、以上都不对9、如图,正方形网格中的△ ABC 若小方格边长为 1,则厶ABC 是 () (A )直角三角形(B )锐角三角形(C )钝角三角形(D )以上答案都不对10、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树 20米处的池2、 木工师傅要做一个长方形桌面,做好后量得长为 80cm,宽为60cm ,对角线为则这个桌面 _____________ 。

相关文档
最新文档