最新课件-反函数1精品

合集下载

人教版高中数学《反函数》课件26页PPT

人教版高中数学《反函数》课件26页PPT
人教版高中数学《反函数》课件
课堂结构设计 问题 性质 概念
教学媒体设计
互逆探索 动画演示 表格对照
教学过程设计
创设情境,引入新课 实例分析,组织探究 师生互动,归纳定义 应用解题,总结步骤 巩固强化,评价反馈 反思小结,再度设疑
复习函数的定义
设A、B是非空的数集, 如果按某个确定的对应 关系f,使对于集合A中任意一个数x,在集合B中都有 唯一确定的数f(x)和它对应,那么就称f:AB为集
例3 (1)y=x2(x∈R)有没有反函数? 没有
(2)y=x2(x≥0)的反函数是__y____x_(_x0)
× (3)y=x2(x<0)的反函数是_y_____x_(_x__ 0)
y x(x0)
教学评价设计
1、已知函数y=f(x)存在反函数,求它的反函数
(1)y2x3
(2) y 2 x
(3)y x (xR,x5)
y3 x1(xR)
例2 求函数 y x1(x0)的反函数
解: ∵x≥ 0 ∴ y≥1
由 y x1, 解得 x(y1)2
∴函数 y x1(x0)的反函数是
y(x1)2(x1)
求函数反函数的步骤:
1 由y=f(x)反解出x = f 1(y)。 2 把 x = f 1(y)中 x与y互换得y = f 1(x). 3 写出反函数y = f 1(x)的定义域.
叫做函数y=f(x)(x∈A)的反函数.
记作: x= f 1(y)
考虑到“用 x表示自变量, y表示 函数”的习惯,将 x = f 1(y)中的x与y 对调写成 y = f 1(x).
具体: y2xxyyx 22
原函数中的自变量x与反函数中的函数值y 是 等价的。 原函数中的函数值y与反函数中的自变量x是 等价的。

反函数课件

反函数课件

利用微分方程研究反函数的性质
反函数的单调性
通过微分方程,我们可以研究反 函数的单调性。例如,如果一个 函数f(x)是单调递增的,那么它 的反函数g(x)也是单调递增的。
反函数的极值
利用微分方程,我们可以找出反 函数的极值点,并研究这些极值
点的性质。
反函数的曲线形状
通过求解微分方程,我们可以描 绘出反函数的曲线形状,进而研
02
利用对数函数性质,通过原函数 中的x和y互换位置,得到反函数
利用反函数的性质求反函数
原函数和反函数具有 相同的单调性
原函数和反函数具有 相同的值域和定义域
原函数和反函数具有 相同的奇偶性
反函数的应用
03
在解方程中的应用
01
定义域和值域的求解
在求解方程时,通过反函数可以方便地求出定义域和值 域,从而解决方程的求解问题。
最优化问题
利用反函数,可以求解一 些最优化问题,如最小成 本、最大利润等。
在实际问题中的应用
交通流量问题
通过反函数,可以求解交通流量 问题,如最短路径、最少时间等

人口流动问题
利用反函数,可以求解人口流动问 题,如最多人口、最少人口等。
经济问题
通过反函数,可以求解一些经济问 题,如最大利润、最小成本等。
04 反函数与导数的关系
导数与反函数的关系
导数表示函数在某一点的斜率,而反函数则表示函数在某一区间内的单 调性。导数可以用来研究函数的局部性质,而反函数则可以用来研究函 数的整体性质。
导数的存在意味着函数在某一点处具有切线,而反函数的定义域是原函 数的值域,因此反函数在某一点的导数可能不存在。
对于单调函数,其导数和反函数的导数互为相反数。

反函数(一)精选教学PPT课件

反函数(一)精选教学PPT课件
我感恩,感恩生活,感恩网络,感恩朋友,感恩大自然,每天,我都以一颗感动的心去承接生活中的一切。 我感谢……
感谢伤害我的人,因为他磨练了我的心志; 感谢欺骗我的人, 因为他增进了我的见识; 感谢遗弃我的人, 因为他教导了我应自立; 感谢绊倒我的人,因为他强化了我的能力; 感谢斥责我的人,因为他助长了我的智慧; 感谢藐视我的人,因为他觉醒了我的自尊;
感谢父母给了我生命和无私的爱; 感谢老师给了我知识和看世界的眼睛;
感谢朋友给了我友谊和支持; 感谢完美给了我信任和展示自己能力的机会;
感谢邻家的小女孩给我以纯真无邪的笑脸; 感谢周围所有的人给了我与他人交流勾通时的快乐; 感谢生活所给予我的一切,虽然并不全都是美满和幸福;
感谢天空,给我提供了一个施展的舞台 感谢大地,给我无穷的支持与力量; 感谢太阳,给我提供光和热;
感谢伤痛,让我学会了坚忍,也练就了我释怀生命之起落的本能; 感谢生活,让我在漫长岁月的季节里拈起生命的美丽;
感谢有你,尽管远隔千里,可你寒冬里也给我温暖的心怀; 感谢关怀,生命因你而多了充实与清新;
感谢所有的一切~ ~ ~ ~ ~ ~ 感谢我身边每一位好友,为你祝福,为的敲起祈祷钟!伴你走过每一天。他是一个劫匪,坐过牢,之后又杀了人,穷途末路之际他又去抢银行。 是一个很小的储蓄所。抢劫遇到了从来没有过的不顺利,两个女子拼命反抗,他把其中一个杀了,另一个被劫持上了车。因为有人报了警,警车越来越近了,他劫持着这个女子狂逃,把车都开飞了,撞了很多人,轧了很多小摊。 这个刚刚21岁的女孩子才参加工作,为了这份工作,她拼命读书,毕业后又托了很多人,没钱送礼,是她哥卖了血供她上学为她送礼,她父母双亡,只有这一个哥哥。
生活给予我挫折的同时,也赐予了我坚强,我也就有了另一种阅历。对于热爱生活的人,它从来不吝啬。 要看你有没有一颗包容的心,来接纳生活的恩赐。酸甜苦辣不是生活的追求,但一定是生活的全部。试着用一颗感恩的心来体会,你会发现不一样的人生。不要因为冬天的寒冷而失去对春天的希望。我们感谢上苍,是因为有了四季的轮回。拥有了一颗感恩的心,你就没有了埋怨,没有了嫉妒,没有了愤愤不平,你也就有了一颗从容淡然的心! 我常常带着一颗虔诚的心感谢上苍的赋予,我感谢天,感谢地,感谢生命的存在,感谢阳光的照耀,感谢丰富多彩的生活。

反函数的性质PPT教学课件

反函数的性质PPT教学课件
2.分段函数求解时注意分段求解 并分别注明定义域。
例1、求函数y=3x-2(x∈R)的反函数, 并画出原函数和它的反函数的图象。
解:从y=3x-2,解得 x y 2 。因
此,函数y=3x-2
3
的反函数是 y x 2 , (x R)
3
函数y=3x-2(x∈R)和它的反函数
y x 2 ,x R的图象如图
小结:
互为反函数的两个函数的 性质
1、函数y=f(x)的图象和它的反函数 y f 1(x)的图象关于直线y=x对称。
2、互为反函数的两个函数在各自 的定义域内具有相同的单调性。
数学广角
沏茶前要做些什么事呢?
怎样才能让客人尽快喝上茶?






数学家,中国科学院院士 华罗庚
“统筹法”
3
y Y=3x-2
y x2 3
o1
x
Y=x
例2、求函数y=x3(x∈R)的反函
数,并画出原来的函数和它的反函
数的图象。
解:从y=x3,解得x 3 y ,所以函数
y=x3(x∈R)的反函是y 3 x x R。
函数y=x3(x∈R)和它的反函数 y 3 x x R
的图像如图
y
0
x
性质:
1
3分钟 + 3分钟
3
1
ok
3分钟 + 3分钟 + 3分钟
o3k ok
ok
3分钟 + 3分钟 + 3分钟=9分钟
①烙2张饼需要6分钟, 烙3张饼的最佳方案需要9分钟。
②每次烙饼,锅里都有两张饼,速度最快。
两个人合作完成三张正反面的贺卡, 要怎样分工合作好呢?

高一数学反函数课件

高一数学反函数课件

反函数的性质
互为反函数的两个函数的图像关于直 线$y=x$对称。
如果原函数是单调增函数,则其反函 数也是单调增函数;如果原函数是单 调减函数,则其反函数也是单调减函 数。
反函数的定义域和值域分别是原函数 的值域和定义域。
如果原函数是奇函数,则其反函数也 是奇函数;如果原函数是偶函数,则 其反函数也是偶函数。
高一数学反函数课件
目录
• 反函数的定义与性质 • 反函数的求法 • 反函数的应用 • 反函数的图像表示 • 反函数与原函数的关系
01
反函数的定义与性质
反函数的定义
反函数
设函数$y=f(x)$的定义域为$A$,值域为$B$,如果存在一个函数$g(y)$,其定义域为 $B$,值域为$A$,并且满足$g(f(x))=x$,则称$g(y)$是$f(x)$的反函数。
反函数可以用于求解一些 特殊的不等式,例如求解 一元二次不等式。
比较大小
利用反函数的性质,可以 比较两个数的大小,例如 比较指数函数值的大小。
证明不等式
反函数可以用于证明一些 数学不等式,例如证明算 术平均数大于等于几何平 均数。
在函数性质研究中的应用
研究函数的单调性
通过反函数,可以研究函数的单调性,例如研究指数函数、对数 函数的单调性。
当原函数的定义域和 值域都是实数集时, 反函数的图像是可绘 制的。
反函数的图像变换
反函数图像的纵坐标不变,横坐 标互换。
反函数图像的横坐标不变,纵坐 标互换。
反函数图像的坐标轴方向可以旋 转90度。
反函数的图像对称性
反函数图像关于直线 $y = x$ 对称。 反函数图像关于原点对称。
反函数图像关于其渐近线对称。
研究函数的奇偶性

高中数学《反函数》 PPT课件 图文

高中数学《反函数》 PPT课件 图文

3 y x 1 x 0
4
y

2x3 x1
xR, x 1
解析:①先判断一下决定这个函数的映射是不是一 一映射? ②求反函数必须写出其定义域即原函数的值域
③求反函数的时候一定要注意原函数的定义域和值 域对反函数的限制。
例2、求函数
x1 0x1 yx2 1x0
2、教学目标的确定
知识目标:(1)对反函数概念的理解 (2)学会求函数的反函数
能力目标: (1)通过概念的学习,培养学生分析、解决问题的能力
和抽象概括的能力 (2)通过在反函数的求解过程中,把握函数与方程的思想
德育、情感目标: (1)培养学生对立统一的辩证唯物主义观点 (2)在民主、和谐的教学氛围中促进师生的情感交流
在学习中,应关注平时抽象思维较弱的学 生,在提供素材的环节中,鼓励他们“敢想”、 “敢做”积极参与,逐步提升思维能力;对于 平时抽象思维较好的学生,应积极引导他们学 会合作、交流,在抽象概括环节中进一步提高 其抽象思维能力,并教会学生学会通过观察、 分析、归纳、从具体实例中抽象出结论的方法, 逐步练就“会学”的本领,从而使人人都能有 所收获,整体水平得到提高。
前置诊断
1、请说出“对应”与“映射”、 “映射”与“函数”的联系与区别; 2、函数的三要素是什么?
创设情境,揭示课题
1、请同学们指出下列两个对应是不是映射?是不是
一一映射?是不是函数?
乘2
1
2
2
4
3
6
4
8
-1 平方 1
1
-2
4
2
-3
9
3
A
B
A
B
2、上述两个映射能不能构成从B到A的映射呢?如

反函数PPT教学课件

反函数PPT教学课件
学习要求: 1. 掌握反函数的概念 2. 会求一些简单函数的反函数
设A=R,B=R,映射 f : x y 2x 6
A x
f
?
x=?
B y 2x6
y
函数 y 2x 6( x R) 中,x是自变量,
y是x的函数,从函数 y 2x 6 中解出x,
得到 x y 3( y R)
2
③l1与l2相交 A1B2-A2B1≠0
④l1与l2重合 A1B2-A2B1=0且B1C2-B2C1=0。
到角与夹角:
两条直线l1,l2相交构成四个角,它们是两对对顶角,把l1 依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角, l1到l2的角的范围是(0,π).l1与l2所成的角是指不大
A2 B2
时,一定要把x、y前面的系数化成相等。
课前热身
1.已知点P(1,2),直线l:2x+y-1=0,则
(1)过点P且与直线l平行的直线方程为_2__x_+_y_-4_=_0__,
(2)过点P且与直线l垂直的直线方程为__x_-_2_y+__3_=_0__;
3x+y-5=0或x+3y-7=0 (3)过点P且直线l夹角为45°的直线方程为________;
函数 ,并指明定义域。
小结: 反函数的定义: 反函数的求法: 注意点:
1.反函数的定义域为原函数的值域;
2.反函数的值域为原函数的定义域。
作业:
P68-69习题2.4
1,2
两直线的位置关系
直线与直线的位置关系:
( 1 ) 有 斜 率 的 两 直 线 l1:y=k1x+b1;l2:
y=k2x+b2
如果对于y在C中的任何一个值,通过x =

【数学课件】反函数(一)

【数学课件】反函数(一)

(1).y=3x-1(x∈R)
(2).y=x3+1(x∈R)
(3).y x 1( x 0)
(4).y 2 x 3 ( x R, x 1 x 1
2
说明:①求反函数的过程书写格式按照上 述要求,初学不可直接写结果. ②反函数是相对于原函数而言,同时它 们是相互,即互为反函数.
上培养出好的品质。可是只有在集体和教师首先看到儿童优点的那些地方,儿童才会产生上进心。——苏霍姆林斯基 17、教育能开拓人的智力。——贺拉斯 18、作为一个父亲,最大的乐趣就在于:在其有生之年,能够根据自己走过的路来启发教育子女。——蒙田 19、教育上的水是什么就是情,就是爱。教育没有了情爱,就成了无水的池,任你四方形也罢、圆形也罢,总逃不出一个空虚。班主任广博的爱
最高级的技巧和艺术。——苏姆林斯基 5、没有时间教育儿子——就意味着没有时间做人。——(前苏联)苏霍姆林斯基 6、教育不是注满一桶水,而且点燃一把火。——叶芝 7、教育技巧的全部奥秘也就在于如何爱护儿童。——苏霍姆林斯基 8、教育的根是苦的,但其果实是甜的。——亚里士多德 9、教育的目的,是替年轻人的终生自修作准备。——R.M.H. 10、教育的目的在于能让青年人毕生进行自我教育。——哈钦斯 11、教育的实质正是在于克服自己身上的动物本能和发展人所特有的全部本性。——(前苏联)苏霍姆林斯基 12、教育的唯一工作与全部工作可以总结在这一概念之中——道德。——赫尔巴特 13、教育儿童通过周围世界的美,人的关系的美而看到的精神的高尚、善良和诚实,并在此基础上在自己身上确立美的品质。——苏霍姆林斯基 14、教育不在于使人知其所未知,而在于按其所未行而行。——园斯金 15、教育工作中的百分之一的废品,就会使国家遭受严重的损失。——马卡连柯 16、教育技巧的全部诀窍就在于抓住儿童的这种上进心,这种道德上的自勉。要是儿童自己不求上进,不知自勉,任何教育者就都不能在他的身

《高中数学《反函数》课件

《高中数学《反函数》课件

奇函数的图像关于原点对称, 偶函数的图像关于y轴对称。
奇偶性的变化规律可以通过观 察图像来理解。
04 反函数在解题中的应用
利用反函数解决方程问题
总结词
通过反函数,可以将复杂的方程问题转化为求函数的值域或定义域问题,简化解 题过程。
详细描述
在解决方程问题时,我们可以利用反函数的概念,将原方程转化为求反函数的值 域或定义域的问题。通过确定反函数的值域或定义域,可以找到原方程的解。这 种方法在处理一些复杂的方程问题时非常有效。
总结词
理解反函数的实际应用 和复杂函数的反函数求

题目1
已知函数$f(x) = sqrt{x}$,求$f^{-
1}(x)$。
题目2
已知函数$f(x) = log_2(x)$,求$f^{-
1}(x)$。
题目3
已知函数$f(x) = x^4 3x^2 + 2$,求$f^{-
1}(x)$。
综合练习题
总结词
利用反函数解决不等式问题
总结词
反函数可以帮助我们将不等式问题转化为求解函数的值域或定义域问题,从而简化解题过程。
详细描述
在解决不等式问题时,我们可以利用反函数的概念,将原不等式转化为求反函数的值域或定义域的问题。通过确 定反函数的值域或定义域,可以找到满足不等式的解。这种方法在处理一些复杂的不等式问题时非常实用。
综合运用反函数的知识解决复杂问题
题目2
已知函数$f(x) = x^2 - 2x$和$g(x) = frac{1}{x}$,求$(f circ g)^{-1}(x)$。
题目1
已知函数$f(x) = sqrt{x}$和$g(x) = log_2(x)$,求$(f circ g)^{-1}(x)$。

高中数学《反函数》课件

高中数学《反函数》课件

(1) y x 1 (x≥0)
(2)
y
2x 3 x 1
(x≠1)
教师示范,学生归纳解题步骤:
1、互解;2、互换;3、确定定义域。
设计意图:
应用是加深理解概念最有效的途径,两道题均来自课
本,紧扣教材应当成为教与学的立足点,规范解题过程,深化
解题方法,培养基本技能,讲完例题之后,提出两个小问题,
意在加深对所学内容的理解,培养学生分析、思考问题的习惯。
返回
下一页
教学方法和手段
针对本节课概念抽象的特点,整节课将以启 发学生思考、分析、讨论为主。采用“从特殊到 一般”、“从具体到抽象”的方法,体现“对比 和联系”的思想方法,力求做到以创造发展为目 的,以师生共同参与为核心,以反馈调控为手段, 以推理判断为特征。
采用多媒体教学手段,增大教学容量和感观 性。
的区别和联系。
1、以旧引新,揭示课题
乘2
1
2
2
4
3
6
4
8
平方
-1
1
1
-2
2
4
-3
3
9
A
B
A
B
对比举例:函数(1)y=2x x∈R 属于异元异像
函数(2)y=x 2 x∈R 属于异元同像
y 都是 x 的函数
提出问题:若将 y 作为自变量,x 是否是 y 的函数呢?
由函数(1)解得
x y 2
,x 是 y 的函数
讨论归纳、导入定义
由前面的特例可以看到:给定函数 y=f(x)定义域为A,值域为C,从式子y=f(x)解 出得到x=φ(y),如果对于y在C中的任何一个值, x在A中都有唯一确定的值和它对应,那么式 子x=φ(y)就表示x是变量y的函数,把x=φ(y)叫 函数y=f(x)的反函数,

高一数学最新课件-反函数的概念[原创] 精品

高一数学最新课件-反函数的概念[原创] 精品

(y∈C,x∈A)
y = f –1 (x) (x∈C,y∈A) 是 y =f(x)的反函数
四、反函数的求法
交换 反解x x=f –1(y) y = f(x) x,y
y = f –1(x) (注明x的范围)
四、反函数的求法
例 1 : 求下列函数的反函数
(1). y x 1 (x 0)
-1
-1
-1
因为x≤2,所以x=0
五、小结
1、反函数的定义:
y=f(x) (x∈A,y∈C)
交换
X,Y
是函数
求x
x = f –1 (y)
(y∈C,x∈A)
y = f –1 (x) (x∈C,y∈A) 是 y =f(x)的反函数
Байду номын сангаас
2、反函数的求法:
三注明。 一反解、 二交换、
六、作业布置
1. 课本 P64 1、2题
注意:
原函数与反函数互为反函数。
四、反函数的求法
变式2. (1)已知 f(x) x 2 4x 2 (x 2),求f -1 (2)的值
法1 : 先求 f (x), 再求 f (2).
法2 : 要求 f ( 2 ) 即求f(x)=2时所对应的x的值,
由x2 – 4x+2 =2 x=0或x=4
y
则x 2
y2
2 0 –2 . 2 x
x 2 x 2 - y 2
交换x,y得, y 2 - x 2
又原函数的值域为 [ - 2,+∞),
f ( x) 2 x 2 ( x 2)
1
四、反函数的求法
变式 1 : 已知g(x) 2 - x 2 (x - 2), 求 g-1( x)

高一数学课件-反函数

高一数学课件-反函数

A , B 3, C , 3 D 0,1
则它的反函数的定义域是(C)
x 1 f x x 1
2已知
则f
1
3
2
ax b
3已知点(2,1)既在 f x 2 的图 1 象上又在 f x 的图象上, 求a, b的值.
3、解: 点 2 , 1 在f
解:∵x ∈R ∴y ∈R
(2) y x 1( x R)
3
y x 1( x R)
3
(3) y
x 1( x 0)
∴ y≥1
2
解: ∵x≥ 0 由
y x 1, 解得 x ( y 1)
∴函数
y x 1( x 0) 的反函数是
2
y ( x 1) ( x 1)
学习要求:
1 . 指数函数和对数函数的关系
2.掌握反函数的概念
3.会求一些简单函数的反函数
一.指数函数与对数函数的关系
1.解析式:
ya
x
先解
x loga y
再换
y loga x
2.图象
结论: 1.定义域和值域互换 2.同底的指数函数和对数函数的 图象关于直线y=x对称。 3.单调性一致
例2 (1)y=x2(x∈R)有没有反函数?
没有
y x ( x 0) (2)y=x2(x≥0)的反函数是________
y x ( x 0) (3)y=x2(x<0)的反函数是__________
ቤተ መጻሕፍቲ ባይዱ
×
y x ( x 0)
六、跟踪练习: 1已知函数
f x 3 log0.5 x x 1

函数与反函数学习教材PPT课件

函数与反函数学习教材PPT课件

4. 定 义 域 为 { - 2 , - 1 , 0 , 1 , 2 } 的 函 数 f(x) 满 足 f(±2)=1,f(±1)=2,f(0)=0,则( ) (A)f(x)无最值 (B)f(x)是偶函数 (C)f(x)是增函数 (D)f(x)有反函数 5.已知函数y=f(x)的反函数为f-1(x)=2x+1,则f(1)等于( (A)0 (B)1 (C)-1 (D)4
返回
【解题回顾】若函数 f(x) 存在反函数 f-1(x),则 f(a)=b, f-1(b)=a.
返回
5. 证明:原函数 y=f(x) 与其反函数 y=f-1(x) 在相应的定 义域具有相同的单调性.
【解题回顾】类似地可以证明:若原函数为奇函数,且存 在反函数,则反函数也为奇函数 .
返回
延伸·拓展
x 2 1, 0 x 1 6.已知函数 f x 2 ,求它的反函数, 1 x 0 x
第1课时 函数与反函数
要点·疑点·考点

前 热 身 能力·思维·方法 延伸·拓展

解 分 析
要点·疑点·考点
1.映射 设 A,B是两个集合,如果按照某种对应法则 f,对于集合 A 中的任何一个元素,在集合B中都有惟一的元素和它对应, 那么这样的对应叫做集合 A 到集合 B的映射,记作f:A→B . 给定一个集合A到B的映射,且a∈A,b∈B.如果元素a和元素 b对应,那么,我们把元素b叫做 元素a的象,元素a叫做元素b的原象 设f:A→B是集合A到集合B的一个映射.如果在这个映射下, 对于集合A中的不同元素,在集合B中有不同的象,而且B中 每一个元素都有原象,那么这个映射就叫做A到B上的一一 映射.
)
答案: (4) B (5) C

1-1 反函数

1-1 反函数

ππ ,]
上的反函数叫做反正弦函数,记作
y
arcsin
x

22
其定义域为[-1,1], 值域为 [ π , π] ;
22
余弦函数 y cosx 在[0, π]上的反函数叫做反余弦函数,记作 y arccosx ,
其定义域为[-1,1],值域为 [0, π] ;
正切函数 y tan x 在 ( π , π) 上的反函数叫做反正切函数,记作 y arctanx ,
例:判断以下两个函数是否是同一函数?
y
2
x
yx
复习以前学习过的几类函数: 幂函数、指数函数、对数函数、三角函数。
通过观察图像,总结函数的性质。 函数性质: 单调性、奇偶性、有界性、周期性。
一、幂函数
一般地,形如 y x (为有理数 ) 的函数, 即以底数为自变量,幂为因变量,指数为常数 的函数称为幂函数。
例如, 函数 y x 1 的定义域为:x 1 。
被开方数 ≥ 0
(3)对数函数 y = log a x ,规定:底数 a >0且 a ≠ 1,真数 x > 0。
例如,函数 y log3x 2 的定义域为: x 2 。 对数函数的真数 > 0
(4)A0中,A≠ 0。
任何非零数的零次方
判断两个函数是同一函数,一看定义域 是否相同,二看对应法则是否相同,即经过 化简后两函数是同一形式(式子相同)。
新知识
作出函数 y 2x 1 与函数 y x2 的图像.
观察图像发现,函数 y 2x 1 的图像(图(1))与任何水平直线相交的交点最多
有一个,具有这种特征的函数称为一对一函数;
而函数 y x2 的图像(图(2))与水平直线相交的交点会多于 1 个,具有这种特征

反函数复合函数初等函数课件

反函数复合函数初等函数课件

三角函数的图像
三角函数的图像可以通过描点法或变换法 得出,例如$y=sin x$和$y=cos x$的图 像。
对数函数的图像
对数函数的图像可以通过描点法或变换法 得出,例如$y=log_a x$($a>0$且 $aneq1$)的图像。
Part
04
反函数与复合函数的应用
在数学中的应用
解决方程问题
通过反函数,可以将一个方程问 题转化为另一个方程问题,从而 简化求解过程。
在某些情况下,反函数和初等函数可以是同一个函数,例如对于线性函数y=ax+b ,其反函数也是初等函数。
反函数与初等函数在数学中的地位
反函数和初等函数在数学中都具有重要的地位,是数学研究和应用的基础。反函 数的概念有助于深入理解函数的性质和图像,而初等函数则是数学分析、微积分 等课程中的基本工具。
在解决实际问题时,常常需要将实际问题转化为数学模型,而反函数和初等函数 是构建这些数学模型的重要工具。
初等函数的性质
有界性
初等函数在其定义域内都 1
是有一定界限的,即其值 域是有限的。
可微性
4
在定义域内,初等函数可 以求导数,即具有可微性 。
单调性
根据不同的定义域和对应
2
法则,初等函数在其定义
域内可以是单调增函数或
单调减函数。
周期性
3 有些初等函数具有周期性
,例如正弦函数和余弦函 数。
初等函数的图像
复合函数的奇偶性
复合函数的值域
复合函数的值域由外层函数的值域和 内层函数的值域共同决定。
如果一个复合函数的内层函数和外层 函数都是奇函数或偶函数,那么这个 复合函数可能是奇函数或偶函数。
复合函数的求法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档