水解酸化池设计
水解酸化池设计
通过对水解池进、出水有机酸分析结果表明,出水的溶解性COD已不是原来的 溶解性COD,其中挥发性有机酸浓度大幅度上升,可以从占进水溶解性组分9%
上升到出水的25%。
安徽工程科技学院生化系
Anhui University of Science and Technology
工业废水污染防治
Prevention & Treatment of Trade Wastewater
另外经水解处理后,溶解性有机物比例发生了很大变化,水 解出水溶解性COD比例提高了1倍。而一般经初沉池后出水溶解 性COD、BOD5的比例变化较小。众所周知,微生物对有机物的 摄取只有溶解性的小分子物质才可直接进入细胞体内,而不溶性 大分子物质首先要通过细胞外酶的分解才可直接进入微生物体内 的代谢过程。经水解处理,有机物在微生物的代谢途径上减少了 一个重要环节,无疑将加速有机物的降解。这表明水解反应器相 对于曝气池起到了预处理的作用,使得经水解处理后出水变得更 易于被好氧菌降解。
由于酸化过程的控制不能严格划分,在污泥中可能仍有少量甲烷菌 的存在,可能产生少量的甲烷,但甲烷在水中的溶解度也相当可观, 故以气体形成释放的甲烷量很少。可以看出,水解反应器集沉淀、吸 附、网捕和生物絮凝等物理化学过程以及水解、酸化和甲烷化过程等 生物降解功能于一体。这些过程在水解反应器中得到了强化,这与功 能单一的初沉池有本质的区别。
水解阶段、酸化阶段、乙酸化阶段和甲烷阶段等四个阶段。
水解池是把反应控制在第二阶段完成之前,不进入第三阶
段。采用水解池较之全过程的厌氧池(消化池)具有以下
的优点。
水解、产酸阶段的产物主要为小分子有机物,可生物降解性一般较好。 故水解池可以改变原污水的可生化性,从而减少反应的时间和处理的能耗。 对固体有机物的降解可减少污泥量,其功能与消化池一样。工艺仅产生 很少的难厌氧降解的生物活性污泥,故实现污水、污泥一次性处理,不需 要经常加热的中温消化池。 不需要密闭的池,不需要搅拌器,不需要水、气、固三相分离器,降低 了造价和便于维护。由于这些特点,可以设计出适应大、中、小型污水处 理厂所需的构筑物。 反应控制在第二阶段完成之前,出水无厌氧发酵的不良气味,改善处理 厂的环境。 第一、第二阶段反应迅速,故水解池体积小,与初次沉淀池相当,节省 基建投资。
水解酸化池计算
槽深h (m) 0.41
有三角堰时三角堰(90度)的设计 每个堰口流量 堰上水头h1 每米堰口数 (L/s) (m) 5 0.32 0.035
槽总深h (m) 0.445
(kgCOD/m d)
3.
悬浮固体 (mg/L) SS 300 60 80 可控
酸碱度 PH 6~8
温度(℃) T 25
可控
可控
表面负荷 (m3/m2.h) Ns 1
水力停留时 间(h) HRT 4
Nv 2
4.池体有效容积 公式 有效容积(m3)
V=KQHRT
1668
5.池的面积 公式 S=Qmax/Ns
151.8 87.6
10.出水堰设计 单格出水流量 物理意义 (m3/h) Q0 公式 数值 208.5 无三角堰的波水槽宽深设计 槽内流量 流量安全系数 (m3/h) 1.3 271.05
出水堰负荷 (L/s.m) q' 1.6
出水堰长 (m) Q0/q' 36.2
槽宽B (m) 0.32
槽自由跌水 临界水深hk 起端水深h 高度(m) (m) (m) 0.1 0.18 0.31
有效面积(m2) 417
6.池的几何尺寸(内净尺寸) 池内水深(m) 池长宽系数 h L/B 4 2
池组数 n 2
每组池设计尺寸(内净尺寸) H(m) B(m) L(m) 4.3 10.21 20.42
7.水解池上升流速核算 公式 上升流速(m/h) 判别可行性 v=h/HRT 1 可行 8.容积负荷核算 公式 Nv=Q*So/V 有机负荷
三、水解(酸化)池设计 1.设计条件 进水流量 名称 (m3/h) 符号 Q 进水 417 2.水质条件
总变化系数 Kz 1
水解酸化池
3.3水解酸化池3.3.1设计说明印染废水中含有大量高分子有机物,较难直接被好氧微生物降解,而水解酸化可大大提高废水的可生化性。
在水解酸化阶段,通过缺氧降解,使水中大分子有机物分解为易生化的小分子有机物,从而提高废水的可生化性,保证后续生化处理效果。
水解池中设计安装高速潜水推流器,以保证厌氧微生物和废水能充分接触,均匀水质。
3.3.2设计参数(1)容积负荷N V =3.2kgCOD/(m 3·d);(2)配水孔流速v=0.2m/s ;(3)设计水量Q=10000m 3/d ;(4)进水COD 浓度1600mg/L ;(5)有效水深h 2=5m ;(6)保护高度h 1=0.8m 。
3.3.3设计计算1.水解酸化池尺寸(1)总有效容积350003.2000016.1m N Q S V V =⨯=⨯= 式中:S ——进水COD 浓度,gCOD/L 。
(2)总表面积水解池高h 取5m ,则水解池表面积A 为:2100055000m h V A ===将水解池分为两大格,则每格体积312500250002m V V ===;每格表面积21150052500m h V A ===。
所以每大格外形尺寸取为L×B×H=50m×10m×5m 。
2.水力停留时间h Q V HRT 1224100005000=⨯== 3.填料设计池内填料采用由聚丙烯、聚乙烯制成半软性复合填料,它具有散热性能高,阻力小,布水、布气性能好,易长膜,又有切割气泡的特点。
取填料层为2.5m 高,距进水边池壁1.6m ,则填料体积为:32420.5210.61502m V =⨯⨯-⨯=)(填料4.污泥产生量水解酸化池的COD 去除率为30%,污泥的产生量按照每公斤COD 产生0.2kg 干污泥进行计算,产生的污泥主要在二沉池及气浮池进行泥水分离。
(1)干污泥产生量d kg W /9602.010000%306.1=⨯⨯⨯=(2)湿污泥产生量湿污泥含水率以99%计,则湿污泥产生量:d t d kg W W /96/9600001.096099.011===-= 换算成污泥体积,即:d m V /953=污泥5.污泥斗设计每大格设计五个污泥斗,共10个。
水解酸化池设计规范
水解酸化池设计规范水解酸化池是污水处理系统中的关键设备,主要用于酸化有机物质以及产生可溶解的有机酸,为后续的生物处理过程提供有机碳源。
设计合理的水解酸化池能够提高有机物的降解效率和稳定性。
本文将介绍水解酸化池的设计规范。
1. 设计原则水解酸化池的设计应遵循以下原则:(1) 确定适当的水解反应时间,通常为4-8小时;(2) 控制水解酸化池的温度,一般为35-40°C;(3) 确保水解酸化池的氧化还原电位为负值,以保证有机物的降解;(4) 考虑底污泥的产生和液位的控制。
2. 设计参数(1) 污水流量:根据进水量和生活污水的污染指标确定水解酸化池的设计流量。
(2) 污水COD浓度:确定水解酸化池的COD负荷,一般为1-2 kg COD/m3.d。
(3) 水解反应时间:根据水解酸化池的水解反应速率和进水COD浓度来确定水解反应时间。
(4) 水解酸化池温度:根据污水的特性和气候条件确定水解酸化池的温度,通常为35-40°C。
(5) 水解酸化池体积:根据进水COD负荷和水解反应时间确定水解酸化池的体积。
3. 设计计算(1) 水解反应速率:根据水解酸化池的COD浓度和水解反应时间,计算水解反应速率。
(2) 底污泥量:根据水解酸化池的底污泥深度和水解反应时间,计算底污泥的产生量。
(3) 水解酸化池体积:根据进水COD负荷、水解反应时间和水解反应速率,计算水解酸化池的体积。
(4) 液位控制:根据水解酸化池的进水流量和出水流量,计算出水流量和液位控制。
4. 设计要点(1) 进水管道应具有均匀进水和冲混功能,以保证水解反应的均匀性。
(2) 污泥回流系统应设置,以提供充足的活性污泥和维持稳定的底污泥。
(3) 底部设置搅拌器,以保证水解酸化池内的废水充分混合。
(4) 设置排气系统,以防止气体积聚和异味的产生。
(5) 考虑水解酸化池的排放标准,设置合适的出水口。
综上所述,水解酸化池的设计规范主要包括设计原则、设计参数、设计计算和设计要点。
污水处理水解酸化池
污水处理水解酸化池污水处理水解酸化池是污水处理系统中的重要环节,用于降低污水的酸度并促进有机物的分解。
本文将详细介绍污水处理水解酸化池的标准格式。
一、引言污水处理水解酸化池是污水处理过程中的关键环节之一,通过水解和酸化反应,将有机物质分解为可生物降解的物质,为后续的生物处理提供有利条件。
本文将介绍水解酸化池的设计要求、运行参数以及监测指标。
二、设计要求1. 处理能力:水解酸化池的设计应根据污水处理厂的规模和负荷量确定处理能力,确保能够满足污水处理系统的需求。
2. 原水水质:根据原水水质特点确定水解酸化池的设计参数,包括COD浓度、pH值等。
3. 温度控制:水解酸化反应对温度敏感,应根据原水温度确定适宜的运行温度范围,并采取措施保持稳定的温度。
4. 混合方式:水解酸化池可采用机械搅拌或者气体搅拌等方式进行混合,以确保有机物质均匀分布。
5. 污泥回流:适量的污泥回流可提高水解酸化效果,应根据实际情况确定回流比例。
三、运行参数1. 水解酸化反应时间:根据原水水质和处理要求确定水解酸化反应时间,普通为4-8小时。
2. 温度控制:水解酸化池的运行温度应控制在35-40摄氏度之间,可通过加热或者降温设备实现。
3. pH值控制:水解酸化反应对pH值敏感,应控制在6.5-7.5之间,可通过加碱或者加酸进行调节。
4. 混合方式:采用机械搅拌或者气体搅拌等方式进行混合,确保有机物质均匀分布。
5. 污泥回流比例:适量的污泥回流可提高水解酸化效果,普通回流比例为20-30%。
四、监测指标1. COD浓度:监测水解酸化池进出水的COD浓度,以评估有机物的降解效果。
2. pH值:监测水解酸化池的pH值,以确保反应环境的稳定性。
3. 温度:监测水解酸化池的温度,以保持适宜的反应温度。
4. 溶解氧:监测水解酸化池的溶解氧浓度,以评估反应环境的好氧或者厌氧状态。
5. 污泥浓度:监测水解酸化池内污泥的浓度,以控制污泥回流比例。
五、结论污水处理水解酸化池是污水处理系统中的关键环节,通过水解和酸化反应,能够有效降低污水的酸度并促进有机物的分解。
水解酸化池设计规范
水解酸化池设计规范水解酸化池是污水处理工艺中的一个重要环节,有效的设计规范能够保证其正常运行和高效处理污水。
下面,我将为您介绍水解酸化池设计规范。
1. 污水水质分析:在设计水解酸化池之前,需要对进水污水进行水质分析,包括COD(化学需氧量)、BOD(生化需氧量)、SS(悬浮固体)等指标的测定。
通过水质分析来确定水解酸化池的设计负荷和处理效果。
2. 污水流量计算:根据工厂或小区的生活污水产生量以及污水处理的要求,确定水解酸化池的处理能力。
一般来说,设计时会采用单位时间内的平均流量作为设计参数。
3. 水解酸化池尺寸:根据水解酸化池的处理能力和停留时间要求,计算水解酸化池的尺寸。
通常情况下,水解酸化池的长度应为进水口到出水口的3倍。
4. 水解酸化池进出水管道:进水管道和出水管道的设计应避免死角和积水,尽量保持流动均匀,避免堵塞和积淤。
5. 搅拌设备:水解酸化池需要进行充分的搅拌,以保证物理和化学反应的均匀进行。
因此,需要配置搅拌设备,例如机械搅拌器或气泡搅拌器。
6. 防渗透措施:水解酸化池的设计应采取防渗透措施,以避免地下水的渗入和污水的外溢。
通常采用地下渗漏涵洞、密封层等措施进行防渗透处理。
7. 温度调控:水解酸化池对温度要求较高,通常在32-38摄氏度之间。
因此,在设计中需要考虑保温措施,例如采用保温材料对水解酸化池进行包裹,确保池内温度的稳定。
8. 污泥处理:水解酸化池中会产生大量的污泥,需要考虑污泥的处理方法。
一般来说,可以采用厌氧消化或厌氧发酵等方法将污泥进行处理,减少其对环境的影响。
9. 安全措施:在设计水解酸化池时,需要考虑操作人员的安全,配置相应的安全设施和警示标志,以确保操作人员的生命财产安全。
10. 运维和维护:水解酸化池的设计中应考虑到运维和维护的便利性,例如设备的位置设置以及进出口的确定,方便操作和进行正常的维护。
总的来说,水解酸化池的设计规范包括污水水质分析、流量计算、尺寸设计、进出水管道设计、搅拌设备配置、防渗透措施、温度调控、污泥处理、安全措施和运维维护等方面。
水解酸化池
池深H:应大于5.5~6m。
容积负荷N_v=2~2.5kgCOD/〖(m〗^3*d)水力停留时间:6~8h污泥浓度:MLSS=10~20g/L溶解氧:<0.2~0.3mg/L,用氧化复原电位之-50~+20mvPH值:5.5~6.5水温尽可能高,大于25摄氏度效果较好配水:由配水区进入反响区的配水孔流速v=0.20~0.23m/s;v不宜太小,以免不均。
水解酸化池的设计水解酸化工艺属于升流式厌氧污泥床反响器技术范畴。
水解池内分污泥床区和清水层区,待处理污水以及滤池反冲洗时脱落的剩余微生物膜由反响器底部进入池内,并通过带反射板的布水器与污泥床快速而均匀地混合。
污泥床较厚,类似于过滤层,从而将进水中的颗粒物质与胶体物质迅速截留和吸附。
由于污泥床内含有高浓度的兼性微生物,在池内缺氧条件下,被截留下来的有机物质在大量水解—产酸菌作用下,将不溶性有机物水解为溶解性物质,将大分子、难于生物降解的物质转化为易于生物降解的物质;同时,生物滤池反冲洗时排出的剩余污泥〔剩余微生物膜〕菌体外多糖粘质层发生水解,使细胞壁翻开,污泥液态化,重新回到污水处理系统中被好氧菌代谢,到达剩余污泥减容化的目的。
由于水解酸化的污泥龄较长〔一般15~20天〕,所以在本设计中,采用水解酸化池代替常规的初沉池,除到达截留污水中悬浮物的目的外,还具有局部生化处理和污泥减容稳定的功能。
水解酸化池设计停留时间为3.6h,有效容积为750m3,共分2格,每格工艺尺寸为:13 m×5.5 m×5.6m〔超高0.35m〕。
中间管廊工艺尺寸为:13 m×2.0 m ×5.6m。
水解酸化池泥层高 2.5m。
排泥位置主要位于泥层上部,池底设有排砂设施,泥龄一般18天左右,设计污泥混合区浓度20g/L,泥区总体积约为320m3,每天产干泥量约0.25吨。
水解酸化池的设计水解酸化就是将大分子有机物转化成小分子有机物,可提高废水的可生化性〔B/C〕,即是提高BOD。
水解酸化池课程设计
目录第一章绪论第一节课程设计任务第二节设计目的第三节制药厂废水基本概况第四节任务分析第五节工艺流程第二章工艺流程概述第一节工艺原理第二节结构第三节工艺特点第四节实际应用第三章设计计算第一节设计参数第二节计算过程第四章补充部分第五章参考文献第六章总结第七章致谢第一章绪论第一节课程设计任务该制药厂废水水质情况如下:表1 制药厂废水水质情况表废水流量Q2500m3/d进水水质出水要求要求去除率COD6000mg/L120mg/L98%BOD53000mg/L60mg/L98%SS2500mg/L200mg/L92%PH 6.0—8.0 6.0—9.0不需要调节出水要求:处理后废水排放达到GB8978-1996综合污水排放二级标第二节设计目的通过本课程设计进一步巩固本课程所学习的核心内容,掌握设计的内容以与相关参数的选择与计算,并使所学习知识系统化,培养学生运用所学习知识进行水处理工艺的设计。
本次课程设计,是让学生针对给定的处理工艺,选择相应的参数计算,绘制工艺图,使学生具有初步的设计能力。
第三节制药厂废水基本概况制药工业废水中的污染物多属于结构复杂、有毒害作用和生物难以降解的有机物质,许多废水呈明显的酸碱性,部分废水中含有过高的盐分。
由于制药企业一般根据市场的需求决定产量,故排放废水的波动性很大;若在同一生产线上生产不同产品时,所产生废水的水质、水量差别也可能很大。
制药废水可简要地归结为高浓度难降解的有机废水,即COD浓度一般大于2000mg/L、可生化性指标BOD5/COD值一般小于0.3的有机废水。
考虑到制药废水可能残留某些药物成分等有毒害物质,排放到水体中会对生态环境造成不良影响,我国各类制药工业水污染排放标准中均选择了急性毒性的废水控制标准,以期有效控制有毒有害污染物对环境的影响。
第四节任务分析给定制药厂进水水质中含有大量有机物质和悬浮物,但是并没有出现有毒害物质,并且废水没有呈明显的酸碱性,同时没有盐分的数据,认定为没有含过高盐分。
水解酸化池设计指南
水解酸化池设计指南水解是指有机物进入微生物细胞前、在胞外进行的生物化学反应。
微生物通过释放胞外自由酶或连接在细胞外壁上的固定酶来完成生物催化反应。
酸化是一类典型的发酵过程,微生物的代谢产物主要是各种有机酸。
从机理上讲,水解和酸化是厌氧消化过程的两个阶段,但不同的工艺水解酸化的处理目的不同。
水解酸化-好氧生物处理工艺中的水解目的主要是将原有废水中的非溶解性有机物转变为溶解性有机物,特别是工业废水,主要将其中难生物降解的有机物转变为易生物降解的有机物,提高废水的可生化性,以利于后续的好氧处理。
考虑到后续好氧处理的能耗问题,水解主要用于低浓度难降解废水的预处理。
混合厌氧消化工艺中的水解酸化的目的是为混合厌氧消化过程的甲烷发酵提供底物。
而两相厌氧消化工艺中的产酸相是将混合厌氧消化中的产酸相和产甲烷相分开,以创造各自的最佳环境。
水解-好氧生物处理工艺设计指南一、预处理设施预处理的目的之一是去除粗大固体物以及无机可沉固体,这对配水有特殊要求的水解池尤为重要。
另外,不可生物降解的固体在水解反应器内的积累会占据大量的池容,反应器池容的减少最终将导致系统完全失效。
一般预处理系统包括去除大的固体、较小颗粒的格栅和水力筛及去除砂和砾石的沉砂池。
(1)格栅格栅是污水预处理的通用设施。
为保证水解池布水系统不被堵塞,建议采用固定式格栅或回转筛、水力筛作补充处理。
(2)除砂池对小型污水处理厂,由于污水流量变化较大,沉砂池设计的难点需要在变化的水量条件下保持系统中液体流速有相对不变的数值。
因为较高的流速会降低无机固体在渠道中的去除效果,而较低的流速导致有机物与砂一起沉积。
对于有一定规模的污水处理厂,可以考虑采用平流式沉砂池。
在存在较多的砂和有机物共同沉淀的情况下,可采用体外洗砂装置,如螺旋洗砂器或水力固体螺旋洗砂器。
考虑到后续水解处理工艺,一般不用曝气沉砂池作为预处理装置。
二、水解池的详细设计要求1.反应器池体水解池一般可采用矩形或圆形结构。
污水处理水解酸化池
污水处理水解酸化池水解酸化池是污水处理系统中的一个重要环节,它通过将进入污水处理厂的原始污水进行预处理,以去除有机物质、沉淀悬浮物和调节污水的pH值,为后续的处理工艺提供良好的条件。
本文将详细介绍水解酸化池的工作原理、设计要求、操作注意事项以及效果评价等方面内容。
1. 工作原理水解酸化池是一种生物处理单元,主要通过微生物的作用将有机物质分解成可溶性有机物和可生物降解的物质。
在水解酸化池中,有机物质首先被水解成低份子量的有机酸,然后通过酸化反应将有机酸转化为挥发性脂肪酸。
这些挥发性脂肪酸可被后续的生物处理单元中的微生物进一步降解,从而实现有机物质的去除。
2. 设计要求(1)容积和停留时间:水解酸化池的容积和停留时间应根据进水水质、处理规模和处理效果要求进行合理设计。
通常情况下,水解酸化池的容积为进水流量的3-5倍,停留时间为4-8小时。
(2)温度控制:水解酸化池的温度对微生物的生长和有机物质的分解有重要影响。
普通来说,水解酸化池的温度应控制在35-40摄氏度,可通过加热或者保温措施实现。
(3)搅拌和通气:水解酸化池中的搅拌和通气设备应保证有机物质与微生物充分接触,促进有机物质的分解和微生物的生长。
搅拌设备可采用机械搅拌或者气力搅拌,通气设备可采用曝气或者喷淋方式。
(4)pH调节:水解酸化池的pH值对微生物的生长和有机物质的分解同样具有重要影响。
普通来说,水解酸化池的pH值应控制在6-7之间,可通过添加碱性物质进行调节。
3. 操作注意事项(1)进水水质监测:定期监测进水水质的COD、BOD、SS等指标,以及pH 值和温度等参数。
根据监测结果调整水解酸化池的操作参数,确保处理效果符合要求。
(2)搅拌和通气控制:保证搅拌和通气设备的正常运行,定期清洗和维护设备,避免设备故障影响水解酸化池的正常运行。
(3)添加辅助剂:根据实际情况,可以适量添加辅助剂来促进水解酸化池的有机物质分解和微生物的生长,如添加微生物菌剂、营养物质等。
水解酸化池设计
(二)工业废水
印染废水 :水解-好氧-生物碳工艺 焦化废水 :水解和AO工艺 在啤酒废水和屠宰废水方面水解-好氧工艺相结合的工艺已是具有竞争力的一种 标准工艺。水解(酸化)工艺还应用于工业废水处理中,如印染、纺织、轻工、 酿酒、化工、焦化、造纸等行业的工业废水
安徽工程科技学院生化系
Anhui University of Science and Technology
需氧量的差别,理论上使得处理水解池出水可降低50%的氧耗量; 在相同停留时间下,水解池出水有机物去除比例可高于传统工艺; 可生物降解物质的降解所需的反应时间两者相差2.5倍,这说明采 用水解-好氧处理工艺可显著缩短曝气时间,从理论上讲,这个比 例可高达60%。
安徽工程科技学院生化系
Anhui University of Science and Technology
6、有利于好氧后处理
不同工艺处理北京高碑店城市污水实验结果对比
项 目 停留时间/h 气水比 回流比 污泥指数SVI 出水SS浓度/(mg/L) 出水COD浓度/(mg/L) 出水BOD浓度/(mg/L)
8 15:1 50 265 15.1 150 9.8
传统工艺曝气池运行
穿孔管曝气 6 14:1 50 239 86.7 162.0 29.5 中微孔曝气 4.5 4.9:1 60 231 11.6 148 12.0 91.6 8.8 8 6.2:1 60 259
Prevention & Treatment of Trade Wastewater
5、在低温条件下仍有较好的去除效果
水解反应器之所以在低温条件下仍有如此高的去除率,因为水解池属于升 流式污泥床反应器,这种反应器保持大量的水解活性污泥,污泥平均浓度达 到15g/L,由于生物量大,大量水解活性污泥形成的污泥层,在有机物通过时 将其吸附截留,这延长了污染物在池内的停留时间,从而保证了去除率。
污水处理水解酸化池
污水处理水解酸化池水解酸化池是污水处理系统中的重要组成部份,它起着调节污水pH值、降解有机物质和去除氨氮的作用。
本文将详细介绍水解酸化池的定义、工作原理、设计要求、操作注意事项以及常见问题解决方法。
一、定义水解酸化池是污水处理系统中的一种生物处理设备,主要通过酸化和水解反应将有机物质转化为可被生物降解的有机酸和氨氮。
二、工作原理水解酸化池通过控制进水流量和停留时间,使污水在池内停留一段时间,从而使有机物质与微生物接触并发生水解反应。
在水解反应中,有机物质被分解为有机酸和氨氮。
有机酸进一步被酸化反应降解为甲烷和二氧化碳,氨氮则通过硝化反应转化为硝态氮。
三、设计要求1. 尺寸设计:水解酸化池的尺寸应根据进水量、停留时间和有机负荷来确定,以确保池内有足够的停留时间进行水解反应。
2. 进水方式:进水应均匀分布在水解酸化池的进水口,以避免死水区域的形成。
3. 通气系统:水解酸化池应配备通气系统,以提供足够的氧气供给微生物进行有氧降解反应。
4. 搅拌设备:适当的搅拌设备可以提高水解酸化池内的混合效果,促进微生物与有机物质的接触。
四、操作注意事项1. 控制进水流量:进水流量应根据水解酸化池的设计要求进行控制,以确保池内有足够的停留时间进行水解反应。
2. pH值控制:水解酸化池中的pH值应控制在适宜的范围内,通常在6.5-7.5之间,以保证微生物的正常生长和有机物质的降解效果。
3. 温度控制:水解酸化池的温度应控制在适宜的范围内,通常在35-40摄氏度之间,以提供良好的微生物生长环境。
4. 搅拌控制:适当的搅拌可以提高水解酸化池内的混合效果,但过强的搅拌会导致微生物的剧烈波动,影响水解反应的进行。
五、常见问题解决方法1. 水解效果不佳:可能是由于进水量过大或者停留时间不足导致的,可以通过调整进水流量和停留时间来解决。
2. pH值波动较大:可能是由于进水pH值波动较大或者通气系统浮现问题导致的,可以通过稳定进水pH值和维修通气系统来解决。
水解酸化池
3。
3水解酸化池3。
3。
1设计说明印染废水中含有大量高分子有机物,较难直接被好氧微生物降解,而水解酸化可大大提高废水的可生化性。
在水解酸化阶段,通过缺氧降解,使水中大分子有机物分解为易生化的小分子有机物,从而提高废水的可生化性,保证后续生化处理效果.水解池中设计安装高速潜水推流器,以保证厌氧微生物和废水能充分接触,均匀水质.3。
3.2设计参数(1)容积负荷N V =3。
2kgCOD/(m 3·d);(2)配水孔流速v=0.2m/s ;(3)设计水量Q=10000m 3/d ;(4)进水COD 浓度1600mg/L ;(5)有效水深h 2=5m;(6)保护高度h 1=0.8m.3.3。
3设计计算1。
水解酸化池尺寸(1)总有效容积350003.2000016.1m N Q S V V =⨯=⨯= 式中:S ——进水COD 浓度,gCOD/L 。
(2)总表面积水解池高h 取5m ,则水解池表面积A 为:2100055000m h V A ===将水解池分为两大格,则每格体积312500250002m V V ===;每格表面积21150052500m h V A ===.所以每大格外形尺寸取为L×B×H=50m×10m×5m 。
2。
水力停留时间h Q V HRT 1224100005000=⨯== 3.填料设计池内填料采用由聚丙烯、聚乙烯制成半软性复合填料,它具有散热性能高,阻力小,布水、布气性能好,易长膜,又有切割气泡的特点.取填料层为2.5m 高,距进水边池壁1.6m ,则填料体积为:32420.5210.61502m V =⨯⨯-⨯=)(填料4。
污泥产生量水解酸化池的COD 去除率为30%,污泥的产生量按照每公斤COD 产生0。
2kg 干污泥进行计算,产生的污泥主要在二沉池及气浮池进行泥水分离。
(1)干污泥产生量d kg W /9602.010000%306.1=⨯⨯⨯=(2)湿污泥产生量湿污泥含水率以99%计,则湿污泥产生量:d t d kg W W /96/9600001.096099.011===-= 换算成污泥体积,即:d m V /953=污泥5。
水解酸化池
4.6水解酸化池4.6.1设计说明水解酸化就是将大分子有机物转化为小分子有机物,可以取代初沉池的作用,主要用于有机浓度高、SS 较高的污水处理工艺.水解是一个比较重要的工艺,可以在短的停留时间和相对高的水力负荷下获得高的悬浮物去除率,并可以改善和提高原污水的可生化性和溶解性,以利于好氧后处理工艺。
水解工艺并不是简单的,设计时要充分的考虑到污水中有机物的性质,确定水解的工艺设计,水力停留时间、搅拌方式、循环方式、污水回流方式、出水方式等。
4.6.2设计参数池深:应大于4~6m ;水力停留时间:5~8h ;污泥浓度:MLSS =10~20g/L ;溶解氧:≤0.2~0.3mg/L ;PH 值:5.5~6.5;水温:≧25℃效果较好;配水:由配水区进入反应区的配水孔流速v =0.20~0.23m/s ;v 不宜太小,以免不均,出水管孔最小直径不宜小于15mm,一般在15~25mm 之间。
水解酸化池的进出水质见:表4-4-14-4-1 水解酸化池进出水水质表4.6.3设计计算(1)水解池的池体尺寸①水解池容积 3max 11255225m HRT Q V =⨯==式中:V ——水解池容积,m 3;max Q ——设计流量,m 3/h ;HRT ——水力停留时间,h 。
②水解池高度水解池的经济高度(深度)一般在4~6m 之间,在大多数情况之下这也是最优的运行范围,故取水解池高度为H 1=4.5m 。
为了保证污水进入池内后能与活性污泥层快速均匀地混合,在池体下部专门设有多槽布水区,其高度为0.5m 。
池内实际有效高度为:H 2 =H 1+0.5=4.5+0.5=5.0m水解池实际总高度为:H =H 2+h=5.0+0.5=5.5m③水解池上升流速校核已知反应器高度为H 1=4.5m ,反应器的高度与上升流速之间的关系为:h m HRT H HRTA V A v Q /9.055.4max===== 水解池的上升流速在0.5~1.8m/h 内,符合设计要求。
水解酸化池的设计规范
水解酸化池的设计规范篇一:水解酸化池设计计算书免费的目录1水解酸化池设计计算 ................................................................. (1)1.1水解池的容积 ................................................................. (1)1.4.1堰长设计 ................................................................. .. (2)1.4.2出水堰的形式及尺寸 (2)1.4.3堰上水头h1 ................................................................. .. (3)1.4.4集水水槽宽B .................................................................. (3)1.4.5集水槽深度 ................................................................. . (3)1.4.6进水堰简略图 ................................................................. (4)11水解酸化池设计计算1.1水解池的容积水解池的容积VV?KZQHRT式中:V——水解池容积,m3;Kz——总变化系数,1.5;Q——设计流量,m3/h;HRT——水力停留时间,h,取6h;则V?1.5?5?6?45m3印染废水中水解池,分为4格,每格的长为2m,宽为2米,设备中有效水深高度为3m,则每格水解池容积为16m3,4格的水解池体积为48m3。
1.2水解池上升流速校核已知反应器高度为:H?4m;反应器的高度与上升流速之间的关系如下:??QVH?? AHRTAHRT式中: ?——上升流速(m/h);Q——设计流量,m/h;V3——水解池容积,m3;2A——反应器表面积,m;HRT——水力停留时间,h,取6h; 4?0.67(m/h) 6则??水解反应器的上升流速??0.5~1.8m/h,?符合设计要求。
污水处理水解酸化池
污水处理水解酸化池污水处理水解酸化池是污水处理系统中的一个重要环节,用于降低污水中的有机物浓度和酸碱度,以便后续处理工艺的顺利进行。
本文将详细介绍污水处理水解酸化池的标准格式。
一、引言污水处理水解酸化池是处理污水的关键步骤之一,其主要功能是将污水中的有机物质通过水解和酸化反应进行降解和转化,从而提高后续处理工艺的效果。
本文将介绍水解酸化池的设计要求、操作规程以及常见问题解决方法。
二、设计要求1. 污水处理水解酸化池的设计应满足处理规模和水质要求,根据进水水质、水量和处理效果要求确定池体尺寸和容积;2. 池体结构应具备良好的密封性和耐腐蚀性,以防止污水泄漏和池体损坏;3. 池体底部应设置搅拌装置,以促进有机物的均匀分布和水解反应的进行;4. 池体顶部应设置通风装置,以排除污水中的有害气体,并保持适宜的气体压力;5. 污水处理水解酸化池的进出水口应设置在适当的位置,以保证污水的顺畅流动和处理效果。
三、操作规程1. 污水处理水解酸化池的操作应由专业人员进行,确保操作规程的正确执行;2. 定期检查池体内部的污泥浓度和PH值,根据检测结果进行相应的调整和处理;3. 定期清理池体内部的沉积物和污泥,以保持池体的正常运行;4. 定期检查和维护搅拌装置、通风装置和进出水口,确保其正常工作;5. 根据实际情况,调整水解酸化池的进水量和进水质量,以保证处理效果。
四、常见问题解决方法1. 如果水解酸化池内的污泥浓度过高,可以增加搅拌装置的运行时间,促进污泥的分散和降解;2. 如果水解酸化池内的PH值过低,可以适量增加碱性物质的投加量,提高池体的酸碱度;3. 如果水解酸化池内出现异味或有害气体,可以加强通风装置的运行,及时排除有害气体;4. 如果水解酸化池内的进出水口堵塞或流量不稳定,可以进行清理和维护工作,确保水流的顺畅。
五、总结污水处理水解酸化池是污水处理系统中的重要环节,正确的设计和操作可以提高处理效果,降低污水的有机物浓度和酸碱度。
水解酸化池设计计算
水解酸化池的设计计算
(1)水解池的容积V
32.2*20.8*5229Z V K HRT m ===
式中 V ——水解池容积,3
m
Z K ——总变化系数, 2.2z K =
Q ——设计流量,3/m h ,33500/20.8/Q m d m h == HRT ——水力停留时间,取5HRT h =
乳品废水中设计的水解池,分为2格。
设每格池宽为3m ,水深为4m ,按长宽比2:1设计,则每组水解池池长为2*36m =,则每组水解池的容积为3
2*6*3*4144m =。
(2)水解池上升流速核算
反应器的高度为:4H m =,反应器的高度与上升流速之间的关系为:
40.8/5
Q V H V m h A HRTA HRT ===== 式中
v ——上升流速,/m h Q ——设计流量,3/m h
V ——水解池容积,3m
A ——反应器表面积,2m
HRT ——水力停留时间,取5HRT h =
水解反应器的上升流速0.5~0.8/v m h =,v 符合设计要求。
(3)配水方式
采用穿孔管布水器(分支式配水方式),配水支管出水口距池底200mm ,位于服务面积的中心,出水管孔径为20mm 。
(4)出水收集
出水采用钢板矩形堰。
(5)排泥系统设计
采用静压排泥装置,沿矩形池纵向多点排泥,排泥点设在污泥区中上部。
污泥排放采用定时排泥,每日1-2次,另外,由于反应器底部可能会积累颗粒物质和小砂砺,需在水解池底部设排泥管。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水解酸化池
1. 某污水厂总设计规模为20万m 3/d ,污水处理厂的进水水质如下表:
污水处理厂的进水水质1-1
污水能否进行生化处理,尤其是否适用于生物脱氮除磷工艺,取决于污水中各种营养成分的含量及其比例能否满足生物生长需要,因此必须分析相关的进水指标。
表1-2 污水厂污水营养物比值
BOD /COD
BOD i.
BOD 5 /COD cr 比值
污水BOD 5 /COD cr 值是判定污水可生化性的最简便易行和最常用的方法。
根据工程经验,一般认为BOD 5 /COD cr >0.45可生化性较好,BOD 5 /COD cr <0.3较难生化,BOD 5 /COD cr <0.25不易生化。
本项目BOD 5 /COD cr =0.28,可见其生化性较难。
ii.BOD5 /TN比值
BOD5 /TN比值是判别能否有效脱氮的重要指标。
理论方面,BOD5 /TN ≥2.86就能进行脱氮;工程经验方面,BOD5 /TN≥4.0才能有效脱氮。
本项目BOD5 /TN =3.11,可见其能进行脱氮。
iii.BOD5 /TP比值
进水中的BOD5是作为营养物供聚磷菌活动的基质,故BOD5/TP是衡量能否达到除磷的重要指标,在污水中BOD5 /TP之比为17及以上时,取得良好的除磷效果。
本项目BOD5 /TP =28,可见其能达到良好的除磷效果。
1.水解酸化池工艺的确定
针对本工程项目的特点需对预处理工艺有如下要求:
1)进水的COD高,BOD5/CODcr较低,污水的可生化性较难,选择工艺时
应进一步提高污水的可生化性,确保出水水质;
2)本工程将接入大量工业废水(占城市污水量的70%),同时大部分工业废
水为纺织印染废水,选择预处理工艺时,应综合考虑色度的去除;
3)预处理工艺应尽可能节省:基建投资、能耗和运行费用;
因此,通过本工程可研,在好氧生物反应池前增加水解酸化池预处理工艺,目的:a)改善进水水质,提高BOD5 /CODcr;b)印染废水中污染物绝大多数属于芳香烃化合物,利用厌氧菌可对该类化合物开环,达到较好的脱色目的;c) 采用水解-活性污泥法与传统的活性污泥相比,其基建投资、能耗和运行费用可分别节省30%左右。
2.水解酸化池设计
本工艺设计特点:
1)水解池取代了传统的初沉池,水解池对有机物的去除率远远高于传统的初沉池,更为重要的是经过水解处理,使污水更适宜后继的好氧处理;
2)为均匀混合,防止污泥沉淀,水解池设水下搅拌器;
3)采用多个闸门对进、出水方向进行控制,“多点进水,多点出水”,非常灵活;
4)该水解酸化池污泥产量很少,可忽略不计,污泥最大回流比:100%;
5)平面布局考虑以后可经过简单改造调整为生化池运行(其L×B×H尺寸与A2O 池相近);
3.设计存在问题
1)由于水解酸化池去除约9%TN,使BOD5 /TN=2.88比值减小,水解酸化池——预处理工艺是否影响生化反应池;。