八年级数学下册2.2.1平行四边形的性质第2课时平行四边形的对角线的性质试题(新版)湘教版.doc
湘教版八年级数学下册平行四边形的判定定理1,2同步练习题
2.2.2 平行四边形的判定第1课时平行四边形的判定定理1,2要点感知1一组对边平行且__________的四边形是平行四边形.预习练习1-1如果□ABCD和□ABEF有公共边AB,那么四边形DCEF是__________.要点感知2两组对边分别相等的四边形是__________四边形.预习练习2-1如图,在四边形ABCD中,AB=CD,BC=AD,若∠A=110°,则∠C=__________.知识点1 一组对边平行且相等的四边形是平行四边形1.如图,在四边形ABCD中,点E是BC边的中点,连接DE并延长,交AB的延长线于F点,AB=BF.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )A.AD=BCB.CD=BFC.∠A=∠CD.∠F=∠CDE第1题图第2题图第3题图2.如图,□ABCD中,点E、F分别为边AB、DC的中点,则图中共有平行四边形的个数是( )A.3B.4C.5D.63.如图,在四边形ABCD中,AB∥CD,要使得四边形ABCD是平行四边形,应添加的条件是__________(只填写一个条件,不使用图形以外的字母和线段).4.如图,已知四边形ABCD中,AB=CD,∠BAC=∠DCA,求证:四边形ABCD 是平行四边形.5.已知:如图,在四边形ABCD中,AB∥CD,对角线AC、BD相交于点O,BO=DO.求证:四边形ABCD是平行四边形.知识点2 两组对边分别相等的四边形是平行四边形6.四边形ABCD中,AB=CD,AD=BC,∠B=50°,则∠A=__________.7.如图,以△ABC的顶点A为圆心,以BC长为半径作弧,再以顶点C为圆心,以AB长为半径作弧,两弧交于点D,连接AD、CD.若∠B=65°,则∠ADC的大小为__________.8.已知四边形ABCD的四条边长满足(AB-CD)2+(AD-BC)2=0,求证:AB∥CD.9.点A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC∥AD;④BC=AD 这四个条件中任意选两个,能使四边形ABCD是平行四边形的有( )A.3种B.4种C.5种D.6种10.如图,□ABCD中,∠ABC=60°,点E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=3,则AB的长是__________.11.如图,已知BE∥DF,∠ADF=∠CBE,AF=CE.求证:四边形DEBF是平行四边形.12.如图,在□ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.13.如图,在平行四边形ABCD中,∠C=60°,M、N分别是AD、BC的中点,BC=2CD.(1)求证:四边形MNCD是平行四边形;(2)求证:BD=3MN.14.如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,点E是BC的中点.点P 以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.求当运动时间t为多少秒时,以点P、Q、E、D为顶点的四边形是平行四边形?参考答案要点感知1相等预习练习1-1平行四边形要点感知2平行预习练习2-1110°1.D2.B3.答案不唯一,如AB=CD或BC∥AD4.证明:∵∠BAC=∠DCA,∴AB∥CD.又∵AB=CD,∴四边形ABCD是平行四边形.5.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵BO=DO,∴△AOB≌△COD(AAS).∴AB=CD.∴四边形ABCD是平行四边形.6.130°7.65°8.证明:∵(AB-CD)2+(AD-BC)2=0,∴AB-CD=0,AD-BC=0.∴AB=CD,AD=BC.∴四边形ABCD是平行四边形.∴AB∥CD.9.B 10.111.证明:∵BE∥DF,∴∠AFD=∠CEB.又∵∠ADF=∠CBE,AF=CE,∴△ADF≌△CBE(AAS).∴DF=BE.又∵BE∥DF,∴四边形DEBF是平行四边形.12.证明:∵四边形ABCD是平行四边形,∴CD=AB,AD=CB,∠DAB=∠BCD.又∵△ADE和△CBF都是等边三角形,∴DE=BF,AE=CF,∠DAE=∠BCF=60°.∴∠BCD-∠BCF=∠DAB-∠DAE,即∠DCF=∠BAE.∴△DCF≌△BAE(SAS).∴DF=BE.∴四边形BEDF是平行四边形.13.证明:(1)∵ABCD是平行四边形,∴AD=BC,AD∥BC.∵M、N分别是AD、BC的中点,∴MD=NC,MD∥NC.∴MNCD是平行四边形;(2)连接ND,∵MNCD是平行四边形,∴MN=DC.∵N是BC的中点,∴BN=CN.∵BC=2CD ,∠C=60°, ∴△NCD 是等边三角形. ∴ND=NC ,∠DNC=60°. ∵∠DNC 是△BND 的外角, ∴∠NBD+∠NDB=∠DNC. ∵DN=NC=NB ,∴∠DBN=∠BDN=12∠DNC=30°.∴∠BDC=90°.∴BC=2DC ,BD=22BC CD -=()222CD CD -=3DC.又DC=MN ,∴BD=3MN.14.由题意可知,AP=t ,CQ=2t ,CE=12BC=8.∵AD ∥BC ,∴当PD =EQ 时,以点P 、Q 、E 、D 为顶点的四边形是平行四边形. 当2t <8即t <4时,点Q 在C 、E 之间,如图甲.此时,PD =AD-AP =6-t ,EQ =CE-CQ =8-2t ,由6-t =8-2t 得t =2. 当8<2t<16即4<t<8时,点Q 在B 、E 之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8得t=14 3.∴当运动时间为2或143时,以点P、Q、E、D为顶点的四边形是平行四边形.考点综合专题:一元二次方程与其他知识的综合◆类型一一元二次方程与三角形、四边形的综合1.(雅安中考)已知等腰三角形的腰和底的长分别是一元二次方程x2-4x+3=0的根,则该三角形的周长可以是()A.5 B.7 C.5或7 D.102.(广安中考)一个等腰三角形的两条边长分别是方程x2-7x+10=0的根,则该等腰三角形的周长是()A.12 B.9C.13 D.12或93.(罗田县期中)菱形ABCD的一条对角线长为6,边AB的长是方程x2-7x +12=0的一个根,则菱形ABCD的周长为()A.16 B.12 C.16或12 D.244.(烟台中考)等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10C.9或10 D.8或105.(齐齐哈尔中考)△ABC的两边长分别为2和3,第三边的长是方程x2-8x +15=0的根,则△ABC的周长是.6.(西宁中考)若矩形的长和宽是方程2x2-16x+m=0(0<m≤32)的两根,则矩形的周长为.【方法8】7.已知一直角三角形的两条直角边是关于x的一元二次方程x2+(2k-1)x +k2+3=0的两个不相等的实数根,如果此直角三角形的斜边是5,求它的两条直角边分别是多少.【易错4】◆类型二一元二次方程与函数的综合8.(泸州中考)若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()9.(安顺中考)若一元二次方程x2-2x-m=0无实数根,则一次函数y=(m +1)x+m-1的图象不经过()A.第四象限B.第三象限C .第二象限D .第一象限10.(葫芦岛中考)已知k 、b 是一元二次方程(2x +1)(3x -1)=0的两个根,且k >b ,则函数y =kx +b 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限11.(广元中考)从3,0,-1,-2,-3这五个数中抽取一个数,作为函数y =(5-m 2)x 和关于x 的一元二次方程(m +1)x 2+mx +1=0中m 的值.若恰好使函数的图象经过第一、三象限,且使方程有实数根,则满足条件的m 的值是 .12.(甘孜州中考)若函数y =-kx +2k +2与y =k x(k ≠0)的图象有两个不同的交点,则k 的取值范围是 . .◆类型三 一元二次方程与二次根式的综合13.(达州中考)方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m >52B .m ≤52且m ≠2 C .m ≥3 D .m ≤3且m ≠214.(包头中考)已知关于x 的一元二次方程x 2+k -1x -1=0有两个不相等的实数根,则k 的取值范围是 .考点综合专题:一元二次方程与其他知识的综合1.B 2.A 3.A 4.B 5.86.16 解析:设矩形的长和宽分别为x 、y ,根据题意得x +y =8,所以矩形的周长为2(x +y)=16.7.解:∵一元二次方程x 2+(2k -1)x +k 2+3=0有两个不相等的实数根,∴Δ>0,∴(2k -1)2-4(k 2+3)>0,即-4k -11>0,∴k<-114,令其两根分别为x 1,x 2,则有x 1+x 2=1-2k ,x 1·x 2=k 2+3,∵此方程的两个根分别是一直角三角形的两条直角边,且此直角三角形的斜边长为5,∴x 21+x 22=52,∴(x 1+x 2)2-2x 1·x 2=25,∴(1-2k)2-2(k 2+3)=25,∴k 2-2k -15=0,∴k 1=5,k 2=-3,∵k<-114,∴k =-3, ∴把k =-3代入原方程得到x 2-7x +12=0,解得x 1=3,x 2=4,∴直角三角形的两直角边分别为3和4.8.B9.D 解析:∵一元二次方程x 2-2x -m =0无实数根,∴Δ<0,∴Δ=4-4×1×(-m)=4+4m <0,∴m <-1,∴m +1<1-1,即m +1<0,m -1<-1-1,即m -1<-2,∴一次函数y =(m +1)x +m -1的图象不经过第一象限.故选D.10.B 11.-2 12.k>-12且k ≠0 13.B 14.k ≥1。
八年级数学下册平行四边形的性质练习题
八年级数学下册平行四边形的性质练习题(含答案解析)学校:___________姓名:___________班级:___________一、填空题1.在平行四边形ABCD 中,AB =3,BC =4,则平行四边形ABCD 的周长等于 _____.2.如图,等腰△ABC 中,△BAC =120°,点D 在边BC 上,等腰△ADE 绕点A 顺时针旋转30°后,点D 落在边AB 上,点E 落在边AC 上,若AE =2cm ,则四边形ABDE 的面积是__________.3.定义:一个三角形的一边长是另一边长的2倍,这样的三角形叫做“倍长三角形”.若等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为______.4.如图,已知DG △BC ,AC △BC ,CD △AB ,EF △AB ,则DG 与AC 间的距离是线段________的长,CD 与EF 间的距离是线段________的长.5.如图,平行四边形的中心在原点,AD BC ∥,D (3,2),C (1,﹣2),则A 点的坐标为________,B 点的坐标为________.6.如图,在平面直角坐标系中,点()1,2A -,4OC =,将平行四边形OABC 绕点O 旋转90°后,点B 的对应点B '坐标是______.7.如图,菱形ABCD 中,∠ABD=30°,AC=4,则BD的长为_______.8.如图,在直角坐标系中,平行四边形ABCD的BC边在x轴上,点A(0,3),B(−1,0),若直线y=−2x+4恰好平分平行四边形ABCD的面积,则点D的坐标是______.二、单选题9.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE中点,且△ABC的面积等于4cm2,则阴影部分图形面积等于().A.1cm2B.2cm2C.0.5cm2D.1.5cm210.已知三角形的三边长分别为2、x、8,则x的值可能是()A.4B.6C.9D.1011.已知A、B、C三点不在同一条直线上,则以这三点为顶点的平行四边形共有()A .1个B .2个C .3个D .4个12.已知某点阵的第△△△个图如图所示,按此规律第( )个点阵图中,点的个数为2022个.A .1009B .2018C .2022D .2048三、解答题13.如图,PBD △和PAC △都是直角三角形,90DBP CAP ∠=∠=︒.(1)如图1,PA ,PB 与直线MN 重合,若45BDP ∠=︒,30ACP ∠=︒,求DPC ∠的度数;(2)如图2,若45BDP ∠=︒,30ACP ∠=︒,PBD △保持不动,PAC △绕点P 逆时针旋转一周.在旋转过程中,当PC BD ∥时,求APN ∠的度数;(3)如图3,()90180BPA a α∠=︒<<︒,点E 、F 分别是线段BD 、AC 上一动点,当PEF 周长最小时,直接写出EPF ∠的度数(用含α的代数式表示).14.在四边形ABCD 中,BAD ∠的平分线AF 交BC 于F ,延长AB 到E 使BE FC =,G 是AF 的中点,GE 交BC 于O ,连接GD .(1)当四边形ABCD 是矩形时,如图,求证:△GE GD =;△BO GD GO FC ⋅=⋅.(2)当四边形ABCD 是平行四边形时,如图,(1)中的结论都成立,请给出结论△的证明.15.如图,已知,AF DE AE FD ==,点B 、C 在AD 上,AB CD =,BF CE =.(1)图中共有__________对全等三角形;分别是__________;(2)我会说明__________≌△__________.(写出证明过程)参考答案:1.14【分析】由平行四边形的对边相等即可求得其周长.【详解】解:△四边形ABCD是平行四边形,△AB=CD,BC=AD,△平行四边形的周长为=2(AB+BC)=2×(3+4)=14,故答案为:14.【点睛】本题考查平行四边形的性质,熟知平行四边形的对边相等是解答的关键.22.【分析】如图,作AH△BC于H.证明四边形ABDE是平行四边形即可解决问题.【详解】解:如图,作AH△BC于H.由题意得:△EAD=△BAC=120°,△EAC=△C=30°,△AE△BC,△△ADH=△B+△BAD,△B=△BAD=30°,△△ADH=60°,BD=AD=AE=2cm,△AHcm),△BD=AE,BD△AE,△四边形ABDE是平行四边形,△SABCD=BD•AH cm2).2.故答案为【点睛】本题考查旋转变换,等腰三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.3.6【分析】分类讨论:AB =AC =2BC 或BC =2AB =2AC ,然后根据三角形三边关系即可得出结果.【详解】解:△△ABC 是等腰三角形,底边BC =3△AB =AC当AB =AC =2BC 时,△ABC 是“倍长三角形”;当BC =2AB =2AC 时,AB +AC =BC ,根据三角形三边关系,此时A 、B 、C 不构成三角形,不符合题意; 所以当等腰△ABC 是“倍长三角形”,底边BC 的长为3,则腰AB 的长为6.故答案为6.【点睛】本题考查等腰三角形,三角形的三边关系,涉及分类讨论思想,结合三角形三边关系,灵活运用分类讨论思想是解题的关键.4. CG DE【分析】根据平行线间的距离等于平行线间任意一条垂线段的长度即可解题.【详解】解:由题可知:DG△AC,CD△EF,△DG 与AC 间的距离是线段CG ,CD 与EF 间的距离是线段DE.【点睛】本题考查了平行线之间的距离,属于简单题,找到平行线之间的垂线段是解题关键.5. (﹣1,2) (﹣3,﹣2)【分析】根据“关于原点对称的点横坐标互为相反数,纵坐标也互为相反数”即可解答.【详解】解:因为平行四边形是中心对称图形,而平行四边形的中心在原点,则A 点的坐标为(﹣1,2),B 点的坐标为(﹣3,﹣2).故答案为:(﹣1,2),(﹣3,﹣2).【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握关于原点对称的点横坐标互为相反数,纵坐标也互为相反数是解题的关键.6.()2,3-或()2,3-【分析】根据旋转可得: BM = B 1M 1 = B 2M 2 = 3,△AOA 1 =△AOA 2 = 90°,可得B 1和B 2的坐标,即是B '的坐标.【详解】解:△A (-1,2), OC = 4,△ C (4,0),B (3,2),M (0,2), BM = 3,AB//x轴,BM= 3.将平行四边形OABC绕点O分别顺时针、逆时针旋转90°后,由旋转得:OM=OM1=OM2=2,△AOA1=△AOA2=90°BM=B1M1=B2M2=3,A1B1△x轴,A2B2△x轴,△B1和B2的坐标分别为:(-2,3),(2,-3),△B'即是图中的B1和B2,坐标就是,B' (-2,3),(2,-3),故答案为:(-2,3)或(2,-3).【点睛】本题考查了平行四边形的性质,坐标与图形的性质,旋转的性质,正确的识别图形是解题的关键.7.【分析】根据菱形的性质可得△ABO=30°,AO=12AC=2,根据含30°角的直角三角形的性质及勾股定理即可求得BO的长,从而得到结果.【详解】如图:在菱形ABCD中,AC、BD是对角线,设相交于O点,△ABD=30°,AC=4,△AC△BD,AO=12AC=2,△AB=2AO=4,△BO,22BD BO∴==⨯=故答案为:【点睛】本题考查的是菱形的性质,解答本题的关键是熟练掌握菱形的对角线互相垂直平分,对角线平分对角.8.(72,3)【分析】连接BD,设D(m,3),BD的中点为T.求出点T的坐标,利用的待定系数法,可得结论.【详解】解:连接BD,设D(m,3),BD的中点为T.△B(−1,0),△T(12m-,32),△直线y=−2x+4平分平行四边形ABCD的面积,△直线y=−2x+4经过点T,△32=−2×12m-+4,△m=72,△D(72,3),故答案为:(72,3).【点睛】本题考查中心对称,平行四边形的性质,一次函数的性质等知识,解题关键是理解题意,灵活运用所学知识解决问题.9.A【分析】根据三角形中线的性质可得S△EBC=12S△ABC,1124BEF BEC ABCS S S==,结合已知条件即可求解.【详解】解:△点D ,E 分别为边BC , AD 中点, 111,,222ABD ABC BED ABD CED ABD SS S S S S ∴===, 12BED DEC BEC ABC S S S S ∴+==,△F 是EC 的中点, 12BEF BEC S S =, 14BEF ABCS S ∴=, △ABC 的面积等于4cm 2,△S △BEF =1cm 2,即阴影部分的面积为1cm 2,故选:A .【点睛】本题主要考查了三角形的中线的性质,掌握三角形的中线的性质是解题的关键.10.C【分析】根据三角形任意两边的和大于第三边,进而得出答案.【详解】解:三角形三边长分别为2,8,x ,8282x ∴-<<+,即:610x <<,只有9符合,故选:C .【点睛】此题主要考查了三角形三边关系,解题的关键是正确把握三角形三边关系定理.11.C【详解】分析:由已知条件可知,顺次连接A 、B 、C 三点可得△ABC ,在分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图,由此即可得到本题答案了.详解:△点A 、B 、C 不在同一条直线上时,△顺次连接A 、B 、C 三点可得△ABC ,△分别以AB 、BC 和AC 为对角线各作出一个以点A 、B 、C 为顶点的平行四边形,如下图所示:△当A 、B 、C 三点不在同一条直线上,则以这三点为顶点的平行四边形共有3个.故选C.点睛:知道以三角形的每一条边为一条对角线都可以画出一个以该三角形的三个顶点为顶点的平行四边形,是解答本题的关键.12.A【分析】仔细观察图形变化,找到图形变化的规律,利用规律求解.【详解】解:第1个图里有6个点,6=4+2;第2个图有8个点,8=4+2×2;第3个有10个点,10=4+3×2;…则第n 个图中点的个数为4+2n ,令4+2n =2022, 解得n =1009.故选:A .【点睛】本题主要考查图形的变化规律,解题的关键是根据图形得出每往后一个图形,点的个数相应增加2个.13.(1)75DPC ∠=︒(2)30APN ∠=︒或150︒(3)2180α-︒【分析】(1)先算出9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,然后根据平角的定义,求出75DPC ∠=︒即可;(2)分点C 在MN 上方和点C 在MN 下方两种情况进行讨论,根据平行线的性质,求出结果即可;(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,根据三角形外角的性质和垂直平分线的性质,求出EPF ∠的度数即可.(1)解:△90DBP CAP ∠=∠=︒,45BDP ∠=︒,30ACP ∠=︒,△9045DPB BDP ∠=︒-∠=︒,9060CPA ACP ∠=︒-∠=︒,△PA ,PB 与直线MN 重合,△18075DPC DPB CPA ∠=︒-∠-∠=︒.(2)当点C 在MN 上方时,如图所示:PC BD ∥,45BDP ∠=︒,△45CDP BDP ∠=∠=︒,△45DPB ∠=︒,60CPA ∠=︒,△18030APN BPD CPD CPA ∠=︒-∠-∠-∠=︒;当点C 在MN 下方时,如图所示:△PC BD ∥,90DBP ∠=︒,△90BPC DBP ∠=∠=︒,18090CPN BPC ∴∠=︒-∠=︒,△6090150APN APC CPN ∠=∠+∠=︒+︒=︒;综上分析可知,30APN ∠=︒或150︒.(3)延长PB 截取BG =PB ,在MN 上截取AH =AP ,连接GH ,交BD 于点E ,交AC 于点F ,连接PE 、PF ,此时△PEF 的周长最小,如图所示:△90DBP CAP ∠=∠=︒,△DB GP ⊥,CA PH ⊥,△DB 垂直平分PG ,CA 垂直平分PH ,△EG =EP ,FP =FH ,△EGP EPG ∠=∠,PHF HPF ∠=∠,△△MPG 是△PGH 的外角,△MPG EGP PHF EPG FPH ∠=∠+∠=∠+∠,180MPG α∠=︒-,△180EPG FPH MPG α∠+∠=∠=︒-,△()EPF APB EPG FPH ∠=∠-∠+∠()180αα=-︒-2180α=-︒【点睛】本题主要考查了平行线的性质,垂直平分线的性质,等腰三角形的性质,直角三角形两锐角互余,根据题意作出图形,并进行分类讨论,是解题的关键.14.(1)证明见详解(2)证明见详解【分析】(1)△证明ADG AEG ≌△即可;△连接BG ,CG ,证明ADG BCG ≌△,BOE GOC ∽△△即可证明;(2)△的结论和(1)中证明一样,证明ADG AEG ≌△即可;△的结论,作DM BC GM ⊥,连接,证明BOE GOM ∽△△即可.(1)证明:△证明过程:四边形ABCD 为矩形,90ABC BAD ∴∠=∠=︒AF 平分BAD ∠45BAF DAF ∴∠=∠=︒ABF ∴为等腰直角三角形AB BF ∴=BE FC =AB BE BF CF AE BC AD ∴+=+==,即AG AG =∴ADG AEG ≌△∴GE GD =△证明:连接BG ,CG ,G 为AF 的中点,四边形ABCD 为矩形,90ABC BAD AD BC ∴∠=∠=︒=,BG AG FG ∴==AF 平分BAD ABF ∠,为等腰直角三角形,45BAF DAF ABG CBG ∴∠=∠=︒=∠=∠∴ADG BCG ≌△∴ADG BCG ∠=∠ADG AEG ≌△E ADG ∴∠=∠E BCG ∴∠=∠BOE GOC ∠=∠BOE GOC ∴∽△△BO GO GO BOBE GC GD CF ∴===∴BO GD GO FC ⋅=⋅(2)作DM BC BC M GM GN DM DM N ⊥⊥交于,连接,作交于点,如图所示90DMB GNM GND DMC ∴∠=︒=∠=∠=∠由(1)同理可证:ADG AEG ≌△E ADG ∴∠=∠四边形ABCD 为平行四边形AD BC ∴∥90ADM DMC ∴∠=∠=︒BC GN AD ∴∥∥G 为AF 的中点,由平行线分线段成比例可得DN MN =DG MG ∴=,,GDM GMDADG BMG EBOE GOM ∠=∠BOE GOM ∴∽△△BO GO GO BO BE GM GD CF∴=== ∴BO GD GO FC ⋅=⋅【点睛】本题考查了以矩形与平行四边形为桥梁,涉及全等三角形的证明,相似三角形的证明,正确作出辅助线并由此得到相应的全等三角形和相似三角形是解题的关键.15.(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)AED DFA ≌,证明见解析.【分析】根据已知条件,结合三角形全等的判定定理,推理即可得到正确答案.【详解】解:(1)3对;,,AED DFA AEC DFB AFB DEC ≌≌≌;(2)我会说明AED DFA ≌.证明:在AED 和DFA 中,△,,,DE AF DA AD AE DF =⎧⎪=⎨⎪=⎩△()AED DFA SSS ≌.【点睛】本题考查三角形全等的判定定理,根据定理内容找到全等条件是解题关键.。
人教版八年级下册数学平行四边形第2课时平行四边形的对角线性质 同步练习
18.1 平行四边形第2课时平行四边形的对角线性质基础训练知识点1 平行四边形的性质——对角线互相平分1.如图,▱ABCD的对角线AC,BD相交于点O,则下列说法一定正确的是( )A.AO=ODB.AO⊥ODC.AO=OCD.AO⊥AB2.如图,在平行四边形ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.2 cm<OA<5 cmB.2 cm<OA<8 cmC.1 cm<OA<4 cmD.3 cm<OA<8 cm3.(2016·丽水)如图,▱ABCD的对角线AC,BD交于点O,已知AD=8,BD=12,AC=6,则△OBC的周长为( )A.13B.17C.20D.264.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是( )A.8B.9C.10D.115.如图,在▱ABCD中,对角线AC与BD交于点O,AE⊥BD于E,CF⊥BD于F,则图中全等的三角形共有( )A.7对B.6对C.5对D.4对6.如图,▱ABCD的对角线AC与BD相交于O,OE⊥BD于O交BC于E,连接DE,若△CED的周长是21 cm,则▱ABCD的周长是.知识点2 平行四边形的面积7.将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积.则这样的折纸方法共有( )A.1种B.2种C.4种D.无数种8.如图,在平行四边形ABCD中,点A1,A2,A3,A4和C1,C2,C3,C4分别是AB和CD的五等分点,点B1,B2和D1,D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则平行四边形ABCD的面积为( )A.2B.错误!未找到引用源。
C.错误!未找到引用源。
D.159.如图,过▱ABCD的对角线BD上一点M分别作平行四边形两边的平行线EF与GH,那么图中的▱AEMG的面积S1与▱HCFM的面积S2的大小关系是( )A.S1>S2B.S1<S2C.S1=S2D.2S1=S210.如图,在平行四边形ABCD中,AC,BD为对角线,BC=6,BC边上的高为4,则图中阴影部分的面积为( )A.3B.6C.12D.24易错点容易把未知条件当作已知条件使用11.如图,在平行四边形ABCD中,AC和BD相交于点O,OE⊥AD于点E,OF⊥BC于点F.试说明:OE=OF.提升训练考查角度1 利用平行四边形的对角线性质证明线段相等(构造法)12.如图,已知▱ABCD和▱EBFD的顶点A,E,F,C在一条直线上,求证:AE=CF.考察角度2 利用平行四边形对角线性质解坐标问题13.如图,已知点A(-4,2),B(-1,-2),▱ABCD的对角线交于坐标原点O.(1)请直接写出点C,D的坐标;(2)写出从线段AB到线段DC的变换过程;(3)直接写出▱ABCD的面积.探究培优拔尖角度1 利用平行四边形平行性质求面积14.(2016·永州)如图,四边形ABCD为平行四边形,∠BAD的平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求▱ABCD的面积.拔尖角度2 利用平行四边形对角线性质探究面积15.探究:如图①,▱ABCD中,AC,BD交于点O,过点O的直线交AD于E,交BC于F.(1)求证:四边形AEFB与四边形DEFC的周长相等.(2)直线EF是否将▱ABCD的面积分成二等份?试说明理由.应用:张大爷家有一块平行四边形的菜园,园中有一口水井P,如图②所示,张大爷计划把菜园平均分成两块分别种植西红柿和茄子,且使两块地共用这口水井,请你帮助张大爷把地分开.参考答案1.【答案】C2.【答案】C3.【答案】B4.【答案】C解:在▱ABCD中,OA=OC,OB=OD,所以AO=错误!未找到引用源。
八年级数学下册平行四边形的判定练习题
BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。
求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。
求证:EG 和HF 互相平分。
练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。
平行四边形的性质(精讲)2021-2022学年八年级数学下学期重要考点精讲精练(人教版)(解析版)
18.1平行四边形的性质(解析版)平行四边形的定义平行四边形的定义:两组对边分别平行的四边形叫做平行四边形. 平行四边形ABCD记作“ABCD”,读作“平行四边形ABCD”.注意:平行四边形的基本元素:边、角、对角线.相邻的两边为邻边,有四对;相对的边为对边,有两对;相邻的两角为邻角,有四对;相对的角为对角,有两对;对角线有两条.题型1:平行四边形的定义1.如图,在▱ABCD中,若EF∥AD,OH∥CD,EF与GH相交于点O,则图中的平行四边形一共有()A.4个B.5个C.8个D.9个【分析】根据平行四边形的判定和性质定理即可得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∵AD∥EF,CD∥GH,【变式1-1】如图,点D、E、F分别是AB、BC、CA的中点,则图中平行四边形一共有()A.1个B.2个C.3个D.4个【分析】根据三角形的中位线定理得出EF∥AB,DF∥BC,DE∥AC,根据有两组对边分别平行的四边形是平行四边形推出即可.【解答】解:有3个平行四边形,有平行四边形ADEF,平行四边形CFDE,平行四边形BEFD,理由是:∵D、E、F分别是△ABC的边AB、BC、CA的中点,∴EF∥AB,DF∥BC,∴四边形BEFD是平行四边形,同理四边形ADEF是平行四边形,四边形CFDE是平行四边形,∴图中平行四边形一共有3个,故选:C综上所述,可以作0个或3个平行四边形.故答案为:0个或3个.平行四边形的性质(1)1.边的性质:平行四边形两组对边平行且相等;2.角的性质:平行四边形邻角互补,对角相等;注意:①平行四边形的性质中边的性质可以证明两边平行或两边相等;角的性质可以证明两角相等或两角互补;题型2:平行四边形的性质与角度计算2如图所示,四边形ABCD是平行四边形,点E在线段BC的延长线上,若∠DCE=128°,则∠A=()A.32°B.42°C.52°D.62°【分析】根据平行四边形的外角的度数求得其相邻的内角的度数,然后求得其对角的度数即可.【解答】解:∵∠DCE=128°,∴∠DCB=180°﹣∠DCE=180°﹣128°=52°,∵四边形ABCD是平行四边形,∴∠A=∠DCB=52°,故选:C【变式2-1】如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠EAD=50°,则∠BCE的度数为()A.50°B.45°C.40°D.35°【分析】由平行四边形的性质得出∠B=∠EAD=50°,由角的互余关系得出∠BCE=90°﹣∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠B=∠EAD=50°,∵CE⊥AB,∴∠BCE=90°﹣∠B=40°;故选:C【变式2-2】如图,平行四边形ABCD中,BD为对角线,∠C=60°,BE平分∠ABC交DC于点E,连接AE,若∠EAB=38°,则∠DBE为22度.【分析】根据平行四边形的性质和全等三角形的判定和性质解答即可.【解答】解:∵平行四边形ABCD中,∠C=60°,∴AD=BC,∠ADE=∠ABC=120°,∠BAD=60°,∵∠EAB=38°,∴∠EAD=∠BAD﹣∠EAB=22°,∵BE平分∠ABC,∴∠CBE=60°,∴△BCE是等边三角形,∴BE=BC,∠BEC=60°,∴BE=AD,∠BED=120°=∠ADE,在△BDE与△AED中,,∴△BDE≌△AED(SAS),∴∠DBE=∠EAD=22°,故答案为:22题型3:平行四边形的性质与求线段3.如图,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=2,则AB的长为()A.B.2C.2D.2【分析】利用平行四边形的对边相等且互相平行,进而得出AE=DE=AB即可得出答案.【解答】解:∵CE平分∠BCD交AD边于点E,∴∠ECD=∠ECB,在平行四边形ABCD中,AD∥BC,AB=CD,∴∠DEC=∠ECB,∴∠DEC=∠DCE,∴DE=DC,∵AD=2AB,∴AD=2CD,∴AE=DE=AB=2.故选:C【变式3-1】如图,在▱ABCD中,DE平分∠ADC,AD=8,BE=3,则CD=()A.4B.5C.6D.7【分析】首先由在▱ABCD中,AD=8,BE=3,求得CE的长,然后由DE平分∠ADC,证得△CED 是等腰三角形,继而求得CD的长.【解答】解:在▱ABCD中,AD=8,∴BC=AD=8,AD∥BC,∴CE=BC﹣BE=8﹣3=5,∠ADE=∠CED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠CED,∴CD=CE=5,故选:B【变式3-2】如图,在▱ABCD中,∠BCD的平分线交BA的延长线于点E,AE=2,AD=5,则CD的长为()A.4B.3C.2D.1.5【分析】根据平行四边形的性质可得AB∥CD,AD=BC=5,由CE平分∠BCD得∠DCE=∠BCE,由平行线的性质得∠DCE=∠E,运用等量代换得∠E=∠BCE,从而得到△BCE为等腰三角形,计算出BE的长度,由AE=2可求得AB的长度,继而得到CD的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD=BC=5,CD=AB,∴∠E=∠ECD,∵CE平分∠BCD,∴∠BCE=∠ECD,∴∠E=∠BCE,∴BE=BC=5,∴AB=BE﹣AE=5﹣2=3,∴CD=3.故选:B平行四边形的性质(2)1.对角线性质:平行四边形的对角线互相平分;2.平行四边形是中心对称图形,对角线的交点为对称中心.注意:(1)对角线的性质可以证明线段的相等关系或倍半关系.(2)利用对角线互相平分可解决对角线或边的取值范围的问题,在解答时应联系三角形三边的不等关系来解决.(3)对角线性质的拓展∶①两条对角线将平行四边形分为面积相等的四个三角形;②过平行四边形的对角线交点作直线与平行四边形的一组对边或对边的延长线相交,得到线段总相等;③过对角线交点的任一条直线都将平行四边形分成面积相等的两部分.且与对角线围成的三角形相对的两个全等.题型4:平行四边形的性质与求周长4.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,若△BCO的周长为14,则AD的长为()A.12B.9C.8D.6【分析】由平行四边形的性质可得AO=CO=AC,BO=DO=BD,由△BCO的周长为14,可求BC=AD=6.【解答】解:∵四边形ABCD是平行四边形,∴AO=CO=AC,BO=DO=BD,∵AC+BD=16,∴BO+CO=8,∵△BCO的周长为14,【变式4-1】在▱ABCD中,若∠B=60°,AB=16,AC=14,则▱ABCD的周长是52或44.【分析】过点A作AE⊥BC于E,利用勾股定理得出BE,AE,EC,进而根据平行四边形的性质解答即可.【解答】解:①当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,∵∠B=60°,AB=16,∴BE=8,AE=8,由勾股定理得,EC=,∴BC=BE+EC=8+2=10,∴▱ABCD的周长=2(AB+BC)=2×(10+16)=52,②当△ABC是锐角三角形时,如图所示,过点A作AE⊥BC于E,由①可知,BE=8,EC=2,∴BC=BE﹣EC=6,∴▱ABCD的周长=2(AB+BC)=2×(16+6)=44,故答案为:52或44(2)若CD=7,AD=5,OE=2,求四边形AEFD的周长.【分析】(1)根据平行四边形的性质得出AD∥BC,OA=OC,求出∠EAO=∠FCO,根据ASA推出△AEO≌△CFO,从而结论;(2)由△AOE≌△COF(ASA),可得EF=2OE=4,DF+AF=AB=6,继而求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DC,OA=OC,∴∠EAO=∠FCO,在△AEO和△CFO中,,∴△AEO≌△CFO(ASA),∴OE=OF;(2)解:∵△OAE≌△OCF,∴CF=AE,∴DF+AE=AB=CD=7,又∵EF=2OE=4,∴四边形AEFD的周长=AD+DF+AE+EF=7+4+5=16题型5:平行四边形的性质与面积5.如图,在▱ABCD中,BC=13,过点A作AE⊥DC于E,AE=12,CE=10.(1)求AB的长;(2)求▱ABCD的面积.【分析】(1)根据平行四边形的性质和勾股定理得出DE,进而解答即可;(2)根据平行四边形的面积公式解答即可.【解答】解:(1)在▱ABCD中,AB=CD,AD=BC=13,在Rt△ADE中,,=.∴CD=DE+CE=5+10=15.∴AB=15;(2)S▱ABCD=CD×AE=15×12=180【变式5-1】如图,在▱ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF、AC.(1)求证:△ABE≌△FCE;(2)若AD=AF,AB=3,BC=5,求四边形ABFC的面积.【分析】(1)由平行四边形的性质得到AB∥DF,从而证得∠ABC=∠BCF,利用ASA可证明结论;(2)由△ABE≌△FCE得到AE=FE,利用对角线相等可证得四边形ABFC为平行四边形,得到AB =FC=CD,利用等腰三角形三线合一证得AC⊥DF,从而得到四边形ABFC是矩形,再利用勾股定理求出AC的长度,即可求出四边形ABFC的面积.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABC=∠BCF,∵E为BC中点,∴BE=CE,在△ABE和△FCE中,,∴△ABE≌△FCE.(2)解:∵△ABE≌△FCE,∴AE=FE,∵BE=FC,∴四边形ABFC是平行四边形,∴AB=CF=CD,∵AD=AF,∴AC⊥FD,∴四边形ABFC是矩形,∴∠BAC=90°,∵AB=3,BC=5,根据勾股定理得AC===4,∴矩形ABFC的面积为AB•AC=3×4=12【变式5-2】如图,▱ABCD中,∠B=60°,AB=4,BC=5,P是对角线AC上任一点(点P不与点A、C重合),且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积为()A.5B.5C.10D.10【分析】利用▱的性质及判定定理可判断四边形AEPF为▱,EF、AP为▱AEPF的对角线,设交点为O,则EF、AP相互平分,从而证得△POF≌△AOE,则阴影部分的面积等于△ABC的面积.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC∵PE∥BC,∴PE∥AD∵PF∥CD,∴PF∥AB,∴四边形AEPF为▱.设▱AEPF的对角线AP、EF相交于O,则AO=PO,EO=FO,∠AOE=∠POF∴△POF≌△AOE(SAS),∴图中阴影部分的面积等于△ABC的面积,过A作AM⊥BC交BC于M,∵∠B=60°,AB=4,∴AM=2,S△ABC=×5×2=5,即阴影部分的面积等于5.故选:B题型6:平行四边形的性质与三边关系6.如图,平行四边形ABCD和平行四边形EAFC的顶点D、E、F、B在同一条直线上,则下列关系正确的是()A.DE>BF B.DE=BF C.DE<BF D.DE=FE=BF【分析】本题要求的是DE与BF之间的关系,它们分别是在△ECD与△F AB中的两边,只要证明两个三角形全等即可.【解答】解:∵在平行四边形ABCD中,AB=CD,AB∥CD∴∠CDE=∠ABF∵在平行四边形EAFC中,EC∥AF∴∠AFE=∠CEF∴∠AFB=∠CED∴△ECD≌△F AB(AAS)所以DE=BF.故选:B【变式6-1】如图,AB=CD=DE,CE是由AB平移所得,则AC+BD与AB的大小关系是()A.AC+BD<AB B.AC+BD=AB C.AC+BD>AB D.无法确定【分析】由平移的性质可得AB∥CE,AB=CE,可证四边形ABEC是平行四边形,可得AC=BE,AB =CE,由三角形的三边关系可求解.【解答】解:∵CE是由AB平移所得∴AB∥CE,AB=CE∴四边形ABEC是平行四边形∴AC=BE,AB=CE,∴AB=CD=DE=CE,在△DBE中,DB+BE>DE,∴DB+AC>AB,故选:C【变式6-2】已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.猜测DE和BF的位置关系和数量关系,并加以证明.【分析】由平行四边形的性质可得AD=BC,AD∥BC,由“SAS”可证△ADE≌△CBF,即可得结论.【解答】解:DE∥BF DE=BF理由如下:∵四边形ABCD是平行四边形∴AD=BC,AD∥BC∴∠DAC=∠ACB,且AE=CF,AD=BC∴△ADE≌△CBF(SAS)∴DE=BF,∠AED=∠BFC∴∠DEC=∠AFB∴DE∥BF题型7:平行四边形的性质与角平分线7.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.连接BE,若BE⊥AF,EF=2,,则AB的长为()A.B.C.D.4【分析】由平行四边形的性质和角平分线的性质可证AB=BF,在Rt△BEF中,由勾股定理可求BF,即可求解.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠F,∵AE平分∠BAD,∴∠DAE=∠BAE,∴∠F=∠BAE,∴AB=BF,∵BE⊥AF,EF=2,,∴BF===4,【变式7-1】如图,在▱ABCD中,AB=5,BC=8,∠ABC和∠BCD的角平分线分别交AD于点E、F,若BE=6,则CF=8.【分析】过点A作AM∥FC,交BE与点O,由平行线的性质和角平分线的性质可证∠BHC=90°,由平行线的性质可求∠AOE=∠BHC=90°,由平行线的性质和角平分线的性质可证AE=AB=5,由勾股定理可求AO的长,由“ASA”可证△ABO≌△MBO,可得AO=OM=4,通过证明四边形AMCF 是平行四边形,可得CF=AM=8.【解答】解:如图,设BE与FC的交点为H,过点A作AM∥FC,交BE与点O,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠ABC+∠DCB+180°,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠EBC,∠BCF=∠DCF,∴∠CBE+∠BCF=90°,∴∠BHC=90°,∵AM∥CF,∴∠AOE=∠BHC=90°,∵AD∥BC,∴∠AEB=∠EBC=∠ABE,∴AB=AE=5,又∵∠AOE=90°,∴BO=OE=3,∴AO===4,在△ABO和△MBO中,,∴△ABO≌△MBO(ASA),∴AO=OM=4,∴AM=8,∵AD∥BC,AM∥CF,∴四边形AMCF是平行四边形,∴CF=AM=8,故答案为:8【变式7-2】如图,在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.求证:CD=BE.【分析】直接利用平行四边形的性质结合角平分线的定义、等腰三角形的性质得出AB=BE,进而得出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,∴∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,题型8:平行四边形的性质与垂直平分线8.在平行四边形ABCD中,对角线AC的垂直平分线交AD于点E,连接CE.若平行四边形ABCD的周长为30cm,则△CDE的周长为()A.20cm B.40cm C.15cm D.10cm【分析】根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=15cm,继而可得△CDE的周长等于AD+CD.【解答】解:如图,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∵平行四边形ABCD的周长为30cm,∴AD+CD=15(cm),∵OE⊥AC,∴AE=CE,∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=15(cm).故选:C【变式8-1】如图,在▱ABCD中,D在AB的垂直平分线上,且▱ABCD的周长为42cm,△BCD的周长比▱ABCD的周长少12cm,则AB=12cm,S▱ABCD=36cm2.【分析】根据垂直平分线的性质可知,AD=DB,由于△ABD的周长比▱ABCD的周长少10cm,所以可求出BD=9cm,再根据周长的值求出AB,根据勾股定理求出高DE,即可求出答案.【解答】解:∵AB的垂直平分线EF经过点D,∴DA=DB,∵四边形ABCD是平行四边形,∴DA=CB,∵△ABD的周长比▱ABCD的周长少10cm∴BD=9cm,∴ADBC=BD=9cm,∵▱ABCD的周长为42cm,∴AB=DC=×42cm﹣9cm=12cm,在△ADB中,AD=BD=9cm,AB=12cm,∵DE垂直平分AB,∴∠AED=90°,AE=BE=6cm,由勾股定理得:DE==3(cm),∴S平行四边形ABCD=AB×DE=12cm×3cm=36cm2,故答案为:12,36.【变式8-2】如图,在平行四边形ABCD中,AC的垂直平分线分别交CD,AB于点F和E,AB=4,BC =,AC=3,求EF的长.【分析】过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.构建直角△AHC、直角△BCH,相似三角形△ACH∽△AGC,以及平行四边形EFCG.利用勾股定理和相似三角形的对应边成比例可以求得CG的长度,则平行四边形EFCG的对边相等:EF=CG.【解答】解:如图,过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H.由勾股定理得到:CH2=AC2﹣(AB+BH)2=BC2﹣BH2,∵AB=4,BC=,AC=3 ,∴(3 )2﹣(4+BH)2=()2﹣BH2,解得∴BH=1.∴AH=AB+BH=4+1=5.∴CH==.∵CG∥FE、AC⊥FE,∴CG⊥AC.∵∠CAH=∠GAC,∠AHC=∠ACG=90°,∴△ACH∽△AGC,∴CH:CG=AH:AC,∴CG==.∵四边形ABCD平行四边形,∴FC∥EG.又CG∥FE,∴四边形EFCG是平行四边形,∴EF=CG=.题型9:平行四边形的性质与最值9.如图,在四边形ABCD中,DC∥AB,AD⊥AB,DC=2,AD=4,AB=6,点M是线段AD上任意一点,连接MC并延长到点E,使MC=CE,以MB和ME为边作平行四边形MBNE,请直接写出线段MN长度的最小值.【分析】作辅助线,构建相似三角形,先根据平行线分线段成比例定理得:=,G是BC上一定点,得出当MN⊥AD时,MN的长最小,计算AH的长就是MN的最小值.【解答】解:当MN⊥AD时,MN的长最小,∴MN∥DC∥AB,∴∠DCM=∠CAN=∠MNB=∠NBH,设MN与BC相交于点G,∵ME∥BN,MC=CE,∴=,∴G是BC上一定点,作NH⊥AB,交AB的延长线于H,∵∠D=∠H=90°,∴Rt△MDC∽Rt△NHB,即=,∴BH=2DC=4,∴AH=AB+BH=6+4=10,∴当MN⊥AD时,MN的长最小,即为10;则线段MN长度的最小值为10.【变式9-1】如图,在Rt△ABC中,∠B=90°,AB=4,BC>AB,点D在BC上,以AC为对角线的所有平行四边形ADCE中,求DE的最小值.【分析】由平行四边形的对角线互相平分、垂线段最短知,当OD⊥BC时,DE线段取最小值.【解答】解:∵在Rt△ABC中,∠B=90°,∴BC⊥AB,∵四边形ADCE是平行四边形,∴OD=OE,OA=OC,∴当OD取最小值时,DE线段最短,此时OD⊥BC,∴OD是△ABC的中位线,∴OD=AB=2,∴ED=2OD=4;则DE的最小值是4.【变式9-2】在平面直角坐标系中,已知平行四边形ABCD的点A(0,﹣1)、点B(m,m+1)(m≠﹣1),点C(4,1),则对角线BD的最小值是()A.3B.2C.5D.6【分析】先根据B(m,m+1),可知B在直线y=x+1上,设AC,BD的交点为M,则M(2,0),BD=2BM,所以当BM最小时,BD最小,根据垂线段最短,得到当BM⊥直线y=x+1时,BM最小,此时BD亦最小,如图2,可以证得△BEM为等腰直角三角形,从而利用勾股定理,求得此时BM的值,即可解决.【解答】解:∵点B(m,m+1),∴令,∴y=x+1,∴B在直线y=x+1上,设AC,BD交于点M,如图1,∴M是AC和BD的中点,∴M(2,0),BD=2BM,∴当BM最小时,BD最小,过M作MH⊥直线y=x+1于H,根据垂线段最短,BM≥MH,所以BM的最小值为MH,即当BM⊥直线y=x+1时,BM最小,则BD最小,设直线y=x+1与x轴,y轴交于点E,F,如图2,令x=0,则y=1,∴F(0,1),同理,E(﹣1,0),∴OE=OF=1,∴∠BEM=45°,又∠MBE=90°,∴∠BEM=∠BME=45°,∴△BME为等腰直角三角形,∵E(﹣1,0),M(2,0),∴ME=3,∵BE2+BM2=ME2,且BM=BE,∴BM=,∴,即对角线BD的最小值为3,故选:A.题型10:平行四边形的性质与折叠问题10.如图,将▱ABCD沿对角线AC折叠,使点B落在B′处,若∠1=∠2=44°,则∠B为()A.66°B.104°C.114°D.124°【分析】由平行四边形的性质和折叠的性质得出∠ACD=∠BAC=∠B′AC,由三角形的外角性质求出∠BAC=∠ACD=∠B′AC=∠1=22°,再由三角形内角和定理求出∠B即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ACD=∠BAC,由折叠的性质得:∠BAC=∠B′AC,∴∠BAC=∠ACD=∠B′AC=∠1=22°,∴∠B=180°﹣∠2﹣∠BAC=180°﹣44°﹣22°=114°;故选:C【变式10-1】如图,在▱ABCD中,∠A=70°,将▱ABCD折叠,使点D、C分别落在点F、E处(点F、E都在AB所在的直线上),折痕为MN,则∠AMF等于()A.70°B.40°C.30°D.20°【分析】根据折叠的性质得出AM=MD=MF,得出∠MF A=∠A=70°,再由三角形内角和定理即可求出∠AMF.【解答】解:根据题意得:AM=MD=MF,∴∠MF A=∠A=70°,∴∠AMF=180°﹣70°﹣70°=40°;故选:B【变式10-2】如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D1,折痕为EF,若∠BAE=55°,则∠D1AD=55°.【分析】由平行四边形的性质和折叠的性质得出∠D1AE=∠BAD,得出∠D1AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D1AE=∠C,∴∠D1AE=∠BAD,∴∠D1AD=∠BAE=55°;故答案为:55°.题型11:平行四边形的性质与证明题11.如图,四边形ABCD是平行四边形,E,F是对角线AC的三等分点,连接BE,DF.证明:BE=DF.【分析】根据平行四边形的性质得出AB=CD,AB∥CD,进而利用全等三角形的判定和性质解答即可.【解答】证明:∵四边形ABCD为平行四边形,∴AB=CD,AB∥CD,∴∠BAC=∠DCA,∵E,F是对角线AC的三等分点,∴AE=CF,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS),∴BE=DF.【变式11-1】如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.(1)求证:BE=DF;(2)线段AF与CE有什么关系?请证明你的结论.【分析】(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠5=∠3,∵∠1=∠2,∴∠AEB=∠4,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF;(2)AE=CF且AF∥CE,理由如下:由(1)得△ABE≌△CDF,∴AE=CF,∵∠1=∠2,∴AE∥CF,∴四边形AECF是平行四边形,∴AF∥CE.【变式11-2】如图,在▱ABCD中,AE、BF分别平分∠DAB和∠ABC,交CD于点E、F,AE、BF相交于点M.(1)求证:AE⊥BF;(2)判断线段DF与CE的大小关系,并予以证明.【分析】(1)只要证明∠MAB+∠MBA=90°即可;(2)结论:DF=CE.只要证明AD=DE,CF=BC,可得DE=CF即可解决问题;【解答】(1)证明:∵AE、BF分别平分∠DAB和∠ABC,∴∠EAB=∠DAB,∠ABF=∠ABC,∵四边形ABCD是平行四边形∴∠DAB+∠ABC=180°,∴∠EAB+∠ABF=×180°=90°,∴AE⊥BF.(2)DF=CE.证明:∵AE平分∠DAB∴∠EAB=∠EAD,∵DC∥AB,∴∠EAD=∠EAD,∴AD=DE,同理:FC=BC,∵四边形ABCD是平行四边形,∴AD=BC,∴DE=FC,∴DF=CE两条平行线间的距离:(1)定义:两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线间的距离.注:距离是指垂线段的长度,是正值.(2)平行线间的距离处处相等任何两平行线间的距离都是存在的、唯一的,都是夹在这两条平行线间最短的线段的长度.两条平行线间的任何两条平行线段都是相等的.题型12:平行线的距离12.如图,平行四边形ABCD中,对角线AC=21cm,BE⊥AC,垂足为E,且BE=5cm,AD=7cm,求AD和BC之间的距离.【分析】利用等积法,设AD与BC之间的距离为x,由条件可知▱ABCD的面积是△ABC的面积的2倍,可求得▱ABCD的面积,再由S四边形ABCD=AD•x,可求得x.【解答】解:设AD和BC之间的距离为x,则平行四边形ABCD的面积等于AD•x,∵S平行四边行ABCD=2S△ABC=2×AC•BE=AC•BE,∴AD•x=AC•BE,即:7x=21×5,x=15(cm),答:AD和BC之间的距离为15cm.【变式12-1】如图,在▱ABCD中,AC⊥AB,AB=6,BC=10,求:(1)AB与CD的距离;(2)AD与BC的距离.【分析】(1)在直角三角形中,由勾股定理解直角三角形,再利用三角形的面积公式求解即可;(2)由面积相等建立等式关系,进而可求解其距离.【解答】解:(1)在Rt△ABC中,由勾股定理可得AC===8,∴AB与CD的距离=AC=8;(2)∵在Rt△ABC中,AC=8,∴AD、BC之间的距离为6×8÷10=4.8【变式12-2】如图,在▱ABCD中,AE⊥BC于点E,CF⊥AD于点F.(1)求证:△ABE≌△CDF;(2)若∠B=60°,AB=2,求AD与BC之间的距离.【分析】(1)根据平行四边形的对边相等可得AB=CD,对角相等可得∠B=∠D,然后利用“角角边”证明△ABE和△CDF即可;(2)利用∠B的正弦值求出AE,再根据平行线间的距离的定义解答.【解答】(1)证明:在▱ABCD中,AB=CD,∠B=∠D,∵AE⊥BC,CF⊥AD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS);(2)解:∵∠B=60°,AB=2,∴AE=AB•sin60°=2×=,∵▱ABCD的边AD∥BC,∴AD与BC之间的距离为word可编辑文档。
湘教版八年级下册数学第2章 四边形 由对角线、角的关系判定平行四边形
*5.【中考·绵阳】如图,在四边形 ABCD 中,对角线 AC,BD 相 交于点 E,∠CBD=90°,BC=4,BE=ED=3,AC=10, 则四边形 ABCD 的面积为( D ) A.6 B.12 C.20 D.24
【点拨】∵∠CBD=90°,BE=3,BC=4,∴EC= 32+42=5. ∵AC=10,∴AE=5=EC.又∵BE=ED, ∴四边形 ABCD 是平行四边形,∴S▱ABCD=4S△BCE=24.
XJ版八年级下
第2章四边形
2.2.2 平行四边形的判定 第2课时由对角线、角的关系判定平行
四边形
提示:点击 进入习题
1 BO=DO(答案不唯一)
5D
2 见习题
6D
3C
7C
4B
8C
答案显示
提示:点击 进入习题
9C 10 B 11 见习题 12 见习题 13 见习题
14 见习题
答案显示
1.【中考·牡丹江】如图,四边形 ABCD 的对角线相交于点 O, AO=CO,请添加一个条件:__B_O_=__D__O_(_答__案__不__唯__一__)__(只添 加一个即可),使四边形 ABCD 是平行四边形.
*8.【中考·呼和浩特】顺次连接平面上A,B,C,D四
点 得 到 一 个 四 边 形 . ① AB∥CD ; ② BC = AD ; ③
∠A=∠C;④∠B=∠D.从以上四个条件中任取
其中两个,可以得出“四边形ABCD是平行四边形”
这一结论的情况共有( )
A.5种 B.4种
C.3种 C
Hale Waihona Puke D.1种【点拨】由①③或①④可推出 BC∥AD,满足条件“两组对边分 别平行”;③④满足条件“两组对角分别相等”,故共有 3 种情况.
北师大版八年级数学下册利用四边形对角线的性质判定平行四边形同步练习题
D A CB 6.2 平行四边形的判定第2课时 平行四边形的判定定理3与两平行线间的距离【学习内容】平行四边形的判定(P143—P145页)【学习目标】1、理解平行四边形的另一种判定方法,并学会简单运用。
2、在运用平行四边形的判定方法解决问题的过程中,进一步培养和发展逻辑思维能力和推理论证的表达能力。
【学习重难点】重点:平行四边形判定方法理解运用;难点:平行四边形判 定方法运用【自研课】定向导学 (15分钟)复习引入1.平行四边形的定义是什么?平行四边形的定义: 的四边形,叫做平行四边形2.判定四边形是平行四边形的方法有哪些?(1)两组对边分别 的四边形是平行四边形. (2)两组对边 的四边形是平行四边形.(3)一组对边 的四边形是平行四边形.探究 活动:工具:两根不同长度的细木条.动手:能否合理摆放这两根细木条,使得连接四个顶点后成为平行四边形? 思考:你能说明你得到的四边形是平行四边形吗?已知:如图,四边形ABCD 的对角线AC 、BD 相交于点O,并且OA=OC,OB=OD.求证:四边形ABCD 是平行四边形.已知:如图,在平行四边形ABCD 中,对角线AC 与BD 交于点O,点E 、F 在对角线AC 上,并且AE=CF .求证:四边形BFDE 是平行四边形【训练课】(时段:晚自习,时间20分钟)基础题:1、如图,四边形ABCD中,AC、BD相交于点O,若OA=OC,OB=OD,则四边形ABCD是______ ___ ,根据是。
A DOB C2、四边形ABCD中,AC、BD相交于点O,且OA=OC,如果要使四边形ABCD 是平行四边形,则还需补充的条件是()A.AC⊥BD B. OA=OB C.OC=OD D.OB=OD3、下列条件中,能判定四边形是平行四边形的是()A.一组对角相等 B. 对角线互相平分C.一组对边相等 D. 对角线互相相等4、如图,在平行四边形ABCD中,O是AC,BD的交点,点E,F,G,H分别是AO,BO,CO,DO的中点,四边形EFGH是平行四边形吗?说说你的理由.A DE O HF GB C发展题5、下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD,AD∥BCB.AB=CD,AB∥CDC.AB∥CD,AD∥BCD.AB=CD,AD=BC6、A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种 B.4种 C.5种 D.6种提高题:7、已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.北师大版九年级数学上册期中测试题一、选择题(本大题共10小题,每小题3分,共30分)1.随机掷两枚硬币,落地后全部正面朝上的概率是 A.1 B.12 C.13 D.14 2. 关于方程x 2-2=0的理解错误的是 A.这个方程是一元二次方程 B.方C.这个方程可以化成一元二次方程的一般形式D.这个方程可以用公式法求解 3.下列说法正确的个数是 ①菱形的对角线相等 ②对角线互相垂直的四边形是菱形; ③有两个角是直角的四边形是矩形 ④正方形既是菱形又是矩形 ⑤矩形的对角线相等且互相垂直平分 A.1 B.2 C.3 D.4 4.方程x 2-3x+6=0的根的情况是 A.有两个不相等的实数根 B.有两个相等的实数根 C.无实数根 D.不能确定 5.如图显示了用计算机模拟随机投掷一枚图钉的某次试验乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..的结果.下面有三个推断:①某次试验投掷次数是500,计算机记录“钉尖向上”的次数是308,则“钉尖向上”的频率是0.616;②随着试验次数的增加,“钉尖向上”的频率总在0.618附近摆动,显示出一定的稳定性,可以估计“钉尖向上”的概率是0.618;③若再次用计算机模拟试验,则当投掷次数为1000时,“钉尖向上"”的频率一定是0.620.其中合理的是A.①②B.②③C.①③D.①②③ 6.将一张正方形纸片按如图所示步骤①②沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是 7.现有三张质地大小完全相同的卡片,上面分别标有数字-2,-1,1,把卡片背面朝上洗匀,从中任意抽取一张卡片,记下数字后放回,洗匀,再任意抽取一张卡片,则第一次抽取的卡片上的数字大于第二次抽取的卡片上的数字的概率是乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..A.23B.12C.13D.498.如图,在菱形ABCD 中,AB =13,对角线AC =10,若过点A 作AE ⊥BC 垂足为E ,则AE 的长为 A.8 B.6013 C.12013 D.24013 9.如图,点O 是矩形ABCD 的对角线AC 的中点,OM ∥AB 交AD 于点M ,若OM =3,BC =10,则OB 的长为 A.5 B.4 C.342 D.34 10.如图,已知正方形ABCD 的边长为12,BE =EC ,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于G ,连接DG ,现在有如下4个结论:①△ADG ≌△FDG:②GB =2AG:③3∠GDE =45°④S △BEF =725,在以上4个结论中,正确的有 A.1个 B.2个 C.3个 D.4个乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..二、填空题(本题共6小题,每小题4分,共24分)11.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球不放回,再随机摸出球,两次摸出的球上的汉字能组成“柠幪”的概率是________.12.如图,菱形ABCD 中,∠ABC =2∠A ,若对角线BD =3,则菱形ABCD 的周长为________.13.桌上放有完全相同的三张卡片,卡片上分别标有数字2,1,4,随机摸出一张卡片(不放回),其数字记为P ,再随机摸出一张卡片,其数字记为q ,则关于的方程x 2+px+q =0有实数根的概率是________. 14.某种油菜籽在相同条件下的发芽试验结果如下: 由此可以估计油菜籽发芽的概率约为________.(精确到乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..0.1)15.一个两位数,十位数字比个位数字大3,而这两个数字之积等于这个两位数的27,若设个位数字为x ,则列出的方程为________. 16.如图,已知正方形ABCD 的边长为4,点E ,F 分別在AD ,DC 上,AE =DF =1,BE 与AF 相交于点G ,点为BF 的中点,连接GH ,则GH 的长为________. 三、解答题(本题共7小题,共66分) 17.(8分)解方程: (1)2x 2-4x+1=0 (2)(x+8)(x+1)=-12乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..18.(8分)甲乙两人在玩转盘游戏时,把转盘A 、B 分别分成4等份、3等份,并在每一份内标上数字,如图所示.游戏规定:转动两个转盘停止后,指针必须指到某数字,否则重转(1)请用画树状图法或列表法列出所有可能的结果;(2)若指针所指的两个数字都是方程x2-5x+6=0的解,则甲获胜若指针所指的两个数字都不是方程x2-5x+6=0的解,则乙获胜.问他们两人谁获胜的概率大?请分析说明19.(10分)某商场销售一批名牌衬衫,平均每天可销售20件,每件盈利40元,为了扩大销售量,增加盈利,尽量减少库存,商场决定采取适当的降价措施,经调查发现,如果每件村衫每降价1元,商场平均每天可多售出2件. (1)若商场平均每天要盈利1200元,且让顺客尽可能多得实惠,则每件衬衫应降价多少元?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..(2)商场平均每天可能盈利1700元吗?请说明理由.20.(10分)如图,矩形ABCD 中AB =3,BC =2,过对角线BD 的中点O 的直线分別交AB 、CD 边于点E 、F.(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.21.(10分)如图,若要建一个长方形鸡场,鸡场的一边靠墙,另三边用竹篱笆園成,篱笆总长33米,墙对面有一个2米宽的门,国成长方形的鸡场除门之外四周不能有空隙.求: (1)若墙长为18米,要围成鸡场的面积为150平方米,则鸡场的长和宽各为多少米? (2)能围成面积为200平方米的鸡场吗?乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..22.(10分)某茶叶专卖店经销一种日照绿茶,每千克成本80元,据销售人员调查发现,每月的销售量(千克)与销售单价x(元/千克)之间存在如图所示的变化规律.(1)求每月销售量y 与销售单价x 之间的函数关系式;(2)若某月该茶叶专卖店销售这种绿茶获得利润1350元,试求该月茶叶的销售单价x.23.(10分)如图①,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F. (1)求证:△BDF 是等腰三角形; (2)如图②,过点D 作DG ∥BE ,交BC 于点G ,连接FC 交BD 于点O ①判断四边形BFDC 的形状,并说明理由; ②若AB =6,AD =8,求FG 的长.乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………密………………………………….封……………………….线…………………………………………………………………………..。
平行四边形第2课时平行四边形对角线的性质课件人教版数学八年级下册
△BOC 的周长多 10cm, 则 AB = 2_0_c_m___,BC = 1_0_c_m___.
3. 有下列说法:
①平行四边形具有四边形的所有性质;
②平行四边形对边相等,对角相等;
③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;
新知学习
探究 如图,在 □ABCD 中,连接 AC,BD,并设它们相交于点 O. OA 与 OC,
OB 与 OD 有什么关系? 猜想:OA = OC,OB = OD.
你能证明你的 猜想吗?
已知,在 □ABCD 中,对角线 AC,BD 相交于点 O.
求证:OA = OC,OB = OD.
证明:∵AB∥CD, ∴∠1 =∠2,∠3 =∠4, ∵AB = CD, ∴△COD≌△AOB ∴OA=OC ,OB=OD
例2 如图,在 □ABCD 中,E、F 分别是 OA,OC 的中点. 试探究线
段 BE 和 DF 有怎样的关系.
注意考虑数量关系和位置关系哦! 可以从全等三角形的角度来考虑.
解:BE = DF 且 BE∥DF.
证明:∵四边形 ABCD 是平行四边形,
∴OA = OC,OB = OD.
又∵E、F 分别是 OA、OC 的中点,
④平行四边形的两条对角线把平行四边形分成 4 个面积相等的小三角形.
其中正确说法的序号是 ( D ).
Hale Waihona Puke A. ①②④B. ①③④
C. ①②③
D. ①②③④
4. 已知:如图,在 □ABCD 中,点 E 在 AC 上,AE = 2EC,点 F 在 AB 上,BF = 2AF,若 △BEF 的面积为 2cm2,求 □ABCD 的面积.
初二数学:平行四边形知识点总结及压轴题练习(附答案解析)
A C BD 初二平行四边形所有知识点总结和常考题知识点:1、平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
2、平行四边形的性质:⑴平行四边形的对边相等;⑵平行四边形的对角相等:⑶平行四边形的对角线互相平分。
3平行四边形的判定:⑴.两组对边分别相等的四边形是平行四边形; ⑵对角线互相平分的四边形是平行四边形;⑶两组对角分别相等的四边形是平行四边形; ⑷一组对边平行且相等的四边形是平行四边形。
4、矩形的定义:有一个角是直角的平行四边形。
5、矩形的性质:⑴矩形的四个角都是直角;⑵矩形的对角线相等。
6、矩形判定定理:⑴ 有三个角是直角的四边形是矩形;⑵对角线相等的平行四边形是矩形。
7、中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
(连接三角形两边中点的线段叫做三角形的中位线。
)8、菱形的定义 :有一组邻边相等的平行四边形。
9、菱形的性质:⑴菱形的四条边都相等;⑵菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。
S 菱形=1/2×ab (a 、b 为两条对角线长)10、菱形的判定定理:⑴四条边相等的四边形是菱形。
⑵对角线互相垂直的平行四边形是菱形。
11、正方形定义:一个角是直角的菱形或邻边相等的矩形。
12正方形判定定理:⑴ 邻边相等的矩形是正方形。
⑵有一个角是直角的菱形是正方形。
(矩形+菱形=正方形)常考题:一.选择题(共14小题)1.矩形具有而菱形不具有的性质是( )A .两组对边分别平行B .对角线相等C .对角线互相平分D .两组对角分别相等2.平行四边形ABCD 中,AC 、BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( )A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD3.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形4.顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形5.在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)6.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.117.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.168.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.1711.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.812.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.1913.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF ⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣414.如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°二.填空题(共13小题)15.已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为cm2.16.如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于.17.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO 的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.18.如图,矩形ABCD的对角线AC和BD相交于点O,过点O的直线分别交AD 和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为.19.如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是.20.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于度.21.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是.22.如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF⊥CD于F,∠B=60°,则菱形的面积为.23.如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是.24.如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C (0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为.25.如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D的坐标.26.如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.27.如图,四边形ABCD中,∠A=90°,AB=3,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三.解答题(共13小题)28.如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE=DF.求证:四边形BECF是平行四边形.29.已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E,(1)求证:四边形ADCE为矩形;(2)当△ABC满足什么条件时,四边形ADCE是一个正方形?并给出证明.30.如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.31.如图,矩形ABCD中,AC与BD交于点O,BE⊥AC,CF⊥BD,垂足分别为E,F.求证:BE=CF.32.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)线段BD与CD有什么数量关系,并说明理由;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.33.如图,在△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.34.如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.(1)求证:CE=CF;(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?35.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.36.如图,已知:在平行四边形ABCD中,点E、F、G、H分别在边AB、BC、CD、DA上,AE=CG,AH=CF,且EG平分∠HEF.求证:(1)△AEH≌△CGF;(2)四边形EFGH是菱形.37.如图,四边形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于点E.(1)求证:△ABD≌△EBD;(2)过点E作EF∥DA,交BD于点F,连接AF.求证:四边形AFED是菱形.38.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=度.39.在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长.40.数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平分线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.初二平行四边形所有知识点总结和常考题提高难题压轴题练习(含答案解析)参考答案与试题解析一.选择题(共14小题)1.(2013•宜宾)矩形具有而菱形不具有的性质是()A.两组对边分别平行B.对角线相等C.对角线互相平分 D.两组对角分别相等【分析】根据矩形与菱形的性质对各选项分析判断后利用排除法求解.【解答】解:A、矩形与菱形的两组对边都分别平行,故本选项错误;B、矩形的对角线相等,菱形的对角线不相等,故本选项正确;C、矩形与菱形的对角线都互相平分,故本选项错误;D、矩形与菱形的两组对角都分别相等,故本选项错误.故选B.【点评】本题考查了矩形的性质,菱形的性质,熟记两图形的性质是解题的关键.2.(2014•河池)平行四边形ABCD中,AC、BD是两条对角线,如果添加一个条件,即可推出平行四边形ABCD是矩形,那么这个条件是()A.AB=BC B.AC=BD C.AC⊥BD D.AB⊥BD【分析】根据对角线相等的平行四边形是矩形判断.【解答】解:A、是邻边相等,可得到平行四边形ABCD是菱形,故不正确;B、是对角线相等,可推出平行四边形ABCD是矩形,故正确;C、是对角线互相垂直,可得到平行四边形ABCD是菱形,故不正确;D、无法判断.故选B.【点评】本题主要考查的是矩形的判定定理.但需要注意的是本题的知识点是关于各个图形的性质以及判定.3.(2008•扬州)如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【解答】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB=BC时,它是菱形,故A选项正确;B、∵四边形ABCD是平行四边形,∴BO=OD,∵AC⊥BD,∴AB2=BO2+AO2,AD2=DO2+AO2,∴AB=AD,∴四边形ABCD是菱形,故B选项正确;C、有一个角是直角的平行四边形是矩形,故C选项正确;D、根据对角线相等的平行四边形是矩形可知当AC=BD时,它是矩形,不是正方形,故D选项错误;综上所述,符合题意是D选项;故选:D.【点评】此题主要考查学生对正方形的判定、平行四边形的性质、菱形的判定和矩形的判定的理解和掌握,此题涉及到的知识点较多,学生答题时容易出错.4.(2011•张家界)顺次连接任意四边形四边中点所得的四边形一定是()A.平行四边形B.矩形C.菱形D.正方形【分析】顺次连接任意四边形四边中点所得的四边形,一组对边平行并且等于原来四边形某一对角线的一半,说明新四边形的对边平行且相等.所以是平行四边形.【解答】解:连接BD,已知任意四边形ABCD,E、F、G、H分别是各边中点.∵在△ABD中,E、H是AB、AD中点,∴EH∥BD,EH=BD.∵在△BCD中,G、F是DC、BC中点,∴GF∥BD,GF=BD,∴EH=GF,EH∥GF,∴四边形EFGH为平行四边形.故选:A.【点评】本题三角形的中位线的性质考查了平行四边形的判定:三角形的中位线平行于第三边,且等于第三边的一半.5.(2006•南京)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7) B.(5,3) C.(7,3) D.(8,2)【分析】因为D点坐标为(2,3),由平行四边形的性质,可知C点的纵坐标一定是3,又由D点相对于A点横坐标移动了2,故可得C点横坐标为2+5=7,即顶点C的坐标(7,3).【解答】解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.【点评】本题主要是对平行四边形的性质与点的坐标的表示及平行线的性质和互为余(补)角的等知识的直接考查.同时考查了数形结合思想,题目的条件既有数又有形,解决问题的方法也要既依托数也依托形,体现了数形的紧密结合,但本题对学生能力的要求并不高.6.(2014•河南)如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8 B.9 C.10 D.11【分析】利用平行四边形的性质和勾股定理易求BO的长,进而可求出BD的长.【解答】解:∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO==5,∴BD=2BO=10,故选:C.【点评】本题考查了平行四边形的性质以及勾股定理的运用,是中考常见题型,比较简单.7.(2013•南充)如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.12D.16【分析】在矩形ABCD中根据AD∥BC得出∠DEF=∠EFB=60°,由于把矩形ABCD 沿EF翻折点B恰好落在AD边的B′处,所以∠EFB=∠DEF=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中可知∠DEF=∠EFB=∠EB′F=60°故△EFB′是等边三角形,由此可得出∠A′B′E=90°﹣60°=30°,根据直角三角形的性质得出A′B′=AB=2,然后根据矩形的面积公式列式计算即可得解.【解答】解:在矩形ABCD中,∵AD∥BC,∴∠DEF=∠EFB=60°,∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠DEF=∠EFB=60°,∠B=∠A′B′F=90°,∠A=∠A′=90°,AE=A′E=2,AB=A′B′,在△EFB′中,∵∠DEF=∠EFB=∠EB′F=60°∴△EFB′是等边三角形,Rt△A′EB′中,∵∠A′B′E=90°﹣60°=30°,∴B′E=2A′E,而A′E=2,∴B′E=4,∴A′B′=2,即AB=2,∵AE=2,DE=6,∴AD=AE+DE=2+6=8,∴矩形ABCD的面积=AB•AD=2×8=16.故选D.【点评】本题考查了矩形的性质,翻折变换的性质,两直线平行,同旁内角互补,两直线平行,内错角相等的性质,解直角三角形,作辅助线构造直角三角形并熟记性质是解题的关键.8.(2013•扬州)如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,垂足为E,连接DF,则∠CDF等于()A.50°B.60°C.70°D.80°【分析】连接BF,根据菱形的对角线平分一组对角求出∠BAC,∠BCF=∠DCF,四条边都相等可得BC=DC,再根据菱形的邻角互补求出∠ABC,然后根据线段垂直平分线上的点到线段两端点的距离相等可得AF=BF,根据等边对等角求出∠ABF=∠BAC,从而求出∠CBF,再利用“边角边”证明△BCF和△DCF全等,根据全等三角形对应角相等可得∠CDF=∠CBF.【解答】解:如图,连接BF,在菱形ABCD中,∠BAC=∠BAD=×80°=40°,∠BCF=∠DCF,BC=DC,∠ABC=180°﹣∠BAD=180°﹣80°=100°,∵EF是线段AB的垂直平分线,∴AF=BF,∠ABF=∠BAC=40°,∴∠CBF=∠ABC﹣∠ABF=100°﹣40°=60°,∵在△BCF和△DCF中,,∴△BCF≌△DCF(SAS),∴∠CDF=∠CBF=60°.故选:B.【点评】本题考查了菱形的性质,全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,综合性强,但难度不大,熟记各性质是解题的关键.9.(2015•河南)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC 于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.【点评】本题考查了平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等;平行四边形的对角线互相平分.也考查了等腰三角形的判定与性质和基本作图.10.(2013•凉山州)如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为()A.14 B.15 C.16 D.17【分析】根据菱形得出AB=BC,得出等边三角形ABC,求出AC,长,根据正方形的性质得出AF=EF=EC=AC=4,求出即可.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AC=AB=4,∴正方形ACEF的周长是AC+CE+EF+AF=4×4=16,故选C.【点评】本题考查了菱形性质,正方形性质,等边三角形的性质和判定的应用,关键是求出AC的长.11.(2013•泰安)如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC 的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2 B.4 C.4 D.8【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF 为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD 与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF 与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.12.(2013•菏泽)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17 C.18 D.19【分析】由图可得,S1的边长为3,由AC=BC,BC=CE=CD,可得AC=2CD,CD=2,EC=;然后,分别算出S1、S2的面积,即可解答.【解答】解:如图,设正方形S2的边长为x,根据等腰直角三角形的性质知,AC=x,x=CD,∴AC=2CD,CD==2,∴EC2=22+22,即EC=;∴S2的面积为EC2==8;∵S1的边长为3,S1的面积为3×3=9,∴S1+S2=8+9=17.故选:B.【点评】本题考查了正方形的性质和等腰直角三角形的性质,考查了学生的读图能力.13.(2013•连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.1 B.C.4﹣2D.3﹣4【分析】根据正方形的对角线平分一组对角可得∠ABD=∠ADB=45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED,从而得到∠DAE=∠AED,再根据等角对等边的性质得到AD=DE,然后求出正方形的对角线BD,再求出BE,最后根据等腰直角三角形的直角边等于斜边的倍计算即可得解.【解答】解:在正方形ABCD中,∠ABD=∠ADB=45°,∵∠BAE=22.5°,∴∠DAE=90°﹣∠BAE=90°﹣22.5°=67.5°,在△ADE中,∠AED=180°﹣45°﹣67.5°=67.5°,∴∠DAE=∠AED,∴AD=DE=4,∵正方形的边长为4,∴BD=4,∴BE=BD﹣DE=4﹣4,∵EF⊥AB,∠ABD=45°,∴△BEF是等腰直角三角形,∴EF=BE=×(4﹣4)=4﹣2.故选:C.【点评】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD是解题的关键,也是本题的难点.14.(2014•福州)如图,在正方形ABCD的外侧,作等边三角形ADE,AC、BE 相交于点F,则∠BFC为()A.45°B.55°C.60°D.75°【分析】根据正方形的性质及全等三角形的性质求出∠ABE=15°,∠BAC=45°,再求∠BFC.【解答】解:∵四边形ABCD是正方形,∴AB=AD,又∵△ADE是等边三角形,∴AE=AD=DE,∠DAE=60°,∴AB=AE,∴∠ABE=∠AEB,∠BAE=90°+60°=150°,∴∠ABE=(180°﹣150°)÷2=15°,又∵∠BAC=45°,∴∠BFC=45°+15°=60°.故选:C.【点评】本题主要是考查正方形的性质和等边三角形的性质,本题的关键是求出∠ABE=15°.二.填空题(共13小题)15.(2008•恩施州)已知菱形的两对角线长分别为6cm和8cm,则菱形的面积为24cm2.【分析】根据菱形的面积等于两对角线乘积的一半求得其面积即可.【解答】解:由已知得,菱形的面积等于两对角线乘积的一半即:6×8÷2=24cm2.故答案为:24.【点评】此题主要考查菱形的面积等于两条对角线的积的一半.16.(2015•梅州)如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD 的周长等于20.【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.17.(2013•厦门)如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF=3厘米.【分析】根据AC+BD=24厘米,可得出出OA+OB=12cm,继而求出AB,判断EF 是△OAB的中位线即可得出EF的长度.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AC+BD=24厘米,∴OA+OB=12cm,∵△OAB的周长是18厘米,∴AB=6cm,∵点E,F分别是线段AO,BO的中点,∴EF是△OAB的中位线,∴EF=AB=3cm.故答案为:3.【点评】本题考查了三角形的中位线定理,解答本题需要用到:平行四边形的对角线互相平分,三角形中位线的判定定理及性质.18.(2007•临夏州)如图,矩形ABCD的对角线AC和BD相交于点O,过点O 的直线分别交AD和BC于点E、F,AB=2,BC=3,则图中阴影部分的面积为3.【分析】根据矩形是中心对称图形寻找思路:△AOE≌△COF,图中阴影部分的面积就是△BCD的面积.【解答】解:∵四边形ABCD是矩形,∴OA=OC,∠AEO=∠CFO;又∵∠AOE=∠COF,在△AOE和△COF中,,∴△AOE≌△COF,∴S△AOE =S△COF,∴图中阴影部分的面积就是△BCD的面积.S△BCD=BC×CD=×2×3=3.故答案为:3.【点评】此题主要考查了矩形的性质以及全等三角形的判定和性质,能够根据三角形全等,从而将阴影部分的面积转化为矩形面积的一半,是解决问题的关键.19.(2014•宿迁)如图,在平面直角坐标系xOy中,若菱形ABCD的顶点A,B 的坐标分别为(﹣3,0),(2,0),点D在y轴上,则点C的坐标是(5,4).【分析】利用菱形的性质以及勾股定理得出DO的长,进而求出C点坐标.【解答】解:∵菱形ABCD的顶点A,B的坐标分别为(﹣3,0),(2,0),点D 在y轴上,∴AB=5,∴DO=4,∴点C的坐标是:(5,4).故答案为:(5,4).【点评】此题主要考查了菱形的性质以及坐标与图形的性质,得出DO的长是解题关键.20.(2015•黄冈)如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF=20°,则∠AED等于65度.【分析】根据正方形的性质得出∠BAE=∠DAE,再利用SAS证明△ABE与△ADE 全等,再利用三角形的内角和解答即可.【解答】解:∵正方形ABCD,∴AB=AD,∠BAE=∠DAE,在△ABE与△ADE中,,∴△ABE≌△ADE(SAS),∴∠AEB=∠AED,∠ABE=∠ADE,∵∠CBF=20°,∴∠ABE=70°,∴∠AED=∠AEB=180°﹣45°﹣70°=65°,故答案为:65【点评】此题考查正方形的性质,关键是根据正方形的性质得出∠BAE=∠DAE,再利用全等三角形的判定和性质解答.21.(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是1.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,根据直角三角形性质求出CE长,即可求出AB的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=,∴CE==2,∴AB=1,故答案为:1.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,直角三角形斜边上中线性质,含30度角的直角三角形性质等知识点的应用,此题综合性比较强,是一道比较好的题目.22.(2013•黔西南州)如图所示,菱形ABCD的边长为4,且AE⊥BC于E,AF ⊥CD于F,∠B=60°,则菱形的面积为.【分析】根据已知条件解直角三角形ABE可求出AE的长,再由菱形的面积等于底×高计算即可.【解答】解:∵菱形ABCD的边长为4,∴AB=BC=4,∵AE⊥BC于E,∠B=60°,∴sinB==,∴AE=2,∴菱形的面积=4×2=8,故答案为8.【点评】本题考查了菱形的性质:四边相等以及特殊角的三角函数值和菱形面积公式的运用.23.(2013•鞍山)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是11.【分析】利用勾股定理列式求出BC的长,再根据三角形的中位线平行于第三边并且等于第三边的一半求出EH=FG=AD,EF=GH=BC,然后代入数据进行计算即可得解.【解答】解:∵BD⊥CD,BD=4,CD=3,∴BC===5,∵E、F、G、H分别是AB、AC、CD、BD的中点,∴EH=FG=AD,EF=GH=BC,∴四边形EFGH的周长=EH+GH+FG+EF=AD+BC,又∵AD=6,∴四边形EFGH的周长=6+5=11.故答案为:11.【点评】本题考查了三角形的中位线定理,勾股定理的应用,熟记三角形的中位线平行于第三边并且等于第三边的一半是解题的关键.24.(2015•攀枝花)如图,在平面直角坐标系中,O为坐标原点,矩形OABC中,A(10,0),C(0,4),D为OA的中点,P为BC边上一点.若△POD为等腰三角形,则所有满足条件的点P的坐标为(2.5,4),或(3,4),或(2,4),或(8,4).【分析】由矩形的性质得出∠OCB=90°,OC=4,BC=OA=10,求出OD=AD=5,分情况讨论:①当PO=PD时;②当OP=OD时;③当DP=DO时;根据线段垂直平分线的性质或勾股定理即可求出点P的坐标.【解答】解:∵四边形OABC是矩形,∴∠OCB=90°,OC=4,BC=OA=10,∵D为OA的中点,∴OD=AD=5,①当PO=PD时,点P在OD得垂直平分线上,∴点P的坐标为:(2.5,4);②当OP=OD时,如图1所示:则OP=OD=5,PC==3,∴点P的坐标为:(3,4);③当DP=DO时,作PE⊥OA于E,则∠PED=90°,DE==3;分两种情况:当E在D的左侧时,如图2所示:OE=5﹣3=2,∴点P的坐标为:(2,4);当E在D的右侧时,如图3所示:OE=5+3=8,∴点P的坐标为:(8,4);综上所述:点P的坐标为:(2.5,4),或(3,4),或(2,4),或(8,4);故答案为:(2.5,4),或(3,4),或(2,4),或(8,4).【点评】本题考查了矩形的性质、坐标与图形性质、等腰三角形的判定、勾股定理;本题有一定难度,需要进行分类讨论才能得出结果.25.(2013•阜新)如图,已知△ABC的三个顶点的坐标分别为A(﹣2,0),B(﹣1,2),C(2,0).请直接写出以A,B,C为顶点的平行四边形的第四个顶点D 的坐标(3,2),(﹣5,2),(1,﹣2).【分析】首先根据题意画出图形,分别以BC,AB,AC为对角线作平行四边形,即可求得答案.【解答】解:如图:以A,B,C为顶点的平行四边形的第四个顶点D的坐标分别为:(3,2),(﹣5,2),(1,﹣2).故答案为:(3,2),(﹣5,2),(1,﹣2).【点评】此题考查了平行四边形的性质.注意坐标与图形的关系.26.(2014•丹东)如图,在菱形ABCD中,AB=4cm,∠ADC=120°,点E、F同时由A、C两点出发,分别沿AB、CB方向向点B匀速移动(到点B为止),点E的速度为1cm/s,点F的速度为2cm/s,经过t秒△DEF为等边三角形,则t的值为.【分析】延长AB至M,使BM=AE,连接FM,证出△DAE≌EMF,得到△BMF 是等边三角形,再利用菱形的边长为4求出时间t的值.。
人教版八年级数学下册18.1.1平行四边形的性质(第二课时)对角线同步练习题
平行四边形的性质(第二课时)同步练习题一、单选题1.平行四边形的一边长为10,那么它的两条对角线的长可以是( )A .4和6B .6和8C .8和12D .20和302.平行四边形的一组对角的平分线( )A .一定相互平行B .一定相交C .可能平行也可能相交D .平行或共线 3.有下列说法:①平行四边形具有四边形的所有性质: ②平行四边形是中心对称图形:③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形; ④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形. 其中正确说法的序号是( ).A .①②④B .①③④C .①②③D .①②③④4.如图,在▱ABCD 中,已知90ODA =∠°,10cm AC =,6cm BD =,则AD 的长为( )第4题 第5题 第7题 第9题 A .4cmB .5cmC .6cmD .8cm5.如图,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,D 的坐标分别是(0,0),(5,0),(2,3),则顶点C 的坐标是( )A .(3,7)B .(5,3)C .(7,3)D .(8,2)6.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm7.如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC 于E ,AB 3AC =2,BD =4,则AE 的长为( )A 3B .32C .217D .2178.已知四边形ABCD 是平行四边形,则下列各图中1∠与2∠一定不相等的是( )A .B .C .D .9.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A.18°B.36°C.72°D.144°10.如图,设M是ABCD边AB上任意一点,设AMD∆的面积为1S,BMC∆的面积为2S,CDM∆的面积为S,则()第10题第12题第13题第14题A.12S S S=+B.12S S S>+C.12S S S<+D.不能确定二、填空题11.在平行四边形ABCD中,BC边上的高为AE=4,AB=5,EC=7,则平行四边形ABCD的周长等于_____.12.如图,在中,.以点为圆心,以小于长为半径作弧,分别交、于点、,再分别以、为圆心,以大于的长为半径作弧,两弧在内交于点,连接并延长交于点,则____.13.如图,直线EF经过平行四边形ABCD的对角线的交点O,若四边形AEFB的面积为20cm2,则平行四边形ABCD的面积为___cm2.14.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于点E,BF⊥CD于点F,DE、BF 相交于点H,直线BF交线段AD的延长线于点G,下列结论:①CE=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG.其中正确的结论是 ___.15.如图,在一个平行四边形中,两对平行于边的直线将这个平行四边形分为九个小平行四边形,如果原来这个平行四边形的面积为,而中间那个小平行四边形(阴影部分)的面积为20平方厘米,则四边形的面积是________.三、解答题16、如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC的长;(2)求▱ABCD的面积.17.如图,▱ABCD的对角线AC,BD相交于点O,EF过点O且与AB,CD分别相交于点E,F,连接EC.ABCD50D∠=︒B AB BA BC PQ P Q12PQ ABC∠M BM AD E AEB∠=122100cmABDC(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.。
华师版八年级数学下册作业课件(HS) 第18章 平行四边形 第2课时 平行四边形的对角线的性质
6.(4分)(遂宁中考)如图,▱ABCD中,对角线AC,BD相交于点O, OE⊥BD交AD于点E,连结BE,若▱ABCD的周长为28,则△ABE的周 长为____1_4____.
7.(10分)(教材P79练习T3变式)如图所示,在▱ABCD中,对角线AC 与BD相交于点O,过点O作一条直线分别交AB,CD于点E,F.
华师版
第18章 平行四边形
18.1 平行四边形的性质
第2课时 平行四边形的对角线的性质
平行四边形的对角线互相平分
1.(4分)(常州中考)如图,▱ABCD的对角线AC,BD相交于点O,则 下列说法一定正确的是( C )
A.AO=OD B.AO⊥OD C.OB=OD D.AO⊥AB
2.(4分)如图,▱ABCD的Байду номын сангаас角线AC与BD相交于点O,AB⊥AC,若 AB=4,AC=6,则OB的长是( C )
解:(1)∵四边形 ABCD 是平行四边形,∴OA=OC,AD∥BC,∴∠ PAO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP =CQ=t,∵BC=5,∴BQ=5-t (2)当四边形 ABQP 是平行四边形时,AP=BQ,即 t=5-t,t=52 ,
∴当 t 为52 时,四边形 ABQP 是平行四边形
(1)求证:OE=OF; (2)若AB=6,BC=5,OE=2,求四边形BCFE的周长.
解:(1)证明:在▱ABCD 中,∵AC 与 BD 相交于点 O,∴OA=OC, AB∥CD,∴∠OAE=∠OCF.在△ OAE 和△ OCF 中,
∠OAO=AEO=C,∠OCF, ∠AOE=∠COF,
∴△OAE≌△OCF(ASA),∴OE=OF (2)四边形 BCFE 的周长为 15
八年级下册数学人教版习题课件第十八章 平行四边形的对角线特征
解:(1)作BO⊥AD于O,如图①所示:∵四边形ABCD是平行四边形, ∴AD∥BC,AB∥CD,AB=CD,∠ABC=∠D=30°,
∴∠AEB=∠CBE,∠BAO=∠D=30°,∴BO=12
AB=
6 2
,
∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,
∴AE=AB=
6 ,∴△ABE的面积=12 AE×BO=12 ×
(2)求证:∠MAE=∠NCF. (1)图中共有几对全等三角形,请把它们都写出来; 过对角线BD上一点P作EF∥行四边形ABCD中,AB=3 cm,BC=5 cm, △CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE. G,H,则图中面积相等的平行四边形的对数为( ) 11.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°, △BOC的周长比△AOB的周长小3 cm,求AB,BC的长. (2)证明:延长FB交AD于H. 10.(衡阳中考)如图,▱ABCD的对角线相交于点O,且AD≠CD, 则阴影部分的面积为( )
5.(习题15变式)如图,在平行四边形ABCD中, 4.(练习1变式)如图,▱ABCD的周长为26 cm,AC,BD相交于点O, ∵∠ADE+∠ADC+∠EDC=360°,∠ABF+∠ABC+∠CBF=360°, 11.如图,在▱ABCD中,对角线AC与BD相交于点E,∠AEB=45°, 10.(衡阳中考)如图,▱ABCD的对角线相交于点O,且AD≠CD, ∵AE⊥AF,∴∠EAF=90°, △CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE. C.1 cm<OA<4 cm D.3 cm<OA<8 cm ∵△ABF≌△EDA,∴∠EAD=∠AFB,∵∠EAD+∠FAH=90°, 9.在平行四边形ABCD中,AB=3 cm,BC=5 cm,
平行四边形的性质及相关问题
平行四边形的性质及相关问题平行四边形是初中数学中一个重要的几何概念,它具有独特的性质和特点。
掌握平行四边形的性质对于解题和理解几何知识都是至关重要的。
本文将围绕平行四边形的性质展开讨论,并结合实例进行说明,以帮助中学生和他们的父母更好地理解和应用这一知识点。
1. 平行四边形的定义和特点平行四边形是指具有两对对边分别平行的四边形。
根据这一定义,我们可以得出平行四边形的几个重要特点:首先,平行四边形的对边相等。
也就是说,平行四边形的对边长度相等,例如AB=CD,AD=BC。
其次,平行四边形的对角线互相平分。
平行四边形的对角线AC和BD相交于点O,且AO=CO,BO=DO。
再次,平行四边形的内角和为180度。
平行四边形的内角A、B、C、D满足A+B+C+D=180度。
最后,平行四边形的相邻角互补。
平行四边形的相邻角A和B满足A+B=180度,相邻角C和D同理。
2. 平行四边形的应用举例2.1. 证明平行四边形的方法在解题过程中,经常需要证明一个四边形是平行四边形。
有两种常见的方法可以进行证明。
一种是利用已知条件,通过推理和运用几何定理来得出结论。
例如,已知AB//CD,AC与BD相交于点O,需要证明四边形ABCD是平行四边形。
可以利用平行线的性质,推导出对边相等和对角线互相平分的关系,从而得出结论。
另一种方法是通过构造辅助线来简化问题。
例如,已知ABCD是一个四边形,AB=CD,AC与BD相交于点O,需要证明ABCD是平行四边形。
可以通过构造辅助线AD和BC,然后利用三角形的性质和平行线的性质来进行推导,最终得出结论。
2.2. 平行四边形的面积计算计算平行四边形的面积是一个常见的问题。
平行四边形的面积可以通过底边长度和高的乘积来计算。
例如,已知平行四边形ABCD的底边为AB,高为h,需要计算其面积。
可以使用公式S = AB * h来求解。
另外,如果已知平行四边形的两条对边长度分别为a和b,夹角为θ,也可以通过公式S = a * b * sinθ来计算面积。
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)
人教版八年级数学下《第十八章平行四边形》课时作业(含答案)第十八章平行四边形18.1平行四边形18.1.1平行四边形的性质第1课时平行四边形的边、角特征01基础题知识点1平行四边形的概念1.如图,在▱ABCD中,EF∥BC,则图中平行四边形有3个.第1题图第2题图2.如图,AB∥EG,EF∥BC,AC∥FG,图中有3个平行四边形,它们分别是▱ABCE,▱ABGC,▱AFBC.知识点2平行四边形的边、角特征3.(教材P43T1的变式)在▱ABCD中,AD=3 cm,AB=2 cm,则▱ABCD的周长等于(A) A.10 cm B.6 cmC.5 cm D.4 cm4.(2016·衢州)如图,在▱ABCD中,M是BC延长线上的一点,若∠A=135°,则∠MCD的度数是(A)A.45°B.55°C.65°D.75°5.在▱ABCD中,两邻边的差为4 cm,周长为32 cm,则两邻边长分别为10__cm,6__cm.6.(1)在▱ABCD 中,若∠A∶∠B=5∶4,则∠C=100°;(2)已知▱ABCD 的周长为28 cm,若AB∶BC=3∶4,则AB=6__cm,BC=8__cm.7.如图,在▱ABCD中,CM⊥AD于点M,CN⊥AB于点N,若∠B=45°,求∠MCN的大小.解:∵四边形ABCD是平行四边形,∴AB∥CD,∠B=∠D.∵∠B=45°,∴∠BCD=135°,∠D=45°.∵CM⊥AD,CN⊥AB,∴∠BNC=∠DMC=90°.∴∠BCN=∠DCM=45°.∴∠MCN=∠BCD-∠BCN-∠DCM=45°.8.如图,已知四边形ABCD是平行四边形,点E,B,D,F在同一直线上,且BE=DF.求证:AE=CF.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,AB =CD. ∴∠ABD =∠CDB. ∴∠ABE =∠CDF.在△ABE 和△CDF 中,⎩⎨⎧AB =CD ,∠ABE =∠CDF ,BE =DF ,∴△ABE ≌△CDF(SAS ). ∴AE =CF.知识点3 平行线间的距离9.如图,a ∥b ,AB ∥CD ,CE ⊥b ,FG ⊥b ,点E ,G 为垂足,则下列说法不正确的是(D )A .AB =CD B .EC =GFC .A ,B 两点的距离就是线段AB 的长度D .a 与b 的距离就是线段CD 的长度第9题图 第10题图10.(2016·柳州)如图,若▱ABCD 的面积为20,BC =5,则边AD 与BC 间的距离为4.02 中档题11.在▱ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是(A)A .2∶5∶2∶5B .3∶4∶4∶5C .4∶4∶3∶2D .2∶3∶5∶612.如图,在▱ABCD 中,AB =4,BC =6,AC 的垂直平分线交AD 于点E ,则△CDE 的周长是(B )A .7B .10C .11D .12第12题图 第13题图13.如图所示,直线a ∥b ,A 是直线a 上的一个定点,线段BC 在直线b 上移动,那么在移动过程中△ABC 的面积(C )A .变大B .变小C .不变D .无法确定 14.(2017·鹤岗)在▱ABCD 中,∠A 的平分线把BC 边分成长度是3和4的两部分,则▱ABCD 的周长是(C)A .22B .20C .22或20D .18 15.(2017·武汉)如图,在▱ABCD 中,∠D =100°,∠DAB 的平分线AE 交DC 于点E ,连接BE .若AE =AB ,则∠EBC 的度数为30°.第15题图 第16题图16.如图,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为25°.17.如图,在▱ABCD 中,点P 是对角线BD 上的一个动点(点P 与点B 、点D 不重合),过点P 作EF ∥BC ,GH ∥AB ,则图中面积始终相等的平行四边形有3 对. 18.(2016·温州)如图,E 是▱ABCD 的边CD 的中点,延长AE 交BC 的延长线于点F.(1)求证:△ADE ≌△FCE ;(2)若∠BAF =90°,BC =5,EF =3,求CD 的长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC.∴∠DAE =∠F ,∠D =∠ECF. ∵E 是CD 的中点, ∴DE =CE.在△ADE 和△FCE 中,⎩⎨⎧∠DAE =∠F ,∠D =∠ECF ,DE =CE ,∴△ADE ≌△FCE(AAS ). (2)∵△ADE ≌△FCE , ∴AE =EF =3. ∵AB ∥CD ,∴∠AED =∠BAF =90°. 在▱ABCD 中,AD =BC =5, ∴DE =AD 2-AE 2=52-32=4. ∴CD =2DE =8.03 综合题19.如图,四边形ABCD 是平行四边形,P 是CD 上一点,且AP 和BP 分别平分∠DAB 和∠CBA.(1)求∠APB 的度数;(2)如果AD =5 cm ,AP =8 cm ,求△APB 的周长. 解:(1)∵四边形ABCD 是平行四边形, ∴AD ∥CB ,AB ∥CD ,AD =BC ,AB =DC. ∴∠DAB +∠CBA =180°.又∵AP 和BP 分别平分∠DAB 和∠CBA , ∴∠PAB +∠PBA =12(∠DAB +∠CBA)=90°.∴∠APB =180°-(∠PAB +∠PBA)=90°. (2)∵AP 平分∠DAB ,AB ∥CD , ∴∠DAP =∠PAB =∠DPA. ∴AD =DP =5 cm .同理:PC =BC =AD =5 cm . ∴AB =DC =DP +PC =10 cm .在Rt △APB 中,AB =10 cm ,AP =8 cm , ∴BP =102-82=6(cm ).∴△APB 的周长为6+8+10=24(cm ).第2课时 平行四边形的对角线性质01 基础题知识点1 平行四边形的对角线互相平分1.如图,在▱ABCD 中,O 是对角线AC ,BD 的交点,下列结论错误的是(C )A .AB ∥CD B .AB =CDC .AC =BD D .OA =OC第1题图 第2题图2.(教材P 44T 1的变式)如图,▱ABCD 的对角线AC ,BD 交于点O ,已知AD =8,BD =12,AC =6,则△OBC 的周长为(B)A .13B .17C .20D .263.如图,在▱ABCD 中,已知∠ODA =90°,AC =10 cm ,BD =6 cm ,则AD 的长为(A )A .4 cmB .5 cmC .6 cmD .8 cm第3题图 第4题图4.如图,▱ABCD 的周长为16 cm ,AC ,BD 相交于点O ,EO ⊥BD 交AD 于点E ,则△ABE 的周长为(C)A .4 cmB .6 cmC .8 cmD .10 cm5.如图,在四边形ABCD 中,AB ∥CD ,AD ∥BC ,AC ,BD 相交于点O.若AC =6,则线段AO 的长度等于3.6.在▱ABCD 中,AB =3,BC =5,对角线AC ,BD 相交于点O ,则OA 的取值范围是1<OA <4.7.如图所示,在▱ABCD 中,对角线AC 与BD 相交于点O ,点M ,N 在对角线AC 上,且AM =CN ,求证:BM ∥DN.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD. ∵AM =CN ,∴OM =ON.在△BOM 和△DON 中,⎩⎨⎧OB =OD ,∠BOM =∠DON ,OM =ON ,∴△BOM ≌△DON(SAS ).∴∠OBM=∠ODN.∴BM∥DN.知识点2平行四边形的面积8.如图,在▱ABCD中,O是对角线AC,BD的交点,若△AOD的面积是5,则▱ABCD的面积是(C) A.10 B.15C.20 D.25第8题图第9题图9.如图,在▱ABCD中,对角线AC,BD交于点O,若DO=1.5 cm,AB=5 cm,BC=4 cm,则▱ABCD的面积为12cm2.02中档题10.如图,▱ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则▱ABCD的两条对角线的和是(C) A.18 B.28C.36 D.46第10题图第11题图11.如图,▱ABCD的对角线AC的长为10 cm,∠CAB=30°,AB的长为6 cm,则▱ABCD的面积为(B) A.60 cm2B.30 cm2C.20 cm2D.16 cm212.(2017·眉山)如图,EF过▱ABCD对角线的交点O,交AD于E,交BC于F,若▱ABCD的周长为18,OE =1.5,则四边形EFCD的周长为(C)A.14 B.13 C.12 D.10第12题图第13题图13.如图,若▱ABCD的周长为22 cm,AC,BD相交于点O,△AOD的周长比△AOB的周长小3 cm,则AD =4__cm,AB=7__cm.14.如图,在▱ABCD中,对角线AC与BD交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折,若点B的落点记为B′,则DB′15.如图,▱ABCD的对角线AC,BD交于点O,AC⊥AB,AB=25,且AO∶BO=2∶3.(1)求AC 的长;(2)求▱ABCD 的面积.解:(1)∵AO ∶BO =2∶3, ∴设AO =2x ,BO =3x (x >0).∵AC ⊥AB ,AB =25, ∴(2x)2+(25)2=(3x)2. 解得x =2. ∴AO =4.∵四边形ABCD 是平行四边形, ∴AC =2AO =8. (2)∵S △ABC =12AB·AC=12×25×8 =85,∴S ▱ABCD =2S △ABC =2×85=16 5.16.(2016·本溪)如图,▱ABCD 的对角线AC ,BD 相交于点O ,EF 过点O 且与AB ,CD 分别相交于点E ,F ,连接EC.(1)求证:OE =OF ;(2)若EF ⊥AC ,△BEC 的周长是10,求▱ABCD 的周长.解:(1)证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,DC ∥AB. ∴∠FDO =∠EBO.在△DFO 和△BEO 中,⎩⎨⎧∠FDO =∠EBO ,OD =OB ,∠FOD =∠EOB ,∴△DFO ≌△BEO(ASA ). ∴OE =OF.(2)∵四边形ABCD 是平行四边形, ∴AB =CD ,AD =BC ,OA =OC. ∵EF ⊥AC ,∴AE =CE. ∵△BEC 的周长是10,∴BC +BE +CE =BC +BE +AE =BC +AB =10. ∴C ▱ABCD =2(BC +AB)=20.03综合题17.如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以P A,PC为边作▱P AQC,则对角线PQ长度的最小值为(D)A.6B.8C.2 2D.4 218.1.2平行四边形的判定第1课时平行四边形的判定01基础题知识点1两组对边分别相等的四边形是平行四边形1.如图,AB=CD=EF,且△ACE≌△BDF,则图中平行四边形的个数为(C)A.1B.2C.3D.42.若四边形ABCD的边AB=CD,BC=DA,则这个四边形是平行四边形,理由是两组对边分别相等的四边形是平行四边形.知识点2两组对角分别相等的四边形是平行四边形3.下面给出四边形ABCD中,∠A,∠B,∠C,∠D的度数之比,其中能判定四边形ABCD为平行四边形的是(B)A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶34.一个四边形的三个相邻内角的度数依次如下,那么其中是平行四边形的是(D)A.88°,108°,88°B.88°,104°,108°C.88°,92°,92°D.108°,72°,108°知识点3对角线互相平分的四边形是平行四边形5.如图,四边形ABCD的对角线相交于点O,AO=CO,请添加一个条件BO=DO(答案不唯一)(只添一个即可),使四边形ABCD是平行四边形.6.已知:如图,在四边形ABCD中,AB∥CD,对角线AC,BD相交于点O,且AO=CO.求证:四边形ABCD 是平行四边形.证明:∵AB∥CD,∴∠ABO=∠CDO,∠BAO=∠DCO.又∵AO=CO,∴△ABO≌△CDO(AAS).∴BO=DO.∴四边形ABCD是平行四边形.7.如图,在▱ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是OB ,OD 的中点,求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,OB =OD.∵点E ,F 分别是OB ,OD 的中点, ∴OE =12OB ,OF =12OD.∴OE =OF.又∵OA =OC ,∴四边形AECF 是平行四边形.知识点4 一组对边平行且相等的四边形是平行四边形8.如图所示,四边形ABCD 和AEFD 都是平行四边形,则四边形BCFE 是平行四边形,理由:一组对边平行且相等的四边形是平行四边形.9.(2016·新疆)如图,在四边形ABCD 中,AD ∥BC ,AE ⊥AD 交BD 于点E ,CF ⊥BC 交BD 于点F ,且AE =CF.求证:四边形ABCD 是平行四边形.证明:∵AE ⊥AD ,CF ⊥BC , ∴∠EAD =∠FCB =90°.∵AD ∥BC ,∴∠ADE =∠CBF.在△AED 和△CFB 中,⎩⎨⎧∠ADE =∠CBF ,∠EAD =∠FCB ,AE =CF ,∴△AED ≌△CFB(AAS ). ∴AD =BC. 又∵AD ∥BC ,∴四边形ABCD 是平行四边形.02 中档题10.小玲的爸爸在制作平行四边形框架时,采用了一种方法:如图所示,将两根木条AC ,BD 的中点重叠,并用钉子固定,则四边形ABCD 就是平行四边形,这种方法的依据是(A )A.对角线互相平分的四边形是平行四边形B.两组对角分别相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对边分别平行的四边形是平行四边形11.(2016·衢州)已知直角坐标系内有四个点O(0,0),A(3,0),B(1,1),C(x,1),若以O,A,B,C为顶点的四边形是平行四边形,则x=4或-2.12.已知:如图,在四边形ABCD中,AB=CD,BC=AD,点E,F在AC上,且AF=CE.求证:四边形BEDF是平行四边形.证明:连接BD交AC于O,∵AB=CD,BC=AD,∴四边形ABCD是平行四边形.∴AO=CO,BO=DO.∵AF=CE,∴AF-AO=CE-CO,即OF=OE.又∵OB=OD,∴四边形BEDF是平行四边形.13.(2017·南京)如图,在▱ABCD中,点E,F分别在AD,BC上,且AE=CF,EF,BD相交于点O,求证:OE=OF.证明:连接BE,DF.∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=CF,∴DE=BF.又∵DE∥BF,∴四边形BEDF是平行四边形.∴OE=OF.14.(2016·张家界)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.解:四边形ABFC 是平行四边形. 证明:∵AB ∥CD ,∴∠BAE =∠CFE.∵E 是BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,⎩⎨⎧∠BAE =∠CFE ,∠AEB =∠FEC ,BE =CE ,∴△ABE ≌△FCE(AAS).∴AB =CF .又∵AB ∥CF ,∴四边形ABFC 是平行四边形.03 综合题15.如图所示,在四边形ABCD 中,AD ∥BC ,AD =24 cm ,BC =30 cm ,点P 从点A 向点D 以1 cm /s 的速度运动,到点D 即停止.点Q 从点C 向点B 以2 cm /s 的速度运动,到点B 即停止.直线PQ 将四边形ABCD 截成两个四边形,分别为四边形ABQP 和四边形PQCD ,则当P ,Q 两点同时出发,几秒后所截得两个四边形中,其中一个四边形为平行四边形?解:设当P ,Q 两点同时出发t s 后,四边形ABQP 或四边形PQCD 是平行四边形. 根据题意,得AP =t cm ,PD =(24-t)cm ,CQ =2t cm ,BQ =(30-2t)cm (0≤t ≤15). ①若四边形ABQP 是平行四边形, ∵AD ∥BC ,∴还需满足AP =BQ. ∴t =30-2t.解得t =10.∴10 s 后四边形ABQP 是平行四边形; ②若四边形PQCD 是平行四边形, ∵AD ∥BC ,∴还需满足PD =CQ.∴24-t =2t.解得t =8.∴8 s 后四边形PQCD 是平行四边形.综上所述:当P ,Q 两点同时出发8秒或10秒后,所截得两个四边形中其中一个四边形为平行四边形.第2课时三角形的中位线01基础题知识点三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为(A)A.2 B.4C.6 D.82.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是(C) A.8 B.10C.12 D.14第2题图第3题图3.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为(C) A.50°B.60°C.70°D.80°4.(2016·梧州)如图,在△ABC中,AB=3,BC=4,AC=2,D,E,F分别为AB,BC,AC中点,连接DF,FE,则四边形DBEF的周长是(B)A.5 B.7C.9 D.11第4题图第5题图5.如图,为测量位于一水塘旁的两点A,B间的距离,在地面上确定点O,分别取OA,OB的中点C,D,量得CD=20 m,则A,B之间的距离是40m.6.(2017·怀化)如图,在▱ABCD中,对角线AC,BD 相交于点O,点E是AB的中点,OE=5 cm,则AD的长为10cm.第6题图第7题图7.如图,CD是△ABC的中线,点E,F分别是AC,DC的中点,EF=1,则BD=2.8.如图,在Rt△ABC中,∠C=90°,∠B=60°,AB=8 cm,E,F分别为边AC,AB的中点.(1)求∠A的度数;(2)求EF的长.解:(1)∵∠C=90°,∴∠A+∠B=90°.∴∠A=90°-∠B=90°-60°=30°.(2)在Rt △ABC 中,∠A =30°,AB =8 cm , ∴BC =12AB =4 cm .∵E ,F 分别是AC ,AB 的中点, ∴EF 是△ABC 的中位线. ∴EF =12BC =2 cm .9.如图,在△ABC 中,D ,E ,F 分别为边AB ,BC ,CA 的中点.求证:四边形DECF 是平行四边形.证明:∵D ,E ,F 分别为AB ,BC ,CA 的中点, ∴DF ,DE 为△ABC 的中位线. ∴DF ∥BC ,DE ∥AC.∴四边形DECF 是平行四边形.02 中档题10.如图,点D ,E ,F 分别为△ABC 各边中点,下列说法正确的是(C )A .DE =DFB .EF =12ABC .S △ABD =S △ACD D .AD 平分∠BAC11.如图,吴伯伯家有一块等边三角形的空地ABC ,已知点E ,F 分别是边AB ,AC 的中点,量得EF =5米,他想把四边形BCFE 用篱笆围成一圈放养小鸡,则需用篱笆的长是(C )A .15米B .20米C .25米D .30米第11题图 第12题图12.(2016·陕西)如图,在△ABC 中,∠B =90°,AB =8,BC =6.若DE 是△ABC 的中位线,延长DE 交△ABC 的外角∠ACM 的平分线于点F ,则线段DF 的长为(B)A .7B .8C .9D .1013.如图,▱ABCD 的对角线AC ,BD 交于点O ,点E 是AD 的中点,△BCD 的周长为18,则△DEO 的周长是9.第13题图 第14题图14.如图,在四边形ABCD 中,P 是对角线BD 的中点,E ,F 分别是AB ,CD 的中点,AD =BC ,∠PEF =18°,则∠PFE 的度数是18°.15.如图,四边形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD ,DA 的中点,顺次连接E ,F ,G ,H ,得到的四边形EFGH 叫中点四边形.求证:四边形EFGH 是平行四边形.证明:连接BD.∵E ,H 分别是AB ,AD 的中点, ∴EH 是△ABD 的中位线. ∴EH =12BD ,EH ∥BD.同理FG =12BD ,FG ∥BD.∴EH =FG ,EH ∥FG.∴四边形EFGH 是平行四边形.16.如图,在▱ABCD 中,点O 是对角线AC ,BD 的交点,点E 是边CD 的中点,点F 在BC 的延长线上,且CF =12BC ,求证:四边形OCFE 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴点O 是BD 的中点. 又∵点E 是边CD 的中点, ∴OE 是△BCD 的中位线. ∴OE ∥BC ,且OE =12BC.又∵CF =12BC ,∴OE =CF.又∵点F 在BC 的延长线上,∴OE ∥CF.∴四边形OCFE 是平行四边形.03 综合题17.如图,在△ABC 中,AB =5,AC =3,AD ,AE 分别为△ABC 的中线和角平分线,过点C 作CH ⊥AE 于点H ,并延长交AB 于点F ,连接DH ,求线段DH 的长.解:∵AE 为△ABC 的角平分线, ∴∠FAH =∠CAH. ∵CH ⊥AE ,∴∠AHF =∠AHC =90°. 在△AHF 和△AHC 中,⎩⎨⎧∠FAH =∠CAH ,AH =AH ,∠AHF =∠AHC ,∴△AHF ≌△AHC(ASA ). ∴AF =AC ,HF =HC. ∵AC =3,AB =5,∴AF =AC =3,BF =AB -AF =5-3=2. ∵AD 为△ABC 的中线, ∴DH 是△BCF 的中位线. ∴DH =12BF =1.小专题(三) 平行四边形的证明思路类型1 若已知条件出现在四边形的边上,则考虑:①两组对边分别平行的四边形是平行四边形; ②两组对边分别相等的四边形是平行四边形; ③一组对边平行且相等的四边形是平行四边形1.如图,在▱ABCD 中,点E 在AB 的延长线上,且EC ∥BD.求证:四边形BECD 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴AB ∥CD ,即BE ∥DC. 又∵EC ∥BD ,∴四边形BECD 是平行四边形.2.如图,已知:AB ∥CD ,BE ⊥AD ,垂足为点E ,CF ⊥AD ,垂足为点F ,并且AE =DF.求证:(1)BE =CF ;(2)四边形BECF 是平行四边形. 证明:(1)∵BE ⊥AD ,CF ⊥AD , ∴∠AEB =∠DFC =90°. ∵AB ∥CD ,∴∠A =∠D . 在△AEB 和△DFC 中,⎩⎨⎧∠AEB =∠DFC ,AE =DF ,∠A =∠D ,∴△AEB ≌△DFC (ASA). ∴BE =CF .(2)∵BE ⊥AD ,CF ⊥AD , ∴BE ∥CF . 又∵BE =CF ,∴四边形BECF 是平行四边形.3.如图,在▱ABCD 中,分别以AD ,BC 为边向内作等边△ADE 和等边△BCF ,连接BE ,DF.求证:四边形BEDF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴CD =AB ,AD =CB ,∠DAB =∠BCD. 又∵△ADE 和△BCF 都是等边三角形,∴DE =AD =AE ,CF =BF =BC ,∠DAE =∠BCF =60°.∴BF =DE ,CF =AE ,∠DCF =∠BCD -∠BCF ,∠BAE =∠DAB -∠DAE ,即∠DCF =∠BAE. 在△DCF 和△BAE 中,⎩⎨⎧CD =AB ,∠DCF =∠BAE ,CF =AE ,∴△DCF ≌△BAE(SAS ). ∴DF =BE. 又∵BF =DE ,∴四边形BEDF 是平行四边形.4.(2016·钦州)如图,DE 是△ABC 的中位线,延长DE 到F ,使EF =DE ,连接BF.求证:(1)BF =DC ;(2)四边形ABFD 是平行四边形.证明:(1)∵DE 是△ABC 的中位线, ∴CE =BE.在△DEC 和△FEB 中,⎩⎨⎧CE =BE ,∠CED =∠BEF ,DE =FE ,∴△DEC ≌△FEB(SAS ). ∴BF =DC.(2)∵DE 是△ABC 的中位线, ∴DE ∥AB ,且DE =12AB.又∵EF =DE , ∴DE =12DF.∴DF =AB. 又∵DF ∥AB ,∴四边形ABFD 是平行四边形.5.如图,已知D ,E ,F 分别在△ABC 的边BC ,AB ,AC 上,且DE ∥AF ,DE =AF ,将FD 延长到点G ,使FG=2DF,连接AG,则ED与AG互相平分吗?请说明理由.解:ED与AG互相平分.理由:连接EG,AD.∵DE∥AF,DE=AF,∴四边形AEDF是平行四边形.∴AE∥DF,AE=DF.又∵FG=2DF,∴DG=DF.∴AE=DG.又∵AE∥DG,∴四边形AEGD是平行四边形.∴ED与AG互相平分.类型2若已知条件出现在四边形的角上,则考虑利用“两组对角分别相等的四边形是平行四边形”6.如图,在四边形ABCD中,AD∥BC,∠A=∠C.求证:四边形ABCD是平行四边形.证明:∵AD∥BC,∴∠A+∠B=180°,∠C+∠D=180°.∵∠A=∠C,∴∠B=∠D.∴四边形ABCD是平行四边形.类型3若已知条件出现在对角线上,则考虑利用“对角线互相平分的四边形是平行四边形”7.如图,▱ABCD 的对角线相交于点O ,直线EF 经过点O ,分别与AB ,CD 的延长线交于点E ,F.求证:四边形AECF 是平行四边形.证明:∵四边形ABCD 是平行四边形, ∴OD =OB ,OA =OC ,AB ∥CD. ∴∠DFO =∠BEO ,∠FDO =∠EBO. 在△FDO 和△EBO 中,⎩⎨⎧∠DFO =∠BEO ,∠FDO =∠EBO ,OD =OB ,∴△FDO ≌△EBO(AAS). ∴OF =OE . 又∵OA =OC ,∴四边形AECF 是平行四边形.8.如图,▱ABCD 中,点O 是对角线AC 的中点,EF 过点O ,与AD ,BC 分别相交于点E ,F ,GH 过点O ,与AB ,CD 分别相交于点G ,H ,连接EG ,FG ,FH ,EH.求证:四边形EGFH 是平行四边形.证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC.∴∠EAO =∠FCO. ∵O 为AC 的中点, ∴OA =OC.在△OAE 和△OCF 中,⎩⎨⎧∠EAO =∠FCO ,OA =OC ,∠AOE =∠COF ,∴△OAE ≌△OCF(ASA ). ∴OE =OF.同理可证得OG =OH.∴四边形EGFH 是平行四边形.周周练(18.1)(时间:45分钟 满分:100分)一、选择题(每小题 4分,共32分)1.下面的性质中,平行四边形不一定具有的是(A )A .对角互补B .邻角互补C .对角相等D .对边相等2.平行四边形的周长为24 cm ,相邻两边的差为2 cm ,则平行四边形的各边长为(B )A .4 cm ,8 cm ,4 cm ,8 cmB .5 cm ,7 cm ,5 cm ,7 cmC .5.5 cm ,6.5 cm ,5.5 cm ,6.5 cmD .3 cm ,9 cm ,3 cm ,9 cm3.下列说法错误的是(D)A .对角线互相平分的四边形是平行四边形B .两组对边分别相等的四边形是平行四边形C .一组对边平行且相等的四边形是平行四边形D .一组对边相等,另一组对边平行的四边形是平行四边形 4.(2017·丽水)如图,在▱ABCD 中,连接AC ,∠B =∠CAD =45°,AB =2,则BC 的长是(C)A. 2B .2C .2 2D .4第4题图 第5题图5.(2016·株洲)如图,已知四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,E 是BC 的中点,以下说法错误的是(D)A .OE =12DCB .OA =OCC .∠BOE =∠OBAD .∠OBE =∠OCE6.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E ,∠CBD =90°,BC =4,BE =ED =3,AC =10,则四边形ABCD 的面积为(D )A .6B .12C .20D .247.在▱ABCD 中,AD =8,AE 平分∠BAD 交BC 于点E ,DF 平分∠ADC 交BC 于点F ,且EF =2,则AB 的长为(D)A .3B .5C .2或3D .3或58.如图,点A ,B 为定点,定直线l ∥AB ,P 是l 上一动点,点M ,N 分别为PA ,PB 的中点,对下列各值:①线段MN 的长;②△PAB 的周长;③△PMN 的面积;④直线MN ,AB 之间的距离;⑤∠APB 的大小.其中会随点P 的移动而变化的是(B )A.②③B.②⑤C.①③④D.④⑤二、填空题(每小题4分,共24分)9.如图所示,在▱ABCD中,E,F分别为AB,DC的中点,连接DE,EF,FB,则图中共有4个平行四边形.第9题图第10题图10.(2016·江西)如图所示,在▱ABCD中,∠C=40°,过点D作AD的垂线,交AB于点E,交CB的延长线于点F,则∠BEF的度数为50°.11.(2016·河南)如图,在▱ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是110°.12.在▱ABCD中,AB,BC,CD的长度分别为2x+1,3x,x+4,则▱ABCD的周长是32.13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件答案不唯一,如:AB=CD(写一个即可),使四边形ABCD是平行四边形.第13题图第14题图14.(2017·河池)如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是8.三、解答题(共44分)15.(10分)(2017·山西)已知:如图,在▱ABCD中,延长AB至点E,延长CD至点F,使得BE=DF.连接EF,与对角线AC交于点O.求证:OE=OF.证明:证法一:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵BE=DF,∴AB+BE=CD+DF,即AE=CF.∵AB∥CD,∴AE∥CF.∴∠E=∠F.又∵∠AOE=∠COF,∴△AOE≌△COF(AAS).∴OE=OF.证法二:连接AF,CE.∵四边形ABCD是平行四边形,∴AB ∥CD ,AB =CD.∵BE =DF ,∴AB +BE =CD +DF ,即AE =CF. ∵AB ∥CD ,∴AE ∥CF.∴四边形AECF 是平行四边形.∴OE =OF.16.(10分)(2016·黄冈)如图,在▱ABCD 中,E ,F 分别是边AD ,BC 的中点,对角线AC 分别交BE ,DF 于点G ,H.求证:AG =CH.证明:∵四边形ABCD 是平行四边形, ∴AD =BC ,AD ∥BC.∴∠HCF =∠GAE.又∵E ,F 分别是边AD ,BC 的中点, ∴AE =FC ,DE =BF.又∵DE ∥BF ,∴四边形BFDE 是平行四边形. ∴∠BED =∠BFD.∴∠AEG =∠CFH. 在△AGE 和△CHF 中,⎩⎨⎧∠GAE =∠HCF ,AE =CF ,∠AEG =∠CFH ,∴△AGE ≌△CHF(ASA ).∴AG =CH.17.(12分)已知:如图,在四边形ABCD 中,AB =CD ,E ,F ,G 分别是AD ,BC ,BD 的中点,GH 平分∠EGF 交EF 于点H.(1)猜想:GH 与EF 间的关系是GH 垂直平分EF ; (2)证明你的猜想.证明:∵E ,G 分别是AD ,BD 的中点, ∴EG =12AB.∵F ,G 分别是BC ,BD 的中点, ∴GF =12CD.∵AB =CD , ∴EG =GF.又∵GH 平分∠EGF , ∴GH 垂直平分EF.18.(12分)如图1,在▱ABCD 中,∠ABC ,∠ADC 的平分线分别交AD ,BC 于点E ,F.(1)求证:四边形EBFD 是平行四边形; (2)小明在完成(1)的证明后继续进行了探索.连接AF ,CE ,分别交BE ,FD 于点G ,H ,得到四边形EGFH.此时,他猜想四边形EGFH 是平行四边形,请在框图(图2)中补全他的证明思路.图1小明的证明思路由(1)可知BE ∥DF ,要证明四边形EGFH 是平行四边形,只需证GF ∥EH .由(1)可证ED =BF ,则AE =FC ,又由AE ∥CF , 故四边形AFCE 是平行四边形,从而可证得四边 形EGFH 是平行四边形.图2证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,∠ABC =∠ADC ,AD =BC. ∵BE 平分∠ABC ,∴∠ABE =∠EBC =12∠ABC.∵DF 平分∠ADC ,∴∠ADF =∠CDF =12∠ADC.∴∠EBC =∠ADF.∵AD ∥BC ,∴∠AEB =∠EBC. ∴∠AEB =∠ADF. ∴EB ∥DF. 又∵ED ∥BF ,∴四边形EBFD 是平行四边形.18.2特殊的平行四边形18.2.1矩形第1课时矩形的性质01基础题知识点1矩形的性质1.下列性质中,矩形具有但平行四边形不一定具有的是(C)A.对边相等B.对角相等C.对角线相等D.对边平行2.如图,在矩形ABCD中,对角线AC,BD交于点O,以下说法错误的是(D)A.∠ABC=90°B.AC=BDC.OA=OB D.OA=AD第2题图第3题图3.如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是(C) A.8 B.6 C.4 D.24.如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为(B) A.30°B.60°C.90°D.120°第4题图第5题图5.(2017·怀化)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠AOB=60°,AC=6 cm,则AB的长是(A)A.3 cm B.6 cmC.10 cm D.12 cm6.如果矩形的一边长为6,一条对角线的长为10,那么这个矩形的另一边长是8.7.如图,已知矩形的对角线AC与BD相交于点O,若AO=1,则BD=2.第7题图第8题图8.(2016·昆明)如图,E,F,G,H分别是矩形ABCD各边的中点,AB=6,BC=8,则四边形EFGH的面积是24.9.(2016·岳阳)已知:如图,在矩形ABCD中,点E在边AB上,点F在边BC上,且BE=CF,EF⊥DF.求证:BF=CD.证明:∵四边形ABCD为矩形,∴∠B=∠C=90°.∴∠BFE+∠BEF=90°.∵EF ⊥DF ,∴∠DFE =90°.∴∠BFE +∠CFD =90°. ∴∠BEF =∠CFD .在△BEF 和△CFD 中,⎩⎨⎧∠BEF =∠CFD ,BE =CF ,∠B =∠C ,∴△BEF ≌△CFD (ASA).∴BF =CD .知识点2 直角三角形斜边上的中线等于斜边的一半10.如图,在Rt △ABC 中,∠C =90°,AB =10 cm ,D 为AB 的中点,则CD =5cm .第10题图 第11题图11.如图,在Rt △ABC 中,∠ACB =90°,D ,E ,F 分别是AB ,BC ,CA 的中点,若CD =5 cm ,则EF =5cm .12.如图,D ,E ,F 分别是△ABC 各边的中点,AH 是高,如果ED =5 cm ,求HF 的长.解:由题意得:DE 是△ABC 的中位线, ∴DE =12AC .∵HF 是Rt △AHC 的斜边AC 的中线, ∴HF =12AC .∴HF =DE =5 cm.02 中档题 13.(2016·荆门)如图,在矩形ABCD 中(AD>AB),点E 是BC 上一点,且DE =DA ,AF ⊥DE ,垂足为点F.在下列结论中,不一定正确的是(B)A .△AFD ≌△DCEB .AF =12ADC .AB =AFD .BE =AD -DF第13题图 第14题图14.(2016·绵阳)如图,▱ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为(B)A .3 cmB .4 cmC .5 cmD .8 cm15.如图,已知在矩形ABCD 中,对角线AC ,BD 相交于点O ,AE ⊥BD 于点E ,若∠DAE ∶∠BAE =3∶1,则∠EAC 的度数是(C )A .18°B .36°C .45°D .72°第15题图 第16题图16.(2016·宜宾)如图,点P 是矩形ABCD 的边AD 上的一动点,矩形的两条边AB ,BC 的长分别是6和8,则点P 到矩形的两条对角线AC 和BD 的距离之和是(A )A .4.8B .5C .6D .7.2 17.(2017·广西四市同城)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,点E ,F 在BD 上,BE =DF.(1)求证:AE =CF ;(2)若AB =6,∠COD =60°,求矩形ABCD 的面积.解:(1)证明:∵四边形ABCD 是矩形,∴OA =OC ,OB =OD ,AC =BD ,∠ABC =90°. ∵BE =DF ,∴OE =OF . 在△AOE 和△COF 中,⎩⎨⎧OA =OC ,∠AOE =∠COF ,OE =OF ,∴△AOE ≌△COF (SAS). ∴AE =CF .(2)∵OA =OC ,OB =OD ,AC =BD ,∴OA =OB . ∵∠AOB =∠COD =60°, ∴△AOB 是等边三角形.∴OA =AB =6.∴AC =2OA =12.在Rt △ABC 中,BC =AC 2-AB 2=63,∴S 矩形ABCD =AB ·BC =6×63=36 3.18.如图,矩形ABCD 的对角线AC 与BD 相交于点O ,延长CB 到点E ,使BE =BC ,连接AE.求证:(1)四边形ADBE 是平行四边形;(2)若AB =4,OB =52,求四边形ADBE 的周长.证明:(1)∵四边形ABCD为矩形,∴AD∥BC,AD=BC.又∵BE=BC,且点C,B,E在一条直线上,∴AD∥BE,AD=BE.∴四边形ADBE是平行四边形.(2)∵四边形ABCD为矩形,∴∠BAD=90°,OB=OD.∴BD=2OB=5.在Rt△BAD中,AD=52-42=3.又∵四边形ADBE为平行四边形,∴BE=AD=3,AE=BD=5.03综合题19.如图,将长8 cm,宽4 cm的矩形纸片ABCD折叠,使点A与点C重合,则折痕EF的长为.习题解析第2课时矩形的判定01基础题知识点1有一个角是直角的平行四边形是矩形1.下列说法正确的是(D)A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形D.对角互补的平行四边形是矩形2.如图,在△ABC中,AB=AC,AD是BC边上的中线,四边形ADBE是平行四边形,求证:四边形ADBE 是矩形.解:∵AB=AC,AD是BC边上的中线,∴AD⊥BC.∴∠ADB=90°.又∵四边形ADBE是平行四边形,∴四边形ADBE是矩形.3.(2016·内江)如图所示,△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点;(2)若AB=AC,试判断四边形AFBD的形状,并证明你的结论.解:(1)证明:∵AF∥BC,∴∠AFC=∠FCB.又∵∠AEF=∠DEC,AE=DE,∴△AEF≌△DEC(AAS).∴AF=DC.又∵AF=BD,∴BD=DC,即D是BC的中点.(2)四边形AFBD是矩形.证明:∵AF∥BC,AF=BD,∴四边形AFBD是平行四边形.∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADB=90°.∴四边形AFBD是矩形.知识点2对角线相等的平行四边形是矩形4.能判断四边形是矩形的条件是(C)A.两条对角线互相平分B.两条对角线相等C.两条对角线互相平分且相等D.两条对角线互相垂直5.如图,四边形ABCD的对角线AC,BD相交于点O,AD∥BC,AC=BD.试添加一个条件答案不唯一,如:AB ∥CD ,使四边形ABCD 为矩形.6.如图,矩形ABCD 的对角线相交于点O ,点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,请问四边形EFGH 是矩形吗?请说明理由.解:四边形EFGH 是矩形. 理由:∵四边形ABCD 是矩形,∴AC =BD ,AO =CO ,BO =DO.∴AO =CO =BO =DO.∵点E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点, ∴EO =FO =GO =HO.∴OE =OG ,OF =OH. ∴四边形EFGH 是平行四边形.又∵EO +GO =FO +HO ,即EG =FH ,∴四边形EFGH 是矩形.知识点3 有三个角是直角的四边形是矩形7.已知O 为四边形ABCD 对角线的交点,下列条件能使四边形ABCD 成为矩形的是(D )A .OA =OC ,OB =OD B .AC =BD C .AC ⊥BDD .∠ABC =∠BCD =∠CDA =90°8.已知:如图,在▱ABCD 中,AF ,BH ,CH ,DF 分别是∠BAD ,∠ABC ,∠BCD ,∠ADC 的平分线.求证:四边形EFGH 为矩形.证明:∵四边形ABCD 是平行四边形, ∴∠DAB +∠ADC =180°.∵AF ,DF 分别平分∠DAB ,∠ADC , ∴∠FAD =∠BAF =12∠DAB ,∠ADF =∠CDF =12∠ADC.∴∠FAD +∠ADF =90°.∴∠AFD =90°. 同理可得:∠BHC =∠HEF =90°. ∴四边形EFGH 是矩形. 02 中档题9.以下条件不能判定四边形ABCD 是矩形的是(D )A.AB=CD,AD=BC,∠A=90°B.OA=OB=OC=ODC.AB=CD,AB∥CD,AC=BDD.AB=CD,AB∥CD,OA=OC,OB=OD10.(2016·菏泽)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论:①AC=5;②∠A+∠C =180°;③AC⊥BD;④AC=BD,正确的有(B)A.①②③B.①②④C.②③④D.①③④11.如图,△ABC中,AC的垂直平分线分别交AC,AB于点D,F,BE⊥DF交DF的延长线于点E,已知∠A=30°,BC=2,AF=BF,则四边形BCDE的面积是(A)A.2 3 B.3 3C.4 D.4 3第11题图第12题图12.如图,在四边形ABCD中,对角线AC⊥BD,垂足为O,点E,F,G,H分别为边AD,AB,BC,CD 的中点.若AC=8,BD=6,则四边形EFGH的面积为12.13.如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.(1)求证:四边形ABCF是矩形;(2)若ED=EC,求证:EA=EG.证明:(1)∵AB∥DC,FC=AB,∴四边形ABCF是平行四边形.又∵∠B=90°,∴四边形ABCF是矩形.(2)∵四边形ABCF是矩形,∴∠AFC=∠AFD=90°.∴∠DAF=90°-∠D,∠CGF=90°-∠ECD.∵ED=EC,∴∠D=∠ECD.∴∠DAF=∠CGF.又∵∠EGA=∠CGF,∴∠DAF=∠EGA.∴EA=EG.14.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接BD,DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)∵在▱ABCD 中,AD =BC ,AB =CD ,AD ∥CB , ∴∠A =∠EBC.在△ABD 和△BEC 中,⎩⎨⎧AB =BE ,∠A =∠EBC ,AD =BC ,∴△ABD ≌△BEC(SAS ).(2)∵在▱ABCD 中,AB ∥ CD ,且AB =BE , BE ∥CD.∴四边形BECD 为平行四边形. ∴OB =12BC ,OE =12ED.∵∠BOD =2∠A =2∠EBC ,且∠BOD =∠EBC +∠BEO ,∴∠EBC =∠BEO.∴OB =OE.∴BC =ED. ∴四边形BECD 是矩形.03 综合题15.如图,在△ABC 中,点O 是边AC 上一个动点,过O 作直线MN ∥BC.设MN 交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F.(1)求证:OE =OF ;(2)若CE =12,CF =5,求OC 的长;(3)当点O 在边AC 上运动到什么位置时,四边形AECF 是矩形?并说明理由.视频讲解解:(1)证明:∵CF 平分∠ACD ,且MN ∥BD , ∴∠ACF =∠FCD =∠CFO. ∴OF =OC.同理可证:OC =OE. ∴OE =OF.(2)由(1),知∠OCF =∠OFC ,∠OCE =∠OEC , ∴∠OCF +∠OCE =∠OFC +∠OEC.∵(∠OCF +∠OCE)+(∠OFC +∠OEC)=180°, ∴∠ECF =∠OCF +∠OCE =90°. ∴EF =CE 2+CF 2=122+52=13. 又∵OE =OF , ∴OC =12EF =132.(3)当点O 移动到AC 中点时,四边形AECF 为矩形.理由:连接AE ,AF.当点O 移动到AC 中点时,OA =OC ,。
2.2.1平行四边形的对角线的性质-湘教版八年级数学下册教案
2.2.1 平行四边形的对角线的性质-湘教版八年级数学下册教案一、教学目标1.知道两条相交直线之间的夹角是135度,会用角度计算工具求出夹角的度数;2.知道平行四边形的对角线互相平分;3.了解对角线的长度关系;4.能够运用对角线的性质解决实际问题。
二、教学重点1.平行四边形的对角线互相平分;2.对角线的长度关系。
三、教学难点对角线的长度关系及运用。
四、教学过程1. 导入新课通过下面的问题让学生思考:对角线究竟是什么?•如何看待一条直线?•两条直线式什么关系?•空间中究竟有多少相交的点?这些问题引导学生思考直线和平面几何的基础知识,从而更好地导入本课的新知。
2. 示范引入本课将介绍平行四边形对角线的性质。
通过以往的教学,学生已经掌握了平行四边形的基本概念。
现在,我们将进一步展开平行四边形的学习,并让学生掌握平行四边形对角线的长度关系和互相平分的性质。
3. 学生引入请同学回忆一下,平行四边形的定义是什么?如何确定平行四边形?接着,让学生回忆一下三角形的对角线的性质,并与平行四边形的对角线做相关比较。
4. 规范举例请教师在板书或课件上标注出一个平行四边形,并画出对角线和其他有关的线条。
让学生自行观察,找出平行四边形对角线的性质并记录下来。
5. 教师讲解1.平行四边形对角线的性质:互相平分。
2.平行四边形两条对角线的长度相等。
让学生跟着教师的讲解,自行归纳和总结出对角线的长度关系,以及如何求对角线的长度。
6. 小组探究让学生分为小组,将教师发给每组的试题分配给不同的组员。
每个组员首先独立思考,然后与同组成员进行讨论,最后向全班报告各自的答案和解题思路。
试题如下:1.已知矩形ABCD,AC为一对角线,BD为另一对角线,AC=15cm, BD=20cm,求矩形的周长。
2.如图所示,矩形ABCD中,AC为对角线,则∠ABC的度数是多少?3.四边形ABCD是平行四边形,M是对角线BD上的一点,连接AM交CD于点N,且AN=DN,证明:CM≥MN。
初中数学湘教版八年级下册第2章 四边形2.2 平行四边形-章节测试习题(4)
章节测试题1.【答题】如图,把平行四边形ABCD折叠,使点C与点A重合,这时点D落在D 1,折痕为EF,若∠BAE=55°,则∠D 1 AD=______°.【答案】55【分析】由平行四边形的性质和折叠的性质得出∠D 1 AE=∠BAD,得出∠D 1 AD=∠BAE=55°即可.【解答】解:∵四边形ABCD是平行四边形,∴∠BAD=∠C,由折叠的性质得:∠D 1 AE=∠C,∴∠D 1 AE=∠BAD,∴∠D 1 AD=∠BAE=55°;故答案为:55°.【点评】本题考查了平行四边形的性质、折叠的性质;由平行四边形和折叠的性质得出∠D 1 AE=∠BAD是解决问题的关键.2.【答题】在平行四边形ABCD中,∠BAD的平分线AE交BC于点E,且BE=3,若平行四边形ABCD的周长是16,则EC等于______.【答案】2【分析】由平行四边形的性质和已知条件证出∠BAE=∠BEA,证出AB=BE=3;求出AB+BC=8,得出BC=5,即可得出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AB=CD,AD=BC,∴∠AEB=∠DAE,∵平行四边形ABCD的周长是16,∴AB+BC=8,∵AE是∠BAD的平分线,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴AB=BE=3,∴BC=5,∴EC=BC-BE=5-3=2;故答案为:2.【点评】此题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证出AB=BE是解决问题的关键.3.【答题】如图,在▱ABCD中,AB=cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长______cm.【答案】4【分析】根据平行四边形的性质得到AB=CD=cm,AD=BC=4cm,AO=CO,BO=DO,根据勾股定理得到OC=3cm,BD=10cm,于是得到结论.【解答】解:在▱ABCD中,∵AB=CD=cm,AD=BC=4cm,AO=CO,BO=DO,∵AC⊥BC,∴AC==6cm,∴OC=3cm,∴BO==5cm,∴BD=10cm,∴△DBC的周长-△ABC的周长=BC+CD+BD-(AB+BC+AC)=BD-AC=10-6=4cm,故答案为:4.【点评】本题考查了平行四边形的性质,勾股定理,熟练掌握平行四边形的性质是解题的关键.4.【答题】如图,在▱ABCD中,BE平分∠ABC,BC=6,DE=2,则▱ABCD的周长等于______.【答案】20【分析】根据四边形ABCD为平行四边形可得AE∥BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得结果.【解答】解:∵四边形ABCD为平行四边形,∴AE∥BC,AD=BC,AB=CD,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∴AE+DE=AD=BC=6,∴AE+2=6,∴AE=4,∴AB=CD=4,∴▱ABCD的周长=4+4+6+6=20,故答案为:20.【点评】本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.5.【答题】若平行四边形中两个内角的度数比为1:2,则其中较大的内角是______度.【答案】120【分析】根据平行四边形的性质得出AB∥CD,推出∠B+∠C=180°,根据∠B:∠C=1:2,求出∠C即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠B+∠C=180°,∵∠B:∠C=1:2,∴∠C= ×180°=120°,故答案为:120.【点评】本题考查了平行线的性质和平行四边形的性质的应用,能熟练地运用性质进行计算是解此题的关键,题目比较典型,难度不大.6.【答题】如图,在▱ABCD中,AB=,AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为______.【答案】3【分析】由点B恰好与点C重合,可知AE垂直平分BC,根据勾股定理计算AE的长即可.【解答】解:∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴AE==3.故答案为:3.【点评】本题考查了翻折变换,平行四边形的性质,勾股定理,根据翻折特点发现AE垂直平分BC是解决问题的关键.7.【答题】如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是______.【答案】20【分析】根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出▱ABCD 的周长.【解答】∵DE平分∠ADC,∴∠ADE=∠CDE,∵▱ABCD中,AD∥BC,∴∠ADE=∠CED,∴∠CDE=∠CED,∴CE=CD,∵在▱ABCD中,AD=6,BE=2,∴AD=BC=6,∴CE=BC-BE=6-2=4,∴CD=AB=4,∴▱ABCD的周长=6+6+4+4=20.故答案为:20.【点评】本题考查了平行四边形对边平行,对边相等的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.8.【答题】如图,在▱ABCD中,AB=3,BC=5,对角线AC、BD相交于点O,过点O作OE⊥AC,交AD于点E,连结CE,则△CDE的周长为______.【答案】8【分析】根据平行四边形的性质,得知AO=OC,由于OE⊥AC,根据线段垂直平分线的性质,可知AE=EC,则△CDE的周长为CD与AD之和,即可得解.【解答】根据平行四边形的性质,∴AO=OC,∵OE⊥AC,∴OE为AC的垂直平分线,∴AE=EC,∴△CDE的周长为:CD+AD=5+3=8,故答案为:8.【点评】本题考查了平行四边形的性质以及线段垂直平分线的性质,熟记各性质与定理是解题的关键.9.【答题】如图,平行四边形ABCD中,AB=5,AD=3,AE平分∠DAB交BC的延长线于F 点,则CF=______.【答案】2【分析】根据角平分线的定义可得∠1=∠2,再根据两直线平行,内错角相等可得∠2=∠3,∠1=∠F,然后求出∠1=∠3,∠4=∠F,再根据等角对等边的性质可得AD=DE,CE=CF,根据平行四边形对边相等代入数据计算即可得解.【解答】解:如图,∵AE平分∠DAB,∴∠1=∠2,平行四边形ABCD中,AB∥CD,AD∥BC,∴∠2=∠3,∠1=∠F,又∵∠3=∠4(对顶角相等),∴∠1=∠3,∠4=∠F,∴AD=DE,CE=CF,∵AB=5,AD=3,∴CE=DC-DE=AB-AD=5-3=2,∴CF=2.故答案为:2.【点评】本题考查了平行四边形对边相等,对边平行的性质,角平分线的定义,平行线的性质,比较简单,熟记性质是解题的关键.10.【答题】如图,平行四边形ABCD的对角线相交于点O,且AB≠AD,过O作OE⊥BD交BC于点E.若△CDE的周长为10,则平行四边形ABCD的周长为______.【答案】20【分析】由四边形ABCD是平行四边形,根据平行四边形的对角线互相平分、对边相等,即可得OB=OD,AB=CD,AD=BC,又由OE⊥BD,即可得OE是BD的垂直平分线,然后根据线段垂直平分线的性质,即可得BE=DE,又由△CDE的周长为10,即可求得平行四边形ABCD的周长.【解答】∵四边形ABCD是平行四边形,∴OB=OD,AB=CD,AD=BC,∵OE⊥BD,∴BE=DE,∵△CDE的周长为10,即CD+DE+EC=10,∴平行四边形ABCD的周长为:AB+BC+CD+AD=2(BC+CD)=2(BE+EC+CD)=2(DE+EC+CD)=2×10=20.故答案为:20.【点评】此题考查了平行四边形的性质与线段垂直平分线的性质.此题难度适中,注意掌握数形结合思想与转化思想的应用.11.【答题】如图,将平行四边形ABCD的一边BC延长至E,若∠A=110°,则∠1=______°.【答案】70【分析】根据平行四边形的对角相等求出∠BCD的度数,再根据平角等于180°列式计算即可得解.【解答】∵平行四边形ABCD的∠A=110°,∴∠BCD=∠A=110°,∴∠1=180°-∠BCD=180°-110°=70°.故答案为:70°.【点评】本题考查了平行四边形的对角相等的性质,是基础题,比较简单,熟记性质是解题的关键.12.【答题】如图,在周长为20的平行四边形ABCD中,AB<AD,AC与BD交于点O,OE⊥BD,交AD于点E,则△ABE的周长为______.【答案】10【分析】根据平行四边形的性质求出AB+AD=10,根据线段的垂直平分线求出DE=BE,求出△ABE的周长等于AB+AD,代入求出即可.【解答】∵平行四边形ABCD,∴AD=BC,AB=CD,OB=OD,∵OE⊥BD,∴BE=DE,∵平行四边形ABCD的周长是20,∴2AB+2AD=20,∴AB+AD=10,∴△ABE的周长是AB+AE+BE=AB+AE+DE=AB+AD=10,故答案为10.【点评】本题考查了线段垂直平分线性质和平行四边形的性质的应用,关键是求出AD+AB的长和求出△ABE的周长=AB+AD,题目具有一定的代表性,难度也不大,是一道比较好的题目.13.【答题】如图,在▱ABCD中,BE⊥AD于点E,若∠ABE=50°,则∠C=______°.【答案】40【分析】由于BE⊥AD于点E,则∠AEB=90°,又∵∠ABE=50°,∠A=90°-∠ABE,∠C=∠A,得出答案.【解答】∵BE⊥AD于点E,∴∠AEB=90°,又∵∠ABE=50°,∴∠A=90°-∠ABE=90°-50°=40°,又∵平行四边形的对角相等,∴∠C=∠A=40°.故答案为:40°.【点评】本题主要考查平行四边形的性质的知识点,比较容易解答,解答本题的关键是熟练掌握平行四边形的性质.14.【答题】在▱ABCD中,AB=6cm,BC=8cm,则▱ABCD的周长为______ cm.【答案】28【分析】根据平行四边形的性质推出AB=CD=6,BC=AD=8,代入AB+BC+CD+AD即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD=6,BC=AD=8,∴平行四边形ABCD的周长是AB+BC+CD+AD=6+8+6+8=28cm.故答案为:28.【点评】本题主要考查对平行四边形的性质的理解和掌握,能熟练地运用平行四边形的性质进行计算是解此题的关键.15.【答题】在▱ABCD中,已知∠A=110°,则∠D=______°.【答案】70【分析】根据平行四边形的性质得出AB∥CD,根据平行线的性质推出∠A+∠D=180°,即可求出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A+∠D=180°,∵∠A=110°,∴∠D=70°.故答案为:70.【点评】本题主要考查对平行四边形的性质,平行线的性质等知识点的理解和掌握,能根据性质推出∠A+∠D=180°是解此题的关键.16.【答题】在▱ABCD中,∠D=120°,则∠1=______ 度.【答案】60【分析】根据平行四边形的对角相等得到:∠D=∠B,再根据外角的知识点就能填上答案.【解答】∵四边形ABCD是平行四边形,∴∠D=∠B,∵∠D=120°,∴∠B=120°,∵∠1+∠B=180°,∴∠1=60°.故答案为:60°.【点评】本题主要考查了平行四边形的性质,解此题的关键是利用平行四边形的对角相等的性质.17.【答题】如图所示,平行四边形ABCD的周长是18cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5cm,则边AB的长是______cm.【答案】2【分析】利用平行四边形的对角线互相平分这一性质,确定已知条件中两三角形周长的差也是平行四边形两邻边边长的差,进而确定平行四边形的边长.【解答】∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵△AOD的周长=OA+OD+AD,△AOB的周长=OA+OB+AB,又∵△AOD与△AOB的周长差是5cm,∴AD=AB+5,设AB=x,AD=5+x,则2(x+5+x)=18,解得x=2,即AB=2cm.故答案为2.【点评】本题是应用平行四边形性质的典型题目,解决此题运用了平行四边形的对边相等和角平分线互相平分这两条性质,题目难度不大.18.【答题】如图,在▱ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是______.【答案】3<x<11【分析】根据平行四边形的性质易知OA=7,OB=4,根据三角形三边关系确定范围.【解答】解:∵ABCD是平行四边形,AC=14,BD=8,∴OA= AC=7,OB= BD=4,∴7-4<x<7+4,即3<x<11.故答案为3<x<11.【点评】此题考查了平行四边形的性质及三角形三边关系定理,有关“对角线范围”的题,应联系“三角形两边之和、差与第三边关系”知识点来解决.19.【答题】如图,在平行四边形ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是______度.【答案】65【分析】利用平行四边形对角相等和邻角互补先求出∠BCD和∠D,再利用等边对等角的性质解答.【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°-130°=50°,∵DE=DC,∴∠ECD= (180°-50°)=65°,∴∠ECB=130°-65°=65°.故答案为65°.【点评】本题主要考查平行四边形对角相等和邻角互补的性质,熟练掌握性质是解题的关键.20.【答题】如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是______.【答案】12【分析】根据AD∥BC和已知条件,推得AB=AE,由E是AD边上的中点,推得AD=2AB,再求平行四边形ABCD的周长.【解答】∵AD∥BC,∴∠AEB=∠EBC,∵∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵E是AD边上的中点,∴AD=2AB,∵AB=2,∴AD=4,∴平行四边形ABCD的周长=2(4+2)=12.故答案为12.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现等角时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.。
【精品专题】2021年八年级数学下平行四边形对角线的性质含答案与试题解析
2021年平行四边形对角线的性质命题点1 平行四边形的性质——对角线互相平分1.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对2.(2020•益阳)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.63.(2018春•蚌埠期中)如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1 4.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28B.24C.21D.145.(2020春•新余期末)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E ,AB =√3,AC =2,BD =4,则AE 的长为( )A .2√217B .32C .√217D .√326.(2020春•红旗区校级期中)如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB边上一动点,以P A 、PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为 .命题点2 求平行四边形的面积7.(2017春•渝中区校级期中)如图,若▱ABCD 的周长为36cm ,过点D 分别作AB ,BC 边上的高DE ,DF ,且DE =4cm ,DF =5cm ,▱ABCD 的面积为( )cm 2.A .40B .32C .36D .508.(2020春•灵丘县期末)如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24命题点3 利用平行四边形的对角线互相平分证线段相等9.(2019春•邢台期末)如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,E 、G 分别是OA 、OC 的中点,过点O 作任一条直线交AD 于点H ,交BC 于点F ,求证:(1)OH=OF;(2)HG=FE.10.(2020•重庆)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.命题点4 利用平行四边形的对角线互相平分求线段的和11.(2017春•九江期末)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.命题点5 利用平行四边形的对角线互相平分研究面积关系12.(2017春•项城市期末)如图,点O为▱ABCD的对角线AC,BD的交点,∠BCO=90°,∠BOC=60°,BD=8,点E是OD上的一动点,点F是OB上的一动点(E,F不与端点重合),且DE=OF,连接AE,CF.(1)求线段EF的长;(2)若△OAE的面积为S1,△OCF的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着DE的增大,S1+S2的值是如何发生变化的?(3)求AE+CF的最小值.命题点3 利用平行四边形的对角线互相平分探究线段关系等13.(2019春•朝阳区期中)【感知】如图①,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交边AD、BC于点E、F,易证:OE=OF(不需要证明);【探究】如图②,平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交边BA、DC的延长线于E、F,求证:OE=OF;【应用】连结图②中的DE、BF,其它条件不变,如图③,若AB=2AE,△AOE的面积为1,则四边形BEDF的面积为.2021年平行四边形对角线的性质参考答案与试题解析一.试题(共13小题)1.(2019•柳州)如图,在▱ABCD中,全等三角形的对数共有()A.2对B.3对C.4对D.5对【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC;OD=OB,OA=OC;∵OD=OB,OA=OC,∠AOD=∠BOC;∴△AOD≌△COB(SAS);①同理可得出△AOB≌△COD(SAS);②∵BC=AD,CD=AB,BD=BD;∴△ABD≌△CDB(SSS);③同理可得:△ACD≌△CAB(SSS).④因此本题共有4对全等三角形.故选:C.2.(2020•益阳)如图,▱ABCD的对角线AC,BD交于点O,若AC=6,BD=8,则AB的长可能是()A.10B.8C.7D.6【解答】解:∵四边形ABCD是平行四边形,∴OA=12AC=3,OB=12BD=4,在△AOB中:4﹣3<AB<4+3,即1<AB<7,∴AB的长可能为6.故选:D.3.(2018春•蚌埠期中)如图,在▱ABCD中,对角线AC,BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连结AF,CE,则下列结论:①CF=AE;②OE=OF;③DE=BF;④图中共有四对全等三角形.其中正确结论的个数是()A.4B.3C.2D.1【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD,△BCD的面积=△ABD的面积,∵AE⊥BD于点E,CF⊥BD于点F,∴CF∥AE,△BCD的面积=12BD•CF,△ABD的面积=12BD•AE,∴CF=AE,①正确;∴四边形CF AE是平行四边形,∴EO=FO,(故②正确);∵OB=OD,∴DE=BF,③正确;由以上可得出:△CDF≌△BAE,△CDO≌△BAO,△CDE≌△BAF,△CFO≌△AEO,△CEO≌△AFO,△ADF≌△CBE,△DOA≌△COB等.(故④错误).故正确的有3个.故选:B.4.(2019•遂宁)如图,▱ABCD中,对角线AC、BD相交于点O,OE⊥BD交AD于点E,连接BE,若▱ABCD的周长为28,则△ABE的周长为()A.28B.24C.21D.14【解答】解:∵四边形ABCD 是平行四边形,∴OB =OD ,AB =CD ,AD =BC ,∵平行四边形的周长为28,∴AB +AD =14∵OE ⊥BD ,∴OE 是线段BD 的中垂线,∴BE =ED ,∴△ABE 的周长=AB +BE +AE =AB +AD =14,故选:D .5.(2020春•新余期末)如图,▱ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,AB =√3,AC =2,BD =4,则AE 的长为( )A .2√217B .32C .√217D .√32【解答】解:∵AC =2,BD =4,四边形ABCD 是平行四边形,∴AO =12AC =1,BO =12BD =2,∵AB =√3,∴AB 2+AO 2=BO 2,∴∠BAC =90°,∵在Rt △BAC 中,BC =√AB 2+AC 2=√(√3)2+22=√7,S △BAC =12×AB ×AC =12×BC ×AE ,∴√3×2=√7AE ,∴AE =2√217, 故选:A .6.(2020春•红旗区校级期中)如图,在△ABC 中,∠BAC =45°,AB =AC =8,P 为AB边上一动点,以P A 、PC 为边作平行四边形P AQC ,则对角线PQ 的最小值为 4√2 .【解答】解:设AC、PQ交于点O,如图所示:∵四边形P AQC是平行四边形,∴AO=CO,OP=OQ,∵PQ最短也就是PO最短,∴过O作OP′⊥AB于点P′,∵∠BAC=45°,∴△AP′O是等腰直角三角形,∵AO=12AC=12×8=4,∴OP′=√22AO=2√2,∴PQ的最小值=2OP′=4√2,故答案为:4√2.7.(2017春•渝中区校级期中)如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为()cm2.A.40B.32C.36D.50【解答】解:∵▱ABCD 的周长为36cm ,∴AB +BC =18cm ①,∵过点D 分别作AB ,BC 边上的高DE ,DF ,且DE =4cm ,DF =5cm ,∴4AB =5BC ②,由①②得:AB =10cm ,BC =8cm ,∴▱ABCD 的面积为:AB •DE =40(cm 2).故选:A .8.(2020春•灵丘县期末)如图,▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,则阴影部分的面积为( )A .3B .6C .12D .24【解答】解:∵▱ABCD 中,AC .BD 为对角线,BC =3,BC 边上的高为2,∴S ▱ABCD =3×2=6,AD ∥BC ,∴OA =OC ,∠OAE =∠OCF ,在△AOE 和△COF 中,{∠OAE =∠OCF OA =OC ∠AOE =∠COF,∴△AOE ≌△COF (ASA ),∴S △AOE =S △COF ,同理:S △EOG =S △FOH ,S △DOG =S △BOH ,∴S 阴影=S △ABD =12S ▱ABCD =12×6=3.故选:A .9.(2019春•邢台期末)如图,平行四边形ABCD 的两条对角线AC 、BD 相交于点O ,E 、G分别是OA、OC的中点,过点O作任一条直线交AD于点H,交BC于点F,求证:(1)OH=OF;(2)HG=FE.【解答】证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,OA=OC,OD=OB,∴∠ADO=∠CBO,∠DHO=∠BFO,且OD=OB∴△DHO≌△BFO(AAS)∴OH=OF(2)∵E、G分别是OA、OC的中点,且OA=OC∴OG=OE,且OH=OF∴四边形HGFE是平行四边形∴HG=FE10.(2020•重庆)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,分别过点A,C作AE⊥BD,CF⊥BD,垂足分别为E,F.AC平分∠DAE.(1)若∠AOE=50°,求∠ACB的度数;(2)求证:AE=CF.【解答】(1)解:∵AE⊥BD,∴∠AEO=90°,∵∠AOE=50°,∴∠EAO=40°,∵CA平分∠DAE,∴∠DAC=∠EAO=40°,∵四边形ABCD是平行四边形,∴∠ACB=∠DAC=40°;(2)证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD,CF⊥BD,∴∠AEO=∠CFO=90°,∵∠AOE=∠COF,∴△AEO≌△CFO(AAS),∴AE=CF.11.(2017春•九江期末)如图,▱ABCD的对角线AC、BD相交于点O,EF过点O且与AB、CD分别相交于点E、F,连接EC.(1)求证:OE=OF;(2)若EF⊥AC,△BEC的周长是10,求▱ABCD的周长.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OD=OB,DC∥AB,∴∠FDO=∠EBO,在△DFO和△BEO中,{∠FDO=∠EBO OD=OB∠FOD=∠EOB,∴△DFO≌△BEO(ASA),∴OE=OF.(2)解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OA=OC,∴AE=CE,∵△BEC的周长是10,∴BC+BE+CE=BC+BE+AE=BC+AB=10,∴▱ABCD的周长=2(BC+AB)=2012.(2017春•项城市期末)如图,点O为▱ABCD的对角线AC,BD的交点,∠BCO=90°,∠BOC=60°,BD=8,点E是OD上的一动点,点F是OB上的一动点(E,F不与端点重合),且DE=OF,连接AE,CF.(1)求线段EF的长;(2)若△OAE的面积为S1,△OCF的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着DE的增大,S1+S2的值是如何发生变化的?(3)求AE+CF的最小值.【解答】解:(1)∵四边形ABCD是平行四边形,∴OD=OB,∵DE=OF,∴EF=OD=12BD=4;(2)S1+S2的值不变,理由如下:如图所示,连结AF,∵四边形ABCD是平行四边形,∴AO=OC,∴S△AOF=S△COF,∴S△ADE=S△COF,∴S1+S2=S△AEF=S△AOD,∵∠BCO=90°,∠BOC=60°,∴∠DAC=90°,∠AOD=60°,∴AO=12OD=2,在Rt△AOD中,AD=√3AO=2√3,∴S1+S2=S△AOD=12AD•OA=12×2√3×2=2√3;(3)当DE=OE时,AE+CF的值最小,此时E为OD的中点,∵∠OAD=90°,∴AE=12OD=2,同理CF=2,∴AE+CF的最小值=4.13.(2019春•朝阳区期中)【感知】如图①,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交边AD、BC于点E、F,易证:OE=OF(不需要证明);【探究】如图②,平行四边形ABCD中,对角线AC、BD相交于点O,过点O的直线EF分别交边BA、DC的延长线于E、F,求证:OE=OF;【应用】连结图②中的DE、BF,其它条件不变,如图③,若AB=2AE,△AOE的面积为1,则四边形BEDF的面积为12.【解答】【探究】证明:∵四边形ABCD 是平行四边形,∴AB ∥CD ,OA =CO ,∴∠OAE =∠OCF ,∠E =∠F ,在△AOE 和△COF 中,{∠OAE =∠OCF ∠E =∠F OA =OC,∴△AOE ≌△COF (AAS )∴OE =OF ;【应用】解:∵AB =2AE ,∴△AOB 的面积=2×△AOE 的面积=2,∴△BOE 的面积=3,∵OB =OD ,∴△EOD 的面积=△BOE 的面积=3,∴△DEB 的面积=6,∵△AOE ≌△COF ,∴△COF 的面积=△AOE 的面积=1,同理,△DFB 的面积=6,∴四边形BEDF 的面积=12,故答案为:12。
八年级数学人教版下册第十八章平行四边形平行四边形的性质——对角线
14.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n个图中平行四边形的个数是( )
13.如图,□ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,CD=m,那么m的取值范围是
50°
B.40°
3.如图,在□ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△AOD的周长为______.
第2课 平行四边形的性质(2)——对角线
目录
8<m<10
B.2<m<18
13.如图,□ABCD的对角线AC,BD相交于点O,且AC=8,BD=10,CD=m,那么m的取值范围是
(1)平行四边形的性质:平行四边形的对角线互相平分.
边:平行四边形的对边______________; (1)求证:OE=OF;
三级拓展延伸练
13.如图,□ABCD的对角线AC,BD相交于点O,且
AC=8,BD=10,CD=m,那么m的取值范围是
(D) A.8<m<10
B.2<m<18
C.4<m<5
D.1<m<9
14.根据如图所示的(1),(2),(3)三个图所表示的规 律,依次下去第n个图中平行四边形的个数是( B )
三级检测练
8<m<10
B.2<m<18
50°
B.40°
温故知新
1.平行四边形的性质: 边:平行四边形的对边__平__行__且__相__等____; 角:平行四边形的对角__相__等____,邻角__互__补____.
新课学习
知识点1 平行四边形的性质 平行四边形的性质:平行四边形的对角线_互__相__平__分_. 几何语言 ∵如图,四边形 ABCD 是平行四边形, ∴OA=OC=12 AC,_O_B_=__O__D_=__12__B_D___.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 2 课时平行四边形的对角线的性质
基础题
知识点平行四边形的对角线互相平分
1.( 长沙中考 ) 平行四边形的对角线一定具有的性质是(B)
A.相等B.互相平分
C.互相垂直D.互相垂直且相等
2.如图, ?ABCD中,对角线AC, BD相交于点O,将△ AOD平移至△ BEC的位置,则图中与OA相等的其他线段有(B) A. 1 条B. 2 条C. 3 条D. 4 条
3.如图所示,在?ABCD中,对角线AC和 BD相交于点O,如果 AC= 10,BD= 12, AB= m,那么 m的取值范围是 (C) A. 10< m< 12B. 2< m< 22
C. 1< m< 11D. 5< m< 6
4.如图,平行四边形ABCD的对角线 AC和 BD相交于点O,与△ OBC面积相等的三角形( 不包括自身) 的个数是 (C) A. 1B. 2C. 3D. 4
5.如图,在四边形ABCD中, AB∥ CD, AD∥ BC, AC, BD相交于点O.若 AC= 6,则线段AO的长度等于3.
6.若点 O为?ABCD的对角线AC与 BD的交点,且AO+ BO=11 cm ,则 AC+ BD= 22cm.
7.如图,在 ?ABCD中,对角线AC、 BD相交于点 O,若 AC= 8, BD=14, AB= 10,则△ OAB的周长为21.
8.如图,在 ?ABCD中,对角线相交于点O, AC⊥ CD, AO= 3,BO= 5,则 CD= 4, AD= 2 13.
9.如图,在 ?ABCD中, AC, BD相交于点O,两条对角线的和为20 cm ,△ OCD的周长为
18 cm,求 AB的长.
解:∵四边形ABCD是平行四边形,
∴OA=OC, OB= OD,
AB= CD.
1 1
∴OC=2AC, OD=2BD.
∵AC+BD= 2 0 cm,
1
又∵ OC+ OD+ CD= 18 cm,
∴CD=8 cm.
∴AB=CD= 8 cm.
10.如图所示,在?ABCD中,对角线AC与 BD相交于点O, M, N 在对角线AC上,且 AM= CN,求证: BM∥ DN.
证明:∵四边形ABCD是平行四边形,
∴OA=OC, OB=OD.
∵AM=CN,
∴ OM=ON.
OB= OD,
在△ BOM和△ DON中,∠ BOM=∠DON,
OM= ON,
∴△ BOM≌△ DON(SAS).
∴∠ OBM=∠ ODN.
∴BM∥DN.
中档题
11.如图,已知 ?ABCD的周长为 60 cm,对角线AC, BD相交于点 O,△ AOB的周长比△ BOC的周长长8 cm,则 AB的长度为 (D)
A. 11 cm B. 15 cm C. 18 cm D. 19 cm
12.如图, ?ABCD的对角线AC,BD相交于点O, EF 过点 O,与 AD, BC分别相交于点E,F,若 AB= 4,BC= 5, OE=1.5 ,则四边形EFCD的周长为 (C)
A. 16B. 14C. 12D. 10
13.( 无锡中考改编) 如图, ?ABCD中, AE⊥ BD于 E,∠ EAC=30°, OE= 3,则 AC的长等于12.
14.如图, ?ABCD的对角线相交于点 O,且 AB≠ AD,过 O作 OE⊥ BD交 BC于点 E. 若△ CDE 的周长为 10,则 ?ABCD 的周长为 20.
15 .( 泸州中考 ) 一个平行四边形的一条边长为 3,两条对角线的长分别为 4 和 2 5,则它的面积为 4 5.
16 .如图, ?ABCD的对角线 AC、 BD交于点 O, AC⊥ AB, AB= 2 5,且 OA∶ OB= 2∶ 3.
(1)求 AC的长;
(2)求 ?ABCD的面积.
解: (1) ∵ OA∶ OB= 2∶ 3,
则设 OA= 2x, OB= 3x.
∵AC⊥AB, AB=2 5,
2 2 2 2 2 2
∴ OA+ AB= OB,即 (2x) + (2 5) = (3x) .
解得 x= 2.
∴OA=4.
∵四边形ABCD是平行四边形,
∴AC= 2OA= 8.
1 1
(2)∵ S△ABC=2AB· AC=2×2 5× 8= 8
5,∴ S?ABCD= 2S△ABC= 2× 8 5= 16 5.
综合题
17.(1) 已知:如图 1, ?ABCD的对角线 AC、 BD相交于点 O, EF 过点 O,与 AD、BC 分别相交于点 E、 F. 求证: AE=CF;
(2) 若 (1) 中的条件不变,将EF 转动到图 2 的位置, EF 分别与平行四边形的两对边的延长线相交,那么(1) 的结论是否成立,说明你的理由.
解: (1) 证明:∵四边形ABCD是平行四边形,
∴AD∥BC, OA=OC.
∴∠ EAO=∠ FCO.
在△ AOE和△ COF中,
∠EAO=∠ FCO,
OA= OC,
∠AOE=∠ COF,
∴△ AOE≌△ COF(ASA).
∴AE=CF.
(2)结论依然成立.
理由:同理可证△ AOE≌△ COF.
∴AE=CF.。