期末6章复习
期末复习第六章实数资料
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小) 倍,例如 .
题型规律总结:
1、平方根是其本身的数是;算术平方根是其本身的数是和;立方根是其本身的数是和。
(5)应当要注意的是:带根号的数不一定是无理数,如: 等;无理数也不一定带根号,如:
(6)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例4.(1)下列各数:①3.141、②0.33333……、③ 、④π、⑤ 、⑥ 、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)
8. ________
10.使式子 有意义的条件是。
11.当 时, 有意义。
12.若 有意义,则 的取值范围是。
13.已知 ,则 的取值范围是。
14.当 时,
。
15.如果一个数的平方根为a+1和2a-7,这个数为________
16、— 的绝对值是;
17.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1.现对72进行如下操作:
负分数____________________________
无理数____________________________
考点二:平方根、立方根、 的化简
1.判断下列说法是否正确
(1) 的算术平方根是-3;
(2) 的平方根是±15.
期末考前复习第六章《平行四边形》高频考点分类精准练2020-2021学年北师大版八年级下册数学
北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( )A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是( )A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( )A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( )2.正十边形的外角和为 ( )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( )A.12B.13C.14D.154.八边形的内角和为°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是.6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.北师大版八年级下册数学期末考前复习《平行四边形》高频考点分类精准练(解析版)题型一:平行四边形的性质和判定1.如图,在△ABC中,D,E分别是AB,BC的中点,点F在DE延长线上,添加一个条件使四边形ADFC为平行四边形,则这个条件是( B)A.∠B=∠FB.∠B=∠BCFC.AC=CFD.AD=CF2.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG,若AD=5,DE=6,则AG的长是 ( B)A.6B.8C.10D.123.如图,在▱ABCD中,∠ADC=119°,BE⊥DC于点E,DF⊥BC于点F,BE与DF交于点H,则∠BHF=61度.4.如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10或4或2.5.平行四边形的其中一个判定定理是:两组对边分别相等的四边形是平行四边形.请你证明这个判定定理.已知:如图,在四边形ABCD中,AB=CD,AD=BC.求证:四边形ABCD是平行四边形.证明:连接AC,如图所示:在△ABC和△CDA中,∴△ABC≌△CDA(SSS),∴∠BAC=∠DCA,∠ACB=∠CAD,∴AB∥CD,BC∥AD,∴四边形ABCD是平行四边形. 6.如图,点E在▱ABCD内部,AF∥BE,DF∥CE.(1)求证:△BCE≌△ADF;(2)设▱ABCD的面积为S,四边形AEDF的面积为T,求的值.略题型二:三角形中位线定理1.如图,要测量池塘两岸相对的A,B两点间的距离,可以在池塘外选一点C,连接AC,BC,分别取AC,BC的中点D,E,测得DE=50 m,则AB的长是100m.2.如图,D,E分别是△ABC的边AB,AC上的中点,如果△ADE的周长是6,则△ABC 的周长是 ( B)A.6B.12C.18D.243.如图所示,在Rt△ABC中,∠ACB=90°,CM是斜边AB上的中线,E,F分别为MB,BC 的中点,若EF=1,则AB=4.4.如图,▱ABCD的对角线AC,BD相交于点O,点E是AB的中点,△BEO的周长是8,则△BCD的周长为16.题型三:多边形的内角和与外角和1.下列图形为正多边形的是( D)2.正十边形的外角和为 ( B )A.180°B.360°C.720°D.1 440°3.一个多边形的内角和比其外角和的2倍多180°,则该多边形的对角线的条数是 ( C)A.12B.13C.14D.154.八边形的内角和为 1 080°.5.若一个多边形的内角和与外角和之和是900°,则该多边形的边数是 5 .6.乐乐和数学小组的同学们研究多边形对角线的相关问题,邀请你也加入其中!请仔细观察下面的图形和表格,并回答下列问题:(1)观察探究.请自己观察上面的图形和表格,并用含n的代数式将上面的表格填写完整,其中①;②.(2)实际应用.数学社团共分为6个小组,每组有3名同学.同学们约定,大年初一时不同组的两位同学之间要打一个电话拜年,请问,按照此约定,数学社团的同学们一共将拨打电话多少个?(3)类比归纳.乐乐认为(1),(2)之间存在某种联系,你能找到这两个问题之间的联系吗?请用语言描述你的发现.解:(1)由题可得,当多边形的顶点数为n时,从一个顶点出发的对角线的条数为n-3,多边形对角线的总条数为n(n-3).答案:n-3 n(n-3)(2)∵3×6=18,∴数学社团的同学们一共将拨打电话×18×(18-3)=135(个).(3)每个同学相当于多边形的一个顶点,则共有n个顶点;每人要给不同组的同学打一个电话,则每人要打(n-3)个电话;两人之间不需要重复拨打电话,故拨打电话的总数为n(n-3);数学社团有18名同学,当n=18时,×18×(18-3)=135.7.已知如图,四边形ABCD中,BE,DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,说明∠MBC+∠NDC=α+β.(2)如图1,若BE与DF相交于点G,∠BGD=45°,请写出α,β所满足的等量关系式.(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.答案:略.。
2020年秋人教版八年级上册物理期末复习——6章质量与密度(测量)
6章质量与密度(测量)一、选择题1.只测一次,要求较准确的测出90cm 3的酒精,请你在下列四种规格的量筒中,选出适当的量筒( )A .量程是100mL ,分度值是1mLB .量程是200mL ,分度值是2mLC .量程是50mL ,分度值是1mLD .量程是50mL ,分度值是2mL2.电子秤有“清零”功能,例如,在电子秤上放200g 砝码,电子秤显示为200g ,按清零键后,显示变为零;随后再放上100g 砝码,电子秤显示为100g 。
利用电子秤的这种功能,结合物理知识可测定玉镯的密度。
具体操作如下: 步骤a :向烧杯内倒入适量水,放在电子秤上,按清零键,显示数变为零;步骤b :手提细线拴住玉镯,浸没在水中,且不与烧杯底和壁接触,记下此时电子秤示数为m 1;步骤c :把玉镯接触杯底,手放开细线,记下此时电子秤示数为m 2。
则下列判断中( )①玉镯的质量为m 1 ②玉镯的质量为m 2③玉镯的密度为21m m ρ水④玉镯的密度为12m m ρ水 A .只有①③正确B .只有①④正确C .只有②③正确D .只有②④正确 3.如图所示是小敏的爸爸送给妈妈的生日礼物——金手镯,为了了解金手镯是否是纯金制作,小敏利用学过的密度知识来判断,先用天平称量金手镯的质量,再测出金手镯的体积。
下列几种测量体积的器材中能够较精确测出金手镯体积的是( )A .量筒、烧杯、水B .溢水杯、小烧杯、量筒、水C .溢水杯、小烧杯、天平、水D .弹簧测力计、烧杯、水 4.一个薄壁的瓶子内装满某种液体,已知液体的质量为 m 。
瓶底的面积为 S ,小明同学想测出液体的密度,他用刻度尺测得瓶子高度为 L ,然后倒出小半瓶液体(正立时近弯处), 如图所示,测出液面高度1L ,然后堵住瓶口,将瓶倒置,测出液面高度2L 。
则液体的密度为( )A .()21-m S L LB .()12+m S L LC .()12+-L m S L LD .()12+-m S L L L 5.在室温下,小明利用一个质量为 300g 的玻璃瓶,设计测量某液体密度的实验,其步骤如下:①将玻璃瓶装满水(水的密度为 1.0g/cm 3),称得总质量为 900g ;②倒掉瓶中的水,待玻璃瓶干后,改装满某液体,称得总质量为 1800g 。
人教版八年级物理上册期末提优复习——6章质量与密度(测量)
6章质量与密度(测量)一、选择题1.小丽去超市买了一杯320mL的珍珠奶茶,她想知道这杯珍珠奶茶中“珍珠”占了多少体积,于是拿一个500mL的烧杯,把珍珠奶茶全部倒入烧杯后,再把烧杯里的奶茶倒入三个量筒中,直到液体全部倒完,结果如图所示,则“珍珠”的体积为A.3180cm60cm B.3C.3260cm240cm D.32.某同学在用量筒取液体时,先用仰视读得液体体积为34毫升,倒出一部分液体后,再用俯视读得液体体积为15毫升,则倒出的液体体积是A.大于19mL B.小于19mLC.等于19mL D.无法判断3.做某实验需要量取45ml的水,最好选用下列仪器中的A.100ml的量筒B.10ml的量筒C.100ml的量筒和滴管D.50ml的量和滴管4.某同学测量一小石块的体积,向量筒倒入一定量的水,俯视得数据为20毫升,而放入小石块后水面上升又仰视得数据为30毫升.则关于小石块的体积,下列说法正确的是A.大于10立方厘米B.小于10立方厘米20mC.由于先俯视后仰视,误差抵消,刚好等于10立方厘米D.无法确定5.有甲、乙、丙三种量筒,其测量范围和最小刻度分别为甲:500mL,10mL;乙:100mL,lmL:丙:50mL,1mL。
现要测量体积约为40cm3的石块的体积,选择上述哪一种量筒进行测量比较好A.甲B.乙C.丙D.三种都可以6.想要学好科学,很多时候经过自己的思考,对知识进行归纳总结,这是一种很好的学习方法.下列是小科同学整理的“错误操作”与对应测量结果.同学的你帮她判断一下,认为各选项中一致的是A.A B.B C.C D.D 7.某学生用量筒量取液体时,将量筒放平,倒入液体,面对刻度线,第一次仰视凹液面最低处,读数为19mL;倒出部分液体后,又俯视凹液面最低处读数为11mL,该学生倒出的液体体积是A.8mL B.大于8mLC.小于8mlL D.无法确定8.量筒做得细而高,而不是做得粗而矮,这是因为()A.细高的量筒易操作B.粗矮的量筒盛的液体多,不方便C.细高的量筒底座大,稳定D.细高的量筒刻度间隔大,便于准确读数9.下列量筒读数时的几种做法,正确的是()A.B.C.D.10.用量筒和水测小石块的体积时,先在量筒内注入适量的水.“适量”的标准是A.看上去不多也不少B.能淹没小石块,且小石块放入水中后水不会溢出C.水面约在量筒中间D.能淹没小石块,且小石块放入水中后总体积不超过量程二、解答题11.在测量石块密度的实验中:(1)(方案一)①将托盘天平放在水平桌面上,游码移到标尺左端的零刻度线处,若天平的横梁静止时,指针位置如图甲所示,则应将平衡螺母向______(选填“左”或“右”)调节,使横梁在水平位置平衡。
《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc
2018年七年级数学下册实数知识清单+经典例题+专题复习试卷1、 定义:如果一个正数X 的平方等于a,即工=。
那么,这正数x 叫做a 的算术平方根。
记作氐 读作“根号屮。
a 叫做被开 算术平方根*方数,规定0的算术平方根还是0o2、 性质:双重非员性(a h 0,需X 0 )。
负数没有算术平方根。
'3、J 产=\a\ (a是任意数力(7^)2 =a (B 是非员数)。
1、定义:如果一个数X 的平方等于4即乂2 =4。
那么,这个X叫做a 的平方根。
记作土需,读作“正、员根号屮。
a 叫做被幵 方数。
规定0的算术平方根还是0o2、 性质:(1)正数有两个平方根,它们互为相反数。
(2) 0的平方根是0。
员数没有平方根。
3、 未知数次数是两次的方程,结果一般都有两个值。
72^1.414, 73^1.732,少恐2.236, J7俎26461、走义:如果一个数x 的立方等于匕 即x 3 =a o 那么,这个x 叫做a 的立方根。
记作砺,读作“三次根号护。
a 叫做被开方数。
2、性质:(1)正数的立方根是正数,员数的立方根是员数,0的立方根是0。
(2)1卜a 取任意数(3) (佝=° J分数(有理数和分数是相同的概念)rI 无限循环小数'1、开方开不尽的方根无理数无限不循环小数彳2、圆周率兀以及含有兀、3、具有特定结构的数(0.010010001……)有理数』r 正整数员整数(可以看成分母是1的分数)正实数o员实数有限小数平方根立方根【经典例题1】1、下列说法错误的是()4、若 a 2=4, b 2=9,且 ab<0,B. ±55、 设边长为3的正方形的对角线长为a.下列关于a 的四种说法: ®a 是无理数; ②a 可以用数轴上的一个点來表示;③3<a<4; ④a 是18的算术平方根.其中,所有正确说法的序号是 ( )A.①④B.②③C.①②④D.①③④ 6、 已知实数x 、y 满足心- l+|y+3|=0,则x+y 的值为( ) A. -2B. 2C.4D. -4【经典例题3】7、 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A. a+1B. a 2+lC.寸/+1Va+1f x 二 2f inx+ny=88、 已知■是二元一次方程组{、的解,则加・n 的算术平方根为( )\ y=l[nx - iny^lA. ±2B. V2C. 2D. 49、 有一个数值转换器,原理如下:A. 5是25的算术平方根 C. (-4)2的平方根是一4 2、下列各式中,正确的是()B. 1是1的一个平方根 D. 0的平方根与算术平方根都是0B.-佇二 _ 3C.寸(±3严二 ±3D.佇二 ±33、716的平方根是(A. ±2【经典例题2】B. 2C. — 2D. 16C. 5A. 2B. 8当输入的x=64时,输出的y 等于()【经典例题4】10、平方等于16的数是________ ;立方等于本身的数是_______________________ •11、一个数的立方根是4,这个数的平方根是______________ ,12、若一2x ra_n y2与3x7^是同类项,则m-3n的立方根是_____________ .【经典例题5】13、求x 的值:25(X+1)2=16;14、求y 的值:(2y-3) 2 - 64=0;15、计算:^4-23-|-2|X(-7+5) 16、计算:舗一血+ 乂-3)' -磁-2【经典例题6】17、已知实数a, b在数轴上的位置如图所示,化简:寸(fl) 4-1)并|a・b|. -------- ------- 1---------------- 1 ----- >・ 1^0 b 118、阅读理解7 >^<75 <79* 即2<V5<3» A1<V5-1<2-・••厉_1的整数部分为1,小数部分为厉_2・解决问题:己知a是JI7-3的整数部分,D是的小数部分,求(-a)"+(b + 4)2的平方根.参考答案1、c;2、B3、A4、B5、C6、A7、B8、C9、D10、±4, 0, ±111、&-812、213、x = -0. 2, x=-l. 8;14、y=5. 5 或y= - 2. 5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得-l<a<0<b<l.原式二a+1+2 - 2b - b+a=2a - 3b+3.18、由题意,得幺=1,i = T17-4 所以(一幺尸 + 0+4)2 = (-1尸 + (何_4+4)2 = 16 即+ @ + 4)2的平方根为±牛2018年 七年级数学下册 实数 期末复习试卷一、选择题:1、下列语句中正确的是(C. 9的算术平方根是±3D. 9的算术平方根是3设边长为3的正方形的对角线长为a.下列关于a 的I 川种说法: ①a 是无理数; ②a 可以用数轴上的一个点來表示; @3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是() A.①④B.②③C.①②④ D.①③④7、负的算术平方根是( )A. ±6B. 6C. ±A /6D. V68、下列各数中,3. 14159,-饭,0.3131131113- (2016春•潮州期末)下列各式表示正确的是9、己知实数x 、y 满足Jx=l+1 y+31二0,则x+y 的值为()10、若正数a 的算术平方根比它本身大,则( )A.・9的平方根是・3B. 9的平方根是3 2、下列结论正确的是(A- -{(-6)2二-6 B.(~{5)2二9 C. 7(~16) 2=± 16 D.-(2,16 ^25A- 4、 下列关于祈的说法中,错误的是( 灵是8的算术平方根 B. 2<品<3 下列各组数中互为相反数的一组是()C. 78= ±2^2D.灵是无理数A. ■⑵与寻PB.・4与・{(-4)2C.D. P 与法5^如果际〒二2. 872, ^3700 =28.72,则勺0・023厂(A. 0. 2872B. 28. 72C. 2. 872D. 0.02872 6、 B. ±725=5A. - 2B. 2C. 4( )lk •估计— 1在()A. 0〜1之间•B. 1〜2之间C. 2〜3之间D. 3〜4之间12、实数纸b在数轴上对应点的位置如图,则|a-b| -肯的结果是()•••Aa b0A. 2a - bB. b - 2aC. bD. - b二、填空题:13、(-9)2的算术平方根是_.14、如图,在数轴上点A和点B之间的整数是_________ .15^ 己知(x - 1) 2二3,则x= _ .16、如杲丽二1.732, A/30 =5.477,那么0. 0003的平方根是________ .17、若3、b互为相反数,c、d互为负倒数,则石匸尹+畅= _______________ •18、已知a, b为两个连续的整数,且a<V8<b,则a+b二____________ .三、解答题:19、求x 的值:9(3x - 2尸二64. 20、求x 的值:(5- 3x?=—4921、计算:7132-12222、计算:(亦尸+旷爾一加2一炉.23、已知x・1的平方根为±2, 3x+y・1的平方根为±4,求3x+5y的算术平方根.24、已知2a-l的平方根是±3, 3a+b_9的立方根是2, c是妬的整数部分,求a + 2D+f的值•25、阅读下面的文字,解答问题:大家知道迈是无理数,而无理数是无限不循环小数,因此迈的小数部分我们不可能全部写出来,于是小明用屁-1来表示典的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为近的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:・・・2'<7<3,即2<听<3,・••听的整数部分为2,小数部分为听・2.请解答:(1)Vio的整数部分是__________ ,小数部分是 _________ .(2)如果衍的小数部分为a, 荷的整数部分为b,求a+br/^的值;(3)己知:x是3+^5的整数部分,y是其小数部分,请直接写出X- y的值的相反数.26、若实数a, b, c 在数轴上所对应点分别为A, B, C, a 为2的算术平方根,b 二3, C 点是A 点关 于B点的对称点,(1) 求数轴上AB 两点之间的距离; (2) 求c 点对应的数;27、已知字母a 、b 满足亦二+的_21 1 1 1~ab @ + 1)@ + 1)@+2)@ + 2)… @ + 2011)@ + 2001)第X 页共1()页(3) 3的整数部分为x, c 的小数部分为y,求2x^+2》的值(结果保留带根号的形式)的值.1、 D2、 A3、 C4、 C5、 A6、 C7、 D8、 C9、 A 10、 11、 12、 C 13、 9.14、 答案为:2. 15、 答案为:土近+1. 16、 ±0.01732. 17、 -118、 答案为:5.149 19、 开平方得:3 (3x-2)二±8 解得:Xi=—, x 2= - -T .9920、§或兰7 2116 T -10; 23、5 24、a=5, b 二2, c 二7, a + 2&+u 二 16・(2) V4<5<9,・・・2<任<3,即沪旋 ・2, V36<37<49, A6<V37<7,即 b 二6,贝lj a+b ・ 丽二4;(3) 根据题意得:x=5, y=3+{^ - 5二- 2,・;x - y=7 - 其相反数是A /5 - 7.26、(1) 3; (2) 6;72 ⑶尸2—屈.21、参考答案21、22、25、 解: (1) V10的整数部分是3,小数部分是V10- 3;故答案为:3; V10- 3;•解;、「7/o,丑-1~ o且-f 二o'弋鳥解得伫°b十@H"賊斗3化X昭十• • •十莎丽莎和 -丄丄亠」一-2 +A3十3*卩十・・・十二卜亍+土一土+》* +・・•十二 /_ Zo/27。
2023-2024年小学数学六年级上册期末考点复习 第六单元《百分数(一)》(人教版原卷)
期末知识大串讲人教版数学六年级上册期末章节考点复习讲义第六单元百分数(一)知识点一:百分数的意义和读、写法1.叫做百分数。
百分数指的是,因此百分数也叫做。
2.2.任何一个百分数都不能表示,不能带;表示具体数量且分母是的分数也不能用百分数表示。
知识点二:小数、分数和百分数之间的关系及其转化1.百分率的意义和求法(分数、小数化成百分数)(1)求百分率实质就是去“”,用比较量除以的量。
(2)把小数化成百分数:先把小数改写成,再化成百分数。
或者把小数点,再在后面添上,位数不够用补足。
(3)把分数化成百分数:先把分数化成,然后再写成。
还可以把分数化成,再化成。
2. 求一个数的百分之几是多少(百分数化成分数和小数)(1)求和,意义相同,都是用计算,用单位“1”的量乘分率就得到部分量。
(2)百分数化成小数、分数的方法:百分数化成小数:百分数化成的分数,再化成;小数点向左移动两位,同时去掉百分号即可。
百分数化成分数:先写成的分数,再化成。
3. 求一个数比另一个数多(或少)百分之几方法一:先求一个数比另一个数多(少)多少,然后除以另一个数(即)求出百分之几。
方法二:先求出一个数是另一个数的百分之几,然后减去或用减去求出百分之几。
4. 求比一个数多(或少)百分之几的数是多少方法一:先求出,再与相加(减);方法二:先求出的百分之几,再用乘这个百分数。
5. 用百分数知识解决有关变化幅度的问题解决涨幅(或降幅)问题的一般方法:解决涨幅(或降幅)问题时,一定要找准单位“1”,可以假设原来的价格是一个具体的数,也可以假设为“1”,根据求比一个数多(或少)百分之几的数是多少的解答方法,用乘法计算出结果。
考点01:百分数的意义和读写1.(2021六上·福田期末)下面四句语句中,正确的有()句。
①晚上人在路灯下走,离路灯越近,影子越长;②4m的35和3m的45一样长;③35小时=0.6小时=60%小时;④1吨煤,用去37吨后,还剩全部的47。
2023-2024年小学数学四年级上册期末考点复习 第六单元《可能性》(苏教版含解析)
期末知识大串讲苏教版数学四年级上册期末章节考点复习讲义第六单元《可能性》知识点01:不确定性和确定性事件发生的不确定性和确定性:在一定条件下,一些事件的结果是不可预知的,具有不确定性;一些事件的结果是可以预知的,具有确定性。
描述确定性事件通常用“一定”“不可能”,描述不确定性事件通常用“可能”。
知识点02:可能性大小可能性大小:可能性的大小与数量有关,在总数量中所占数量越多,可能性就越大;所占数量越少,可能性就越小考点01:事件的确定与不确定性1.一个立方体,六个面分别写着1~6六个数,4的对面一定是()。
A.3 B.5C.2 D.6【答案】C【完整解答】通过立体想象能力,4的对面一定是2。
【思路引导】根据事件的确定性与不确定性、正方体的特征,即得4的对面一定是2。
2.(2020四上·徐闻期末)下列事件中,()是不可能发生的。
A.公鸡下蛋B.明天可能下雨C.哈尔滨今天下雪【答案】A【完整解答】解:选项A,公鸡下蛋是不能能发生的,即正确;选项B,明天可能下雨,可能发生,即错误;选项C,哈尔滨今天下雪,可能发生,也可能不发生,即错误。
故答案为:A。
【思路引导】不确定现象:生活中有些事件的发生是不确定的,一般用"可能发生"来描述。
确定现象:生活中有些事件的发生是确定的。
一般用"一定发生"或"不可能发生"来描述。
本题中公鸡下蛋是不可能发生的事情,是一件确定的事。
3.(2020四上·项城期末)这次期末考试,兰兰一定能得第一。
()【答案】(1)错误【完整解答】解:这次期末考试,兰兰可能得第一。
故答案为:错误。
【思路引导】因为事件发生的结果有两种情况,兰兰可能是第一或者不是第一,所以不能确定。
4.长大后,小丽长到6米,她像妈妈那们做一名教师。
A.一定B.可能C.不可能【答案】C;B【完整解答】长大后,小丽不可能长到6米,她可能像妈妈那们做一名教师。
2023-2024年小学数学五年级上册期末复习第六单元《多边形的面积》(人教版含详解)
期末知识大串讲人教版数学五年级上册期末章节考点复习讲义第六单元多边形的面积知识点01:平行四边形面积如果用S表示平行四边形的面积,用a表示平行四边形的底,用h表示平行四边形的高,平行四边形的面积计算公式可以写成:S=ah。
知识点02:三角形的面积两个完全相同的三角形可拼成平行四边形,三角形的面积是拼成的平行四边形面积的一半。
三角形的面积=底×高÷2,用字母表示为:S =ah ÷2 知识点03:梯形的面积梯形的面积=(上底+下底)×高÷2,用字母表示为:S=(a+b )h ÷2知识点04:组合图形的面积1. 组合图形面积的求法:把组合图形分割或者拼凑成已学过的简单图形,再算这些简单图形的面积的和,就是组合图形的面积。
2.不规则图形面积的求法:数方格的方法进行估算;把不规则的图形转化为学过的图形进行估算。
考点01:平行四边形的面积1.(2021秋•和平区期末)平行四边形的相邻边分别长10cm 和8cm ,其中一条边上的高是9cm ,那么另外一条边上的高是( )cm 。
A .12B .11.25C .7.2D .3【思路引导】根据直角三角形的特征,在直角三角形中斜边最长,由此可知,高9厘米上底下底b对应的底边是8厘米,根据平行四边形的面积公式:S=ah,那么h=S÷a,把数据代入公式解答。
【完整解答】解:8×9÷10=72÷10=7.2(厘米)答:另外一条边上的高是7.2厘米。
故选:C。
2.(2021秋•河南县期末)小明将一些数学本摞成一个长方体,它的前面是一个长方形,再将它均匀地斜放,这时前面变成了一个近似的平行四边形,比较这两摞数学本的前面,()相同。
A.形状B.面积C.周长D.周长和面【思路引导】根据题意可知,将这摞书的前面由长方形变成平行四边形,平行四边形的底等于长方形的长,平行四边形的高等于长方形的宽,虽然前面的形状变了,但是面积不变。
2023-2024年小学数学三年级上册期末考点复习 第六单元《多位数乘一位数》(人教版原卷)
期末知识大串讲人教版数学三年级上册期末章节考点复习讲义第六单元多位数乘一位数知识点01:口算乘法1.整十、整百、整千数乘一位数的口算方法:先把0前面的数与一位数相乘,计算出积后,再看因数末尾,就在积的末尾添上。
2. 两位数乘一位数(不进位)的口算方法:口算两位数乘一位数,先把两位数分成,再分别与相乘,最后把得到的两个积。
知识点02:笔算乘法1.多位数乘一位数(不进位)的笔算方法:笔算多位数乘一位数(不进位)时要注意: 要对齐,从个位开始乘起,用一位数依次去乘,与哪一位上的数相乘,积就。
2.多位数乘一位数(不连续进位)的笔算乘法:计算多位数乘一位数,用一位数的个位分别去,哪一位上相乘满十,一定要向,每一位相乘后要加上3.多位数乘一位数(连续进位)的笔算方法:相同数位要对齐,从个位乘起,用一位数分别去乘,哪一位上的乘积满几十就向。
千万不要忘记加4. 因数中间有0的乘法与计算方法相同,计算时从个位起,用一位数依次去乘,在与中间的0相乘时,如果没有进位,可直接写,如果有进位,必须加上进上来的数。
5. 在进行因数末尾有0的乘法简便运算时,要注意两点:(1)我们把一位数与前面的那个数字对齐。
(2)多位数末尾,就在积的末尾6. 两、三位数乘一位数的估算方法:把两、三位数看成,再按照的口算方法来算,估算出,中间用“≈”连接。
7. 解决“归一”应用题的关键是先根据条件求出单一的量,再用这个单一的量解决相关的实际问题。
8. 解决“归总”应用题的关键是先根据条件求出总量,再用这个总量解决相关的实际问题。
考点01:口算乘法1.60名同学分组活动,下面()种分法得到的组数最多。
A.每6名一组B.每4名一组C.每5名一组D.每3名一组2.(2022三上·柯桥期末)买13本练习簿,每本3元,列式计算(如右图),竖式中箭头所指的数“3”表示()。
A.3本练习簿30元B.10本练习簿3元C.10本练习簿30元3.(2021三上·乐昌期末)把40张邮票按照下面()种分法分,分成的组数最多。
2021学年人教版七年级数学下册《第6章,实数》期末综合复习知识点分类训练(附答案)
2021学年人教版七年级数学下册《第6章,实数》期末综合复习知识点分类训练(附答案)2021学年人教版七年级数学下册《第6章实数》期末综合复习知识点分类训练(附答案)一.平方根1.若2a﹣1与﹣a+2都是正数x的平方根,求a的值和这个正数的值.2.已知|a﹣27|与2(b﹣36)2互为相反数,求的平方根.二.算术平方根3.正数n扩大到原来的100倍,则它的算术平方根()A.扩大到原来的100倍B.扩大到原来的10倍C.比原来增加了100倍D.比原来增加了10倍4.已知9.972=99.4009,9.982=99.6004,9.992=99.8001,求之值的个位数字为何?()A.0 B.4 C.6 D.8 5.给出表格:a 0.0001 0.01 1 100 __ 0.01 0.1 1 10 100 利用表格中的规律计算:已知,则a+b=.(用含k的代数式表示)6.我们规定用(a,b)表示一对数对.给出如下定义:记m=,n =其中(a>0,b>0),将(m,n)与(n,m)称为数对(a,b)的一对“对称数对”.例如:(4,1)的一对“对称数对”为(,1)和(1,);(1)数对(9,3)的一对“对称数对”是;(2)若数对(3,y)的一对“对称数对”相同,则y的值为;(3)若数对(x,2)的一个“对称数对”是(,1),则x的值为;(4)若数对(a,b)的一个“对称数对”是(,3),求ab的值.7.观察与猜想:===2 ===3 (1)与分别等于什么?并通过计算验证你的猜想(2)计算(n为正整数)等于什么?三.非负数的性质:算术平方根8.已知实数a,b为△ABC的两边,且满足﹣4b+4=0,第三边c=,则第三边c上的高的值是()A.B.C.D.9.已知:非负数a、b满足.求的值.四.立方根10.要使式子有意义,则m的取值范围是()A.m≥﹣2,且m≠2 B.m≠2 C.m≥﹣2 D.m≥2 11.已知≈1.2639,≈2.7629,则≈.五.计算器—数的开方12.如图,某计算器中有、、三个按键,以下是这三个按键的功能.①:将荧幕显示的数变成它的算术平方根;②:将荧幕显示的数变成它的倒数;③:将荧幕显示的数变成它的平方.小明输入一个数据后,按照以下步骤操作,依次按照从第一步到第三步循环按键.若一开始输入的数据为10,那么第2018步之后,显示的结果是()A.B.100 C.0.01 D.0.1 13.用计算器探索:(1)=.(2)=.(3)=,。
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】
苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。
植物生理学期末复习6 第6章 植物的生长物质-自测题及参考答案+重点
第 6 章 植物的生长物质自测题:一、名词解释:1.植物生长物质2.植物激素3.植物生长调节剂4.生长调节物质5.生长素的极性运输6.激素受体7.自由生长素 8.束缚生长素 9.生长素结合蛋白 10.自由赤霉素 11.束缚赤霉素 12. 乙烯的 “三重反应”13.生长抑制剂 14.生长延缓剂 15.多胺 16.靶细胞二、缩写符号翻译:1. IAA2. IBA3. PAA4. TIBA5. IP36. IPA7. NAA8. 2,4-D9. GA3 10. CTK 11. Z12. 6-BA 13. KN 14. iPP 15. SAM 16.ACC 17. ABA 18. BR 19 JA 20. SA 21. CCC22. PP333 23.MH 24.TIBA 25. B9 26. Eth三、填空题:1. 目前大家公认的植物激素有五类: 、 、 、、 。
2 .首次进行胚芽鞘向光性实验的研究者是 。
3. 已在植物体中发现的生长素类物质有 、 、 和 等。
4. 在高等植物中生长素的运输方式有两种: 和 。
5. 生长素的降解可通过两个途径: 和 。
6. 人工合成的生长素类的植物生长调节剂主要有 、 、 、和 等。
7. 赤霉素的基本结构是 。
8. 玉米素(Z)是在 年首次由 从甜玉米成熟种子中提取出来的。
9. 一般认为,细胞分裂素是在植物的 中合成的。
10. 细胞分裂素有 和 两种存在形式。
11. 乙烯生物合成的前体物质是 。
12. 乙烯是在细胞的 中合成的。
13. 乙烯利在pH值为 时分解放出乙烯。
14. 诱导大麦糊粉层α一淀粉酶形成的植物激素是 ,延缓叶片衰老的植物激素是 ;促进瓜类植物多开雌花的植物激素是 ,促进瓜类植物多开雄花的植物激素是 ,促进植物茎的伸长植物 激素是 。
促使植物生根的植物激素是 ;促进果实成熟的植物激素是 ;破除马铃薯和 洋葱休眠的植物激素是 ;加速橡胶分泌乳汁的植物激素是 ;促进菠萝开花的植物激素 是 。
2020-2021学年重庆八年级物理(人教版)上册期末复习:第6章《质量与密度》习题精选
2020-2021学年重庆八年级物理(人教版)上册期末复习:第6章《质量与密度》习题精选一.选择题(共20小题)1.(2019秋•九龙坡区期末)如图甲所示为水的密度在0~10℃范围内随温度变化的图象,图乙为北方冬天湖水温度分布示意图,根据图象及水的其他性质,下列分析判断错误的是()A.温度等于4℃时,水的密度最大B.在0~4℃范围内,水具有热缩冷胀的性质C.如果没有水的反常膨胀,湖底和表面的水可能同时结冰,水中生物很难越冬D.示意图中从上至下A、B、C、D、E处的温度分別为4℃、3℃、2℃、1℃、0℃2.(2019秋•巴南区期末)下列估测与实际情况相符的是()A.人步行的速度约是1.1km/hB.学校100m短跑记录是13minC.重庆主城的气温最低可达到﹣40℃D.一瓶矿泉水的质量约550g3.(2019秋•巴南区期末)甲、乙、丙三个完全相同的杯子里面装有水,放在同一水平桌面上,现把质量相同的实心铜块、铁块、铝块依次放入甲、乙、丙中(均浸没),水均未溢出且水面恰好相平,则原来装水最多的杯子是(ρ铜>ρ铁>ρ铝)()A.甲杯B.乙杯C.丙杯D.原来装水一样多4.(2019秋•巴南区期末)小敏用天平和量杯测量某种液体的密度。
测出了液体体积V、液体和量杯总质量m的若干组数据,绘出的V﹣m图象如图所示则量杯的质量m0与液体的密度ρ分别是()A.m0=40g、ρ=0.8×103kg/m3B.m0=20g、ρ=0.8×103kg/m3C.m0=40g、ρ=1.2×103kg/m3D.m0=20g、ρ=1.2×103kg/m35.(2019秋•荣昌区期末)小明对一些数据的估测,最接近实际的是()A.一个鸡蛋的质量约为100gB.一张物理试卷的厚度大约为1dmC.荣昌城区冬天的最低气温约为﹣20℃D.一个成年人的正常步行速度约为1.2m/s6.(2019秋•开州区期末)关于物体的质量和物质的密度,下列说法错误的是()A.1kg棉花和1kg的铁质量一样大B.一个杯子随飞船进入太空后,质量和密度都变为零C.一块冰全部化成水后,质量不变,密度变大D.密度的大小与物体的质量和体积无关7.(2019秋•江津区期末)科学家又发现了9颗位于宜居带(适合生命存在的区域)的行星,若宜居带中某颗行星的质量约为地球的6倍,体积约为地球的8倍,则它的密度与地球的密度之比约为(行星与地球均看做质量均匀分布的球体)()A.4:3 B.3:4 C.1:2 D.1:38.(2019秋•奉节县期末)有两个完全相同的瓶子,一个装满水后的质量是320g,另一个装满密度为0.8×103kg/m3的酒精后质量是280g,则下列说法正确的是()A.瓶子的质量是40g B.水的体积是280cm3C.瓶子的质量是120g D.酒精的质量是200g9.(2019秋•开州区期末)为测量某种液体的密度,小沈利用天平和量杯测量了液体和量杯的总质量m及液体的体积V,得到了几组数据并绘出了m﹣V图象。
人教版数学七年级下学期期末总复习第6章《实数》易错题汇编(附解析)
第6章《实数》易错题汇编一.选择题(共10小题)1.的平方根是()A.±3B.3C.±9D.92.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c4.的算术平方根是()A.2B.±2C.D.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.48.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根二.填空题(共4小题)11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为.12.一个正数的平方根分别是x+1和x﹣5,则x=.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为(用“<”号连接).三.解答题(共2小题)15.化简求值:(),其中a=2+.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.试题解析1.的平方根是()A.±3B.3C.±9D.9解:∵,9的平方根是±3,故选:A.2.下列各数:,π,,cos60°,0,,其中无理数的个数是()A.1个B.2个C.3个D.4个解:据无理数定义得有,π和是无理数.故选:B.3.实数a,b,c在数轴上对应的点如图所示,则下列式子中正确的是()A.ac>bc B.|a﹣b|=a﹣b C.﹣a<﹣b<c D.﹣a﹣c>﹣b﹣c 解:∵由图可知,a<b<0<c,∴A、ac<bc,故A选项错误;B、∵a<b,∴a﹣b<0,∴|a﹣b|=b﹣a,故B选项错误;C、∵a<b<0,∴﹣a>﹣b,故C选项错误;D、∵﹣a>﹣b,c>0,∴﹣a﹣c>﹣b﹣c,故D选项正确.故选:D.4.的算术平方根是()A.2B.±2C.D.解:=2,2的算术平方根是.故选:C.5.估计介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解:∵2.22=4.84,2.32=5.29,∴2.2<<2.3,∵=0.6,=0.65,∴0.6<<0.65.所以介于0.6与0.7之间.故选:C.6.已知a=,b=,c=,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b解:∵a==,b==,c==,且<<,∴>>,即a>b>c,故选:A.7.若a,且a、b是两个连续整数,则a+b的值是()A.1B.2C.3D.4解:∵的整数部分是2,∴0<﹣2<1,∵a、b是两个连续整数,∴a=0,b=1,∴a+b=1,故选:A.8.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q 四个实数中,绝对值最大的一个是()A.p B.q C.m D.n解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选:A.9.有一个数值转换器,原理如下:当输入的x=64时,输出的y等于()A.2B.8C.D.解:由图表得,64的算术平方根是8,8的算术平方根是;故选:D.10.若方程(x﹣5)2=19的两根为a和b,且a>b,则下列结论中正确的是()A.a是19的算术平方根B.b是19的平方根C.a﹣5是19的算术平方根D.b+5是19的平方根解:∵方程(x﹣5)2=19的两根为a和b,∴a﹣5和b﹣5是19的两个平方根,且互为相反数,∵a>b,∴a﹣5是19的算术平方根,故选:C.11.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为4.解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.12.一个正数的平方根分别是x+1和x﹣5,则x=2.解:根据题意知x+1+x﹣5=0,解得:x=2,故答案为:2.13.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.14.数轴上有两个实数a,b,且a>0,b<0,a+b<0,则四个数a,b,﹣a,﹣b的大小关系为b <﹣a<a<﹣b(用“<”号连接).解:∵a>0,b<0,a+b<0,∴|b|>a,∴﹣b>a,b<﹣a,∴四个数a,b,﹣a,﹣b的大小关系为b<﹣a<a<﹣b.故答案为:b<﹣a<a<﹣b15.化简求值:(),其中a=2+.解:原式=[+]•+=•+==,当a=2+时,原式=+1.16.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所以3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F(57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.。
人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版
人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。
第六章-圆周运动章末复习-知识点和题型总结-2023年高一物理期末高效复习专题
第六章:圆周运动章末复习知识点一:匀速圆周运动及其描述一、匀速圆周运动1.圆周运动:物体的运动轨迹是圆的运动.2.匀速圆周运动:质点沿圆周运动,如果在相等的时间内通过的圆弧长度相等,这种运动就叫匀速圆周运动.二、匀速圆周运动的线速度、角速度和周期1.线速度(1)定义式:v=Δs Δt.如果Δt取的足够小,v就为瞬时线速度.此时Δs的方向就与半径垂直,即沿该点的切线方向.(2)线速度的方向:质点在圆周某点的线速度方向沿圆周上该点的切线方向.(3)物理意义:描述质点沿圆周运动的快慢.2.角速度:半径转过的角度Δφ与所用时间Δt的比值,即ω=ΔφΔt(如图所示).国际单位是弧度每秒,符号是rad/s.3.转速与周期(1)转速n:做圆周运动的物体单位时间内转过的圈数,常用符号n表示.(2)周期T:做匀速圆周运动的物体运动一周所用的时间叫做周期,用符号T 表示.(3)转速与周期的关系:若转速的单位是转每秒(r/s),则转速与周期的关系为T=1n .4.匀速圆周运动的特点(1)线速度的大小处处相等.(2)由于匀速圆周运动的线速度方向时刻在改变,所以它是一种变速运动.这里的“匀速”实质上指的是“匀速率”而不是“匀速度三、描述圆周运动的各物理量之间的关系1.线速度与周期的关系:v=2πr T.2.角速度与周期的关系:ω=2πT.3.线速度与角速度的关系:v=ωr.知识点二、同轴转动和皮带传动1.同轴转动(1)角速度(周期)的关系:ωA=ωB,T A=T B.(2)线速度的关系:vAvB=rR.2.皮带(齿轮)传动(1)线速度的关系:v A=v B(2)角速度(周期)的关系:ωAωB=rR、TATB=Rr.知识点三、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=m v2 r.3.方向:总是沿半径指向圆心,方向时刻改变.4.效果力向心力是根据力的作用效果来命名的,凡是产生向心加速度的力,不管属于哪种性质,都是向心力.二:向心力的来源物体做圆周运动时,向心力由物体所受力中沿半径方向的力提供.几种常见的实例如下:实例向心力示意图用细线拴住的小球在竖直面内转动至最高点时绳子的拉力和重力的合力提供向心力,F向=F+G用细线拴住小球在光滑水平面内做匀速圆周运动线的拉力提供向心力,F向=F T物体随转盘做匀速圆周运动,且相对转盘静止转盘对物体的静摩擦力提供向心力,F向=F f小球在细线作用下,在水平面内做圆周运动重力和细线的拉力的合力提供向心力,F向=F合知识点四:向心加速度的方向及意义1.物理意义描述线速度改变的快慢,只表示线速度的方向变化的快慢,不表示其大小变化的快慢.2.方向总是沿着圆周运动的半径指向圆心,即方向始终与运动方向垂直,方向时刻改变.3.圆周运动的性质不论向心加速度a n的大小是否变化,a n的方向是时刻改变的,所以圆周运动的向心加速度时刻发生改变,圆周运动一定是非匀变速曲线运动.“匀速圆周运动中”的“匀速”应理解为“匀速率”.4.变速圆周运动的向心加速度做变速圆周运动的物体,加速度一般情况下不指向圆心,该加速度有两个分量:一是向心加速度,二是切向加速度.向心加速度表示速度方向变化的快慢,切向加速度表示速度大小变化的快慢.所以变速圆周运动中,向心加速度的方向也总是指向圆心.二:向心加速度的公式和应用1.公式a n =v2r=ω2r=4π2T2r=4π2n2r=4π2f2r=ωv.2.向心加速度的大小与半径的关系(1)当半径一定时,向心加速度的大小与角速度的平方成正比,也与线速度的平方成正比.随频率的增大或周期的减小而增大.(2)当角速度一定时,向心加速度与运动半径成正比.(3)当线速度一定时,向心加速度与运动半径成反比.(4)a n与r的关系图象:如图552所示.由a nr图象可以看出:a n与r成正比还是反比,要看ω恒定还是v恒定.图552知识点五:生活在的圆周运动一:火车转弯问题1.轨道分析火车在转弯过程中,运动轨迹是一圆弧,由于火车转弯过程中重心高度不变,故火车轨迹所在的平面是水平面,而不是斜面.火车的向心加速度和向心力均沿水平面指向圆心.图5732.向心力分析如图573所示,火车速度合适时,火车受重力和支持力作用,火车转弯所需的向心力完全由重力和支持力的合力提供,合力沿水平方向,大小F=mg tan θ.3.规定速度分析若火车转弯时只受重力和支持力作用,不受轨道压力,则mg tan θ=m v 2 0R,可得v0=gR tan θ(R为弯道半径,θ为轨道所在平面与水平面的夹角,v0为转弯处的规定速度).4.轨道压力分析(1)当火车行驶速度v等于规定速度v0时,所需向心力仅由重力和弹力的合力提供,此时火车对内外轨道无挤压作用.(2)当火车行驶速度v与规定速度v0不相等时,火车所需向心力不再仅由重力和弹力的合力提供,此时内外轨道对火车轮缘有挤压作用,具体情况如下:①当火车行驶速度v>v0时,外轨道对轮缘有侧压力.②当火车行驶速度v<v0时,内轨道对轮缘有侧压力.二:拱形桥汽车过凸形桥(最高点)汽车过凹形桥(最低点) 受力分析牛顿第二定律求向心力 F n =mg -F N =m v 2rF n =F N -mg =m v 2r牛顿第三定律求压力F 压=F N =mg -m v 2rF 压=F N =mg +m v 2r讨论v 增大,F 压减小;当v 增大到rg 时,F 压=0v 增大,F 压增大 超、失重汽车对桥面压力小于自身重力,汽车处于失重状态汽车对桥面压力大于自身重力,汽车处于超重状态知识点六:离心运动1.离心运动的实质离心现象的本质是物体惯性的表现.做圆周运动的物体,由于惯性,总是有沿着圆周切线飞出去的趋向,之所以没有飞出去,是因为受到向心力的作用.从某种意义上说,向心力的作用是不断地把物体从圆周运动的切向方向拉回到圆周上来.2.离心运动的条件做圆周运动的物体,提供向心力的外力突然消失或者合外力不能提供足够大的向心力.3.离心运动、近心运动的判断如图578所示,物体做圆周运动是离心运动还是近心运动,由实际提供的向心力F n 与所需向心力⎝ ⎛⎭⎪⎫m v 2r 或mr ω2的大小关系决定.图578(1)若F n =mr ω2(或m v 2r)即“提供”满足“需要”,物体做圆周运动.(2)若F n>mrω2(或m v2r)即“提供”大于“需要”,物体做半径变小的近心运动.(3)若F n<mrω2(或m v2r)即“提供”不足,物体做离心运动.由以上关系进一步分析可知:原来做圆周运动的物体,若速率不变,所受向心力减少(或向心力不变,速率变大)物体将做离心运动;若速度大小不变,所受向心力增大(或向心力不变,速率减小)物体将做近心运动.知识点七.竖直平面的圆周运动1.“绳模型”如上图所示,小球在竖直平面内做圆周运动过最高点情况。
2020-2021学年湖北省八年级物理(人教版)上学期期末复习:第6章《质量与密度》习题精选(2)
2020-2021学年湖北省八年级物理(人教版)上学期期末复习:第6章《质量与密度》习题精选(2)一.选择题(共14小题)1.(2019秋•大冶市期末)在测量液体密度的实验中,小明利用天平和量杯分别测量出液体和量杯的总质量m及液体的体积V,得到几组数据并绘出如图所示的m﹣V图象,下列说法正确的是()A.量杯质量为30gB.体积为50cm3时该液体质量为50gC.该液体密度为1.5g/cm3D.该液体密度为2g/cm32.(2019秋•当阳市期末)物理小组将一块冰加热,利用描点法得到了如图所示的体积随温度变化的图象。
从图象中可以看出()A.冰的温度越高,密度越小B.水的温度越高,密度越小C.水的密度跟其状态无关D.物质都遵从热胀冷缩的规律3.(2019秋•西陵区期末)北方严寒的冬天,河面结冰,冰面以下河水仍然在流淌,如图所示。
若当时的气温为零下三十摄氏度,则此时水和冰交界处的温度()A.等于0℃B.等于当时的气温C.等于零下十五摄氏度D.无法判断4.(2019秋•麻城市期末)用煤油温度计测量热水温度时,温度计中煤油面慢慢升高,在“煤油面升高”的过程中,有关温度计内煤油的物理量不变的是()A.体积B.质量C.密度D.温度5.(2019秋•丹江口市期末)以下估测值中,最符合实际的是()A.一枚1元硬币的质量约6gB.丹江口市冬天最低气温约为﹣30℃C.蜗牛爬行的速度约0.5m/sD.多数人脉搏跳动100次用时约15min6.(2019秋•黄陂区期末)盛夏天气炎热,小明将奶茶喝掉一半后盖上盖子放入冰箱,一段时间后,她拿出奶茶瓶,发现奶茶全结成冰,请问奶茶结冰后变化的物理量是:①.状态;②.体积;③.质量;④.密度。
上述判断中,说法正确的是()A.①③④B.②③④C.①②④D.①②③7.(2019秋•西塞山区期末)如图所示是在探究甲、乙两种物质质量跟体积关系时作出的图象。
以下分析正确的是()A.若V甲=V乙,则m甲<m乙B.甲物质的质量跟体积的比值比乙物质大C.若m甲=m乙,则V甲>V乙D.甲的密度与它的质量成正比8.(2019秋•梁子湖区期末)下列关于质量和密度,正确的说法是()A.质量是物质所含物体的多少B.同种物质的密度总是相同的,与其它因素都没有关系C.向篮球充气时,篮球内气体质量和密度都增大D.从月球上带回的岩石样本,质量和密度均变小9.(2019秋•宜城市期末)建筑物内遭遇火灾时,受困人员应采取弯腰甚至匍匐的姿势撤离火场,这样能有效避免吸入有害气体或被灼伤。
北师大版九年级数学上学期 期末单元复习 第6章 反比例函数 含答案
第6章反比例函数一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.126.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.67.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.88.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.310.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:;当mx+n≥时,x的取值范围是;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?参考答案与试题解析一.选择题(共10小题)1.下列函数中,是反比例函数的是()A.y=B.y=C.y=x﹣1D.y=【分析】根据反比例函数的一般形式即可作出判断.【解答】解:A、该函数是常函数,故本选项不符合题意.B、该函数是y与(1﹣x)成反比例函数关系,故本选项不符合题意.C、该函数是反比例函数,故本选项符合题意.D、该函数不是反比例函数,故本选项不符合题意.故选:C.2.今年,某公司推出一款新手机深受消费者推崇,但价格不菲.为此,某电子商城推出分期付款购买手机的活动,一部售价为9688元的新手机,前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.【分析】直接利用后期每个月分别付相同的数额,进而得出y与x的函数关系式.【解答】解:由题意得y=,即y=,故选:D.3.函数y=﹣ax+a与y=(a≠0)在同一坐标系中的图象可能是()A.B.C.D.【分析】根据反比例函数与一次函数的图象特点解答即可.【解答】解:a>0时,﹣a<0,y=﹣ax+a在一、二、四象限,y=在一、三象限,无选项符合.a<0时,﹣a>0,y=﹣ax+a在一、三、四象限,y=(a≠0)在二、四象限,只有D 符合;故选:D.4.对于反比例函数y=,下列说法错误的是()A.函数图象位于第一、三象限B.函数值y随x的增大而减小C.若A(﹣1,y1)、B(1,y2)、C(2,y3)是图象上三个点,则y1<y3<y2D.P为图象上任意一点,过P作PQ⊥y轴于Q,则△OPQ的面积是定值【分析】先判断出k2+1的符号,再根据反比例函数的性质即可得出结论.【解答】解:A、∵k2+1>0,∴它的图象分布在第一、三象限,故本选项正确;B、∵它的图象分布在第一、三象限,∴在每一象限内y随x的增大而减小,故本选项错误;C、∵它的图象分布在第一、三象限,在每一象限内y随x的增大而减小,∵x1=﹣1<0,∴y1<0,∵x2=1>0,x3=2>0,∴y2>y3,∴y1<y3<y2故本选项正确;D、∵P为图象上任意一点,过P作PQ⊥y轴于Q,∴△OPQ的面积=(k2+1)是定值,故本选项正确.故选:B.5.如图,菱形ABCD的两个顶点B,D在反比例函数y=的图象上,对角线AC与BD的交点恰好是坐标原点O,已知点A(﹣2,2),∠ABC=60°,则k的值是()A.4 B.6 C.4D.12【分析】根据题意可以求得点B的坐标,从而可以求得k的值.【解答】解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(﹣2,2),∴OA=2,∴BO==,∵直线AC的解析式为y=﹣x,∴直线BD的解析式为y=x,∴点B的坐标为(2,2),∵点B在反比例函数y=的图象上,∴,解得,k=12,故选:D.6.如图,正方形ABCD的边长为5,点A的坐标为(0,3),点D在x轴的正半轴上.若反比例函数y=(k≠0)的图象经过点B,则k的值是()A.3 B.4 C.5 D.6【分析】作BE⊥y轴于E,根据勾股定理求得OD=4,然后证明△ABE≌△DAO,可得BE =AO=3,AE=OD=4,所以点B坐标为(﹣3,﹣1),把点B代入双曲线y=可得k的值.【解答】解:作BE⊥y轴于E,∵正方形ABCD的边长为5,点A的坐标为(0,3),∴AD=5,OA=3,∴OD===4,∵四边形ABCD为正方形,∴∠BAD=90°,AB=AD,∴∠BAE=90°﹣∠DAO=∠ADO,∵∠AEB=∠AOD=90°,∴△ABE≌△DAO(AAS),∴BE=AO=3,AE=OD=4,∴OE=AE﹣OA=1,∴B(﹣3,﹣1),∵反比例函数y=(k≠0)的图象经过点B,∴k=﹣3×(﹣1)=3,故选:A.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB=1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4 B.5 C.6 D.8【分析】根据平行于x轴的直线上任意两点纵坐标相同,可设C(x,2).则D(x,4),由勾股定理得出AB2+BC2=AC2,列出方程22+12+(x﹣1)2+22=x2,求出x,得到D点坐标,代入y=,利用待定系数法求出k.【解答】解:∵AC∥x轴,OA=2,OB=1,∴A(0,2),∴C、A两点纵坐标相同,都为2,∴可设C(x,2).∵D为AC中点.∴D(x,2).∵∠ABC=90°,∴AB2+BC2=AC2,∴12+22+(x﹣1)2+22=x2,解得x=5,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.如图,在正方形ABCD中,点C(8,5),AB边不动,将正方形向左下方推动变形,使点D落在y轴的点D′处,点C落在点C′处,则经过点C′的反比例函数解析式是()A.y=B.y=C.y=D.y=【分析】由点C(8,5)可知A(3,0),OD'=4,过点C'作C'M⊥OB,可证△AOD'≌△BMC'(HL),可求C'(5,4),即可求反比例函数解析式;【解答】解:∵正方形ABCD中,点C(8,5),∴A(3,0),AB=5,∵AD'=5,∴OD'=4,过点C'作C'M⊥OB,∵BC'=AD',C'M=OD',∴△AOD'≌△BMC'(HL),∴MB=OA=3,∴C'(5,4),∴y=;故选:A.9.设双曲线y=(k>0)与直线y=x交于A\B两点(点A在第三象限),将双曲线在第一象限的一支沿射线BA的方向平移,使其经过点A,将双曲线在第三象限的一支沿射线AB的方向平移,使其经过点B,平移后的两条曲线相交于P、Q两点,此时我们称平移后的两条曲线所围部分(如图中阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径“,当双曲线y=(k>0)的眸径为6时,k的值为()A.B.2 C.D.3【分析】以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,联立直线AB及双曲线解析式成方程组,通过解方程组可求出点A、B的坐标,由PQ的长度可得出点P的坐标(点P在直线y=﹣x上找出点P的坐标),由图形的对称性结合点A、B和P的坐标可得出点P′的坐标,再利用反比例函数图象上点的坐标特征即可得出关于k的一元一次方程,解之即可得出结论.【解答】解:以PQ为边,作矩形PQQ′P′交双曲线于点P′、Q′,如图所示.联立直线AB及双曲线解析式成方程组,,解得:,,∴点A的坐标为(﹣,﹣),点B的坐标为(,).∵PQ=6,∴OP=3,点P的坐标为(﹣,).根据图形的对称性可知:PP′=AB=QQ′,∴点P′的坐标为(﹣+2,+2).又∵点P′在双曲线y=上,∴(﹣+2)•(+2)=k,解得:k=.故选:A.10.如图,为某公园“水上滑梯”的侧面图,其中BC段可看成是一段双曲线,建立如图的坐标系后,其中,矩形AOEB为向上攀爬的梯子,OA=5米,进口AB∥OD,且AB=2米,出口C点距水面的距离CD为1米,则B、C之间的水平距离DE的长度为()A.5米B.6米C.7米D.8米【分析】根据矩形的性质得到BE=OA=5,AB=2,求得B(2,5),设双曲线BC的解析式为y=,得到k=10,于是得到结论.【解答】解:∵四边形AOEB是矩形,∴BE=OA=5,AB=2,∴B(2,5),设双曲线BC的解析式为y=,∴k=10,∴y=,∵CD为1∴当y=1时,x=10,∴DE的长=10﹣2=8m,故选:D.二.填空题(共7小题)11.已知反比例函数y=(k﹣1)x,那么k的值是±2 .【分析】根据反比例函数的定义解答.【解答】解:依题意得:k2﹣5=﹣1且k﹣1≠0.解得k=±2.故答案是:±2.12.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点B的坐标为(3,6),反比例函数y=(k>0)的图象分别交边BC、AB于点D、F,连结DF,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上时,则k的值为.【分析】过点F作FG⊥OC,垂足为G.由于四边形OABC是矩形,△DEF与△DBF关于直线DF对称,当点E正好落在边OC上,可得△DGF∽△FAE,然后把D、F两点的坐标用含k的代数式表示出来,再由相似三角形对应边成比例求出CE的长,然后利用勾股定理求出k.【解答】解:过点F作FG⊥OC,垂足为G,如图所示.由题意知D(,6),F(3,),FG=3.又∵△DEF与△DBF关于直线DF对称,点E在边OC上,∴DE=DB,∠B=∠DEF=90°,∴∠DEC+∠GEF=90°,∵∠EGF=∠DCE=90°,∠GEF+∠EFG=90°,∴∠DEC=∠EFG,∴△EGF∽△DCE,∴=,即=,解得:CE=,∵DE2=DC2+CE2,即(3﹣)2=()2+()2,解得:k=.故答案为:.13.如图,点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,点C是x轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:方法一:设点A的坐标为(a,),点B的坐标为(b,),∵点C是x轴上一点,且AO=AC,∴点C的坐标是(2a,0),设过点O(0,0),A(a,)的直线的解析式为:y=kx,∴,解得,k=,又∵点B(b,)在y=上,∴,解得,或(舍去),∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.方法二:作BD⊥x轴于点D,作AE⊥x轴于点E,∵点A在为函数y=(x>0)图象上一点,AO=AC,∴△AOC的面积是9,∵点A为函数y=(x>0)图象上一点,连结OA,交函数y=(x>0)的图象于点B,∴=,∴,∴,∴S△ABC=6,故答案为:6.14.若反比例函数y=﹣,当y≤,且y≠0时自变量x的取值范围x≤﹣9或x>0 .【分析】首先画出图形,进而利用函数图象得出x的取值范围.【解答】解:如图所示:∵反比例函数y=﹣,当y≤,∴y=时,则x=﹣9,故y≤时,x≤﹣9或x>0.故答案为:x≤﹣9或x>0.15.如图,是反比例函数y=和y=(k1>k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=4,则k1﹣k2的值是8 .【分析】设A(a,b),B(c,d),代入双曲线得到k1=ab,k2=cd,根据三角形的面积公式求出ab﹣cd=8,即可得出答案.【解答】解:设A(a,b),B(c,d),代入得:k1=ab,k2=cd,∵S△AOB=4,∴ab﹣cd=4,∴ab﹣cd=8,∴k1﹣k2=8,故答案为:8.16.如图,△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),AB所在直线的函数关系式是y=x+6.当反比例函数y=﹣的图象与△ABC有交点时,k的取值范围是4≤k≤.【分析】先求出点A、B的坐标,根据反比例函数图象上点的坐标特征可知,当反比例函数图象与△ABC相交于点C时k的取值最小,当与线段AB相交时,k能取到最大值,根据直线y=x+6,设交点为(x,﹣x+6)时k值最大,然后列式利用二次函数的最值问题解答即可得解.【解答】解:∵△ABC在第一象限内,∠C=90°,BC∥x轴,点C(2,2),∴把x=2代入y=x+6得,y=﹣×2+6=,把y=2代入y=x+6得,﹣x+6=2,解得x=6,∴点A、B的坐标分别为A(2,),B(6,2),根据反比例函数系数的几何意义,当反比例函数与点C相交时,k=2×2=4最小,设反比例函数与线段AB相交于点(x,﹣x+6)时k值最大,则k=x(﹣x+6)=﹣x2+6x=﹣(x﹣)2+,∵2≤x≤6,∴当x=时,k值最大,此时交点坐标为(,3),因此,k的取值范围是4≤k≤.故答案为:4≤k≤.17.如图,Rt△AOB中,∠OAB=90°,∠OBA=30°,顶点A在反比例函数y=图象上,若Rt△AOB的面积恰好被y轴平分,则进过点B的反比例函数的解析式为10 .【分析】分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b),则ab=﹣4.根据两角对应相等的两三角形相似,得出△OAE∽△ABF,由相似三角形的对应边成比例,则BD、OD都可用含a、b的代数式表示,从而求出B的坐标,进而得出结果.【解答】解:分别过A、B作AE⊥x轴于E,BD⊥y轴交AE于F.设A(a,b).∵顶点A在反比例函数y=图象上,∴ab=﹣4.∵∠OAB=90°,∠OAE=90°﹣∠BAF=∠ABF,∠OEA=∠BFA=90°,∴△OAE∽△ABF,∴OA:AB=OE:AF=AE:BF,在Rt△AOB中,∠AOAB=90°,∠OBA=30°,∴OA:AB=1:,∴﹣a:AF=b:BF=1:,∴AF=﹣,BF=b,∵Rt△AOB的面积恰好被y轴平分,∴AC=BC,∴BD=DF=BF=﹣a,OD=AE+AF=b﹣a,∴b=﹣a,∴A(﹣b,b),B(b,b﹣)∴﹣b•b=﹣4,∴b2=,∴k=b(b﹣)=b2﹣ab=10,故答案为:10.三.解答题(共5小题)18.如图,直线y=2x﹣4分别交坐标轴于A、B两点,交双曲线y=(x>0)于C点,且sin∠COB=;(1)求双曲线的解析式;(2)若过点B的直线y=ax+b(a>0)交y轴于D点,交双曲线于点E,且OD:AD=1:2,求E点横坐标.【分析】(1)根据题意设出点C的坐标,由sin∠COB=可以求得点C的坐标,进而可以求得双曲线的解析式;(2)根据y=2x﹣4求得A、B的坐标,OD:AD=1:2,可知D的坐标,根据待定系数法求得BD的解析式,联立解析式即可求出E横坐标.【解答】解:(1)设点C的坐标是(a,2a﹣4),∵sin∠COB=,∴tan∠COB==,解得,a=6,∴点C为(6,8),∵点C在双曲线y=(x>0)上,∴k=6×8=48,即双曲线的解析式为:y=;(2)∵直线y=ax+b(a>0)交y轴于D点,∴点D的坐标是(0,b),∵直线y=2x﹣4分别交坐标轴于A、B两点,∴点A的坐标是(0,﹣4),B(2,0),∵OD:AD=1:2,∴OD=,∴D(0,﹣),把B(2,0),D(0,﹣)代入y=ax+b得,解得,∴y=x﹣,解x﹣=得x=1+,x=1﹣(舍去),∴E的横坐标为1+.19.如图,一次函数y=x+b与反比例函数y=的图象交于A(m,3),B(﹣3,n)两点.过点B作BC⊥x轴,垂足为点C,且S△ABC=5.(1)求一次函数与反比例函数的表达式;(2)根据所给条件,请直接写出不等式x+b的解集;(3)若P(p,y1),Q(﹣2,y2)是反比例函数y=图象上的两点,且y1≥y2,求实数P的取值范围.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,即可得出A(m,3),B (﹣3,﹣m),根据三角形面积求得m、n的值,得到A、B的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第一象限时和当点P在第三象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(m,3),B(﹣3,n)代入反比例函数y=得:k=3m=﹣3n,即m=﹣n,则B(﹣3,﹣m),∵A(m,3),B(﹣3,﹣m),S△ABC=•BC•(x A﹣x B)∴×m×(m+3)=5,解得:m=2或m=﹣5(舍去),∴n=﹣2,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k=6,即反比例函数的解析式是y=;把A(2,3)代入y=x+b得:3=2+b,解得:b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式x+b的解集是x≤﹣3或0<x≤2;(3)∵P(p,y1),Q(﹣2,y2)是反比例函数y=图象上,则点Q(﹣2,y2)在第三象限,∴当点P在第一象限时,总有y1>y2,此时p>0;当点P在第三象限时,要使y1≥y2,实数p的取值范围是P≤﹣2,即P的取值范围是p≤﹣2或p>0.20.如图,在所给的直角坐标系(O是坐标原点)中,每个小方格都是边长为1的正方形,直线y=mx+n与反比例函数y=的图象的交点A,B均在格点上.(1)请直接写出点A,B的坐标为:点A(﹣1,﹣4),点B(﹣4,﹣1);当mx+n ≥时,x的取值范围是x>﹣4或﹣1<x<0 ;(2)将直线AB向右平移3个单位,再向上平移5个单位,在图中画出平移后的直线A′B′,并求出直线A′B′的解析式;(3)若点C在函数y=的图象上,且△ABC是以AB为底的等腰三角形,请直接写出点C的坐标.【分析】(1)观察图象,可求解;(2)由题意画出图象,由待定系数法可求直线解析式;(3)由待定系数法可求反比例函数解析式,设点C(a,),由等腰三角形的性质和两点距离公式可求a的值,即可求点C坐标.【解答】解:(1)由图象可知:点A(﹣1,﹣4),点B(﹣4,﹣1),当mx+n≥时,x的取值范围是x>﹣4或﹣1<x<0,故答案为:点A(﹣1,﹣4),点B(﹣4,﹣1),x>﹣4或﹣1<x<0;(2)图象如图:∵点A(﹣1,﹣4),点B(﹣4,﹣1),且直线AB向右平移3个单位,再向上平移5个单位,∴点A'(2,1),点B'(﹣1,4)设直线A'B'解析式为:y=kx+b,∴解得:∴直线A′B′的解析式为:y=﹣x+3;(3)∵反比例函数y=的图象过点A(﹣1,﹣4),∴k=﹣1×(﹣4)=4,∴反比例函数的解析式为:y=,设点C(a,),∵△ABC是以AB为底的等腰三角形,∴CA=CB,∴(a+1)2+(+4)2=(a+4)2+(+1)2,∴a=±2,∴点C(﹣2,﹣2)或(2,2)21.如图,在平面直角坐标系中,Rt△OAB的直角顶点A在x轴上,OB=5,OA=4,动点M 从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了x(0<x<2.5)秒时,解答下列问题:(1)若点B在反比例函数y=(x>0)的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当x为何值时,使得以O,M,N为顶点的三角形与△OAB 相似?【分析】(1)由勾股定理可求点B坐标(4,3),代入解析式可求k的值,即可求函数的解析式;(2)分两种情况讨论,由相似三角形的性质可求解.【解答】解:(1)∵△ABC是直角三角形,且BA⊥x轴于A,OA=4,OB=5,∴∴B(4,3),∴将B(4,3)代入得k=12,∴函数的解析式为:;(2)在两个动点运动过程中,分两种情况:①若∠OMN=90°,如图1所示,则MN∥AB,此时OM=4﹣x,ON=2x,∵∠OMN=∠OAB,∠NOM=∠BOA,∴△MON∽△AOB,∴,即:∴;②若∠ONM=90°,如图2所示,则∠ONM=∠OAB,此时OM=4﹣x,ON=2x,∵∠ONM=∠OAB,∠MON=∠BOA,∴△OMN~△OBA,∴即:,∴,综上所述,当或秒时,使得以O,M,N为顶点的三角形与△OAB相似.22.冬天即将到来,龙泉某中学的初三学生到某蔬菜生产基地作数学实验.在气温较低时,蔬菜生产基地用装有恒温系统的大棚栽培蔬菜,经收集数据,该班同学将大棚内温度和时间的关系拟合为一个分段函数,如图是某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)若大棚栽种某种蔬菜,温度低于10℃时会受到伤害.问若栽种这种蔬菜,恒温系统最多可以关闭多少小时就必须再次启动,才能使蔬菜避免受到伤害?【分析】(1)应用待定系数法分段求函数解析式;(2)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0)∵线段AB过点(0,10),(2,14)代入得,得,AB解析式为:y=2x+10(0≤x<5)∵B在线段AB上当x=5时,y=20∴B坐标为(5,20)∴线段BC的解析式为:y=20(5≤x<10)设双曲线CD解析式为:y=(k2≠0)∵C(10,20)∴k2=200∴双曲线CD解析式为:y=(10≤x≤24)∴y关于x的函数解析式为:y=(2)把y=10代入y=中,解得,x=20∴20﹣10=10答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.。
第6章平面图形期末复习
基本图形 直线 1条 2的依据是_________________ C F (2)图中互余的角共有____对
1 4
E
2
3
A
O
B
三、说理
例7 如图,线段AB=12cm, C、D是线段AB上的两 个点,MN=1.5CD,M是AC的中点,N是DB的中 点,那么MN的长等于_______cm
A
M C
D
N
B
三、说理
一、概念和分类
例1:平面上有4个点,可以画直线____条,
一、概念和分类
例2.如图,AC⊥BC,CD⊥AB,C、D分别为垂足。 如果AC=3,BC=4,AB=5, 5 则A到BC的距离是_____, 3 E 点C到AB的距离是_____, 点C到点E的距离是___________, 4
二、画图
(1)过点A画线段AB的垂线AD
(2)过点C画AB的平行线CE
A C
B
二、画图
例4.如图:已知∠AOB和射线DE。用尺规画射 线DC,使∠CDE = ∠AOB 。
A
O D E
B
三、重要结论
例5下列问题解决方法的依据是什么? ①植树时,只要定出两棵树的位置,就能确定同一行树所 在的直线; 两点确定一条直线 ②从A地到B地架设电线,总是尽可能沿着线段AB架设 两点之间线段最短 ③若直线a∥b,a//c,则直线b,c的关系是_____, 依据是________________________ ④把水渠中的水引到水池C中,先 过A点向渠岸AB画垂线,垂足为D, 再沿垂线段CD开沟才能使沟最短, 垂线段最短 其依据是____________
P171
基本图形 画 图 重要结论 说 理 直线 连接 ①两点之间线段最短 线段关系 1条 射线 延长 ②两点确定一条直线 (和差,中点) 线 线段 反向延长 ③中点 不相交 平行线 ①只有1条平行线 说明平行, 2条 (平行) ②平行于同一直线 说明垂直 垂线 线 相交 ③只有1条垂线 垂直转化 垂线段 ④垂线段最短 (垂直) ①2角相等 锐角 ①角平分线 三角板 ②2角互余 直角 ②对顶角 o 直角 / 垂直 /90 量角器 ③同角的余(补)角 角 钝角 ③ 2 角互补 相等 旋转角: o 尺规 平角 / 直线 /180 ④等角的余(补)角 (方向角, o ④ 多个角 180 相等 钟面角)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谜语:麻屋子、红帐子、里面住个白胖子, 答一种果实,请用学过的有关知识填空: ①花生是 果实 ,由 子房 发育而来; ②麻屋子指 果皮 ,由 子房壁 发育而来; ③红帐子指 种皮 ,由 珠被 发育而来; ④白胖子是指 胚 ,由受精卵 发育而来;
1 4 5 2 3
1、植物在生物圈中作用:生产者、能维持碳 和氧平衡(光合作用)、能促进生物圈的水循 环(蒸腾作用)。 2、我国植被主要类型:热带雨林、常绿阔叶 林、落叶阔叶林、针叶林、草原、荒漠。 3、我国珍稀植物:银杉、水杉、珙桐、桫椤。 4、植物界的大熊猫(银杉);植物界的活化 石(珙桐鸽子树、水杉 、桫椤)。 5、“三北”防护林指(西北、华北、东北) 被誉为“绿色长城”,林业生态工程之最。 6、每年的3月12日为我国的植树节。 7、引起温室效应的是(二氧化碳)气体
1、生物圈中的生产者( ) 2、能维持碳和氧平衡( ) 3、能促进生物圈的水循环( )。 4、我国植被主要类型:( ) 5、我国珍稀植物:( )。 6、植物界的大熊猫(); 7、植物界的活化石(、 )。 8、“三北”防护林指() 9、被誉为“绿色长城”林业生态工程之最() 10、每年的( )为我国的植树节。 11、引起温室效应的是( )气体
活动
探究种子的营养成分
结论
实验方法 现象 放到试管烘烤种子 试管内壁有水珠 烧剩下一些白色的灰 用火烧种子 炒熟种子在纸上按 在白纸上挤压有油渍 压 用水洗纱布包着的 沉淀滴加碘液变蓝的 面团,洗到水里物 物质 质 洗完后纱布里剩下 黄色有韧性的物质 黄色粘稠的物质
水分 无机盐 脂肪 淀粉 蛋白质
5、正休眠的种子?
将A烧杯放在25℃的通风地方,B烧杯放在冰箱 中.试分析两个烧杯中种子萌发的情况.
a b c
d e f
A
B
b 1A烧杯中能萌发的种子是___,不能萌发的种子是 a和c a缺少水分,c缺少空气 _____.原因是__________________________. 2组 2A烧杯中可以有几组对照实验_____,分别为 a与b、b与c 温度不 ___________.对照组是( b ) 不会 适宜 3B烧杯中的三粒种子会萌发吗?____原因_____.
2、种子萌发过程:种子萌发首先吸水膨胀, 种子萌发时(胚根)首先突破种皮; 完整、成熟、活的胚 3、 自身 供胚发育的 无机物:水和无机盐 种子 条件 营养物质 有机物:淀粉、蛋白 萌发 质、脂肪 的条 判断:种子是否萌发 没在休眠期 件 1、被虫咬掉胚的? 适量的水分 2、嫩种子? 外界 适宜的温度 3、炒熟、煮熟的? 条件 充足的空气 4、干瘪的种子?
1、世界上最大的种子是椰子,它的主要部分( ) B A、椰子种皮 B、椰子的胚 C、椰子汁D、椰子肉 2.下表为某小组同学用大豆种子探究“种子萌发 C 的环境条件”实验,他们探究的环境条件是 ( ) ① 干燥的大豆种子 + 浸清水的棉花 拧紧瓶盖 室温 ② 干燥的大豆种子 拧紧瓶盖 室温 A.温度 B.空气 C.水分 D.阳光 胚芽 3.发芽率分别为92%、94%、96%,发芽率是( ) 4、菜豆种子萌发以后 1 长成幼苗,图中所指的 2 胚轴 结构分别是由种子的哪 3 胚根 个部分发育来的?
玉 米 种 子
种皮和果皮 保护 胚乳 储存营养(供食用和胚发育的营养物质) 子叶1片 转运营养 胚芽 发育成茎和叶 胚 胚轴 发育成连接根和茎的部分 胚根 发育成根
比较菜豆种子和玉米种子的异同
菜豆种子双子叶
不 同 点 子叶 胚乳
玉米种子单子叶
2片
1片 有
无
营养 储存 相同点
子叶里
胚乳里
种皮和胚(胚芽、胚轴、胚根、子叶)
根的生长:分生区 细胞不断分裂和伸长 区细胞迅速伸长的结果。 分布规律:向地性、向水性、向肥性
茎 生长点:使芽轴不断伸长 叶 芽的 芽轴:发育成茎或节间 的 结构 叶原基:发育幼叶 生 芽原基:发育成侧芽 长 幼叶:发育成成叶 长高 顶芽生长点细胞不断分裂 茎 茎基部几个节不断分裂(小麦) 长粗:形成层(木质部和韧皮部间) 叶:叶基部有保持分生能力的细胞(韭菜)
1、菜豆种子的结构( 、 )。玉米种子的 结构( 、 、 )。它们都有( 、) 2、种子最重要的结构是( ),新植物的幼 体是( ),胚包括( 、 、 、 ), 3.胚根发育成( );胚芽( );胚轴( ) 4、菜豆2片子叶的作用( ),玉米1片子 叶的作用,玉米胚乳的作用( ) 5. 大米饭营养来自水稻的( )。豆油来自 大豆的( ),馒头来自小麦的( ),豆瓣 酱来自菜豆的( )。 6个节间。
7
5
8
11
6
9
4
3
花的基本结构(P116页)
10 12 2 1
花药里有花粉,花粉里精子,花粉萌发长出花粉 管,花粉管穿过柱头、花柱、进入子房、直达胚 珠。 花 药 柱 头
雄 蕊
花 丝
花 柱
雌 蕊
子 房
花的最主要的结构 子房里有胚珠,胚珠里有卵细胞,精子和卵细胞 结合形成受精卵。
结构 花柄、花托、花萼、花冠、雄蕊(花药、 花丝)和雌蕊(柱头、花柱、子房) 开 最重要的(雌蕊和雄蕊) 花
单性花(黄瓜)两性花(月季)无性花(向日葵舌状花)
传 粉 受 受精过程:花粉粒在粘液的作用下开始萌发, 精 长出花粉管,花粉管穿过柱头,沿着花柱生长 进入子房,直达胚珠,释放出精子。 受精作用:胚珠里卵细胞和精子结合形成受精卵 果实和 胚珠 种子 受精卵 胚 子房 果实 种子的 珠被 种皮 子房壁 果皮 形成
传粉:花药里的花粉落到雌蕊柱头上。 传粉方式:自花传粉和异花传粉(风力、昆虫)
1、开花:一朵花最重要的结构( 、)
2,雄蕊包括( 、 )。雌蕊包括( 、 、)。 3、传粉:( )里面的( )落到( )上, 4、受精作用:胚珠里面的( )和( )结合 形成( )的过程。 6、受精后只有()继续发育,其他都凋落 7、果实和种子的形成需要经( 、)两个生理 过程。 8、子房将来发育成( ).胚珠发育( ). 受精卵发育();子房壁();珠被()
第六章
种子萌发形成幼苗 1、菜豆、玉米种子的结构和各部分的功能(102) 2、种子萌发的过程(105) 3、种子萌发的条件(106)
果皮和种皮 胚轴 胚芽 胚根 胚芽 子叶 种皮 胚乳
2片
胚轴 胚根 子叶 一片
菜豆种子
双子叶植物
种皮 保护 子叶2片 储存营养(食用、供胚发育) 胚 胚芽 发育成茎和叶 胚轴 发育成连接根和茎的部分 胚根 发育成根
1种子萌发首先吸水膨胀,()最先突破种皮。
2、种子萌发自身条件:( 、、)的胚,并 且胚不( )。足够供胚发育营养物质; 3、种子萌发的外界条件:( 、 、 ), 4、探究种子的营养成分: 试管烘烤种子内壁有水珠( ); 用火烧种子剩下一些白色的灰( ); 炒熟种子在纸上按压有油渍( ); 用水洗纱布包着的面团,洗到水里物质, 滴加碘液变蓝的物质( );洗完后纱布里剩 下黄色有韧性的物质是()。
① ② ③
第六章
营养器官的生长 1、直根系和须根系的区别(109) 2、根尖的各部分结构和功能(110) 3、叶芽的结构和功能(106)
根 直根系:主根(胚根)侧根(主根) 系 须根系:不定根(茎叶)单 根 伸长区:根生长最快的地方 的 根 成熟区:吸收水分和无机盐主要部位 生 尖 分生区:能不断分裂 长 根冠:保护分生区
无论主茎和侧枝都是由芽发育的。 芽的 按着生位置分:顶芽和侧芽 种类 按发生分:花芽、叶芽、混合芽
1 2 3 4
根尖的结构:
1 2 3 4 5
叶芽的结构
1.吸收水分和无机盐的主要部位_____;
2、根伸长最快的地方______; 3.根的生长是( )细胞不断分裂和( ) 细胞不断生长的结果 4、使芽轴不断伸长的是___。 5、叶原基发育成( )芽原基发育成( ), 6、无论主茎和侧枝都是由( )发育的 7、树木的茎不断长粗是因为( )不断 分裂产生新的木质部和新的韧皮部 8、草、韭菜割掉还能长出新的是因为( )