金属材料与热处理教案
金属材料与热处理市公开课获奖教案省名师优质课赛课一等奖教案
金属材料与热处理教案一、教学目标:1. 了解金属材料的基本概念、分类和特性;2. 掌握金属的热处理方法及其在材料强度、韧性和耐蚀性方面的应用;3. 理解金属材料热处理对微观结构的影响,并学会通过热处理改善材料性能。
二、教学内容:1. 金属材料的基本概念和分类:a. 金属材料的定义;b. 金属材料的分类:有色金属和黑色金属;c. 金属材料的特性:导电性、导热性、可塑性和延展性。
2. 金属材料的热处理方法:a. 固溶处理:概念、原理和应用;b. 淬火处理:概念、原理和应用;c. 回火处理:概念、原理和应用;d. 冷加工和时效处理:概念、原理和应用。
3. 金属材料的热处理对性能的影响:a. 强度的改善:冷加工、固溶处理和淬火处理;b. 韧性的改善:回火处理;c. 耐腐蚀性的改善:时效处理和表面处理。
4. 热处理实验:a. 实验一:固溶处理与淬火处理的实验;b. 实验二:回火处理的实验;c. 实验三:冷加工与时效处理的实验。
三、教学方法:1. 理论讲授:通过讲解金属材料的基本概念、分类和特性,以及不同热处理方法的原理和应用,使学生掌握相关知识。
2. 实验教学:通过热处理实验,让学生亲自操作并观察材料的性能变化,加深对热处理方法和影响的理解。
3. 讨论交流:组织学生讨论不同热处理方法的优缺点,以及在实际应用中的选择和搭配,培养学生的分析和判断能力。
四、教学评估:1. 实验报告:针对每个实验,学生需撰写实验报告,包括实验目的、原理、步骤、结果及分析等内容。
2. 课堂练习:设计相关的选择题和计算题,帮助学生检验对知识掌握的程度。
3. 期末考试:综合考核学生对金属材料和热处理的全面理解,考察学生运用所学知识解决问题的能力。
五、教学资源:1. 教材:金属材料与热处理教材,包括相关理论和实验操作指南。
2. 实验设备和材料:实验室所需的金属材料和热处理设备。
六、教学进度安排:1. 第一周:金属材料的基本概念和分类;2. 第二周:固溶处理和淬火处理;3. 第三周:回火处理;4. 第四周:冷加工和时效处理;5. 第五周:热处理实验;6. 第六周:复习和期末考试。
《金属材料与热处理》教案
《金属材料与热处理》教案教案:金属材料与热处理一、教学目标:1.了解金属材料的基本性质和分类;2.掌握金属材料的热处理工艺;3.理解金属材料的结构与性能的关系。
二、教学内容:1.金属材料的概述(1)金属材料的定义和特点(2)金属材料的分类及应用领域2.金属材料的热处理(1)热处理的目的和基本原理(2)常见的热处理方法和工艺流程(3)热处理对金属材料性能的影响3.金属材料的结构与性能关系(1)金属晶体结构与性能的关系(2)金属的固溶体和析出相的形成与性能的关系三、教学过程:1.导入(15分钟)(1)讲解金属材料的定义和特点;(2)引入金属材料的分类及应用领域。
2.讲解金属材料的热处理(30分钟)(1)讲解热处理的目的和基本原理;(2)介绍常见的热处理方法和工艺流程;(3)分析热处理对金属材料性能的影响。
3.组织热处理实验(60分钟)(1)准备实验所需的金属材料和设备;(2)进行热处理实验,并观察实验结果;(3)分析实验结果,讨论热处理对金属材料性能的影响。
4.讲解金属材料的结构与性能关系(30分钟)(1)讲解金属晶体结构与性能的关系;(2)介绍金属的固溶体和析出相的形成与性能的关系。
5.总结与提问(15分钟)(1)总结金属材料与热处理的基本知识;(2)提问检查学生掌握情况。
四、教学资源:1.教材《金属材料与热处理》;2.实验室设备和金属材料。
五、教学评估:教师通过学生的表现、回答问题的情况以及实验结果的分析等来评估学生对金属材料与热处理知识的掌握程度。
六、教学反思:通过本课的教学,使学生了解到金属材料的基本性质和分类,掌握了金属材料的热处理工艺,并理解了金属材料的结构与性能的关系。
在教学中,我通过引入实验环节,增加了学生的实践操作,提高了他们对知识的理解。
同时,我也发现有些学生对金属材料的晶体结构和热处理工艺的理解有难度,需要在教学中提供更多的实例和练习。
此外,教学过程中还需要加强与学生的互动,提高他们的学习主动性和合作能力。
金属材料与热处理教案
金属材料与热处理教案金属材料与热处理 ?2-2金属的力学性能学习目的:? 理解金属材料性能(工艺性能、使用性能)的概念、分类。
?掌握强度的概念及其种类、应力的概念及符号。
?掌握拉伸试验的测定方法;力——伸长曲线的几? 个阶段;屈服点的概念。
教学重点与难点1、理解力——伸长曲线是教学重点;2、强度、塑性是教学难点。
教学过程:复习载荷可分为:静载荷、冲击载荷、交变载荷。
内力、应力的概念。
新课:?力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。
力学性能包括:强度、硬度、塑性、硬度、冲击韧性。
一、强度: ? 概念:金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。
强度的大小用应力来表示。
根据载荷作用方式不同,强度可分为:抗拉强度、抗压 ? 根据载荷作用方式不同强度可分为:抗拉强度抗压强度、抗弯强度、抗剪强度和抗扭强度等。
一般情况下多以抗拉强度作为判别金属强度高低的指标。
1、拉伸试样:拉伸试样的形状一般有圆形和矩形。
Do:直径 Lo:标距长度长试样:Lo10do 短试样:Lo5do力-伸长曲线: 如下图,以低碳钢为例纵坐标表示力F,单位N;横坐标表示伸长量?L,单位为mm。
(1)oe:弹性变形阶段: 试样变形完全是弹性的,这种随载荷的存在而产生,随载荷的去除而消失的变形称为弹性变形。
Fe为试样能恢复到原始形状和尺寸的最大拉伸力。
(2)es:屈服阶段: 不能随载荷的去除而消失的变形称为。
在载荷不增加或略有减小的情况下,试样还继续伸长的现象叫做屈服。
屈服后,材料开始出现明显的塑性变形。
Fs称为屈服载荷(3)sb:强化阶段: 随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称加工硬化)。
Fb:试样拉伸的最大载荷。
(4)bz:缩颈阶段(局部塑性变形阶段) 当载荷达到最大值Fb后,试样的直径发生局部收缩,称为“缩颈”。
工程上使用的金属材料,多数没有明显的屈服现象,有些脆性材料,不但没有屈服现象,而且也不产生“缩颈”。
《金属材料与热处理》教案-图文
《金属材料与热处理》教案-图文以下是为大家整理的《金属材料与热处理》教案-图文的相关范文,本文关键词为金属材料与热处理,教案,图文,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在综合文库中查看更多范文。
理论课教案章节课题课型新授课绪论§1-1金属的力学性能(一)课时2教具学具电教设施挂图教学目标教学重点难点知识金属力学性能的强度和塑性教学点能力通过学习使学生们了解力学性能的作用和试验原理培养点德育培养学生的职业道德观及互相协作的精神渗透点重点各性能的符号、表示方法难点试验原理学法引导1、讲授法2、自主探究法教学内容更新、补充、删节参考资料补充《金属材料与热处理》相关内容《金属学与热处理》课后体会教与学互动设计教师活动内容(一)组织教学点名考勤,稳定学生情绪,准备上课(二)复习提问1、谈谈对于金属材料及热处理这门课的认识?2、什么是力学性能?(三)讲授新课绪论一.讲述金属的发展过程1.古代2.近代3.现在4.未来二.学习《金属材料与热处理》的方法1.认真做好课堂笔记2.理论联系实际3.按时完成作业,有不懂的问题及时问老师。
三.《金属材料与热处理》的内容及重点和难点1.学习材料的两种性能(力学和工艺)2.金属的结构与结晶(微观角度看材料的性能)3.铁碳合金相图的纵向和横向分析4.碳素钢和铸铁的分类和用途5.几种有色金属的性能和用途、几种非金属的介绍第一章金属的性能由于中学的时候我们已经学习了金属的物理和化学性能,所以现在我们主要是介绍金属的另外两种性能------力学性能和工艺性能。
第一节金属的力学性能(一)载荷1、概念:金属材料在加工及使用过程中所受的外力。
2、分类:根据载荷作用性质分,载荷分三种:?、静载荷:大小不变或变化过程缓慢的载荷。
——如:桌上粉笔盒的受力,用双手拉住一根粉笔两端慢慢施力等。
?、冲击载荷:突然增加的载荷。
——如:用一只手捏住粉笔的一端,然后用手去弹击粉笔。
金属材料与热处理教案
金属材料与热处理教案一、教学目标1. 知识与技能:(1)了解金属材料的分类及性能;(2)掌握金属热处理的基本方法及其应用;(3)学会运用金属热处理知识解决实际问题。
2. 过程与方法:(1)通过观察、实验等途径,培养学生对金属材料的认知能力;(2)通过小组讨论、实践操作等环节,提高学生对金属热处理方法的理解和应用能力。
3. 情感态度与价值观:(1)培养学生热爱科学、勇于探索的精神;(2)培养学生珍惜资源、保护环境的意识。
二、教学内容1. 金属材料的分类及性能(1)金属材料的分类:黑色金属、有色金属及合金;(2)金属材料的性能:力学性能、物理性能、化学性能。
2. 金属热处理的基本方法(1)退火:降低硬度、提高韧性;(2)正火:提高硬度、降低韧性;(3)淬火:提高硬度、降低韧性;(4)回火:调整硬度与韧性。
3. 金属热处理的应用(1)金属零件的制造与修复;(2)金属工具的制造与维护;(3)金属设备的改进与优化。
三、教学重点与难点1. 教学重点:(1)金属材料的分类及性能;(2)金属热处理的基本方法及其应用。
2. 教学难点:(1)金属热处理过程中温度、时间、冷却速度等参数的控制在实际应用中的重要性;(2)金属热处理对金属性能的影响规律。
四、教学方法1. 采用讲授法,系统地向学生介绍金属材料与热处理的基本知识;2. 利用实验法,让学生直观地了解金属热处理的过程及效果;3. 通过小组讨论法,培养学生合作探究、解决问题的能力。
五、教学安排1. 第一课时:金属材料的分类及性能;2. 第二课时:金属热处理的基本方法;3. 第三课时:金属热处理的应用;4. 第四课时:金属热处理实践操作;5. 第五课时:总结与拓展。
六、教学评价1. 课堂评价:通过提问、讨论、实验操作等方式,了解学生在课堂上的学习情况;2. 作业评价:通过学生提交的作业,检查学生对金属材料与热处理知识的掌握程度;3. 实验报告评价:对学生在实践操作中的表现进行评价,包括操作技能、问题解决能力等。
金属材料与热处理教案
金属材料与热处理教案第一章:金属材料的概述教学目标:1. 了解金属材料的定义和分类。
2. 掌握金属材料的性质和用途。
教学内容:1. 金属材料的定义:金属材料是指由金属元素或金属合金组成的材料。
2. 金属材料的分类:金属材料主要包括纯金属和合金两大类。
3. 金属材料的性质:金属材料具有优良的导电性、导热性和韧性等。
4. 金属材料的用途:金属材料广泛应用于建筑、机械、电子等领域。
教学活动:1. 引入金属材料的概念,引导学生思考金属材料的日常应用。
2. 介绍金属材料的分类,让学生了解不同类型的金属材料。
3. 通过实例讲解金属材料的性质,如导电性、导热性和韧性等。
4. 探讨金属材料的用途,让学生了解金属材料在各个领域的重要性。
第二章:金属的结晶与晶体结构教学目标:1. 了解金属的结晶过程和晶体结构。
2. 掌握金属的晶体类型和性质。
教学内容:1. 金属的结晶过程:金属从液态转变为固态的过程称为结晶。
2. 金属的晶体结构:金属晶体主要由金属原子通过金属键相互连接而成。
3. 金属的晶体类型:金属晶体主要分为面心立方晶格和体心立方晶格两种类型。
4. 金属的晶体性质:不同晶体结构的金属具有不同的性质,如硬度和延展性等。
教学活动:1. 引入金属的结晶过程,引导学生了解结晶的基本概念。
2. 介绍金属的晶体结构,让学生掌握金属原子的排列方式。
3. 通过示意图讲解金属的晶体类型,如面心立方晶格和体心立方晶格。
4. 探讨金属的晶体性质,让学生了解不同晶体结构对金属性质的影响。
第三章:金属的塑性变形与再结晶教学目标:1. 了解金属的塑性变形和再结晶过程。
2. 掌握金属的塑性变形方式和再结晶的条件。
教学内容:1. 金属的塑性变形:金属在外力作用下发生形状改变而不断裂的过程。
2. 金属的塑性变形方式:主要包括拉伸、压缩、弯曲和扭转等。
3. 再结晶:金属在加热和冷却过程中,晶体结构发生改变的现象。
4. 再结晶的条件:再结晶发生的温度、应变量和时间等因素。
《金属材料与热处理》教案
天然水晶和普通玻璃a)天然水晶b)普通玻璃晶体内部原子排列模型晶格和晶胞示意图a)晶格b)晶胞三、金属晶格的类型、体心立方晶格(9个原子)、面心立方晶格(14个原子)、密排六方晶格(17个原子)四、单晶体与多晶体晶粒——组成金属的小晶体。
晶界——由晶粒间不规则排列的原子构成。
五、金属的晶体结构的缺陷晶体缺陷——由于各种原因,实际晶体中原子的规律排列受到干扰和破坏,使晶体中的某些原子偏离正常位置,造成原子排列的不完全性。
点缺陷——空位、间隙原子和置代原子2.线缺陷——位错位错的特点之一是很容易在晶体中移动,的运动来实现的。
在晶体中,位错的晶格畸变发生在沿半原子面端面的狭长区域,陷。
单晶体示意图 多晶体示意图刃型位错示意图 a ) 立体图 b ) 平面图课后小结】基本概念:一、晶体与非晶体 二、晶体的结构的概念 三、金属晶格的类型晶界过渡结构示意图亚晶界结构示意图钢锭浇铸示意图a)浇铸示意图b)钢锭1—盛钢桶2—滑动水口3—钢锭模4—钢液5—底盘液体 --> 晶体液体 --> 固体(晶体或非晶体)二、晶粒大小对金属材料的影响晶粒愈细,强度、硬度愈高,塑性、韧性也愈好。
形核率——单位时间、单位体积所形成的晶核数,用字母N表示。
特点:1、金属的同素异构转变是一个重结晶过程,有恒定的转变温度;转变时需要一定的过冷度;释放结晶潜热;转变过程(晶核的形成和长大过程)2、转变时,晶核优先在原晶粒晶界中产生,大小会影响新晶粒大小,原晶粒越细,转变后可得到更细小的晶粒.内力内力——工件或材料在受到外部载荷作用时,为保持其不变形,在材料内部产生的一种与外力相对抗的力。
任何一种材料,在未受到外力作用时,内部原子之间都有平衡的相互作用的原子力,以保持其固定的形状。
当受到外力作用时,原来的平衡被破坏,其中任何一个小单元都和邻近的各小单元之间产生了新的力(内力)强调:内力是在外力作用下,材料内部产生的那部分相互作用力。
金属材料及热处理教案
根据载荷作用性质的不同分为:
(1)静载荷:指大小不变或变化过程极其缓慢的载荷
(2)冲击载荷:指在短时间内以较高速度作用于零件上的载荷
(3)交变载荷:指大小、方向或大小和方向随时间发生周期性变化的载荷
根据载荷作用形式的不同分为:
拉、压、弯曲、剪切以及扭转等
(注:使用不同类型的试样(V型缺口或U型缺口)进行试验时,冲击韧度分别标记为akv或aku)
2、小能量多次冲击
实践表明:承受冲击载荷的机械零件,大多数情况下是因小能量多次冲击而遭到破坏的,所以对材料进行小能量多次冲击试验是很重要的。一次冲击韧度高的材料,小能量多次冲击抗力不一定高,反之也一样。金属材料受大能量冲击载荷作用时,其冲击抗力主要取决于冲击韧度ak的大小,而在小能量多次冲击条件下,其冲击抗力主要取决于材料的强度和塑性。
教学难点
如何明确学习这门课的目的和内容
教学用具
利用教室中的各种金属物体
教学方法
阅读教学法、归纳法、举例分析法
教学过程设计
教学环节
教师活动
学生活动
设计意图
一、组织教学
二、导入新课
三、新课教学
绪论是本课程的第一节课,也是学好本课程的动员课。因此,讲好本节课对学生以后的学习好本课程具有非常重要的意义。让学生明确学习本课程的目的,了解本课程的性质、任务及内容范围,并了解我国在金属材料及热处理方面的发展概况及所取的成就,以提高学生的学习兴趣。
200至200学年第学期
_____________________课程
教
案
课程编码:______________________________________
金属材料与热处理教案
金属材料与热处理教案一、教学目标1. 让学生了解金属材料的分类及性质,认识常见金属材料。
2. 使学生掌握金属热处理的基本原理和方法,了解热处理对金属性能的影响。
3. 培养学生运用金属热处理知识解决实际问题的能力。
二、教学内容1. 金属材料的分类及性质2. 金属热处理的基本原理和方法3. 热处理对金属性能的影响4. 常见金属材料的热处理工艺5. 金属热处理在工程中的应用三、教学重点与难点1. 教学重点:金属材料的分类及性质,金属热处理的基本原理和方法,热处理对金属性能的影响。
2. 教学难点:金属热处理的基本原理,热处理对金属性能的影响。
四、教学方法1. 采用多媒体教学,展示金属材料及热处理的相关图片和视频。
2. 利用实物模型或教具,直观地展示金属材料的性质和热处理过程。
3. 采用案例分析法,让学生了解金属热处理在工程中的应用。
4. 开展小组讨论,培养学生团队合作精神。
五、教学安排1. 第一课时:金属材料的分类及性质2. 第二课时:金属热处理的基本原理和方法3. 第三课时:热处理对金属性能的影响4. 第四课时:常见金属材料的热处理工艺5. 第五课时:金属热处理在工程中的应用六、教学评价1. 课堂问答:通过提问,检查学生对金属材料分类、性质以及热处理基本原理和方法的掌握情况。
2. 小组讨论:评估学生在案例分析中的参与程度,以及对金属热处理在工程应用中的理解。
3. 课后作业:布置相关练习题,检验学生对课堂内容的吸收和运用能力。
七、教学资源1. 多媒体课件:包括金属材料图片、热处理视频、动画等。
2. 实物模型或教具:展示金属材料和热处理过程。
3. 案例资料:涉及金属热处理在工程中的应用实例。
4. 练习题库:供课后作业使用。
八、教学拓展1. 邀请行业专家进行讲座,介绍金属热处理在实际生产中的应用和最新发展动态。
2. 组织学生参观金属加工工厂,实地了解金属热处理的过程和设备。
3. 开展课后研究项目,鼓励学生探索金属热处理技术的新应用。
《金属材料与热处理》教案
时
计
划
授 课 班 级ቤተ መጻሕፍቲ ባይዱ093 机电
授 课 时 间 序 年 月 年 月 日 号 日 14
课题
第 9 章焊接与胶结成形 9.1 焊接的基本原理
教学目标:
1. 了解 焊接成形原理及特点;
2.掌握焊接有哪些种类; 3.掌握熔化焊的三要素。 焊接工艺分类和熔焊的三要素(重) 焊接成形原理及特点(难)
教学重难点:
爆炸焊 扩散焊 高频焊 锌焊及封粘:软钎焊 硬钎焊 封接 粘接 三、应用 1.金属结构的焊接(如锅炉汽包的焊接结构) 2.机械零件的焊接 如:焊接齿轮 (管板焊接) 四、熔焊原理及过程 (一) 、熔焊的本质及特点 ①本质——小熔池熔炼与冷凝,是金属熔化与结晶的 过程 (图 9-2)熔焊过程示意图 。 ② 熔池存在时间短,温度高,冶金过程不充分,氧化 严重,热影响巨大。 ③冷却速度快,结晶后易生成粗大的柱状晶。 (二) 、熔焊的三要素 合适的热源——能量要集中,温度要高,快速熔化 良好的熔池保护——渣保护、气保护、渣——气联合 保护 焊缝填充金属——焊芯、焊丝 1. 热源 (1) .电弧 (2) .等离子弧 (3) .电渣热 (4) .电子束 (5) .激光束 2. 熔池的保护-------防止金属氧化、吸气 (1) .渣保护(图 9-8) (2) .气保护(保护熔池和熔滴) (3) .渣——气联合保护 渣保护和气保护联合作用(图 9-10) 如:焊条的药皮及二氧化碳加药芯 造渣剂、造气剂 单-CO2 气保护易产生飞溅、气孔 和合金元素氧化烧损。 3. 填充金属——焊芯与焊丝
3 分钟 2.导入新课 三、讲授新课:
第 9 章 焊接成形 9.1 焊接的基本原理
通过引导激发学生 学习的兴趣。
74 分钟 板书
金属热处理教案
金属热处理教案
引言:
金属热处理是一种广泛应用于金属材料加工和制造业中的工艺,通过控制金属材料的温度和时间,以改变其力学性能、改善表面质
量和延长使用寿命。
本教案将介绍金属热处理的基本原理、常见的
热处理方法以及应用实例,以帮助学习者更全面地了解并掌握金属
热处理的知识。
一、金属热处理的基本原理
1.1 金属热处理的定义和作用
1.2 金属的组织结构和相变规律
1.3 热处理过程中的物理和化学反应
二、常见的金属热处理方法及其特点
2.1 全固溶处理
2.2 固溶处理与时效处理
2.3 淬火处理
2.4 空气冷却处理
2.5 淬火与回火处理
三、金属热处理技术的应用实例
3.1 钢材的热处理技术
3.2 铝合金的热处理技术
3.3 铜合金的热处理技术
3.4 不锈钢的热处理技术
四、金属热处理的设备和工艺控制
4.1 热处理设备的分类和特点
4.2 热处理工艺参数的选择和控制
4.3 高温环境下的安全防护
五、金属热处理技术的发展趋势
5.1 绿色环保金属热处理技术
5.2 智能化金属热处理设备
5.3 新型金属热处理材料的研发
结语:
金属热处理是提高金属材料性能与质量的重要工艺之一,它在现代制造业中具有广泛的应用。
通过本教案的学习,学习者将对金属热处理的基本原理、常见方法和应用实例有更深入的认识,为未来的实践应用奠定基础。
在不断发展的制造业中,金属热处理技术也将持续创新和改进,以满足不同行业的需求,提高产品质量和品牌竞争力。
金属材料与热处理教案
生产生活中常见到一些机械零件因受力过大被破坏,而失去工作能力。如:拧断
的钥匙、弯曲的自行车辐条、 扣的螺栓等。总结机械零件常见损坏形式
变形
V断裂
磨损
主要原因:材料的实际使用性能达不到工作要求。
使用性能:为保证机械零件或工具正常工作,材
巳料应具务的性能(力学、物理、化学性能等)。此性能决定了金属村性能料的应用范围、安全可靠性和使用寿命等。
2.晶界的作用
晶界处原子排列比较紊乱,阻碍位错的移动,因而阻碍了滑移。晶界越多, 则晶体的塑变抗力越大。
3.晶粒大小的影响
在一定体积的晶体内,晶粒数目越多,晶界就越多,晶粒就越细,且不同位 向的晶粒也越多,1因而塑性变形抗力也越大。细晶粒的多晶体不仅强度较高,且 塑性和韧性也较好,故生产中总是尽可能细化晶粒。
1.载荷
载荷一一金属材料在加工及使用过程中所受的外力。
根据载荷作用性质的不同分:
(1)静载荷大小不变或变化过程缓慢的载荷。
(2)冲击载荷一一在短时间内以较高速度作用于零件上的载荷。
(3)交变载荷一一大小、方向或大小和方向随时间发生周期性变化的载荷。
力一一物体之间的相互作用,是使物体发生加速度和发生形变的外因。物体 受力后一变形(材料学是从微观角度来研究物体受外力后发生变形甚至破坏的规 律)
t\T
纯金属结晶时的冷却曲线,。
a)理论结晶温度b)实际结晶温度
a)b)
纯金属的结晶条件:
纯金属结晶的条件就是应当有一定的过冷度
属不同的sw&wn曲线
冷却速度越大,则过冷度越大。
2.纯金属的结晶过程
金属结晶的微观过程一一结晶过程是形核和长大的过程
《金属材料与热处理》教案
《金属材料与热处理》教案一、课程概述《金属材料与热处理》是材料科学与工程专业的一门专业课程,属于材料工程学科的一部分。
本课程综合应用了材料科学、热力学、固态物理、材料物理、材料化学等多门学科的基本原理,旨在介绍金属材料的组织结构、力学性能和热处理过程等内容。
通过本课程的学习,学生将掌握金属材料的基本特性和加工性能,了解金属材料的热处理方法和工艺流程,以及热处理对材料性能的影响。
二、课程目标1.了解金属材料的基本组织结构、力学性能和热处理原理。
2.掌握金属材料的力学性能测试和分析方法。
3.熟悉金属材料的常见热处理工艺和设备。
4.了解热处理对金属材料性能的影响及其应用。
三、教学内容与方式1.基本金属材料的组织结构-金属晶体结构-晶体缺陷与异质相-金属的晶格缺陷与固溶体-金属的晶粒组织与晶界-金属的位错与塑性变形-金属的相图与相变2.金属材料的力学性能-应力与应变-弹性力学与塑性力学-变形与强化机制-韧性与脆性-疲劳与断裂3.金属材料的热处理原理-固溶处理-时效处理-冷却处理-淬火处理-热处理设备与工艺4.热处理对金属材料性能的影响及应用-结构与性能的关系-热处理工艺对性能的影响-热处理在材料设计与加工中的应用教学方式主要采用理论讲授、实验演示、案例分析和学生讨论等方式相结合,注重理论与实践相结合,培养学生的综合应用能力和问题解决能力。
四、教学评价结合学生的平时表现、课堂参与度、实验报告和期末考试等内容进行综合评价。
对于学生可以根据个人学习情况提供不同形式的评价方式,包括课堂讨论、课堂作业、小组项目、期末实验等。
五、教材参考书1.《金属材料导论》第四版,杨宗忱编著,高等教育出版社。
2.《材料科学基础》第二版,韩士忠主编,高等教育出版社。
3.《金属学与热处理实验》第三版,张敏等编著,机械工业出版社。
《金属材料与热处理》教案
《金属材料与热处理》教案一、教学目标1.了解金属材料的基本性质和分类;2.了解金属材料的热处理方法和原理;3.掌握金属材料的常见热处理工艺;4.培养学生的实际操作能力和解决问题的能力。
二、教学内容1.金属材料的基本性质和分类:(1)金属的特性和性质;(2)常见的金属材料分类。
2.金属材料的热处理方法和原理:(1)热处理的基本概念;(2)热处理的分类和目的;(3)热处理的原理和影响因素。
3.金属材料的常见热处理工艺:(1)退火;(2)淬火;(3)回火;(4)面冷加工;(5)预冷加工。
4.实践操作:(1)反射性金属的固溶处理;(2)不锈钢的淬火和回火处理;(3)铝合金的时效处理。
三、教学方法1.教师讲授与学生讨论相结合的方式,让学生主动参与教学过程;2.提倡学生自主学习、实践操作和解决问题。
四、教学过程1.导入(15分钟)教师介绍金属材料的重要性和广泛应用,激发学生的学习兴趣。
2.金属材料的基本性质和分类(30分钟)教师讲授金属材料的基本性质和分类,包括金属的特性和性质、常见的金属材料分类等。
同时,引导学生思考金属材料的热处理意义。
3.金属材料的热处理方法和原理(40分钟)教师讲解热处理的基本概念、分类和目的,同时介绍热处理的原理和影响因素。
通过示意图和实例,让学生更好地理解和记忆。
4.金属材料的常见热处理工艺(40分钟)教师依次介绍金属材料的常见热处理工艺,如退火、淬火、回火、面冷加工和预冷加工。
结合实例和实验,深入分析每种工艺的原理和应用范围。
5.实践操作(50分钟)学生分组进行实践操作,如反射性金属的固溶处理、不锈钢的淬火和回火处理、铝合金的时效处理等。
学生通过实际操作,深化对热处理工艺的理解和掌握。
6.总结与展望(15分钟)学生进行课堂总结,并展望热处理在金属材料改性和加工中的重要性。
教师进行点评和总结。
五、教学评价1.学生的课堂表现,包括听课态度、课后作业等;2.学生的实践操作结果和报告;3.学生对热处理的理解和运用能力。
金属材料与热处理教案
金属材料与热处理教案 It was last revised on January 2, 2021绪论引入:材料金属材料机械行业本课程的重要性主要内容:金属材料的基本知识(晶格结构及变性)金属的性能(力学及工艺性能)金属学基础知识(铁碳相图、组织)热处理(退火、正火、淬火、回火)学习方法:三个主线重要概念①掌握基本理论②成分组织性能用途热处理③理论联系实际引入:内部结构决定金属性能内部结构?第一章:金属的结构与结晶§1-1 金属的晶体结构★学习目的:了解金属的晶体结构★重点: 有关金属结构的基本概念:晶面、晶向、晶体、晶格、单晶体、晶体,金属晶格的三种常见类型。
★难点:金属的晶体缺陷及其对金属性能的影响。
一、晶体与非晶体1、晶体:原子在空间呈规则排列的固体物质称为“晶体”。
(晶体内的原子之所以在空间是规则排列,主要是由于各原子之间的相互吸引力与排斥力相平衡的结晶。
)规则几何形状性能特点:熔点一定各向异性2、非晶体:非晶体的原子则是无规则、无次序的堆积在一起的(如普通玻璃、松香、树脂等)。
二、金属晶格的类型1、晶格和晶胞晶格:把点阵中的结点假象用一序列平行直线连接起来构成空间格子称为晶格。
晶胞:构成晶格的最基本单元2、晶面和晶向晶面:点阵中的结点所构成的平面。
晶向:点阵中的结点所组成的直线由于晶体中原子排列的规律性,可以用晶胞来描述其排列特征。
(阵点(结点):把原子(离子或分子)抽象为规则排列于空间的几何点,称为阵点或结点。
点阵:阵点(或结点)在空间的排列方式称晶体。
)晶胞晶面晶向3、金属晶格的类型是指金属中原子排列的规律。
7个晶系 14种类型最常见:体心立方晶格、面心立方晶格、密排六方晶格(1)、体心立方晶格:(体心立方晶格的晶胞是由八个原子构成的立方体,并且在立方体的体中心还有一个原子 )。
属于这种晶格的金属有:铬Cr、钒V、钨W、钼Mo、及α-铁α-Fe 所含原子数 1/8×8+1=2(个)(2)、面心立方晶格:面心立方晶格的晶胞也是由八个原子构成的立方体,但在立方体的每个面上还各有一个原子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:(1)计算SO,S1 S0=πd02/4 =3.14×102/4=78.5mm2 S1¬=πd12/4 =3.14×5.652/4=25mm2 (2)计算σs、σb Fel=FS/SO=21×103/78.5 =267.5Mpa Fm= Fb/SO=29×103/78.5 =369.4Mpa (3)计算A、Z A=(l1-l0)/l0×100%=(138-100)/100×100%=38% Z=(S0-S1)/S0×100%=(78.5-25)/78.5×100%=68% 小结:抗拉强度是零件设计\选材的重要依据. A、Z的值越大,表示材料的塑性就越好。 作业:P32 3、4、5
(3)sb:强化阶段: 随塑性变形增大,试样变形抗力也逐渐增加,这种现象称为形变强化(或称 加工硬化)。Fb:试样拉伸的最大载荷。 (4)bz:缩颈阶段(局部塑性变形阶段) 当载荷达到最大值Fb后,试样的直径发生局部收缩,称为“缩颈”。 工程上使用的金属材料,多数没有明显的屈服现象,有些脆性材料,不但没 有屈服现象,而且也不产生“缩颈”。如铸铁等。 3、强度指标: (1)屈服点: 在拉伸试验过程中,载荷不增加(保持恒定),试样仍能继续伸长时的应力 称为屈服点。 用符号Fel表示 ,计算公式:Fel=Fs/So 对于无明显屈服现象的金属材料可用规定残余伸长应力表示, 计算公式:σ 0.2=F0.2/So 屈服点σ s和规定残余伸长应力σ 0.2都是衡量金属材料塑性变形抗力的指标。 材料的屈服点或规定残余伸长应力是机械零件设计的主要依据,也是评定金 属材料性能的重要指标。
2、具有同素异构转变的金属有:铁、钴、钛、锡、锰等。同一金属的同素 异构晶体按其稳定存在的温度,由低温到高温依次用希腊字母α,β,γ, δ等表示。 3、纯铁的同素异构转变: 1394℃ 912℃ δ-Fe → γ- Fe → α – Fe 体心 面心 体心
4、金属的同素异构转变,也称为“重结晶”。 其与液态金属结晶有许多相似处:有一定转变温度,有过冷现象; 有潜热放出和吸收 ; 也由形核、核长大来完成。 不同处:∵属固 态相变 ,∴ 转变需较大的过冷度;新晶核优先在原晶界处形核;转 变中有体积的变化,会产生较大内应力。 【小结】 【作业】P11 4、5、6
(2)、抗拉强度:б b材料在断前所能承受的最大应力. б b = Fb / So 注:零件在工作中所受的应力,不允许超过б b,否则会断裂. ∴它也是零件设计\选材的重要依据. 二、塑性: 断裂前金属材料产生永久变形的能力称为塑性。塑性由拉伸试验测得的。 常用伸长率和断面收率表示。 1、 伸长率: 试样拉断后,标距的伸长与原始标距的百分比称为伸长率。用δ 表示: 计算公式:A=(l1-l0)/l0 ×100% 2、 断面收缩率: 试样拉断后,缩颈处横截面积的缩减量与原始横截面积的百分比称为断面 收缩率。用ψ 表示 Z=(SO-S1)/SO ×100% 金属材料的伸长率(δ )和断面收缩率(ψ )数值越大,表示材料的塑性 越好。 例、有一直径dO=10mm,lo=100mm的低碳钢试样,拉伸验时测得FS=21KN, Fb=29KN,d1=5.65mm,l1=138mm,求:Rel、Rm、A、Z。
4、密排六方晶格:由12个原子构成的简单六方晶体,且在上下两个六方 面心还各有一个原子,而且简单六方体中心还有3个原子。 属于这种晶格的金属有铍(Be)、Mg、Zn、 镉(Cd)等。
三、单晶体与多晶体
1、晶粒:金属是由很多大小、外形和晶格排列方向均不相同的小晶体组成的, 小晶体称为晶粒。 2、晶界:晶粒间交界的地方称为晶界。 3、单晶体:只由一个晶粒组成的晶体。(晶格排列方位完全一致。必须人工制 作,如单晶硅。) 4、多晶体:整个物体是由许多杂乱无章的排列着的小晶体组成的。(普通金属 材料都是多晶体)
3)金属结晶时过冷度的大小与冷却速度有关。 (冷却速度越快,金属的实际结晶温度越低,过冷度也就越大。) 2、纯金属的结晶过程 1) 在一定过冷度的条件下,金属液通过晶核形成 、晶核长大来完成 其结晶过程。 二、晶粒大小对金属材料的影响 (一般室温下,细晶粒金属具有较高的强度和韧性。) 1、金属晶粒大小取决于结晶时的形核率 、长大速度。细化晶粒,则要 形核率越高、长大速度越慢。 2、常用的细化晶粒的方法: A、增加过冷度 B、变质处理 C、振动处理。 三、同素异构转变 1、金属在固态下,随温度的改变有一种晶格转变为另一晶格的现象称为 同素异构转变。
布氏硬度试验原理图
洛氏硬度试验原理图
练习、 170HBS10/100/30 530HBW5/750 (1)表示用直径10mm的钢球,在9807N的试验力作用下,保持30S时测得的 布氏硬度值为170。 (2)表示用直径5mm的硬质合金球,在7355N的试验力作用下,保持10~5s时 测得的布氏硬度值为530。 2、洛氏硬度 (1)测试原理: 采用金刚石圆锥体或淬火钢球压头,压入金属表面后,经规定保持时间后即 除主试验力,以测量的压痕深度来计算洛氏硬度值。 表示符号:HR (2)标尺及其适用范围: 每一标尺用一个字母在洛氏硬度符号HR后面加以注明。常用的洛氏硬度标 尺是A、B、C三种,其中C标尺应用最为广泛。 见表:P21 2-2 不同标尺的洛氏硬度值不能直接进行比较,可换算。 表示方法:符号HR前面的数字表示硬度值,HR后面的字母表示不同洛氏硬 度的标尺。 (3)优缺点: 优点:①操作简单迅速,能直接从刻度盘上读出硬度值;②压痕小,可测成 品及较薄工件;③测硬度范围大。 缺点:数值波动大
教学过程。
复习旧课: 1、晶体结构的概念。 2、常见的三种金属晶格类型。 3、晶体的缺陷。 导入新课: 金属由原子不规则排列的液体 转变为原子规则排列的固体的 过程称为结晶。 一、纯金属的结晶过程 1、纯金属的冷却曲线及过冷度。 1)金属的结晶必须在低于其理论 结晶温度(熔点To )下才能进行。 2)理论结晶温度和实际结晶温度 之差称这“过冷度”(△T=ToT1)。
二、金属晶格的类型 ★晶体结构的概念
1、晶格和晶胞 晶格:把点阵中的结点假想用一系列平行直线连接起来构成空间格子 称为晶格。 晶胞:构成晶格的最基本单元。
2、晶面和晶向 晶面:点阵中的结点所构成的平面。 晶向:点阵中的结点所组成的直线。 由于晶体中原子排列的规律性,可以用晶胞来描述其排列特征。 (阵点(结点):把原子(离子或分子)抽象为规则排列于空间的几何点, 称为阵点或结点。点阵:阵点(或结点)在空间的排列方式称晶体。
复习 载荷可分为:静载荷、冲击载荷、交变载荷。 内力、应力的概念。 新课: ★力学性能的概念:力学性能是指金属在外力作用下所表现出来的性能。 力学性能包括:强度、硬度、塑性、硬度、冲击韧性。 一、强度: ① 概念:金属在静载荷作用下,抵抗塑性变形或断裂的能力称为强度。强度 的大小用应力来表示。 ② 根据载荷作用方式不同,强度可分为:抗拉强度、抗压强度、抗弯强度、 抗剪强度和抗扭强度等。 一般情况下多以抗拉强度作为判别金属强度高低的指标。 1、拉伸试样:拉伸试样的形状一般有圆形和矩形。 Do:直径 Lo:标距长度 ห้องสมุดไป่ตู้试样:Lo=10do 短试样:Lo=5do
§2-2金属的力学性能
学习目的:★了解疲劳强度的概念。 ★ 掌握布氏硬度、洛氏硬度、维氏硬度的概念、硬 度测试及表示的方法。 ★掌握冲击韧性的测定方法。 教学重点与难点 ★布氏硬度、洛氏硬度、维氏硬度的概念、硬度测 试及表示的方法。
§2-2金属的力学性能 教学过程: 复习:强度、塑性的概念及测定的方法。 新课: 一、硬度 ●材料抵抗局部变形特别是塑性变形压痕或划痕的能力称为硬度。(是衡量材 料软硬程度的指标) ●根据硬度的试验方法可以把硬度分为:布氏硬度试验方法、洛氏硬度试验方 法、维氏硬度试验方法。 1、布氏硬度 (1)布氏硬度的测试原理:用一定直径的球体(钢球或硬质合金),以规定 的试验力压入试样表面,经规定保持时间后卸除试验力,然后用测量表面压 痕直径来计算硬度。 用HBS(HBW)表示,S表示钢球、W表示硬质合金球 当F、D一定时,布氏硬度与d有关,d越小,布氏硬度值越大,硬度越高。 (2)布氏硬度的表示方法:符号HBS之前的数字为硬度值符号后面按以下顺 序用数字表示条件:1)球体直径;2)试验力;3)试验力保持的时间 (10~15不标注)。 应用范围:主要适于灰铸铁、有色金属、各种软钢等硬度不高的材料。 缺点:耗时,测高硬度材料有限,压痕大,不宜成品及薄件
力-伸长曲线:
如下图,以低碳钢为例
纵坐标表示力F,单位N;横坐标表示伸长量△L,单位为mm。 (1)oe:弹性变形阶段: 试样变形完全是弹性的,这种随载荷的存在而产生,随载荷的去除而 消失的变形称为弹性变形。Fe为试样能恢复到原始形状和尺寸的最大 拉伸力。 (2)es:屈服阶段: 不能随载荷的去除而消失的变形称为。在载荷不增加或略有减小的情 况下,试样还继续伸长的现象叫做屈服。屈服后,材料开始出现明显 的塑性变形。Fs称为屈服载荷
晶体
晶格
晶胞
晶面 晶体规则排列示意图
晶向
★金属晶格的类型
1、是指金属中原子排列的规律。 2、体心立方晶格:体心立方晶格的晶胞是由八个原子构成的立方体, 并且在立方体的体中心还有一个原子。 属于这种晶格的金属有:铬Cr、钒V、钨W、钼Mo、及α-铁α-Fe
3、面心立方晶格:面心立方晶格的晶胞也是由八个原子构成的立方体, 但在立方体的每个面上还各有一个原子。 属于这种晶格的金属有:Al、Cu、Ni、Pb(γ-Fe)等
3、维氏硬度。 (1)原理: 与布氏硬度试验相同。测量压痕对角线长度,从表中查出。 表示:与布氏硬度相同。 如:640HV30 表示用294.2N试验力,保持10S~15S测定的维氏硬度值为640。 (2)可测较薄的材料,也可测量表面渗碳、渗透层的硬度,可测定很软 到很硬的各种金属材料的硬度、准确。 二、冲击韧性 金属材料抵抗冲击载荷作用而不破坏的能力称为冲击韧性。 1、常用一次摆锤冲击弯曲,试验来测定金属材料的冲击韧性。
1、晶体:所谓晶体是指其原子(离子或分子)在空间呈规则排列的物体。 (晶体内的原子之所以在空间是规则排列,主要是由于各原子之间的 相互吸引力与排斥力相平衡的结果。)原子在空间呈规则排列的固体 物质称为“晶体”。 2、 非晶体:在物质内部,凡原子呈无序堆积状态的(如普通玻璃、松 香、树脂等)。 非晶体的原子则是无规律、无次序地堆积在一起的。