(解析版)浙江省杭州市学军中学2015-2016学年高一上学期期末数学试卷
2016年浙江省杭州市学军中学高一入学数学试卷和解析答案
2016年浙江省杭州市学军中学高一入学数学试卷一、选择题1.(5分)下列结论正确地是()A.3a2b﹣a2b=2B.单项式﹣x2地系数是﹣1C.使式子有意义地x地取值范围是x>﹣2D.若分式地值等于0,则a=±12.(5分)在下列艺术字中既是轴对称图形又是中心对称图形地是()A.B.C.D.3.(5分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到地图形是()A.B.C.D.4.(5分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童地数量,对一到六年级留守儿童数量进行了统计,得到每个年级地留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误地是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.(5分)如图,A、B、C三点在正方形网格线地交点处,若将△ABC绕着点A,则tanB′地值为()逆时针旋转得到△AC′B′A.B.C.D.6.(5分)如图是自行车骑行训练场地地一部分,半圆O地直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同地速度运动到A点停止.设运动时间为t,点B到直线OC地距离为d,则下列图象能大致刻画d与t之间地关系是()A.B.C.D.7.(5分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a地值是()A.1 B.2 C.3 D.48.(5分)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴地垂线,交地图象于点A i,交直线于点B i.则地值为()A. B.2 C.D.二、填空题9.(5分)如图,AB=AC,∠BAC=120°,AB地垂直平分线交BC于点D,那么∠。
2016年浙江省杭州市学军中学高一入学数学试卷和解析答案
2016年浙江省杭州市学军中学高一入学数学试卷一、选择题1.(5分)下列结论正确地是()A.3a2b﹣a2b=2B.单项式﹣x2地系数是﹣1C.使式子有意义地x地取值范围是x>﹣2D.若分式地值等于0,则a=±12.(5分)在下列艺术字中既是轴对称图形又是中心对称图形地是()A.B.C.D.3.(5分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到地图形是()A.B.C.D.4.(5分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童地数量,对一到六年级留守儿童数量进行了统计,得到每个年级地留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误地是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.(5分)如图,A、B、C三点在正方形网格线地交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′地值为()A.B.C.D.6.(5分)如图是自行车骑行训练场地地一部分,半圆O地直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同地速度运动到A点停止.设运动时间为t,点B到直线OC地距离为d,则下列图象能大致刻画d与t之间地关系是()A.B.C.D.7.(5分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a地值是()A.1 B.2 C.3 D.48.(5分)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴地垂线,交地图象于点A i,交直线于点B i.则地值为()A. B.2 C.D.二、填空题9.(5分)如图,AB=AC,∠BAC=120°,AB地垂直平分线交BC于点D,那么∠ADC=度.10.(5分)定义新运算“*”规则:a*b=,如1*2=2,(﹣)*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.11.(5分)二次函数y=ax2+bx+c(a≠0)地图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确地结论是.(写出正确命题地序号)12.(5分)已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大地数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得地数是;(2)若p>q>0,经过6次操作后扩充所得地数为(q+1)m(p+1)n﹣1(m,n 为正整数),则m+n地值为.三、解答题.13.(12分)(1)先化简,再求值:(+)÷,其中a=﹣1.(2)已知关于x,y地二元一次方程地解满足x<y,求m地取值范围.14.(10分)2015年1月,市教育局在全市中小学中选取了63所学校从学生地思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取地某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习地时间,并绘制成如下不完整地统计图.根据上述信息,解答下列问题:(1)本次抽取地学生人数是;扇形统计图中地圆心角α等于;补全统计直方图;(2)被抽取地学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道地概率.15.(12分)已知,如图,AB是⊙O地直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE地延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O地切线;(2)求证:CE2=EH•EA;(3)若⊙O地半径为5,sinA=,求BH地长.16.(12分)大学毕业生小王响应国家“自主创业”地号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市地饰品进行销售,饰品地进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大地利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间地函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?17.(14分)如图,把两个全等地Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点地直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线地函数解析式;(2)点P为线段OC上一个动点,过点P作y轴地平行线交抛物线于点M,交x 轴于点N,问是否存在这样地点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P地坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2016年浙江省杭州市学军中学高一入学数学试卷参考答案与试题解析一、选择题1.(5分)下列结论正确地是()A.3a2b﹣a2b=2B.单项式﹣x2地系数是﹣1C.使式子有意义地x地取值范围是x>﹣2D.若分式地值等于0,则a=±1【解答】解:3a2b﹣a2b=2a2b,A错误;单项式﹣x2地系数是﹣1,B正确;使式子有意义地x地取值范围是x≥﹣2,C错误;若分式地值等于0,则a=1,错误,故选:B.2.(5分)在下列艺术字中既是轴对称图形又是中心对称图形地是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.3.(5分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到地图形是()A.B.C.D.【解答】解:找一张正方形地纸片,按上述顺序折叠、裁剪,然后展开后得到地图形如图所示:故选A.4.(5分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童地数量,对一到六年级留守儿童数量进行了统计,得到每个年级地留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误地是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;10出现了2次,出现地次数最多,则众数是10;把这组数据从小到大排列为10,10,15,17,18,20,最中间地数是(15+17)÷2=16,则中位数是16;方差是:[2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]==.则下列说法错误地是C.故选:C.5.(5分)如图,A、B、C三点在正方形网格线地交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′地值为()A.B.C.D.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.6.(5分)如图是自行车骑行训练场地地一部分,半圆O地直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同地速度运动到A点停止.设运动时间为t,点B到直线OC地距离为d,则下列图象能大致刻画d与t之间地关系是()A.B.C.D.【解答】解:设运动员C地速度为v,则运动了t地路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin=50sin t,∴d与t之间地关系d=50sin t,当点C从M运动到A时,d与t之间地关系d=50sin(180﹣t),故选:C.7.(5分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a地值是()A.1 B.2 C.3 D.4【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B地坐标是(0,3).令y=0,解得:x=1,即A地坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D地坐标是(4,1),C地坐标是(3,4).代入y=得:k=4,则函数地解析式是:y=.∴OE=4,则C地纵坐标是4,把y=4代入y=得:x=1.即G地坐标是(1,4),∴CG=2.故选:B.8.(5分)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴地垂线,交地图象于点A i,交直线于点B i.则地值为()A. B.2 C.D.【解答】解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A二、填空题9.(5分)如图,AB=AC,∠BAC=120°,AB地垂直平分线交BC于点D,那么∠ADC=60度.【解答】解:由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB地垂直平分线上地点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.10.(5分)定义新运算“*”规则:a*b=,如1*2=2,(﹣)*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.【解答】解:在x2+x﹣1=0中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1=,x2=或x1=,x2=,∴x1*x2=*=,故答案为.11.(5分)二次函数y=ax2+bx+c(a≠0)地图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确地结论是①④.(写出正确命题地序号)【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c <0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴地对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故答案是:①④.12.(5分)已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大地数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得地数是255;(2)若p>q>0,经过6次操作后扩充所得地数为(q+1)m(p+1)n﹣1(m,n 为正整数),则m+n地值为21.【解答】解:(1)a=1,b=3,按规则操作三次,第一次:c=ab+a+b=1×3+1+3=7;第二次,7>3>1所以有:c=3×7+3+7=31;第三次:31>7>3所以有:c=7×31+7+31=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;因为c>p>q,所以第二次得:c2=(c1+1)(p+1)﹣1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)﹣1;所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)﹣1=(p+1)3(q+1)2﹣1第四次可得:c4=(c3+1)(c2﹣1)﹣1=(p+1)5(q+1)3﹣1;第五次可得:c5=(p+1)8(q+1)5﹣1;故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1∴m=8,n=13,∴m+n=21.故答案为:255;21.三、解答题.13.(12分)(1)先化简,再求值:(+)÷,其中a=﹣1.(2)已知关于x,y地二元一次方程地解满足x<y,求m地取值范围.【解答】解:(1)原式=[+]•=•=•=,当a=﹣1时,原式==;(2)解方程组得:,∵x<y,∴m﹣<﹣,解得:m<﹣.14.(10分)2015年1月,市教育局在全市中小学中选取了63所学校从学生地思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取地某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习地时间,并绘制成如下不完整地统计图.根据上述信息,解答下列问题:(1)本次抽取地学生人数是30;扇形统计图中地圆心角α等于144°;补全统计直方图;(2)被抽取地学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道地概率.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取地学生人数是30人;扇形统计图中地圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取地跑道,横排为小花抽取地跑道,记小红和小花抽在相邻两道这个事件为A,∴.15.(12分)已知,如图,AB是⊙O地直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE地延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O地切线;(2)求证:CE2=EH•EA;(3)若⊙O地半径为5,sinA=,求BH地长.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O地切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O地直径,∴∠AEB=90°,∵⊙O地半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.16.(12分)大学毕业生小王响应国家“自主创业”地号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市地饰品进行销售,饰品地进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大地利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间地函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?【解答】解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125,x=5时,W=6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,将w=6000带入﹣20≤x<0时对应地抛物线方程,即6000=﹣20(x+)2+6125,解得:x1=﹣5,将w=6000带入0≤x≤30时对应地抛物线方程,即6000=﹣10(x﹣5)2+6250,解得x 2=0,x3=10,综上可得,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.17.(14分)如图,把两个全等地Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点地直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线地函数解析式;(2)点P为线段OC上一个动点,过点P作y轴地平行线交抛物线于点M,交x 轴于点N,问是否存在这样地点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P地坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P地横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P地坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x轴于K,交OC于R.求得过A、C地直线为y AC=﹣x+3,可设点A′地横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q地坐标为(a,).解法一:设AB与OC相交于点J,∵△A′RQ∽△AOJ,相似三角形对应高地比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,=,∴当a=时,S四边形RKTQ最大∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R地坐标为R(2a ﹣2,a﹣1)S 四边形RKTQ =S △QOT ﹣S △ROK =•OT•QT ﹣•OK•RH=a•a ﹣(1+a ﹣)•(a ﹣1)=a 2+a ﹣=(a ﹣)2+由于<0,∴当a=时,S 四边形RKTQ 最大=,∴在线段AC 上存在点A′(,),能使重叠部分面积S 取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan ∠O′A′B′=tan ∠OAB=, ∴KT=A′T•tan ∠O′A′B′=(﹣a +3)•=a +,∴OK=OT ﹣KT=a ﹣(a +)=a ﹣,过点R 作RH ⊥x 轴于H , ∵cot ∠OAB=tan ∠RKH==2,∴RH=2KH又∵tan ∠OAB=tan ∠ROH===,∴2RH=OK +KH=a ﹣+RH , ∴RH=a ﹣1,OH=2(a ﹣1), ∴点R 坐标R (2a ﹣2,a ﹣1)S 四边形RKTQ =S △A′KT ﹣S △A′RQ =•KT•A′T ﹣A′Q•(x Q ﹣x R )=••(3﹣a )﹣•(3﹣a )•(﹣a +2)=a 2+a ﹣=(a ﹣)2+由于<0,∴当a=时,S 四边形RKTQ 最大=,∴在线段AC 上存在点A′(,),能使重叠部分面积S 取到最大值,最大值为. 方法二: (1)略.(2)∵C (2,1),∴l OC :y=x , 设P (t ,),M (t ,),∵四边形ABPM 为等腰梯形, ∴AM=BP 且AM 不平行BP , ∴(t ﹣1)2+(2+)2=(t ﹣1)2+()2,∴2+=(无解)或2+=﹣,t 1=2(舍),t 2=,∴P (,).(3)∵A (1,2),C (2,1), ∴l AC :y=﹣x +3,设A′(t ,3﹣t ),Q (t ,),T (t ,0), ∵O′A′∥OA ,∴K O′A′=K OA =2, ∴l O′A′:y=2x +3﹣3t ,∵l OC :y=x ,∴R (2t ﹣2,t ﹣1),K (,0),∵S=S △QOT ﹣S △ROK ==﹣,∴t=时,S 有最大值.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
2016年浙江省杭州市学军中学高一入学数学试卷和解析答案
2016年浙江省杭州市学军中学高一入学数学试卷一、选择题1.(5分)下列结论正确地是()A.3a2b﹣a2b=2B.单项式﹣x2地系数是﹣1C.使式子有意义地x地取值范围是x>﹣2D.若分式地值等于0,则a=±12.(5分)在下列艺术字中既是轴对称图形又是中心对称图形地是()A.B.C.D.3.(5分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到地图形是()A.B.C.D.4.(5分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童地数量,对一到六年级留守儿童数量进行了统计,得到每个年级地留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误地是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是5.(5分)如图,A、B、C三点在正方形网格线地交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′地值为()A.B.C.D.6.(5分)如图是自行车骑行训练场地地一部分,半圆O地直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同地速度运动到A点停止.设运动时间为t,点B到直线OC地距离为d,则下列图象能大致刻画d与t之间地关系是()A.B.C.D.7.(5分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a地值是()A.1 B.2 C.3 D.48.(5分)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴地垂线,交地图象于点A i,交直线于点B i.则地值为()A. B.2 C.D.二、填空题9.(5分)如图,AB=AC,∠BAC=120°,AB地垂直平分线交BC于点D,那么∠ADC=度.10.(5分)定义新运算“*”规则:a*b=,如1*2=2,(﹣)*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.11.(5分)二次函数y=ax2+bx+c(a≠0)地图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确地结论是.(写出正确命题地序号)12.(5分)已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大地数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得地数是;(2)若p>q>0,经过6次操作后扩充所得地数为(q+1)m(p+1)n﹣1(m,n 为正整数),则m+n地值为.三、解答题.13.(12分)(1)先化简,再求值:(+)÷,其中a=﹣1.(2)已知关于x,y地二元一次方程地解满足x<y,求m地取值范围.14.(10分)2015年1月,市教育局在全市中小学中选取了63所学校从学生地思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取地某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习地时间,并绘制成如下不完整地统计图.根据上述信息,解答下列问题:(1)本次抽取地学生人数是;扇形统计图中地圆心角α等于;补全统计直方图;(2)被抽取地学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道地概率.15.(12分)已知,如图,AB是⊙O地直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE地延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O地切线;(2)求证:CE2=EH•EA;(3)若⊙O地半径为5,sinA=,求BH地长.16.(12分)大学毕业生小王响应国家“自主创业”地号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市地饰品进行销售,饰品地进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大地利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间地函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?17.(14分)如图,把两个全等地Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点地直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线地函数解析式;(2)点P为线段OC上一个动点,过点P作y轴地平行线交抛物线于点M,交x 轴于点N,问是否存在这样地点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P地坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.2016年浙江省杭州市学军中学高一入学数学试卷参考答案与试题解析一、选择题1.(5分)下列结论正确地是()A.3a2b﹣a2b=2B.单项式﹣x2地系数是﹣1C.使式子有意义地x地取值范围是x>﹣2D.若分式地值等于0,则a=±1【解答】解:3a2b﹣a2b=2a2b,A错误;单项式﹣x2地系数是﹣1,B正确;使式子有意义地x地取值范围是x≥﹣2,C错误;若分式地值等于0,则a=1,错误,故选:B.2.(5分)在下列艺术字中既是轴对称图形又是中心对称图形地是()A.B.C.D.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,也不是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.3.(5分)如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到地图形是()A.B.C.D.【解答】解:找一张正方形地纸片,按上述顺序折叠、裁剪,然后展开后得到地图形如图所示:故选A.4.(5分)今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童地数量,对一到六年级留守儿童数量进行了统计,得到每个年级地留守儿童人数分别为10,15,10,17,18,20.对于这组数据,下列说法错误地是()A.平均数是15 B.众数是10 C.中位数是17 D.方差是【解答】解:平均数是:(10+15+10+17+18+20)÷6=15;10出现了2次,出现地次数最多,则众数是10;把这组数据从小到大排列为10,10,15,17,18,20,最中间地数是(15+17)÷2=16,则中位数是16;方差是:[2(10﹣15)2+(15﹣15)2+(17﹣15)2+(18﹣15)2+(20﹣15)2]==.则下列说法错误地是C.故选:C.5.(5分)如图,A、B、C三点在正方形网格线地交点处,若将△ABC绕着点A 逆时针旋转得到△AC′B′,则tanB′地值为()A.B.C.D.【解答】解:过C点作CD⊥AB,垂足为D.根据旋转性质可知,∠B′=∠B.在Rt△BCD中,tanB==,∴tanB′=tanB=.故选B.6.(5分)如图是自行车骑行训练场地地一部分,半圆O地直径AB=100,在半圆弧上有一运动员C从B点沿半圆周匀速运动到M(最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同地速度运动到A点停止.设运动时间为t,点B到直线OC地距离为d,则下列图象能大致刻画d与t之间地关系是()A.B.C.D.【解答】解:设运动员C地速度为v,则运动了t地路程为vt,设∠BOC=α,当点C从运动到M时,∵vt==,∴α=,在直角三角形中,∵d=50sinα=50sin=50sin t,∴d与t之间地关系d=50sin t,当点C从M运动到A时,d与t之间地关系d=50sin(180﹣t),故选:C.7.(5分)如图,在平面直角坐标系中,直线y=﹣3x+3与x轴、y轴分别交于A、B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(k≠0)上.将正方形沿x轴负方向平移a个单位长度后,点C恰好落在该双曲线上,则a地值是()A.1 B.2 C.3 D.4【解答】解:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.在y=﹣3x+3中,令x=0,解得:y=3,即B地坐标是(0,3).令y=0,解得:x=1,即A地坐标是(1,0).则OB=3,OA=1.∵∠BAD=90°,∴∠BAO+∠DAF=90°,又∵直角△ABO中,∠BAO+∠OBA=90°,∴∠DAF=∠OBA,∵在△OAB和△FDA中,,∴△OAB≌△FDA(AAS),同理,△OAB≌△FDA≌△BEC,∴AF=OB=EC=3,DF=OA=BE=1,故D地坐标是(4,1),C地坐标是(3,4).代入y=得:k=4,则函数地解析式是:y=.∴OE=4,则C地纵坐标是4,把y=4代入y=得:x=1.即G地坐标是(1,4),∴CG=2.故选:B.8.(5分)如图,分别过点P i(i,0)(i=1、2、…、n)作x轴地垂线,交地图象于点A i,交直线于点B i.则地值为()A. B.2 C.D.【解答】解:根据题意得:A i B i=x2﹣(﹣x)=x(x+1),∴==2(﹣),∴++…+=2(1﹣+﹣+…+﹣)=.故选A二、填空题9.(5分)如图,AB=AC,∠BAC=120°,AB地垂直平分线交BC于点D,那么∠ADC=60度.【解答】解:由AB=AC,∠BAC=120°,可得∠B=30°,因为点D是AB地垂直平分线上地点,所以AD=BD,因而∠BAD=∠B=30°,从而∠ADC=60度.10.(5分)定义新运算“*”规则:a*b=,如1*2=2,(﹣)*=,若x2+x﹣1=0两根为x1,x2,则x1*x2=.【解答】解:在x2+x﹣1=0中,a=1,b=1,c=﹣1,∴b2﹣4ac=5>0,所以x1=,x2=或x1=,x2=,∴x1*x2=*=,故答案为.11.(5分)二次函数y=ax2+bx+c(a≠0)地图象如图所示,对称轴为x=1,给出下列结论:①abc>0;②b2=4ac;③4a+2b+c>0;④3a+c>0,其中正确地结论是①④.(写出正确命题地序号)【解答】解:由二次函数图象开口向上,得到a>0;与y轴交于负半轴,得到c <0,∵对称轴在y轴右侧,且﹣=1,即2a+b=0,∴a与b异号,即b<0,∴abc>0,选项①正确;∵二次函数图象与x轴有两个交点,∴△=b2﹣4ac>0,即b2>4ac,选项②错误;∵原点O与对称轴地对应点为(2,0),∴x=2时,y<0,即4a+2b+c<0,选项③错误;∵x=﹣1时,y>0,∴a﹣b+c>0,把b=﹣2a代入得:3a+c>0,选项④正确,故答案是:①④.12.(5分)已知两个正数a,b,可按规则c=ab+a+b扩充为一个新数c在a,b,c三个数中取两个较大地数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若a=1,b=3,按上述规则操作三次,扩充所得地数是255;(2)若p>q>0,经过6次操作后扩充所得地数为(q+1)m(p+1)n﹣1(m,n 为正整数),则m+n地值为21.【解答】解:(1)a=1,b=3,按规则操作三次,第一次:c=ab+a+b=1×3+1+3=7;第二次,7>3>1所以有:c=3×7+3+7=31;第三次:31>7>3所以有:c=7×31+7+31=255;(2)p>q>0 第一次得:c1=pq+p+q=(q+1)(p+1)﹣1;因为c>p>q,所以第二次得:c2=(c1+1)(p+1)﹣1=(pq+p+q)p+p+(pq+p+q)=(p+1)2(q+1)﹣1;所得新数大于任意旧数,所以第三次可得c3=(c2+1)(c1+1)﹣1=(p+1)3(q+1)2﹣1第四次可得:c4=(c3+1)(c2﹣1)﹣1=(p+1)5(q+1)3﹣1;第五次可得:c5=(p+1)8(q+1)5﹣1;故经过6次扩充,所得数为:(q+1)8(p+1)13﹣1∴m=8,n=13,∴m+n=21.故答案为:255;21.三、解答题.13.(12分)(1)先化简,再求值:(+)÷,其中a=﹣1.(2)已知关于x,y地二元一次方程地解满足x<y,求m地取值范围.【解答】解:(1)原式=[+]•=•=•=,当a=﹣1时,原式==;(2)解方程组得:,∵x<y,∴m﹣<﹣,解得:m<﹣.14.(10分)2015年1月,市教育局在全市中小学中选取了63所学校从学生地思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取地某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习地时间,并绘制成如下不完整地统计图.根据上述信息,解答下列问题:(1)本次抽取地学生人数是30;扇形统计图中地圆心角α等于144°;补全统计直方图;(2)被抽取地学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道地概率.【解答】解:(1)6÷20%=30,(30﹣3﹣7﹣6﹣2)÷30×360=12÷30×26=144°,答:本次抽取地学生人数是30人;扇形统计图中地圆心角α等于144°;故答案为:30,144°;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取地跑道,横排为小花抽取地跑道,小红小花123451(2,1)(3,1)(4,1)(5,1)2(1,2)(3,2)(4,2)(5,2)3(1,3)(2,3)(4,3)(5,3)4(1,4)(2,4)(3,4)(5,4)5(1,5)(2,5)(3,5)(4,5)记小红和小花抽在相邻两道这个事件为A,∴.15.(12分)已知,如图,AB是⊙O地直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE地延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O地切线;(2)求证:CE2=EH•EA;(3)若⊙O地半径为5,sinA=,求BH地长.【解答】(1)证明:∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O地切线;(2)证明:连接AC,如图1所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)解:连接BE,如图2所示:∵AB是⊙O地直径,∴∠AEB=90°,∵⊙O地半径为5,sin∠BAE=,∴AB=10,BE=AB•sin∠BAE=10×=6,∴EA===8,∵,∴BE=CE=6,∵CE2=EH•EA,∴EH==,在Rt△BEH中,BH===.16.(12分)大学毕业生小王响应国家“自主创业”地号召,利用银行小额无息贷款开办了一家饰品店.该店购进一种今年新上市地饰品进行销售,饰品地进价为每件40元,售价为每件60元,每月可卖出300件.市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件.为了获得更大地利润,现将饰品售价调整为60+x(元/件)(x>0即售价上涨,x<0即售价下降),每月饰品销量为y(件),月利润为w(元).(1)直接写出y与x之间地函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元应如何控制销售价格?【解答】解:(1)由题意可得:y=;(2)由题意可得:w=,化简得:w=,即w=,由题意可知x应取整数,故当x=﹣2或x=﹣3时,w<6125,x=5时,W=6250,故当销售价格为65元时,利润最大,最大利润为6250元;(3)由题意w≥6000,如图,令w=6000,将w=6000带入﹣20≤x<0时对应地抛物线方程,即6000=﹣20(x+)2+6125,解得:x1=﹣5,将w=6000带入0≤x≤30时对应地抛物线方程,即6000=﹣10(x﹣5)2+6250,解得x2=0,x3=10,综上可得,﹣5≤x≤10,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.17.(14分)如图,把两个全等地Rt△AOB和Rt△COD分别置于平面直角坐标系中,使直角边OB、OD在x轴上.已知点A(1,2),过A、C两点地直线分别交x轴、y轴于点E、F.抛物线y=ax2+bx+c经过O、A、C三点.(1)求该抛物线地函数解析式;(2)点P为线段OC上一个动点,过点P作y轴地平行线交抛物线于点M,交x轴于点N,问是否存在这样地点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P地坐标;若不存在,请说明理由.(3)若△AOB沿AC方向平移(点A始终在线段AC上,且不与点C重合),△AOB在平移过程中与△COD重叠部分面积记为S.试探究S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【解答】方法一:解:(1)∵抛物线y=ax2+bx+c经过点O、A、C,可得c=0,∴,解得a=,b=,∴抛物线解析式为y=x2+x.(2)设点P地横坐标为t,∵PN∥CD,∴△OPN∽△OCD,可得PN=∴P(t,),∵点M在抛物线上,∴M(t,t2+t).如解答图1,过M点作MG⊥AB于G,过P点作PH⊥AB于H,AG=y A﹣y M=2﹣(t2+t)=t2﹣t+2,BH=PN=.当AG=BH时,四边形ABPM为等腰梯形,∴t2﹣t+2=,化简得3t2﹣8t+4=0,解得t1=2(不合题意,舍去),t2=,∴点P地坐标为(,)∴存在点P(,),使得四边形ABPM为等腰梯形.(3)如解答图2,△AOB沿AC方向平移至△A′O′B′,A′B′交x轴于T,交OC于Q,A′O′交x轴于K,交OC于R.求得过A、C地直线为y AC=﹣x+3,可设点A′地横坐标为a,则点A′(a,﹣a+3),易知△OQT∽△OCD,可得QT=,∴点Q地坐标为(a,).解法一:设AB与OC相交于点J,∵△A′RQ∽△AOJ,相似三角形对应高地比等于相似比,∴=∴HT===2﹣a,KT=A′T=(3﹣a),A′Q=yA′﹣yQ=(﹣a+3)﹣=3﹣a.S四边形RKTQ=S△A′KT﹣S△A′RQ=KT•A′T﹣A′Q•HT=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,=,∴当a=时,S四边形RKTQ最大∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法二:过点R作RH⊥x轴于H,则由△ORH∽△OCD,得①由△RKH∽△A′O′B′,得②由①,②得KH=OH,OK=OH,KT=OT﹣OK=a﹣OH ③由△A′KT∽△A′O′B′,得,则KT=④由③,④得=a﹣OH,即OH=2a﹣2,RH=a﹣1,所以点R地坐标为R(2a ﹣2,a﹣1)S四边形RKTQ=S△QOT﹣S△ROK=•OT•QT﹣•OK•RH=a•a﹣(1+a﹣)•(a﹣1)=a2+a﹣=(a﹣)2+由于<0,=,∴当a=时,S四边形RKTQ最大∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.解法三:∵AB=2,OB=1,∴tan∠O′A′B′=tan∠OAB=,∴KT=A′T•tan∠O′A′B′=(﹣a+3)•=a+,∴OK=OT﹣KT=a﹣(a+)=a﹣,过点R作RH⊥x轴于H,∵cot∠OAB=tan∠RKH==2,∴RH=2KH又∵tan∠OAB=tan∠ROH===,∴2RH=OK+KH=a﹣+RH,∴RH=a﹣1,OH=2(a﹣1),∴点R坐标R(2a﹣2,a﹣1)S四边形RKTQ=S△A′KT﹣S△A′RQ=•KT•A′T﹣A′Q•(x Q﹣x R)=••(3﹣a)﹣•(3﹣a)•(﹣a+2)=a2+a﹣=(a﹣)2+由于<0,=,∴当a=时,S四边形RKTQ最大∴在线段AC上存在点A′(,),能使重叠部分面积S取到最大值,最大值为.方法二:(1)略.(2)∵C(2,1),∴l OC:y=x,设P(t,),M(t,),∵四边形ABPM为等腰梯形,∴AM=BP且AM不平行BP,∴(t﹣1)2+(2+)2=(t﹣1)2+()2,∴2+=(无解)或2+=﹣,t1=2(舍),t2=,∴P(,).(3)∵A(1,2),C(2,1),∴l AC:y=﹣x+3,设A′(t,3﹣t),Q(t,),T(t,0),∵O′A′∥OA,∴K O′A′=K OA=2,∴l:y=2x+3﹣3t,∵l OC:y=x,∴R(2t﹣2,t﹣1),K(,0),∵S=S△QOT ﹣S△ROK==﹣,∴t=时,S有最大值.赠送:初中数学几何模型举例【模型四】 几何最值模型: 图形特征:P ABl运用举例:1. △ABC中,AB=6,AC=8,BC=10,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为AP的中点,则MF的最小值为EM FB2.如图,在边长为6的菱形ABCD中,∠BAD=60°,E为AB的中点,F为AC上一动点,则EF+BF的最小值为_________。
浙江省杭州市余杭区2015-2016学年高一上学期期末考试数学试题 含答案
2015学年第一学期期末教学质量检测高一数学试题卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合{1,2,3,4,5,6,7}U =,集合{2,4,5}A =,则UCA =A 。
∅ B. {1,3,5} C 。
{1,3,6,7} D.{1,3,5,7}2. 当1a >时,在同一坐标系中,函数xy a =与log ay x =的图象是3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是A .2log y x = B .1y x x=- C .3y x =- D .x y tan =4. 把函数sin 3y x =的图像向右平移4π个长度单位,所得曲线的对应函数式 A 。
)433sin(π-=x y B 。
)43sin(π+=x yC.)43sin(π-=x y D 。
)433sin(π+=x y5。
若3cos θ=5(0)2πθ-<<,则cos()6πθ-的值是A .10433± B .10334± C .10433- D .10433+ 6.函数||()5x f x =的值域是 A.]1,(-∞B. ),1[+∞ C 。
]1,0( D 。
),0(+∞7. 函数230()30151x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值是A .1B .2C .3D .4 8. 已知()f x 是R 上的增函数,对实数,a b ,若0a b +>,则有A 。
()()()()f a f b f a f b +>-+- B.()()()()f a f b f a f b +<-+- C 。
()()()()f a f b f a f b ->--- D 。
()()()()f a f b f a f b -<-+-9.若log2log 20ab <<,则a ,b 满足的关系是A .1a b <<B .1b a <<C .01a b <<<D .01b a <<<10.函数sin tan y x x =+,[,]44x ππ∈-的值域是 A。
20152016学年浙江杭州高级中学高一上分班考试数学试题解析版
2015-2016学年浙江杭州高级中学高一(上)分班考试数学试题一、选择题1.下列结论正确的是( )A .2232a b a b -=B .单项式2x -的系数是-1C .使式子2x +有意义的x 的取值范围是2x >-D .若分式211a a -+的值等于0,则1a =± 【答案】B【解析】试题分析:A 中,22232a b a b a b -=,故A 错;B 中,单项式2x -的系数是1-,正确;C 中,使式子2+x 有意义的x x 的取值范围是2x ≥-,故C 错;D 中,若分式112+-a a 的值等于0,则21010a a ⎧-=⎨+≠⎩,解得1a =,故D 错,故选B .【考点】1、同类项;2、单项式;3、分式;4、二次根式.【知识点睛】求函数自变量的取值范围,一般有以下几种情况:(1)当函数解析式为整式时,取全体实数;(2)当函数解析式为分式时,要保证分母不为0;(3)当函数解析式为二次根式时,要保证被开方数是非负数;(4)当函数解析式为复合式时,自变量的取值要同时满足多个条件.2.在下列艺术字中既是轴对称图形又是中心对称图形的是( )【答案】D【解析】试题分析:A中艺术字是轴对称图形,不是中心对称图形;B中艺术字是轴对称图形,不是中心对称图形;C中艺术字不是轴对称图形,也不是中心对称图形;D中艺术字是轴对称图形,也是中心对称图形,故选D.【考点】1、中心对称图形;2、轴对称图形.3.如图所示,将正方形纸片三次对折后,沿图中AB线剪掉一个等腰直角三角形,展开铺平得到的图形是()【答案】A【解析】试题分析:该正方形纸片对折三次后共有8层,中心处剪掉一下等腰直角三角形,展开后纸片中心缺失的角度为︒⨯=︒,排除C、D;剪切线AB不平行于纸片边缘,则展开后458360也一定不平行于纸片边缘,排除B,故选A.【考点】图形的轴对称.4.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量,对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,20,对于这组数据,下列说法错误的是()A.平均数是15 B.众数是10C .中位数是17D .方差是443 【答案】C 【解析】试题分析:由题意,知平均数为101510171856012+++++=,众数是10,中位数是1517162+=,方差为22222144[2(1015)(1515)(1715)(1815)(2015)]63-+-+-+-+-=,故A 、B 、D 正确,C 错误,故选C .【考点】数据的收集和处理5.如图,,,A B C 三点在正方形网格线的交点处,若将ABC ∆绕着点A 逆时针旋转得到''AC B ∆,则'tan B 的值为( )A .12B .13C .14D .24【答案】B 【解析】试题分析:过C 点作CD AB ⊥,垂足为D ,则根据旋转性质可知,B B ∠'=∠.在Rt BCD ∆中,1tan 3CD B BD ==t ,所以1tan tan 3B B '==,故选B .【考点】1、旋转的性质;2、锐角三角函数的定义.6.如图是自行车骑车训练场地的一部分,半圆O 的直径100AB =,在半圆弧上有一运动员C 从B 点沿半圆周匀速运动到M (最高点),此时由于自行车故障原地停留了一段时间,修理好继续以相同的速度运动到A 点停止,设运动时间为t ,点B 到直线OC 的距离为d ,则下列图象能大致刻画d 及t 之间的关系是( )A .B .C .D .【答案】C【解析】试题分析:设运动员C 的速度为v ,则运动了t 的路程为vt ,设BOC α∠=,当C 运动到M 时,因为50180vt απ⋅==518πα,所以185vt απ=,在直角三角形中,因为50sin 50sin 185vt d πα==,所以在运动员到M 点之前,其d 及t 的关系并不是一次函数,同理可得,运动员从M 点到A 点的过程中,其d 及t 的关系也不是一次函数,只有C 符合题意,故选C .【考点】函数图象.【方法点睛】根据几何动点问题判断出函数图象的题目,一般解题思路为:设时间为t ,找出因变量及t 之间存在的函数关系式,并用含t 的式子表示出来,再找相对应的函数图象,需要注意是否需要对自变量的取值范围进行分类讨论.7.如图,在平面直角坐标系中,直线33y x =-+及x 轴、y 轴分别交于,A B两点,以AB为边在第一象限作正方形ABCD,点D在双曲线(0) ky kx=≠上,将正方形沿x轴负方向平移a个单位长度后,点C 恰好落在该双曲线上,则a的值是()A.1 B.2 C.3 D.4【答案】B【解析】试题分析:作CE y⊥轴于点E,交双曲线于点G,作DF x⊥轴于点F,在33y x=-+中,令0x=,得3y=,即(0,3)B.令0y=,得1x=,即(1,0)A,所以31OB OA==,.因为90BAD∠=︒,所以90BAO DAF∠+∠=︒,又因为Rt ABO∆中,90BAO OBA∠+∠=︒,所以DAF OBA∠=∠.在OAB∆和FDA∆中,DAF OBABOA AFDAD AD∠=∠⎧⎪∠=∠⎨⎪=⎩,所以OAB FDA∆∆≌.同理可证得,OAB FDA BEC∆∆∆≌≌,所以3AF OB EC===,1DF OA BE===,故(4,1)D,(3,4)C,代入kyx=得4k=,则函数的解析式是4yx=,所以4OE=,则C的纵坐标是4,把4y=代入4yx=得1x=,即G的坐标是(1,4),所以2CG=,所以2a=,故选B.【考点】1、正方形的性质;2、反比例函数;3、全等三角形的判定及性质;4、待定系数法求函数的解析式.【方法点睛】(1)由于反比例函数的表达式kyx=中只有一个未知数k,因此只需已知一组对应值就可以求出其解析式;(2)用待定系数法求反比例函数解析式的步骤为:①设出含有待定系数的函数解析式;②把已知条件代入解析式,得到关于待定系数的方程;③解方程求出待定系数.8.如图,分别过点(,0)(1,2,,)iP i i n=作x轴的垂线,交212y x=的图象于点iA,交直线12y x=-于点i B,则1122111n nA B A B A B+++的值为()A.21nn+B.2 C.2(1)n n+D.21n+【答案】A【解析】试题分析:由题意,得2111()(1)222i iA B x x x x=--=+,所以12112()(1)1i iA B x x x x==-++,所以1122111n nA B A B A B+++=11111122(1)2(1)223111nn n n n-+-++-=-=+++,故选A.【考点】1、二次函数的图象;2、裂项求和法;3、规律探究.二、填空题9.如图,AB AC=,120BAC∠=︒,AB的垂直平分线交BC于点D,那么ADC ∠= .【答案】60︒【解析】试题分析:因为AB AC =,120BAC ∠=︒,所以30B C ∠=∠=︒.因为AB 的垂直平分线交BC 于点D ,所以DB DA =,所以30BAD B ∠=∠=︒,所以60BAD B ADC ∠+∠=∠=︒.【考点】1、线段垂直平分线的性质;2、等腰三角形的性质;3、三角形内角及外角和定理.10.对实数,a b 定义新运算“”如下:,*,a a b a b b a b≥⎧=⎨<⎩,如3*23=,(5)*22=210x x +-=的两根为12,x x ,则12*x x = . 51- 【解析】试题分析:因为方程210x x +-=的根为2114(1)152x -±-⨯--==,又因为,*,a a b a b b a b≥⎧=⎨<⎩,所以1251*x x -=. 【考点】1、一元二次方程的解法;2、新定义.【方法点睛】所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.11.二次函数2(0)y ax bx c a =++≠的图象如图所示,对称轴为1x =,给出下列结论:①0abc >;②24b ac =;③420a b c ++>;④30a c +>,其中正确的结论是 .(写出正确命题的序号)【答案】①④【解析】试题分析:由图象知0a >,0c <,=12b a-,即20a b +=,所以0b <,所以0abc >,故①正确;因为二次函数图象及x 轴有两个交点,所以240b ac ∆=->,即24b ac >,故②错;因为原点O 及对称轴的对应点为(20),,所以2x =时,0y <,即420a b c ++<,故③错;因为当1x =-时,0y >,所以0a b c -+>,把2b a =-代入得30a c +>,故④正确,故填①④.【考点】二次函数图象及系数的关系.【技巧点睛】利用图象判断解析式中,,a b c 的正负及它们之间的关系:(1)开口方向判断a 的正负;(2) 及y 轴交点位置判断c 的正负;(3) 对称轴位置判断b 的正负 (左同右异);(4) 及x 轴交点个数判断24b ac -的正负;(5) 图象上特殊点的位置判断一些函数值正负;(6) 对称轴判断2a b +和2a b -的正负.12.已知两个正数,a b ,可按规则c ab a b =++扩充为一个新数c 在,,a b c 三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作,(1)若1,3a b ==,按上述规则操作三次,扩充所得的数是 ;(2)若0p q >>,经过6次操作后扩充所得的数为(1)(1)1m n q p ++-(,m n 为正整数),则m n +的值为 .【答案】255,21【解析】试题分析:(1)第一次,13137c =⨯++=;第二次,373731c =⨯++=;第三次,317731c =⨯++=255;(2)第一次,(1)(1)1c pq q p p q =++=++-;第二次,[(1)(1)11](1)1c p q p =++-++-=2(1)(1)1p q ++-;第三次,2[(1)(1)11][(1)(1)11]1c p q p q =++-+++-+-=32(1)(1)1p q ++-;第四次,53(1)(1)1c p q =++-;第五次,85(1)(1)1c p q =++-;第六次,138(1)(1)1c p q =++-,所以13821m n +=+=.【考点】推理及证明.三、解答题13.(1)先化简,再求值:222()111a a a a a ++÷+--,其中1a =. (2)已知关于,x y 的二元一次方程2231x y m x y m -=⎧⎨+=-⎩的解满足x y <,求m 的取值范围.【答案】(1)原式31a =+,2;(2)17m <-. 【解析】试题分析:(1)首先利用平方差公式将21a -进行因式分解,然后通分化简,最后代值求值;(2)首先通过解二元一次方程组用m 表示出x ,然后根据x y <求出m 的取值范围.试题解析:(1)原式2212(1)(2)1()1(1)(1)(1)(1)a a a a a a a a a a a a +--++-=+⨯=⨯++-+-31a =+.当21a =-时,原式322211==-+. (2)解二元一次方程组2231x y m x y m -=⎧⎨+=-⎩,得1727x m y ⎧=-⎪⎪⎨⎪=-⎪⎩, ∵x y <,∴1277m -<-,∴17m <-,所以n 的取值范围是17m <-.【考点】1、因式分解;2、分式的运算;3、二元一次方程组的解法;4、不等式的解法.14.2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价,评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是 ;扇形统计图中的圆心角α等于 ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行,在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.【答案】(1)030,144;(2)2P=.5【解析】试题分析:(1)首先根据用3-4小时的人数所占比例,求出总人数,然后根据总人数求出2-3小时的人数,从而求出圆心角度数;(2)根据题意列出所有等可能事件,找出两人分在一组的可能情况,从而求出概率.试题解析:(1)620%30÷=,----÷⨯=÷⨯=,(303762)30360123026144答:本次抽取的学生人数是30人;扇形统计图中的圆心角α等于144;故答案为:030,144;补全统计图如图所示:(2)根据题意列表如下:设竖列为小红抽取的跑道,横排为小花抽取的跑道,小红12345小花1(2,1) (3,1) (4,1) (5,1) 2(1,2) (3,2) (4,2) (5,2) 3(1,3) (2,3) (4,3) (5,3) 4(1,4) (2,4) (3,4) (5,4) 5 (1,5) (2,5) (3,5) (4,5)记小红和小花抽在相邻两道这个事件为A ,∴82()205P A ==. 【考点】1、统计图;2、等可能事件的概率.【方法点睛】对于随机事件的概率问题,常用方法有列举法、列表法、树状图等.一般地,如果在一次试验中,有n 种可能的结果,并且它们发生的可能性都相等,事件A 中包含其中m 种结果,那么事件A 发生的概率为()A m P A n=包含的基本事件的=基本事件的个数总数. 15.已知,如图,AB 是圆O 的直径,点C 为圆O 上一点,OF BC ⊥于点F ,交圆O 于点E ,AE 及BC 交于点H ,点D 为OE 的延长线上一点,且ODB AEC ∠=∠.(1)求证:BD 是圆O 的切线;(2)求证:2CE EH EA =⋅;(3)若圆O 的半径为5,3sin 5A =,求BH 的长.【答案】(1)见解析;(2)见解析;(3)152. 【解析】试题分析:(1)首先根据OF BC ⊥及直角三角形的概念结合圆周角定理推出90ODB DBF ∠+∠=︒,然后根据三角形内角和定理得到90OBD ∠=︒,从而使问题得证;(2)连接AC ,然后利用周角定理推出CEH AEC ∆∆,从而根据相似三角形的性质使问题得证;(3)连接BE ,然后根据三角形函数和勾股定理求出Rt ABE ∆的各个边长,再由等腰三角形的性质推出BE CE =,从而由(2)中的结论可求出EH ,进而用勾股定理求解即可.试题解析:(1)证明:∵ODB AEC ∠=∠,AEC ABC ∠=∠,∴ODB ABC ∠=∠,∵OF BC ⊥,∴90BFD ∠=,∴90ODB DBF ∠+∠=,∴90ABC DBF ∠+∠=,即90OBD ∠=,∴BD OB ⊥,∴BD 是圆O 的切线.(2)证明:连接AC ,如图1所示:∵OF BC ⊥,∴弧BE =弧CE ,∴CAE ECB ∠=∠,∵CEA HEC ∠=∠,∴CEH ∆∽AEC ∆,∴CE EA EH CE=,∴2CE EH EA =⋅. (3)连接BE ,如图2所示,∵AB 是圆O 的直径,∴90AEB ∠=.∵圆O 的半径为5,3sin 5BAE ∠=, ∴310,sin 1065AB BE AB BAE ==⋅∠=⨯=, ∴22221068EA AB BE =--=.∵弧BE =弧CE ,∴6BE CE ==,∵2CE EH EA =⋅,∴26982EH ==. 在Rt BEH ∆中,22229156()22BH BE EH =+=+=. 【考点】1、切线的性质;2、直径的性质;3、勾股定理;4、相似三角形的判定及性质.16.大学毕业生小王相应国家“自主创业”的号召,利用银行小额无息贷款开办了一家饰品店,该店购进一种今年新上市的饰品进行销售,饰品的进价为每件40元,售价为每件60元,每月可卖出300件,市场调查反映:调整价格时,售价每涨1元每月要少卖10件;售价每下降1元每月多卖20件,为获得更大的利润,现将饰品售价调整为60x +(元/件)(0x >即售价上涨,0x <即售价下降),每月饰品销售为y (件),月利润为w (元).(1)直接写出y 及x 之间的函数关系式;(2)如何确定销售价格才能使月利润最大?求最大月利润;(3)为了使每月利润不少于6000元,应如何控制销售价格?【答案】(1)30010,03030020,200x x y x x -≤≤⎧=⎨--≤<⎩;(2)当销售价格为66元时,利润最大,最大利润为6250元;(3)销售价格控制在55元到70元之间才能使每月利润不少于6000元.【解析】试题分析:(1)直接根据题意售价每涨1元每月要少卖10件;售价每下降1元每月要多卖20件,进而得出等量关系;(2)利用每件利润×销量=总利润,进而利用配方法求出即可;(3)利用函数图象结合一元二次方程的解法得出符合题意的答案. 试题解析:(1)由题意可得,30010,03030020,200x x y x x -≤≤⎧=⎨--≤<⎩.(2)由题意可得:(20)(30010),030(20)(30020),200x x x w x x x +-≤≤⎧=⎨+--≤<⎩, 化简得:22101006000,030201006000,200x x x w x x x ⎧-++≤≤=⎨--+-≤<⎩, 即2210(5)6250,030520()6125,2002x x w x x ⎧--+≤≤⎪=⎨-++-≤<⎪⎩, 由题意可知x 应取整数,故当2x =-或3x =-时,61256250w <<, 故当销售价格为66元时,利润最大,最大利润为6250元.(3)由题意6000w ≥,如图,令6000w =,即2600010(5)6250x =--+,25600020()61252x =-++,解得:15x=-,20x=,310x=,510x-≤≤,故将销售价格控制在55元到70元之间(含55元和70元)才能使每月利润不少于6000元.【考点】二次函数的应用.【方法点睛】利用二次函数解决实际问题的解题步骤为:(1)分析题意,把实际问题转化为数学问题;(2)根据已知列出适当的二次函数的解析式(并注意自变量的取值范围);(3)根据二次函数的解析式解决具体的实际问题在自变量的取值范围内,运用公式法或通过配方求出二次函数的最大值或最小值.17.如图,把两个全等的Rt AOB∆和Rt COD∆分别置于平面直角坐标系中,使直角边,OB OD在x轴上,已知点(1,2)A,过,A C两点的直线分别交x轴、y轴于点,E F. 抛物线2y ax bx c=++经过,,O A C三点.(1)求该抛物线的函数解析式;(2)点P为线段OC上的一个动点,过点P作y轴的平行线交抛物线于点M,交x轴于点N,问是否存在这样的点P,使得四边形ABPM为等腰梯形?若存在,求出此时点P的坐标;若不存在,请说明理由;(3)若AOB ∆沿AC 方向平移(点A 始终在线段AC 上,且不及点C 重合),AOB ∆在平移的过程中及COD ∆重叠部分的面积记为S ,试探究S 是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.【答案】(1)23722y x x =-+;(2)21(,)33P ;(3)38.【解析】试题分析:(1)由抛物线经过点,,O A C 即可根据待定系数法求得抛物线解析式;(2)首先分别作过点,P M 分别作梯形ABPM 的高,将问题转化为''A B M P y y y y -=-,然后设出点,P M 的坐标,由此通过建立方程求得点P 的坐标;(3)作EK OD ⊥于k ,设点'A 移动的水平距离为m ,由此得到线段,OG GB '的长度,从而通过解直角三角形得到S 关于m 的函数关系式,进而根据二次函数的性质即可求得结果.试题解析:(1)将(1,2),(0,0),(2,1)A O C 分别代入2y ax bx c =++, 得20421a b c c a b c ++=⎧⎪=⎨⎪++=⎩,解得:37,,022a b c =-==,所以23722y x x =-+. (2)如图1,过点,P M 分别作梯形ABPM 的高'',PP MM ,如果梯形ABPM 是等腰梯形,那么''AM BP =因此,''A B M P y y y y -=-, 直线OC 的解析式为12y x =,设点P 的坐标为1(,)2x x ,那么237(,)22M x x x -+. 解方程23712()222x x x --+=,得122,23x x ==, 2x =的几何意义是P 及C 重合,此时梯形不存在,所以21(,)33P .(3)如图2,AOB ∆及COD ∆重叠部分的形状是四边形EFGH ,作EK OD ⊥于k ,设点'A 移动的水平距离为m ,那么1OG m =+,'GB m =, 在Rt OFG ∆中,11(1)22FG OG m ==+,所以21(1)4OFG S m ∆=+.在'Rt A HG ∆中,'2AG m =-,所以'111(2)1222HG AG m m ==-=-, 所以13(1)(1)22OH OG HG m m m =-=+--=,在Rt OEK ∆中,2OK EK =;在Rt EHK ∆中,2EK HK =;所以4OK HK =. 因此4432332OK OH m m ==⨯=,所以12EK OK m ==, 所以211332224OEH S OH EK m m m ∆=⋅=⨯⋅=. 于是222213111113(1)()44224228OFG OEH S S S m m m m m ∆∆=-=+-=-++=--+, 因为01m <<,所以当12m =时,S 取得最大值,最大值为38. 【考点】1、二次函数的图象及性质;2、直线及抛物线的位置关系.【方法点睛】若已知二次函数图象上的三个点的坐标或是x 、y 的对应数值时,可选用2()0y ax bx c a =++≠求解.因为坐标满足函数解析式的点一定在函数的图象上,反之函数图象上的点的坐标一定满足函数解析式,所以将已知三点的坐标分别代入2()0、、的值,y ax bx c a=++≠构成三元一次方程组,解方程组得a b c即可求二次函数解析式.。
杭州学军中学2014-2015学年高一上学期数学期末考试
杭州学军中学2016学年第一学期期末考试高一数学试卷一.选择题(本大题共10小题,每小题3分,共30分。
每题只有一个正确答案)1.已知0cos ,则角的集合是(▲)A .Zk kk,2222B .Zk k k ,22C .Zkk k,22D .Zkkk,2222.已知3cos α-4sin α=0,则tan =(▲)A .34B .43C .43D .343.函数的图象大致是(▲)4. 若函数32)(k xk xx h 在),1(上是增函数,则实数k 的取值范围为(▲)A .(,2] B .[2,) C .(,2] D .[2,)5.对于函数21)43sin(2)(x x f )(R x ,有以下三种说法:1)图象的对称中心为(,0)()312k k Z ;2)函数在区间]4,127[上单调递增.3)将函数213sin 2xy 向左移动12个单位后得到)(x f y 的图象其中正确的说法的个数是:(▲)A .0B .1C .2D .36.向量,,a b c 满足1ab ,12a b,若a c 和b c 夹角为120,则c 的最大值为(▲)A .3B .2C .233D .27. 函数a x x x f 1sin 4sin 4)(2,若关于x 的方程0)(x f 在区间]65,4[上有解,则a 的取值范围为(▲)A .[1,2]B .[1,122] C .[122,2]D .]3,122[xx y||lg8. 若函数(1)()(4)2(1)2xax f x a x x ≤是R 上的增函数,则实数a 的取值范围为 ( ▲ )A .(1,4]B .(1,8)C .(,8)D .[4,8)9.对任意||2m ,不等式212xmx xm 恒成立,则x 的取值范围为(▲)A .31x x 或 B. 3x C. 1x D.13x 10. 已知函数232()log 1f x xxx ,当2015x y 时,恒有()2015()f x f f y 成立,则x 的取值范围为(▲)A .(,0)B 。
2015-2016学年浙江省杭州市学军中学高一(上)期末数学试卷
2015-2016学年浙江省杭州市学军中学高一(上)期末数学试卷一、选择题(每小题3分,共30分)1. 设全集U ={1, 2, 3, 4, 5, 6},A ={1, 2},B ={2, 3, 4},则A ∩(∁U B)=( ) A.{1} B.{1, 2, 5, 6} C.{1, 2, 3, 4} D.{2}2. 把函数y =cos (x +4π3)的图象向右平移φ个单位,所得的图象正好关于y 轴对称,则φ的最小正值为( )A.5π6B.π6C.π3D.4π33. 函数f(x)=x 2−2ax +a 在区间(−∞, 1)上有最小值,则a 的取值范围是( ) A.a ≤1 B.a <1 C.a ≥1 D.a >14. 已知角α,β均为锐角,且cos α=35,tan (α−β)=−13,tan β=( ) A.913 B.13C.139D.35. 若0≤α≤2π,sin α>√3cos α,则α的取值范围是( ) A.(π3, π)B.(π3, π2)C.(π3, 3π2)D.(π3, 4π3)6. 已知函数f(x)=A tan (ωx +φ)(ω>1, |φ|<π2),y =f(x)的部分图象如图,则f(π24)=( )A.√3B.2+√3C.√33D.2−√37. 已知f(x)是偶函数,且f(x)在[0, +∞)上是增函数,如果f(ax +1)≤f(x −2)在x ∈[12,1]上恒成立,则实数a 的取值范围是( ) A.[−5, 0] B.[−2, 1]C.[−2, 0]D.[−5, 1]8. 已知函数f(x)=ax 3+b sin x +4(a, b ∈R ),f(lg (log 210))=5,则f (lg (lg 2))=( ) A.−1B.−5C.3D.49. 已知函数f(x)=sin (2x +φ),其中φ为实数,若f(x)≤|f(π6)|对x ∈R 恒成立,且f(π2)>f(π),则f(x)的单调递增区间是( ) A.[kπ, kπ+π2](k ∈Z)B.[kπ−π3, kπ+π6](k ∈Z)C.[kπ+π6, kπ+2π3](k ∈Z) D.[kπ−π2, kπ](k ∈Z)10. 已知函数f(x)是定义在R 上的奇函数,f(x +2)=f(x),当x ∈(0, 1]时,f(x)=1−2|x −12|,则函数g(x)=f[f(x)]−43x 在区间[−2, 2]内不同的零点个数是( ) A.6B.5C.7D.9二、选择题(每小题4分,共20分)已知奇函数f(x)当x >0时的解析式为f(x)=1x 2+1,则f(−1)=________.函数f(x)=sin 2x +cos 2x 的最小正周期为________.已知f(x)=log 2x ,x ∈[18, 4],则函数y =[f(x 22)]×f(2x)的值域是________.已知f(x)=sin (ωx +π3)(ω>0),f(π6)=f(π3),且f(x)在区间(π6,π3)上有最小值,无最大值,则ω=________.已知函数f(x)满足f(x −1)=−f(−x +1),且当x ≤0时,f(x)=x 3,若对任意的x ∈[t, t +2],不等式f(x +t)≥2√2f(x)恒成立,则实数t 的取值范围是________.三、解答题(每小题8分,共50分)已知tan α=3. (1)求tan (α+π4)的值;(2)求sin 2αsin 2α+sin αcos α−cos 2α−1的值.已知函数f(x)对任意的a ,b ∈R ,都有f(a +b)=f(a)+f(b)−1,且当x >0时,f(x)>1 (1)判断并证明f(x)的单调性;(2)若f(4)=3,解不等式f(3m 2−m −2)<2.函数f(x)=6cos 2ωx 2+√3sin ωx −3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B 、C 为图象与x 轴的交点,且△ABC 为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x 0)=4√155,且x 0∈(−103, 23),求f(x 0+1)的值.已知奇函数f(x)在(−∞, 0)∪(0, +∞)上有定义,在(0, +∞)上是增函数,f(1)=0,又知函数g(θ)=sin 2θ+m cos θ−2m ,θ∈[0,π2],集合M ={m|恒有g(θ)<0},N ={m|恒有f(g(θ))<0},求M ∩N .已知a ,b 是实数,函数f(x)=x|x −a|+b . (1)当a =2时,求函数f(x)的单调区间;(2)当a >0时,求函数f(x)在区间[1, 2]上的最大值;(3)若存在a ∈[−3, 0],使得函数f(x)在[−4, 5]上恒有三个零点,求b 的取值范围.参考答案与试题解析2015-2016学年浙江省杭州市学军中学高一(上)期末数学试卷一、选择题(每小题3分,共30分)1.【答案】此题暂无答案【考点】交常并陆和集工混合运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】此题暂无答案【考点】函数y射Asi过(ω复非φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答3.【答案】此题暂无答案【考点】二次于数在落营间上周最值【解析】此题暂无解析【解答】此题暂无解答4.【答案】此题暂无答案【考点】两角和与表型正切公式【解析】此题暂无解析【解答】此题暂无解答5.【答案】此题暂无答案【考点】正切函射的单调加三使函以线【解析】此题暂无解析【解答】此题暂无解答6.【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答7.【答案】此题暂无答案【考点】函数于成立姆题奇偶性与根调性的助合【解析】此题暂无解析【解答】此题暂无解答8.【答案】此题暂无答案【考点】函数奇明性研性质函使的以值【解析】此题暂无解析【解答】此题暂无解答9.【答案】此题暂无答案【考点】函数y射Asi过(ω复非φ)的图象变换【解析】此题暂无解析【解答】此题暂无解答10.【答案】此题暂无答案【考点】根的验河性及洗的个会判断【解析】此题暂无解析【解答】此题暂无解答二、选择题(每小题4分,共20分)【答案】此题暂无答案【考点】函数奇明性研性质函使的以值【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角于数的深期两及其牛法【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】对数函数表础象与性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】由y=于si械(ωx+美)的部分角象六定其解断式【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】函数于成立姆题抽象函表及声应用【解析】此题暂无解析【解答】此题暂无解答三、解答题(每小题8分,共50分)【答案】此题暂无答案【考点】同角体角序数基璃室系的运用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】抽象函表及声应用【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】三角根隐色树恒等变换应用正弦射可的图象【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】奇函数交集根助运算函数单验家的性质【解析】此题暂无解析【解答】此题暂无解答【答案】此题暂无答案【考点】分段水正的应用函根的萄送木其几何意义函数零都问判定定理【解析】此题暂无解析【解答】此题暂无解答。
浙江省杭州市2015-2016学年高一上学期入学测试数学试题
2015年测试数学试题卷一、选择题(每小题5分,共30分)1、化简:224129(22)x x x -+--的结果是( )A 、 1B 、-5C 、5-4xD 、45x -2122122,),(,)24(0),0,x y x y x ax a x x x x y y ++>+=11212、已知(在函数y=a 的图像上,若<则,的大小关系是( )A 、12y y >B 、12y y =C 、12y y <D 、12,y y 的大小不能确定 3、有甲、乙、丙三种货物。
若购买甲3件,乙7件,丙1件共需31.5元;若购买甲4件,乙10件,丙1件共需42元,则购买甲、乙、丙各2件共需( )元。
A 、19.6 B 、21 C 、22.4 D 、244、方程组⎪⎩⎪⎨⎧-+==22x x y a y 有四组不同的解,则a 的取值范围是( )A 、 a >49-B 、 49- <a <49 C 、 0<a ≤49 D 、 0<a <495、如图,正方形OABC ,ADEF 的顶点A ,D ,C 在坐标轴上,点F 在AB 上,点B ,E 在抛物线Y= -x 2+2上,则点E 的坐标是( )A 、 (21213- , 23213- ) B 、(23213- , 21213- ) C 、(21213-,23213+ ) D 、(23213+ , 21213- ) BCY= -x 2+2E AFxOyD111111,3,2,16222-++-++-+=++=++=b ca a bc c ab c b a c b a abc 则、若的值为( )21-、A 32-、B 1、C 2、D二、填空题(每小题5分,共30分)7、如图,已知正方形ABCD 的中心为O ,面积为300cm 2,P 为正方形内的一点,且∠OPB=45, PA ∶PB=3∶4,则PB= cm 。
2312128310819x x x x x x -+=+-=、已知,是方程的两实根,则 。
杭二高一上期末数学考试卷(2015学年)
3[
f
( x)]2
-
f
(x)
+
m
=
0在
x
Î
æ ç
p
,
4p
ö ÷
内有两个不同的解,求实数
m
的取值范围.
è9 9 ø
19.(10 分)设 G 为 !ABC 的重心,过 G 作直线 l 分别交线段 AB, AC (不与端点重合)于 P,Q .若
!!!" AP
=
l
AB
,
!!!" AQ
=
µ
!!!" AC
(1)求 1 + 1 的值; lµ
分)已知函数
f
(l)
=
ì ïï í
x
+
1 2
,
x
Î
éêë0,
1 2
ö ø÷
,若存在
ïïî3x
2
,
x
Î
é êë
1 2
,1ùúû
x1
<
x2
,使得
f
( x1)
=
f
( x2 ) ,则
x1 ×
f
( x2 ) 的取值范
围为 .
第 2 页(共 3 页)
三、解答题:本大题共 4 小题.共 46 分.解答应写出文字说明、证明过程或演
c
的形式(
a, b, c
为正整数),则
a+b+c= . 14.(4 分)下列命题:
(1)
y
=
cos
æ çè
2x
+
p 6
ö ÷ø
|最小正周期为 p ;
(2)函数 y = tan x 的图象的对称中心是 (kp ,0) , k Î Z ;
浙江省杭州市第二中学2015-2016学年高一上学期期末考试数学试卷-Word版内含答案
杭州二中2015学年第一学期高一年级期终考试数学试卷本试卷分为第Ⅰ卷(选择题和填空题)和第Ⅱ卷(答题卷)两部分,满分100 分,考试时间 100分钟 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{},A a b =,则满足{},,A B a b c ⋃=的集合B 的个数是( ) A .2 B .3 C .4 D .92.函数()2312x f x x -⎛⎫=- ⎪⎝⎭的零点所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)3.已知O 为坐标原点,向量()1,3OA =,()3,1OB =-,且2AP PB =,则点P 的坐标为( ) A .()2,4- B .24()33-,C .71()33, D .()2,4- 4.若当x R ∈时,函数()xf x a =始终满足0()1f x <≤,则函数1log ay x=的图象大致为( )5.已知函数()()2sin1log 3f x x ax a =-+在[)2,+∞单调递减,则实数a 的取值范围是( )A .(],4-∞B .[)4,+∞C .[]4,4-D .(]4,4-6.Z k ∈时,sin()cos()sin[(1)]cos[(1)]k k k k παπαπαπα-⋅+++⋅++的值为( )A .-1B .1C .±1D .与α取值有关7.曲线sin (0,0)y A x a A ωω=+>>在区间2[0,]πω上截直线2y =及1y =-所得的弦长相等且不为0,则下列对,A a 的描述正确的是( ) A .13,22a A => B .13,22a A =≤ C .1,1a A =≥ D .1,1a A =≤ 8.己知函数233()(1)(log )6(log )1f x x a a x x =--++在[0,1]x ∈内恒为正值,则a 的取值范围是( )A .113a -<<B .13a <C .a >.13a <<9.已知函数()y f x =的图像是由sin 2y x =向右平移12π得到,则下列结论正确的是( )A .()()()024f f f <<B .()()()204f f f <<C .()()()042f f f <<D .()()()420f f f <<10. 若[]0,απ∈,,44ππβ⎡⎤∈-⎢⎥⎣⎦,R λ∈,且3cos 202πααλ⎛⎫---= ⎪⎝⎭则cos 2αβ⎛⎫+⎪⎝⎭的值为 ( )A .0B .12 C .2D .2二、填空题:本大题共6小题,每小题4分,共24分.11.已知幂函数()f x k x α=⋅的图象过点1(,2)2,则k α+=_______.12.已知弧长为2cm π的弧所对的圆心角为4π,则这条弧所在的扇形面积为_______2cm . 13.已知02x π<<,sin cos 4x x π-=.若1tan tan x x +可表示成c ab π-的形式(,,a b c 为正整数),则a b c ++=_____________.14.下列命题:π;(2)函数2tan x y =的图象的对称中心是Z k k ∈),0,(π;(3)()tan sinf x x x=-在(2,2ππ-)上有3个零点;(4)若//,//a b b c,则//a c.其中错误..的是_____________.15.在锐角ABC∆中,2AC BC==,CO xCA yCB=+(其中1x y+=),函数()||f CA CBλλ=-的||CO的最小值为___________.16.已知函数()211,0,2213,,12x xf xx x⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x<,使得12()()f x f x=,则12()x f x⋅的取值范围为____________.14.___________ 15.___________ 16.___________三、解答题:本大题共4小题.共46分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知集合{}|3327x A x =≤≤,2{|log 1}B x x =<. (1)分别求A B ⋂,A B ⋃;(2)已知集合{}|1C x x a =<<,若A C ⊆,求实数a 的取值范围.18.(本题满分12分)已知点()()11,A x f x ,()()22,B x f x 是函数()()2sin f x x ωϕ=+(0,0)2πωϕ>-<<图象上的任意两点,且角ϕ的终边经过点(1,P ,若12()()4f x f x -=时,12x x -的最小值为3π. (1)求函数的解析式;(2) 若方程[]23()()0f x f x m -+=,求实数m 的取值范围.()f x1120.(本题满分14分)已知函数()22f x x x a =--.(1)若函数()y f x =为偶函数,求a 的值;(2)若12a =,求函数()y f x =的单调递增区间; (3)当0a >时,若对任意的[0,)x ∈+∞,不等式()()12f x f x -≤恒成立,求实数a 的取值范围.杭州二中2015学年第一学期高一年级期末考试数学答案一、选择题:本大题共10小题,每小题3分,共30分.二、填空题:本大题共6小题,每小题4分,共24分.11. 0 12. 2π 13. 5014. (1)(3)(4) 15. 16.31162⎡⎫⎪⎢⎣⎭, 三、解答题:本大题共4小题.共46分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)解:(1)3327x ≤≤即13333x ≤≤,13x ∴≤≤,∴{}31≤≤=x x A ,,{}|12A B x x ∴⋂=≤<,{|03}A B x x ⋃=<≤(2)由(1)知{}31≤≤=x x A ,当A C ⊆当C 为空集时,1a ≤当C 为非空集合时,可得 31≤<a 综上所述3a ≤18.(本题满分12分) 解:(1)角的终边经过点(1,P,tan ϕ=02πϕ-<<,3πϕ∴=-.由12()()4f x f x -=时,的最小值为3π,得23T π=,即223ππω=,3ω∴=.∴()2sin(3)3f x x π=- (2()f x t =,问题等价于方程230t t m -+=在(0,2)仅有一根或有两个相等的根.∵-m = 3t 2-t ,t ∈(0, 2). 作出曲线C :y = 3t 2-t ,t ∈(0, 2)与直线l :y = -m 的图象.∵t =16时,y =112-;t = 0时,y = 0;t = 2时,y = 10.∴当 -m =112-或0≤-m <10时,直线l 与曲线C 有且只有一个公共点. ∴m 的取值范围是:100m -<≤或112m =19.(本题满分10分)解:(Ⅰ)连结AG 并延长交BC 于M,则M 是BC 的中点,设==,,则)(21)(21+=+=, )(3132+== ① 又,AP AB b AQ AC c λλμμ===⋅=⋅, ②u λ-=-=∴,31)31()(31+-=-+=-=λλQ G P ,, 三点共线,故存在实数t ,使PQ t PG =,11()33b c t c t b λμλ∴-+=-ϕ||21x x -1313t t λλμ⎧-=-⎪⎪∴⎨⎪=⎪⎩,消t 得:13λλμ-=-,即 113λμ+=或者另一种解法由②式得1,b AP λ=1c AQ μ=, ③将③代入①得1133AG AP AQ λμ=+.Q G P ,, 三点共线,故11133λμ+=,即 113λμ+=.(Ⅱ) (,0,1λμ∈ 2λ==其中231=λ时,λλ312+-有最大值49,211或=λ时,λλ312+-有最小值2, 于是λμ⋅的取值范围是20.(本题满分14分)解:(1)任取x R ∈,则有()()f x f x -=恒成立,即22()2||2||x x a x x a ----=--恒成立 ||||x a x a ∴+=-恒成立,22ax ax ∴=-平方得:恒成立0a ∴=(2)当12a =时,222121()12()2||1221()2x x x f x x x x x x ⎧-+≥⎪⎪=--=⎨⎪+-<⎪⎩由函数的图像可知,函数的单调递增区间为11,,[1,)2⎛⎤-+∞ ⎥⎝⎦。
浙江省杭州市学军中学2015-2016学年高一上学期期中考试数学试卷 Word版含答案
杭州学军中学2015学年第一学期期中考试高一数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.设全集{|4,},{0,1,2},{2,3}U x x x N A B =<∈==,则U B C A = ()A.{2,3}B.{3}C.∅D.{0,1,2,3}2.满足不等式1()3x >x 的取值范围为() A.23x >- B. 32x >- C.23x <- D. 32x <- 3.在下列各组函数中,两个函数相等的是 ( )A.()f x =()g x =B.()f x =()g x =C.{}()2,0,1,2,3x f x x =∈与{}35()1,0,1,2,366x g x x x =++∈ D.()f x x =与,0(),0x x g x x x ≥⎧=⎨-<⎩4.函数2221x x y x ++=+的值域是 ( ) A.{}|22y y y <->或 B.{}|22y y y ≤-≥或C.{}|22y y -≤≤D.{|y y y ≤-≥5.若函数x y a b =+的部分图像如图所示,则 ()A.01,10a b <<-<<B.01,01a b <<<<C.1,10a b <-<<D.1,01a b <<<6.偶函数()()f x x R ∈满足:(4)(1)0f f -==,且在区间[0,3]与),3[+∞上分别递减和递增,则不等式()0x f x ⋅<的解集为 ( )A .(,4)-∞-B .(4,1)(1,4)--C .(,4)(1,0)-∞--D .(,4)(1,0)(1,4)-∞--7.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为 ( ) A .11B .12 C .13D .14 8.已知函数2()log (3)(01)a f x x ax a a =-+>≠且满足:对任意实数12,x x ,当122ax x <≤时,总有12()()0f x f x ->,则实数a 的取值范围是 ( )A .(1,3)B.(0,3)C. (1D.9.定义:区间[]1212,()x x x x <的长度为21x x -,已知函数2xy =的定义域为[],a b ,值域为[]1,2,记区间[],a b 的最大长度为m ,最小长度为n .则函数()(2)x g x m x n =-+的零点个数是 ( )A .0B .1C .2D .3 10.已知函数12()2()122()2x x f x x x ⎧≤⎪⎪=⎨⎪->⎪⎩,则函数2015((()))f f f x 个……在[]0,1上的图像总长( ) A.8060 B.4030C.二、填空题(本大题共5小题, 每小题4分, 共20分. 请将答案填写在答题卷中的横线上.)11.幂函数()f x的图像过点,则1()2f =__________.12.函数y =的定义域是__________.13.幂函数a y x =,当a 取不同的正数时,在区间[]0,1上它们的图像是一族美丽的线(如图).设点(1,0),(0,1)A B 连接AB ,线段AB 恰好被其中的两个函数,y x y x αβ==的图像三等分,即有BM MN NA ==,那么αβ=__________.14.下列几个命题:①若函数2()()x m f x e --=为偶函数,则0m =;②若)(x f 的定义域为[]0,1,则)2(+x f 的定义域为[]2,1--;③函数2)1(log 2++-=x y 的图象可由2)1(log 2---=x y 的图象向上平移4个单位向左平移2个单位得到;④若关于x 方程m x x =--322有两解,则40>=m m 或;其中正确的有______________.15.已知22()log (0)1x g x x x =>+.若关于x 的方程2()()230g x m g x m +++= 有三个不同的实数解,则m 的取值范围是_________.三、解答题(本大题共5小题,第16,17题8分,第18题10分,第19,20题每题12分,共50分. 解答应写出必要的文字说明、证明过程及演算步骤.)16.(1)计算222lg5lg8lg5lg 20(lg 2)3+++ .(2)若1122x x-+=1223x x x x --++-的值.17.已知集合{}{}|2135,|332A x a x a B x x =+≤<+=≤≤,若()A A B ⊆ ,求a 的取值范围.18.已知函数1()231x f x a =-+()a R ∈. (1)若函数)(x f 为奇函数,求a 的值;(2)判断函数()f x 在R 上的单调性,并证明.19.为了净化空气,某科研单位根据实验得出,在一定范围内,每喷洒1个单位的净化剂,空气中释放的净化剂浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为161,04815,4102x x y x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次喷洒,则某一时刻空气中的净化剂浓度为每次喷洒的净化剂在相应时刻所释放的浓度之和.由实验知,当空气中净化剂的浓度不低于4 (毫克/立方米)时,它才能起到净化空气的作用.(1)若一次喷洒4个单位的净化剂,则净化时间可达几天?(2)若第一次喷洒2个单位的净化剂,6天后再喷洒(14)a a ≤≤个单位的净化剂,要使接下来的4天中能够持续有效净化,试求a 的最小值.20.已知函数()2f x x a x x =-+(1)当4a =时,写出函数()f x 的单调递增区间(不需要过程);(2)若函数()f x 在R 上是增函数,求实数a 的取值范围;(3)若存在[2,4]a ∈-,使得函数()y f x at =-有三个零点,求实数t 的取值范围.杭州学军中学2015学年第一学期期中考试高一数学答卷二、填空题(本大题共5小题,每小题4分,共20分.)11.12.13.14.15.三、解答题(本大题共5小题,第16,17题8分,第18题10分,第19,20题每题12分,共50分. 解答应写出必要的文字说明、证明过程及演算步骤.)16.17.19.杭州学军中学2015学年第一学期期中考试高一数学参考答案一、选择题(本大题共10小题,每小题3分,共30分.)二、填空题(本大题共5小题,每小题4分,共20分)11 .2 12.2,13⎛⎤ ⎥⎝⎦13. 1 14. ①、②、④ 15. 34,23⎛⎤-- ⎥⎝⎦三、解答题(本大题共5小题,第16,17题8分,第18题10分,第19,20题每题12分,共50分. 解答应写出必要的文字说明、证明过程及演算步骤.)16.(1)原式=3……4分(2)原式=14……4分17.解①2135a a +≥+,4a ∴≤-……4分②321,3532a a ≤++≤,19a ∴≤≤,……4分18.解:(1) 函数)(x f 为奇函数,∴()()0f x f x -+=,……2分 即:11(2)(2)03131x x a a --+-=++,则有:3140331331x x x x x a ---=++ , 即:314031x x a +-=+,410a ∴-=,14a =;……3分(2)任取12,x x ∈R ,且12x x <,则12()()f x f x -=1211(2)(2)3131x x a a ---++ 21113131x x =-++121233(31)(31)x x x x -=++.……2分 3x y = 在R 上是增函数,且12x x <,1233x x ∴<,即:12330x x -<.又30x >,12310,310x x ∴+>+>,12()()0f x f x ∴-<,即:12()()f x f x <,故()f x 在R 上是增函数.……3分19.解:(1)因为一次喷洒4个单位的净化剂,所以浓度f(x)=4y =⎩⎪⎨⎪⎧648-x -4,0≤x ≤4,20-2x ,4<x ≤10.则当0≤x≤4时,由648-x-4≥4解得0≤x<8,所以此时0≤x≤4. ……2分 当4<x≤10时,由20-2x≥4解得x≤8,所以此时4<x≤8. ……2分 综上得0≤x≤8,即若一次喷洒4个单位的净化剂,则有效净化时间可达8天.……1分(2)设从第一次喷洒起,经x(6≤x≤10)天,浓度g(x)=2⎝ ⎛⎭⎪⎫5-12x +a ⎣⎢⎡⎦⎥⎤168-(x -6)-1 =10-x +16a 14-x -a =(14-x)+16a 14-x -a -4 ……2分 ≥2(14-x )·16a 14-x-a -4=8a -a -4. ……2分 因为6≤x≤10,所以14-x∈[4,8],而1≤a≤4,所以4a ∈[4,8], ……1分 故当且仅当14-x =4a 时,y 有最小值为8a -a -4.令8a -a -4≥4,解得24-162≤a ≤4,所以a 的最小值为24-16 2. ……2分20.解(1)(,3),(4,)-∞+∞……3分(2)22(2),()(2),x a x x a f x x a x x a⎧+->⎪=⎨-++≤⎪⎩……2分11 由()f x 在R 上是增函数,得2222a a aa -⎧≥-⎪⎪⎨+⎪≤⎪⎩,22a ∴-≤≤……2分(3)①当22a -≤≤时,()f x 在R 上是增函数,所以显然不可能有三个零点……1分②当(]2,4a ∈时,22(2),()(2),x a x x a f x x a x x a⎧+->⎪=⎨-++≤⎪⎩ ()y f x at =- 有三个零点 所以由图像可知,2(2)24a a at +<<即可……2分 2(2)24a t a+∴<< 924t ∴<<……2分。
浙江省杭州市余杭区高一数学上学期期末试卷(含解析)-人教版高一全册数学试题
2015-2016学年某某省某某市余杭区高一(上)期末数学试卷一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)7.函数f(x)=的最大值是()A.1 B.2 C.3 D.48.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<110.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是;f(π)=.14.若tanα=2,则=;sinα•cosα=.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.2015-2016学年某某省某某市余杭区高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合U={1,2,3,4,5,6,7},集合A={2,4,5},则∁U A=()A.∅B.{1,3,5} C.{1,3,6,7} D.{1,3,5,7}【考点】补集及其运算.【专题】计算题;定义法;集合.【分析】由全集U及A,求出A的补集即可.【解答】解:∵集合U={1,2,3,4,5,6,7},集合A={2,4,5},∴∁U A={1,3,6,7},故选:C.【点评】此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.2.当a>1时,在同一坐标系中,函数y=a x与y=log a x的图象是()A.B.C.D.【考点】对数函数的图象与性质.【专题】作图题;函数思想;定义法;函数的性质及应用.【分析】根据底数与指数(对数)函数单调性即可判断.【解答】解:a>1时,函数y=a x与y=log a x的均为增函数,故选:B.【点评】本题考查的知识是对数函数的图象与性质,指数函数的图象与性质,熟练掌握底数与指数(对数)函数单调性的关系是解答本题的关键.3.下列函数中,是奇函数且在区间(0,1)内单调递减的函数是()A.y=log2x B.y=x﹣C.y=﹣x3D.y=tanx【考点】函数单调性的判断与证明;函数奇偶性的判断.【专题】函数思想;综合法;函数的性质及应用.【分析】由奇函数的图象关于原点对称便可判断出A错误,可判断y=x和y=在(0,1)内单调递增便可判断B错误,而根据奇函数和减函数的定义即可判断出C正确,根据y=tanx 的图象便可判断出D错误.【解答】解:A.根据y=log2x的图象知该函数不是奇函数,∴该选项错误;B.y=x和在(0,1)内都单调递增,∴在(0,1)内单调递增,∴该选项错误;C.y=﹣x3为奇函数,且x增大时,y减小,∴该函数在(0,1)内单调递减,∴该选项正确;D.由y=tanx的图象知该函数在(01,1)内单调递增,∴该选项错误.故选C.【点评】考查奇函数图象的对称性,一次函数和反比例函数的单调性,奇函数和减函数的定义,清楚y=log2x和y=tanx的图象.4.把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式()A.y=sin(3x﹣)B.y=sin(3x+)C.y=sin(3x﹣)D.y=sin(3x+)【考点】函数y=Asin(ωx+φ)的图象变换.【专题】计算题;数形结合;分析法;三角函数的图像与性质.【分析】根据函数y=Asin(ωx+φ)的图象变换规律即可求解.【解答】解:把函数y=sin3x的图象向右平移个长度单位,所得曲线的对应函数式为y=sin[3(x﹣)]=sin(3x﹣).故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,属于基础题.5.若cosθ=(﹣<θ<0),则cos(θ﹣)的值是()A. B.C. D.【考点】两角和与差的余弦函数.【专题】函数思想;综合法;三角函数的求值.【分析】由同角三角函数基本关系可得sinθ,代入两角差的余弦公式计算可得.【解答】解:∵﹣<θ<0且cosθ=,∴sinθ=﹣=﹣,∴cos(θ﹣)=cosθ+sinθ=+=.故选:C.【点评】本题考查两角和与差的三角函数,涉及同角三角函数基本关系,属基础题.6.函数f(x)=5|x|的值域是()A.(﹣∞,1] B.[1,+∞)C.(0,1] D.(0,+∞)【考点】指数函数的图象变换.【专题】数形结合;数形结合法;函数的性质及应用.【分析】在x上加绝对值的图象表明去掉绝对值后的原函数图象只保留x>0部分,然后关于y轴对称后得到的图象就是填绝对值的图象.【解答】解:∵y=5x为指数函数,且其图象是过(0,1),单调递增的,而y=5|x|的左侧图象是指数函数y=5x的图象中y轴右侧的图象关于y轴对称后产生的新的图象,具体图象如下:故选:B.【点评】本题主要考查指数函数图象,和在x上填绝对值后的图象特点.属于基础题.7.函数f(x)=的最大值是()A.1 B.2 C.3 D.4【考点】简单线性规划.【专题】数形结合;数形结合法;不等式.【分析】作出分段函数的图象,数形结合可得.【解答】解:作出分段函数f(x)=的图象(如图),数形结合可得最大值为4,故选:D.【点评】本题考查函分段函数图象,准确作图是解决问题的关键,属中档题.8.已知函数f(x)是R上的增函数,对实数a,b,若a+b>0,则有()A.f(a)+f(b)>f(﹣a)+f(﹣b) B.f(a)+f(b)<f(﹣a)+f(﹣b)C.f(a)﹣f(b)>f(﹣a)﹣f(﹣b)D.f(a)﹣f(b)<f(﹣a)﹣f(﹣b)【考点】函数单调性的性质.【专题】证明题.【分析】先利用不等式的性质将a+b>0转化为两实数的大小形式,再利用函数f(x)的单调性,比较函数值的大小,最后利用同向不等式相加性得正确不等式【解答】解:∵a+b>0,∴a>﹣b,b>﹣a∵函数f(x)是R上的增函数∴f(a)>f(﹣b),f(b)>f(﹣a)∴f(a)+f(b)>f(﹣a)+f(﹣b)故选 A【点评】本题考查了不等式的基本性质,利用函数的单调性比较大小的方法,转化化归的思想方法9.若log a2<log b2<0,则a,b满足的关系是()A.1<a<b B.1<b<a C.0<a<b<1 D.0<b<a<1【考点】对数值大小的比较.【专题】计算题;方程思想;综合法;函数的性质及应用.【分析】利用对数函数的性质求解.【解答】解:∵log a2<log b2<0=log a1,∴0<a<1,0<b<1,∵2>1,要使log b2<0∴0<b<1∵log a2<log b2<0,∴a>b,且0<a<1,∴0<b<a<1.故选:D.【点评】本题考查两个数的大小的比较,是基础题,解题时要认真审题,注意对数函数的性质的合理运用.10.函数y=sinx+tanx,x∈[﹣,]的值域是()A.[﹣,] B.[﹣2,2] C.[﹣﹣1,] D.[﹣﹣1,+1]【考点】函数的值域.【专题】计算题;函数思想;函数的性质及应用;三角函数的图像与性质.【分析】直接利用函数的单调性求得函数值域.【解答】解:∵函数y=sinx+tanx在x∈[﹣,]上为增函数,∴,.故选:D.【点评】本题考查函数值域的求法,训练了利用函数单调性求函数的值域,是基础题.11.若sin(α+β)=,则为()A.5 B.﹣1 C.6 D.【考点】三角函数的恒等变换及化简求值.【专题】计算题.【分析】由两角和差的正弦公式,解得sinαcosβ=,cosαsinβ=,相除求得的值.【解答】解:由题意可得sinαcosβ+cosαsinβ=,sinαcosβ﹣cosαsinβ=,解得sinαcosβ=,cosαsinβ=,∴=5,故选A.【点评】本题考查两角和差的正弦公式,同角三角函数的基本关系,求出sinαcosβ=,cosαsinβ=,是解题的关键.12.已知f(x)为偶函数,当x≥0时,f(x)=﹣(x﹣1)2+1,则满足f[f(a)+]=的实数a的个数为()A.2 B.4 C.6 D.8【考点】根的存在性及根的个数判断;函数奇偶性的性质.【专题】数形结合;分类讨论;转化法;函数的性质及应用.【分析】利用换元法将函方程转化为f(t)=,利用数形结合进行求解即可.【解答】解:设t=f(a)+,则条件等价为f(t)=,若x≤0,则﹣x≥0,∵当x≥0时,f(x)=﹣(x﹣1)2+1,∴当﹣x≥0时,f(﹣x)=﹣(﹣x﹣1)2+1=﹣(x+1)2+1,∵f(x)为偶函数,∴f(﹣x)=﹣(x+1)2+1=f(x),即f(x)=﹣(x+1)2+1,x≤0,作出函数f(x)的图象如图:当x≥0时,由﹣(x﹣1)2+1=,得(x﹣1)2=,则x=1+或x=1﹣,∵f(x)为偶函数,∴当x<0时,f(x)=的解为x3=﹣1﹣,x4=﹣1+;综上所述,f(t)=得解为t1=1+或t2=1﹣,t3=﹣1﹣,t4=﹣1+;由t=f(a)+得,若t1=1+,则f(a)+=1+,即f(a)=+>1,此时a无解,若t2=1﹣,则f(a)+=1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t3=﹣1﹣,则f(a)+=﹣1﹣,即f(a)=﹣﹣∈(﹣∞,0),此时a有2个解,若t4=﹣1+,则f(a)+=﹣1+,即f(a)=﹣+∈(﹣∞,0),此时a有2个解,故共有2+2+2=6个解.故选:C.【点评】本题主要考查函数与方程的应用,利用换元法结合数形结合进行求解是解决本题的关键.综合性较强,有一定的难度.二.填空题(本大题共6小题,单空每小题6分,多空每小题6分,共28分,将答案填在答题卷的相应位置.)13.若函数f(x)=3sin(x+),则f(x)的周期是4π;f(π)=.【考点】正弦函数的图象.【专题】计算题;函数思想;分析法;函数的性质及应用.【分析】利用三角函数的周期公式可求周期,利用特殊角的三角函数值即可计算得解.【解答】解:∵f(x)=3sin(x+),∴f(x)的周期T==4π,f(π)=3sin(+)=3sin=3sin=.故答案为:4π,.【点评】本题主要考查了三角函数的周期公式,特殊角的三角函数值的应用,属于基础题.14.若tanα=2,则=2;sinα•cosα=.【考点】同角三角函数基本关系的运用;三角函数的化简求值.【专题】转化思想;综合法;三角函数的求值.【分析】由条件利用同角三角函数的基本关系,求得要求式子的值.【解答】解:∵tanα=2,则==tanα=2,sinα•cosα===,故答案为:2;.【点评】本题主要考查同角三角函数的基本关系,属于基础题.15.已知某扇形的周长是16,圆心角是2弧度,则该扇形的面积是16.【考点】扇形面积公式.【专题】计算题;方程思想;综合法;三角函数的求值.【分析】设出扇形的半径,求出扇形的弧长,利用周长公式,求出半径,然后求出扇形的面积.【解答】解:设扇形的半径为:R,所以2R+2R=16,所以R=4,扇形的弧长为:8,半径为4,扇形的面积为:S=×8×4=16故答案为:16.【点评】本题是基础题,考查扇形的面积公式的应用,考查计算能力.16.若函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,则实数a的取值X围是(﹣12,0).【考点】二分法求方程的近似解.【专题】计算题;转化思想;定义法;函数的性质及应用.【分析】根据函数f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,得到,解得即可.【解答】解:∵f(x)=3x2﹣5x+a的一个零点在区间(﹣2,0)内,另一个零点在区间(1,3)内,∴,即解得﹣12<a<0,故a的取值X围为(﹣12,0),故答案为:(﹣12,0).【点评】本题考查函数零点的判断定理,理解零点判定定理的内容,将题设条件转化为关于参数的不等式组是解本题的关键.17.已知f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则a的取值X围是﹣4<a<0.【考点】对数函数的图象与性质;复合函数的单调性.【专题】计算题;转化思想;函数的性质及应用.【分析】若f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,则内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,进而得到答案.【解答】解:∵f(x)=log2(4﹣ax)在区间[﹣1,3]上是增函数,故内函数t=4﹣ax在区间[﹣1,3]上是增函数,且恒为正,故,解得:﹣4<a<0,故答案为:﹣4<a<0.【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质是解答的关键.18.已知定义在R上的函数f(x)满足:f(x+1)=,当x∈(0,1]时,f(x)=2x,则f(log29)等于.【考点】函数的周期性;函数的值.【专题】计算题;函数的性质及应用.【分析】根据题意,算出f(x+2)=f(x),得f(x)是最小正周期为2的周期函数.从而算出f(log29)=f(log2).由x∈(0,1]时f(x)=2x,结合f(x+1)f(x)=1算出f(log2)==,即可得到所求的函数值.【解答】解:∵f(x+1)=,∴f(x+2)===f(x),可得f(x)是最小正周期为2的周期函数∵8<9<16,2>1∴log28<log29<log216,即log29∈(3,4)因此f(log29)=f(log29﹣2)=f(log2)∵f(log2)==而f(log2)==,∴f(log29)=f(log2)==故答案为:【点评】本题给出函数满足的条件,求特殊自变量对应的函数值.着重考查了函数的周期性及其证明、对数的运算法则和函数性质的理解等知识,属于中档题.三.解答题(本大题共4小题,共44分.解答应写出文字说明、证明过程或验算步骤.)19.函数f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)图象的一段如图所示(1)求此函数的解析式;(2)求函数f(x)在区间上的最大值和最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【专题】函数思想;数形结合法;三角函数的图像与性质.【分析】(1)由图象可得A值,由周期公式可得ω,代点结合角的X围可得φ,可得解析式;(2)由和三角函数的最值可得.【解答】解:(1)由图象可得A=,由=﹣﹣(﹣)=可得周期T=π,∴ω==2,∴f(x)=sin(2x+φ),∵,∴又0<φ<π,∴,故,可得,∴此函数的解析式为:;(2)∵,∴,∴f(x)在即x=0时取得最大值,f(x)在即时取得最小值.【点评】本题考查三角函数的图象和解析式,涉及三角函数的最值,属中档题.20.已知函数f(x)=为奇函数.(1)某某数a的值;(2)试判断函数的单调性并加以证明;(3)对任意的x∈R,不等式f(x)<m恒成立,某某数m的取值X围.【考点】函数奇偶性的性质;函数单调性的判断与证明;函数恒成立问题.【专题】证明题;综合题;函数思想;函数的性质及应用.【分析】(1)解f(0)=0可得a值;(2)由单调性的定义可得;(3)由(1)(2)可得函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,可得m≥1.【解答】解:(1)由函数为奇函数可得f(0)==0,解得a=﹣1;(2)由(1)可得f(x)===1﹣,可得函数在R上单调递增,下面证明:任取实数x1<x2,则f(x1)﹣f(x2)=﹣=<0,∴函数f(x)=R上的增函数;(3)∵函数f(x)为增函数,当x趋向于正无穷大时,f(x)趋向于1,要使不等式f(x)<m恒成立,则需m≥1【点评】本题考查函数的奇偶性和单调性以及恒成立问题,属中档题.21.已知函数f(x)=2x﹣1(x∈R).(1)求函数f(x)的单调递减区间;(2)若f(x0)=,,求cos2x0的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【专题】计算题;转化思想;分析法;三角函数的求值;三角函数的图像与性质.【分析】(1)由三角函数恒等变换的应用化简函数可得解析式f(x)=2sin(2x+),由2kπ≤2x+≤2kπ+,即可解得f(x)的单调递减区间.(2)由(1)及,则可求,由,可求2x0+∈[,],解得cos(2x0+)=﹣,利用两角差的余弦函数公式即可计算得解.2分)【解答】(本题满分为12分)解:(1)由f(x)=2x﹣1得:f(x)=(2sinxcosx)+(2cos2x﹣1)=sin2x+cos2x=2sin(2x+).…由2kπ≤2x+≤2kπ+得k≤x≤k,(k∈Z).所以函数f(x)的单调递减区间是[k,k],(k∈Z).…(2)由(1)知,,又由已知,则.…因为,则2x0+∈[,],因此,所以cos(2x0+)=﹣,…于是cos2x0=cos[(2x0+)﹣]=cos(2x0+)cos+sin(2x0+)sin=(﹣)×+=.…【点评】本题主要考查了三角函数恒等变换的应用,正弦函数的图象和性质,两角差的余弦函数公式的应用,考查了计算能力和转化思想,属于中档题.22.如图,正方形ABCD的边长为1,P,Q分别为AB,DA上动点,且△APQ的周长为2,设 AP=x,AQ=y.(1)求x,y之间的函数关系式y=f(x);(2)判断∠PCQ的大小是否为定值?并说明理由;(3)设△PCQ的面积分别为S,求S的最小值.【考点】基本不等式在最值问题中的应用;函数解析式的求解及常用方法.【专题】综合题;方程思想;综合法;函数的性质及应用;不等式.【分析】(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,即可求x,y之间的函数关系式y=f(x);(2)求得∴∠DCQ+∠BCP=,即可判断∠PCQ的大小;(3)表示△PCQ的面积,利用基本不等式求S的最小值.【解答】解:(1)由已知可得PQ=2﹣x﹣y,根据勾股定理有(2﹣x﹣y)2=x2+y2,…化简得:y=(0<x<1)…(2)tan∠DCQ=1﹣y,tan∠BCP=1﹣x,…tan(∠DCQ+∠BCP)==1 …∵∠DCQ+∠BCP∈(0,),∴∠DCQ+∠BCP=,∴∠PCQ=﹣(∠DCQ+∠BCP)=,(定值)…(3)S=1﹣﹣(1﹣x)﹣(1﹣y)=(x+y﹣xy)=•…令t=2﹣x,t∈(1,2),∴S=•(t+)﹣1,∴t=时,S的最小值为﹣1.…【点评】本题考查三角函数知识,考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题.。
2015-2016年浙江省杭州十四中高一上学期期末数学试卷带答案
第 3 页(共 20 页)
21. (6.00 分)已知 f(x)= 时,f(x)= .
则 f(3)=
;当 1≤x≤2
22. (3.00 分)如图,已知△ABC 中,AB=AC=4,∠BAC=90°,D 是 BC 的中点,若 向量 = +m• ,且 . 的终点 M 在△ACD 的内部(不含边界) ,则 • 的
6. (3.00 分)函数 f(x)= A.[﹣2,0)∪(0,2] 2] 7. (3.00 分)设
,则使 f(x)=xα 是奇函 )
数且在(0,+∞)上是单调递减的 a 的值的个数是( A.4 B.3 C.2 D.1 )
第 1 页(共 20 页)
8. (3.00 分)sin(﹣1665°)的值是(
A.
B.
C.
D. )
9. (3.00 分)函数 y=|lg(x+1)|的图象是(
A.
B.
C
.
D. 10. (3.00 分)已知角 α 的终边上有一点 P(1,3) ,则 的值为( A.1 B. ) C.﹣1 D.﹣4
11. (3.00 分)设函数 f(x)是定义在 R 上,周期为 3 的奇函数,若 f(1)<1, ,则( A. )
第 4 页(共 20 页)
x0 是它的一个“均值点”.如函数பைடு நூலகம்y=x2 是[﹣1,1]上的平均值函数,0 就是它的均 值点.现有函数 g(x)=﹣x2+mx+1 是区间[﹣1,1]上的平均值函数,求实数 m 的取值范围.
,且 f(0)=2.
的图象,试判断 g(x)的奇偶性,并求出 g(x)在 R 上的单调递增区间. 24. (10.00 分)如图,两块直角三角板拼在一起,已知∠ABC=45°,∠BCD=60°. (1)若记 (2)若 AB= = , ,求 = ,试用 , 表示向量 • . , ;
2015-2016学年高一第一学期期末考试数学试题 Word版含答案
2015-2016学年高一第一学期期末考试数学试题 Word版含答案2014-2015学年度高一第一学期期末考试数学试题一、选择题(每小题4分,共40分)1.已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩(N-B)=()A.{1,5,7}B.{3,5,7}C.{1,3,9}D.{1,2,3}2.在△ABC中,AN=12NC,P是BN上的一点,若AP=mAB+AC,则实数m的值为()A.1/3B.1/2C.2/3D.3/23.已知f(x)=log2x,x>1x+1,x≤1若f(x)是f(x)的最小值,则a的取值范围为()A.[0,2]B.[1,2]C.[-1,0]D.[-1,2]4.已知函数y=sin(ωx+φ),ω>0,φ<π/2的部分图象如图所示,则()图略A.ω=1,φ=π/6B.ω=2,φ=-π/6C.ω=1,φ=-π/6D.ω=2,φ=π/65.如果函数f(x)上存在两个不同点A、B关于原点对称,则称A、B两点为一对友好点,记作A,B。
规定A,B和B,A是同一对,已知f(x)=cosx,x≥0lgx,x<0则函数f(x)上共存在友好点()A.1对B.3对C.5对D.7对6.已知方程sin2x+cosx+k=0有解,则实数k的取值范围为()A.-1≤k≤5/4B.-5/4≤k≤1C.-1≤k≤1D.-5/4≤k≤-1二、填空题11.已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且π/2<α<π。
若|OA+OC|=7,则OB与OC的夹角为______。
12.已知角α的顶点在原点,始边与x轴的正半轴重合,终边落在第三象限,与圆心在原点的单位圆交于点P(cosα,-sinα),则tanα=________。
13.已知函数f(x)=loga(2x-a)在区间(0,a/2)上恒有f(x)>1,则实数a的取值范围是________。
浙江省杭州市学军中学2015-2016学年高一上学期期末数学试卷 含解析
2015—2016学年浙江省杭州市学军中学高一(上)期末数学试卷一、选择题(每小题3分,共30分)1.设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}2.把函数y=cos(x+)的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为()A.B.C.D.3.函数f(x)=x2﹣2ax+a在区间(﹣∞,1)上有最小值,则a的取值范围是( )A.a<1 B.a≤1 C.a>1 D.a≥14.已知角α,β均为锐角,且cosα=,tan(α﹣β)=﹣,tanβ=()A.B.C.D.35.若0≤α≤2π,sinα>cosα,则α的取值范围是()A.(,)B.(,π)C.(,)D.(,)6.已知函数f(x)=Atan(ωx+φ)(ω>1,|φ|<),y=f(x)的部分图象如图,则f()=()A.B.C.D.7.已知f(x)是偶函数,且f(x)在B. C. D.8.已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=( )A.﹣5 B.﹣1 C.3 D.49.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)10.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1﹣2|x﹣|,则函数g(x)=f﹣x在区间内不同的零点个数是()A.5 B.6 C.7 D.9二、选择题(每小题4分,共20分)11.已知奇函数f(x)当x>0时的解析式为f(x)=,则f(﹣1)= .12.函数f(x)=sin2x+cos2x的最小正周期为.13.已知f(x)=log2x,x∈[,4],则函数y=×f(2x)的值域是.14.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω=.15.已知函数f(x)满足f(x﹣1)=﹣f(﹣x+1),且当x≤0时,f(x)=x3,若对任意的x∈,不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.三、解答题(每小题8分,共50分)16.已知tanα=3.(1)求tan(α+)的值;(2)求的值.17.已知函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f(x)>1(1)判断并证明f(x)的单调性;(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.18.函数f(x)=6cos2+sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈(﹣,),求f(x0+1)的值.19.已知奇函数f(x)在(﹣∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f(1)=0,又知函数g(θ)=sin2θ+mcosθ﹣2m,,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.20.已知a,b是实数,函数f(x)=x|x﹣a|+b.(1)当a=2时,求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间上的最大值;(3)若存在a∈,使得函数f(x)在上恒有三个零点,求b的取值范围.2015—2016学年浙江省杭州市学军中学高一(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁U B)=() A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】进行补集、交集的运算即可.【解答】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.2.把函数y=cos(x+)的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据y=Asin(ωx+φ)的图象变换规律可得,所得的图象对应的函数解析式为y=cos(x ﹣φ+),再根据所得函数的图象正好关于y轴对称,可得﹣φ+=kπ,k∈z,由此求得φ的最小正值.【解答】解:把函数y=cos(x+)的图象向右平移φ个单位,所得的图象对应的函数解析式为y=cos(x﹣φ+),再根据所得函数的图象正好关于y轴对称,可得﹣φ+=kπ,k∈z.故φ的最小正值为,故选D.3.函数f(x)=x2﹣2ax+a在区间(﹣∞,1)上有最小值,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1【考点】二次函数在闭区间上的最值.【分析】因为f(x)为二次函数且开口向上,函数的对称轴为x=a.若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值,所以可知a<1,此时x=a时有最小值,故可得结论【解答】解:由题意,f(x)=(x﹣a)2﹣a2+a∴函数的对称轴为x=a.若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值所以a<1,此时x=a时有最小值故选A.4.已知角α,β均为锐角,且cosα=,tan(α﹣β)=﹣,tanβ=()A.B.C.D.3【考点】两角和与差的正切函数.【分析】由条件利用同角三角函数的基本关系求得tanα 的值,再根据tan(α﹣β)=﹣,利用两角差的正切公式求得tanβ的值.【解答】解:∵角α,β均为锐角,且cosα=,∴sinα=,tanα=,又tan(α﹣β)===﹣,∴tanβ=3,故选:D.5.若0≤α≤2π,sinα>cosα,则α的取值范围是( )A.(,)B.(,π) C.(,)D.(,) 【考点】正切函数的单调性;三角函数线.【分析】通过对sinα>cosα等价变形,利用辅助角公式化为正弦,利用正弦函数的性质即可得到答案.【解答】解:∵0≤α≤2π,sinα>cosα,∴sinα﹣cosα=2sin(α﹣)>0,∵0≤α≤2π,∴﹣≤α﹣≤,∵2sin(α﹣)>0,∴0<α﹣<π,∴<α<.故选C.6.已知函数f(x)=Atan(ωx+φ)(ω>1,|φ|<),y=f(x)的部分图象如图,则f()=()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据函数的图象,求出函数的周期,然后求出ω,根据函数过(0。
浙江省杭州高级中学2015-2016学年高一(上)期末数学试卷(解析版)
2015-2016学年浙江省杭州高级中学高一(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求的).1.设集合A={x|x2+2x﹣3>0},R为实数,Z为整数集,则(∁R A)∩Z=()A.{x|﹣3<x<1}B.{x|﹣3≤x≤1} C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1,0,1}2.给定集合M={,k∈Z},N={x|cos2x=0},P={a|sin2a=1},则下列关系式中,成立的是()A.P⊂N⊂M B.P=N⊂M C.P⊂N=M D.P=N=M3.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动π弧长到达Q,则Q 点坐标()A.(﹣,) B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)4.已知幂函数为奇函数,且在区间(0,+∞)上是减函数,则f(x)=()A.y=x3 B.y=x C.y=x﹣3D.y=x﹣25.已知tanθsinθ<0,且|sinθ+cosθ|<1,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角6.给出下列说法:①函数的对称中心是;②函数单调递增区间是;③函数的定义域是;④函数y=tanx+1在上的最大值为,最小值为0.其中正确说法有几个()A.1 B.2 C.3 D.47.关于函数f(x)=(2x﹣)•x和实数m,n的下列结论中正确的是()A.若﹣3≤m<n,则f(m)<f(n) B.若m<n≤0,则f(m)<f(n)C.若f(m)<f(n),则m2<n2D.若f(m)<f(n),则m3<n38.若函数f(x)=ax2+b|x|+c(a≠0)有四个单调区间,则实数a,b,c满足() A.b2﹣4ac>0,a>0 B.b2﹣4ac>0 C.﹣>0 D.﹣<09.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]10.直线y=5与y=﹣1在区间上截曲线所得弦长相等且不为零,则下列描述正确的是()A. B.m≤3,n=2 C.D.m>3,n=2二、填空题(本大题共6小题,每题4分,共24分).11.cos660°=.12.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为.13.求函数y=lg(sin2x+2cosx+2)在上的最大值,最小值.14.已知函数,则f(x)的单调增区间为,的解集为.15.设函数f(x)=ax2+x.已知f(3)<f(4),且当n≥8,n∈N*时,f(n)>f(n+1)恒成立,则实数a的取值范围是.16.已知f(x)=ax2+bx+c,(0<2a<b),∀x∈R,f(x)≥0恒成立,则的最小值为.三、解答题(本大题共46分,解答应写出文字说明,证明过程或演算步骤).17.已知0<x<π,且满足.求:(i)sinx•cosx;(ii).18.已知函数在一个周期内的图象如图所示,图象过点,A为图象的最高点,B,C为图象与x 轴的交点,且△ABC为高为的正三角形.(1)求A,ω,φ的值;(2)当时,求函数f(x)的值域;(3)将y=f(x)的图象所在点向左平行移动θ(θ>0)的单位长度,得到y=g(x)的图象.若y=g(x)的图象的一个对称中心为,求θ的最小值.19.已知函数f(x)=x+.(1)求解不等式f(x)≥2x;(2)+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范围;(3)设函数g(x)=x2+(﹣3+c)x+c2,若方程g(f(x))=0有6个实根,求c的取值范围.20.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).(1)求的值;(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M的最大值.2015-2016学年浙江省杭州高级中学高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求的).1.设集合A={x|x2+2x﹣3>0},R为实数,Z为整数集,则(∁R A)∩Z=()A.{x|﹣3<x<1}B.{x|﹣3≤x≤1}C.{﹣2,﹣1,0}D.{﹣3,﹣2,﹣1,0,1}【考点】交、并、补集的混合运算.【分析】求解不等式化简集合A,求出其补集,然后利用交集运算求解.【解答】解:∵A={x|x2+2x﹣3>0}={x|x<﹣3或x>1},R为实数,Z为整数集,∴(C R A)={x|﹣3≤x≤1},∴(C R A)∩Z={﹣3,﹣2,﹣1,0,1}.故选:D.2.给定集合M={,k∈Z},N={x|cos2x=0},P={a|sin2a=1},则下列关系式中,成立的是()A.P⊂N⊂M B.P=N⊂M C.P⊂N=M D.P=N=M【考点】终边相同的角;集合的包含关系判断及应用.【分析】通过解三角方程化简集合M,N;通过对k的讨论化简集合M,根据集合间的包含关系得到选项.【解答】解:N={x|cos2x=0}={x|2={x|x=+,k∈Z},P={a|sin2a=1}={a|2a=={a|2a=kπ+,k∈Z},又∵M={=∴p⊂N⊂M故选A3.点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动π弧长到达Q,则Q 点坐标()A.(﹣,)B.(﹣,﹣)C.(﹣,﹣)D.(﹣,)【考点】弧长公式.【分析】画出图形,结合图形,求出∠xOQ的大小,即得Q点的坐标.【解答】解:如图所示,;点P从(﹣1,0)出发,沿单位圆x2+y2=1顺时针方向运动π弧长到达Q,则∠POQ=﹣2π=,∴∠xOQ=,∴cos=﹣,sin=,∴Q点的坐标为(﹣,);故选:A.4.已知幂函数为奇函数,且在区间(0,+∞)上是减函数,则f(x)=()A.y=x3 B.y=x C.y=x﹣3D.y=x﹣2【考点】函数奇偶性的判断.【分析】根据函数单调性先求出m的值结合幂函数的性质进行求解即可.【解答】解:∵f(x)在区间(0,+∞)上是减函数,∴2m2﹣m﹣3<0,解得﹣1<m<,∵m∈Z,∴m=0或m=1,若m=0,则f(x)=x﹣3=,是奇函数,满足条件..若m=1,则f(x)=x﹣2=,是偶函数,不满足条件.故选:C5.已知tanθsinθ<0,且|sinθ+cosθ|<1,则角θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角【考点】象限角、轴线角.【分析】根据题意可求得cosθ<0,sinθ>0,从而可得答案.【解答】解:∵tanθsinθ=•sinθ=<0,∴cosθ<0;又|sinθ+cosθ|<1,∴两边平方得:1+2sinθ•cosθ<1,∴2sinθ•cosθ<0,而cosθ<0,∴sinθ>0,∴角θ是第二象限角.故选B.6.给出下列说法:①函数的对称中心是;②函数单调递增区间是;③函数的定义域是;④函数y=tanx+1在上的最大值为,最小值为0.其中正确说法有几个()A.1 B.2 C.3 D.4【考点】正切函数的图象.【分析】利用正切函数的图象和性质,判断各个选项是否正确,从而得出结论.【解答】解:①对于函数,令2x+=kπ+,求得x=+,可得它的图象的对称中心是(+,0),k∈Z,故A错误.②对于函数=﹣2tan(2x﹣),该函数只有减区间,而没有增区间,故B错误.③对于函数,令2x+≠kπ+,求得x≠kπ+,可得该函数的定义域是{x|x≠kπ+,k∈Z},故C正确.④由于函数y=tanx+1在上单调递增,故它的最大值为tan+1=,最小值为tan(﹣)+1=0,故D正确,故选:B.7.关于函数f(x)=(2x﹣)•x和实数m,n的下列结论中正确的是()A.若﹣3≤m<n,则f(m)<f(n)B.若m<n≤0,则f(m)<f(n)C.若f(m)<f(n),则m2<n2D.若f(m)<f(n),则m3<n3【考点】指数函数单调性的应用.【分析】观察本题中的函数,可得出它是一个偶函数,由于所给的四个选项都是比较大小的,或者是由函数值的大小比较自变量的大小关系的,可先研究函数在(0,+∞)上的单调性,再由偶函数的性质得出在R上的单调性,由函数的单调性判断出正确选项【解答】解:∵∴函数是一个偶函数又x>0时,与是增函数,且函数值为正,故函数在(0,+∞)上是一个增函数由偶函数的性质知,函数在(﹣∞,0)上是一个减函数,此类函数的规律是:自变量离原点越近,函数值越小,即自变量的绝对值小,函数值就小,反之也成立考察四个选项,A选项无法判断m,n离原点的远近;B选项m的绝对值大,其函数值也大,故不对;C选项是正确的,由f(m)<f(n),一定可得出m2<n2;D选项f(m)<f(n),可得出|m|<|n|,但不能得出m3<n3,不成立综上知,C选项是正确的故选C8.若函数f(x)=ax2+b|x|+c(a≠0)有四个单调区间,则实数a,b,c满足()A.b2﹣4ac>0,a>0 B.b2﹣4ac>0 C.﹣>0 D.﹣<0【考点】函数的单调性及单调区间.【分析】要使f(x)在R上有四个单调区间,显然在x>0时,f(x)有两个单调区间,x<0时有两个单调区间,从而可得出a,b,c需满足.【解答】解:x>0时,f(x)=ax2+bx+c;此时,f(x)应该有两个单调区间;∴对称轴x=;∴x<0时,f(x)=ax2﹣bx+c,对称轴x=;∴此时f(x)有两个单调区间;∴当时,f(x)有四个单调区间.故选C.9.已知符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),则()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnx C.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]【考点】函数与方程的综合运用.【分析】直接利用特殊法,设出函数f(x),以及a的值,判断选项即可.【解答】解:由于本题是选择题,可以采用特殊法,符号函数sgnx=,f(x)是R上的增函数,g(x)=f(x)﹣f(ax)(a>1),不妨令f(x)=x,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[g(x)]=﹣sgnx.所以A不正确,B正确,sgn[f(x)]=sgnx,C不正确;D正确;对于D,令f(x)=x+1,a=2,则g(x)=f(x)﹣f(ax)=﹣x,sgn[f(x)]=sgn(x+1)=;sgn[g(x)]=sgn(﹣x)=,﹣sgn[f(x)]=﹣sgn(x+1)=;所以D不正确;故选:B.10.直线y=5与y=﹣1在区间上截曲线所得弦长相等且不为零,则下列描述正确的是()A. B.m≤3,n=2 C.D.m>3,n=2【考点】正弦函数的图象.【分析】曲线的性质知,在一个周期上截直线y=5与y=﹣1所得的弦长相等且不为0,可知两条直线关于y=n对称,由此对称性可求出n,又截得的弦长不为0,故可得振幅大于3.【解答】解:由题意可得的图象关于直线y=n对称,因为曲线被直线y=5与y=﹣1所得的弦长相等,所以直线y=5与直线y=﹣1关于y=n对称.所以n==2,又因为弦长相等且不为0,所以振幅m>=3.故选D.二、填空题(本大题共6小题,每题4分,共24分).11.cos660°=.【考点】运用诱导公式化简求值.【分析】由条件利用利用诱导公式进行化简求值,可得结果.【解答】解:cos660°=cos=cos(﹣60°)=cos60°=,故答案为:.12.将函数的图象上的所有点向右平移个单位,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】按照左加右减的原则,求出函数所有点向右平移个单位的解析式,然后求出将图象上所有点的横坐标变为原来的倍时的解析式即可.【解答】解:将函数的图象上的所有点向右平移个单位,得到函数=sin2x,再将图象上所有点的横坐标变为原来的倍(纵坐标不变),则所得的图象的函数解析式为y=sin4x.故答案为:y=sin4x.13.求函数y=lg(sin2x+2cosx+2)在上的最大值lg4,最小值lg.【考点】复合函数的单调性.【分析】根据同角的三角函数的关系式,结合一元二次函数的性质求出t=sin2x+2cosx+2的取值范围,结合对数单调性的性质进行求解即可.【解答】解:sin2x+2cosx+2=1﹣cos2x+2cosx+2=﹣(cosx﹣1)2+4,∵,∴cosx∈[﹣,1],则当cosx=1时,sin2x+2cosx+2取得最大值4,当cosx=﹣时,sin2x+2cosx+2取得最小值,即当时,函数有意义,设t=sin2x+2cosx+2,则≤t≤4,则lg≤lgt≤lg4,即函数的最大值为lg4,最小值为lg,故答案为:lg4,lg14.已知函数,则f(x)的单调增区间为(﹣∞,1],的解集为(1,5﹣)∪(log4,1] .【考点】分段函数的应用;函数的单调性及单调区间.【分析】根据绝对值的性质将函数f(x)进行化简,结合分段函数的表达式进行判断求解即可.【解答】解:∵函数y=5﹣x﹣4x为减函数,且x=1时,y=5﹣x﹣4x=5﹣1﹣4=0,∴当x>1时,5﹣x﹣4x<0,此时f(x)=+=5﹣x为减函数,当x≤1时,5﹣x﹣4x≥0,此时f(x)=﹣=4x为增函数,即函数f(x)的单调递增区间为为(﹣∞,1],当x>1时,由5﹣x>得x<5﹣,此时1<x<5﹣,当x≤1时,由4x>得x>log4,此时log4<x≤1,即不等式的解集为(1,5﹣)∪(log4,1],故答案为:(﹣∞,1],(1,5﹣)∪(log4,1].15.设函数f(x)=ax2+x.已知f(3)<f(4),且当n≥8,n∈N*时,f(n)>f(n+1)恒成立,则实数a的取值范围是().【考点】函数恒成立问题;二次函数的性质.【分析】通过函数恒成立判断a的符号,利用f(8)>f(9),f(3)<f(4),求解即可.【解答】解:∵当n≥8,n∈N*时,f(n)>f(n+1)恒成立,∴a<0,此时,f(n)>f(n+1)恒成立,等价于f(8)>f(9),即64a+8>81a+9,解得a.∵f(3)<f(4),∴9a+3<16a+4解得a,即a∈().故答案为:().16.已知f(x)=ax2+bx+c,(0<2a<b),∀x∈R,f(x)≥0恒成立,则的最小值为3.【考点】二次函数的性质.【分析】由二次函数的性质得,代入化简得:≥,设t=,由0<2a<b得t>2,利用基本不等式的性质就能求得最小值.【解答】解:因为∀x∈R,f(x)=ax2+bx+c≥0恒成立,0<2a<b,所以,得b2≤4ac,又0<2a<b,所以,所以=≥===,设t=,由0<2a<b得,t>2,则≥== [(t﹣1)++6]≥=3,当且仅当时取等号,此时t=4,取最小值是3,故答案为:3.三、解答题(本大题共46分,解答应写出文字说明,证明过程或演算步骤).17.已知0<x<π,且满足.求:(i)sinx•cosx;(ii).【考点】同角三角函数基本关系的运用.【分析】(i)由(sinx+cosx)2=1+2sinxcosx=,能求出sinx•cosx.(ii)由(i)知,sinx•cosx=﹣.从而求出sin﹣cosx,进而求出sinx=,cosx=﹣,由此能求出.【解答】解:(i)∵0<x<π,且满足.∴(sinx+cosx)2=1+2sinxcosx=,∴sinx•cosx=﹣.(ii)由(i)知,sinx•cosx=﹣.∴sin﹣cosx====,联立,解得sinx=,cosx=﹣,∴==.18.已知函数在一个周期内的图象如图所示,图象过点,A为图象的最高点,B,C为图象与x 轴的交点,且△ABC为高为的正三角形.(1)求A,ω,φ的值;(2)当时,求函数f(x)的值域;(3)将y=f(x)的图象所在点向左平行移动θ(θ>0)的单位长度,得到y=g(x)的图象.若y=g(x)的图象的一个对称中心为,求θ的最小值.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)根据三角函数的图象,结合三角函数的性质即可求A,ω和φ的值,(2)根据三角函数的解析式,求出角的范围即可求出函数的值域,(3)利用三角函数的图象平移关系求出g(x)的解析式,结合函数的对称性进行求解即可.【解答】解:(1)∵△ABC为高为的正三角形,∴A=2,则sin60°==,则AB=BC=4,即函数的周期T=2BC=8=,则ω=,此时f(x)=2sin(x+φ),∵图象过点,∴f(0)=2sinφ=,则sinφ=,∵|φ|<,∴φ=,即A=2,ω=,φ=;(2)由(1)得f(x)=2sin(x+),当时,即﹣≤x≤,则≤x+≤,∴当x+=时,函数取得最大值为2,当x+=时,函数取得最小值为2×=,即函数f(x)的值域为[,2];(3)将y=f(x)的图象所在点向左平行移动θ(θ>0)的单位长度,得到y=g(x)的图象.即g(x)=2sin[(x+θ)+]=2sin(x+θ+),若y=g(x)的图象的一个对称中心为,即×+θ+=kπ,k∈Z则θ=4k﹣2,∵θ>0,∴当k=1时,θ取得最小值此时θ的最小值为4﹣2=2.19.已知函数f(x)=x+.(1)求解不等式f(x)≥2x;(2)+x2+2mf(x)≥0在x∈[1,2]上恒成立,求m的取值范围;(3)设函数g(x)=x2+(﹣3+c)x+c2,若方程g(f(x))=0有6个实根,求c的取值范围.【考点】利用导数求闭区间上函数的最值;根的存在性及根的个数判断.【分析】(1)对x讨论,分x>0,x<0,由分式不等式的解法,即可得到解集;(2)由题意可得+x2+2m(x+)≥0在x∈[1,2]上恒成立,即有(x+)2﹣2+2m (x+)≥0,令t=x+,2≤t≤,可得t2+2mt﹣2≥0,再由参数分离和函数的单调性,可得不等式的右边的最大值,可得m的范围;(3)可令t=f(x),则g(t)=0,即有方程t=f(x)有6个实根,作出f(x)的图象,可得当x>0时,f(x)有最小值2,则方程g(t)=0有两个大于2的不等实根,由二次方程实根分布解决方法,可得判别式大于0,g(2)大于0,对称轴大于2,解不等式即可得到所求范围.【解答】解:(1)f(x)≥2x,当x>0时,x+≥2x,即有x﹣=≤0,解得0<x≤1;当当x<0时,x﹣≥2x,即为x+=≤0,解得x<0.故原不等式的解集为{x|x≤1且x≠0};(2)+x2+2mf(x)≥0在x∈[1,2]上恒成立,即为+x2+2m(x+)≥0在x∈[1,2]上恒成立,即有(x+)2﹣2+2m(x+)≥0,令t=x+,2≤t≤,可得t2+2mt﹣2≥0,即有m≥﹣,令h(t)=﹣,h′(t)=﹣﹣<0,则h(t)为单调递减函数,则h(t)=﹣≤h(2)=﹣1=﹣,即有m≥﹣;(3)函数g(x)=x2+(﹣3+c)x+c2,若方程g(f(x))=0有6个实根,可令t=f(x),则g(t)=0,即有方程t=f(x)有6个实根,作出f(x)的图象,如右:当x>0时,f(x)有最小值2,则t>2,方程g(t)=0有两个大于2的不等实根,则即,可得﹣3<c<﹣﹣1.20.已知函数f(x)=|lnx|,设x1≠x2且f(x1)=f(x2).(1)求的值;(2)若x1+x2+f(x1)+f(x2)>M对任意满足条件的x1,x2恒成立,求实数M 的最大值.【考点】利用导数求闭区间上函数的最值;对数函数的图象与性质.【分析】(1)根据对数的运算性质,可得lnx1=﹣lnx2,进而得到x1x2=1,进而得到的值;(2)不妨令x2>1,则x1+x2+f(x1)+f(x2)=+x2+2lnx2>M恒成立,令g(x)=+x+2lnx,x>1,可得答案【解答】解:(1)∵函数f(x)=|lnx|,x1≠x2且f(x1)=f(x2).∴lnx1=﹣lnx2,即lnx1+lnx2=ln(x1•x2)=0,即x1x2=1,∴=0(2)不妨令x2>1,则x1+x2+f(x1)+f(x2)=+x2+2lnx2>M恒成立,令g(x)=+x+2lnx,x>1,则g′(x)=﹣+1+=>0恒成立,则g(x)在(1,+∞)上恒成立,由g(1)=2,可得M≤2,即M的最大值为22017年2月11日第21页(共21页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年浙江省杭州市学军中学高一(上)期末数学试卷一、选择题(每小题3分,共30分)1.设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁U B )=( ) A .{1,2,5,6} B .{1} C .{2} D .{1,2,3,4}2.把函数y=cos (x+)的图象向右平移φ个单位,所得的图象正好关于y 轴对称,则φ的最小正值为( )A .B .C .D .3.函数f (x )=x 2﹣2ax+a 在区间(﹣∞,1)上有最小值,则a 的取值范围是( ) A .a <1 B .a≤1 C .a >1 D .a≥14.已知角α,β均为锐角,且cos α=,tan (α﹣β)=﹣,tan β=( )A .B .C .D .35.若0≤α≤2π,sin α>cos α,则α的取值范围是( )A .(,) B .(,π)C .(,) D .(,)6.已知函数f (x )=Atan (ωx+φ)(ω>1,|φ|<),y=f (x )的部分图象如图,则f()=( )A .B .C .D .7.已知f (x )是偶函数,且f (x )在 B . C . D .8.已知函数f (x )=ax 3+bsinx+4(a ,b ∈R ),f (lg (log 210))=5,则f (lg (lg2))=( ) A .﹣5 B .﹣1 C .3D .49.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)10.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1﹣2|x﹣|,则函数g(x)=f﹣x在区间内不同的零点个数是()A.5 B.6 C.7 D.9二、选择题(每小题4分,共20分)11.已知奇函数f(x)当x>0时的解析式为f(x)=,则f(﹣1)= .12.函数f(x)=sin2x+cos2x的最小正周期为.13.已知f(x)=log2x,x∈[,4],则函数y=×f(2x)的值域是.14.已知f(x)=sin(ω>0),f()=f(),且f(x)在区间上有最小值,无最大值,则ω= .15.已知函数f(x)满足f(x﹣1)=﹣f(﹣x+1),且当x≤0时,f(x)=x3,若对任意的x∈,不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是.三、解答题(每小题8分,共50分)16.已知tanα=3.(1)求tan(α+)的值;(2)求的值.17.已知函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f (x)>1(1)判断并证明f(x)的单调性;(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.18.函数f(x)=6cos2+sinωx﹣3(ω>0)在一个周期内的图象如图所示,A为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈(﹣,),求f(x0+1)的值.19.已知奇函数f(x)在(﹣∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f (1)=0,又知函数g(θ)=sin2θ+mcosθ﹣2m,,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.20.已知a,b是实数,函数f(x)=x|x﹣a|+b.(1)当a=2时,求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间上的最大值;(3)若存在a∈,使得函数f(x)在上恒有三个零点,求b的取值范围.2015-2016学年浙江省杭州市学军中学高一(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.设全集U={1,2,3,4,5,6}A={1,2},B={2,3,4},则A∩(∁U B)=()A.{1,2,5,6} B.{1} C.{2} D.{1,2,3,4}【考点】交、并、补集的混合运算.【分析】进行补集、交集的运算即可.【解答】解:∁R B={1,5,6};∴A∩(∁R B)={1,2}∩{1,5,6}={1}.故选:B.2.把函数y=cos(x+)的图象向右平移φ个单位,所得的图象正好关于y轴对称,则φ的最小正值为()A.B.C.D.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】根据y=Asin(ωx+φ)的图象变换规律可得,所得的图象对应的函数解析式为y=cos(x﹣φ+),再根据所得函数的图象正好关于y轴对称,可得﹣φ+=kπ,k∈z,由此求得φ的最小正值.【解答】解:把函数y=cos(x+)的图象向右平移φ个单位,所得的图象对应的函数解析式为y=cos(x﹣φ+),再根据所得函数的图象正好关于y轴对称,可得﹣φ+=kπ,k∈z.故φ的最小正值为,故选D.3.函数f(x)=x2﹣2ax+a在区间(﹣∞,1)上有最小值,则a的取值范围是()A.a<1 B.a≤1 C.a>1 D.a≥1【考点】二次函数在闭区间上的最值.【分析】因为f(x)为二次函数且开口向上,函数的对称轴为x=a.若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值,所以可知a<1,此时x=a时有最小值,故可得结论【解答】解:由题意,f(x)=(x﹣a)2﹣a2+a∴函数的对称轴为x=a.若a≥1,则函数在区间(﹣∞,1)上是减函数,因为是开区间,所以没有最小值所以a<1,此时x=a时有最小值故选A.4.已知角α,β均为锐角,且cosα=,tan(α﹣β)=﹣,tanβ=()A.B.C.D.3【考点】两角和与差的正切函数.【分析】由条件利用同角三角函数的基本关系求得 tanα的值,再根据tan(α﹣β)=﹣,利用两角差的正切公式求得tanβ的值.【解答】解:∵角α,β均为锐角,且cosα=,∴sinα=,tanα=,又tan(α﹣β)===﹣,∴tanβ=3,故选:D.5.若0≤α≤2π,sinα>cosα,则α的取值范围是()A.(,)B.(,π) C.(,)D.(,)【考点】正切函数的单调性;三角函数线.【分析】通过对sinα>cosα等价变形,利用辅助角公式化为正弦,利用正弦函数的性质即可得到答案.【解答】解:∵0≤α≤2π,sinα>cosα,∴sinα﹣cosα=2sin(α﹣)>0,∵0≤α≤2π,∴﹣≤α﹣≤,∵2sin(α﹣)>0,∴0<α﹣<π,∴<α<.故选C.6.已知函数f(x)=Atan(ωx+φ)(ω>1,|φ|<),y=f(x)的部分图象如图,则f()=()A.B.C.D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据函数的图象,求出函数的周期,然后求出ω,根据函数过(0.1),过(),确定φ的值,A的值,求出函数的解析式,然后求出即可.【解答】解:由题意可知T=,所以ω=2,函数的解析式为:f(x)=Atan(2x+φ),因为函数过(0,1),所以,1=Atanφ…①,函数过(),0=Atan(+φ)…②,解得:φ=,A=1.∴f(x)=tan(2x+).则f()=tan()=故选B.7.已知f(x)是偶函数,且f(x)在B. C. D.【考点】偶函数;函数恒成立问题.【分析】在解答时,应先分析好函数的单调性,然后结合条件f(ax+1)≤f(x﹣2)在[,1]上恒成立,将问题转化为有关 x的不等式在[,1]上恒成立的问题,在进行解答即可获得问题的解答.【解答】解:由题意可得|ax+1|≤|x﹣2|对恒成立,得x﹣2≤ax+1≤2﹣x对恒成立,从而且对恒成立,∴a≥﹣2且a≤0,即a∈,故选D.8.已知函数f(x)=ax3+bsinx+4(a,b∈R),f(lg(log210))=5,则f(lg(lg2))=()A.﹣5 B.﹣1 C.3 D.4【考点】函数奇偶性的性质;函数的值.【分析】由题设条件可得出lg(log210)与lg(lg2)互为相反数,再引入g(x)=ax3+bsinx,使得f(x)=g(x)+4,利用奇函数的性质即可得到关于f(lg(lg2))的方程,解方程即可得出它的值【解答】解:∵lg(log210)+lg(lg2)=lg1=0,∴lg(log210)与lg(lg2)互为相反数则设lg(log210)=m,那么lg(lg2)=﹣m令f(x)=g(x)+4,即g(x)=ax3+bsinx,此函数是一个奇函数,故g(﹣m)=﹣g(m),∴f(m)=g(m)+4=5,g(m)=1∴f(﹣m)=g(﹣m)+4=﹣g(m)+4=3.故选C.9.已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f()|对x∈R恒成立,且f()>f(π),则f(x)的单调递增区间是()A.(k∈Z)B.(k∈Z)C.(k∈Z)D.(k∈Z)【考点】函数y=Asin(ωx+φ)的图象变换.【分析】由若对x∈R恒成立,结合函数最值的定义,我们易得f()等于函数的最大值或最小值,由此可以确定满足条件的初相角φ的值,结合,易求出满足条件的具体的φ值,然后根据正弦型函数单调区间的求法,即可得到答案.【解答】解:若对x∈R恒成立,则f()等于函数的最大值或最小值即2×+φ=kπ+,k∈Z则φ=kπ+,k∈Z又即sinφ<0令k=﹣1,此时φ=,满足条件令2x∈,k∈Z解得x∈故选C10.已知函数f(x)是定义在R上的奇函数,f(x+2)=f(x),当x∈(0,1]时,f(x)=1﹣2|x﹣|,则函数g(x)=f﹣x在区间内不同的零点个数是()A.5 B.6 C.7 D.9【考点】根的存在性及根的个数判断.【分析】由题意可得函数f(x)的图象关于原点对称,为周期为2的函数,求得一个周期的解析式和图象,由图象平移可得的图象,得到y=f(f(x))的图象,作出y=x的图象,由图象观察即可得到零点个数.【解答】解:函数f(x)是定义在R上的奇函数,且f(x+2)=f(x),即有函数f(x)关于原点对称,周期为2,当x∈(0,1]时,f(x)=1﹣2|x﹣|,即有当x∈内的函数f(x)的图象,进而得到y=f(f(x))的图象,作出y=x的图象,由图象观察,可得它们有5个交点,故零点个数为5.故选:A.二、选择题(每小题4分,共20分)11.已知奇函数f(x)当x>0时的解析式为f(x)=,则f(﹣1)= ﹣.【考点】函数奇偶性的性质;函数的值.【分析】利用函数的奇偶性,直接求解函数值即可.【解答】解:奇函数f(x)当x>0时的解析式为f(x)=,则f(﹣1)=﹣f(1)=﹣.故答案为:﹣.12.函数f(x)=sin2x+cos2x的最小正周期为π.【考点】三角函数的周期性及其求法.【分析】f(x)解析式第一项利用二倍角的余弦函数公式化简,整理后找出ω的值,代入周期公式即可求出最小正周期.【解答】解:f(x)=sin2x+cos2x=+cos2x=cos2x+,∵ω=2,∴f(x)最小正周期T==π.故答案为:π13.已知f(x)=log2x,x∈[,4],则函数y=×f(2x)的值域是[] .【考点】对数函数的图象与性质.【分析】根据复合函数定义域之间的关系求出函数的定义域,然后结合对数函数和一元二次函数的性质即可得到结论.【解答】解:∵f(x)=log2x,x∈[,4],∴由,解得.∴函数y=×f(2x)的定义域为[].则y=×f(2x)===.∵,∴﹣1≤log 2x≤1,∴当时,;当log 2x=1时,y max =2.∴函数y=×f(2x )的值域是[].故答案为:[].14.已知f (x )=sin (ω>0),f ()=f (),且f (x )在区间上有最小值,无最大值,则ω=.【考点】由y=Asin (ωx+φ)的部分图象确定其解析式.【分析】根据f ()=f (),且f (x )在区间上有最小值,无最大值,确定最小值时的x 值,然后确定ω的表达式,进而推出ω的值. 【解答】解:如图所示,∵f(x )=sin ,且f ()=f (),又f (x )在区间内只有最小值、无最大值,∴f(x )在处取得最小值.∴ω+=2k π﹣(k ∈Z ).∴ω=8k ﹣(k ∈Z ).∵ω>0,∴当k=1时,ω=8﹣=;当k=2时,ω=16﹣=,此时在区间内已存在最大值.故ω=.故答案为:15.已知函数f(x)满足f(x﹣1)=﹣f(﹣x+1),且当x≤0时,f(x)=x3,若对任意的x∈,不等式f(x+t)≥2f(x)恒成立,则实数t的取值范围是[,+∞).【考点】函数恒成立问题;抽象函数及其应用.【分析】根据条件确定函数是奇函数,求出函数f(x)的表达式,并判断函数的单调性,利用函数的单调性将不等式恒成立进行转化,即可求出t的最大值.【解答】解:由f(x﹣1)=﹣f(﹣x+1),得f(x0)=﹣f(﹣x﹣1+1)=﹣f(x),即函数f(x)是奇函数,若x>0,则﹣x<0,则f(﹣x)=﹣x3=﹣f(x),即f(x)=x3,(x>0),综上f(x)=x3,则不等式f(x+t)≥2f(x)等价为不等式f(x+t)≥f(x),∵f(x)=x3,为增函数,∴不等式等价为x+t≥x在x∈恒成立,即:t≥(﹣1)x,在x∈恒成立,即t≥(﹣1)(t+2),即(2﹣)t≥2(﹣1),则t≥=,故实数t的取值范围[,+∞),故答案为:[,+∞)三、解答题(每小题8分,共50分)16.已知tanα=3.(1)求tan(α+)的值;(2)求的值.【考点】同角三角函数基本关系的运用.【分析】(1)由条件利用两角和的正切公式求得所给式子的值.(2)由条件利用同角三角函数的基本关系、二倍角的余弦公式求得所给式子的值.【解答】解:(1)∵tanα=3,∴tan(α+)===﹣2(2)∵tanα=3,∴====.17.已知函数f(x)对任意的a,b∈R,都有f(a+b)=f(a)+f(b)﹣1,且当x>0时,f (x)>1(1)判断并证明f(x)的单调性;(2)若f(4)=3,解不等式f(3m2﹣m﹣2)<2.【考点】抽象函数及其应用.【分析】(1)利用特殊值方法求出f(0)=1,和换元思想令a=x,b=﹣x,得出f(﹣x)=2﹣f(x),利用定义法判定函数的单调性;(2)根据定义得出f(2)=2,根据函数的单调性求解即可.【解答】解:f(a+b)=f(a)+f(b)﹣1,令a=b=0,∴f(0)=f(0)+f(0)﹣1,∴f(0)=1,令a=x,b=﹣x,∴f(0)=f(x)+f(﹣x)﹣1,∴f(﹣x)=2﹣f(x),令x1<x2,则x2﹣x1>0,∴f(x2﹣x1)=f(x2)+f(﹣x1)﹣1=f(x2)+2﹣f(x1)﹣1>1,∴f(x2)>f(x1),故函数在R上单调递增;(2)f(4)=2f(2)﹣1=3,∴f(2)=2,∴f(3m2﹣m﹣2)<f(2),∴3m2﹣m﹣2<2,∴﹣1<m<.18.函数f(x)=6cos2+sinωx﹣3(ω>0)在一个周期内的图象如图所示,A 为图象的最高点,B、C为图象与x轴的交点,且△ABC为正三角形.(1)求ω的值及函数f(x)的值域;(2)若f(x0)=,且x0∈(﹣,),求f(x0+1)的值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)变形可得f(x)=2sin(ωx+),由又由三角形的知识和周期公式可得ω=,由振幅的意义可得值域;(2)由已知和(1)的解析式可得sin(x0+)=,进而由角的范围和同角三角函数基本关系可得cos(x0+)=,代入f(x0+1)=2sin(x0++)=2×计算可得.【解答】解:(1)由已知得f(x)=6cos2+sinωx﹣3=3cosωx+sinωx=2sin(ωx+)又△ABC为正三角形,且高为2,可得BC=4.∴函数f(x)的最小正周期为8,即=8,解得ω=,∴f(x)=2sin(x+),∴函数f(x)的值域为:;(2)∵f(x0)=,∴2sin(x0+)=,故sin(x0+)=,∵x0∈(﹣,),∴x0+∈(﹣,),∴cos(x0+)==∴f(x0+1)=2sin(x0++)=2× =19.已知奇函数f(x)在(﹣∞,0)∪(0,+∞)上有定义,在(0,+∞)上是增函数,f (1)=0,又知函数g(θ)=sin2θ+mcosθ﹣2m,,集合M={m|恒有g(θ)<0},N={m|恒有f(g(θ))<0},求M∩N.【考点】奇函数;交集及其运算;函数单调性的性质.【分析】利用奇函数在对称区间的单调性相同得到f(x)在(﹣∞,0)上也是增函数,f(﹣1)=0,将集合N中的0用f(﹣1)代替,利用f(x)的单调性将f脱去,利用三角函数的平方关系将正弦用余弦表示,通过换元转化为二次不等式恒成立,通过转化为求二次函数的最值,通过对对称轴的讨论求出最值.【解答】解:∵奇函数f(x)在(0,+∞)上是增函数,∴f(x)在(﹣∞,0)上也是增函数,又由f(1)=0得f(﹣1)=﹣f(1)=0∴满足的条件是即,即sin2θ+mcosθ﹣2m<﹣1,也即﹣cos2θ+mcosθ﹣2m+2<0.令t=cosθ,则t∈,又设δ(t)=﹣t2+mt﹣2m+2,0≤t≤1要使δ(t)<0,必须使δ(t)在内的最大值小于零1°当<0即m<0时,δ(t)max=δ(0)=﹣2m+2,解不等式组知m∈∅2°当0≤≤1即0≤m≤2时,δ(t)max=,由<0,解得,故有当>1即m>2时,δ(t)max=﹣m+1,解不等式组得m>2综上:20.已知a,b是实数,函数f(x)=x|x﹣a|+b.(1)当a=2时,求函数f(x)的单调区间;(2)当a>0时,求函数f(x)在区间上的最大值;(3)若存在a∈,使得函数f(x)在上恒有三个零点,求b的取值范围.【考点】分段函数的应用;函数的最值及其几何意义;函数零点的判定定理.【分析】(1)当a=2时,作出函数f(x)的表达式,利用数形结合即可求函数f(x)的单调区间;(2)当a>0时,先求出f(1)=f(2),然后利用数形结合即可函数f(x)在区间上的最大值;(3)利用参数分离法将条件进行转化,利用数形结合即可求b的取值范围.【解答】解:(1)当a=2时,f(x)=x|x﹣2|+b=,由二次函数的单调性知,f(x)在(﹣∞,1]上单调递增,在(1,2)上单调递减,在,使得函数f(x)在上恒有三个零点,则存在a∈,使得b=﹣x|x﹣a|有三个不同的实根;令g(x)=﹣x|x﹣a|=,(ⅰ)当a=0时,g(x)在上单调递减,故b无解;(ⅱ)当﹣3≤a<0时,g(x)在(﹣∞,a)上单调递减,在上单调递增,在(,+∞)上单调递减,∵g(﹣4)=4|4+a|=16+4a,g(a)=0,g()=,g(5)=5a﹣25,∴g(﹣4)﹣g()=>0,g(a)﹣g(5)=25﹣5a>0,∴0<b<,∴0<b<.2016年4月21日。