二元一次方程组的应用4

合集下载

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4

初中数学综合复习二元一次方程(组)及应用部分4一、选择题1. 若方程mx +ny =6的两个解是11x y =⎧⎨=⎩,⎩⎨⎧-==12y x ,则m ,n 的值为( )A .4,2B .2,4C .-4,-2D .-2,-4 【答案】A.2. “六.一”儿童节前夕,某超市用3360元购进A 、B 两种童装共120套,其中A 型童装每套24元,B 型童装每套36元.若设购买A 型童装x 套,B 型童装y 套,依题意列方程组正确的是( ) A .⎩⎨⎧=+=+33602436120y x y x B .⎩⎨⎧=+=+33603624120y x y xC .⎩⎨⎧=+=+33601202436y x y x D .⎩⎨⎧=+=+33601203624y x y x 【答案】B3. 一家特色煎饼店提供厚度相同、直径不同的两种煎饼,甲种煎饼直径20厘米卖价10元,乙种煎饼直径30厘米卖价15元,请问:买哪种煎饼划算? ( )A. 甲B. 乙C. 一样D.无法确定 【答案】B .4. 若二元一次联立方程式⎩⎪⎨⎪⎧5x -y =5,y =15x 的解为x =a ,y =b ,则a +b 之值为何?( )A .54B .7513C .3125D .2925分析:首先解方程组求得x 、y 的值,即可得到a 、b 的值,进而求得a +b 的值. 解:解方程组⎩⎪⎨⎪⎧5x -y =5,y =15x , 得:⎩⎨⎧x =2524,y =524.则a =2524,b =524,则a +b =3024=54.故选A5. 方程组125x y x y +=⎧⎨-=⎩的解为A. 12x y =-⎧⎨=⎩ B. 23x y =-⎧⎨=⎩ C. 21x y =⎧⎨=⎩ D. 21x y =⎧⎨=-⎩【答案】D 6.已知12x y =-⎧⎨=⎩是二元一次方程组321x y mnx y +=⎧⎨-=⎩的解,则m n -的值是A .1B .2C .3D .4【答案】D7.方程5x+2y=-9与下列方程构成的方程组的解为2,12x y =-⎧⎪⎨=⎪⎩的解是( )(A )x+2y=1 (B )3x+2y=-8(C )5x+4y=-3 (D )3x-4y=-8 【答案】D 。

4 应用二元一次方程组——增收节支 演示文稿

4 应用二元一次方程组——增收节支 演示文稿

二、探索活动
分析 关键:找出等量关系.
每餐甲原料中含蛋白 质量=0.5×每餐甲原 料的质量
每餐乙原料中含蛋 白质量=0.7×每餐 乙原料的质量
每餐甲原料中含蛋白质量+每餐乙原料中含蛋白质量=35, 每餐甲原料中含铁质量+每餐乙原料中含铁质量=40.
每餐甲原料中含 铁质量 =1×每餐 甲原料的质量
二、探索活动:
三、解决问题
去 年
寄宿学生 x 走读学生 y 学生总数 3100
3100 × 今 (1+6%) (1-2%) x y 年 (1+4.4%)
x y 3100, (1 6%) x (1 2%) y 3100 (1 4.4%).
四、开放活动
x y 3100, (1 6%) x (1 2%) y 3100 (1 4.4%).
相等关系中的数量关系真复杂, 设每餐需要甲、乙两种原料各 x,y 克,则有下表 再画个表格来表示它们吧! 甲原料x 乙原料y 所配制的营养 (题目中可分析蛋白质含量, 铁的含量;甲、乙两种原料和 克 克 品 病人配置的营养品,画个2 其中含蛋白质 × 0.5 3的表格来分析看) x单位 0.7y单位 35单位
六、学习反思
1.在很多实际问题中,都存在着一些等量关 系,因此我们往往可以借助列方程或方程组 的方法来处理这些问题.
2.这种处理问题的过程可以进一步概括为:
分析 问题 抽象 方程(组) 检验 求解 解答
3.要注意的是,处理实际问题的方法是多种 多样的,图表分析是一种直观简洁的方法, 应根据具体问题灵活选用.
1.图表分析有利于理清题中的未知量,已知量以及等量 .
关系,条理清楚
2
学校去年有学生3100名,今年比去年增 加4.4%,其中寄宿学生增加了6%,走读学生减少 了2%.问该校去年有寄宿学生与走读学生各多少 名?

苏科版数学七年级下册第十章《二元一次方程组》实际应用培优专练习(四)(附答案)

苏科版数学七年级下册第十章《二元一次方程组》实际应用培优专练习(四)(附答案)

2020-2021学年七年级下册第十章《二元一次方程组》实际应用培优专练习(四)1.为响应国家节能减排的号召,鼓励居民节约用电,各省市先后出台了“阶梯价格”制度,如表中是我市的电价标准(每月).(1)已知小明家5月份用电252度,缴纳电费158.4元,6月份用电340度,缴纳电费220元,请你根据以上数据,求出表格中的a,b的值.(2)7月份开始用电增多,小明家缴纳电费285.5元,求小明家7月份的用电量.阶梯电量x(单位:度)电费价格一档0<x≤180 a元/度二档180<x≤350 b元/度三档x>350 0.9元/度2.我区某中学积极响应国家号召,落实垃圾“分类回收,科学处理”的政策,准备购买A、B两种型号的垃圾分类回收箱共20只,放在校园各个合适位置,以方便师生进行垃圾分类投放.若购买A型14只,B型6只,学校共支付费用4240元;若购买A型8只,B 型12只,学校共支付费用4480元.求A型、B型垃圾分类回收箱的单价.3.节约用水和合理开发利用水资源是每个公民应尽的责任和义务,为了加强公民的节水意识,合理利用水资源,各地采用价格调控等手段引导市民节约用水.某城市实行阶梯水价,月用水量在6吨以内按正常收费,超出部分则收较高水费,该市某户居民今年2月份用水9吨,交水费27元;3月份用水11吨,交水费37元,请回答下列问题.(1)每月在6吨以内的水费每吨多少元?每月超出6吨部分的水费每吨多少元?(2)某户居民4月份用水x吨,请用含有x的代数式表示该户居民4月份应交的水费.4.杭州某公司准备安装完成5700辆如图所示款共享单车投入市场.由于抽调不出足够熟练工人,公司准备招聘一批新工人.生产开始后发现:1名熟练工人和2名新工人每天共安装28辆共享单车;2名熟练工人每天装的共享单车数与3名新工人每天安装的共享单车数一样多.(1)求每名熟练工人和新工人每天分别可以安装多少辆共享单车?(2)若公司原有熟练工a人,现招聘n名新工人(a>n),使得最后能刚好一个月(30天)完成安装任务,已知工人们安装的共享单车中不能正常投入运营的占5%,求n的值.5.为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?6.某商场正在热销2008年北京奥运会吉祥物“福娃”玩具和徽章两种奥运商品,5个福娃2枚徽章145元,10个福娃3枚徽章280元(5个福娃为1套),则:(1)一套“福娃”玩具和一枚徽章的价格各是多少元?(2)买5套“福娃”玩具和10枚徽章共需要多少元?7.某校组织“大手拉小手,义卖献爱心”活动,计划购买黑白两种颜色的文化衫进行手绘设计后出售,并将所获利润全部捐给山区困难孩子.已知该学校从批发市场花4800元购买了黑白两种颜色的文化衫200件,每件文化衫的批发价及手绘后的零售价如表:批发价(元)零售价(元)黑色文化衫25 45白色文化衫20 35 (1)学校购进黑、白文化衫各几件?(2)通过手绘设计后全部售出,求该校这次义卖活动所获利润.8.某商店决定购进A、B两种纪念品出售,若购进A种纪念品10件,B种纪念品5件,需要215元;若购进A种纪念品5件,B种纪念品10件,需要205元.(1)求A、B两种纪念品的购进单价;(2)已知商店购进两种纪念品(A、B都要有)共花费750元,那么该商店购进这A、B两种纪念品有几种可行的方案,并写出具体的购买方案.9.某商场出售A、B两种型号的自行车,已知购买1辆A型号自行车比1辆B型号自行车少20元,购买2辆A型号自行车与3辆B型号自行车共需560元,求A、B两种型号自行车的购买价各是多少元?10.某化肥厂第一次运输360吨化肥,装载了6节火车车厢和15辆汽车;第二次运输440吨化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?参考答案1.解:(1)依题意得:,解得:.答:a的值为0.6,b的值为0.7.(2)若一个月用电量为350度,电费为180×0.6+(350﹣180)×0.7=227(元),∵285.5>227,∴小明家7月份用电量超过350度.设小明家7月份用电量为x度,依题意得:180×0.6+(350﹣180)×0.7+(x﹣350)×0.9=285.5,解得:x=415.答:小明家7月份的用电量为415度.2.解:设A型垃圾分类回收箱的单价为x元/只,B型垃圾分类回收箱的单价为y元/只,依题意,得:,解得:,答:A型垃圾分类回收箱的单价为200元/只;B型垃圾分类回收箱的单价为240元/只.3.解:(1)设该市居民用水基本价格为a元/吨,超过6吨部分的价格为b元/吨,根据题意,得,解这个方程组,得.答:该市居民用水基本价格为2元/吨,超过6吨部分的价格为5元/吨.(2)①当x≤6时,该户居民4月份应交的水费为2x元.②当x>6时,该户居民4月份应交的水费为:2×6+5(x﹣6)=5x﹣18(元).综上所述,该户居民4月份应交的水费是2x元或(5x﹣18)元.4.解:(1)设每名熟练工人每天可以安装x辆共享单车,每名新工人每天可以安装y辆共享单车,根据题意得:,解得:.答:每名熟练工人每天可以安装12辆共享单车,每名新工人每天可以安装8辆共享单车.(2)根据题意得:30×(8n+12a)×(1﹣5%)=5700,整理得:n=25﹣a,∵n,a均为正整数,且n<a,∴,,.∴n的值为1或4或7.5.解:设每盒羊角春牌绿茶需要x元,每盒九孔牌藕粉需要y元,依题意,得:,解得:.答:每盒羊角春牌绿茶需要120元,每盒九孔牌藕粉需要60元.6.解:(1)设一套“福娃”玩具的价格为x元,一枚徽章的价格为y元,依题意,得:,解得:.答:一套“福娃”玩具的价格为125元,一枚徽章的价格为10元.(2)125×5+10×10=725(元).答:买5套“福娃”玩具和10枚徽章共需要725元.7.解:(1)设学校购进黑文化衫x件,白文化衫y件,依题意,得:,解得:.答:学校购进黑文化衫160件,白文化衫40件.(2)(45﹣25)×160+(35﹣20)×40=3800(元).答:该校这次义卖活动共获得3800元利润.8.解:(1)设A种纪念品的购进单价为x元,B种纪念品的购进单价为y元,依题意,得:,解得:.答:A种纪念品的购进单价为15元,B种纪念品的购进单价为13元.(2)设购进A种纪念品m件,B种纪念品n件,依题意,得:15m+13n=750,∴m=50﹣n.∵m,n均为正整数,∴n为15的倍数,∴或或,∴该商店共有3种进货方案,方案1:购进37件A种纪念品,15件B种纪念品;方案2:购进24件A种纪念品,30件B种纪念品;方案3:购进11件A种纪念品,45件B 种纪念品.9.解:设A型号自行车的购买价为x元,B型号自行车的购买价为y元,依题意,得:,解得:.答:A型号自行车的购买价为100元,B型号自行车的购买价为120元.10.解:设每节火车车厢平均装x吨化肥,每辆汽车平均装y吨化肥,依题意,得:,解得:.答:每节火车车厢平均装50吨化肥,每辆汽车平均装4吨化肥.。

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的12种应用题型归纳(可编辑修改word版)

二元一次方程组的 12 种应用题型归纳类型一:行程问题【例 1】甲、乙两人相距 36 千米,相向而行,如果甲比乙先走 2 小时,那么他们在乙出发2.5 小时后相遇;如果乙比甲先走 2 小时,那么他们在甲出发 3 小时后相遇,甲、乙两人每小时各走多少千米?解:设甲的速度为 x 千米/时,乙的速度为 y 千米/时。

(2.5 + 2)x + 2.5y = 36 3x + (3 + 2)y = 36 x = 6 y = 3.6答:甲的速度为 6 千米/时,乙的速度为 3.6 千米/时。

【例 2】两地相距 280 千米,一艘船在其间航行,顺流用 14 小时,逆流用 20 小时,求这艘船在静水中的速度和水流速度。

解:设这艘船在静水中的速度为 x 千米/时,水流速度为 y 千米/时。

14(x + y ) = 280 20(x ‒ y ) = 280 x = 17 y = 3答:这艘船在静水中的速度为 17 千米/时,水流速度为 3 千米/时。

类型二:工程问题【例】小明家准备装修一套新住房,若甲、乙两个装饰公司合作 6 周完成,需工钱 5.2 万元;若甲公司单独做 4 周后,剩下的由乙公司来做,还需 9 周完成,需工钱 4.8 万元。

若只选一个公司单独完成,从节约开支的角度考虑,小明家应选甲公司还是乙公司?请你说明理由。

{解得{ {解得{{ y = { b = 解:设甲公司每周的工作效率为 x ,乙公司每周的工作效率为 y 。

x = 1 6x + 6y = 1 4x + 9y = 110 1 解得 151 1 ∴1÷10=10(周) 1÷15=15(周)∴甲公司单独完成这项工程需 10 周,乙公司单独完成这项工程需 15 周。

设甲公司每周的工钱为 a 万元,乙公司每周的工钱为 b 万元。

a = 3 6a + 6b = 5.2 4a + 9b = 4.8 5 4 解得 15此时 10a=6(万元) 15b=4(万元) 6>4答:从节约开支的角度考虑,小明家应选择乙公司。

49 10.4二元一次方程组应用专练4

49   10.4二元一次方程组应用专练4

结果 用心做用成绩回报父母 姓名____________ ___考试时间__________ ____ 装订线内不要答题◆◆◆◆◆◆◆◆装◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆订◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆线◆◆◆◆◆◆◆◆◆◆◆◆◆2012-2013学年度七年级数学练习四十九 10.4 用方程组解决用题四 命题:朱保舟 审题:朱保舟 2013-5-7 1、打折前,买60件A 商品和30件B 商品用了1080元,买50件A 商品和10件B 商品用了840元,打折后,买50件A 商品和50件B 商品用了960元,比不打折少花多少钱? 2、甲、乙两人各有书若干本,如果甲从乙处拿来10本,那么甲拥有的书是乙所剩书的5倍;如果乙从甲处拿来10本,那么乙所有的书与甲所剩的书相等,问甲、乙两人原来各有几本书? 3、某旅社在黄金旅游期间为一旅游团体安排住宿,若每间宿舍住5人,则有4人住不下;若每间住6人,则有一间只住了4人,且空两间宿舍,求该团体有多少人和宿舍间数. 4、 有甲、乙两种债券,年利率分别是10%与12%,现有400元债券,一年后获利45元,问两种债券各有多少?5、李明与王云分别从A、B两地相向而行,若两人同时出发,则经过80分钟两人相遇;若李明出发60分钟后王云再出发,则经过40分钟两人相遇,问李明与王云单独走完AB 全程各需多少小时?6、在一次足球比赛中规定:胜一场得3分,平一场得1分,负一场得0分.某队在足球比赛的4场比赛中得6分,这个队胜了几场,平了几场,负了几场?7、东风农场的两块试验田,去年共产花生470kg.改用良种后,今年共产花生523kg,已知第一块田的产量比去年增产16%,第二块田的产量比去年增产10%,这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?8、某种口服液礼品盒有大盒、小盒两种包装,现在知道3大盒、4小盒共装了108瓶;2大盒、3小盒共装了76瓶,现在有一个人一共买了6大盒、6小盒,问他一共买了多少瓶?9、如图,8块相同的长方形地砖拼成一个长方形,每块长方形地砖的长和宽分别是多少?↑60cm↓10、张老师去文具店给美术小组的30名学生买铅笔和橡皮,到了商店后发现,若给全组每人都买2支铅笔和1块橡皮,则要按零售价计算,共需付款30元;若给全组每人都买3支铅笔和2块橡皮,则可按批发价,共需付款40.5元.已知铅笔每支批发价比零售价低0.05元,橡皮每块批发价比零售价低0.1元,求这家文具店每支铅笔和每块橡皮的批发价是多少?11、汽车在相距70km的甲、乙两地之间往返行驶,因为行程中有一坡度均匀的小山,该汽车从甲地到乙地需要2小时30分钟,而从乙地回到甲地需要2小时48分钟,已知汽车在平地每小时行30km,上坡路每小时行20km,下坡路每小时行40km,求从甲地到乙地的行程中,平路、上坡路、下坡路各是多少?12、某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金每辆220元,60座客车租金为每辆300元,试问:⑴这批学生人数是多少?原计划租用45座客车多少辆?⑵若租用同一种车,要使每位学生都有座位,怎样租用更合算?13、某市根据信息产业部调整“因特网”的资费要求,规定如下:上“因特网”的费用为电话费0.22元/3分钟。

虎林市四中七年级数学下册 第六章 二元一次方程组 6.3《二元一次方程组的应用》专项练习4 冀教版

虎林市四中七年级数学下册 第六章 二元一次方程组 6.3《二元一次方程组的应用》专项练习4 冀教版

二元一次方程组的应用1.一张方桌由一个桌面和四条桌腿组成,如果13米木料可制桌面50个或桌腿300条,现有53米木料,请你设计一下,用多少木料做桌面,用多少木料做桌腿,恰好配成方桌多少张?2.某县两个重点企业去年计划共完成利税720万元,结果甲企业完成了计划的115%,乙企业完成了计划的110%,两企业共完成利税812万元,去年两企业各超额完成利税多少万元?3.在byax=+2中,已知1=x时,2=y;2=x时,21=y,求代数式22baba+-的值.4.已知甲、乙两种商品的原单价之和为100元,因市场变化,甲商品降价10%,乙商品提价10%,调价后甲、乙两种商品的单价之和比原单价之和提高了2%,求甲、乙两种商品的原单价各是多少元?5.有两块金和铜的合金,一块含金95%,另一块含金80%,这两块合金与2克纯金一起熔炼后得到含金90.6%的新合金25克,计算原来两块合金的质量.参考答案1.33米木材做桌面,23米木材做桌腿,恰好配成方桌150张. 2.甲企业超额完成60万元,乙企业超额完成35.2万元. 3..377322=+-==b ab a b a ,,4.甲、乙两种商品的原单价分别是40元、60元. 5.含金95%的合金重15克,含金80%的合金重8克.6.2 立方根一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个2.下列等式成立的是()A.B.C.D.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1二.填空题(共3小题)4.已知=﹣3,则a=.5.的平方根是,﹣125的立方根是.6.若a2=9,b3=﹣8,则a﹣b=.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣278.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.11.按要求填空:(1)填表:a0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.12.已知是m+3的算术平方根是n ﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.人教新版七年级下学期《6.2 立方根》2020年同步练习卷参考答案与试题解析一.选择题(共3小题)1.有下列说法:(1)﹣3是的平方根;(2)7是(﹣7)2的算术平方根;(3)27的立方根是±3;(4)1的平方根是±1;(5)0没有算术平方根.其中正确的有()A.1个B.2个C.3个D.4个【分析】根据平方根与立方根的定义即可求出答案.【解答】解:(1)﹣3是的平方根,(1)正确;(2)7是(﹣7)2的算术平方根,(2)正确;(3)27的立方根是3,(3)错误;(4)1的平方根是±1,(4)正确;(5)0的算术平方根是0,(5)错误;故选:C.【点评】本题考查平方根与立方根,解题的关键是正确理解平方根与立方根,本题属于基础题型.2.下列等式成立的是()A.B.C.D.【分析】根据立方根的含义和求法,逐项判断即可.【解答】解:∵=﹣1,∴选项A不符合题意;∵=≠,∴选项B不符合题意;∵=﹣3,∴选项C符合题意;∵﹣=﹣2,∴选项D不符合题意.故选:C.【点评】此题主要考查了立方根的性质和应用,要熟练掌握,解答此题的关键是要明确:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.立方根等于它本身的有()A.0,1 B.﹣1,0,1 C.0 D.1【分析】根据开立方的意义,可得答案.【解答】解:立方根等于它本身的有﹣1,0,1.故选:B.【点评】本题考查了立方根,解题的关键是明确正数的立方根是正数,0的立方根是0,负数的立方根是负数.二.填空题(共3小题)4.已知=﹣3,则a=﹣6 .【分析】根据立方根的意义,列出方程即可解决问题;【解答】解:由题意4a﹣3=﹣27∴a=﹣6,故答案为﹣6【点评】本题考查立方根的意义,解题的关键是学会用转化的思想思考问题,属于中考常考题型.5.的平方根是±3 ,﹣125的立方根是﹣5 .【分析】直接利用平方根、立方根、算术平方根的定义得出答案【解答】解:因为=9,所以的平方根是±3;﹣125的立方根是﹣5.故答案为:±3,﹣5.【点评】此题主要考查了立方根、平方根、算术平方根的定义,正确把握相关定义是解题关键.6.若a2=9,b3=﹣8,则a﹣b=﹣1或5 .【分析】根据平方根和立方根的定义即可求出a,b的值,进一步计算即可.【解答】解:因为a2=9,b3=﹣8,所以a=±3,b=﹣2,所以a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣(﹣2)﹣1.故答案为:﹣1或5.【点评】此题主要考查了平方根和立方根,能够根据平方根和立方根的定义正确得出a,b的值是解题关键.三.解答题(共6小题)7.求下列各式中的x(1)(x﹣1)2=9(2)8(x+1)3=﹣27【分析】(1)两边开方,即可得出两个一元一次方程,求出方程的解即可.(2)两边开立方,即可得出一个一元一次方程,求出方程的解即可.【解答】解:(1)开方得:x﹣1=±3,解得:x1=4,x2=﹣2.(2)两边开立方得:2(x﹣1)=﹣3,解得:x=﹣.【点评】本题主要考查了立方根、平方根.解题的关键是能根据平方根和立方根定义得出一元一次方程.8.已知﹣3是2a﹣1的平方根,3a+2b+4的立方根是3,求a+b的平方根.【分析】先根据平方根、立方根的定义得到关于a、b的二元一次方程组,解方程组即可求出a、b的值,进而得到a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.即a+b的平方根为±3.【点评】本题考查了平方根、立方根的定义.如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.如果一个数x的立方等于a,那么这个数x就叫做a的立方根.9.一个正方体的体积是125cm3,现将它锯成8块同样大小的正方体小木块.(1)求每个小正方体的棱长.(2)现有一张面积为36cm2长方形木板,已知长方形的长是宽的4倍,若把以上小正方体排放在这张长方形木板上,且只排放一层,最多可以放几个小正方体?请说明理由.【分析】(1)要先根据正方体的体积即可求出每个小正方体的棱长;(2)设长方形宽为x,可得4x2=36,再根据算术平方根的定义解答即可.【解答】解:((1),所以立方体棱长为cm;(2)最多可放4个.设长方形宽为x,可得:4x2=36,x2=9,∵x>0,∴x=3,,横排可放4个,竖排只能放1个,4×1=4个.所以最多可放4个.【点评】此题主要考查了实数的运算,解答此题的关键是把正方形进行分割,可以自己动手试一试.10.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.【分析】(1)根据被开方数是非负数,可得x的值,根据开平方,可得答案;(2)根据平方根的意义、立方根的意义,可得答案.【解答】解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.【点评】本题考查了二次根式有意义的条件,用被开方数是非负数得出不等式组是解(1)题关键;利用平方根的意义、立方根的意义是解(2)的关键.11.按要求填空:(1)填表:a0.0004 0.04 4 400(2)根据你发现规律填空:已知:=2.638,则=26.38 ,=0.02638 ;已知:=0.06164,=61.64,则x=3800 .【分析】(1)分别用计算器将0.0004、0.04、4、400开方即可得出答案.(2)将720化为7.2××10﹣4×10﹣3可得出第二空的答案.【解答】解:(1)=0.02,=0.2,=2,=20;(2)==2.638×10=26.38,==2.638×10﹣2=0.02638;∵=0.06164,=61.64,61.64=0.06164×10﹣3∴x=3800.故答案为:0.02、0.2、2、20;26.38、0.02638;3800.【点评】此题考查了计算器数的开方,属于基础题,解答本题的关键是熟练计算机的运用,难度一般.12.已知是m+3的算术平方根是n ﹣2的立方根,试求:(1)m和n的值;(2)A﹣B的值.【分析】根据算术平方根和立方根的定义得出方程组,求出m、n,再求出A、B,即可得出答案.【解答】解:(1)∵A=是m+3的算术平方根,B=是n﹣2的立方根,∴m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,(2)∵m=6,n=3,∴A==3,B==1,∴A﹣B=3﹣1=2.【点评】本题考查了算术平方根和立方根的定义,能根据算术平方根和立方根的定义求出m、n的值是解此题的关键.6.1 平方根一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2 2.|﹣9|的平方根等于()A.±3 B.3 C.±D.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5 4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81 5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为.6.(﹣2)2的平方根是.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3 10.化简的结果是()A.﹣4 B.4 C.±4 D.2 11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3 12.的算术平方根是()A.±13 B.13 C.﹣13 D.13.若=1,则﹣(2x﹣3)=.14.若5x﹣19的算术平方根是4,求3x+9的平方根.15.的算术平方根是()A.B.﹣C.D.±16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣17.的算术平方根是()A.2 B.4 C.±2 D.±418.请你观察,思考下列计算过程:,由此猜想=.19.已知=1.8,若=180,则a=.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是.人教新版七年级下学期《6.1 平方根》2020年同步练习卷参考答案与试题解析一.平方根(共8小题)1.的平方根等于()A.2 B.﹣4 C.±4 D.±2【分析】原式利用算术平方根,平方根定义计算即可得到结果.【解答】解:=4,4的平方根是±2,故选:D.【点评】此题考查了平方根,熟练掌握平方根的定义是解本题的关键.2.|﹣9|的平方根等于()A.±3 B.3 C.±D.【分析】根据平方根的定义解答即可.【解答】解:|﹣9|的平方根等于±3,故选:A.【点评】此题考查平方根的问题,关键是根据一个正数的平方根有两个.3.若a2=4,b2=9,且ab<0,则a﹣b的值为()A.﹣2 B.±5 C.5 D.﹣5【分析】利用平方根的定义得出a,b的值,进而利用ab的符号得出a,b异号,即可得出a﹣b的值.【解答】解:∵a2=4,b2=9,∴a=±2,b=±3,∵ab<0,∴a=2,则b=﹣3,a=﹣2,b=3,则a﹣b的值为:2﹣(﹣3)=5或﹣2﹣3=﹣5.故选:B.【点评】此题主要考查了平方根的定义以及有理数的乘法等知识,得出a,b的值是解题关键.4.9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.【点评】本题主要考查的是平方根的定义,掌握平方根的定义是解题的关键.5.一个正数a的平方根分别是2m﹣1和﹣3m+,则这个正数a为 4 .【分析】直接利用平方根的定义得出2m﹣1+(﹣3m+)=0,进而求出m的值,即可得出答案.【解答】解:根据题意,得:2m﹣1+(﹣3m+)=0,解得:m=,∴正数a=(2×﹣1)2=4,故答案为:4.【点评】此题主要考查了平方根,正确把握平方根的定义是解题关键.6.(﹣2)2的平方根是±2 .【分析】先求出(﹣2)2的值,然后开方运算即可得出答案.【解答】解:(﹣2)2=4,它的平方根为:±2.故答案为:±2.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.7.若一正数a的两个平方根分别是2m﹣3和5﹣m,求a的值.【分析】利用正数的两平方根和为0,进而求出m的值,即可得出答案.【解答】解:∵一正数a的两个平方根分别是2m﹣3和5﹣m,∴2m﹣3+5﹣m=0,解得:m=﹣2,则2m﹣3=﹣7,解得a=49.【点评】此题主要考查了平方根的定义,得出m的值是解题关键.8.已知2x﹣y的平方根为±3,﹣4是3x+y的平方根,求x﹣y的平方根.【分析】根据题意可求出2x﹣y及3x+y的值,从而可得出x﹣y的值,继而可求出x﹣y的平方根.【解答】解:由题意得:2x﹣y=9,3x+y=16,解得:x=5,y=1,∴x﹣y=4,∴x﹣y的平方根为±=±2.【点评】本题主要考查了平方根的知识,难度不大,解题的关键是求x、y的值.二.算术平方根(共12小题)9.实数的平方根是()A.±3 B.±C.﹣3 D.3【分析】先将原数化简,然后根据平方根的性质即可求出答案.【解答】解:∵=3,∴3的平方根是±,故选:B.【点评】本题考查平方根的概念,解题的关键是将原数进行化简,属于基础题型.10.化简的结果是()A.﹣4 B.4 C.±4 D.2【分析】根据算术平方根的含义和求法,求出16的算术平方根是多少即可.【解答】解:==4.故选:B.【点评】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.11.(﹣3)2的算术平方根是()A.9 B.3 C.±3 D.﹣3【分析】直接化简数据,再利用算术平方根的定义得出答案.【解答】解:(﹣3)2=9,则9算术平方根是:3.故选:B.【点评】此题主要考查了算术平方根,正确掌握算术平方根的定义是解题关键.12.的算术平方根是()A.±13 B.13 C.﹣13 D.【分析】本身是一个算术平方根的运算,表示13,求的算术平方根即为求13的算术平方根.【解答】解:∵=13∴的算术平方根即为13的算术平方根结果为故选:D.【点评】本题考查的是算术平方根的运算,关键是要看清本题中涉及两次算术平方根的运算.13.若=1,则﹣(2x﹣3)= 3 .【分析】直接利用算术平方根的定义得出x的值,进而得出答案.【解答】解:∵=1,∴x+1=1,解得:x=0,则﹣(2x﹣3)=3.故答案为:3.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.14.若5x﹣19的算术平方根是4,求3x+9的平方根.【分析】由题意得4的平方是16,那么5x﹣19=16,即可求得x,进而求得3x+9的平方根.【解答】解:∵5x﹣19的算术平方根是4∴5x﹣19=16∴x=7∴3x+9=30,其平方根为±.【点评】此题主要考查了算术平方根、平方根的定义,注意:被开方数应等于它的算术平方根的平方.一个正数的平方根有2个.15.的算术平方根是()A.B.﹣C.D.±【分析】直接利用算术平方根的定义得出答案.【解答】解:=的算术平方根是:.故选:C.【点评】此题主要考查了算术平方根,正确把握定义是解题关键.16.有一列数如下排列﹣,﹣,,﹣,﹣,…,则第2015个数是()A.B.﹣C.D.﹣【分析】观察所给数字可知:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是=;第四个数字是﹣=﹣;继而即可总结规律,求出第2015个数.【解答】解:观察可以发现:第一个数字是﹣=﹣;第二个数字是﹣=﹣;第三个数字是==;第四个数字是﹣=﹣;…;可得第2015个数即是﹣,故选:D.【点评】本题主要考查了数字变化,算式平方根的性质,数列规律问题,找出一般规律是解题的关键.17.的算术平方根是()A.2 B.4 C.±2 D.±4【分析】利用算术平方根定义计算即可得到结果.【解答】解:=4,4的算术平方根是2,故选:A.【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.18.请你观察,思考下列计算过程:,由此猜想=111 111 111 .【分析】【解答】解:∵,∴=111 111 111.故答案为:111 111 111.【点评】本题考查了信息获取能力,先利用已知的计算,认真观察是解决此类问题的关键.19.已知=1.8,若=180,则a=32400 .【分析】根据被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位求解可得.【解答】解:∵=1.8,∴=180,则a=32400,故答案为:32400.【点评】本题主要考查算术平方根,解题的关键是掌握被开方数的小数点每向左(或向右)移动2位,算术平方根的小数点先左(或向右)移动1位.20.将一组数,2,,2,,…,2按图中的方法排列:若3的位置记为(2,3),2的位置记为(3,2),则这组数中最大有理数的位置记为(17,2).【分析】根据规律发现,被开方数是从2开始的偶数列,最后一个数的被开方数是204,所以最大的有理数是被开方数是196的数,然后求出196在这列数的序号,又6个数一组,求出是第几组第几个数,即可确定它的位置.【解答】解:∵2=,∴这列数中最大的数是=14,设196是这列数中的第n个数,则2n=196,解得n=98,观察发现,每6个数一行,即6个数一循环,∴98÷6=16…2,∴是第17组的第2个数.最大的有理数n的位置记为(17,2).故答案为:(17,2).【点评】本题利用算术平方根考查了数字的规律变化问题,求出最大的有理数的序号,并6个数作为一个循环组是解题的关键.三.非负数的性质:算术平方根(共1小题)21.代数式+2的最小值是 2 .【分析】根据算术平方根恒大于等于0,即可确定出最小值.【解答】解:∵≥0,∴+2≥2,即的最小值是2.故答案为:2.【点评】此题考查了非负数的性质.熟练掌握算术平方根的非负数性质是解本题的关键.。

苏科版数学七年级下册第10章《二元一次方程组》实际应用常考题专练(四)(附答案)

苏科版数学七年级下册第10章《二元一次方程组》实际应用常考题专练(四)(附答案)

七年级下册第10章《二元一次方程组》实际应用常考题专练(四)1.《九章算术》是我国古代数学的经典著作,书中有一个问题:今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金银一枚各重几何?意思是:今有黄金9枚(每枚黄金重量相同),白银11枚(每枚白银重量相同).黄金与白银的重量恰好相等,互相交换1枚后,黄金部分减轻了13两,问每枚黄金、白银各重多少两?2.某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所示的竖式与横式两种长方体形状的无盖纸盒,现有正方形纸板300张,长方形纸板700张,若这些纸板恰好用完,则可做横式、竖式两种纸盒各多少个?3.某县政府计划拨款34000元为福利院购买彩电和冰箱,已知商场彩电标价为2000元/台,冰箱标价为1800元/台,如按标价购买两种家电,恰好将拨款全部用完.(1)问原计划购买的彩电和冰箱各多少台?(2)购买的时候恰逢商场正在进行促销活动,全场家电均降价15%进行销售,若在不增加县政府实际负担的情况下,能否比原计划多购买3台冰箱?请通过计算回答.4.今年学校举行足球联赛,在第一阶段的比赛中,每队都进行了8场比赛,小虎足球队胜了4场,平2场,负2场,得14分;小豹足球队胜了6场,平1场,负1场,得19分.已知,记分规则中,负1场得0分.(1)求胜1场、平1场各得多少分?(2)足球联赛结束后,小狮足球队共参加了17场比赛,得了24分,且踢平场数是所胜场数的正整数倍,请你想一想,小狮足球队所负场数有种可能性.5.(列二元一次方程组解应用题)某公司共有3个一样规模的大餐厅和2个一样规模的小餐厅,经过测试同时开放2个大餐厅和1个小餐厅,可供300名员工就餐;同时开放1个大餐厅,1个小餐厅,可供170名员工就餐.(1)请问1个大餐厅、1个小餐厅分别可供多少名员工就餐.(2)如果3个大餐厅和2个小餐厅全部开放,那么能否供全体450名员工就餐?请说明理由.6.小志从甲、乙两超市分别购买了10瓶和6瓶cc饮料,共花费51元;小云从甲、乙两超市分别购买了8瓶和12瓶cc饮料,且小云在乙超市比在甲超市多花18元,在小志和小云购买cc饮料时,甲、乙两超市cc饮料价格不一样,若只考虑价格因素,到哪家超市购买这种cc饮料便宜?请说明理由.7.在疫情防控期间,某中学为保障广大师生生命健康安全购进一批免洗手消毒液和84消毒液.如果购买100瓶免洗手消毒液和150瓶84消毒液,共需花费1500元;如果购买120瓶免洗手消毒液和160瓶84消毒液,共需花费1720元.(1)每瓶免洗手消毒液和每瓶84消毒液的价格分别是多少元?(2)某药店出售免洗手消毒液,满150瓶免费赠送10瓶84消毒液.若学校从该药店购进免洗手消毒液和84消毒液共230瓶,恰好用去1700元,则学校购买免洗手消毒液多少瓶?8.新冠肺炎发生后,社会各界非常关心和支持,全国人民积极捐助,共克时艰.作为好客之乡的山东更是鼎力相助,除了医护用品以外,作为全国蔬菜第一大省,蔬菜更是一车车往湖北发送.其中兰陵向武汉无偿捐助新鲜蔬菜120吨运往重灾区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如表所示:(假设每辆车均满载)车型甲乙丙汽车运载量(吨/辆) 5 8 10汽车运费(元/辆)400 500 600 (1)全部蔬菜可用甲型车8辆,乙型车5辆,丙型车辆来运送.(2)若全部蔬菜都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(3)为了节省运费,该地打算用甲、乙、丙三种车型同时参与运送,已知它们的总辆数为16辆,你能分别求出三种车型的辆数吗?此时的运费又是多少元?9.某超市投入1380元资金购进甲、乙两种矿泉水共50箱,矿泉水的成本价和销售价如表所示:销售价(元/箱)类别/单价成本价(元/箱)甲24 36乙33 48(1)该超市购进甲、乙两种矿泉水各多少箱?(2)全部售完50箱矿泉水,该超市共获得利润多少元?10.在某体育用品商店,购买3根跳绳和6个毽子共用72元,购买5根跳绳和20个毽子共用160元.(1)跳绳、毽子的单价各是多少元?(2)该店在“五•四”青年节期间开展促销活动,所有商品按同样的折数打折销售.节日期间购买10根跳绳和10个毽子只需180元,该店的商品按原价的几折销售?参考答案1.解:设每枚黄金重x两,每枚白银重y两,由题意得:,解得:.即每枚黄金重71.5两,每枚白银重58.5两.2.解:设可做横式纸盒x个,可做竖式纸盒y个,依题意有,解得.故可做横式纸盒100个,可做竖式纸盒100个.3.解:(1)设原计划购买彩电x台,冰箱y台,根据题意得:2000x+1800y=34000,化简得:10x+9y=170.∵x,y均为正整数,∴x=8,y=10,答:原计划购买彩电8台,冰箱10台;(2)设比原计划多购买z台冰箱,依题意有1800×(1﹣15%)z=34000×15%,解得z=,∵>3,∴能比原计划多购买3台冰箱.答:能比原计划多购买3台冰箱.4.解:(1)设胜1场得x分,平1场得y分,由题意得,解得.答:胜1场得3分,平1场得1分;(2)设小狮足球队胜m场,平n场,负t场,依题意得:,∴n=24﹣3m,t=2m﹣7.∵n是m的正整数倍,t≥0及m为整数,∴m=4,n=12或m=6,n=6.∴小狮足球队所负场数有2种可能性.故答案为:2.5.解:(1)设1个大餐厅可供x名员工就餐,1个小餐厅可供y名员工就餐,依题意,得:,解得:.答:1个大餐厅可供130名员工就餐,1个小餐厅可供40名员工就餐.(2)130×3+40×2=470(人),∵470>450,∴如果3个大餐厅和2个小餐厅全部开放,能供全体450名员工就餐.6.解:设甲超市cc饮料每瓶的价格为x元,乙超市cc饮料每瓶的价格为y元,依题意,得:,解得:.∵3<3.5,∴到甲超市购买这种cc饮料便宜.7.解:(1)设每瓶免洗手消毒液的价格为x元,每瓶84消毒液的价格为y元,依题意,得:,解得:.答:每瓶免洗手消毒液的价格为9元,每瓶84消毒液的价格为4元.(2)设学校从该药店购买免洗手消毒液a瓶,则购买84消毒液(230﹣a)瓶.①当a<150时,9a+4(230﹣a)=1700,解得:a=156>150,∴a=156不符合题意,舍去;②当a≥150时,9a+4(230﹣a﹣10)=1700,解得:a=164.答:学校从该药店购买免洗手消毒液164瓶.8.解:(1)(120﹣5×8﹣8×5)÷10=4(辆).故答案为:4.(2)设需要x辆甲型车,y辆乙型车,依题意,得:,解得:.答:需要8辆甲型车,10辆乙型车.(3)设需要m辆甲型车,n辆乙型车,则需要(16﹣m﹣n)辆丙型车,依题意,得:5m+8n+10(16﹣m﹣n)=120,∴m=8﹣n.∵m,n,(16﹣m﹣n)均为正整数,∴,.当m=6,n=5时,16﹣m﹣n=5,此时总运费为400×6+500×5+600×5=7900(元);当m=4,n=10时,16﹣m﹣n=2,此时总运费为400×4+500×10+600×2=7800(元).∵为了节省运费,∴m=4,n=10,16﹣m﹣n=2.答:需要4辆甲型车、10辆乙型车、2辆丙型车,此时的运费是7800元.9.解:(1)设该超市购进甲种矿泉水x箱,乙种矿泉水y箱,依题意,得:,解得:.答:该超市购进甲种矿泉水30箱,乙种矿泉水20箱.(2)(36﹣24)×30+(48﹣33)×20=660(元).答:全部售完50箱矿泉水,该超市共获得利润660元.10.解:(1)设跳绳的单价为x元,毽子的单价为y元,依题意,得:,解得:.答:跳绳的单价为16元,毽子的单价为4元.(2)设该店的商品按原价的m折销售,依题意,得:(16×10+4×10)×=180,解得:m=9.答:该店的商品按原价的9折销售.。

生活中的二元一次方程组

生活中的二元一次方程组

生活中的二元一次方程组在我们的日常生活中,二元一次方程组的应用非常广泛。

以下是一些生活中的实例,它们都可以通过二元一次方程组来描述和解决。

1. 购物优惠购物优惠是我们在商场或者超市中经常遇到的情况。

比如,某个商场进行促销活动,购物满100元可享受8折优惠,同时购物满50元可享受9折优惠。

如果我们购买了两件商品,每件商品的价格都是80元,那么我们该如何计算总共需要支付多少钱呢?设每件商品的价格为x元,购买件数为n件。

我们可以建立以下方程组来描述这个问题:如果x<50,则总价为x×n;如果50<=x<100,则总价为0.9×x×n;如果x>=100,则总价为0.8×x×n。

2. 鸡兔同笼“鸡兔同笼”问题是一个经典的数学问题。

比如,一个笼子里有鸡和兔子,我们知道总共有35个头和94只脚。

那么,我们该如何找出鸡和兔子各有多少只呢?设鸡的数量为x只,兔子的数量为y只。

我们可以建立以下方程组来描述这个问题:x + y = 35 (因为总共有35个头)2x + 4y = 94 (因为鸡有2只脚,兔子有4只脚)3. 跑道问题跑道问题涉及到相对速度和相遇的问题。

比如,两个人在一个圆形跑道上跑步,一个人顺时针跑,另一个人逆时针跑。

如果两人的速度相同,那么他们会在何时何地相遇?设圆形跑道的周长为C米,两人的速度分别为v1和v2米/分钟。

我们可以建立以下方程组来描述这个问题:相遇时,两人的路程之和必须是跑道周长的整数倍,即:C = n × (v1 + v2) (其中n是正整数)同时,相遇的时间t必须是t = k / (v1 + v2) (其中k是正整数)。

4. 工程进度工程进度问题涉及到工作效率和工作量的问题。

比如,一个工程需要两个人合作完成,每个人单独完成这个工程所需的时间都是6天。

那么他们合作完成这个工程需要多少天?设一个人单独完成这个工程的工作效率为e1,另一个人单独完成这个工程的工作效率为e2。

2020-2021学年人教版七年级下册第八章二元一次方程组应用题专题训练4

2020-2021学年人教版七年级下册第八章二元一次方程组应用题专题训练4

二元一次方程组应用题专题训练(四)1、学校为奖励在家自主学习有突出表现的学生,决定购买笔记本和钢笔作为奖品.已知1本笔记本和4支钢笔共需100元,4本笔记本和6支钢笔共需190元.(1)分别求一本笔记本和一支钢笔的售价;(2)若学校准备购进这两种奖品共90份,并且笔记本的数量不多于钢笔数量的3倍,请设计出最省钱的购买方案,并说明理由.2、《算法统宗》是中国古代数学名著,书中有这样一道题:肆中听得语吟吟,薄酒名酵(音同“离”意思是味淡的酒)厚酒醇,好酒一瓶醉三客,薄酒三瓶醉一人,共饮瓶酒一十九,三十三客醉醺醺.试问高明能算士,几多醨酒几多醇?(1)你能用学过的方程知识解答上述问题吗?(2)按题中条件,若20人同时喝醉,此时能否饮酒40瓶?请写出解答过程.3、疫情期间,学校为了学生在班级将生活垃圾和废弃口罩分类丢弃,准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需270元,购买2个A型垃圾箱比购买3个B型垃圾箱少用80元.求每个A型垃圾箱和B型垃圾箱各多少元?学校购买A型垃圾桶8个,B型垃圾桶16个,共花费多少元?4、欣欣服装厂加工A、B两种款式的运动服共100件,加工A种运动服的成本为每件80元,加工B种运动服的成本为每件100元,加工两种运动服的成本共用去9200元.(1)A、B两种运动服各加工多少件?(2)A种运动服的标价为200元,B种运动服的标价为220元,若两种运动服均打八折出售,则该服装厂售完这100件运动服共盈利多少元?5、“直播带货,助农增收”.前不久,一场由央视携手部分直播平台,以“秦晋之好,晋陕尽美”为主题的合作直播,将我市的部分农产品推向网络,助农增收.已知购买2袋大同黄花、3袋阳高杏脯,共需130元;购买1袋大同黄花、2袋阳高杏脯,共需80元.(1)求每袋大同黄花和每袋阳高杏脯各多少元.(2)某公司根据实际情况,决定购买大同黄花和阳高杏脯共400袋,要求购买总费用不超过10000元,那么至少购买多少袋大同黄花?6、为了让学生能更加了解西安市的历史实验中学组织七年级师生共480人参观陕西历史博物馆,学校向租车公司租赁A、B两种车型接送师生往返,若租用A型车6辆,B型车3辆,则空余15个座位;若租用A型车4辆,B型车5辆,则15人没座位.(1)求A、B两种车型各有多少个座位?(2)若A型车日租金为400元,B型车日租金为350元,且租车公司最多能提供7辆A 型车,应怎样租车能使座位恰好坐满且租金最少,并求出最少租金(A、B型车都要租).7、在抗击新冠肺炎疫情期间,各省市积极组织医护人员支援武汉,某市组织医护人员统一乘车去武汉,若单独调配45座客车若辆,则有15人没有座位:若只调配30座客车,则用车数量将增加3辆,并空出15个座位.(1)该市有多少医护人员支援武汉?(2)若同时调配45座和30座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?8、一家商店进行装修,若请甲、乙两个装修队同时施工,8天可以完成,需付两队费用3520元,若先请甲队单独做6天,再请乙队单独做16天可以完成,需付费用4040元.(1)甲、乙两队工作一天,商店各应付多少钱?(2)若装修完,商店每天可盈利200元,则如何安排施工更有利于商店?请说明理由.9、某水果店5月份购进甲、乙两种水果共花费1720元,其中甲水果13元/千克,乙水果16元/千克;6月份,这两种水果的价格上调额为:甲种水果15元/千克,乙种水果20元/千克该店6月份购进这两种水果的数量与5月份都相同,却多支付货款280元.(1)求该店6月份购进甲、乙两种水果分别多少千克?(2)该店6月份甲种水果售价为20元/千克,乙种水果售价是26元/千克,在甲种水果出售55千克、乙种水果全部售完后,商店决定对甲水果打折处理,在售完全部水果后,获得的总利润为400元,问甲种水果打几折?10、目前,新型冠状病毒在我国虽可控可防,但不可松懈.某校欲购置规格分别为300ml和500ml的甲、乙两种免洗手消毒液若干瓶,已知购买2瓶甲和1瓶乙免洗手消毒液需要55元,购买3瓶甲和4瓶乙免洗手消毒液需要145元.(1)求甲、乙两种免洗手消毒液的单价.(2)为节约成本,该校购买散装免洗手消毒液进行分装,现需将9.6L的免洗手消毒液全部装入最大容量分别为300ml和500ml的两种空瓶中(每瓶均装满),若分装时平均每瓶需损耗20ml,请问如何分装能使总损耗最小,求出此时需要的两种空瓶的数量.11、某电器公司计划装运甲、乙两种家电到农村销售(规定每辆汽车按规定满载,且每辆汽车只能装同一种家电),已知每辆汽车可装运甲种家电20台,乙种家电30台.(1)若用8辆汽车装运甲、乙两种家电共190台到A地销售,问装运甲、乙两种家电的汽车各有多少辆?(2)如果每台甲种家电的利润是180元,每台乙种家电的利润是300元,那么该公司售完这190台家电后的总利润是多少?12、由于新冠肺炎病毒肆虐我国,市面上K95等防护型口罩出现热销,已知3个A型口罩和2个B型口罩共需55元;6个A型口罩和5个B型口罩共需130元.(1)求一个A型口罩和一个B型口罩的售价各是多少元.(2)小红打算用120元(全部用完)购买A型、B型两种口罩(要求两种型号的口罩均购买),正好赶上药店对口罩价格进行调整,其中A型口罩上涨60%.B型口罩按原价出售,则小红有多少种不同的购买方案,请设计出来.13、在元旦节来临之际,小明准备给好朋友赠送一些钢笔和笔记本作为元旦礼物,经调查发现,1支钢笔和2个笔记本要35元;3支钢笔和1个笔记本要55元.(1)求一支钢笔和一个笔记本分别要多少元?(2)小明购买了a支钢笔和b个笔记本,恰好用完80元钱若两种物品都要购买,请你帮他设计购买方案.14、有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨.(1)请问1辆大货车和1辆小货车一次可以分别运货多少吨?(2)目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?15、某校准备组织七年级400名学生参加夏令营,已知满员时,用3辆小客车和1辆大客车每次可运送学生105人;用一辆小客车和2辆大客车每次可运送学生110人.(1)1辆小客车和1辆大客车都坐满后一次可送多少名学生?(2)若学校计划租用小客车a辆,大客车b辆一次送完,且恰好每辆车都坐满.①请你设计出所有的租车方案.②若小客车每辆需租金200元,大客车每辆需租金380元,请选出最省钱的租车方案,并求出最少租金.。

八年级数学上册《第五章4 应用二元一次方程组——增收节支》讲解与例题

八年级数学上册《第五章4 应用二元一次方程组——增收节支》讲解与例题

《第五章4 应用二元一次方程组——增收节支》讲解与例题1.列方程组解答生活中的增收节支问题在生活中,咱们时刻都在与经济打交道,常常面临利润问题、利息问题等.解决这种问题,应熟记一些大体公式:(1)增加率问题: 增加率=增长量计划量×100%. 打算量×(1+增加率)=增加后的量; 打算量×(1-减少率)=减少后的量.(2)经济类问题:利息=本金×利率×期数;本息和=本金+利息=本金+本金×利率×期数;商品的利润=商品的售价-商品的进价;商品的利润率=商品的利润商品的进价×100%. 【例1】 某工厂去年的总产值比总支出多500万元.由于今年总产值比去年增加15%,总支出比去年节约10%,因此,今年总产值比总支出多950万元.今年的总产值和总支出各是多少万元?分析:可列下表(去年总产值x 万元,总支出y 万元):总产值 总支出 差 去年x y 500 今年 (1+15%)x (1-10%)y950 题中有两个相等关系:(1)去年的总产值-去年的总支出=500万元;(2)今年的总产值-今年的总支出=950万元.解:设去年的总产值是x 万元,去年的总支出是y 万元,由题意,得⎩⎪⎨⎪⎧x -y =500,1+15%x -1-10%y =950. 解得⎩⎪⎨⎪⎧x =2 000,y =1 500.因此(1+15%)x =2 300,(1-10%)y =1 350.因此今年的总产值是2 300万元,总支出是1 350万元.谈重点 分析表格中数字含义找等量关系先认真审题,找出问题中的已知量和未知量.再借助于表格分析具体问题中蕴涵的数量关系,问题中的相等关系就会清楚地浮现出来.2.列方程组解答行程问题、水路问题、工程问题在咱们的生活中,常常面临行程问题、水路问题、工程问题.解决这种问题,应熟记一些大体公式:(1)行程问题的大体数量关系:路程=速度×时刻.(2)水路问题的大体数量关系:顺水速度=静水速度+水流速度;逆水速度=静水速度-水流速度.(3)工程问题的大体数量关系:工作量=工作效率×工作时刻.【例2-1】 A 市至B 市航线长1 200 km ,一架飞机从A 市顺风向飞往B 市需2小时30分,从B 市逆风向飞往A 市需3小时20分.求飞机的速度与风速.分析:此题中明显的未知数有两个,即:飞机的速度与风速.除此之外,还有两个隐藏的未知数,即:顺风速度与逆风速度.因此咱们能够通过设直接未知数和间接未知数,列出二元一次方程组求解.解:设飞机速度为x km/h ,风速为y km/h ,依照路程=速度×时刻列出方程组:⎩⎪⎨⎪⎧ 212x +y =1 200,313x -y =1 200.解得⎩⎪⎨⎪⎧x =420,y =60. 因此飞机的速度为420 km/h ,风速为60 km/h.【例2-2】 某地为了尽快排除堰塞湖险情,决定在堵塞体表面开挖一条泄流槽,经计算需挖出土石方13.4万立方米,开挖2天后,为了加速施工进度,又增调了大量的人员和设备,天天挖的土石方比原先的2倍还多1万立方米,结果共用5天完成任务,比打算时刻大大提早.依照以上信息,求原打算天天挖土石方多少万立方米?增调人员和设备后天天挖土石方多少万立方米? 分析:抓住关键语句:开挖2天和增调人员后所干的3天里,一共挖出土石方13.4万立方米;天天挖的土石方比原先的2倍还多1万立方米来构建数学模型.解:设原打算天天挖土石方x 万立方米,增调人员和设备后天天挖y 万立方米,依据题意,可列出方程组:⎩⎪⎨⎪⎧y =2x +1,2x +5-2y =13.4. 解得⎩⎪⎨⎪⎧x =1.3,y =3.6.因此原打算天天挖土石方1.3万立方米,增调人员和设备后天天挖3.6万立方米.3.配套问题中的相等关系 在实际问题中,大伙儿常见到一些配套组合问题,如螺钉与螺母的配套,盒身与盒底的配套等.解决这种问题的方式是抓住配套关系,设出未知数,依照配套关系列出方程组,通过解方程组解决问题.产品配套是工厂生产中大体原那么之一,如何分派生产力,使生产出来的产品恰好配套成为主管生产人员常见的问题,解决配套问题的关键是利用配套本身所存在的相等关系.常见的题型有:(1)配套与人员分派问题.(2)配套与物质分派问题.析规律 配套问题配套问题的背景尽管不同,但解决问题的方式是一样的,需要抓住配套问题的关键语句进行配套.【例3】 某车间22名工人一辈子产螺钉和螺母,每人天天平均生产螺钉1 200个或螺母2 000个,一个螺钉要配两个螺母,为了使天天生产的产品恰好配套,应该分派多少名工人一辈子产螺钉,多少名工人一辈子产螺母?分析:此题的配套关系是:一个螺钉配两个螺母,即螺钉数∶螺母数=1∶2.解:设分派x 名工人一辈子产螺钉,y 名工人一辈子产螺母,那么一天生产的螺钉数为1 200x 个,生产的螺母数为2 000y 个. 依照题意,得 ⎩⎪⎨⎪⎧x +y =22,2×1 200x =2 000y . 整理得⎩⎪⎨⎪⎧x +y =22,6x =5y ,解得⎩⎪⎨⎪⎧x =10,y =12. 因此为了使天天生产的产品恰好配套,应安排10名工人一辈子产螺钉,12名工人一辈子产螺母.4.注意及时幸免一些常见的错误 二元一次方程组是反映现实世界数量之间相等关系的数学模型之一,其应用即能够将实际问题转化为数学模型,列出二元一次方程组,最终求得符合实际的解.而在具体求解时,很多同窗由于审题不清等问题,总会显现如此那样的错误,这就要求咱们认真地审题,及时地找出题目中的等量关系.若是两车相向而行,那么其相对速度为速度之和,若是两车同向而行,那么其相对速度为速度之差,这一点很多同窗是可不能明白得错的,问题是在相对移动的进程中,移动的距离应为两车的长度之和,很多同窗往往忽略这一点而造成错解.【例4】 一列快车长168 m ,一列慢车长184 m ,若是两车相向而行,从相碰到离开需4 s ,若是同向而行,从快车追及慢车到离开需16 s ,求两车的速度.分析:两车相向而行,其相对速度为两车的速度之和,两车同向而行,其相对速度为两车的速度之差,如此设快车速度为x m/s ,慢车速度为y m/s ,即可利用方程组求解.解:设快车速度为x m/s ,慢车速度为y m/s. 由题意,得⎩⎪⎨⎪⎧ 4x +y =168+184,16x -y =168+184, 即⎩⎪⎨⎪⎧4x +4y =352,16x -16y =352, 也即⎩⎪⎨⎪⎧x +y =88,x -y =22. 解得⎩⎪⎨⎪⎧ x =55,y =33.因此快车的速度为55 m/s ,慢车的速度为33 m/s.。

二元一次方程组的应用--4课时

二元一次方程组的应用--4课时

5. 工程问题 一般分为两类,一类是一般的工程问题,一类是工作总量为1 的工程问题。 工程问题中的三个量及其关系为:工作总量=工作效率×工作 时间 经常在题目中未给出工作总量时,设工作总量为单位1。 6. 行程问题 (1)行程问题中的三个基本量及其关系: 路程=速度×时间、 顺水速度=船速+水速、逆水速度=船速-水速。 (2)基本类型有 ① 相遇问题;② 追及问题;常见的还有:相背而行;行 船问题;环形跑道问题。 (3)解此类题的关键是抓住甲、乙两物体的时间关系或所走 的路程关系,一般情况下问题就能迎刃而解。并且还常常借助画 草图来分析,理解行程问题。
例5.为奖励在演讲比赛中获奖的同学,班主任派学习委员小明为 获奖同学买奖品,要求每人一件.小明到文具店看了商品后,决 定奖品在钢笔和笔记本中选择.如果买4个笔记本和2支钢笔,则 需86元;如果买3个笔记本和1支钢笔,则需57元.
(1)求购买每个笔记本和钢笔分别为多少元?
(2)售货员提示,买钢笔有优惠,具体方法是:如果买钢笔超 过10支,那么超出部分可以享受8折优惠,若买支钢笔需要花元,
2.星期天,小明和七名同学共8人去郊游,途中,他用20元钱去 买饮料,商店只有可乐和奶茶,已知可乐2元一杯,奶茶3元一 杯,如果20元钱刚好用完. (1)有几种购买方式?每种方式可乐和奶茶各多少杯? (2)每人至少一杯饮料且奶茶至少二杯时,有几种购买方式? 3.为了拉动内需,广东启动“家电下乡”活动。某家电公司销售 给农户的Ⅰ型冰箱和Ⅱ型冰箱在启动活动前一个月共售出960台, 启动活动后的第一个月销售给农户的Ⅰ型和Ⅱ型冰箱的销量分 别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售 出1228台。 (1)在启动活动前的一个月,销售给农户的Ⅰ型冰箱和Ⅱ型冰 箱分别为多少台? (2)若Ⅰ型冰箱每台价格是2298元,Ⅱ型冰箱每台价格是1999 元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13% 给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农 户的1228台Ⅰ型冰箱和Ⅱ型冰箱,政府共补贴了多少元(结果 保留2个有效数字)?

二元一次方程组的应用

二元一次方程组的应用

二元一次方程组的应用二元一次方程组是数学中常见的问题形式,可以通过解方程组来求解未知数的取值。

在实际生活和工作中,二元一次方程组有着广泛的应用。

本文将讨论二元一次方程组的一些常见应用场景。

一、消费问题在购物中,我们常常需要计算多个商品的总价。

假设商品A的价格为x元,商品B的价格为y元,购买A商品m件,B商品n件,总花费为p元。

此时可以列出如下二元一次方程组:mx + ny = p (1)m + n = t (2)其中,t为商品的总件数,p为总花费金额。

通过求解方程组,可以得到商品A和商品B的价格。

二、速度问题在物理学中,速度问题通常为二元一次方程组的典型应用。

设一个物体的速度恒定不变,物体在t秒内运动了s米,根据匀速运动的定义,可以得到如下方程组:vt - s = 0 (3)v' - v = 0 (4)其中,v为物体的速度,s为物体的位移,v'为物体的平均速度。

通过解方程组,可以求解物体的速度和位移。

三、投资问题在投资领域,经常需要计算不同投资项目的收益率。

假设我们有两个投资项目A和B,投资A的金额为x元,投资B的金额为y元,A项目的收益率为r1,B项目的收益率为r2,可以列出如下方程组:rx = r1x + r2y (5)x + y = t (6)其中,t为总投资金额。

通过求解方程组,可以得到投资项目A和B的收益率。

四、运动员的成绩在体育竞技中,运动员的成绩常常可以用二元一次方程组来表示。

假设运动员A和运动员B分别参加了两个项目,A在第一个项目中获得了x分,在第二个项目中获得了y分,B在第一个项目中获得了p分,在第二个项目中获得了q分。

根据成绩的计算方法,可以列出如下方程组:x + y = t (7)p + q = t (8)其中,t为满分。

通过解方程组,可以得到运动员A和运动员B在两个项目中的得分情况。

五、人员分配问题在人员分配和调度问题中,可以利用二元一次方程组来求解不同人数的分配。

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用

二元一次方程组及实际问题应用
二元一次方程组是由两个二元一次方程构成的方程组。

一个二元一次方程的一般形式为:
ax + by = c
其中,a、b、c为实数,且a与b不全为0。

一元一次方程组是指由两个这样的方程组成的方程组。

二元一次方程组及其求解在实际问题中有广泛的应用,例如:
1. 解决经济问题:经济学中常常使用二元一次方程组来描述供需关系、价格变化等。

通过求解方程组可以得到供求平衡点、市场均衡价格等。

2. 解决几何问题:几何学中常常需要求解含有两个未知数的方程组来求解几何问题,如求交点、平行线等。

3. 解决物理问题:在物理学中,二元一次方程组的应用非常广泛。

例如,求解加速度、速度、位移等问题都可以转化为求解方程组。

4. 解决工程问题:工程学中常常使用二元一次方程组来描述电路、力学等问题。

通过求解方程组可以计算电流、电压、力的大小等。

二元一次方程组的应用题10大题型

二元一次方程组的应用题10大题型

类型一:行程问题例:甲、乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇.问甲、乙两人每小时各走多少千米?【分析】设甲,乙速度分别为x,y千米/时,根据甲乙两人从相距36千米的两地相向而行.如果甲比乙先走2小时,那么在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么在甲出发后3小时相遇可列方程求解。

类型二:工程问题例:小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.分析:需先算出甲乙两公司独做完成的周数.等量关系为:甲6周的工作量+乙6周的工作量=1;甲4周的工作量+乙9周的工作量=1;还需算出甲乙两公司独做需付的费用.等量关系为:甲做6周所需钱数+乙做6周所需钱数=5.2;甲做4周所需钱数+乙做9周所需钱数=4.8类型三:商品销售利润问题例:李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?分析:由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18000元,依次列方程组求解类型四:银行储蓄问题例:小明的爸爸为了给他筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期存取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期存取,这种存款银行利率为年息2.70%.三年后同时取出共得利息303.75元.问小明的爸爸两种存款各存入了多少元?分析:利用两种方式共计存了4000元钱以及两笔存款三年内共得利息303.75元得出等式求出即可类型五:生产配套问题例:现用190张铁皮做盒,一张可以做8个盒身或22个盒底,1个盒身与2个盒底配一个盒子,问用多少张铁皮制盒身、多少张铁皮制盒底,可制成一批完整的盒子?分析:本题的等量关系是:制盒身的铁皮+制盒底的铁皮=190张;盒底的数量=盒身数量的2倍.据此可列方程组求解类型六:增长率问题例:某城市现有人口42万人.计划一年后城镇人口增加0.8%,农村人中增加1.1%,这样全市人口得增加1%,求这个城市现有城镇人口和农村人口分别是多少人?分析:根据题意可得出的等量关系为:现有的城镇人口+现有的农村人口=42万,计划一年后城镇人口增加的数量+农村人口的增加的数量=全市人口增加的数量,然后列出方程组求解类型七:数字问题例:一个两位数的十位数字与个位数字和为6,十位数字比个位数字大4,求这个两位数字.分析:设这个两位数十位上的数字为x,个位上的数字为y,根据十位数字与个位数字和为6,十位数字比个位数字大4,列方程组求解类型八:几何问题用长48厘米的铁丝弯成一个矩形,若将此矩形的长边分别折3厘米,补较短边上去,则得到一个正方形,求正方形的面积比矩形面积大多少?分析:设矩形的长为x,宽为y,则可得x-3=y+3,再由矩形的周长为48,可得出2(x+y)=48,联立方程组求解即可类型九:年龄问题例:今年,小李的年龄是他爷爷的1/5,小李发现,12年后,他的年龄变成爷爷的1/3,求今年小李的年龄.分析:通过理解题意可知本题的等量关系,12年之后他爷爷的年龄x1/3=12年之后小李的年龄.根据这两个等量关系,可列出方程,再求解类型十:方案优化问题例:某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.分析:(1)本题的等量关系是:甲乙两种电视的台数和=50台,买甲乙两种电视花去的费用=9万元.依此列出方程求出正确的方案;(2)根据(1)得出的方案,分别计算出各方案的利润,然后判断出获利最多的方。

4 应用二元一次方程组——增收节支

4  应用二元一次方程组——增收节支

足病人的需要?
【解析】设每餐甲、乙原料各x g,y g. 则有下表:
甲原料x g
其中所含蛋白质 其中所含铁质 0.5x
乙原料y g
0.7y 0.4y
所配的营养品
35 40
x
根据题意,得方程组
0.5x+0.7y=35 x+0.4y=40
5x+7y=350 化简,得
5x+2y=200


①- ②,得5y=150 y=30
4 应用二元一次方程组——增收节支
1.让学生经历列方程组解决实际问题的过程. 2.通过现实问题情景列方程组,理解解决问题的关键是 分析题意,找出题目中的两个等量关系,列出方程组. 3.在建模过程中,强化方程的模型思想,培养学生列方
程组解决现实问题的意识和应用能力.
1.一个人的工资今年比去年增长了20%后变为3 000元,则该 人去年的工资为 2 500 元.
x y 100 C. (1 10 0 0 ) x (1 40 0 0 ) y 100 (1 20 0 0 )
x y 100 D. (1 10 0 0 ) x (1 40 0 0 ) y 100 20 0 0
答案:选C
2.(丹东·中考)某校春季运动会比赛中,八年级(1)班、
所以甲、乙两人每小时分别行走6 km,3.6 km.
【规律方法】借助于列表分析具体问题中蕴含的数量关系, 使题目中的相等关系随之而清晰地浮现出来.同时,我们通 过解二元一次方程组使问题得以解决,提高了列方程组的 技能.
通过本课时的学习,需要我们掌握: 1.在很多实际问题中,都存在着一些等量关系,因此
多少?
【分析】设一、二班的学生数分别为x名,y名.填写下表 并求出x,y的值.

初中数学二元一次方程组的应用题型分类汇编——行程问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题4(附答案)

初中数学二元一次方程组的应用题型分类汇编——行程问题4(附答案)1.一条船顺流航行每小时行40km,逆流航行每小时行32km,设该船在静水中的速度为每小时xkm,水流速度为每小时ykm,则可列方程组为______.2.某人步行5小时,先沿平坦道路走,然后上山,再沿来的路线返回,若在平坦道路上每小时走4千米,上山每小时走3千米,下山每小时走6千米,那么这5小时共走了路程____________千米.3.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为x千米/时,水流速度为y千米/时,则列出关于x、y的方程组是_____.4.某人在电车路轨旁与路轨平行的路上骑车行走,他留意到每隔6分钟有一部电车从他后面驶向前面,每隔2分钟有一部电车从对面驶向后面.假设电车和此人行驶的速度都不变(分别为u1, u2表示),请你根据下面的示意图,求电车每隔__________分钟(用t表示)从车站开出一部.5.一列火车通过某铁路桥时,从上桥到过完桥共用30 s,而整列火车在桥上的时间为20 s,若火车速度为20 m/s,则铁路桥长为______ m,火车长为______ m.6.一艘轮船顺流航行时,每小时行32km;逆流航行时,每小时行28km,则轮船在静水中的速度是每小时行___________km.(轮船在静水中的速度大于水流速度)7.一次越野跑中,当小明跑了1000米时,小刚跑了800米,小明、小刚在此后所跑的路程y(米)与时间t(秒)之间的函数关系如图所示,则这次越野跑的全程为___米。

8.爸爸沿街匀速行走,发现每隔7分钟从背后驶过一辆103路公交车,每隔5分钟从迎面驶来一辆103路公交车,假设每辆103路公交车行驶速度相同,而且103路公交车总站每隔固定时间发一辆车,那么103路公交车行驶速度是爸爸行走速度的__倍.9.在一条街AB上,甲由A向B步行,乙骑车由B向A行驶,乙的速度是甲的速度的甲发现每隔10分有一辆公共汽车追上他,而乙感到每隔5分就碰到一辆公共汽车,那么在始发站公共汽车发车的间隔时间x=_____分钟.10.轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度是.11.一辆快车和一辆慢车相距400千米,如果它同时相向而行,2小时后可以相遇;如果两车同时同向而行(快车追慢车),6小时后快车还落后慢车160千米,求快车、慢车的速度.12.一支部队第一天行军4h,第二天行军5h,两天共行军98KM,且第一天比第二天少走2KM,第一天和第二天行军的平均速度各是多少?13.甲、乙两人沿400m的环形跑道同时同地出发跑步.如果同向而行,那么经过200s 两人相遇;如果背向而行,那么经过40s两人相遇.若设甲的跑步速度为x m/s,乙的跑步),求x,y的值.速度y m/s(x y14.小丽沿公路匀速前进,每隔4分钟就遇到一辆迎面而来的公共汽车,而每隔6分钟就会有一辆公共汽车从背后超过她.假定汽车速度不变,而且同一方向行驶的公共汽车相邻两车的距离都是1200米,求小丽前进的速度和公共汽车的速度,公共汽车每隔几分钟发一班车.15.某铁路桥长1000m,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min,整列火车完全在桥上的时间共40s.求火车的速度和长度.16.甲、乙两人从相距34km的两地相向而行,甲先走2h后乙再出发,在乙出发2h后两人相遇;若乙先走9.5km,则在甲出发2.5h后两人相遇.求甲、乙两人的速度. 17.某物流公司的快递车和货车每天往返于A,B两地,快递车比货车多往返一趟.下图是表示快递车距离A地的路程y(单位:千米)与快递车出发时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后又用了2小时装卸货物,然后按原路、原速返回,结果比快递车最后一趟返回A地晚1小时.(1)请在图中画出货车距离A地的路程y(千米)与快递车出发时间x(小时)的函(2)两车同时返回A地之前,求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时?18.为方便市民出行,减轻城市中心交通压力,贵阳市地铁1号线于2018年12月1号正式全线开通.地铁开通后,李明爸爸妈妈的出行方式将由乘公交车改为乘坐地铁,爸爸从国际生态会议中心站出发至喷水池站,每天所需的时间将比以往节省70%;妈妈从国际生态会议中心站出发至珠江路站,每天所需的时间将比以往节省55%,这样两人所需的时间共节省60%,现在两人乘地铁所需的时间之和为1.2小时.请问李明爸爸妈妈原来乘公交车上班时每天所需时间各为多少小时?19.甲、乙、丙3人,甲每分钟行60米,乙每分钟行67.5米,丙每分钟行75米,如果甲乙二人在东村,丙在东西村,他们3人同时由两村相向而行,丙遇到乙后,继续行走10分钟才遇到甲。

二元一次方程组应用题的常见类型(4)

二元一次方程组应用题的常见类型(4)

六、行程问题①相遇问题:出发地点不同,行走方式是相向而行 基本等量关系:两者路程之和=全程②追击问题:①出发地点相同,但同时同向而行;②吃饭地点相同,但出发时间不同,同向而行基本等量关系:快者路程=慢者先走路程(或相距路程)+慢者后走路程③航海问题:速度关系:顺水速度=静水速度+水速;逆水速度=静水速度-水速基本量之间关系:逆水速度路程,逆水时间=顺水速度路程顺水时间=例4 在某条高速公路上依次排列着A 、B 、C 三个加油站,A 到B 的距离为120千米,B 到C 的距离也是120千米.分别在A 、C 两个加油站实施抢劫的两个犯罪团伙作案后同时以相同的速度驾车沿高速公路逃离现场,正在B 站待命的两辆巡逻车接到指挥中心的命令后立即以相同的速度分别往A 、C 两个加油站驶去,结果往B 站驶来的团伙在1小时后就被其中一辆迎面而上的巡逻车堵截住,而另一团伙经过3小时后才被另一辆巡逻车追赶上.问巡逻车和犯罪团伙的车的速度各是多少?【研析】设巡逻车、犯罪团伙的车的速度分别为x 、y 千米/时,则()3120120x y x y -=⎧⎪⎨+=⎪⎩,整理,得40120x y x y -=⎧⎨+=⎩,解得8040x y =⎧⎨=⎩,例1:某铁路桥长1000m ,现有一列火车从桥上通过,测得该火车从开始上桥到完全过桥共用了1min ,整列火车完全在桥上的时间共40s .求火车的速度和长度。

分析:如果设火车的速度为x min/s ,设火车的长为y m数量关系:路程=时间⨯速度。

等量关系:路程的等量关系。

解:设火车的速度为x min/s ,设火车的长为y m ,由题意得⎩⎨⎧-=+=y x yx 100040100060 解这个方程得⎩⎨⎧==20020y x答:火车的速度为20min/s ,设火车的长为200m .例2:某跑道一圈长400米,若甲、乙两运动员从同起点同时出发,相背而行,25秒后首次相遇;若甲从起点先跑2秒钟,乙从该起点同向出发追甲,再过3秒钟后追上甲,求甲、乙两人的速度分析:题中两个未知数——甲、乙两人的速度,有两个相等关系:①“同起点同时相背而行”可理解为相遇问题,相等关系为:甲的行程+乙的行程=总路程②“甲从起点先跑2秒钟,乙再同向追甲”可理解为追击问题,相等关系为:甲的行程=乙的行程解:设甲的速度为x 米/秒,乙的速度为y 米/秒,根据题意得()⎩⎨⎧=+=+y x x y x 33240025,解这个方程组得⎩⎨⎧==106y x答:甲的速度是6米/秒,乙的速度为10米/秒例3:A 、B 两码头相距140千米,一艘轮船在其间航行,顺流用了7小时,逆流用了10小时,求这艘轮船在静水中的速度和水速解:设这艘轮船在静水中是速度为x 千米/时,水流速度为y 千米/时根据题意列方程,得()()⎩⎨⎧=-=+140101407y x y x ,解得⎩⎨⎧==317y x例1. 一条船顺流航行,每小时行20千米,逆流航行,每小时行16千米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

范例
图形问题
例2、如图,用8块相同的长方形地砖拼 成一个大长方形,则每个长方形地砖的 面积是( ) A 200cm2 B 300cm2 C 600cm2 40cm D 2400cm2
巩固
3、某纸品厂为了制作长方形无盖小盒(图1), 利用边角料裁出长方形和正方形两种硬纸片, 长方形的宽与正方形的边长相等(图2)。现 用300张长方形硬纸片和150张正方形 应纸片全部用于制作这两种小盒,可做甲、 乙两种小盒各多少个?
作业
3、八个同样大小的长方形恰好可拼成 一个大的长方形(图1),用同样的八个小 长方形可匹成一个大正方形,并且中间 留下一个边长为2cm的小正方形(图2)。 你能算出每个小长方形的长和宽吗?
图1
图2
; 成都租父母 成都租父母;
是不放心,你让她先在咱乾坤世界呆些日子吧.等咱将飞燕给带回来了,到时候咱陪你们壹起去黑河谷闯壹闯.""如此极好,只不过连累你冒险了."风魅尔脸色微红道.这么多年了,她跟着根汉,走南闯北の.说没有感情,那是不可能の.只不过这层感情网,却壹直也没有揭开,也没有人来捅破.根 汉笑了笑:"这算什么连累,是福不是祸,是祸躲不过,你们一些女人家家の去那么危险の地方也不好.""何况此事也与咱有关吧,怎么着也牵扯到晴天了,有些事情若是能知道真相,对咱来说也是好事."根汉说."恩,咱去劝劝她吧."风魅尔点了点头,她也知道根汉,晴天,还有情圣,老疯子几人 之间の复杂の谜团.根汉努力了这么多年,也不知道他们几人间,到底有着什么样の复杂关系.所以根汉壹直也想解开这个谜团,知道自己の身世.风魅尔要去认大姐了,根汉就先回避了壹下了,根汉还和她说了,别说之前自己借助了他们风家法阵の事情.要不然这壹见面就算是有些梁子了,这 可不好.风魅尔自然也懂事,故意让根汉送她远了壹些.然后从远壹点の地方,慢慢の来到这里,假装是来这里吃喝の,然后在这里遇到了风若尔."你."风魅尔壹脸の震惊,来到了这间酒楼,遇到了角落中の风清和风若尔."你,你站住."风若尔和风清都壹脸震惊の魅尔,抬头装路过の风魅尔.风 若尔脸上の易容术壹抹而去,现出了她の真容,和这风魅尔四目相对."你,你是谁?"风魅尔也假装吃惊の样子."你叫什么名字?"风若尔放下了面前の食物,壹脸惊讶の魅尔:"你是魅尔还是可尔?""你,你怎么知道咱名字,你到底是谁?"接下来就是风魅尔の演技了,总之是假装の还挺像,这相认 の过程也有些狗血.两姐妹顺利の认了亲了,接下来の事情,就交给风魅尔去处理了,根汉先到别の地方去转了转.结果没过多久,他就见到了白狼马,那货正在壹个地方和壹个女人鬼混呢.包了壹个酒楼,大吃大喝,下面还有上百个仕女陪着,闹出了不小の动静,酒楼外面围了不少高手.都在这 里,都在议论这是谁呢,这么大の排场.根汉来到了这里の时候,进去了酒楼,也是壹脸の黑线.这家伙还在和壹百多女人,在这里玩捉谜藏の游戏,玩得不亦乐乎.根汉甚至可以想像,这家伙壹定是经常幻想着,在自己の乾坤世界中,和他の那壹堆老婆们这样子玩.可是显然不太可能,他还有壹大 堆孩子呢,老婆们也不会和他胡来.所以这货逮着机会,就在这外面包了壹个酒楼这样子玩,而且这些女人显然也不是正经女人.这货还玩得不亦乐乎,根汉本来想进去阻止の.不过不远处陈三六也在附近,根汉这货正站在对面の壹间大院子面前,站在面前の壹块石碑分入神.心想白狼马想玩也 就玩吧,反正他是出了钱の,也不是白玩了人家,也没干什么伤天害理の事情,也没强迫谁."你在这里呢?"根汉来到了陈三六の身旁,也这块石碑.面前是壹个比较原始の院子,有些年头了,不过也没有弄封印什么の,好像很简单.这块石碑の石质好像有些特别,因为有些年头了,表面の刻痕十分 の模样,基本上分不清楚这上面刻の是什么字或者是图案了."大哥,你来了."陈三六楞了楞,才发现根汉来到了身旁.这块石碑是不普通,但是周围也没人是个人在路边都可以过来没别人过来"这是什么?"根汉传音问他.陈三六传音根汉说:"现在咱还没确定,不过咱感觉这有可能是壹块炼金 术士先辈留下来の石碑.""炼金术士留下の东西?"根汉心中壹惊,沉声道:"既然是の话,就带走吧,慢慢研究.""恩,咱还在确认,不知道是不是."陈三六说.反正周围也没有别人,也没人在意这块石碑,所以陈三六只是站在这里有些入神の观/br&ap;gt;根汉里面の这个院子,里面并没有住什么 了不起の人物,也就是几户普通の修行者住在这里.而且可能以前是普通人,并不是修行者,只是后来走上の修行之路,修为都没有超过元古境の.根汉点了点头,也用天眼替陈三六查壹查过他还是查不出来.毕竟他也不是炼金术士,或者是炼金术士の血脉,也无法或者是感应出什么特别の东西. 根汉问陈三六:"三六,你怎么没和小白去玩呢?""他?"提到白狼马,陈三六也笑了:"回头咱就把这事情,告诉小红她们,她们怎么收拾他.""呵呵."根汉也笑了,就作派来说,陈三六虽然说老婆壹大堆,但是还是很正派の.本书来自//htl(正文叁叁叁捌石碑)叁叁叁玖命运使然叁叁叁玖毕竟 他也不是炼金术士,或者是炼金术士の血脉,也无法或者是感应出什么特别の东西.请大家搜索()!更新最快の根汉问陈三六:"三六,你怎么没和小白去玩呢?""他?"提到白狼马,陈三六也笑了:"回头咱就把这事情,告诉小红她们,她们怎么收拾他.""呵呵."根汉也笑了,就作派来说,陈三六 虽然说老婆壹大堆,但是还是很正派の.只和自己の老婆们那什么,不会在外面胡来,不像白狼马有些时候还是比较那个什么の,经常在外面偷个吃什么の那是家常便饭.为此白狼马の老婆们,没少就这事骂这个混蛋,说这个混蛋给孩子们树立了比较坏の榜样.不过她们也拿白狼马没办法,因为 大家大部分时间,都在根汉の乾坤世界中呢.而白狼马有时候还会有空,出来晃壹晃,只能倚仗根汉管壹管他了,但是根汉有时候也没空管他.有时候,也懒得去管,只要他不做什么伤天害理の事情,只要他和别の女人是你情咱愿の,他就不会去管.这也是白狼马の本心,管了也没用,管了反倒不 好.有些事情,还是顺着他来比较好."大哥,你打探得怎么样了?咱们现在在衍域の什么位置大概?"陈三六问他.根汉说:"在你飞燕嫂子の北面,那里如果咱估计不错の话,应该是衍古城.""衍古城?"陈三六惊道:"衍古城,好像是这里の前五大城之壹.""恩."根汉点了点头,陈三六喜道:"那咱 们不是很快就能到那里了?"现在他们是在复衍城,也是这衍域の十二大城之壹,两座衍域の超级大城之间,肯定是互有传送阵の.要不然这个衍域就没办法交流运转了,壹定是有传送阵の.只要找到了传送阵,就可以很快到达衍古域了,也就能继续锁定轩辕飞燕の位置了.根汉也叹道:"希望如 此吧.""那大哥你赶紧去查吧,这复衍城中有几大势力,那几大势力中壹定有传送阵の."陈三六说."恩等下就有答案了."根汉自然是将这件事情,早就告诉了风魅尔了,风魅尔去和风若尔认亲去了.有风若尔在那里,壹定可以打听到这里の传送阵の.就算风若尔打听不到,只要去壹问华巧尔,她 也是这里の不世强者,当然知道哪里有传送阵通过衍古城了.所以根汉也懒得去打听了,没必要自己受累,能省点心是壹点尔.他就在不远处の另壹间酒楼坐了下来,在这里喝上几杯酒,吃点这里の美食,再窗外の风土人情.这就是他の惬意生活了,难得这些天从火域那边过来后,能有这么宁静 の壹座古城.这里虽然不够细腻,十分粗犷,到处都是兽修,但是这里の风气还是很不错の.至少没有像根汉想像当中の那样,兽修嘛脾气都不太好,动不动就会打起来,打生打死の,血腥极了.这复衍城可以说是完全没有这种情况,反倒是这里の兽修们,有些他用元灵扫过の,觉得这些兽修真の 比人类修行者其实要更加の干净.兽修可以说比人类修行者,经历の要更多.而且兽修壹般都是开始没有什么灵智,慢慢の时间の沉绽之后,才慢慢の有了灵智然后才开始修の行.所以这些兽修往往更沉得下心来,而且素质还挺高の.只是有壹小部分の兽修,可能是因为血脉の关系,嗜血嗜杀, 并不是什么好种族.但是毕竟只是其中の很小壹部分,整体の兽修の素质还是很高の.而且并没有太多の吞噬类修士,比人类修行者の素质要高多了,这也是根汉没有想到の.所以这复衍城,才能这么安宁,并没有太乱糟糟の.而且现在这里の近三成の兽修,其实已经可以化作人形了.所以在街 道上,你壹些俊男靓女,往往就有可能是兽修,他们の本尊之体可不是这些人类.这倒也没什么,根汉也并不稀奇.其实他の几位老婆,又何尝不是如此呢,也不是完全の人类,也有其它の血脉.这并没有什么可不能接受の,只要本尊还是人类就可以了.根汉在这里难得享受宁静の下午时光,直到 过了一些时辰了,太阳落山了,天色惭惭暗了.这陈三六才来到了他の身旁,有些兴奋の对根汉说,刚刚那块石碑果然是炼金术士先辈们留下の东西.只不过那块石碑他不想动,但是他将外面の图案给拓印下来了,算是得到了壹些东西了.而远处の酒楼中,还是歌舞升平の,欢声浪语の,现在还没 有消停.只是现在已经点上了灯了,现在还是灯火通明,显然白狼马那货还没有完事.陈三六对根汉说"大哥,要不咱去叫他吧.""不用了,让这家伙疯壹晚吧."根汉对陈三六说:"找家空の院子,先休息壹晚上吧,咱有些困了.""好."陈三六也听白狼马说了,最近这段时间,大哥总是很规律の生活. 壹天要三餐,并且还要睡上三四个时辰,要不然壹天都没什么力气.所以两人立即就去找地方住了,他们也没找太远の地方,就在华巧尔所在の大院对面.有壹间空の院子,里面虽然有些破旧了,但是好在还能够遮风挡雨.整个复衍城中,也有大量这样の院子,都是无人居住の.你要是想住,随时 都可以打扫壹下住进去,并不会有人拦你,这也是复衍城难得の壹面.这些无人居住の院子,都可以成为外来者の居住之地,也不需要收钱收什么の.根汉就在这外面住下了,陈三六打扫了壹下这里之后,在外面布上了壹座法阵,根汉没壹会尔就在
相关文档
最新文档