高中数学知识点总结:概率与统计

合集下载

高中数学统计与概率

高中数学统计与概率

高中数学统计与概率1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B)。

4.抽签法和随机数表法(1)抽签法①优点:简单易行;②缺点:当总体容量非常大时,操作比较麻烦;若抽取前搅拌不均匀,可能导致抽取的样本不具有代表性.(2)随机数表法随机数表是由水技术(通常为自然数)形成的数表,表中的每一位置出现的数都是随机的.随机数表法的一般步骤:第一步:对总体进行编号;第二步:任意指定一个开始选取的位置,位置的确定可以闭着眼用手指随机确定,也可以用其他方法;第三步:按照一定规则选取编号;第四步:按照得到的编号找出对应的个体.【注释】①规则一经确定,就不能更改;②选取过程中,遇到超过编号范围或已经选取了的数字,应该舍弃.5.分层抽样一般地,如果相对于要考察的问题来说,总体可以分为有明显差别的,互不重叠的几部分时,每一部分可称为层,在各层中按层在总体中所占比例进行随机抽样的方法称为分层随机抽样(简称分层抽样).【注释】分层抽样得到的样本,一般更具有代表性,可以更准确地反映总体的特征,尤其是在层内个体相对同质而层间差异较大时更是如此.分层抽样在各层中抽样时,还可根据各层的特点灵活选用不同的随机抽样方法.。

根据高中数学必修一概率与统计知识点总结

根据高中数学必修一概率与统计知识点总结

根据高中数学必修一概率与统计知识点总结本文将总结高中数学必修一中的概率与统计知识点。

概率与统计是数学中重要的分支之一,主要研究随机事件的发生可能性与规律。

一、概率的基本概念概率是描述事件发生可能性的数值,常用分数或百分数表示。

在概率的计算中,我们通常使用下面的公式:$$P(A) = \dfrac{n(A)}{n(S)}$$其中,$P(A)$表示事件$A$发生的概率,$n(A)$表示事件$A$发生的次数,$n(S)$表示样本空间$S$中事件发生的总次数。

二、概率的性质1. 概率的取值范围是0到1之间,即 $0 \leq P(A) \leq 1$。

2. 必然事件的概率为1,即 $P(S) = 1$。

3. 不可能事件的概率为0,即 $P(\varnothing) = 0$。

4. 补事件的概率为 $P(\overline{A}) = 1 - P(A)$。

三、事件间的关系1. 事件的和事件(并):$A \cup B$ 表示事件 $A$ 与事件$B$ 中至少发生一个的情况。

2. 事件的积事件(交):$A \cap B$ 表示事件 $A$ 与事件$B$ 同时发生的情况。

3. 事件的差事件(差):$A - B$ 表示事件 $A$ 发生而事件$B$ 不发生的情况。

四、条件概率与独立性1. 条件概率:事件$B$ 在事件$A$ 发生的条件下发生的概率,记作 $P(B|A)$,公式为:$P(B|A) = \dfrac{P(A \cap B)}{P(A)}$。

2. 乘法定理:若事件 $A$ 和事件 $B$ 相互独立,则有 $P(A\cap B) = P(A) \cdot P(B)$。

3. 独立性:当两个事件 $A$ 和 $B$ 满足 $P(A \cap B) = P(A) \cdot P(B)$ 时,称事件 $A$ 和事件 $B$ 是相互独立的。

五、排列与组合1. 排列:从 $n$ 个不同元素中取出 $m$ 个元素进行排列的方法数,记作 $P_{n}^{m}$,公式为:$P_{n}^{m} = \dfrac{n!}{(n-m)!}$。

高中数学统计与概率知识点

高中数学统计与概率知识点

高中数学统计与概率知识点一、统计学基础1. 数据收集- 普查与抽样调查- 数据的类型(定量数据与定性数据)2. 数据整理与展示- 频数分布表- 直方图- 饼图- 条形图3. 中心趋势的度量- 平均数(算术平均数)- 中位数- 众数4. 离散程度的度量- 极差- 四分位距- 方差与标准差5. 相关性分析- 相关系数- 散点图二、概率论基础1. 随机事件- 事件的定义- 必然事件与不可能事件- 互斥事件与独立事件2. 概率的计算- 单次试验的概率- 多次试验的概率- 条件概率- 贝叶斯定理3. 随机变量- 离散随机变量与连续随机变量 - 概率分布- 概率密度函数与概率分布函数4. 期望值与方差- 随机变量的期望值- 随机变量的方差5. 常见概率分布- 二项分布- 泊松分布- 正态分布三、统计与概率的应用1. 假设检验- 零假设与备择假设- 显著性水平- 第一类错误与第二类错误 - t检验与卡方检验2. 回归分析- 线性回归- 相关系数与决定系数3. 抽样与估计- 抽样误差- 置信区间- 最大似然估计四、综合练习题1. 选择题- 统计图表解读- 概率计算- 假设检验2. 填空题- 计算平均数、中位数、众数 - 计算方差、标准差- 概率分布的应用3. 解答题- 解释统计概念- 概率问题的求解- 应用统计方法解决实际问题五、附录1. 公式汇总- 统计学公式- 概率论公式2. 重要概念索引- 术语解释- 概念间的关系3. 参考资料- 推荐阅读书籍- 在线资源链接请根据需要对上述内容进行编辑和调整。

这篇文章是为了提供一个关于高中数学统计与概率的知识点概览,适用于教育目的。

每个部分都包含了关键的子标题和简短的描述,以便于理解和使用。

(最全)高中数学概率统计知识点总结

(最全)高中数学概率统计知识点总结

高中数学-概率与统计一、普通的众数、平均数、中位数及方差 1、 众数:一组数据中,出现次数最多的数。

2、平均数:①、常规平均数:12nx x x x n++⋅⋅⋅+=②、加权平均数:112212n n n x x x x ωωωωωω++⋅⋅⋅+=++⋅⋅⋅+3、中位数:从大到小或者从小到大排列,最中间或最中间两个数的平均数。

4、方差:2222121[()()()]n s x x x x x x n=-+-+⋅⋅⋅+- 二、频率直方分布图下的频率1、频率 =小长方形面积:f S y d ==⨯距;频率=频数/总数2、频率之和:121n f f f ++⋅⋅⋅+=;同时 121n S S S ++⋅⋅⋅+=;三、频率直方分布图下的众数、平均数、中位数及方差 1、众数:最高小矩形底边的中点。

2、平均数: 112233n nx x f x f x f x f =+++⋅⋅⋅+ 112233n n x x S x S x S x S =+++⋅⋅⋅+ 3、中位数:从左到右或者从右到左累加,面积等于0.5时x 的值。

4、方差:22221122()()()n n s x x f x x f x x f =-+-+⋅⋅⋅+-四、线性回归直线方程:ˆˆˆybx a =+ 其中:1122211()()ˆ()nni i i i i i nni i i i x x y y x y nxybx x x nx ====---∑∑==--∑∑ , ˆˆay bx =- 1、线性回归直线方程必过样本中心(,)x y ;2、ˆ0:b>正相关;ˆ0:b <负相关。

3、线性回归直线方程:ˆˆˆy bx a =+的斜率ˆb 中,两个公式中分子、分母对应也相等;中间可以推导得到。

五、回归分析1、残差:ˆˆi i i ey y =-(残差=真实值—预报值)。

分析:ˆi e 越小越好; 2、残差平方和:21ˆ()ni i i y y=-∑, 分析:①意义:越小越好; ②计算:222211221ˆˆˆˆ()()()()ni i n n i y yy y y y y y =-=-+-+⋅⋅⋅+-∑ 3、拟合度(相关指数):22121ˆ()1()ni i i ni i y yR y y ==-∑=--∑,分析:①.(]20,1R ∈的常数; ②.越大拟合度越高;4、相关系数:()()nni i i i x x y y x y nx yr ---⋅∑∑==分析:①.[r ∈-的常数; ②.0:r >正相关;0:r <负相关③.[0,0.25]r ∈;相关性很弱; (0.25,0.75)r ∈;相关性一般; [0.75,1]r ∈;相关性很强; 六、独立性检验 1、2×2列联表: 2、独立性检验公式 ①.22()()()()()n ad bc k a b c d a c b d -=++++②.犯错误上界P 对照表3、独立性检验步骤①.计算观察值k :2()()()()()n ad bc k a b c d a c b d -=++++;②.查找临界值0k :由犯错误概率P ,根据上表查找临界值0k ;③.下结论:0k k ≥:即犯错误概率不超过P 的前提下认为: ,有1-P 以上的把握认为: ; 0k k <:即犯错误概率超过P 的前提认为: ,没有1-P 以上的把握认为: ;【经典例题】题型1 与茎叶图的应用例1(2014全国)某市为考核甲、乙两部门的工作情况,学科网随机访问了50位市民。

高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结

高中数学论与概率与统计知识点总结在高中数学学习过程中,概率与统计是重要的一部分内容。

本文将对概率与统计的相关知识点进行总结,以帮助同学们更好地掌握这一部分内容。

一、概率基础知识1. 随机事件与样本空间:随机事件是指在相同条件下,可能发生也可能不发生的事件;样本空间是指随机试验的所有可能结果的集合。

2. 事件的概率:事件A发生的概率是指在相同条件下,事件A发生的可能性大小。

概率的取值范围在0和1之间,其中0表示不可能事件,1表示必然事件。

3. 事件的互斥与独立:如果两个事件A和B不能同时发生,称它们互斥;如果事件A发生与否不影响事件B发生的概率,称它们独立。

二、概率计算方法1. 相对频率法:通过大量重复实验,计算事件A发生的频率来估计概率。

2. 等可能概型法:当样本空间中各个基本事件发生的机会相等时,可以通过事件A包含的基本事件数除以总的基本事件数来计算概率。

3. 排列与组合:排列是指从n个不同元素中取出m个元素按一定顺序排列的可能性数量;组合是指从n个不同元素中取出m个元素的可能性数量,不考虑元素的顺序。

三、离散和连续型随机变量1. 随机变量:随机变量是定义在样本空间上的实值函数,用来描述随机试验的结果。

2. 离散随机变量:在有限次试验中只取有限个或可列个值的随机变量,称为离散随机变量。

离散随机变量的概率分布可以通过概率质量函数来表示。

3. 连续型随机变量:在某一区间内可以取到任意值的随机变量,称为连续型随机变量。

连续型随机变量的概率分布可以通过概率密度函数来表示。

四、概率分布1. 二项分布:是n个独立重复的伯努利试验中成功次数的离散概率分布。

2. 泊松分布:是描述单位时间或单位面积内随机事件发生次数的离散概率分布。

3. 正态分布:又称为高斯分布,是实数上最常见的连续概率分布之一,具有钟形曲线的特点。

五、统计分析方法1. 参数估计:通过样本数据来估计总体的某些未知参数,如均值、方差等。

2. 假设检验:根据采集的样本数据,对总体的某个特征或假设进行判断和推断。

高中数学概率与统计知识点

高中数学概率与统计知识点

高中数学概率与统计知识点1、概率的定义随机事件A的概率是频率的稳定值;频率是概率的近似值。

2、等可能事件的概率如果一次试验中可能出现的结果有n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是1/n,如果某个事件A包含的结果有m个,那么事件A的概率为P(A)=m/n。

3、互斥事件不可能同时发生的两个事件叫互斥事件。

如果事件A、B互斥,那么事件A+B发生(A、B中有一个发生)的概率,等于事件A、B 分别发生的概率和,即P(A+B)=P(A)+P(B)。

4、对立事件对立事件是指两个事件必有一个发生的互斥事件。

例如:从1~52张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件。

而抽到“红色牌”与抽到“黑色牌”互为对立事件,因为其中一个必发生。

对立事件的性质:1)对立事件的概率和等于1:P(A)+P(Ä)=P(A+A)=1。

2)互为对立的两个事件一定互斥,但互斥不一定是对立事件。

5、相互独立事件事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。

两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(A·B)=P(A)·P(B)。

相互独立事件的性质:1)如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立。

2)必然事件与任何事件都是相互独立的。

3)独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件。

6、独立重复试验若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的。

如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k 次的概率:P…(k)=CP*(1-P)"-*7、两个事件之间的关系对任何两个事件都有P(A+B)=P(A)+P(B)-P(A·B)。

(完整版)高中数学统计与概率知识点归纳(全)

(完整版)高中数学统计与概率知识点归纳(全)

高中数学统计与概率知识点(文)的平均数就是中位数。

③求平均数时,就用各数据的总和除以数据的个数,得数就是这组数据的平 均数。

四、 中位数与众数的特点。

⑴中位数是一组数据中唯一的,可能是这组数据中的数据,也可能不是这组数据中的数据;⑵求中位数时,先将数据有小到大顺序排列,若这组数据是奇数个,则中间的数据是中位数;若 这组数据是偶数个时,则中间的两个数据的平均数是中位数; ⑶中位数的单位与数据的单位相同; ⑷众数考察的是一组数据中出现的频数;⑸众数的大小只与这组数的个别数据有关,它一定是一组数据中的某个数据,其单位与数据的单 位相同; (6) 众数可能是一个或多个甚至没有;(7) 平均数、众数和中位数都是描述一组数据集中趋势的量。

五、 平均数、中位数与众数的异同:⑴平均数、众数和中位数都是描述一组数据集中趋势的量; ⑵平均数、众数和中位数都有单位; ⑶平均数反映一组数据的平均水平,与这组数据中的每个数都有关系, 所以最为重要,应用最广;⑷中位数不受个别偏大或偏小数据的影响;⑸众数与各组数据出现的频数有关,不受个别数据的影响,有时是我们最为关心的数据。

六、 对于样本数据 X i , X 2,…,X n ,设想通过各数据到其平均数的平均距离来反映样本数据的分散 程度,那么这个平均距离如何计算?|X i - x| + |X 2- X| + L + |X n - x|思考4:反映样本数据的分散程度的大小,最常用的统计量是标准差, 一般用s 表示•假设样本数据X i , X 2,…,X n 的平均数为X ,则标准差的计算公式是:(X i - X)2 + (X 2 - x)2 + L +(x n - X)2七、简单随即抽样的含义一般地,设一个总体有 N 个个体,从中逐个不放回地抽取 n 个个体作为样本(n W N ),如果每次 抽取时总体内的各个个体被抽到的机会都相等,则这种抽样方法叫做简单随机抽样•八、 根据你的理解,简单随机抽样有哪些主要特点?一、 众数:一组数据中出现次数最多的那个数据。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结概率与统计是高中数学中的重要内容,为了帮助大家更好地理解和掌握这一部分知识,下面将对高中数学概率与统计的主要知识点进行总结和梳理。

一、概率基本概念概率是指事件发生的可能性大小,通常用一个介于0到1之间的数表示。

在计算概率时,我们需要先确定样本空间,即所有可能的结果组成的集合,并且需要利用概率公式进行计算。

1.1 样本空间与事件样本空间是指一个随机试验中所有可能结果组成的集合。

样本空间中的元素称为样本点。

事件是指样本空间的子集,即某些样本点的集合。

1.2 子事件与互斥事件子事件是指事件的子集,即由某些样本点组成的事件。

互斥事件是指两个事件不可能同时发生的事件。

1.3 事件的概率事件A的概率表示为P(A),计算方式为事件A的样本点数除以样本空间的样本点数。

概率的取值范围在0到1之间,且所有可能事件的概率之和为1。

二、概率计算方法概率的计算方法主要包括古典概型、频率概率和条件概率等几种常用方法。

2.1 古典概型古典概型适用于随机试验的样本点数有限且相等的情况。

在古典概型中,事件A的概率计算公式为P(A) = m/n,其中m为事件A中样本点的个数,n为样本空间中样本点的总个数。

2.2 频率概率频率概率适用于大量重复试验的情况。

频率概率是指事件A发生的频率,计算公式为P(A) = lim(N→∞) (m/N),其中m为事件A发生的次数,N为试验进行的总次数。

2.3 条件概率条件概率是指在一个事件已经发生的条件下,另一个事件发生的概率。

条件概率的计算公式为P(A|B) = P(A∩B)/P(B),其中P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。

三、排列与组合排列与组合是概率与统计中常用的计数方法,用于求解事件发生的可能性个数。

3.1 排列排列是指将若干个不同的元素按照一定的顺序排列的方式。

排列的计算公式为A(n, m) = n!/(n-m)!,其中n为元素个数,m为选取的元素个数。

高中数学概率与统计知识点总结

高中数学概率与统计知识点总结

概率与统计一、概率及随机变量的分布列、期望与方差(一)概率及其计算1.几个互斥事件和事件概率的加法公式①如果事件A 与事件B 互斥,则()P A B =()()P A P B +.推广:如果事件1A ,2A ,…,n A 两两互斥(彼此互斥),那么事件12n A A A +++发生的概率,等于这n 个事件分别发生的概率的和,即()12n P A A A +++=()()()12n P A P A P A ++.②若事件B 与事件A 互为对立事件,则()P A =()1P B -. 2.古典概型的概率公式P (A )=A 包含的基本事件的个数基本事件的总数.(二)随机变量的分布列、期望与方差1. 常用的离散型随机变量的分布列(1)二项分布如果随机变量X 的可能取值为0,1,2,…,n ,且X 取值的概率()P X k ==C k k n kn p q-(其中0,1,2,,,1k n q p ==-),其随机变量分布列为X 0 1 …k…nP0C nnp q111C n np q-…C k k n knp q-…0C n n n p q则称X 服从二项分布,记为(),X B n p ~.(2)超几何分布在含有M 件次品的N 件产品中,任取n 件,其中恰有X 件次品,则事件{}X k =发生的概率为C C C k n kM N Mn N--()0,10,1,2,,2,,k m =,其中{}min ,m M n =,且n N …,M N …,n ,M ,*N ÎN .此时称随机变量X 的分布列为超几何分布列,称随机变量X 服从超几何分布.2.条件概率及相互独立事件同时发生的概率 I.条件概率条件概率一般地,设A ,B 为两个事件,且()0P A >,称()()()P ABP B A P A=为事件A 发生的条件下,事件B 发生的条件概率.在古典概型中,若用()n A 表示事件A 中基本事件的个数,则()()()()()n AB P AB P B A n A P A ==. II .相互独立事件相互独立事件(1)若,A B 相互独立.则()P AB =()()P A P B .(3)若A 与B 相互独立,则A 与B ,A 与B ,A 与B 也都相互独立. III .独立重复试验与二项分布独立重复试验与二项分布在n 次独立重复试验中,事件A 发生k 次的概率为(每次试验中事件A 发生的概率为p)()C 1n kkknp p --,事件A 发生的次数是一个随机变量X ,其分布列为()01)2()C 1(n kk knP X k k n p p -===-¼,,,,,此时称随机变量X 服从二项分布. 学科*网3.离散型随机变量的数学期望(均值)与方差 (1)若离散型随机变量X 的概率分布列为的概率分布列为X x 1 x 2 … x i … x n P p 1 p 2 … p i … p n则称EX =1122i i n n x p x p x p x p ++++¼+¼为随机变量X 的均值或数学期望. (2)若Y aX b =+,则EY =aEX b +,)(D aX b +=2a DX (3)若()X B n p ~,,则EX np =.()(1)D X np p -=. 4.正态分布(1)正态曲线的性质:正态曲线的性质:①曲线位于x 轴上方,与x 轴不相交;②曲线是单峰的,它关于直线x m =对称;③曲线在x m=处达到峰值12πs;④曲线与x 轴之间的面积为1;⑤当s 一定时,曲线的位置由m 确定,曲线随着m 的变化而沿x 轴平移,⑥当m 一定时,曲线的形状由s 确定,s 越小,曲线越“瘦高”,表示总体的分布越集中;s 越大,曲线越“矮胖”,表示总体的分布越分散,如图乙所示.(3)服从正态分布的变量在三个特殊区间内取值的概率服从正态分布的变量在三个特殊区间内取值的概率 ①0().6826P X m s m s -<+=…;②2209().544P X m s m s -<+=…; ③3309().974P X m s m s -<+=…. 二、统计与统计案例 (一)抽样方法 1.简单随机抽样设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本()n N …,如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样,最常用的简单随机抽样的方法:抽签法和随机数表法.最常用的简单随机抽样的方法:抽签法和随机数表法. 2.系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.的样本.(1)先将总体的N 个个体编号.(2)确定分段间隔k ,对编号进行分段,当Nn是整数时,取N k n =.如果遇到Nn不是整数的情况,可以先从总体中随机地剔除几个个体,使得总体中剩余的个体数能被样本容量整除得总体中剩余的个体数能被样本容量整除(3)在第1段用简单随机抽样确定第一个个体编号()l l k ….(4)按照一定的规则抽取样本,通常是将l 加上间隔k 得到第2个个体编号()l k +,再加k 得到第3个个体编号()2l k +,依次进行下去,直到获取整个样本.直到获取整个样本.3.分层抽样在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.分层抽样的应用范围:当总体是由差异明显的几个部分组成的,往往选用分层抽样.层抽样.注:注:不论哪种抽样方法不论哪种抽样方法,总体中的每一个个体入样的概率是相同的. (二)统计图表的含义 1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距和组数.(3)将数据分组.(4)列频率分布表.列频率分布表. (5)画频率分布直方图.画频率分布直方图. (三)样本的数字特征1.众数:在一组数据中,出现次数最多的数据叫做这组数据的众数.出现次数最多的数据叫做这组数据的众数.2.中位数:将一组数据按大小依次排列,把处在中间位置的一个数据(或中间两个数据的平均数)叫做这组数据的中位数叫做这组数据的中位数3.平均数:样本数据的算术平均数,即x =()121n x x x n+++.4.方差:()()()2222121n s x x x x x x n éù=-+-++-êúëû(n x 是样本数据,n 是样本容量,x 是样本平均数).5.标准差:()()()222121ns x x x x x x n éù=-+-++-êúëû.(四)线性回归直线方程 1.两个变量的线性相关(1)如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫回归直线.(2)从散点图上看,如果点分布在从左下角到右上角的区域内,那么两个变量的这种相关关系称为正相关;如果点分布在从左上角到右下角的区域内,那么两个变量的这种相关关系称为负相关. (3)相关系数相关系数r =ååå===----ni nj jini i i y y x x y y x x 11221)()())((,当0r >时,表示两个变量正相关;当0r <时,表示两个变量负相关.r 的绝对值越接近1,表示两个变量的线性相关性越强;r 的绝对值越接近0,表示两个变量的线性相关性越弱.通常当r 的绝对值大于0.75时,便认为两个变量具有很强的线性相关关系.当1r =时,两个变量在回归直线上两个变量在回归直线上 2.回归直线方程 (1)通过求21()ni i i Qy x a b ==--å的最小值而得出回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.该式取最小值时的a ,b 的值即分别为aˆ,b ˆ. (2)两个具有线性相关关系的变量的一组数据:11(,)x y ,22(,)x y ,…,()n n x y ,,其回归方程为a x b y ˆˆˆ+=,则1122211()()ˆ()ˆˆnn i i i i i i n ni ii i x x y y x y nx yb x x x nxa y bx ====ì---×ï==ïí--ïï=-ïîåååå.注:样本点的中心(),x y 一定在回归直线上. (3)相关系数22121ˆ()1()n i ii ni i y yR y y ==-å=--å.2R 越大,说明残差平方和越小,即模型的拟合效果越好;2R 越小,残差平方和越大,即模型的拟合效果越差.在线性回归模型中,2R表示解释变量对于预报变量变化的贡献率,2R 越接近于1,表示回归的效果越好. (六)独立性检验(1)变量的不同“值”表示个体所属的不同类别,像这样的变量称为分类变量.像这样的变量称为分类变量.(2)像下表所示列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y ,它们的可能取值分别为12(,)x x 和12(,)y y ,其样本频数列联表(称为22´列联表)为表)为y 1 y 2 总计总计x 1 a b a b + x 2 cdc d +总计a c +b d +a b c d +++构造一个随机变量()()()()()22n ad bc K a b c d a c b d -=++++ ,其中n a b c d =+++为样本容量.确定临界值0k ,如果2K 的观测值0k k …,就认为“两个分类变量之间有关系”;否则就认为“两个分类变量之间没有关系”.。

高中数学知识点总结统计与概率

高中数学知识点总结统计与概率

高中数学知识点总结统计与概率高中数学知识点总结——统计与概率统计与概率是高中数学中的一个重要分支,它涉及到数据的收集、整理、分析,以及随机事件的概率计算等内容。

本文将对高中数学中的统计与概率知识点进行总结和解析。

一、统计学基础1. 总体和样本在统计学中,所研究的对象被称为总体,而从总体中选取的一部分元素被称为样本。

样本是对总体的一种抽样,通过对样本的研究来了解总体的特征。

2. 参数与统计量总体的特征可以用参数来描述,例如总体的均值、标准差等。

而样本的特征可以用统计量来描述,例如样本的均值、标准差等。

通过对样本的统计量进行分析,可以推断总体的参数。

3. 频数和频率统计学中常用到的两个概念是频数和频率。

频数指某个特定数值在样本或总体中出现的次数,频率指频数与样本或总体的大小之比,通常以百分比表示。

二、统计图表1. 条形图条形图是一种用长方形的长度表示各种数据间比较大小的图表形式。

它适用于展示不同类别的数量或比例的差异。

2. 折线图折线图通过在坐标系上连接数据点,在时间序列上展示数据的变化趋势,是描述连续数据变化情况的一种图表形式。

3. 散点图散点图用来展示两个变量之间的关系,其中每个数据点代表一个样本,横坐标表示一个变量,纵坐标表示另一个变量。

4. 饼图饼图是将一个圆分成若干部分,每个部分的面积与相应类别的频数或频率成比例,用于展示不同类别在总体中的占比情况。

三、概率论基础1. 随机事件与样本空间随机事件是指在一次实验中可能发生、也可能不发生的事件。

样本空间是指所有可能结果的集合。

随机事件可以用样本空间中的子集来表示。

2. 频率与概率频率是指某个事件在相同条件下重复实验中出现的频率,概率是指某个事件发生的可能性大小。

频率与概率之间存在着一种近似关系。

3. 条件概率与独立事件条件概率是指在某个事件已经发生的条件下,其他事件发生的概率。

如果两个事件的发生互不影响,即一个事件的发生不会改变另一个事件发生的概率,那么这两个事件是独立事件。

高中数学概率和统计知识点

高中数学概率和统计知识点

高中数学之概率与统计求等可能性事件、互斥事件和相互独立事件的概率解此类题目常应用以下知识:(1)等可能性事件(古典概型)的概率:P(A)=)()(I card A card =n m; 等可能事件概率的计算步骤:计算一次试验的基本事件总数n ;设所求事件A ,并计算事件A 包含的基本事件的个数m ; 依公式()mP A n =求值;答,即给问题一个明确的答复.(2)互斥事件有一个发生的概率:P(A +B)=P(A)+P(B); 特例:对立事件的概率:P(A)+P(A )=P(A +A )=1. (3)相互独立事件同时发生的概率:P(A ·B)=P(A)·P(B); 特例:独立重复试验的概率:Pn(k)=kn k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.(4)解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件互斥事件 独立事件 n 次独立重复试验即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)kk n k n n m P A nP A B P A P B P A B P A P B P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.例1.在五个数字12345,,,,中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 (结果用数值表示).[解答过程]0.3提示:1335C 33.54C 102P ===⨯例2.一个总体含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的概率为 .[解答过程]1.20提示:51.10020P == 例3.接种某疫苗后,出现发热反应的概率为0.80.现有5人接种该疫苗,至少有3人出现发热反应的概率为__________.(精确到0.01)[考查目的] 本题主要考查运用组合、概率的基本知识和分类计数原理解决问题的能力,以及推理和运算能力.[解答提示]至少有3人出现发热反应的概率为33244555550.800.200.800.200.800.94C C C ⋅⋅+⋅⋅+⋅=.故填0.94.离散型随机变量的分布列 1.随机变量及相关概念①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示.②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列①离散型随机变量的分布列的概念和性质一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.为随机变量ξ的概率分布,简称ξ的分布列.由概率的性质可知,任一离散型随机变量的分布列都具有下述两个性质: (1)0≥i P ,=i 1,2,…;(2)++21P P …=1. ②常见的离散型随机变量的分布列: (1)二项分布n 次独立重复试验中,事件A 发生的次数ξ是一个随机变量,其所有可能的取值为0,1,2,…n ,并且kn k k n k q p C k P P -===)(ξ,其中n k ≤≤0,p q -=1,随机变量ξ的分布列如下:称这样随机变量ξ服从二项分布,记作),(~p n B ξ,其中n 、p 为参数,并记:),;(p n k b q p C kn k k n =- .(2) 几何分布在独立重复试验中,某事件第一次发生时所作的试验的次数ξ是一个取值为正整数的离散型随机变量,“k ξ=”表示在第k 次独立重复试验时事件第一次发生. 随机变量ξ的概率分布为:例1.厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验,求至少有1件是合格的概率;(Ⅱ)若厂家发给商家20件产品中,其中有3件不合格,按合同规定该商家从中任取2件.都进行检验,只有2件都合格时才接收这批产品.否则拒收,求出该商家检验出不合格产品数ξ的分布列及期望ξE ,并求出该商家拒收这批产品的概率.[解答过程](Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A 用对立事件A 来算,有()()4110.20.9984P A P A =-=-=(Ⅱ)ξ可能的取值为0,1,2.()2172201360190C P C ξ===, ()11317220511190C C P C ξ===,()2322032190C P C ξ===136513301219019019010E ξ=⨯+⨯+⨯=.记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=.所以商家拒收这批产品的概率为2795.例12.某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考核,否则即被淘汰. 已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手被淘汰的概率;(Ⅱ)该选手在选拔中回答问题的个数记为ξ,求随机变量ξ的分布列与数学期望. (注:本小题结果可用分数表示)[解答过程]解法一:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =,∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=.(Ⅱ)ξ的可能值为123,,,11(1)()5P P A ξ===,1212428(2)()()()5525P P A A P A P A ξ====⨯=, 12124312(3)()()()5525P P A A P A P A ξ====⨯=.ξ∴的分布列为11235252525E ξ∴=⨯+⨯+⨯=.解法二:(Ⅰ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =.∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=. (Ⅱ)同解法一.离散型随机变量的期望与方差随机变量的数学期望和方差 (1)离散型随机变量的数学期望:++=2211p x p x E ξ…;期望反映随机变量取值的平均水平.⑵离散型随机变量的方差:+-+-=222121)()(p E x p E x D ξξξ…+-+n n p E x 2)(ξ…;方差反映随机变量取值的稳定与波动,集中与离散的程度.⑶基本性质:b aE b a E +=+ξξ)(;ξξD a b a D 2)(=+.(4)若ξ~B(n ,p),则 np E =ξ ; D ξ =npq (这里q=1-p ) ;如果随机变量ξ服从几何分布,),()(p k g k P ==ξ,则p E 1=ξ,D ξ =2p q 其中q=1-p.例1.甲、乙两名工人加工同一种零件,两人每天加工的零件数相等,所得次品数分别为ε、η,ε和η的分布列如下:则比较两名工人的技术水平的高低为 .思路:一是要比较两名工人在加工零件数相等的条件下出次品数的平均值,即期望;二是要看出次品数的波动情况,即方差值的大小.解答过程:工人甲生产出次品数ε的期望和方差分别为:7.0103210111060=⨯+⨯+⨯=εE ,891.0103)7.02(101)7.01(106)7.00(222=⨯-+⨯-+⨯-=εD ;工人乙生产出次品数η的期望和方差分别为:7.0102210311050=⨯+⨯+⨯=ηE ,664.0102)7.02(103)7.01(105)7.00(222=⨯-+⨯-+⨯-=ηD由E ε=E η知,两人出次品的平均数相同,技术水平相当,但D ε>D η,可见乙的技术比较稳定.小结:期望反映随机变量取值的平均水平;方差反映随机变量取值的稳定与波动,集中与离散的程度. 例2.某商场经销某商品,根据以往资料统计,顾客采用的付款期数ξ的分布列为商场经销一件该商品,采用1期付款,其利润为200元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元.η表示经销一件该商品的利润.(Ⅰ)求事件A :“购买该商品的3位顾客中,至少有1位采用1期付款”的概率()P A ;(Ⅱ)求η的分布列及期望E η.[解答过程](Ⅰ)由A 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”. 知A 表示事件“购买该商品的3位顾客中无人采用1期付款”2()(10.4)0.216P A =-=, ()1()10.2160.784P A P A =-=-=.(Ⅱ)η的可能取值为200元,250元,300元.(200)(1)0.4P P ηξ====,(250)(2)(3)0.20.20.4P P P ηξξ===+==+=,(300)1(200)(250)10.40.40.2P P P ηηη==-=-==--=.η的分布列为2000.42500.43000.2E η=⨯+⨯+⨯240=(元).抽样方法与总体分布的估计 抽样方法1.简单随机抽样:设一个总体的个数为N ,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样.常用抽签法和随机数表法.2.系统抽样:当总体中的个数较多时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取1个个体,得到所需要的样本,这种抽样叫做系统抽样(也称为机械抽样).3.分层抽样:当已知总体由差异明显的几部分组成时,常将总体分成几部分,然后按照各部分所占的比进行抽样,这种抽样叫做分层抽样. 总体分布的估计由于总体分布通常不易知道,我们往往用样本的频率分布去估计总体的分布,一般地,样本容量越大,这种估计就越精确.总体分布:总体取值的概率分布规律通常称为总体分布.当总体中的个体取不同数值很少时,其频率分布表由所取样本的不同数值及相应的频率表示,几何表示就是相应的条形图.当总体中的个体取值在某个区间上时用频率分布直方图来表示相应样本的频率分布.总体密度曲线:当样本容量无限增大,分组的组距无限缩小,那么频率分布直方图就会无限接近于一条光滑曲线,即总体密度曲线. 典型例题例1.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5.现用分层抽样方法抽出一个容量为n 的样本,样本中A 种型号产品有16件.那么此样本的容量n= .解答过程:A 种型号的总体是210,则样本容量n=1016802⨯=.例2.一个总体中有100个个体,随机编号0,1,2,…,99,依编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m ,那么在第k 组中抽取的号码个位数字与m k +的个位数字相同,若6m =,则在第7组中抽取的号码是 .解答过程:第K 组的号码为(1)10k - ,(1)101k -+,…,(1)109k -+,当m=6时,第k 组抽取的号的个位数字为m+k 的个位数字,所以第7组中抽取的号码的个位数字为3 ,所以抽取号码为63.正态分布与线性回归 1.正态分布的概念及主要性质(1)正态分布的概念如果连续型随机变量ξ 的概率密度函数为 222)(21)(σμπσ--=x ex f ,x R ∈ 其中σ、μ为常数,并且σ>0,则称ξ服从正态分布,记为~N ξ(μ,2σ).(2)期望E ξ =μ,方差2σξ=D .(3)正态分布的性质 正态曲线具有下列性质:①曲线在x 轴上方,并且关于直线x =μ对称.②曲线在x=μ时处于最高点,由这一点向左右两边延伸时,曲线逐渐降低.③曲线的对称轴位置由μ确定;曲线的形状由σ确定,σ越大,曲线越“矮胖”;反之越“高瘦”.三σ原则即为数值分布在(μ—σ,μ+σ)中的概率为0.6526 数值分布在(μ—2σ,μ+2σ)中的概率为0.9544 数值分布在(μ—3σ,μ+3σ)中的概率为0.9974 (4)标准正态分布当μ=0,σ=1时ξ服从标准的正态分布,记作~N ξ(0,1) (5)两个重要的公式①()1()x x φφ-=-,② ()()()P a b b a ξφφ<<=-.(6)2(,)N μσ与(0,1)N 二者联系.若2~(,)N ξμσ,则~(0,1)N ξμησ-=;②若2~(,)N ξμσ,则()()()b a P a b μμξφφσσ--<<=-.2.线性回归简单的说,线性回归就是处理变量与变量之间的线性关系的一种数学方法.变量和变量之间的关系大致可分为两种类型:确定性的函数关系和不确定的函数关系.不确定性的两个变量之间往往仍有规律可循.回归分析就是处理变量之间的相关关系的一种数量统计方法.它可以提供变量之间相关关系的经验公式.具体说来,对n 个样本数据(11,x y ),(22,x y ),…,(,n n x y ),其回归直线方程,或经验公式为:a bx y+=ˆ.其中,,)(1221x b y a x n xyx n yx b ni ini ii⋅-=--=∑∑==,其中y x ,分别为|i x |、|i y |的平均数.例1.如果随机变量ξ~N (μ,σ2),且E ξ=3,D ξ=1,则P (-1<ξ≤1=等于( ) A.2Φ(1)-1 B.Φ(4)-Φ(2) C.Φ(2)-Φ(4) D.Φ(-4)-Φ(-2)解答过程:对正态分布,μ=E ξ=3,σ2=D ξ=1,故P (-1<ξ≤1)=Φ(1-3)-Φ(-1-3)=Φ(-2)-Φ(-4)=Φ(4)-Φ(2). 答案:B例2. 将温度调节器放置在贮存着某种液体的容器内,调节器设定在d ℃,液体的温度ξ(单位:℃)是一个随机变量,且ξ~N (d ,0.52). (1)若d=90°,则ξ<89的概率为 ; (2)若要保持液体的温度至少为80 ℃的概率不低于0.99,则d 至少是 ?(其中若η~N (0,1),则Φ(2)=P (η<2)=0.9772,Φ(-2.327)=P (η<-2.327)=0.01).解答过程:(1)P (ξ<89)=F (89)=Φ(5.09089-)=Φ(-2)=1-Φ(2)=1-0.9772=0.0228.(2)由已知d 满足0.99≤P (ξ≥80),即1-P (ξ<80)≥1-0.01,∴P (ξ<80)≤0.01.∴Φ(5.080d-)≤0.01=Φ(-2.327).∴5.080d -≤-2.327.∴d ≤81.1635.故d 至少为81.1635.小结:(1)若ξ~N (0,1),则η=σμξ-~N (0,1).(2)标准正态分布的密度函数f (x )是偶函数,x<0时,f (x )为增函数,x>0时,f (x )为减函数.。

高中数学中的概率与统计详细介绍

高中数学中的概率与统计详细介绍

高中数学中的概率与统计详细介绍数学是一门理论和实践相结合的学科,其中概率论和统计学作为数学的两个重要分支,对于我们理解和应用数据的规律和趋势起着至关重要的作用。

高中数学中,概率与统计成为数学课程中的一大亮点,通过深入学习与实践,可以帮助我们更好地理解和运用概率和统计的原理。

一、概率论概念及基本性质概率论是描述随机事件发生规律的数学分支。

在高中数学中,我们首先需要了解概率的基本概念和性质。

概率的基本概念主要包括样本空间、随机事件和概率。

样本空间是指一个随机试验的所有可能结果组成的集合,随机事件是指样本空间中的某些结果的集合,概率是指随机事件发生的可能性大小。

概率的基本性质主要包括非负性、规范性和可列可加性。

非负性要求概率值始终大于等于0,规范性要求样本空间的概率为1,可列可加性要求对于任意两个互不相容的随机事件A和B来说,它们的并事件的概率等于它们的概率之和。

二、条件概率与事件独立性在高中数学中,我们还需要掌握条件概率和事件独立性的概念和性质。

条件概率是指在某一条件下,事件发生的概率。

条件概率的计算公式为P(A|B) = P(AB)/P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率;P(AB)表示事件A和事件B同时发生的概率;P(B)表示事件B发生的概率。

事件独立性是指两个事件相互独立,即一个事件的发生不受另一个事件的影响。

事件独立性的判定条件是P(A|B) = P(A),即在事件B发生与否的条件下,事件A发生的概率与事件B发生与否时A发生的概率相等。

三、离散型随机变量及其概率分布在概率论的学习中,我们经常遇到离散型随机变量及其概率分布的问题。

离散型随机变量是指可以取有限个或可列无限个值的随机变量。

离散型随机变量的概率分布可以通过概率质量函数(Probability Mass Function,PMF)来描述。

概率质量函数是指离散型随机变量取到每一个可能值的概率。

概率质量函数具有非负性和规范性的特点,且所有可能值的概率之和等于1。

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点

高中数学《统计》与《概率》知识点高中数学的《统计》和《概率》是数学领域中的两个重要分支,它们是数据分析、预测和决策制定等实际问题中必不可少的工具。

下面将详细介绍这两个知识点。

一、统计学是研究数据收集、整理、分析和解释的学科。

统计学的主要任务是从已有的数据中得出结论,进而得到有关总体的信息。

统计学的主要内容包括:1.描述统计:通过数值特征描述数据的中心位置、离散程度等。

描述统计包括以下几个方面:(1)集中趋势:主要有均值、中位数和众数。

均值是一组数据的平均值,中位数是一组数据中处于中间位置的数值,众数是一组数据中出现频率最高的数值。

(2)离散程度:主要有极差、方差和标准差。

极差是一组数据中最大数与最小数的差值,方差是各个数据与均值的差值的平方的平均值,标准差是方差的平方根。

(3)分布形状:主要有正态分布、偏态分布和峰态分布等类型。

2.探索性数据分析:根据数据特征进行初步探索,主要包括绘制直方图、饼图、箱线图等工具来分析数据分布和异常值。

3.概率论:概率是描述随机事件发生可能性的数值,涉及到概率的计算、随机变量及其分布、大数定律和中心极限定理等概念。

(1)概率的定义与性质:概率的定义有经典概率和条件概率等。

经典概率是指在等可能的情况下,一些事件发生的概率。

条件概率是指在已知一事件发生的条件下,另一事件发生的概率。

(2)随机变量与概率分布:随机变量是具有随机性的数值,可分为离散随机变量和连续随机变量。

离散随机变量取有限或可数个数值,其概率分布函数称为概率分布列;连续随机变量在一些区间上取值,其概率分布函数称为概率密度函数。

(3)大数定律与中心极限定理:大数定律是指随着试验次数的增加,频率逼近概率。

中心极限定理是指多个独立随机变量之和的分布近似于正态分布。

4.统计推断:通过样本数据推断总体特征,主要有参数估计和假设检验。

(1)参数估计:根据样本数据估计总体参数,主要有点估计和区间估计。

点估计是用一个数值来估计总体参数,区间估计是用一个区间来估计总体参数,有置信水平的概念。

高中数学概率统计知识点全归纳

高中数学概率统计知识点全归纳

高中数学《概率与统计》知识点总结一、统计1、抽样方法:①简单随机抽样(总体个数较少) ②系统抽样(总体个数较多) ③分层抽样(总体中差异明显)注意:在N 个个体的总体中抽取出n 个个体组成样本,每个个体被抽到的机会(概率)均为Nn 。

2、总体分布的估计: ⑴一表二图:①频率分布表——数据详实 ②频率分布直方图——分布直观③频率分布折线图——便于观察总体分布趋势 注:总体分布的密度曲线与横轴围成的面积为1。

⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。

②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数据重复写。

3、总体特征数的估计:⑴平均数:nx x x x x n++++= 321;取值为n x x x ,,,21 的频率分别为n p p p ,,,21 ,则其平均数为n n p x p x p x +++ 2211; 注意:频率分布表计算平均数要取组中值。

⑵方差与标准差:一组样本数据n x x x ,,,21 方差:212)(1∑=−=ni ix xns ;标准差:21)(1∑=−=ni ix xns注:方差与标准差越小,说明样本数据越稳定。

平均数反映数据总体水平;方差与标准差反映数据的稳定水平。

⑶线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法)1221ni i i nii x y nx y b x nx a y bx==⎧−⎪⎪=⎪⎨−⎪⎪=−⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

二、概率1、随机事件及其概率:⑴事件:试验的每一种可能的结果,用大写英文字母表示; ⑵必然事件、不可能事件、随机事件的特点; ⑶随机事件A 的概率:1)(0,)(≤≤=A P nmA P . 2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果; ⑵古典概型的特点:①所有的基本事件只有有限个; ②每个基本事件都是等可能发生。

高中概率统计考点归纳

高中概率统计考点归纳

高中概率统计考点归纳一、概率的基本概念与性质概率的定义:概率是一个衡量事件发生可能性的数值,通常用P(A)表示事件A发生的概率。

概率的取值范围为0到1之间,其中P(A) = 0表示事件A不可能发生,P(A) = 1表示事件A必然发生。

举例:抛掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率也为0.5。

概率的性质:非负性:对于任意事件A,有P(A) ≥0;归一性:对于必然事件S,有P(S) = 1;可加性:对于互斥事件A和B(即A和B不能同时发生),有P(A ∪B) = P(A) + P(B)。

举例:一个袋子中有3个红球和2个白球,随机抽取一个球为红球的概率是3/5,为白球的概率是2/5。

由于红球和白球是互斥事件,所以抽取到红球或白球的概率是3/5 + 2/5 = 1。

二、古典概型与几何概型古典概型:在有限个等可能的基本事件中,通过计算事件包含的基本事件个数与总基本事件个数的比值来求概率。

举例:抛掷两颗骰子,求点数之和为7的概率。

总的基本事件个数为6×6=36,点数之和为7的基本事件有(1,6)、(2,5)、(3,4)、(4,3)、(5,2)、(6,1),共6种。

因此,点数之和为7的概率为6/36=1/6。

几何概型:在某一度量(长度、面积、体积等)下,通过计算事件占有的度量与样本空间占有的度量的比值来求概率。

举例:在长度为1的线段上随机取一点,求该点位于线段前1/3部分的概率。

样本空间为整个线段,其长度为1;事件空间为线段前1/3部分,其长度为1/3。

因此,该点位于线段前1/3部分的概率为1/3。

三、条件概率与全概率公式条件概率:在已知事件B发生的条件下,事件A发生的概率,记为P(A|B)。

计算公式为P(A|B) = P(AB) / P(B),其中P(AB)表示事件A和B同时发生的概率。

举例:一个班级中有40名学生,其中25名男生和15名女生。

已知某学生是女生,求该学生数学成绩优秀的概率。

高中概率与统计知识点总结

高中概率与统计知识点总结

高中概率与统计知识点总结概率与统计是高中数学中的重要内容,涉及到随机现象的研究以及数据的收集、整理和分析。

掌握概率与统计的基本知识和方法,对于学生在高中阶段的数学学习和日常生活中的决策都具有重要意义。

本文将对高中概率与统计的知识点进行总结,包括概率基本概念、常见的概率分布以及统计学中的统计量等。

一、概率基本概念1. 试验与样本空间:试验是指具有不确定性的随机现象,样本空间是指试验所有可能结果的集合。

2. 事件与事件的概率:事件是样本空间的子集,而事件的概率是指某事件出现的可能性大小,介于0和1之间。

3. 概率的性质:概率具有非负性、规范性、可加性等性质,在计算概率时需要运用这些性质。

4. 条件概率:条件概率是指在已知事件B发生的条件下,事件A发生的概率,记作P(A|B)。

5. 独立事件:若事件A和事件B的发生没有关联性,称事件A和事件B是相互独立的。

6. 乘法定理和全概率公式:乘法定理和全概率公式是概率计算中常用的工具,可用于计算复杂事件的概率。

二、常见的概率分布1. 二项分布:二项分布是指在n次独立重复试验中,成功事件发生k次的概率分布。

它的概率质量函数是二项式系数的乘积。

2. 泊松分布:泊松分布是描述单位时间内随机事件发生的次数的概率分布。

它的概率质量函数是由λ的幂指数和一个阶乘项组成。

3. 正态分布:正态分布是自然界中许多随机变量的分布模式。

其概率密度函数呈钟形曲线,对称分布。

三、统计学中的统计量1. 样本均值与总体均值:样本均值是指从总体中抽取的一组样本数据的平均值,总体均值是指所有可能样本数据的均值。

2. 样本方差与总体方差:样本方差是指从总体中抽取的一组样本数据的方差,总体方差是指所有可能样本数据的方差。

3. 样本标准差与总体标准差:样本标准差是指从总体中抽取的一组样本数据的标准差,总体标准差是指所有可能样本数据的标准差。

4. 相关系数:相关系数是衡量两个变量之间相关关系强弱的统计量。

高中数学中的概率与统计

高中数学中的概率与统计

高中数学中的概率与统计概率和统计是高中数学中非常重要的两个概念。

概率是用来描述事件发生的可能性,而统计则是通过对数据的收集、整理和分析来得出结论。

本文将从概率和统计的基本概念、应用以及解决实际问题等方面进行论述。

一、概率的基本概念概率是指事件发生的可能性。

在高中数学中,我们常用“P(A)”来表示事件A发生的概率。

概率的取值范围在0到1之间,其中0代表不可能事件,1代表必然事件。

1.1 事件的分类在概率中,事件可以分为互斥事件和非互斥事件。

互斥事件是指两个事件不能同时发生,而非互斥事件则可以同时发生。

1.2 概率的计算对于互斥事件,可以通过求和法则来计算概率。

若事件A和事件B 互斥,则P(A或B) = P(A) + P(B)。

而对于非互斥事件,可以通过减法法则来计算概率。

若事件A和事件B非互斥,则P(A或B) = P(A) + P(B) - P(A和B)。

二、统计的基本概念统计是指通过对数据的收集、整理和分析来得出结论的过程。

在高中数学中,我们主要学习的是统计中的平均数、频率分布和抽样等概念。

2.1 平均数平均数是统计中最常见的概念之一。

我们可以通过求和然后除以总个数来计算平均数。

例如,对于一组数据x1, x2, ..., xn,其平均数可以表示为:(x1 + x2 + ... + xn) / n。

2.2 频率分布频率分布是将数据按照不同数值进行分类,并统计各个类别的个数。

通过绘制频率分布表或直方图,我们可以更直观地了解数据的分布状况。

2.3 抽样抽样是统计中常用的一种方法,它通过从总体中选择一部分样本进行调查和分析。

合理的抽样方法可以保证所得到的结论具有代表性。

三、概率与统计的应用概率和统计在现实生活中有着广泛的应用,以下通过几个具体的例子来说明。

3.1 古典概率的应用古典概率是一种基于样本空间和事件发生数的概率计算方法。

例如,在一组均匀的骰子中,计算掷出的点数为偶数的概率就是一个古典概率的应用。

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式

高中数学《概率与统计》重要公式1.n个互斥事件发生的概率和公式为P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

2.独立事件A,B同时发生的概率为P(A·B)= P(A)·P(B)。

3.n个独立事件同时发生的概率为P(A1·A2·…·An)=P(A1)·P(A2)·…·P(An)。

4.等可能性事件的概率为P(A)= m/n。

5.n次独立重复试验中某事件恰好发生k次的概率为C(n,k)P^k(1-P)^(n-k)。

6.互斥事件A,B分别发生的概率的和为P(A+B)=P(A)+P(B)。

7.离散型随机变量的分布列具有两个性质:(1) Pi>=0(i=1,2.) (2) P1+P2+。

=1.8.数学期望具有两个性质:(1) E(aX+b)=aE(X)+b (2) 若X~B(n,p),则E(X)=np。

9.若随机变量X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则E(X)=1/p。

10.方差公式为2D(X)=(x1-E(X))^2P1+(x2-E(X))^2P2+。

+(xn-E(X))^2Pn。

11.方差具有三个性质:(1) D(aX+b)=a^2D(X) (2) 若X~B(n,p),则D(X)=np(1-p) (3) 若X服从几何分布,且P(X=k)=g(k,p)=q^(k-1)p,则D(X)=q/p^2.12.方差与期望的关系为D(X)=E(X^2)-(E(X))^2.13.标准差为σ(X)=sqrt(D(X))。

14.标准正态分布密度函数为f(x)=1/sqrt(2π)e^(-x^2/2),其中x属于实数集。

15.正态分布密度函数为f(x)=(1/(σsqrt(2π)))e^(-((x-μ)^2)/(2σ^2)),其中μ和σ(σ>0)为参数,分别表示个体的平均数与标准差。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【摘要】到了高三总复习的时候发现有许多的数学知识点还没有理解,而这些知识点往往就是必考的知识点,欢迎同学们来到精品的高三数学知识点频道参考高中数学知识点总结,祝愿大家都能有个好成绩!概率与统计(文)命题趋势预测:高考对概率与统计内容的考查,往往以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。

概率应用题侧重于古典概率,近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。

在今年的高考中,可能涉及等可能事件,互斥事件,对立事件,独立事件的概率的求法,对于这部分,我们还应当重视与传统内容的有机结合。

概率与统计(理)命题趋势预测:高考对概率与统计内容的考查,往往以实际应用题出现,这既是这类问题的特点,也符合高考发展的方向。

概率应用题侧重于分布列与期望。

应用题近几年的高考有以概率应用题替代传统应用题的趋势,高考概率统计应用题多数省份出现在解答题前三题的位置,可见概率统计在高考中属于中档题。

高中学习的《概率统计》是大学统计学的基础,起着承上启下的作用,是每年高考命题的热点。

试题特点(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。

(2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。

这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。

(3)概率统计试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n次独立重复试验中恰发生k次的概率、离散型随机变量分布列和数学期望、方差、抽样方法等内容都进行了考查。

下面通过简析有关概率统计方面的试题,来分析命题方向,透视命题信息,以便科学高效地组织好概率统计的高考复习。

总结:查字典数学网整理的高中数学知识点总结帮助同学们复习以前没有学会的数学知识点,请大家认真阅读上面的文章,也祝愿大家都能愉快学习,愉快成长!。

相关文档
最新文档