高中数学 第二章《2.2.2平面与平面平行的判定》练习 新人教A版必修2
2.2.2平面与平面平行的判定(解析版)
人教版A版高中数学必修二2.2.2平面与平面平行的判定学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列条件中,能判断两个平面平行的是()A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内的两条相交直线平行于另一个平面D.一个平面内有无数条直线平行于另一个平面【答案】C【解析】【分析】根据面面平行的判定定理或定义可得出结论.【详解】根据面面平行的定义可知,若两个平面没有公共点,则这两个平面平行,则一个平面内所有直线都与另一个平面没有公共点,则这两个平面平行.由面面平行的判定定理可知,一个平面内两条相交直线与另一个平面平行,则这两个平面平行.故选:C.【点睛】本题考查面面平行的判断,一般利用面面平行的定义或判定定理来判断,考查对面面平行的定义和判定定理的理解,属于基础题.2.下列说法正确的是()A.若两条直线与同一条直线所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线分别平行于两个相交平面,则一定平行它们的交线D.若两个平面都平行于同一条直线,则这两个平面平行【答案】C【解析】【分析】利用逐一验证法,结合面面平行的判定以及线线平行的特点,可得结果.A 错,由两条直线与同一条直线所成的角相等,可知两条直线可能平行,可能相交,也可能异面;B 错,若一个平面内有三个点到另一个平面的距离相等,则这两个平面可能平行或相交;C 正确,设,l m αβ⋂=//,m α//β,利用线面平行的性质定理,在平面α中存在直线a //m ,在平面β中存在直线b //m ,所以可知a //b ,根据线面平行的判定定理,可得b //α,然后根据线面平行的性质定理可知b //l ,所以m //l ;D 错,两个平面可能平行,也可能相交.故选:C【点睛】本题考查面面平行的判定,还考查线面平行的判定定理以及性质定理,重点在于对定理的熟练应用,属基础题.3.已知,αβ是两个不重合的平面,下列选项中,一定能得出平面α与平面β平行的是( )A .α内有无穷多条直线与β平行B .直线a //,a α//βC .直线,a b 满足b //,a a //,b α//βD .异面直线,a b 满足,a b αβ⊂⊂,且a //,b β//α【答案】D【解析】【分析】采用逐一验证法,根据面面平行的判定定理,可得结果.【详解】A 错α内有无穷多条直线与β平行,B 错若直线a //,a α//β,则平面α与平面β可能平行,也可能相交,C 错若b //,a a //,b α//β,则平面α与平面β可能平行,也可能相交,D 正确当异面直线,a b 满足,a b αβ⊂⊂,且a //,b β//α时,可在α上取一点P ,过点P 在α内作直线'b //b ,由线面平行的判定定理,得'b //β,,a b 异面,所以',a b 相交,再由面面平行的判定定理,得α//β,故选:D.【点睛】本题考查面面平行的判定,属基础题.4.已知三条互不相同的直线l m n ,,和三个互不相同的平面αβγ,,,现给出下列三个命题:①若l 与m 为异面直线,l m αβ⊂⊂,,则αβ∥;②若αβ∥,l m αβ⊂⊂,,则l m P ;其中真命题的个数为( )A .3B .2C .1D .0【答案】D【解析】【分析】通过线面平行的性质与判定,以及线面关系,对三个命题进行判断,得到答案.【详解】①中,两平面也可能相交,故①错误;本题考查线面平行的判定和性质,线面关系,属于简单题.5.设α,β表示两个不同平面,m 表示一条直线,下列命题正确的是( ) A .若//m α,//αβ,则//m β.B .若//m α,//m β,则//αβ.C .若m α⊂,//αβ,则//m β.D .若m α⊂,//m β,则//αβ.【答案】C【解析】【分析】由//m β或m β⊂判断A ;由//αβ,或αβ、相交判断B ;根据线面平行与面面平行的定义判断C ;由//αβ或αβ、相交,判断D .【详解】若//m α,//αβ,则//m β或m β⊂,A 不正确; 若//m α,//m β,则//αβ,或αβ、相交,B 不正确;若m α⊂,//αβ,可得m 、β没有公共点,即//m β,C 正确;若m α⊂,//m β,则//αβ或αβ、相交,D 不正确,故选C.【点睛】本题主要考查空间平行关系的性质与判断,属于基础题. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价.6.能够推出平面α∥平面β的是( )A .存在一条直线a ,a ∥α,a ∥βB .存在一条直线a ,a ⊂α,a ∥βC .存在两条平行直线a ,b ,a ⊂α,b ⊂β,a ∥β,b ∥α【解析】试题分析:对于A ,一条直线与两个平面都平行,两个平面不一定平行.故A 不对;对于B ,一个平面中的一条直线平行于另一个平面,两个平面不一定平行,故B 不对;对于C ,两个平面中的两条直线平行,不能保证两个平面平行,故C 不对;对于D ,两个平面中的两条互相异面的直线分别平行于另一个平面,可以保证两个平面平行,故D 正确考点:空间线面平行的判定与性质7.设,a b 是两条不同的直线,,αβ是两个不同的平面,则//αβ等价于( ) A .存在两条异面直线,a b ,,,//,//a b a b αββα⊂⊂.B .存在一条直线a ,//,//a a αβ.C .存在一条直线a ,,//β⊂a a a .D .存在两条平行直线,a b ,,,//,//αββ⊂⊂a b a b a .【答案】A【解析】【分析】根据面面平行的判定定理,以及线面,面面位置关系,逐项判断,即可得出结果.【详解】对于A 选项,如图:,a b 为异面直线,且,,//,//a b a b αββα⊂⊂,在β内过b 上一点作//c a ,则β内有两相交直线平行于α,则有//αβ;故A 正确;对于B 选项,若//,//a a αβ,则a 可能平行于α与β的交线,因此α与β可能平行,也可能相交,故B 错;对于D 选项,若,,//,//αββ⊂⊂a b a b a ,则α与β可能平行,也可能相交,故D 错.故选:A【点睛】本题主要考查探求面面平行的充分条件,熟记面面平行的判定定理,以及线面,面面位置关系即可,属于常考题型.8.已知m ,n 为两条不同的直线,α,β为两个不同的平面,对于下列四个命题: ①m α⊂,n ⊂α,m βP ,n P P βαβ⇒ ②n m ∥,n m αα⊂⇒P ③αβ∥,m α⊂,n m n P β⊂⇒ ④m αP ,n m n α⊂⇒P 其中正确命题的个数有( )A .0个B .1个C .2个D .3个 【答案】A【解析】①m α⊂,n α⊂,m P β,n βP ,则α与β可能相交,①错;②n m P ,n α⊂,则m 可能在平面α内,②错;③αβP ,m α⊂,n β⊂,则m 与n 可能异面,③错;④m αP ,n α⊂,则m 与n 可能异面,④错,故所有命题均不正确,故选A .【方法点晴】本题主要考查线面平行的判定与性质、面面平行判定与性质,属于中档题. 空间直线、平面平行或垂直等位置关系命题的真假判断,常采用画图(尤其是画长方体)、现实实物判断法(如墙角、桌面等)、排除筛选法等;另外,若原命题不太容易判断真假,可以考虑它的逆否命题,判断它的逆否命题真假,原命题与逆否命题等价. 9.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α,β都平行于γ②存在两条不同的直线l ,m ,使得l ⊂β,m ⊂β,使得l ∥α,m ∥α③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中,可以判定α与β平行的条件有( )A .1个B .2个C .3个D .4个【答案】B利用直线与平面、平面与平面的位置关系,对选项进行逐一判断,确定出正确选项即可.【详解】对于①:由平行于同一平面的两个平面平行可知①正确;对于②:由面面平行的判定定理知,若,l m 是同一平面内的两条相交直线时,可以判定α与β平行,反之不成立,故②不正确;对于③:若,αβ是两个相交平面时,如果平面α内不共线的三点在平面β的异侧时,此三点可以到平面β的距离等,此时不能判定α与β平行,故③不正确;对于④:在平面α内作''//,//l l m m ,因为,l m 是两条异面直线,所以必有'',l m 相交,又因为//,//l m ββ,所以''//,//l m ββ,由面面平行的判定定理知,α与β平行,故④正确;故选:B【点睛】本题考查面面平行的判定及线面平行的判定;熟练掌握面面平行的判定定理是求解本题的关键;重点考查学生的逻辑思维能力;属于中档题、常考题型.10.如图,在棱长为2的正方体1111ABCD A B C D -中,M 是11A B 的中点,点P 是侧面11CDD C 上的动点,且1MP AB C P ,则线段MP 长度的取值范围是( )A .B .C .D .【答案】B【解析】【分析】 取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,根据面面平行的判定定理,得到平MRN ∠是直角,进而即可求出结果.【详解】取CD 的中点N ,1CC 的中点R ,11B C 的中点H ,则1////MN B C HR ,//MH AC , ∴平面//MNRH 平面1AB C ,∴MP ⊂平面MNRH ,线段MP 扫过的图形是MNR V∵2AB =,∴MN NR MR ===∴222MN NR MR =+,∴MRN ∠是直角,∴线段MP 长度的取值范围是. 故选B.【点睛】本题主要考查面面平行的判定,熟记面面平行的判定定理即可,属于常考题型.二、填空题11.给出下列命题:①任意三点确定一个平面;②三条平行直线最多可以确定三个个平面;③不同的两条直线均垂直于同一个平面,则这两条直线平行;④一个平面中的两条直线与另一个平面都平行,则这两个平面平行;其中说法正确的有_____(填序号).【答案】②③【解析】【分析】对四个选项进行逐一分析即可.对①:根据公理可知,只有不在同一条直线上的三点才能确定一个平面,故错误;对②:三条平行线,可以确定平面的个数为1个或者3个,故正确;对③:垂直于同一个平面的两条直线平行,故正确;对④:一个平面中,只有相交的两条直线平行于另一个平面,两平面才平行,故错误. 综上所述,正确的有②③.故答案为:②③.【点睛】本题考查立体几何中的公理、线面平行的判定,属综合基础题.12.过平面外两点,可作______个平面与已知平面平行.【答案】0或1【解析】【分析】当这两点在平面的同一侧,且距离平面相等,这样就有一个平面与已知平面平行,当这两点在平面的异侧,不管两个点与平面的距离是多少,都没有平面与已知平面平行,结论不唯一,得到结果.【详解】两点与平面的位置不同,得到的结论是不同的,当这两点在平面的同一侧,且距离平面相等,这样就有一个平面与已知平面平行,当这两点在平面的异侧,不管两个点与平面的距离是多少,都没有平面与已知平面平行, 这样的平面可能有,可能没有,故答案为0或1.【点睛】本题考查平面的基本性质及推论,考查过两个点的平面与已知平面的关系,本题要考查学生的空间想象能力,是一个基础题.13.如图,在正方体ABCD-A1B1C1D1中,与面ABCD平行的面是____________.【答案】面A1B1C1D1【分析】根据正方体的性质,得到答案.【详解】在正方体ABCD -A 1B 1C 1D 1中根据正方体的性质,对面互相平行所以与面ABCD 平行的面是A 1B 1C 1D 1【点睛】本题考查正方体的基本性质,属于简单题.14.设直线,l m ,平面,αβ,下列条件能得出//αβ的是_____.l m αα⊂⊂①,,且//,//l m ββ;l m αβ⊂⊂②,且//l m ;③,l m αβ⊥⊥,且//l m ;//,//l m αβ④,且//l m .【答案】③【解析】【分析】利用空间直线和平面的位置关系对每一个命题分析判断得解.【详解】设直线,l m ,平面,αβ,①,l m αα⊂⊂,且//,//l m ββ;l 与m 不相交时不能得出//αβ.②,l m αβ⊂⊂且//;l m α与β可能相交.③,l m αβ⊥⊥,且//l m ;能得出//αβ.④//,//l m αβ,且//l m .可能得出α与β相交.故答案为:③.【点睛】本题主要考查空间直线和平面位置关系的判定,意在考查学生对这些知识的理解掌握水15.如图,在棱长为2的正方体1111ABCD A B C D -中,E 是棱1CC 的中点,F 是侧面11BCC B 内的动点(包括边界),且11//A F D AE 平面,则11FA FB ⋅u u u v u u u v的最小值为____.【答案】12【解析】【分析】 根据题意1111ABCD A B C D -,可知2211111111111()||||FA FB FB B A FB FB B A FB FB ⋅=+⋅=+⋅=u u u r u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u r ,即求21||FB u u u r 的最小值.在侧面11BCC B 内找到满足1//A F 平面1D AE 且21||FB u u u r最小的点即可.【详解】 由题得21111111()||FA FB FB B A FB FB ⋅=+⋅=u u u r u u u r u u u r u u u u r u u u r u u u r ,取1BB 中点H ,11B C 中点G ,连结1A G ,1A H ,GH ,11//A H D E Q ,∴1//A H 平面1D AE ,1//GH AD Q ,//GH ∴平面1D AE ,∴平面1//GA H 平面1D AE ,1//A F 平面1D AE ,故F ⊂平面1GA H ,又F ⊂平面11BCC B ,则点F 在两平面交线直线GH 上,那么1FB 的最小值是1FB GH ⊥时,11=1B G B H =,则211||=2FB u u u r 为最小值. 【点睛】本题考查空间向量以及平面之间的位置关系,有一定的综合性.三、解答题16.如图,在四棱锥P ABCD -中,AD CD ⊥,//AB CD ,E ,F 分别为棱PC ,CD的中点,3AB =,6CD =,且AC =(1)证明:平面//PAD 平面BEF .(2)若四棱锥P ABCD -的高为3,求该四棱锥的体积.【答案】(1)见解析(2)9【解析】【分析】(1)根据3AB =,6CD =可知2CD AB =,由//AB DF 可证明//BF AD ,又根据中位线可证明//EF PD 即可由平面与平面平行的判定定理证明平面//PAD 平面BEF . (2)利用勾股定理,求得DC .底面为直角梯形,求得底面积后即可由四棱锥的体积公式求得解.【详解】(1)证明:因为F 为CD 的中点,且2CD AB =,所以DF AB =.因为//AB CD ,所以//AB DF ,所以四边形ABFD 为平行四边形,所以//BF AD .在PDC ∆中,因为E ,F 分别为PC ,CD 的中点,所以//EF PD ,因为EF BF F =I ,PD AD D ⋂=,所以平面//PAD 平面BEF .(2)因为AD CD ⊥,所以AC ==又AC =所以2AD =. 所以四边形ABCD 的面积为()123692⨯⨯+=, 故四棱锥P ABCD -的体积为13993⨯⨯=. 【点睛】本题考查了平面与平面平行的判定,四棱锥体积的求法,属于基础题.17.如图,在正方体1111ABCD A B C D -中,,,M N P 分别是1AD ,1BD B C ,的中点. 求证:(1)MN ∥平面11CC D D ;(2)平面MNP P 平面11CC D D .【答案】证明见解析【解析】【分析】(1)连接1,AC CD ,根据线面平行的判定定理,即可证明结论成立;(2)连接1BC ,1C D ,先由线面平行的判定定理,得到PN P 平面11CC D D ,再由(1)的结果,结合面面平行的判定定理,即可证明结论成立.【详解】(1)如图,连接1,AC CD .∵四边形ABCD 是正方形,N 是BD 的中点,∴N 是AC 的中点.又∵M 是1AD 的中点,∴1//MN CD .∵MN ⊄平面11CC D D ,1CD ⊂平面11CC D D ,∴//MN 平面11CC D D .(2)连接1BC ,1C D ,∵四边形11B BCC 是正方形,P 是1B C 的中点,∴P 是1BC 的中点.又∵N 是BD 中点,∴1PN C D P .∵PN ⊄平面111,CC D D C D ⊂平面11CC D D ,∴PN P 平面11CC D D .由(1)知MN ∥平面11CC D D ,且MN PN N ⋂=,∴平面//MNP 平面11CC D D .【点睛】本题主要考查证明线面平行与面面平行,熟记线面平行的判定定理以及面面平行的判定定理即可,属于常考题型.18.如图,在三棱柱111ABC A B C -中,D 、P 分别是棱AB ,11A B 的中点,求证:(1)1AC ∥平面1B CD ;(2)平面1APC P 平面1B CD .【答案】(1)见证明;(2)见证明【解析】【分析】(1)设1BC 与1B C 的交点为O ,连结OD ,证明1OD AC P ,再由线面平行的判定可得1AC ∥平面1B CD ;(2)由P 为线段11A B 的中点,点D 是AB 的中点,证得四边形1ADB P 为平行四边形,得到1AP DB P ,进一步得到AP ∥平面1B CD .再由1AC ∥平面1B CD ,结合面面平行的判定可得平面1APC P 平面1B CD .【详解】证明:(1)设1BC 与1B C 的交点为O ,连结OD ,∵四边形11BCC B 为平行四边形,∴O 为1B C 中点,又D 是AB 的中点,∴OD 是三角形1ABC 的中位线,则1OD AC P ,又∵1AC ⊄平面1B CD ,OD ⊂平面1B CD ,∴1AC ∥平面1B CD ;(2)∵P 为线段11A B 的中点,点D 是AB 的中点,∴1AD B P P 且1AD B P =,则四边形1ADB P 为平行四边形,∴1AP DB P ,又∵AP ⊄平面1B CD ,1DB ⊂平面1B CD ,∴AP ∥平面1B CD .又1AC ∥平面1B CD ,1AC AP P =I ,且1AC ⊂平面1APC ,AP ⊂平面1APC , ∴平面1APC P 平面1B CD .【点睛】本题考查直线与平面,平面与平面平行的判定,考查空间想象能力与思维能力,是中档题.19.如图,在正方体1111ABCD A B C D -中,P 、Q 分别是平面11AA D D 、平面1111D C B A 的中心,证明:(1)1//D Q 平面1C DB ;(2)平面1//D PQ 平面1C DB .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)证明1//D Q DB 即可.(2)根据(1)中的结论再证明11//D P C B 即可.【详解】(1)由1111ABCD A B C D -是正方体,可知,1//D Q DB ,∵1D Q ⊄平面1C DB ,DB ⊂平面1C DB ,∴1//D Q 平面1C DB .(2)由1111ABCD A B C D -是正方体,可知,11//D P C B ,∵1D P ⊄平面1C DB ,1C B ⊂年平面1C DB ,∴1//D P 平面1C DB ,由(1)知,1//D Q 平面1C DB ,又111D Q D P D =I , ∴平面1//D PQ 平面1C DB .【点睛】本题主要考查了线面平行与面面平行的证明,属于基础题.20.如图,矩形ABCD 所在平面垂直于直角梯形ABPE 所在平面,2,1EP BP AD AE ====,,//,,AE EP AE BP G F ⊥分别是,BP BC 的中点.求证:平面//AFG 平面PCE ;【详解】因为G 是BP 的中点,2BP =,所以112PG BP ==. 又因为1AE =, //AE BP ,所以//AE PG ,且AE PG =,所以四边形AEPG 是平行四边形,所以//AG EP .又因为AG ⊄平面,PCE EP ⊂平面PCE ,所以//AG 平面PCE . 因为G F 、分别是BP BC 、的中点,所以//FG PC .又因为PC ⊂平面,PCE FG ⊄平面PCE ,所以//FG 面PCE 又因为,AG FG G AG ⋂=⊂平面,AFG FG ⊂平面AFG , 所以平面//AFG 平面PCE .。
数学:2.2.2《平面与平面平行的判定》课件(新人教A版必修2)
教学目标
• 理解并掌握两平面平行的判定定理。会用这个定 理证明两个平面的平行。 • 教学重点:两个平面平行的判定定理及应用。 • 教学难点:两个平面平行的证明。
复习回顾:
1. 到现在为止,我们一共学习过几种判断直线 与平面平行的方法呢? (1)定义法; (2)直线与平面平行的判定定理: 平面外一条直线与此平面内的一条直 线平行,则该直线与此平面平行.
a b α β β α b a
事实上,
建筑师如何检验屋顶平面是否与 水平面平行?
两个平面平行的判定定理:
如果一个平面内有两条相交直线都平行 于另一个平面,那么这两个平面平行
a , b, ab=P a // b // 符号语言
线不在多 贵在相交 //
P b
a
图形语言
面面平行
转化
线面平行
转化
线线平行?
两个平面平行的判定定理: 变式探究
如果一个平面内有两条相交直线都平行 于另一个平面,那么这两个平面平行 1.线面平行是否可用其它条件代替? 推论 如果一个平面内有两条 相交 直线分 别平行于另一个平面内的两相交直线,那 么这两个平面平行。 a a , b, ab=P P b // a∥a' , a ' a' b' b∥ , b' b'
无限
转化
有限
启示?
两个平面平行的问题,可以转化为一个 平面内的直线与另一个平面平行的问题。 面面平行
转化
线面平行
2、如果平面α内的任意直线都平 行于平面β,则α∥β吗?
α
β
3、若平面α内有一条直线a平行 于平面β,则能保证α∥β吗?
高二数学人教A版必修二 第二章 2.2.2 平面与平面平行的判定(同步课件1)
对于①:一个平面内有两条直线都与另外一个平面
平行,如果这两条直线不相交,而是平行,那么
第十六页,编辑于星期一:点 五十一分。
这两个平面相交也能够找得到这样的直线存在. 对于②:一个平面内有无数条直线都与另外一个平面
平行,同①.
对于③:一个平面内任何直线都与另外一个平面平行, 则这两个平面平行.这是两个平面平行的定义. 对于④:一个平面内有两条相交直线都与另外一个平 面平行,则这两个平面平行.这是两个平面平行的判
2.反过来,如果一个平面内的所有直线都和另一个平面平 行,那么这两个平面平行.
启示
线面平行
转化
面面平行
第五页,编辑于星期一:点 五十一分。
课堂探究1
1.三角板ABC的一条边BC与桌面平行,如图①三角板 ABC所在的平面与桌面α平行吗?
①
解析:不平行
第六页,编辑于星期一:点 五十一分。
2.当三角板ABC的两条边BC,AB都平行桌面α时,
(4)过平面外一点,只可作1个平面与已知平面平行 ( )√
第二十三页,编辑于星期一:点 五十一分。
(5)设a,b为异面直线,则存在平面α,β,使
a a,b ,且a / / .
( √)
α
a
b β
Hale Waihona Puke 第二十四页,编辑于星期一:点 五十一分。
【提升总结】 1.应用定理时,“内”、“交”、“平行”三个条件
2.2.2 平面与平面平行的判定
第一页,编辑于星期一:点 五十一分。
活动板房各个面是怎样拼在一 起的,它们都有什么关系呢?
第二页,编辑于星期一:点 五十一分。
木工师傅用气泡式水准仪在桌面上交叉放两次,如 果水准仪的气泡都是居中的,就可以判定这个桌面 和水平面平行,这是什么道理?
人教新课标A版高中数学必修二 可编辑课件 第二章 点、直线、平面之间的位置关系 222 平面与平面平行的判定
.
2.推论:如果一个平面内有两条 相交 直线,分别平
人 教
A
行于另一个平面内的两条直线,则这两个平面平行.
版
数
用符号表示为a∥c,b∥d,a∩b=A,a⊂α,b⊂α , 学
c⊂β,d⊂β⇒α∥β
.
3.α∥β,a⊂α⇒ a∥β .
第二章 点、直线、平面之间的位置关系
人 教 A 版 数 学
第二章 点、直线、平面之间的位置关系
第二章 点、直线、平面之间的位置关系
人
2.2.2 平面与平面平行的判定
教 A 版
数
学
第二章 点、直线、平面之间的位置关系
人 教 A 版 数 学
第二章 点、直线、平面之间的位置关系
1.判定定理:如果一个平面内有两条 相交 直 线 分
别 平行 于另一个平面,那么这两个平面平行.用数学符
号表示 a∥α,b∥α,a⊂β,b⊂β,a∩b=A⇒α∥β
一、选择题
1.若两个平面内分别有一条直线,这两条直线互相平 行,则这两个平面的公共点个数
A.有限个 B.无限个
C.没有
D.没有或无限个
[答案] D
[解析] 两平面相交或平行,故选D.
(
)
人 教
A
版
数
学
第二章 点、直线、平面之间的位置关系
二、填空题
2.直线a⊂平面α,直线b⊂平面β,且α∥β,则a、b的
证明如下:在正方体ABCD-A1B1C1D1中连接PQ.
∵P,Q分别为DD1,CC1的中点,
∴PQ綊CD,CD綊AB.
人
教
∴PQ綊AB,∴四边形ABQP是平行四边形,
A 版
数
∴PA∥QB.
湖南省永州市道县第一中学高中数学《2.2. 2 平面与平面平行的判定》学案 新人教A版必修2
学习目标1. 能借助于长方体模型讨论直线与平面、平面与平面的平行问题;2. 理解和掌握两个平面平行的判定定理及其运用;3. 进一步体会转化的数学思想.学习过程一、课前准备(预习教材P 56~ P 57,找出疑惑之处)复习1:直线与平面平行的判定定理是______________________________________________________.复习2:两个平面的位置关系有___种,分别为_______和_______.讨论:两个平面平行的定义是两个平面没有公共点,怎样证明两个平面没有公共点呢?你觉得好证吗?二、新课导学※ 探索新知探究:两个平面平行的判定定理问题1:平面可以看作是由直线构成的.若一平面内的所有直线都与另一个平面平行,则这两个平面平行吗?由此你可以得到什么结论?结论:两个平面平行的问题可以转化为一个平面内的直线与另一个平面平行的问题.问题2:一个平面内所有直线都平行于另外一个平面好证明吗?能否只证明一个平面内若干条直线和另外一个平面平行,那么这两个平面就平行呢?试试:在长方体中,回答下列问题⑴如图6-1,AA AA B B '''⊂面,AA '∥面BB C C '',则面AA B B ''∥面BB C C ''吗?图6-1⑵如图6-2,AA '∥EF ,AA '∥DCC D ''面,EF ∥DCC D ''面,则A ADD ''面∥DCC D ''面吗?图6-2⑶如图6-3,直线A C ''和B D ''相交,且A C ''、B D ''都和平面ABCD 平行(为什么),则平面A B C D ''''∥平面ABCD 吗?图6-3反思:由以上3个问题,你得到了什么结论?新知:两个平面平行的判定定理 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行.如图6-4所示,α∥β.图6-4反思:⑴定理的实质是什么?⑵用符号语言把定理表示出来.⑶如果要证明定理,该怎么证明呢?※ 典型例题例1 已知正方体1111ABCD A B C D -,如图6-5,求证:平面11AB D ∥1CB D .图6-5例2 如图6-6,已知,a b是两条异面直线,平面α过a,与b平行,平面β过b,与a平行,求证:平面α∥平面β小结:证明面面平行,只需证明线线平行,而且这两条直线必须是相交直线.※动手试试练. 如图6-7,正方体中,,,,M N E F分别是棱A B'',A D'',B C'',C D''的中点,求证:平面AMN∥平面EFDB.三、总结提升※学习小结1. 平面与平面平行的判定定理及应用;2. 转化思想的运用.※知识拓展判定平面与平面平行通常有5种方法⑴根据两平面平行的定义(常用反证法);⑵根据两平面平行的判定定理;⑶垂直于同一条直线的两个平面平行(以后学习);⑷两个平面同时平行于第三个平面,则这两个平面平行(平行的传递性);⑸一个平面内的两条相交直线分别平行于另外一个平面内的两条直线,则这两个平面平行(判定定理的推论).学习评价※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 平面α与平面β平行的条件可以是( ).A.α内有无穷多条直线都与β平行B.直线a 与,αβ都平行,且不在α和β内C.直线a α⊂,直线b β⊂,且a ∥β,b ∥αD.α内的任何直线都与β平行2. 经过平面α外的一条直线a 且与平面α平行的平面( ).A.有且只有一个B.不存在C.至多有一个D.至少有一个3. 设有不同的直线,a b ,及不同的平面α、β,给出的三个命题中正确命题的个数是( ). ①若a ∥α,b ∥α,则a ∥b ②若a ∥α,α∥β,则a ∥β③若,a αα⊂∥β,则a ∥β.A.0个B.1个C.2个D.3个4. 如果两个平面分别经过两条平行线中的一条,则这两个平面的位置关系是________________.5. 若两个平面都平行于两条异面直线中的每一条,则这两平面的位置关系是_______________.课后作业1. 如图6-8,在几何体ABC A B C '''-中,1∠+2180∠=°,34180∠+∠=°,求证:平面ABC ∥平面A B C '''.图6-82. 如图6-9,A '、B '、C '分别是PBC ∆、PCA ∆、PAB ∆的重心.求证:面A B C '''∥ABC 面.图6-9。
高中数学 第二章《2.2 直线、平面平行的判定及其性质》课件3 新人教A版必修2
说明理由.
(2)设E、F分别是A1B和B1C的中点,求证直线
EF//平面ABCD.
D1
C1
M A1
D
E
A
G
B1 F C
H B
小结
直线与平面平行的判定定理可简述为
“线线平行,则线面平行”
思想方法
通过直线间的平行,推证直线与平面平 行,即将直线与平面的平行关系(空间问题) 转化为直线间的平行关系(平面问题).
A α
M βB
C
N E
D
l
练习1
如果三个平面两两相交,那么它们的交线 位置如何?
bβ
γ l
α
β γα
ab l a
相交于一条交线 三条交线两两平行
三条交线相交 于一点
应用举例
练习2 一条斜线和两个平行平面相交,求证它和两
个平面所成的角相等.
小结
1. 知识小结 几个结论和性质的应用
2. 思想方法
面面平行
( )-网校通名校系列资料上,下精品资料! •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/62021/9/62021/9/6Sep-216-Sep-21
•12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/62021/9/62021/9/6Monday, September 06, 2021 13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/9/62021/9/62021/9/62021/9/69/6/2021
D′
高一数学必修二同步练习(人教A版)
一、选择题【共10道小题】1、给出的下列命题中,正确命题的个数是( )①梯形的四个顶点在同一平面内②三条平行直线必共面③有三个公共点的两个平面必重合④每两条都相交且交点各不相同的四条直线一定共面A.1B.2C.3D.4参考答案与解析:思路解析:逐个对各选项分析:梯形是一个平面图形,所以其四个顶点在同一个平面内,①对;两条平行直线是可以确定一个平面的,三条平行直线有可能确定三个平面,②错;三个公共点可以同在两个相交平面的公共直线上,③错;设这四条直线分别为l1、l2、l3、l4,取其中两条相交直线l1和l2,则它们可确定一个平面α,取l3,设其与l1、l2的交点分别为A、B,则由题意知这两点不同,且A∈l1,B∈l2,所以有A、B∈α,从而l3∈α;同理可证明l4∈α.所以每两条都相交且交点各不相同的四条直线一定共面,④对.答案:B主要考察知识点:空间直线和平面2、如图2-1-17,空间四边形SABC中,各边及对角线长都相等,若E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于( )A.90°B.60°C.45°D.30°图2-1-17参考答案与解析:思路解析:求EF与SA所成的角,可把SA平移,使其角的顶点在EF上,为此取SB的中点G,连结GE、GF、BE、AE.由三角形中位线定理得GE=BC,GF=SA,且GF∥SA,所以∠GFE就是EF与SA所成的角.若设此空间四边形边长为a,那么GF=GE=a,EA=a,EF=a,因此△EFG为等腰直角三角形,∠EFG=45°,所以EF与SA所成的角为45°.答案:C主要考察知识点:空间直线和平面3、如果直线a∥平面α,那么直线a与平面α内的( )A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交参考答案与解析:思路解析:利用线面平行的定义.直线a∥平面α,则a与α无公共点,与α内的直线当然均无公共点.答案:D主要考察知识点:空间直线和平面4、若点M在直线α上,α在平面α内,则M、a、α间的上述关系可记为( )A.M∈a,a∈αB.M∈a,aαC.M a,aαD.M a,aα参考答案与解析:B主要考察知识点:空间直线和平面5、在空间四边形ABCD的边AB、BC、CD、DA上分别取E、F、G、H四点,如果EF与HG交于点M,则( )A.M一定在直线AC上B.M一定在直线BD上C.M可能在AC上,也可能在BD上D.M不在AC上,也不在BD上参考答案与解析:A主要考察知识点:空间直线和平面6、下列说法正确的是()A.三点确定一个平面B.四边形一定是平面图形C.梯形一定是平面图形D.平面α和平面β有不同在一条直线上的三个交点参考答案与解析:解析:A错,不共点的三点;B错,如空间四边形;D错,两平面的三个交点在同一直线上.答案:C主要考察知识点:空间直线和平面7、若点M在直线a上,a在平面α内,则M,a,α间的上述关系可记为()A.M∈a,a∈αB.M∈a,C.,D.,参考答案与解析:解析:要明确数学符号语言的表示.答案:B主要考察知识点:空间直线和平面8、异面直线是指()A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线参考答案与解析:解析:A错,有可能平行;B错,有可能平行或相交;C错,有可能平行或相交;D正确.主要考察知识点:空间直线和平面9、若a∥α,b∥α,则直线a、b的位置关系是()A.平行B.相交C.异面D.A、B、C均有可能参考答案与解析:解析:平行、相交、异面都有可能,此题的难点在于可能选平行,易和平行公理混淆.答案:D主要考察知识点:空间直线和平面10、下列命题:①若直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线,则a∥α;④若直线a∥b,b α,那么直线a就平行于平面α内的无数条直线.其中真命题的个数为( )A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内,∴l不一定平行于α.∴①是假命题.对于②,∵直线a在平面α外包括两种情况:a∥α和a与α相交,∴a和α不一定平行.∴②是假命题.对于③,∵直线a∥b, ,则只能说明a和b无公共点,但a可能在平面α内,∴a不一定平行于α.∴③是假命题.对于④,∵a∥b, ,那么a α或a∥α,∴a可以与平面α内的无数条直线平行.∴④是真命题.综上所述,真命题的个数为1.主要考察知识点:空间直线和平面二、填空题【共4道小题】1、空间三条直线两两相交,点P不在这三条直线上,那么由点P和这三条直线最多可以确定的平面的个数为__________.参考答案与解析:解析:(1)当题中三条直线共点但不共面相交时,可确定3个平面;而P点与每条直线又可确定3个平面,故共确定6个.主要考察知识点:空间直线和平面2、和两条平行直线中的一条是异面直线的直线与另一条直线的位置关系是_______.参考答案与解析:思路解析:由公理4可知不可能平行,只有相交或异面.答案:相交或异面主要考察知识点:空间直线和平面3、看图填空.(1)AC∩BD=_______;(2)平面AB1∩平面A1C1=________;(3)平面A1C1CA∩平面AC=________;(4)平面A1C1CA∩平面D1B1BD=_________;(5)平面A1C1∩平面AB1∩平面B1C=_________;(6)A1B1∩B1B∩B1C1=_________.参考答案与解析:解析:两个面的两个公共点连线即为交线.答案:(1)O(2)A1B1(3)AC(4)OO1(5)B1(6)B1主要考察知识点:空间直线和平面4、已知平面α、β相交,在α、β内各取两点,这四点都不在交线上,这四点能确定平面_______个.参考答案与解析:解析:分类,如果这四点在同一平面内,那么确定一个平面,如果这四点不共面,则任意三点可确定一个平面,可确定四个.答案:1或4主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,已知△ABC在平面α外,它的三边所在直线分别交平面α于点P、Q、R,求证:P、Q、R三点共线.参考答案与解析:解析:本题是一个证明三点共线的问题,利用公理3,两平面相交时,有且只有一条公共直线.因此只需证明P、Q、R三点是某两个平面的公共点,即可得这三个点都在两平面的交线上,因此是共线的.证明:设△ABC确定平面ABC,直线AB交平面α于点Q,直线CB交平面α于点P,直线AC 交平面α于点R,则P、Q、R三点都在平面α内,又因为P、Q、R三点都在平面ABC内,所以P、Q、R三点都在平面α和平面ABC的交线上,而两平面的交线只有一条,所以P、Q、R三点共线.主要考察知识点:空间直线和平面2、如图,已知正方体ABCD—A′B′C′D′.①哪些棱所在直线与直线BA′是异面直线?②直线BA′和CC′的夹角是多少?③哪些棱所在的直线与直线AA′垂直?参考答案与解析:解析:①由异面直线的定义可知,棱AD,DC,CC′,DD′,D′C′,B′D′所在直线分别与直线BA′是异面直线.②由BB′∥CC′可知,∠B′BA′为异面直线BA′与CC′的夹角,∠B′BA′=45°,所以BA′与CC′的夹角为45°.③直线AB,BC,CD,DA,A′B′,B′C′,C′D′,D′A′分别与直线A A′垂直.主要考察知识点:空间直线和平面3、已知直线b∥c,且直线a与b、c都相交,求证:直线a,b,c共面.参考答案与解析:证明:∵b∥c,∴不妨设b,c共面于平面α.设a∩b=A,a∩c=B,∴A∈a,B∈a,A∈α,B∈α,即.∴三线共面.主要考察知识点:空间直线和平面一、选择题【共10道小题】1、若两个平面互相平行,则分别在这两个平行平面内的直线( )A.平行B.异面C.相交D.平行或异面参考答案与解析:解析:两平行平面内的直线可能平行,也可能异面,就是不可能相交.答案:D主要考察知识点:空间直线和平面2、下列结论中,正确的有( )①若aα,则a∥α②a∥平面α,bα则a∥b③平面α∥平面β,aα,bβ,则a∥b④平面α∥β,点P∈α,a∥β,且P∈a,则aαA.1个B.2个C.3个D.4个参考答案与解析:解析:若aα,则a∥α或a与α相交,由此知①不正确若a∥平面α,bα,则a与b异面或a∥b,∴②不正确若平面α∥β,aα,bβ,则a∥b或a与b异面,∴③不正确由平面α∥β,点P∈α知P β过点P而平行平β的直线a必在平面α内,是正确的.证明如下:假设aα,过直线a作一面γ,使γ与平面α相交,则γ与平面β必相交.设γ∩α=b,γ∩β=c,则点P∈b.由面面平行性质知b∥c;由线面平行性质知a∥c,则a∥b,这与a∩b=P矛盾,∴aα.故④正确.答案:A主要考察知识点:空间直线和平面3、在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=CF∶FB=1∶3,则对角线AC和平面DEF的位置关系是( )A.平行B.相交C.在内D.不能确定参考答案与解析:解析:在平面ABC内.∵AE:EB=CF:FB=1:3,∴AC∥EF.可以证明AC平面DEF.若AC平面DEF,则AD平面DEF,BC平面DEF.由此可知ABCD为平面图形,这与ABCD是空间四边形矛盾,故AC平面DEF.∵AC∥EF,EF平面DEF.∴AC∥平面DEF.答案:A主要考察知识点:空间直线和平面4、a,b是两条异面直线,A是不在a,b上的点,则下列结论成立的是( )A.过A有且只有一个平面平行于a,bB.过A至少有一个平面平行于a,bC.过A有无数个平面平行于a,bD.过A且平行a,b的平面可能不存在参考答案与解析:解析:如当A与a确定的平面与b平行时,过A作与a,b都平行的平面不存在.答案:D主要考察知识点:空间直线和平面5、已知直线a与直线b垂直,a平行于平面α,则b与α的位置关系是( )A.b∥αB.bαC.b与α相交D.以上都有可能参考答案与解析:思路解析:a与b垂直,a与b的关系可以平行、相交、异面,a与α平行,所以b与α的位置可以平行、相交、或在α内,这三种位置关系都有可能.答案:D主要考察知识点:空间直线和平面6、下列命题中正确的命题的个数为( )①直线l平行于平面α内的无数条直线,则l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,直线bα,则a∥α;④若直线a∥b,b平面α,那么直线a就平行于平面α内的无数条直线.A.1B.2C.3D.4参考答案与解析:解析:对于①,∵直线l虽与平面α内无数条直线平行,但l有可能在平面α内(若改为l与α内任何直线都平行,则必有l∥α),∴①是假命题.对于②,∵直线a在平面α外,包括两种情况a∥α和a与α相交,∴a与α不一定平行,∴②为假命题.对于③,∵a∥b,bα,只能说明a与b无公共点,但a可能在平面α内,∴a不一定平行于平面α.∴③也是假命题.对于④,∵a∥b,bα.那么aα,或a∥α.∴a可以与平面α内的无数条直线平行.∴④是真命题.综上,真命题的个数为1.答案:A主要考察知识点:空间直线和平面7、下列命题正确的个数是( )(1)若直线l上有无数个点不在α内,则l∥α(2)若直线l与平面α平行,l与平面α内的任意一直线平行(3)两条平行线中的一条直线与平面平行,那么另一条也与这个平面平行(4)若一直线a和平面α内一直线b平行,则a∥αA.0个B.1个C.2个D.3个参考答案与解析:解析:由直线和平面平行的判定定理知,没有正确命题.答案:A主要考察知识点:空间直线和平面8、已知m、n是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:①若m⊥α,m⊥β,则α∥β;②若α⊥γ,β⊥γ,则α∥β;③若mα,nβ,m∥n,则α∥β;④若m、n是异面直线,mα,m∥β,nβ,n∥α,则α∥β.其中真命题是( )A.①和②B.①和③C.③和④D.①和④参考答案与解析:解析:利用平面平行判定定理知①④正确.②α与β相交且均与γ垂直的情况也成立,③中α与β相交时,也能满足前提条件答案:D主要考察知识点:空间直线和平面9、长方体ABCD-A1B1C1D1中,E为AA1中点,F为BB1中点,与EF平行的长方体的面有()A.1个B.2个C.3个D.4个参考答案与解析:解析:面A1C1,面DC1,面AC共3个.答案:C主要考察知识点:空间直线和平面10、对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l,M,使得l∥α,l∥β,M∥α,M∥β.其中可以判断两个平面α与β平行的条件有()A.1个B.2个C.3个D.4个参考答案与解析:解析:取正方体相邻三个面为α、β、γ,易知α⊥γ,β⊥γ,但是α与β相交,不平行,故排除①,若α与β相交,如图所示,可在α内找到A、B、C三个点到平面β的距离相等,所以排除③.容易证明②④都是正确的.答案:B主要考察知识点:空间直线和平面二、填空题【共4道小题】1、在棱长为a的正方体ABCD—A1B1C1D1中,M、N分别是棱A1B1、B1C1的中点,P是棱AD上一点,AP=,过P、M、N的平面与棱CD交于Q,则PQ=_________.参考答案与解析:解析:由线面平行的性质定理知MN∥PQ(∵MN∥平面AC,PQ=平面PMN∩平面AC,∴MN∥PQ).易知DP=DQ=.故.答案:主要考察知识点:空间直线和平面2、如果空间中若干点在同一平面内的射影在一条直线上,那么这些点在空间的位置是__________.参考答案与解析:共线或在与已知平面垂直的平面内主要考察知识点:空间直线和平面3、若直线a和b都与平面α平行,则a和b的位置关系是__________.参考答案与解析:相交或平行或异面主要考察知识点:空间直线和平面4、正方体ABCD-A1B1C1D1中,E为DD1中点,则BD1与过点A,C,E的平面的位置关系是_________.参考答案与解析:解析:如图所示,连结BD,设BD∩AC=O,连结BD1,在△BDD1中,E 为DD1的中点,O为BD的中点,∴OE为△BDD1的中位线.∴OE∥BD1.又平面ACE,OE平面ACE,∴BD1∥平面ACE.答案:平行主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,直线AC,DF被三个平行平面α、β、γ所截.①是否一定有AD∥BE∥CF;②求证:.参考答案与解析:解析:①平面α∥平面β,平面α与β没有公共点,但不一定总有AD∥BE. 同理不总有BE∥CF.②过A点作DF的平行线,交β,γ于G,H两点,AH∥DF.过两条平行线AH,DF的平面,交平面α,β,γ于AD,GE,HF.根据两平面平行的性质定理,有AD∥GE∥HF.AGED为平行四边形.∴AG=DE.同理GH=EF.又过AC,AH两相交直线之平面与平面β,γ的交线为BG,CH.根据两平面平行的性质定理,有BG∥CH.在△ACH中,.而AG=DE,GH=EF,∴.主要考察知识点:空间直线和平面2、如图,ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点.求证:SA∥平面MDB.参考答案与解析:解析:要说明SA∥平面MDB,就要在平面MDB内找一条直线与SA平行,注意到M是SC的中点,于是可找AC的中点,构造与SA平行的中位线,再说明此中位线在平面MDB内,即可得证.证明:连结AC交BD于N,因为ABCD是平行四边形,所以N是AC的中点.又因为M是SC的中点,所以MN∥SA.因为MN平面MDB,所以SA∥平面MDB.主要考察知识点:空间直线和平面3、如图,已知点M、N是正方体ABCD-A1B1C1D1的两棱A1A与A1B1的中点,P是正方形ABCD 的中心,求证:MN∥平面PB1C.参考答案与解析:证明:如图,连结AC,则P为AC的中点,连结AB1,∵M、N分别是A1A与A1B1的中点,∴MN∥AB1.又∵平面PB1C,平面PB1C,故MN∥面PB1C.一、选择题【共10道小题】1、二面角指的是( )A.两个平面相交所组成的角B.经过同一条直线的两个平面所组成的图形C.一条直线出发的两个半平面组成的图形D.两个平面所夹的不大于90°的角参考答案与解析:解析:根据二面角的定义讨论,故选C.主要考察知识点:空间直线和平面2、α、β、γ、ω是四个不同平面,若α⊥γ,β⊥γ,α⊥ω,β⊥ω,则( )A.α∥β且γ∥ωB.α∥β或γ∥ωC.这四个平面中可能任意两个都不平行D.这四个平面中至多有一对平面平行参考答案与解析:解析:若α∩β=a.∵α⊥γ,β⊥γ,∴α⊥γ.同理a⊥ω.∴γ∥ω;若α∥β,则γ与ω相交或平行,∴α∥β或γ∥ω.答案:B主要考察知识点:空间直线和平面3、已知直线m、n与平面α、β,给出下列三个命题:①若m∥α,n∥α,则m∥n;②若m∥α,n⊥α,则n⊥m;③若m⊥α,m∥β,则α⊥β.其中真命题的个数是( )A.0B.1C.2D.3参考答案与解析:解析:①m∥α,n∥α不一定有m∥α.②③正确.答案:C主要考察知识点:空间直线和平面4、如图2-3-15,设P是正方形ABCD外一点,且PA⊥平面ABCD,则平面PAB与平面PBC、平面PAD的位置关系是( )A.平面PAB与平面PBC、平面PAD都垂直B.它们两两都垂直C.平面PAB与平面PBC垂直、与平面PAD不垂直D.平面PAB与平面PBC、平面PAD都不垂直参考答案与解析:思路解析:∵PA⊥平面ABCD,∴PA⊥BC.又∵BC⊥AB,PA∩AB=A,∴PC⊥平面PAB,从而平面PBC⊥平面PAB.由AD⊥PA,AD⊥AB,PA∩AB=A得AD⊥平面PAB.∵AD平面PAD,∴平面PAD⊥平面PAB.答案:A主要考察知识点:空间直线和平面5、如图2-3-16,等边三角形ABC的边长为1,BC边上的高为AD,若沿AD折成直二面角,则A 到BC的距离是……()图2-3-16A.1B.C.D.参考答案与解析:思路解析:折叠后BD=DC=,且∠BDC为二面角的平面角,∠BDC=90°,∴BC=.取BC中点E,连结DE,则DE⊥BC,进一步易证AE⊥BC,AE的长为所求距离.∵AD=,DE=BC=,∴AE=.答案:C主要考察知识点:空间直线和平面6、下列命题正确的是( )A.垂直于同一条直线的两直线平行B.垂直于同一条直线的两直线垂直C.垂直于同一个平面的两直线平行D.垂直于同一条直线的一条直线和平面平行参考答案与解析:思路解析:在空间中垂直于同一直线的两条直线,可能平行相交,也可能异面,所以A,B错,垂直于同一直线的直线和平面的位置关系可以是直线在平面内,直线和平面平行,所以D错.答案:C主要考察知识点:空间直线和平面7、空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是( )A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交参考答案与解析:解析:取BD中点E,连结AE、CE.∵AB=AD=BC=CD,∴AE⊥BD,CE⊥BD.∴BD⊥平面AEC.又AC面AEC,∴BD⊥AC.答案:C主要考察知识点:空间直线和平面8、线段AB的长等于它在平面α内射影长的2倍,则AB所在直线与平面α所成的角为()A.30°B.45°C.60°D.120°参考答案与解析:解析:由直角三角形的边角关系,可知直线与平面α所成的角为60°.答案:C主要考察知识点:空间直线和平面9、设α,β为两个不重合的平面,l,M,n为两两不重合的直线,给出下列四个命题:①若α∥β,,则l∥β;②若, ,M∥β,n∥β,则α∥β;③若l∥α,l⊥β,则α⊥β;④若,,且l⊥M,l⊥n,则l⊥α.其中正确命题的序号是( )A.①③④B.①②③C.①③D.②④参考答案与解析:解析:由面面平行的判定定理,知②错误;由线面垂直的判定定理知④错误.答案:C主要考察知识点:空间直线和平面10、下列说法中正确的是()①过平面外一点有且只有一条直线和已知平面垂直②过直线外一点有且只有一个平面和已知直线垂直③过平面外一点可作无数条直线与已知平面平行④过直线外一点只可作一条直线与已知直线垂直A.①②③B.①②③④C.②③D.②③④参考答案与解析:解析:由线面垂直的性质及线面平行的性质,知①②③正确;④错,过直线外一点作平面与直线垂直,则平面内的所有直线都与该直线垂直.答案:A主要考察知识点:空间直线和平面二、填空题【共4道小题】1、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面2、α、β是两个不同的平面,m、n是平面α、β外的两条不同直线,给出四个结论:①m⊥n;②α⊥β;③n⊥β;④m⊥α.以其中三个论断作为条件,余下一个论断作为结论,写出你认为正确的一个命题______.参考答案与解析:解析:假设①③④为条件,即m⊥n,n⊥β,m⊥α成立,如图.过m上一点P 作PB∥N,则PB⊥m,PB⊥β,设垂足为B.又设m⊥α,垂足为A,过PA、PB的平面与α、β的交线l交于点C.∵l⊥PA,l⊥PB,∴l⊥平面PAB.∴l⊥AC,l⊥BC.∴∠ACB是二面角α-l-β的平面角.由m⊥n,显然PA⊥PB,∴∠ACB=90°,∴α⊥β.由①③④②成立.反过来,如果②③④成立,与上面证法类似可得①成立.答案:②③④①或①③④②.主要考察知识点:空间直线和平面3、设三棱锥PABC的顶点P在平面ABC上的射影是H,给出下列命题:①若PA⊥BC,PB⊥AC,则H是△ABC的垂心;②若PA、PB、PC两两互相垂直,则H是△ABC的垂心;③若∠ABC=90°,H是AC的中点,则PA=PB=PC;④若PA=PB=PC,则H是△ABC的外心.请把正确命题的序号填在横线上:______________.参考答案与解析:解析:①若PA⊥BC,PB⊥AC,则H为垂心.②∵PA⊥PB,PA⊥PC,∴PA⊥面PBC.∴PA⊥BC.又PH⊥面ABC,∴PH⊥BC.∴BC⊥面PAH.∴AH⊥BC.同理BH⊥AC,∴H为垂心.③∵H为AC中点,∠ABC=90°,∴AH=BH=CH.又PH⊥面ABC,由勾股定理知PA=PB=PC.④∵PA=PB=PC,又PH⊥面ABC,同③可知 AH=BH=CH,∴H为外心.答案:①②③④主要考察知识点:空间直线和平面4、如图,P是二面角α-AB-β的棱AB上一点,分别在α、β上引射线PM、PN,截PM=PN,如果∠BPM=∠BPN=45°,∠MPN=60°,则二面角α-AB-β的大小是___________.参考答案与解析:解析:过M在α内作MO⊥AB于点O,连结NO,设PM=PN=a,又∠BPM=∠B PN=45°,∴△OPM≌△OPN.∴ON⊥AB.∴∠MON为所求二面角的平面角.连结MN,∵∠MPN=60°,∴MN=a.又,∴MO2+NO2=MN2.∴∠MON=90°.答案:90°主要考察知识点:空间直线和平面三、解答题【共3道小题】1、如图,在正方体ABCD—A1B1C1D1中,EF⊥A1D,EF⊥AC,求证:EF∥BD1.参考答案与解析:解析:要证明EF∥BD1,可构造与它们都垂直的一个平面.由于A1D,AC 均为各面的对角线,通过对角线的平行性可构造垂直关系.证明:连结A1C1,由于AC∥A1C1,EF⊥AC,∴EF⊥A1C1 .又EF⊥A1D,A1D∩A1C1=A1,∴EF⊥平面A1C1D. ①∵BB1⊥平面A1B1C1D1,A1C1平面A1B1C1D1,∴BB1⊥A1C1.又A1B1C1D1为正方体,∴A1C1⊥B1D1.∵BB1∩B1D1=B1,∴A1C1⊥平面BB1D1D.而BD1平面BB1D1D,∴BD1⊥A1C1.同理,DC1⊥BD1,DC1∩A1C1=C1,∴BD1⊥平面A1C1D. ②由①②可知EF∥BD1.主要考察知识点:空间直线和平面2、在长江汽车渡口,马力不足或装货较重的汽车上岸时,采用沿着坡面斜着成S形的方法向上开,这是为什么?你能从数学的角度进行解释吗?参考答案与解析:答案:在汽车马力恒定的情况下,行驶单位路程内,垂直上升高度愈大,汽车愈费“力”,当“力”所不及时,就会发生危险.日常经验告诉我们,走S形可减少这种危险,从数学的角度看,可作如下解释.图2-3-22如图,AB表示笔直向上行走的路线(AB⊥CA),α表示它与水平面所成的交角,CB表示斜着向上行走的路线,β表示它与水平面所成的夹角,它们所达到的高度都是BD.现在的问题就是要研究α和β这两个角哪个大,越大越费力.在Rt△BAD中,sinα=.①在Rt△BCD中,sinβ=.②比较①与②,因为AB、CB分别是直角三角形ABC的直角边和斜边,也就是说AB<CB,所以>.又因为α、β都是锐角,所以α>β.因此汽车沿着CB方向斜着向上开要省力.山区修筑的公路,采取盘山而上的方法,也是这个道理.主要考察知识点:空间直线和平面3、如图,在四面体ABCD中,△ABD、△ACD、△BCD、△ABC都全等,且,BC=2,求以BC为棱、以面BCD和面BCA为面的二面角的大小.参考答案与解析:解:取BC的中点E,连结AE、DE,∵AB=AC,∴AE⊥BC.又∵△ABD≌△ACD,AB=AC,∴DB=DC.∴DE⊥BC.∴∠AE D为二面角A-BC-D的平面角.又∵△ABC≌△DBC,且△ABC为以BC为底的等腰三角形,故△DBC也是以BC为底的等腰三角形,∴.又△ABD≌△BDC,∴AD=BC=2.在Rt△DEB中,,BE=1,∴,同理.在△AE D中,∵AE=DE=,AD=2,∴AD2=AE2+DE2.∴∠AE D=90°.∴以面BCD和面BCA为面的二面角的大小为90°.主要考察知识点:空间直线和平面一、选择题【共12道小题】1、下列说法中正确的是( )A.棱柱的侧面可以是三角形B.正方体和长方体都是特殊的四棱柱C.所有的几何体的表面都能展成平面图形D.棱柱的各条棱都相等参考答案与解析:B主要考察知识点:简单几何体和球2、将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( )A.一个圆台、两个圆锥B.两个圆台、一个圆柱C.两个圆台、一个圆柱D.一个圆柱、两个圆锥参考答案与解析:D主要考察知识点:简单几何体和球3、过球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的表面积的比为( )A. B. C. D.参考答案与解析:解析:设球半径为R,截面半径为r.+r2=R2,∴r2=.∴.答案:A主要考察知识点:简单几何体和球4、如图所示的直观图是将正方体模型放置在你的水平视线的左上角而绘制的,其中正确的是( )参考答案与解析:解析:由几何体的直观图画法及主体图形中虚线的使用,知A正确.答案:A主要考察知识点:简单几何体和球5、长方体的高等于h,底面积等于S,过相对侧棱的截面面积为S′,则长方体的侧面积等于( )A. B.C. D.参考答案与解析:解析:设长方体的底面边长分别为a、b,过相对侧棱的截面面积S′=①,S=ab②,由①②得:(a+b)2=+2S,∴a+b=,S侧=2(a+b)h=2h.答案:C主要考察知识点:简单几何体和球6、设长方体的对角线长度是4,过每一顶点有两条棱与对角线的夹角都是60°,则此长方体的体积是( )A. B. C. D.参考答案与解析:解析:设长方体的过一顶点的三条棱长为a、b、c,并且长为a、b的两条棱与对角线的夹角都是60°,则a=4cos60°=2,b=4cos60°=2.根据长方体的对角线性质,有a2+b2+c2=42,即22+22+c2=42.∴c=.因此长方体的体积V=abc=2³2³=.答案:B主要考察知识点:简单几何体和球7、棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1、S2、S3,则( )A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2参考答案与解析:解析:由截面性质可知,设底面积为S.;;可知:S1<S2<S3故选A.用平行于底面的平面截棱锥所得截面性质都是一些比例关系:截得面积之比就是对应高之比的平方,截得体积之比,就是对应高之比的立方,所谓“高”,是指大棱锥、小棱锥的高,而不是两部分几何体的高.答案:A主要考察知识点:简单几何体和球8、正四面体的内切球球心到一个面的距离等于这个正四面体高的( )A. B. C. D.参考答案与解析:解析:球心到正四面体一个面的距离即球的半径r,连结球心与正四面体的四个顶点.把正四面体分成四个高为r的三棱锥,所以4³S²r=²S²h,r= h (其中S为正四面体一个面的面积,h为正四面体的高)答案:C主要考察知识点:简单几何体和球9、若圆台两底面周长的比是1∶4,过高的中点作平行于底面的平面,则圆台被分成两部分的体积比是( )A.1∶16B.3∶27C.13∶129D.39∶129参考答案与解析:解析:由题意设上、下底面半径分别为r,4r,截面半径为x,圆台的高为2h,则有,∴x=.∴.。
2020版人教A数学必修2:2.2.2 平面与平面平行的判定
A)
解析:如图,因为EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,所以EG∥平面 E1FG1,又G1F∥H1E,同理可证H1E∥平面E1FG1,又H1E∩EG=E,所以平面 E1FG1∥平面EGH1.故选A.
4.如图是正方体的平面展开图,在这个正方体中:
①BM∥平面ADNE;
②CN∥平面ABFE;
方法技巧
解决此类问题的关键有两点:(1)借助常见几何体进行分析,使得抽象 问题具体化.(2)把握住面面平行的判定定理的关键“一个平面内两 条相交直线均平行于另一个平面”.
即时训练1-1:已知三个平面α ,β ,γ ,一条直线l,要得到α ∥β ,必须满 足下列条件中的( ) (A)l∥α ,l∥β ,且l∥γ (B)l⊂γ ,且l∥α ,l∥β (C)α ∥γ ,且β ∥γ (D)l与α ,β 所成的角相等
2.若一个平面内的两条直线分别平行于另一个平面内的两条直线,则这两
个平面的位置关系是( C )
(A)一定平行
(B)一定相交
(C)平行或相交
(D)以上判断都不对
解析:可借助于长方体判断两平面对应平行或相交.故选C.
3.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是( (A)平面E1FG1与平面EGH1 (B)平面FHG1与平面F1H1G (C)平面F1H1H与平面FHE1 (D)平面E1HG1与平面EH1G
课堂达标
1.下列命题正确的是( D )
①一个平面内有两条直线都与另外一个平面平行,则这两个平面平行;
②一个平面内有无数条直线都与另外一个平面平行,则这两个平面平行;
③一个平面内任何直线都与另外一个平面平行,则这两个平面平行;
④一个平面内有两条相交直线都与另外一个平面平行,则这两个平面
高一数学 人教A版必修2 第二章 2.2.1、2直线与平面平行、平面与平面平行的判定 课件
(1)直线EG∥平面BDD1B1;
证明 如图,连接SB.
∵点E,G分别是BC,SC的中点,
∴EG∥SB.
又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,
∴EG∥平面BDD1B1.
证明
(2)平面EFG∥平面BDD1B1. 证明 连接SD. ∵点F,G分别是DC,SC的中点, ∴FG∥SD. 又∵SD⊂平面BDD1B1,FG⊄平面BDD1B1, ∴FG∥平面BDD1B1. 又EG∥平面BDD1B1, 且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G, ∴平面EFG∥平面BDD1B1.
证明
反思与感悟 解决线面平行与面面平行的综合问题的策略 (1)立体几何中常见的平行关系是线线平行、线面平行和面面平行,这三 种平行关系不是孤立的,而是相互联系、相互转化的. (2) 线线平行 ―判――定―→ 线面平行 ―判――定―→ 面面平行
所以平行关系的综合问题的解决必须灵活运用三种平行关系的判定定理.
第二章 §2.2 直线、平面平行的判 定及其性质
2.2.2 平面与平面平行的判定
学习目标
1.通过直观感知、操作确认,归纳出平面与平面平行的判定定理. 2.掌握平面与平面平行的判定定理,并能初步利用定理解决问题.
问题导学
知识点 平面与平面平行的判定定理
思考1 三角板的两条边所在直线分别与平面α平行,这个三角板所在平 面与平面α平行吗? 答案 平行.
证明
Байду номын сангаас
命题角度2 以柱体为背景证明线面平行 例3 在三棱柱ABC-A1B1C1中,D,E分别是棱BC,CC1的中点,在线 段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.
解答
引申探究 将本例改为在三棱柱ABC-A1B1C1中,若M为AB的中点, 求证:BC1∥平面A1CM. 证明 如图,连接AC1交A1C于点F, 则F为AC1的中点. 又因为M是AB的中点,连接MF, 所以BC1∥MF. 因为MF⊂平面A1CM,BC1⊄平面A1CM, 所以BC1∥平面A1CM.
人教A版必修二高中数学第二章 2.2.1-2.2.2同步课堂导学案【含详细解析】
2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定2.2.2平面与平面平行的判定[学习目标]1.理解直线与平面平行、平面与平面平行判定定理的含义.2.会用图形语言、文字语言、符号语言准确描述直线与平面平行、平面与平面平行的判定定理,并知道其地位和作用.3.能运用直线与平面平行的判定定理、平面与平面平行的判定定理证明一些空间线面关系的简单问题.[知识链接]1.直线与平面的位置关系有平行、相交、直线在平面内.2.直线a 与平面α平行的定义:直线与平面无公共点.[预习导引]a ∥β,b ∥β要点一线面平行判定定理的应用例1如图,空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:(1)EH ∥平面BCD ;(2)BD ∥平面EFGH .证明(1)∵EH为△ABD的中位线,∴EH∥BD.∵EH⊄平面BCD,BD⊂平面BCD,∴EH∥平面BCD.(2)∵BD∥EH,BD⊄平面EFGH,EH⊂平面EFGH,∴BD∥平面EFGH.规律方法 1.利用直线与平面平行的判定定理证明线面平行,关键是寻找平面内与已知直线平行的直线.2.证线线平行的方法常用三角形中位线定理、平行四边形性质、平行线分线段成比例定理、平行公理等.跟踪演练1如图,四边形ABCD是平行四边形,S是平面ABCD外一点,M为SC的中点,求证:SA∥平面MDB.证明连接AC交BD于点O,连接OM.∵M为SC的中点,O为AC的中点,∴OM∥SA.∵OM⊂平面MDB,SA⊄平面MDB,∴SA∥平面MDB.要点二面面平行判定定理的应用例2如图所示,在三棱柱ABCA1B1C1中,点D,E分别是BC与B1C1的中点.求证:平面A1EB∥平面ADC1.证明由棱柱性质知,B1C1∥BC,B1C1=BC,又D,E分别为BC,B1C1的中点,所以C1E綊DB,则四边形C1DBE为平行四边形,因此EB∥C1D,又C1D⊂平面ADC1,EB⊄平面ADC1,所以EB∥平面ADC1.连接DE,同理,EB1綊BD,所以四边形EDBB1为平行四边形,则ED綊B1B.因为B1B∥A1A,B1B=A1A(棱柱的性质),所以ED綊A1A,则四边形EDAA1为平行四边形,所以A1E∥AD,又A1E⊄平面ADC1,AD⊂平面ADC1,所以A1E∥平面ADC1.由A1E∥平面ADC1,EB∥平面ADC1,A1E⊂平面A1EB,EB⊂平面A1EB,且A1E∩EB=E,所以平面A1EB∥平面ADC1.规律方法 1.要证明两平面平行,只需在其中一个平面内找到两条相交直线平行于另一个平面.2.判定两个平面平行与判定线面平行一样,应遵循先找后作的原则,即先在一个面内找到两条与另一个平面平行的相交直线,若找不到再作辅助线.跟踪演练2如图,三棱锥PABC中,E,F,G分别是AB,AC,AP的中点.证明平面GFE∥平面PCB.证明因为E,F,G分别是AB,AC,AP的中点,所以EF∥BC,GF∥CP.因为EF,GF⊄平面PCB,BC,CP⊂平面PCB.所以EF∥平面PCB,GF∥平面PCB.又EF∩GF=F,所以平面GFE∥平面PCB.要点三线面平行、面面平行判定定理的综合应用例3已知底面是平行四边形的四棱锥PABCD,点E在PD上,且PE∶ED=2∶1.在棱PC 上是否存在一点F,使BF∥平面AEC?证明你的结论,并说出点F的位置.解如图,连接BD交AC于O点,连接OE,过B点作OE的平行线交PD于点G,过点G 作GF∥CE,交PC于点F,连接BF.∵BG∥OE,BG⊄平面AEC,OE⊂平面AEC,∴BG∥平面AEC.同理,GF∥平面AEC.又BG∩GF=G,∴平面BGF∥平面AEC,∴平面BGF与平面AEC无公共点,∴BF与平面AEC无公共点.∴BF∥平面AEC.∵BG∥OE,O是BD的中点,∴E是GD的中点.又∵PE∶ED=2∶1,∴G是PE的中点.而GF∥CE,∴F 为PC 的中点.因此,当点F 是PC 的中点时,BF ∥平面AEC .规律方法要证明面面平行,由面面平行的判定定理知需在某一平面内寻找两条相交且与另一平面平行的直线.要证明线面平行,又需根据线面平行的判定定理,在平面内找与已知直线平行的直线,即:线线平行――→线面平行的判定线面平行――→面面平行的判定面面平行跟踪演练3如图,S 是平行四边形ABCD 所在平面外一点,M ,N 分别是SA ,BD 上的点,且AM SM =DN NB .求证:MN ∥平面SBC .解连接AN 并延长交BC 于P ,连接SP ,因为AD ∥BC ,所以DN NB =ANNP,又因为AM SM =DN NB ,所以AM SM =ANNP ,所以MN ∥SP .又MN ⊄平面SBC ,SP ⊂平面SBC ,所以MN ∥平面SBC .1.过直线l 外两点,作与l 平行的平面,则这样的平面()A .不可能作出B .只能作出一个C .能作出无数个D .上述三种情况都存在答案D解析设直线外两点为A 、B ,若直线AB ∥l ,则过A 、B 可作无数个平面与l 平行;若直线AB 与l 异面,则只能作一个平面与l 平行;若直线AB 与l 相交,则过A 、B 没有平面与l 平行.2.能保证直线a与平面α平行的条件是()A.b⊂α,a∥bB.b⊂α,c∥α,a∥b,a∥cC.b⊂α,A、B∈a,C、D∈b,且AC=BDD.a⊄α,b⊂α,a∥b答案D解析A错误,若b⊂α,a∥b,则a∥α或a⊂α;B错误,若b⊂α,c∥α,a∥b,a∥c,则a∥α或a⊂α;C错误,若满足此条件,则a∥α或a⊂α或a与α相交;D正确.3.若直线l不平行于平面α,且l⊄α,则()A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交答案B解析直线l不平行于平面α,且l⊄α,所以l与α相交,故选B.4.在正方体EFGHE1F1G1H1中,下列四对截面彼此平行的一对是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G答案A解析如图,∵EG∥E1G1,EG⊄平面E1FG1,E1G1⊂平面E1FG1,∴EG∥平面E1FG1,又G1F∥H1E,同理可证H 1E ∥平面E 1FG 1,又H 1E ∩EG =E ,∴平面E 1FG 1∥平面EGH 1.5.梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α的位置关系是________.答案CD ∥α解析因为AB ∥CD ,AB ⊂平面α,CD ⊄平面α,由线面平行的判定定理可得CD ∥α.1.直线与平面平行的关键是在已知平面内找一条直线和已知直线平行,即要证直线和平面平行,先证直线和直线平行,即由立体向平面转化,由高维向低维转化.2.证明面面平行的一般思路:线线平行⇒线面平行⇒面面平行.3.准确把握线面平行及面面平行两个判定定理,是对线面关系及面面关系作出正确推断的关键.一、基础达标1.已知三个平面α,β,γ,一条直线l ,要得到α∥β,必须满足下列条件中的()A .l ∥α,l ∥β,且l ∥γB .l ⊂γ,且l ∥α,l ∥βC .α∥γ,且β∥γD .l 与α,β所成的角相等答案C解析α∥γ⇒α与γβ∥γ⇒β与γα与β无公共点⇒α∥β.2.下列图形中能正确表示语句“平面α∩β=l ,a ⊂α,b ⊂β,a ∥β”的是()答案D解析A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a∥β;D正确.3.在正方体ABCDA1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是()A.相交B.平行C.异面D.相交或平行答案B解析如图,MC1⊂平面DD1C1C,而平面AA1B1B∥平面DD1C1C,故MC1∥平面AA1B1B.4.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为() A.平行B.相交C.平行或相交D.可能重合答案C解析若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.5.点E,F,G,H分别是空间四边形ABCD的边AB,BC,CD,DA的中点,则空间四面体的六条棱中与平面EFGH平行的条数是()A.0B.1C.2D.3答案C解析如图,由线面平行的判定定理可知,BD∥平面EFGH,AC∥平面EFGH.6.若夹在两个平面间的三条平行线段相等,那么这两个平面的位置关系为________.答案平行或相交解析三条平行线段共面时,两平面可能平行也可能相交,当三条平行线段不共面时,两平面一定平行.7.如图所示的几何体中,△ABC 是任意三角形,AE ∥CD ,且AE =AB =2a ,CD =a ,F 为BE 的中点,求证:DF ∥平面ABC .证明如图所示,取AB 的中点G ,连接FG ,CG ,∵F ,G 分别是BE ,AB 的中点,∴FG ∥AE ,FG =12AE .又∵AE =2a ,CD =a ,∴CD =12AE .又AE ∥CD ,∴CD ∥FG ,CD =FG ,∴四边形CDFG 为平行四边形,∴DF ∥CG .又CG ⊂平面ABC ,DF ⊄平面ABC ,∴DF ∥平面ABC .二、能力提升8.已知直线l ,m ,平面α,β,下列命题正确的是()A .l ∥β,l ⊂α⇒α∥βB .l ∥β,m ∥β,l ⊂α,m ⊂α⇒α∥βC .l ∥m ,l ⊂α,m ⊂β⇒α∥βD .l ∥β,m ∥β,l ⊂α,m ⊂α,l ∩m =M ⇒α∥β答案D解析如图所示,在长方体ABCDA 1B 1C 1D 1中,AB ∥CD ,则AB∥平面DC1,AB⊂平面AC,但是平面AC与平面DC1不平行,所以A错误;取BB1的中点E,CC1的中点F,则可证EF∥平面AC,B1C1∥平面AC.EF⊂平面BC1,B1C1⊂平面BC1,但是平面AC与平面BC1不平行,所以B 错误;可证AD∥B1C1,AD⊂平面AC,B1C1⊂平面BC1,又平面AC与平面BC1不平行,所以C错误;很明显D是面面平行的判定定理,所以D正确.9.三棱锥SABC中,G为△ABC的重心,E在棱SA上,且AE=2ES,则EG与平面SBC的关系为________.答案平行解析如图,延长AG交BC于F,则由G为△ABC的重心知AG∶GF=2,又AE∶ES=2,∴EG∥SF,又SF⊂平面SBC,EG⊄平面SBC,∴EG∥平面SBC.10.如图是正方体的平面展开图.在这个正方体中,①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.答案①②③④解析以ABCD为下底面还原正方体,如图:则易判定四个命题都是正确的.11.如图,在三棱柱ABCA1B1C1中,D为BC的中点,连接AD,DC1,A1B,AC1,求证:A1B∥平面ADC1.证明连接A1C,设A1C∩AC1=O,再连接OD.由题意知,A1ACC1是平行四边形,所以O 是A1C的中点,又D是CB的中点,因此OD是△A1CB的中位线,即OD∥A1B.又A1B⊄平面ADC1,OD⊂平面ADC1,所以A1B∥平面ADC1.三、探究与创新12.如图在正方体ABCDA1B1C1D1中,E,F,M,N分别为棱AB,CC1,AA1,C1D1的中点.求证:平面CEM∥平面BFN.证明因为E,F,M,N分别为其所在各棱的中点,如图连接CD1,A1B,易知FN∥CD1.同理,ME∥A1B.易证四边形A1BCD1为平行四边形,所以ME∥NF.连接MD1,同理可得MD1∥BF.又BF,NF为平面BFN中两相交直线,ME,MD1为平面CEM中两相交直线,故平面CEM∥平面BFN.13.在如图所示的几何体中,四边形ABCD为平行四边形,∠ACB=90°,EF∥AB,FG∥BC,EG∥AC,AB=2EF,M是线段AD的中点,求证:GM∥平面ABFE.证明因为EF ∥AB ,FG ∥BC ,EG ∥AC ,∠ACB =90°,所以△ABC ∽△EFG ,∠EGF =90°,由于AB =2EF ,因此BC =2FG .如图,连接AF ,由于FG ∥BC ,FG =12BC ,在▱ABCD 中,M 是线段AD 的中点,则AM ∥BC ,且AM =12BC ,因此FG ∥AM 且FG =AM ,所以四边形AFGM 为平行四边形,因此GM ∥FA .又FA ⊂平面ABFE ,GM ⊄平面ABFE ,所以GM ∥平面ABFE .。
高中数学(人教版必修2)直线、平面平行的判定及其性质配套练习(有答案)
§2.2直线、平面平行的判定及其性质2.2.1直线与平面平行的判定一、基础过关1.直线m∥平面α,直线n∥m,则() A.n∥αB.n与α相交C.n⊂αD.n∥α或n⊂α2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在的平面的位置关系是() A.平行B.相交C.平行或相交D.不相交3.已知a,b是两条相交直线,a∥α,则b与α的位置关系是() A.b∥αB.b与α相交C.b⊂αD.b∥α或b与α相交4.一条直线l上有相异三个点A、B、C到平面α的距离相等,那么直线l与平面α的位置关系是() A.l∥αB.l⊥αC.l与α相交但不垂直D.l∥α或l⊂α5. 如图,在长方体ABCD-A1B1C1D1的面中:(1)与直线AB平行的平面是______;(2)与直线AA1平行的平面是______;(3)与直线AD平行的平面是______.6.已知不重合的直线a,b和平面α.①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α,其中正确命题的个数是________.7.在正方体ABCD-A1B1C1D1中,E为DD1的中点,求证:BD1∥平面AEC.8. 如图,四棱锥A—DBCE中,O为底面正方形DBCE对角线的交点,F为AE的中点.求证:AB∥平面DCF.二、能力提升9.在空间四边形ABCD中,E、F分别是AB和BC上的点,若AE∶EB=EF∶FB=1∶3,则对角线AC和平面DEF的位置关系是()A.平行B.相交C.在内D.不能确定10.过直线l外两点,作与l平行的平面,则这样的平面() A.不存在B.只能作出一个C.能作出无数个D.以上都有可能11.过平行六面体ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有________条.12.如图,在平行四边形ABCD中,E为线段AB的中点,将△ADE沿直线DE翻折成△A′DE,F为线段A′C的中点.求证:BF∥平面A′DE.三、探究与拓展13. 正方形ABCD与正方形ABEF所在平面相交于AB,在AE,BD上各有一点P,Q,且AP=DQ.求证:PQ∥平面BCE.(用两种方法证明)答案1.D 2.B 3.D 4.D5.(1)平面A1C1和平面DC1(2)平面BC1和平面DC1(3)平面B1C和平面A1C1 6.17.证明如图,连接BD交AC于F,连接EF.因为F为正方形ABCD对角线的交点,所以F为AC、BD的中点.在三角形DD1B中,E、F分别为DD1、DB的中点,所以EF∥D1B.又EF⊂平面AEC,BD1⊄平面AEC,所以BD1∥平面AEC.8.证明连接OF,∵O为正方形DBCE对角线的交点,∴BO=OE,又AF=FE,∴AB∥OF,⎭⎬⎫AB⊄平面DCFOF⊂平面DCFAB∥OF⇒AB∥平面DCF.9.A10.D11.1212.证明取A′D的中点G,连接GF,GE,由条件易知FG∥CD,FG=12CD,BE∥CD,BE=12CD,所以FG∥BE,FG=BE,故四边形BEGF为平行四边形,所以BF∥EG.因为EG⊂平面A′DE,BF⊄平面A′DE,所以BF∥平面A′DE.13.证明如图所示,连接AQ并延长交BC于K,连接EK.∵KB∥AD,∴DQBQ=AQQK.∵AP=DQ,AE=BD,∴BQ=PE.∴DQBQ=APPE.∴AQQK=APPE.∴PQ∥EK.又PQ⊄平面BCE,EK⊂平面BCE,∴PQ∥平面BCE.2.1.2 空间中直线与直线之间的位置关系一、基础过关1.分别在两个平面内的两条直线间的位置关系是( )A .异面B .平行C .相交D .以上都有可能2.若AB ∥A ′B ′,AC ∥A ′C ′,则有( )A .∠BAC =∠B ′A ′C ′ B .∠BAC +∠B ′A ′C ′=180°C .∠BAC =∠B ′A ′C ′或∠BAC +∠B ′A ′C ′=180°D .∠BAC >∠B ′A ′C ′3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是 ( )A .空间四边形B .矩形C .菱形D .正方形4.“a 、b 为异面直线”是指:①a ∩b =∅,且aD \∥b ;②a ⊂面α,b ⊂面β,且a ∩b =∅;③a ⊂面α,b ⊂面β,且α∩β=∅;④a ⊂面α,b ⊄面α;⑤不存在面α,使a ⊂面α,b ⊂面α成立. 上述结论中,正确的是( )A .①④⑤B .①③④C .②④D .①⑤5.如果两条直线a 和b 没有公共点,那么a 与b 的位置关系是________. 6.已知正方体ABCD —A ′B ′C ′D ′中: (1)BC ′与CD ′所成的角为________; (2)AD 与BC ′所成的角为________.7.如图所示,四边形ABEF 和ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC 綊12AD ,BE 綊12F A ,G 、H 分别为F A 、FD 的中点.(1)证明:四边形BCHG 是平行四边形; (2)C 、D 、F 、E 四点是否共面?为什么?8.如图,正方体ABCD -EFGH 中,O 为侧面ADHE 的中心,求:(1)BE 与CG 所成的角; (2)FO 与BD 所成的角. 二、能力提升9.如图所示,已知三棱锥A -BCD 中,M 、N 分别为AB 、CD 的中点,则下列结论正确的是( )A .MN ≥12(AC +BD )B .MN ≤12(AC +BD )C .MN =12(AC +BD )D .MN <12(AC +BD )10.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线( )A .12对B .24对C .36对D .48对11.一个正方体纸盒展开后如图所示,在原正方体纸盒中有如下结论:①AB ⊥EF ;②AB 与CM 所成的角为60°; ③EF 与MN 是异面直线; ④MN ∥CD .以上结论中正确的序号为________.12.已知A 是△BCD 平面外的一点,E ,F 分别是BC ,AD 的中点,(1)求证:直线EF 与BD 是异面直线;(2)若AC ⊥BD ,AC =BD ,求EF 与BD 所成的角. 三、探究与拓展13.已知三棱锥A —BCD 中,AB =CD ,且直线AB 与CD 成60°角,点M 、N 分别是BC 、AD 的中点,求直线AB 和MN 所成的角.答案1.D 2.C 3.B 4.D 5.平行或异面 6.(1)60° (2)45°7.(1)证明 由已知FG =GA ,FH =HD ,可得GH 綊12AD .又BC 綊12AD ,∴GH 綊BC ,∴四边形BCHG 为平行四边形.(2)解 由BE 綊12AF ,G 为F A 中点知,BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG . 由(1)知BG 綊CH ,∴EF ∥CH , ∴EF 与CH 共面.又D ∈FH ,∴C 、D 、F 、E 四点共面.8.解 (1)如图,∵CG ∥BF ,∴∠EBF (或其补角)为异面直线BE 与CG 所成的角,又△BEF 中,∠EBF =45°,所以BE 与CG 所成的角为45°.(2)连接FH ,BD ,FO ,∵HD 綊EA ,EA 綊FB , ∴HD 綊FB ,∴四边形HFBD 为平行四边形, ∴HF ∥BD ,∴∠HFO (或其补角)为异面直线FO 与BD 所成的角. 连接HA 、AF ,易得FH =HA =AF , ∴△AFH 为等边三角形,又依题意知O 为AH 中点,∴∠HFO =30°,即FO 与BD 所成的角是30°.9.D 10.B 11.①③12.(1)证明 假设EF 与BD 不是异面直线,则EF 与BD 共面,从而DF 与BE 共面,即AD 与BC 共面,所以A 、B 、C 、D 在同一平面内,这与A 是△BCD 平面外的一点相矛盾.故直线EF 与BD 是异面直线.(2)解 取CD 的中点G ,连接EG 、FG ,则EG ∥BD ,所以相交直线EF 与EG 所成的角,即为异面直线EF 与BD 所成的角.在Rt △EGF 中,由EG =FG =12AC ,求得∠FEG =45°,即异面直线EF 与BD 所成的角为45°.13.解 如图,取AC 的中点P .连接PM 、PN ,则PM ∥AB ,且PM =12AB ,PN ∥CD ,且PN =12CD ,所以∠MPN 为直线AB 与CD 所成的角(或所成角的补角). 则∠MPN =60°或∠MPN =120°, 若∠MPN =60°,因为PM ∥AB ,所以∠PMN 是AB 与MN 所成的角(或所成角的补角). 又因AB =CD ,所以PM =PN ,则△PMN 是等边三角形, 所以∠PMN =60°,即AB 与MN 所成的角为60°.若∠MPN =120°,则易知△PMN 是等腰三角形.所以∠PMN =30°, 即AB 与MN 所成的角为30°.故直线AB 和MN 所成的角为60°或30°.2.1.3空间中直线与平面之间的位置关系2.1.4平面与平面之间的位置关系一、基础过关1.已知直线a∥平面α,直线b⊂α,则a与b的位置关系是() A.相交B.平行C.异面D.平行或异面2.直线l与平面α不平行,则() A.l与α相交B.l⊂αC.l与α相交或l⊂αD.以上结论都不对3.如果直线a∥平面α,那么直线a与平面α内的() A.一条直线不相交B.两条直线不相交C.无数条直线不相交D.任意一条直线不相交4.如果平面α外有两点A、B,它们到平面α的距离都是a,则直线AB和平面α的位置关系一定是() A.平行B.相交C.平行或相交D.AB⊂α5.直线a⊂平面α,直线b⊄平面α,则a,b的位置关系是________.6.若a、b是两条异面直线,且a∥平面α,则b与α的位置关系是________.7.平面α内有无数条直线与平面β平行,那么α∥β是否正确?说明理由.8. 如图,直线a∥平面α,a⊂β,α∩β=b,求证:a∥b.二、能力提升9.下列命题正确的是() A.若直线a在平面α外,则直线a∥αB.若直线a与平面α有公共点,则a与α相交C.若平面α内存在直线与平面β无交点,则α∥βD.若平面α内的任意直线与平面β均无交点,则α∥β10.教室内有一根直尺,无论怎样放置,在地面上总有这样的直线与直尺所在的直线() A.异面B.相交C.平行D.垂直11.若不在同一条直线上的三点A、B、C到平面α的距离相等,且A、B、CD/∈α,则面ABC 与面α的位置关系为________.12. 如图,平面α、β、γ满足α∥β,α∩γ=a,β∩γ=b,判断a与b、a与β的关系并证明你的结论.三、探究与拓展13.正方体ABCD—A1B1C1D1中,点Q是棱DD1上的动点,判断过A、Q、B1三点的截面图形的形状.答案1.D2.C3.D4.C5.平行、相交或异面6.b⊂α,b∥α或b与α相交7.解不正确.如图,设α∩β=l,则在α内与l平行的直线可以有无数条,如a1,a2,…,a n,它们是一组平行线,这时a1,a2,…,a n与平面β平行,但此时α与β不平行,α∩β=l.8.证明∵直线a∥平面α,∴直线a与平面α无公共点.∵α∩β=b,∴b⊂α,b⊂β.∴直线a与b无公共点.∵a⊂β,∴a∥b.9.D10.D11.平行或相交12.解由α∩γ=a知a⊂α且a⊂γ,由β∩γ=b知b⊂β且b⊂γ,∵α∥β,a⊂α,b⊂β,∴a、b无公共点.又∵a⊂γ且b⊂γ,∴a∥b.∵α∥β,∴α与β无公共点,又a⊂α,∴a与β无公共点,∴a∥β.13.解由点Q在线段DD1上移动,当点Q与点D1重合时,截面图形为等边三角形AB1D1,如图(1)所示;当点Q与点D重合时,截面图形为矩形AB1C1D,如图(2)所示;图(1)图(2)当点Q不与点D,D1重合时,截面图形为等腰梯形AQRB1,如图(3)所示.图(3)2.2.2平面与平面平行的判定一、基础过关1.直线l∥平面α,直线m∥平面α,直线l与m相交于点P,且l与m确定的平面为β,则α与β的位置关系是() A.相交B.平行C.异面D.不确定2.平面α与平面β平行的条件可以是() A.α内的一条直线与β平行B.α内的两条直线与β平行C.α内的无数条直线与β平行D.α内的两条相交直线分别与β平行3.给出下列结论,正确的有()①平行于同一条直线的两个平面平行;②平行于同一平面的两个平面平行;③过平面外两点,不能作一个平面与已知平面平行;④若a,b为异面直线,则过a与b平行的平面只有一个.A.1个B.2个C.3个D.4个4.若正n边形的两条对角线分别与面α平行,则这个正n边形所在的平面一定平行于平面α,那么n的取值可能是() A.12 B.8 C.6 D.55.已知平面α、β和直线a、b、c,且a∥b∥c,a⊂α,b、c⊂β,则α与β的关系是________.6.有下列几个命题:①平面α内有无数个点到平面β的距离相等,则α∥β;②α∩γ=a,α∩β=b,且a∥b(α,β,γ分别表示平面,a,b表示直线),则γ∥β;③平面α内一个三角形三边分别平行于平面β内的一个三角形的三条边,则α∥β;④平面α内的一个平行四边形的两边与平面β内的一个平行四边形的两边对应平行,则α∥β.其中正确的有________.(填序号)7.如图所示,矩形ABCD和梯形BEFC所在平面互相垂直,BE∥CF,求证:AE∥平面DCF.8. 在长方体ABCD—A1B1C1D1中,E、F、E1、F1分别是AB、CD、A1B1、C1D1的中点.求证:平面A1EFD1∥平面BCF1E1.二、能力提升9.α、β是两个不重合的平面,a、b是两条不同的直线,在下列条件下,可判定α∥β的是() A.α,β都平行于直线a、bB.α内有三个不共线的点到β的距离相等C.a,b是α内两条直线,且a∥β,b∥βD.a、b是两条异面直线,且a∥α,b∥α,a∥β,b∥β10. 正方体EFGH—E1F1G1H1中,下列四对截面中,彼此平行的一对截面是()A.平面E1FG1与平面EGH1B.平面FHG1与平面F1H1GC.平面F1H1H与平面FHE1D.平面E1HG1与平面EH1G11. 如图所示,在正方体ABCD—A1B1C1D1中,E、F、G、H分别是棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足________时,有MN∥平面B1BDD1.12.已知在正方体ABCD—A1B1C1D1中,M、E、F、N分别是A1B1、B1C1、C1D1、D1A1的中点.求证:(1)E、F、D、B四点共面;(2)平面AMN∥平面EFDB.三、探究与拓展13.如图所示,B为△ACD所在平面外一点,M、N、G分别为△ABC、△ABD、△BCD的重心.(1)求证:平面MNG∥平面ACD;(2)求S△MNG∶S△ADC.答案1.B 2.D 3.B 4.D 5.相交或平行 6.③7.证明 由于AB ∥CD ,BE ∥CF ,故平面ABE ∥平面DCF .而直线AE 在平面ABE 内,根据线面平行的定义,知AE ∥平面DCF . 8.证明 ∵E 、E 1分别是AB 、A 1B 1的中点,∴A 1E 1∥BE 且A 1E 1=BE .∴四边形A 1EBE 1为平行四边形. ∴A 1E ∥BE 1.∵A 1E ⊄平面BCF 1E 1, BE 1⊂平面BCF 1E 1. ∴A 1E ∥平面BCF 1E 1. 同理A 1D 1∥平面BCF 1E 1, A 1E ∩A 1D 1=A 1,∴平面A 1EFD 1∥平面BCF 1E 1. 9.D 10.A 11.M ∈线段FH12.证明 (1)∵E 、F 分别是B 1C 1、C 1D 1的中点,∴EF 綊12B 1D 1,∵DD 1綊BB 1,∴四边形D 1B 1BD 是平行四边形, ∴D 1B 1∥BD . ∴EF ∥BD ,即EF 、BD 确定一个平面,故E 、F 、D 、B 四点共面. (2)∵M 、N 分别是A 1B 1、A 1D 1的中点, ∴MN ∥D 1B 1∥EF . 又MN ⊄平面EFDB , EF ⊂平面EFDB . ∴MN ∥平面EFDB .连接NE ,则NE 綊A 1B 1綊AB . ∴四边形NEBA 是平行四边形.∴AN ∥BE .又AN ⊄平面EFDB ,BE ⊂平面EFDB .∴AN ∥平面EFDB . ∵AN 、MN 都在平面AMN 内,且AN ∩MN =N , ∴平面AMN ∥平面EFDB .13.(1)证明 连接BM 、BN 、BG 并延长交AC 、AD 、CD 分别于P 、F 、H .∵M 、N 、G 分别为△ABC 、△ABD 、△BCD 的重心,则有BM MP =BN NF =BGGH =2.连接PF 、FH 、PH ,有MN ∥PF . 又PF ⊂平面ACD ,MN ⊄平面ACD , ∴MN ∥平面ACD .同理MG ∥平面ACD ,MG ∩MN =M , ∴平面MNG ∥平面ACD .(2)解 由(1)可知MG PH =BG BH =23,∴MG =23PH .又PH =12AD ,∴MG =13AD .同理NG =13AC ,MN =13CD .∴△MNG ∽△DCA ,其相似比为1∶3, ∴S △MNG ∶S △ADC =1∶9.2.2.3 直线与平面平行的性质一、基础过关1.a ,b 是两条异面直线,P 是空间一点,过P 作平面与a ,b 都平行,这样的平面( ) A .只有一个 B .至多有两个 C .不一定有D .有无数个2. 如图,在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中,错误的为( )A .AC ⊥BDB .AC ∥截面PQMNC .AC =BDD .异面直线PM 与BD 所成的角为45°3. 如图所示,长方体ABCD -A 1B 1C 1D 1中,E 、F 分别是棱AA 1和BB 1的中点,过EF 的平面EFGH 分别交BC 和AD 于G 、H ,则HG 与AB 的位置关系是( )A .平行B .相交C .异面D .平行和异面4.直线a ∥平面α,α内有n 条直线交于一点,则这n 条直线中与直线a 平行的直线( ) A .至少有一条 B .至多有一条 C .有且只有一条D .没有5.设m 、n 是平面α外的两条直线,给出三个论断:①m ∥n ;②m ∥α;③n ∥α.以其中的两个为条件,余下的一个为结论,构造三个命题,写出你认为正确的一个命题:______________.(用序号表示)6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P ,M ,N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .8. 如图所示,三棱锥A —BCD 被一平面所截,截面为平行四边形EFGH .求证:CD∥平面EFGH.二、能力提升9.如图所示,平面α∩β=l1,α∩γ=l2,β∩γ=l3,l1∥l2,下列说法正确的是()A.l1平行于l3,且l2平行于l3B.l1平行于l3,且l2不平行于l3C.l1不平行于l3,且l2不平行于l3D.l1不平行于l3,但l2平行于l310.如图所示,已知A、B、C、D四点不共面,且AB∥平面α,CD∥α,AC∩α=E,AD∩α=F,BD∩α=H,BC∩α=G,则四边形EFHG的形状是________.10题图11题图11.如图所示,在空间四边形ABCD中,E、F、G、H分别是四边上的点,它们共面,并且AC∥平面EFGH,BD∥平面EFGH,AC=m,BD=n,当四边形EFGH是菱形时,AE∶EB =________.12. 如图所示,P为平行四边形ABCD所在平面外一点,M、N分别为AB、PC的中点,平面P AD∩平面PBC=l.(1)求证:BC∥l;(2)MN与平面P AD是否平行?试证明你的结论.三、探究与拓展13.如图所示,三棱柱ABC—A1B1C1,D是BC上一点,且A1B∥平面AC1D,D1是B1C1的中点,求证:平面A1BD1∥平面AC1D.答案1.C 2.C 3.A 4.B5.①②⇒③(或①③⇒②) 6.223a7.证明 如图所示,连接AC 交BD 于O ,连接MO ,∵ABCD 是平行四边形,ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面交平面BDM 于GH ,求证:AP ∥GH .∴O 是AC 中点,又M 是PC 的中点, ∴AP ∥OM .根据直线和平面平行的判定定理, 则有P A ∥平面BMD .∵平面P AHG ∩平面BMD =GH , 根据直线和平面平行的性质定理, 则有AP ∥GH .8.证明 ∵四边形EFGH 为平行四边形, ∴EF ∥GH .又GH ⊂平面BCD ,EF ⊄平面BCD . ∴EF ∥平面BCD .而平面ACD ∩平面BCD =CD ,EF ⊂平面ACD ,∴EF ∥CD . 而EF ⊂平面EFGH ,CD ⊄平面EFGH , ∴CD ∥平面EFGH . 9.A 10.平行四边形 11.m ∶n12.(1)证明 因为BC ∥AD ,AD ⊂平面P AD ,BC ⊄平面P AD ,所以BC ∥平面P AD .又平面P AD ∩平面PBC =l ,BC ⊂平面PBC ,所以BC ∥l . (2)解 MN ∥平面P AD . 证明如下:如图所示,取PD 中点E . 连接EN 、AE .又∵N 为PC 中点,∴EN 綊12AB∴EN綊AM,∴四边形ENMA为平行四边形,∴AE∥MN.又∵AE⊂平面P AD,MN⊄平面P AD,∴MN∥平面P AD.13.证明连接A 1C交AC1于点E,∵四边形A1ACC1是平行四边形,∴E是A1C的中点,连接ED,∵A1B∥平面AC1D,平面A1BC∩平面AC1D=ED,∴A1B∥ED,∵E是A1C的中点,∴D是BC的中点.又∵D1是B1C1的中点,∴BD1∥C1D,又∵C1D⊂平面AC1D,BD1⊄平面AC1D,∴BD1∥平面AC1D,又A1B∩BD1=B,∴平面A1BD1∥平面AC1D.2.2.4 平面与平面平行的性质一、基础过关1.已知平面α∥平面β,过平面α内的一条直线a 的平面γ,与平面β相交,交线为直线b ,则a 、b 的位置关系是( ) A .平行B .相交C .异面D .不确定2.已知a 、b 表示直线,α、β表示平面,下列推理正确的是( )A .α∩β=a ,b ⊂α⇒a ∥bB .α∩β=a ,a ∥b ⇒b ∥α且b ∥βC .a ∥β,b ∥β,a ⊂α,b ⊂α⇒α∥βD .α∥β,α∩γ=a ,β∩γ=b ⇒a ∥b3. 如图所示,P 是三角形ABC 所在平面外一点,平面α∥平面ABC ,α分别交线段P A 、PB 、PC 于A ′、B ′、C ′,若P A ′∶AA ′=2∶3,则S △A ′B ′C ′∶S △ABC 等于( )A .2∶25B .4∶25C .2∶5D .4∶54.α,β,γ为三个不重合的平面,a ,b ,c 为三条不同的直线,则有下列命题,不正确的是( )①⎭⎪⎬⎪⎫a ∥c b ∥c ⇒a ∥b; ② ⎭⎪⎬⎪⎫a ∥γb ∥γ⇒a ∥b ; ③⎭⎪⎬⎪⎫α∥c β∥c ⇒α∥β; ④ ⎭⎪⎬⎪⎫α∥γβ∥γ⇒α∥β;⑤⎭⎪⎬⎪⎫α∥c a ∥c ⇒α∥a; ⑥⎭⎪⎬⎪⎫α∥γa ∥γ⇒a ∥α. A .④⑥ B .②③⑥ C .②③⑤⑥ D .②③5.分别在两个平行平面的两个三角形.(填“相似”“全等”) (1)若对应顶点的连线共点,那么这两个三角形具有______关系; (2)若对应顶点的连线互相平行,那么这两个三角形具有________关系.6.已知平面α∥β∥γ,两条直线l 、m 分别与平面α、β、γ相交于点A 、B 、C 与D 、E 、F .已知AB =6,DE DF =25,则AC =______.7.如图,在三棱柱ABC -A 1B 1C 1中,M 是A 1C 1的中点,平面AB 1M ∥平面BC 1N ,AC ∩平面BC 1N =N .求证:N 为AC 的中点.8. 如图所示,在底面是平行四边形的四棱锥P -ABCD 中,点E 在PD 上,且PE ∶ED =2∶1,在棱PC 上是否存在一点F ,使BF ∥平面AEC ?并证明你的结论.二、能力提升9.设α∥β,A ∈α,B ∈β,C 是AB 的中点,当A 、B 分别在平面α、β内运动时,得到无数个AB 的中点C ,那么所有的动点C( )A .不共面B .当且仅当A 、B 分别在两条直线上移动时才共面C .当且仅当A 、B 分别在两条给定的异面直线上移动时才共面D .不论A 、B 如何移动,都共面10.已知平面α∥平面β,P 是α,β外一点,过点P 的直线m 与α,β分别交于点A ,C ,过点P 的直线n 与α,β分别交于点B ,D ,且P A =6,AC =9,PD =8,则BD 的长为( )A .16B .24或245 C .14 D .2011.对于不重合的两个平面α与β,给定下列条件:①存在平面γ,使得α、β都垂直于γ;②存在平面γ,使α、β都平行于γ;③α内有不共线的三点到β的距离相等;④存在异面直线l ,m ,使得l ∥α,l ∥β,m ∥α,m ∥β.其中可以判断两个平面α与β平行的条件有________个.12. 如图所示,平面α∥平面β,△ABC 、△A ′B ′C ′分别在α、β内,线段AA ′、BB ′、CC ′共点于O ,O 在α、β之间,若AB =2,AC =1,∠BAC =90°,OA ∶OA ′=3∶2. 求△A ′B ′C ′的面积.三、探究与拓展13.如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,A1B1的中点是P,过点A1作与截面PBC1平行的截面,能否确定截面的形状?如果能,求出截面的面积.§2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定一、基础过关1.已知直线a∥b,平面α∥β,a⊥α,则b与β的位置关系是() A.b⊥βB.b∥βC.b⊂βD.b⊂β或b∥β2.直线a⊥直线b,b⊥平面β,则a与β的关系是() A.a⊥βB.a∥βC.a⊂βD.a⊂β或a∥β3.空间四边形ABCD的四边相等,则它的两对角线AC、BD的关系是() A.垂直且相交B.相交但不一定垂直C.垂直但不相交D.不垂直也不相交4.如图所示,定点A和B都在平面α内,定点P∉α,PB⊥α,C是平面α内异于A和B的动点,且PC⊥AC,则△ABC为()A.锐角三角形B.直角三角形C.钝角三角形D.无法确定5. 在正方体ABCD-A 1B1C1D1中,(1)直线A1B与平面ABCD所成的角是________;(2)直线A1B与平面ABC1D1所成的角是________;(3)直线A1B与平面AB1C1D所成的角是______.6. 如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是棱AA1和AB上的点,若∠B1MN是直角,则∠C1MN=______.7.如图所示,在正方体ABCD—A1B1C1D1中,E、F分别是棱B1C1、B1B的中点.求证:CF⊥平面EAB.8. 如图所示,在四棱锥P—ABCD中,底面ABCD是矩形,侧棱P A垂直于底面,E、F分别是AB、PC的中点,P A=AD.求证:(1)CD⊥PD;(2)EF⊥平面PCD.二、能力提升9. 如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数为()A.4 B.3 C.2 D.110.已知矩形ABCD,AB=1,BC=2,将△ABD沿矩形的对角线BD所在的直线进行翻折,在翻折过程中() A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”,“AB与CD”,“AD与BC”均不垂直11.在直三棱柱ABC—A1B1C1中,BC=CC1,当底面A1B1C1满足条件________时,有AB1⊥BC1(注:填上你认为正确的一种条件即可,不必考虑所有可能的情况).12. 如图所示,在正方体ABCD-A1B1C1D1中,P为DD1的中点,O为ABCD的中心,求证:B1O⊥平面P AC.三、探究与拓展13.已知平面α外两点A、B到平面α的距离分别为1和2,A、B两点在α内的射影之间距离为3,求直线AB和平面α所成的角.答案1.A 2.D 3.C 4.B 5.(1)45° (2)30° (3)90° 6.90°7.证明 在平面B 1BCC 1中, ∵E 、F 分别是B 1C 1、B 1B 的中点, ∴△BB 1E ≌△CBF , ∴∠B 1BE =∠BCF ,∴∠BCF +∠EBC =90°,∴CF ⊥BE , 又AB ⊥平面B 1BCC 1,CF ⊂平面B 1BCC 1, ∴AB ⊥CF ,又AB ∩BE =B , ∴CF ⊥平面EAB .8.证明 (1)∵P A ⊥底面ABCD , ∴CD ⊥P A .又矩形ABCD 中,CD ⊥AD ,且AD ∩P A =A ,∴CD ⊥平面P AD ,∴CD ⊥PD .(2)取PD 的中点G ,连接AG ,FG .又∵G 、F 分别是PD 、PC 的中点,∴GF 綊12CD ,∴GF 綊AE ,∴四边形AEFG 是平行四边形,∴AG ∥EF . ∵P A =AD ,G 是PD 的中点, ∴AG ⊥PD ,∴EF ⊥PD , ∵CD ⊥平面P AD ,AG ⊂平面P AD . ∴CD ⊥AG .∴EF ⊥CD .∵PD ∩CD =D ,∴EF ⊥平面PCD . 9.A 10.B 11.∠A 1C 1B 1=90°12.证明 连接AB 1,CB 1,设AB =1.∴AB 1=CB 1=2,∵AO =CO ,∴B 1O ⊥AC .连接PB1.∵OB21=OB2+BB21=32,PB21=PD21+B1D21=94,OP2=PD2+DO2=34,∴OB21+OP2=PB21.∴B1O⊥PO,又∵PO∩AC=O,∴B1O⊥平面P AC.13.解(1)如图①,当A、B位于平面α同侧时,由点A、B分别向平面α作垂线,垂足分别为A1、B1,则AA1=1,BB1=2,B1A1= 3.过点A作AH⊥BB1于H,则AB和α所成角即为∠HAB.而tan∠BAH=2-13=33.∴∠BAH=30°.(2)如图②,当A、B位于平面α异侧时,经A、B分别作AA1⊥α于A1,BB1⊥α于B1,AB∩α=C,则A1B1为AB在平面α上的射影,∠BCB1或∠ACA1为AB与平面α所成的角.∵△BCB1∽△ACA1,∴BB1AA1=B1CCA1=2,∴B1C=2CA1,而B1C+CA1=3,∴B1C=233.∴tan∠BCB1=BB1B1C=2233=3,∴∠BCB1=60°.综合(1)、(2)可知:AB与平面α所成的角为30°或60°.2.3.2平面与平面垂直的判定一、基础过关1.过两点与一个已知平面垂直的平面() A.有且只有一个B.有无数个C.一个或无数个D.可能不存在2.不能肯定两个平面一定垂直的情况是() A.两个平面相交,所成二面角是直二面角B.一个平面经过另一个平面的一条垂线C.一个平面垂直于另一个平面内的一条直线D.平面α内的直线a与平面β内的直线b是垂直的3.设有直线m、n和平面α、β,则下列结论中正确的是()①若m∥n,n⊥β,m⊂α,则α⊥β;②若m⊥n,α∩β=m,n⊂α,则α⊥β;③若m⊥α,n⊥β,m⊥n,则α⊥β.A.①②B.①③C.②③D.①②③4.设l是直线,α,β是两个不同的平面,下列结论中正确的是() A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β5.过正方形ABCD的顶点A作线段AP⊥平面ABCD,且AP=AB,则平面ABP与平面CDP 所成的二面角的度数是________.6.如图所示,已知P A⊥矩形ABCD所在的平面,图中互相垂直的平面有________对.7.在如图所示的几何体中,四边形ABCD是正方形,MA⊥平面ABCD,PD∥MA,E、G、F分别为MB、PB、PC的中点,且AD=PD=2MA.求证:平面EFG⊥平面PDC.8. 如图所示,四棱锥P—ABCD的底面ABCD是边长为1的菱形,∠BCD=60°,E是CD的中点,P A⊥底面ABCD,P A= 3.(1)证明:平面PBE⊥平面P AB;(2)求二面角A—BE—P的大小.二、能力提升9.在边长为1的菱形ABCD 中,∠ABC =60°,把菱形沿对角线AC 折起,使折起后BD =32,则二面角B -AC -D 的余弦值为( )A.13B.12C.223D.32 10.在正四面体P -ABC 中,D 、E 、F 分别是AB 、BC 、CA 的中点,下面四个结论中不成立的是( )A .BC ∥面PDFB .DF ⊥面P AEC .面PDF ⊥面ABCD .面P AE ⊥面ABC11.如图,在直三棱柱ABC —A 1B 1C 1中,E 、F 分别是A 1B 、A 1C 的中点,点D 在B 1C 1上,A 1D ⊥B 1C . 求证:(1)EF ∥平面ABC ; (2)平面A 1FD ⊥平面BB 1C 1C .12.如图,在三棱锥P —ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D 、E 分别在棱PB 、PC 上,且DE ∥BC .(1)求证:BC ⊥平面P AC .(2)是否存在点E 使得二面角A —DE —P 为直二面角?并说明理由. 三、探究与拓展13.如图所示,三棱锥P —ABC 中,D 是AC 的中点,P A =PB =PC =5,AC =22,AB =2,BC = 6.(1)求证:PD ⊥平面ABC ; (2)求二面角P —AB —C 的正切值.答案1.C 2.D 3.B 4.B5.45°6.57.证明因为MA⊥平面ABCD,PD∥MA,所以PD⊥平面ABCD.又BC⊂平面ABCD,所以PD⊥BC.因为四边形ABCD为正方形,所以BC⊥DC.又PD∩DC=D,所以BC⊥平面PDC.在△PBC中,因为G、F分别为PB、PC的中点,所以GF∥BC,所以GF⊥平面PDC.又GF⊂平面EFG,所以平面EFG⊥平面PDC.8.(1)证明如图所示,连接BD,由ABCD是菱形且∠BCD=60°知,△BCD是等边三角形.因为E是CD的中点,所以BE⊥CD.又AB∥CD,所以BE⊥AB.又因为P A⊥平面ABCD,BE⊂平面ABCD,所以P A⊥BE.而P A∩AB=A,因此BE⊥平面P AB.又BE⊂平面PBE,所以平面PBE⊥平面P AB.(2)解由(1)知,BE⊥平面P AB,PB⊂平面P AB,所以PB⊥BE.又AB⊥BE,所以∠PBA是二面角A—BE—P的平面角.=3,则∠PBA=60°.在Rt△P AB中,tan∠PBA=P AAB故二面角A—BE—P的大小是60°.9.B 10.C11.证明(1)由E、F分别是A1B、A1C的中点知EF∥BC.因为EF⊄平面ABC,BC⊂平面ABC.所以EF∥平面ABC.(2)由三棱柱ABC—A1B1C1为直三棱柱知CC1⊥平面A1B1C1.又A1D⊂平面A1B1C1,故CC1⊥A1D.又因为A1D⊥B1C,CC1∩B1C=C,故A1D⊥平面BB1C1C,又A1D⊂平面A1FD,所以平面A1FD⊥平面BB1C1C.12.(1)证明∵P A⊥底面ABC,∴P A⊥BC.又∠BCA=90°,∴AC⊥BC.又∵AC∩P A=A,∴BC⊥平面P AC.(2)解∵DE∥BC,又由(1)知,BC⊥平面P AC,∴DE⊥平面P AC.又∵AE⊂平面P AC,PE⊂平面P AC,∴DE⊥AE,DE⊥PE.∴∠AEP 为二面角A —DE —P 的平面角. ∵P A ⊥底面ABC ,∴P A ⊥AC , ∴∠P AC =90°.∴在棱PC 上存在一点E , 使得AE ⊥PC .这时∠AEP =90°,故存在点E ,使得二面角A —DE —P 为直二面角. 13.(1)证明 连接BD ,∵D 是AC 的中点,P A =PC =5, ∴PD ⊥AC .∵AC =22,AB =2,BC =6, ∴AB 2+BC 2=AC 2.∴∠ABC =90°,即AB ⊥BC .∴BD =12AC =2=AD .∵PD 2=P A 2-AD 2=3,PB =5, ∴PD 2+BD 2=PB 2.∴PD ⊥BD . ∵AC ∩BD =D ,∴PD ⊥平面ABC .(2)解 取AB 的中点E ,连接DE 、PE ,由E 为AB 的中点知DE ∥BC , ∵AB ⊥BC ,∴AB ⊥DE . ∵PD ⊥平面ABC ,∴PD ⊥AB .又AB ⊥DE ,DE ∩PD =D ,∴AB ⊥平面PDE ,∴PE ⊥AB . ∴∠PED 是二面角P —AB —C 的平面角.在△PED 中,DE =12BC =62,PD =3,∠PDE =90°,∴tan ∠PED =PDDE = 2.∴二面角P —AB —C 的正切值为 2.2.3.3 直线与平面垂直的性质 2.3.4 平面与平面垂直的性质一、基础过关1.已知两个平面互相垂直,那么下列说法中正确的个数是( )①一个平面内的直线必垂直于另一个平面内的无数条直线;②一个平面内垂直于这两个平面交线的直线必垂直于另一个平面内的任意一条直线; ③过一个平面内一点垂直于另一个平面的直线,垂足必落在交线上; ④过一个平面内的任意一点作交线的垂线,则此直线必垂直于另一个平面. A .4B .3C .2D .1 2.在圆柱的一个底面上任取一点(该点不在底面圆周上),过该点作另一底面的垂线,则这条垂线与圆柱的母线所在直线的位置关系是( ) A .相交B .平行C .异面D .相交或平行3.若m 、n 表示直线,α表示平面,则下列命题中,正确命题的个数为( )①⎭⎪⎬⎪⎫m ∥n m ⊥α⇒n ⊥α; ② ⎭⎪⎬⎪⎫m ⊥αn ⊥α⇒m ∥n ; ③⎭⎪⎬⎪⎫m ⊥αn ∥α⇒m ⊥n; ④⎭⎪⎬⎪⎫m ∥αm ⊥n ⇒n ⊥α. A .1 B .2C .3D .4 4.在△ABC 所在的平面α外有一点P ,且P A =PB =PC ,则P 在α内的射影是△ABC 的( )A .垂心B .内心C .外心D .重心5. 如图所示,AF ⊥平面ABCD ,DE ⊥平面ABCD ,且AF =DE ,AD =6,则EF =________.6.若α⊥β,α∩β=AB ,a ∥α,a ⊥AB ,则a 与β的关系为________. 7. 如图,在三棱锥P -ABC 中,P A ⊥平面ABC ,平面P AB ⊥平面PBC .求证:BC ⊥AB .8. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,M 是AB 上一点,N 是A 1C 的中点,MN ⊥平面A 1DC . 求证:(1)MN ∥AD 1; (2)M 是AB 的中点.二、能力提升9. 如图所示,平面α⊥平面β,A ∈α,B ∈β,AB 与两平面α、β所成的角分别为π4和π6.过A 、B 分别作两平面交线的垂线,垂足分别为A ′、B ′,则AB ∶A ′B ′等于( )A .2∶1B .3∶1C .3∶2D .4∶310.设α-l -β是直二面角,直线a ⊂α,直线b ⊂β,a ,b 与l 都不垂直,那么( )A .a 与b 可能垂直,但不可能平行B .a 与b 可能垂直,也可能平行C .a 与b 不可能垂直,但可能平行D .a 与b 不可能垂直,也不可能平行11.直线a 和b 在正方体ABCD -A 1B 1C 1D 1的两个不同平面内,使a ∥b 成立的条件是________.(只填序号)①a 和b 垂直于正方体的同一个面; ②a 和b 在正方体两个相对的面内,且共面; ③a 和b 平行于同一条棱;④a 和b 在正方体的两个面内,且与正方体的同一条棱垂直. 12.如图所示,在多面体P —ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,AB =2DC =4 5. (1)设M 是PC 上的一点, 求证:平面MBD ⊥平面P AD ; (2)求四棱锥P —ABCD 的体积. 三、探究与拓展13.如图,直三棱柱ABC -A 1B 1C 1中,AC =BC =12AA 1,D 是棱AA 1的中点,DC 1⊥BD . (1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.答案1.B 2.B 3.C 4.C 5.6 6.a ⊥β7.证明 在平面P AB 内,作AD ⊥PB 于D . ∵平面P AB ⊥平面PBC , 且平面P AB ∩平面PBC =PB . ∴AD ⊥平面PBC . 又BC ⊂平面PBC , ∴AD ⊥BC .又∵P A ⊥平面ABC , BC ⊂平面ABC ,∴P A ⊥BC ,∴BC ⊥平面P AB . 又AB ⊂平面P AB , ∴BC ⊥AB .8.证明 (1)∵ADD 1A 1为正方形, ∴AD 1⊥A 1D .又∵CD ⊥平面ADD 1A 1, ∴CD ⊥AD 1. ∵A 1D ∩CD =D , ∴AD 1⊥平面A 1DC . 又∵MN ⊥平面A 1DC , ∴MN ∥AD 1.(2)连接ON ,在△A 1DC 中, A 1O =OD ,A 1N =NC .∴ON 綊12CD 綊12AB ,∴ON ∥AM . 又∵MN ∥OA ,∴四边形AMNO 为平行四边形, ∴ON =AM . ∵ON =12AB ,∴AM =12AB ,∴M 是AB 的中点. 9.A 10.C 11.①②③12.(1)证明 在△ABD 中,∵AD =4,BD =8,AB =45, ∴AD 2+BD 2=AB 2.∴AD ⊥BD .又∵面P AD ⊥面ABCD ,面P AD ∩面ABCD =AD ,BD ⊂面ABCD ,∴BD ⊥面P AD ,又BD ⊂面BDM , ∴面MBD ⊥面P AD . (2)解 过P 作PO ⊥AD , ∵面P AD ⊥面ABCD , ∴PO ⊥面ABCD ,即PO 为四棱锥P —ABCD 的高. 又△P AD 是边长为4的等边三角形, ∴PO =2 3.在底面四边形ABCD 中,AB ∥DC ,AB =2DC ,∴四边形ABCD 为梯形.在Rt △ADB 中,斜边AB 边上的高为4×845=855,此即为梯形的高. ∴S 四边形ABCD =25+452×855=24. ∴V P —ABCD =13×24×23=16 3.13.(1)证明 由题设知,三棱柱的侧面为矩形.由于D 为AA 1的中点,故DC =DC 1.又AC =12AA 1,可得DC 21+DC 2=CC 21,所以DC 1⊥DC .而DC 1⊥BD ,CD ∩BD =D ,所以DC 1⊥平面BCD .因为BC ⊂平面BCD ,所以DC 1⊥BC .(2)解 DC 1⊥BC ,CC 1⊥BC ⇒BC ⊥平面ACC 1A 1⇒BC ⊥AC ,取A 1B 1的中点O ,过点O 作OH ⊥BD 于点H ,连接C 1O ,C 1H ,A 1C 1=B 1C 1⇒C 1O ⊥A 1B 1,面A 1B 1C 1⊥面A 1BD ⇒C 1O ⊥面A 1BD ,又∵DB ⊂面A 1DB ,∴C 1O ⊥BD ,又∵OH ⊥BD ,∴BD ⊥面C 1OH ,C 1H ⊂面C 1OH ,∴BD ⊥C 1H ,得点H 与点D 重合,且∠C 1DO 是二面角A 1-BD -C 的平面角,设AC =a ,则C 1O =22a ,C 1D =2a =2C 1O ⇒∠C 1DO =30°,故二面角A 1-BD -C 1的大小为30°.章末检测一、选择题1.下列推理错误的是() A.A∈l,A∈α,B∈l,B∈α⇒l⊂αB.A∈α,A∈β,B∈α,B∈β⇒α∩β=ABC.l⊄α,A∈l⇒A∉αD.A∈l,l⊂α⇒A∈α2.长方体ABCD-A1B1C1D1中,异面直线AB,A1D1所成的角等于() A.30°B.45°C.60°D.90°3.下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行4.在空间四边形ABCD的边AB,BC,CD,DA上分别取E、F、G、H四点,如果EF,GH交于一点P,则() A.P一定在直线BD上B.P一定在直线AC上C.P一定在直线AC或BD上D.P既不在直线AC上,也不在直线BD上5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是() A.①和②B.②和③C.③和④D.②和④6.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是() A.AB∥m B.AC⊥m C.AB∥βD.AC⊥β7.如图(1)所示,在正方形SG1G2G3中,E,F分别是G1G2及G2G3的中点,D是EF的中点,现在沿SE,SF及EF把这个正方形折成一个四面体,使G1,G2,G3三点重合,重合后的点记为G,如图(2)所示,那么,在四面体S-EFG中必有()。
高中数学 第二章 2.2.2 平面与平面平行的判定练习 新人教A版必修2
亲爱的同学:这份试卷将再次记录你的自信、沉着、智慧和收获,我们一直投给你信任的目光……学习资料专题2.2.2 平面与平面平行的判定【选题明细表】1.经过平面外两点与这个平面平行的平面( C )(A)只有一个 (B)至少有一个(C)可能没有 (D)有无数个解析:当这两点的连线与平面相交时,则没有平面与这个平面平行;当这两点的连线与平面平行时,有且只有一个平面与这个平面平行,所以选C.2.设直线l,m,平面α,β,下列条件能得出α∥β的有( D )①l⊂α,m⊂α,且l∥β,m∥β②l⊂α,m⊂β,且l∥m ③l∥α,m∥β,且l∥m(A)1个(B)2个(C)3个(D)0个解析:由两平面平行的判定定理可知,得出α∥β的个数为零.3.已知两个不重合的平面α,β,给定以下条件:①α内不共线的三点到β的距离相等;②l,m是α内的两条直线,且l∥β,m∥β;③l,m是两条异面直线,且l∥α,l∥β,m∥α,m∥β.其中可以判定α∥β的是( D )(A)① (B)② (C)①③ (D)③解析:①中,若三点在平面β的两侧,则α与β相交,故不正确.②中,α与β也可能相交.③中,若把两异面直线l,m平移到一个平面内,即为两相交直线,由判定定理知正确.4.(2018·武汉月考)a,b,c为三条不重合的直线,α,β,γ为三个不重合的平面,现给出六个命题:①⇒a∥b;②⇒a∥b;③⇒α∥β;④⇒α∥β;⑤⇒a∥α;⑥⇒a∥α.其中正确的命题是( C )(A)②③ (B)①④⑤(C)①④ (D)①③④解析:由空间平行线的传递性,知①正确;②错误,a,b还可能相交或异面;③错误,α与β可能相交;由面面平行的传递性,知④正确;⑤⑥错误,a可能在α内.故选C.5.如图所示,已知四棱锥P ABCD底面ABCD为平行四边形,E,F分别为AB,PD的中点.求证:AF ∥平面PCE.证明:如图所示.取CD中点M,连接MF,MA,则在△PCD中,MF∥PC,又MF⊄平面PCE,PC⊂平面PCE,所以MF∥平面PCE.又因为ABCD为平行四边形,E,M分别为AB,CD中点,所以AE CM.所以四边形EAMC为平行四边形,所以MA∥CE,又MA⊄平面PCE,CE⊂平面PCE.所以MA∥平面PCE.又MA∩MF=M,所以平面MAF∥平面PCE.又因为AF⊂平面MAF,所以AF∥平面PCE.6.平面α内有不共线的三点到平面β的距离相等且不为零,则α与β的位置关系为( C )(A)平行 (B)相交(C)平行或相交(D)可能重合解析:若三点分布于平面β的同侧,则α与β平行,若三点分布于平面β的两侧,则α与β相交.故选C.7.(2018·江西九江一模)在正方体ABCD A 1B1C1D1中,AB=4,M,N分别为棱A1D1,A1B1的中点,过点B的平面α∥平面AMN,则平面α截该正方体所得截面的面积为.解析:如图所示,截面为等腰梯形BDPQ,故截面的面积为×(2+4)×3=18.答案:188.如图所示的是正方体的平面展开图.有下列四个命题:①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.其中,正确命题的序号是.解析:展开图可以折成如图(1)所示的正方体.在正方体中,连接AN,如图(2)所示,因为AB∥MN,且AB=MN,所以四边形ABMN是平行四边形.所以BM∥AN.因为AN⊂平面DE,BM⊄平面DE,所以BM∥平面DE.同理可证CN∥平面AF,所以①②正确;如图(3)所示,可以证明BM∥平面AFN,BD∥平面AFN,进而得到平面BDM∥平面AFN,同理可证平面BDE∥平面NCF,所以③④正确.答案:①②③④9.在正方体ABCD A 1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点.求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.证明:(1)如图,连接SB,因为E,G分别是BC,SC的中点,所以EG∥SB.又因为SB⊂平面BDD1B1,EG⊄平面BDD1B1.所以直线EG∥平面BDD1B1.(2)连接SD,因为F,G分别是DC,SC的中点,所以FG∥SD.又因为SD⊂平面BDD1B1,FG⊄平面BDD1B1,所以FG∥平面BDD1B1.又EG∥平面BDD1B1,且EG⊂平面EFG,FG⊂平面EFG,EG∩FG=G,所以平面EFG∥平面BDD1B1.10.如图所示,在正方体ABCD A 1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面PAO?解:当Q为CC1的中点时,平面D1BQ∥平面PAO.因为Q为CC1的中点,P为D1D的中点,所以PQ∥DC.又DC∥AB,所以PQ∥AB且PQ=AB,所以四边形ABQP为平行四边形,所以QB∥PA.又PA⊂平面PAO,QB⊄平面PAO,所以BQ∥平面PAO.连接BD,则O∈BD,又O为DB的中点,P为D1D的中点,所以PO∥D1B.PO⊂平面PAO,D1B⊄平面PAO,所以D1B∥平面PAO.又D1B∩BQ=B,所以平面D1BQ∥平面PAO.。
【人教A版】高中数学同步检测:第二章2.2-2.2.2平面与平面平行的判定(含答案)
第二章点、直线、平面之间的位置关系2.2 直线、平面平行的判定及其性质2.2.1 直线与平面平行的判定2.2.2 平面与平面平行的判定A级基础巩固一、选择题1.下列图形中能正确表示语句“平面α∩β=l,a⊂α,b⊂β,a∥β”的是()解析:A中不能正确表达b⊂β;B中不能正确表达a∥β;C中也不能正确表达a∥β;D正确.答案:D2.能保证直线与平面平行的条件是()A.直线与平面内的一条直线平行B.直线与平面内的所有直线平行C.直线与平面内的无数条直线平行D.直线与平面内的所有直线不相交解析:A不正确,因为直线可能在平面内;B不正确;C不正确,直线也可能在平面内;D正确,因为直线与平面内所有直线不相交,依据直线和平面平行的定义可得直线与平面平行.答案:D3.在正方体ABCD-A1B1C1D1中,M是棱CD上的动点,则直线MC1与平面AA1B1B的位置关系是()A.相交B.平行C.异面D.相交或平行解析:MC1⊂平面DD1C1C,而平面AA1B1B∥平面DD1C1C,故MC1∥平面AA1B1B.答案:B4.已知m,n是两条直线,α,β是两个平面.有以下命题:①m,n相交且都在平面α,β外,m∥α,m∥β,n∥α,n∥β,则α∥β;②若m∥α,m∥β,则α∥β;③若m∥α,n∥β,m∥n,则α∥β.其中正确命题的个数是()A.0B.1C.2D.3解析:把符号语言转换为文字语言或图形语言.可知①是面面平行的判定定理;②③中平面α,β还有可能相交,所以选B.答案:B5.平面α与△ABC 的两边AB ,AC 分别交于D ,E ,且AD DB =AE EC,如图所示,则BC 与平面α的关系是( )A .平行B .相交C .异面D .BC ⊂α解析:因为AD DB =AE EC,所以ED ∥BC ,又DE ⊂α,BC ⊄α, 所以BC ∥α.答案:A二、填空题6.在空间四边形ABCD 中,E ,F 分别是AB 和BC 上的点,若AE ∶EB =CF ∶FB =1∶3,则对角线AC 与平面DEF 的位置关系是________.解析:因为AE ∶EB =CF ∶FB =1∶3,所以EF ∥AC .又因为AC ⊄平面DEF ,EF ⊂平面DEF ,所以AC ∥平面DEF .答案:平行7.若空间四边形ABCD 的两条对角线AC ,BD 的长分别是8,12,过AB 的中点E 且平行于BD ,AC 的截面四边形的周长为________.解析:设所求截面四边形为EFGH ,且F ,G ,H 分别是BC ,CD ,DA 的中点,所以EF =GH =4,FG =HE =6.所以截面四边形EFGH的周长为2×(4+6)=20.答案:208.下图是正方体的平面展开图,在这个正方体中:①BM∥平面DE;②CN∥平面AF;③平面BDM∥平面AFN;④平面BDE∥平面NCF.以上四个命题中,正确命题的序号是________.解析:以ABCD为下底面还原正方体,如图,则易判定四个命题都是正确的.答案:①②③④三、解答题9.如图所示的三棱柱ABC-A1B1C1中,M,N分别为BC,B1C的中点,求证:MN∥面ACC1A1.证明:因为M,N分别为BC,B1C的中点,所以MN∥BB1,又BB1∥AA1,所以MN∥AA1,又MN⊄面ACC1A1,AA1⊂面ACC1A1,所以MN∥面ACC1A1.10.如图所示,在已知四棱锥P-ABCD中,底面ABCD为平行四边形,点M,N,Q分别在PA,BD,PD上,且PM∶MA=BN∶ND=PQ∶QD.求证:平面MNQ∥平面PBC.证明:因为PM∶MA=BN∶ND=PQ∶QD,所以MQ∥AD,NQ∥BP.因为BP⊂平面PBC,NQ⊄平面PBC,所以NQ∥平面PBC.又因为底面ABCD为平行四边形,所以BC∥AD,所以MQ∥BC.因为BC⊂平面PBC,MQ⊄平面PBC,所以MQ∥平面PBC.又因为MQ∩NQ=Q,所以根据平面与平面平行的判定定理,得平面MNQ∥平面PBC.B级能力提升1.如图所示,在下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP 的图形的序号是()①②③④A.①③B.①④C.②③D.②④答案:B2.已知a和b是异面直线,且a⊂平面α,b⊂平面β,a∥β,b∥α,则平面α与β的位置关系是________.解析:在b上任取一点O,则直线a与点O确定一个平面γ,设γ⊂β=l,则l⊂β,因为a∥β,所以a与l无公共点,所以a∥l,所以l∥α.又b∥α,根据面面平行的判定定理可得α∥β.答案:平行3.在长方体ABCD-A1B1C1D1中,E,F,E1,F1分别是AB,CD,A1B1,C1D1的中点.求证:平面EFD1A1∥平面BCF1E1.证明:因为E,F分别是AB,DC的中点,所以EF∥BC.因为EF⊄平面BCF1E1,BC⊂平面BCF1E1,所以EF∥平面BCF1E1.因为E,E1分别是AB,A1B1的中点,所以A1E1∥BE且A1E1=BE.所以四边形A1EBE1为平行四边形.所以A1E∥BE1.因为A1E⊄平面BCF1E1,BE1⊂平面BCF1E1,所以A1E∥平面BCF1E1.又A1E∩EF=E,A1E,EF⊂平面EFD1A1,所以平面EFD1A1∥平面BCF1E1.。
高中数学2.2.2平面及平面平行判定练习新人教A版必修2
【成才之路】2021-2021学年高中数学平面与平面平行的判定练习新人教A版必修2根底稳固一、选择题1.在长方体 ABCD-A′B′C′D′中,以下正确的选项是( )A.平面ABCD∥平面ABB′A′B.平面ABCD∥平面ADD′A′C.平面ABCD∥平面CDD′C′D.平面ABCD∥平面A′B′C′D′[答案] D2.两个平面平行的条件是 ( )A.一个平面内的一条直线平行于另一个平面B.一个平面内的两条直线平行于另一个平面C.一个平面内的无数条直线平行于另一个平面D.一个平面内的任意一条直线平行于另一个平面[答案] D[解析] 任意一条直线平行于另一个平面,即平面内所有的直线都平行于另一个平面.3.如果一个角的两边与另一个角的两边分别平行,以下结论一定成立的是( )A.这两个角相等B.这两个角互补C.这两个角所在的两个平面平行D.这两个角所在的两个平面平行或重合[答案] D[解析]这两个角相等或互补;这两个角所在的两个平面平行或重合.4.如下列图,设E,F,E1,F1分别是长方体ABCD-A1B1C1D1的棱AB,CD,A1B1,C1D1的中点,那么平面EFD1A1与平面BCF1E1的位置关系是()A.平行B.相交C.异面D.不确定[答案] A[解析]∵E1和F1分别是A1B1和D1C1的中点,A1D1∥E1F1,又A1D1?平面BCF1E1,E1F1?平面BCF1E1,A1D1∥平面BCF1E1.又E1和E分别是A1B1和AB的中点,A1E1綊BE,∴四边形A1EBE1是平行四边形,A1E∥BE1,又A1E?平面BCF1E1,BE1?平面BCF1E1,∴A1E∥平面BCF1E1,又A1E?平面EFD1A1,A1D1?平面EFD1A1,A1E∩A1D1=A1,∴平面EFD1A1∥平面BCF1E1. 5.直线 l,m,平面α,β,以下命题正确的选项是( )A.l∥β,l?α?α∥βB .,∥,,?βmβmαC.l∥m,l?α,m?β?α∥βD.l∥β,m∥β,l?α,m?α,l∩m=M?α∥β[答案]D[解析]如右图所示,在长方体ABCD-A1B1C1D1中,直线AB∥CD,那么直线AB∥平面DC1,直线AB?平面AC,但是平面AC与平面DC1不平行,所以选项A错误;取B B1的中点E,CC1的中点F,那么可证EF∥平面AC,B1C1∥平面AC.又EF?平面BC1,B1C1?平面BC1,但是平面AC与平面BC1不平行,所以选项B错误;直线AD∥B1C1,AD?平面AC,B1C1?平面BC1,但平面AC与平面BC1不平行,所以选项C错误;很明显选项D是两个平面平行的判定定理,所以选项D正确.6.假设平面α∥平面β,直线a∥α,点B∈β,那么在平面β内过点B的所有直线中( ) A.不一定存在与 a平行的直线B.只有两条与a平行的直线C.存在无数条与 a平行的直线D.存在唯一一条与a平行的直线[答案]A[解析]当直线a?β,B∈a上时满足条件,此时过B不存在与a平行的直线,应选A.二、填空题7.如果两个平面分别平行于第三个平面,那么这两个平面的位置关系是____ ____.[答案]平行8.平面α和β,在平面α内任取一条直线a,在β内总存在直线b∥a,那么α与β的位置关系是________(填“平行〞或“相交〞).[答案]平行[解析]假假设α∩β=l,那么在平面α内,与l相交的直线a,设a∩l =A,对于β内的任意直线b,假设b过点A,那么a与b相交,假设b不过点A,那么a与b 异面,即β内不存在直线b∥a.故α∥β.三、解答题(2021·福建厦门六中月考)如下列图,四棱锥P-ABCD的底面ABCD为矩形,E,F,H分别为AB,CD,PD的中点.求证:平面AFH∥平面PCE.[证明] 因为F为CD的中点,H为PD的中点,所以FH∥PC,所以FH∥平面PCE.又AE∥CF且AE=CF,所以四边形AECF为平行四边形,所以AF∥CE,所以AF∥平面PCE.由FH?平面AFH,AF?平面AFH,FH∩AF=F,所以平面AFH∥平面PCE.如图,F,H分别是正方体ABCD-A1B1C1D1的棱CC1,AA1的中点,求证:平面BDF∥平面B1D1H.∵[证明] 取DD1中点E,连AE、EF.∵E、F为DD1、CC1的中点,EF綊CD.EF綊AB,∴四边形EFBA为平行四边形.AE∥BF.又∵E、H分别为D1D、A1A的中点,D1E綊HA,∴四边形HAED1为平行四边形.HD1∥AE,∴HD1∥BF,由正方体的性质易知B1D1∥BD,且已证BF∥D1H.B1D1?平面BDF,BD?平面BDF,∴B1D1∥平面BDF.HD1?平面BDF,BF?平面BDF,HD1∥平面BDF.又∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.能力提升一、选择题1.以下说法正确的选项是 ( )A.平面α内有一条直线与平面β平行,那么平面α与平面β平行B.平面α内有两条直线与平面β平行,那么平面α与平面β平行C.平面α内有无数条直线与平面β平行,那么平面α与平面β平行D.平面α内所有直线都与平面β平行,那么平面α与平面β平行[答案]D[解析]两个平面平行?两个平面没有公共点?平面α内的所有直线与平面β没有公共点?平面α内的所有直线都与β平行.2.经过平面α外两点,作与α平行的平面,可以作()A .1个B .2个C.0个或1个D.无数个[答案]C[解析]当两个点在平面α同侧且连线平行于平面α时,可作一个平面与α平行;当两个点在平面α异侧或同侧且连线与平面α不平行时,不能作出平面与α平行.3.以下结论中:过不在平面内的一点,有且只有一个平面与这个平面平行;过不在平面内的一条直线,有且只有一个平面与这个平面平行;过不在直线上的一点,有且只有一条直线与这条直线平行;过不在直线上的一点,有且仅有一个平面与这条直线平行.正确的序号为()A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)[答案]C4.过平行六面体 ABCD-A1B1C1D1任意两条棱的中点作直线,其中与平面DBB1D1平行的直线共有( )A .4条B.6条C .8条D.1 2条[答案]D[解析]如右图所示,以为例,易证,∥平面11.EHEMDBBD与处于同等地位的点还有8×2、、、、、、,故有符合题意的直线=8条.以FGHMNPQE为例,易证QE∥平面DBBD,与E处于同等地位的点还有H、M、G、F、N、P,故有符合题11意的直线4条.∴共有8+4=12(条).二、填空题5.如图是四棱锥的平面展开图,其中四边形为正方形,,,,分别为,ABCD EFGPAPD,PC,PB的中点,在此几何体中,给出下面四个结论:①平面EFGH∥平面ABCD;②平面PAD∥BC;③平面PCD∥AB;④平面PAD∥平面PAB.其中正确的有________.(填序号)[答案]①②③[解析]把平面展开图复原为四棱锥如下列图,那么EH∥AB,所以EH∥平面ABCD.同理可证EF∥平面ABCD,所以平面EFGH∥平面ABCD;平面PAD,平面PBC,平面PAB,平面PDC均是四棱锥的四个侧面,那么它们两两相交.∵AB∥CD,∴平面PCD∥AB.同理平面PAD∥BC.6.如以下列图所示,在正方体ABCD-A1B1C1D1中,E、F、G、H分别为棱CC1、C1D1、D1D、CD的中点,N是BC的中点,点M在四边形EFGH及其内部运动,那么M满足________时,有MN∥平面B1BDD1.[答案] 点M在FH上[解析] ∵FH∥BB1,HN∥BD,FH∩HN=H,∴平面FHN∥平面B1BDD1,又平面FHN∩平面EFGH=FH,∴当M∈FH时,MN?平面FHN,MN∥平面B1BDD1.三、解答题7.如以下列图所示,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC和SC的中点.求证:平面EFG∥平面BDD1B1.[分析]证明平面与平面平行转化为证明线面平行,即转化为证明直线FG∥平面BDD1B1,EG∥平面BDD1B1.[证明] 如以下列图所示,连接SB,SD.∵F,G分别是DC,SC的中点,∴FG∥SD.又∵SD?平面BDD1B1,FG?平面BDD1B1,∴直线FG∥平面BDD1B1.同BDD1B1.理可证EG∥平面又∵直线EG?平面EFG,直线FG?平面EFG,直线EG∩直线FG=G,∴平面EFG∥平面BDD1B1.8.点S是正三角形ABC所在平面外的一点,且SA=SB=SC,SG为△SAB边AB上的高,D、E、F分别是AC、BC、SC的中点,试判断SG与平面DEF的位置关系,并给予证明.[分析1]观察图形容易看出SG∥平面DEF.要证明此结论成立,只须证明SG与平面DEF内的一条直线平行.考虑到题设条件中众多的中点,可应用三角形中位线性质.观察图形可以看出:连接CG与DE相交于H,连接FH,FH就是适合题意的直线.怎样证明SG∥FH?只需证明H是CG的中点.[证法1]连接CG交DE于点H,DE是△ABC的中位线,∴DE∥AB.在△ACG中,D是AC的中点,且DH∥AG,∴H是CG的中点.FH是△SCG的中位线,FH∥SG.又SG?平面DEF,FH?平面DEF,∴SG∥平面DEF.[分析2]由题设条件中,D、E、F都是棱的中点,不难得出DE∥AB,DF∥SA,从而平面DEF∥平面SAB,又SG?平面SAB,从而得出SG∥平面DEF.[证法2]∵EF为△SBC的中位线,∴EF∥SB.EF?平面SAB,SB?平面SAB,∴EF∥平面SAB.同理:DF∥平面SAB,EF∩DF=F,∴平面SAB∥平面DEF,又∵SG?平面SAB,∴SG∥平面DEF.[点评] 要证面面平行,应先证线线或线面平行,面面平行也可以得出线面平行,它们之间可以相互转化.。
高一数学人教A版必修2课后导练:2.2.2平面与平面平行的判定含解析
课后导练基础达标1若两个平面内分别有一条直线,这两条直线相互平行,则这两个平面的公共点的个数是()A. 有限个B.无穷个C.没有D.没有或无穷个分析:知足条件的两平面平行或订交.答案: D2 以下命题正确的个数是()①若两个平面没有公共点,则这两个平面平行②垂直于同向来线的两个平面平行③平行于同向来线的两个平面平行④平行于同一平面的两个平面平行A.1B.2C.3D.4分析:由定义知①正确,由判断定理可知②④正确,③错误.答案: C3 以下表达不正确的选项是()A. 若α∥ β,则α内全部直线都平行于βB.若α∥ β,则α内的直线与β内的直线可平行或异面C.若α与β订交,则α内必存在直线与β平行D.若α与β订交,则α内全部直线与β订交分析:若α∥ β,则α内全部直线与β无公共点,因此平行, A 项对, B 项也对;若α与β订交,则在α内与平行于交线的直线与β平行,因此 C 项正确 .答案: D4α、β是两个不重合的平面,在以下条件中,可确立α∥ β的是()A. α、β都平行于直线l 、 mB. α内有三个不共线的点到β距离相等C.l 、 m 是α内两直线且 m∥ β, l∥ βD.l 、 m 是两异面直线,且l ∥β ,m∥ β ,l∥ α ,m∥ α分析: A 中若 l 与 m 订交或异面时,α∥ β,若 l∥ m,则α与β可能订交; B 中若这三点在β的同侧,则α∥ β,若这三点在β的异侧,则α与β订交; C 中若 m 与 l 订交,则α∥ β,若 m∥ l ,则α与β有可能订交 .答案: D5 经过平面外的两点作该平面的平行于平面,能够作()A.0 个B.1个C.0个或 1个D.1个或 2个分析:若两点连线平行于平面,则可作 1 个,若两点连线与平面订交,则0 个 .答案: C6 空间中两个平面的地点关系有_____________.答案:平行与订交7假如在一个平面内,有无数条直线和另一个平面平行,则这两个平面的地点关系是___________.答案:平行或订交8 已知:平面 ABCD∩平面 ABEF=AB ,且 AB ⊥ BC,AB ⊥BE,AB ⊥ AD,AB ⊥AF ,求证:平面 ADF ∥平面 BCE (如图) .1证明:在平面 ABCD 中, AB ⊥ BC,AB ⊥ AD, ∴ AD ∥ BC.又 AD 面 ADF,BC 面 ADF,∴BC ∥面 ADF.同理可证 BE ∥面 ADF, 又 BC 面 BCE , BE 面 BCE 且 BC∩BE=B, 故平面 BCE∥平面 ADF.综合应用9 过平面外一点有______条直线与已知平面平行,过平面外一点有______ 个平面与已知平面平行 .答案:无数有且只有一10 若一条直线与两个平行平面中的一个订交,则该直线与另一个平面______.答案:也订交11 已知: E、 F、 G、 H 分别是空间四边形ABCD 的边 AB 、 BC 、 CD、DA 的中点,求证:(1)四边形 EFGH 是平行四边形 ;(2)AC ∥平面 EFGH , BD ∥平面 EFGH.证明:(1)∵ E、 F、G、 H 分别为 AB 、 BC、 CD 、DA 的中点,∴E 11GH, 故四边形 EFGH 为平行四边形 .AC,GH AC, ∴ EF22(2)由( 1)知,EF∥ AC,EF平面 EFGH,AC面 EFGH ,∴ AC ∥平面 EFGH,同理可证,BD ∥平面 EFGH.拓展研究12 如右图,空间图形中, ABCD 与 ABEF 均为正方形, M , N 分别是对角线 AC ,BF 上的一点,且 AM=FN ,请过 MN 作一平面∥ BCE.作法:过M 作 MO ∥BC 交 AB 于点 O,连接 NO,∵MO ∥BC ,∴AO AM.OB MC又知 AM=FN , AC=BF ,∴ MC=BN.则AM FN,MC BNAO FNOB BN∴ON ∥ AF ∥ BE.又 BE 面 BCE,NO 面 BCE.∴ON ∥面 BCE.同理可证 OM ∥面 BCE ,又 MO∩ON=O,∴面 MON ∥面 BCE ,则面 MON 为所作平面 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省大庆外国语学校高一数学必修二第二章《2.2.2平面与平面
平行的判定》练习
1.如果两平面分别经过两条平行线中的一条,那么这两个平面( )
A.平行
B.相交
C.垂直
D.都可能
2.一个平面上不同的三点到另一个平面的距离相等且不为零,则这两个平面( )
A.平行
B.相交
C.平行或重合
D.平行或相交
3.M ,N ,P 为三个不重合的平面,a ,b ,c 为三条不同直线,则有下列命题,不正确的是( ) ①b a c b c a //////⇒⎭⎬⎫;②b a P b P a //////⇒⎭⎬⎫;③N M c N c M //////⇒⎭
⎬⎫; ④N M P N P M //////⇒⎭⎬⎫;⑤a M c a c M //////⇒⎭⎬⎫;⑥M a P a P M //////⇒⎭
⎬⎫. A.④⑥ B.②③⑥ C.②③⑤⑥ D.②③
4.能推出平面M//平面N 的条件是( )
A.直线M a ⊂,且N a //
B.直线M a ⊂,M b ⊂,N a //,N b //
C.平面M 内有无数条直线平行于N
D.平面M 内任何一条直线都平行于N
5.在下列条件中,可判断平面α与β平行的是( )
A.α,β都平行于直线l
B.α内存在不共线的三点到β的距离相等
C.l ,m 是α内两条直线,且l //β,m //β
D. l ,m 是两条异面直线,且l //α,m //α, l //β,m //β
6.下列命题中,正确的是( )
A.如果一个平面内的两条直线与另一个平面平行,则这两个平面平行
B.如果一个平面内的无数条直线与另一个平面平行,则这两个平面平行
C.如果一个平面内的两条直线分别与另一个平面内有两条直线平行,则这两个平面平行
D.如果一个平面内的两条相交直线分别与另一个平面内的两条直线平行,则这两个平面平行
7.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:
①若α⊥γ,β⊥γ,则α//β;
②若ββαα//,//,,n m n m ⊂⊂,则βα//;
③若αβα⊂l ,//,则β//l ;
④若,//,,,γαγγββαl n m l === 则n m //.
其中真命题的个数是( )
A.1
B.2
C.3
D.4
8.判断下列命题:
①若平面α内有两条直线分别平行于平面β,则βα//;
②若平面α内有无数条直线分别平行于平面β,则βα//;
③若平面α内任意一条直线都与平面β平行,则βα//;
④两个平面平行于同一直线,则这两个平面平行;
⑤过已知平面外一条直线,必能作一个平面与一只平面平行;
⑥平面α,β,γ,若α//γ,β//γ,则有βα//.
正确的命题是 .
9.如图,E ,F 分别是三棱柱111C B A ABC -的棱AC ,11C A 的中点,证明:平面F AB 1// 平面E BC 1.
10. 已知四棱锥P-ABCD 中, 底面ABCD 为平行四边形. 点M 、N 、Q 分别在PA 、BD 、PD 上, 且PM :MA =BN :ND =PQ : QD .
求证:平面MNQ ∥平面PBC .
答案:
1.D
2.D
3.C
4.D
5.D
6.D
7.B
8.③⑥
9.证明:连结EF ,
,//11AC C A 且,11AC C A =而11121C A F C =,AC AE 2
1=, ,//1AE F C ∴且.1AE F C =
∴四边形1FAEC 是平行四边形,
∴.//1E C FA
∵,//1AE F A 且,1AE F A = ∴四边形AEF A 1是平行四边形, ∴,//1FE A A 且,1FE A A = 而,//11B B A A ∴四边形1FEBB 是平行四边形, ∴,//1EB FB
∴平面F AB 1//平面E BC 1.
10. 证明: PM :MA =BN :N D=PQ :QD . ∴ MQ //AD ,NQ //BP , 而BP ⊂平面PBC ,NQ ⊄平面PBC , ∴ NQ //平面PBC . 又 ABCD 为平行四边形,BC //AD , ∴ MQ //BC , 而BC ⊂平面PBC ,MQ ⊄平面PBC , ∴ MQ //平面PBC . 由MQ NQ =Q ,根据平面与平面平行的判定定理,可得平面MNQ ∥平面PBC .。