小学数学30种典型应用题--优选及例题完美版本.doc

合集下载

小学数学30类典型应用题含答案解析

小学数学30类典型应用题含答案解析

小学数学30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题10、年龄问题11、行船问题12、列车问题13、时钟问题14、盈亏问题15、工程问题16、正反比例问题17、按比例分配18、百分数问题19、“牛吃草”问题20、鸡兔同笼问题21、方阵问题22、商品利润问题23、存款利率问题24、溶液浓度问题25、构图布数问题26、幻方问题27、抽屉原则问题28、公约公倍问题29、最值问题30、列方程问题1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

(完整版)小学数学典型应用题归纳汇总30种题型

(完整版)小学数学典型应用题归纳汇总30种题型

小学数学典型应用题归纳汇总30种题型1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

2 归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

【数量关系】1份数量×份数=总量总量÷1份数量=份数总量÷另一份数=另一每份数量【解题思路和方法】先求出总数量,再根据题意得出所求的数量。

例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。

原来做791套衣服的布,现在可以做多少套?解(1)这批布总共有多少米? 3.2×791=2531.2(米)(2)现在可以做多少套?2531.2÷2.8=904(套)列成综合算式 3.2×791÷2.8=904(套)答:现在可以做904套。

3 和差问题【含义】已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。

【数量关系】大数=(和+差)÷2小数=(和-差)÷2【解题思路和方法】简单的题目可以直接套用公式;复杂的题目变通后再用公式。

例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人?解甲班人数=(98+6)÷2=52(人)乙班人数=(98-6)÷2=46(人)答:甲班有52人,乙班有46人。

小学数学典型应用题归类总结(30种)

小学数学典型应用题归类总结(30种)

小学数学典型应题归类总结(30种)1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1、买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2、 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送10吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 、归总问题【含义】解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。

小学数学必考30个类型应用题及解答

小学数学必考30个类型应用题及解答

小学数学必考30个类型应用题及解答工程问题4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。

已知乙单独做这项工程需17天完成,甲单独做这项工程要多少天完成?解:由题意可知1/甲+1/乙+1/甲+1/乙+ (1)甲=11/乙+1/甲+1/乙+1/甲+……+1/乙+1/甲×0.5=1 (1/甲表示甲的工作效率、1/乙表示乙的工作效率,最后结束必须如上所示,否则第二种做法就不比第一种多0.5天)1/甲=1/乙+1/甲×0.5(因为前面的工作量都相等)得到1/甲=1/乙×2 ,又因为1/乙=1/17所以1/甲=2/17,甲等于17÷2=8.5天8.某工程队需要在规定日期内完成,若由甲队去做,恰好如期完成,若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,问规定日期为几天?答案为6天解:由“若乙队去做,要超过规定日期三天完成,若先由甲乙合作二天,再由乙队单独做,恰好如期完成,”可知:乙做3天的工作量=甲2天的工作量即:甲乙的工作效率比是3:2甲、乙分别做全部的的工作时间比是2:3时间比的差是1份实际时间的差是3天所以3÷(3-2)×2=6天,就是甲的时间,也就是规定日期方程方法:[1/x+1/(x+2)]×2+1/(x+2)×(x-2)=1解得x=69.两根同样长的蜡烛,点完一根粗蜡烛要2小时,而点完一根细蜡烛要1小时,一天晚上停电,小芳同时点燃了这两根蜡烛看书,若干分钟后来点了,小芳将两支蜡烛同时熄灭,发现粗蜡烛的长是细蜡烛的2倍,问:停电多少分钟?答案为40分钟。

解:设停电了x分钟,1-1/120*x=(1-1/60*x)*2解得x=40三.数字数位问题1.把1至2005这2005个自然数依次写下来得到一个多位数123456789.....2005,这个多位数除以9余数是多少?解:首先研究能被9整除的数的特点:如果各个数位上的数字之和能被9整除,那么这个数也能被9整除;如果各个位数字之和不能被9整除,那么得的余数就是这个数除以9得的余数。

小学数学30个典型应用题

小学数学30个典型应用题

小学数学30个典型应用题1. 甲乙两个人共有80元,甲比乙多10元,甲要减去1/5的钱给乙,剩下的钱甲还有多少元?解析:甲比乙多10元,即甲有x元,乙有x-10元。

甲要减去1/5的钱给乙,剩下的钱为4/5x。

所以4/5x = x-10,解得x=50,甲剩下的钱为(4/5)*50=40元。

2. 两个正整数的和是35,差是5,这两个数分别是多少?解析:设两个正整数分别为x和y,所以有x+y = 35和x-y=5。

将两个方程相加得到2x=40,解得x=20,代入第一个方程解得y=15。

所以这两个数分别是20和15。

3. 一辆汽车开车行驶了200公里,行驶速度为60千米每小时,行驶的时间是多少小时?解析:速度等于路程除以时间,所以时间等于路程除以速度。

这里路程为200公里,速度为60千米每小时,所以时间为200/60=3.33小时。

4. 一袋米重5千克,小明买了3袋米,他付了多少钱?如果他付了480元,那么每袋米多少钱?解析:小明买了3袋米,总重量为5千克*3=15千克。

如果他付了480元,那么每千克米的价格为480元/15千克=32元。

所以每袋米的价格为32元*5千克=160元。

5. 一盒饼干有24块,小明吃掉了其中的1/3,还剩下多少块饼干?解析:小明吃掉了1/3,剩下的饼干为原来的2/3。

所以剩下的饼干数量为24块*2/3=16块。

6. 一个苹果25克,小红买了6个苹果,她买了多少克苹果?解析:小红买了6个苹果,总重量为25克*6=150克。

7. 一路程为120公里的旅程,甲和乙同时从同一地点出发,乙的速度是甲速度的1.5倍,他们多少小时后会相遇?解析:设甲的速度为x千米每小时,乙的速度为1.5x千米每小时。

他们相遇时,甲行驶的时间为t小时,乙行驶的时间为1.5t小时。

根据路程等于速度乘以时间的公式,有xt+1.5xt=120,解得t=24/2.5=9.6小时。

所以他们9.6小时后会相遇。

8. 一辆公交车从A地出发,以每小时50千米的速度向B地行驶,另一辆公交车从B地同时以每小时60千米的速度向A地行驶。

小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题:先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要元钱,买同样的铅笔16支,需要多少钱解(1)买1支铅笔多少钱÷5=(元)(2)买16支铅笔需要多少钱×16=(元)列成综合算式÷5×16=×16=(元)答:需要元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷解(1)1台拖拉机1天耕地多少公顷 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次解(1)1辆汽车1次能运多少吨钢材 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

2 归总问题解题时,常常先找出“总数量”,然后再根据其它条件算出所求的问题,叫归总问题。

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版

小学数学30种典型应用题和例题完美版1. 简介数学是我们日常生活中不可或缺的一部分。

在小学数学学习中,了解典型应用题和例题对学生的数学素养和问题解决能力的提升至关重要。

本文将为你介绍小学数学中的30种典型应用题和例题,帮助你更好地掌握数学知识。

2. 加减法例题1:小明有10本书,他借给小红3本,借给小芳2本。

请问小明还剩下几本书?解答:小明还剩下10本 - 3本 - 2本 = 5本书。

例题2:一根绳子长5米,小明用了2米,小华用了1米。

还剩下多长?解答:绳子还剩下5米 - 2米 - 1米 = 2米。

3. 乘除法例题1:小明今年考了六次数学考试,每次的成绩分别是85分、92分、78分、89分、90分和87分。

他的平均分是多少?解答:小明的总分是85分 + 92分 + 78分 + 89分 + 90分 + 87分 = 521分,平均分是521分 ÷ 6次 = 86.83分。

例题2:一个班级有40名学生,老师希望将他们分成4个小组,每个小组有多少名学生?解答:每个小组有40名学生 ÷ 4个小组 = 10名学生。

4. 分数例题1:小明吃了一个苹果的四分之三,还剩下四分之一。

苹果一共有多少份?解答:一个苹果的四分之三 + 四分之一 = 一份,即4分之3 + 4分之1 = 4分之4 = 1份。

例题2:小华走了整条路程的三分之二,还剩下400米。

整条路程有多长?解答:整条路程的三分之二 + 400米 = 整条路程,即3分之2 + 400 = 2分之3 = 整条路程。

5. 长方形和正方形例题1:一块长方形的地板长8米,宽4米。

计算地板的面积。

解答:地板的面积是8米 × 4米 = 32平方米。

例题2:一块正方形的地砖边长为6厘米。

计算地砖的周长。

解答:地砖的周长是4条边相加,即6厘米 × 4 = 24厘米。

6. 圆形例题1:一个圆的半径是5厘米,计算圆的周长。

解答:圆的周长是2 × 3.14 × 5厘米 = 31.4厘米。

(完整)小学数学30种典型应用题及例题完美版

(完整)小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 1辆汽车1次能运多少吨钢材? 100÷5÷4=5 乙班人数=÷2=46 答:甲班有52人,乙班有46人。

例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方出来,这样所形成的题目叫做应用题。

任何一道应用题都两部分构成。

第一部分是已知条件,第二部分是所求问题。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题: 1 归一问题 11 行船问题 21 方阵问题 2 归总问题 12 列车问题 22 商品利润问题 3 和差问题 13 时钟问题 23 存款利率问题 4 和倍问题 14 盈亏问题24 溶液浓度问题 5 差倍问题 15 工程问题 25 构图布数问题 6 倍比问题 16 正反比例问题 26 幻方问题 7 相遇问题 17 按比例分配27 抽屉原则问题 8 追及问题 18 百分数问题 28 公约公倍问题 9 植树问题 19 “牛吃草”问题 29 最值问题 10 年龄问题 xx年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解儿子年龄=27÷=9 爸爸年龄=9×4=36答:父子二人今年的年龄分别是36岁和9岁。

例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则万元就相当于上月盈利的倍,因此上月盈利=÷=18 本月盈利=18+30=48答:上月盈利是18万元,本月盈利是48万元。

00_小学数学典型应用题30类

00_小学数学典型应用题30类

01归一问题例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

02 归总问题例2 小华每天读24页书,12天读完了《红岩》一书。

小明每天读36页书,几天可以读完《红岩》?解(1)《红岩》这本书总共多少页?24×12=288(页)(2)小明几天可以读完《红岩》?288÷36=8(天)列成综合算式24×12÷36=8(天)答:小明8天可以读完《红岩》。

例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。

后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天?解(1)这批蔬菜共有多少千克?50×30=1500(千克)(2)这批蔬菜可以吃多少天?1500÷(50+10)=25(天)列成综合算式50×30÷(50+10)=1500÷60=25(天)答:这批蔬菜可以吃25天。

02 和差问题例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。

(完整)小学数学30种典型应用题及例题完美版

(完整)小学数学30种典型应用题及例题完美版

小学数学30种典型应用题及例题完美版小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 1辆汽车1次能运多少吨钢材? 100÷5÷4=5 乙班人数=÷2=46 答:甲班有52人,乙班有46人。

例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方出来,这样所形成的题目叫做应用题。

任何一道应用题都两部分构成。

第一部分是已知条件,第二部分是所求问题。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题: 1 归一问题 11 行船问题 21 方阵问题 2 归总问题 12 列车问题 22 商品利润问题 3 和差问题 13 时钟问题 23 存款利率问题 4 和倍问题 14 盈亏问题24 溶液浓度问题 5 差倍问题 15 工程问题 25 构图布数问题 6 倍比问题 16 正反比例问题 26 幻方问题 7 相遇问题 17 按比例分配27 抽屉原则问题 8 追及问题 18 百分数问题 28 公约公倍问题 9 植树问题 19 “牛吃草”问题 29 最值问题 10 年龄问题 xx年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁?解儿子年龄=27÷=9 爸爸年龄=9×4=36答:父子二人今年的年龄分别是36岁和9岁。

例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元?解如果把上月盈利作为1倍量,则万元就相当于上月盈利的倍,因此上月盈利=÷=18 本月盈利=18+30=48答:上月盈利是18万元,本月盈利是48万元。

小学数学30种典型应用题分类讲解附带例题和解题过程甄选

小学数学30种典型应用题分类讲解附带例题和解题过程甄选

全新小学数学30种典型应用题分类讲解附带例题和解题过程.优选小学数学30种典型应用题讲解应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题.以下主要研究30类典型应用题:1 归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱?0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材?5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式105÷(100÷5÷4×7)=3(次)答:需要运3次。

小学数学30种典型应用题[资料]共6页word资料

小学数学30种典型应用题[资料]共6页word资料

小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

查字典高中数学网为大家归纳了以下30类典型应用题:1、归一问题2、归总问题3、和差问题4、和倍问题5、差倍问题6、倍比问题7、相遇问题8、追及问题9、植树问题 10、年龄问题11、行船问题12、列车问题 13、时钟问题 14、盈亏问题 15、工程问题16、正反比例问题 17、按比例分配 18、百分数问题 19、牛吃草问题20、鸡兔同笼问题 21、方阵问题 22、商品利润问题 23、存款利率问题24、溶液浓度问题 25、构图布数问题 26、幻方问题 27、抽屉原则问题28、公约公倍问题 29、最值问题 30、列方程问题1、归一问题【含义】在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

【数量关系】总量份数=1份数量 1份数量所占份数=所求几份的数量另一总量(总量份数)=所求份数【解题思路和方法】先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.65=0.12(元)(2)买16支铅笔需要多少钱?0.1216=1.92(元)列成综合算式 0.6516=0.1216=1.92(元) 答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 9033=10(公顷)(2)5台拖拉机6天耕地多少公顷? 1056=300(公顷)列成综合算式 903356=1030=300(公顷) 答:5台拖拉机6 天耕地300公顷。

小学数学30种典型应用题及例题完美版之欧阳歌谷创编

小学数学30种典型应用题及例题完美版之欧阳歌谷创编

小学数学30种典型应用题及例题完美版欧阳歌谷(2021.02.01)小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材? 100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次? 105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

小学数学30种典型应用题及例题完美版之欧阳语创编

小学数学30种典型应用题及例题完美版之欧阳语创编

小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题:在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。

例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷?90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷?10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解(1)1辆汽车1次能运多少吨钢材?100÷5÷4=5(吨)(2)7辆汽车1次能运多少吨钢材? 5×7=35(吨)(3)105吨钢材7辆汽车需要运几次?105÷35=3(次)列成综合算式 105÷(100÷5÷4×7)=3(次)答:需要运3次。

小学数学典型应用题及例题完美版格式版

小学数学典型应用题及例题完美版格式版

小学数学30种典型应用题及例题完美版小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30类典型应用题:1 归一问题11 行船问题21 方阵问题2 归总问题12 列车问题22 商品利润问题3 和差问题13 时钟问题23 存款利率问题4 和倍问题14 盈亏问题24 溶液浓度问题5 差倍问题15 工程问题25 构图布数问题6 倍比问题16 正反比例问题26 幻方问题7 相遇问题17 按比例分配27 抽屉原则问题8 追及问题18 百分数问题28 公约公倍问题9 植树问题19 “牛吃草”问题29 最值问题10 年龄问题20 鸡兔同笼问题30 列方程问题1 归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。

这类应用题叫做归一问题。

总量÷份数=1份数量1份数量×所占份数=所求几份的数量另一总量÷(总量÷份数)=所求份数先求出单一量,以单一量为标准,求出所要求的数量。

例1. 买5支铅笔要0.6元钱.买同样的铅笔16支,需要多少钱?解(1)买1支铅笔多少钱? 0.6÷5=0.12(元)(2)买16支铅笔需要多少钱?0.12×16=1.92(元)列成综合算式 0.6÷5×16=0.12×16=1.92(元)答:需要1.92元。

例2. 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地多少公顷?解(1)1台拖拉机1天耕地多少公顷? 90÷3÷3=10(公顷)(2)5台拖拉机6天耕地多少公顷? 10×5×6=300(公顷)列成综合算式 90÷3÷3×5×6=10×30=300(公顷)答:5台拖拉机6 天耕地300公顷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学中把含有数量关系的实际问题用语言或文字叙述出来,这样所形成的题目叫做应用题。

任何一道应用题都由两部分构成。

第一部分是已知条件(简称条件),第二部分是所求问题(简称问题)。

应用题的条件和问题,组成了应用题的结构。

应用题可分为一般应用题与典型应用题。

没有特定的解答规律的两步以上运算的应用题,叫做一般应用题。

题目中有特殊的数量关系,可以用特定的步骤和方法来解答的应用题,叫做典型应用题。

这本资料主要研究以下30 类典型应用题:1 归一问题11 行船问题21 方阵问题2 归总问题12 列车问题22 商品利润问题3 和差问题13 时钟问题23 存款利率问题4 和倍问题14 盈亏问题24 溶液浓度问题5 差倍问题15 工程问题25 构图布数问题6 倍比问题16 正反比例问题26 幻方问题7 相遇问题17 按比例分配27 抽屉原则问题8 追及问题18 百分数问题28 公约公倍问题9 植树问题19 “牛吃草”问题29 最值问题10 年龄问题20 鸡兔同笼问题30 列方程问题1归一问题在解题时,先求出一份是多少(即单一量),然后以单一量为标解题时,常常先找出“总数量”,然后再根据其它条件算出所求准,求出所要求的数量。

这类应用题叫做归一问题。

的问题,叫归总问题。

所谓“总数量”是指货物的总价、几小时总量÷份数= 1 份数量(几天)的总工作量、几公亩地上的总产量、几小时行的总路程1 份数量×所占份数=所求几份的数量等。

另一总量÷(总量÷份数)=所求份数 1 份数量×份数=总量先求出单一量,以单一量为标准,求出所要求的数量。

总量÷ 1 份数量=份数例 1 买 5 支铅笔要元钱,买同样的铅笔16 支,需要多少钱?总量÷另一份数=另一每份数量解( 1)买 1 支铅笔多少钱?÷ 5=(元)先求出总数量,再根据题意得出所求的数量。

( 2)买 16 支铅笔需要多少钱?× 16=(元)例 1 服装厂原来做一套衣服用布 3.2 米,改进裁剪方法后,每列成综合算式÷ 5× 16=× 16=(元)套衣服用布 2.8 米。

原来做 791 套衣服的布,现在可以做多少套?答:需要元。

解( 1)这批布总共有多少米?×791=(米)例 2 3 台拖拉机 3 天耕地 90 公顷,照这样计算, 5 台拖拉机 6 天(2)现在可以做多少套?÷= 904(套)耕地多少公顷?列成综合算式×791÷= 904 (套)解( 1) 1 台拖拉机 1 天耕地多少公顷?90 ÷3÷ 3= 10(公顷)答:现在可以做904 套。

( 2)5 台拖拉机 6 天耕地多少公顷?10 × 5× 6=300(公顷)例 2 小华每天读 24 页书, 12 天读完了《红岩》一书。

小明每天列成综合算式 90 ÷3÷ 3× 5× 6=10×30=300 (公顷)读 36 页书,几天可以读完《红岩》?答: 5 台拖拉机 6 天耕地 300 公顷。

解( 1)《红岩》这本书总共多少页?24 ×12=288(页)例 3 5 辆汽车 4 次可以运送 100 吨钢材,如果用同样的 7 辆汽车(2)小明几天可以读完《红岩》?288 ÷ 36= 8(天)运送 105 吨钢材,需要运几次?列成综合算式 24 × 12÷ 36= 8(天)解(1)1 辆汽车 1 次能运多少吨钢材? 100 ÷ 5÷ 4=5(吨)答:小明 8 天可以读完《红岩》。

( 2)7 辆汽车 1 次能运多少吨钢材? 5 × 7=35(吨)例 3 食堂运来一批蔬菜,原计划每天吃50 千克,30 天慢慢消费( 3)105 吨钢材 7 辆汽车需要运几次?105 ÷ 35= 3(次)完这批蔬菜。

后来根据大家的意见,每天比原计划多吃 10 千克,列成综合算式 105 ÷( 100÷5÷ 4× 7)= 3(次)这批蔬菜可以吃多少天?答:需要运 3 次。

解( 1)这批蔬菜共有多少千克?50 ×30 =1500(千克)(2)这批蔬菜可以吃多少天?1500 ÷( 50+ 10)= 25(天)2 归总问题列成综合算式 50 × 30÷( 50+10)= 1500÷60=25(天)答:这批蔬菜可以吃 25 天。

答:甲袋化肥重 12 千克,乙袋化肥重 20 千克,丙袋化肥重 10 例 3 甲站原有车52 辆,乙站原有车 32 辆,若每天从甲站开往千克。

乙站 28 辆,从乙站开往甲站 24 辆,几天后乙站车辆数是甲站的3 和差问题例 4 甲乙两车原来共装苹果 97 筐,从甲车取下14 筐放到乙车 2 倍?已知两个数量的和与差,求这两个数量各是多少,这类应用题叫上,结果甲车比乙车还多 3 筐,两车原来各装苹果多少筐?解每天从甲站开往乙站 28 辆,从乙站开往甲站24 辆,相当于和差问题。

解“从甲车取下 14 筐放到乙车上,结果甲车比乙车还多 3 筐”,每天从甲站开往乙站( 28- 24)辆。

把几天以后甲站的车辆数当大数=(和+差)÷ 2这说明甲车是大数,乙车是小数,甲与乙的差是(14× 2+ 3),作 1 倍量,这时乙站的车辆数就是 2 倍量,两站的车辆总数( 52 小数=(和-差)÷ 2甲与乙的和是 97,因此甲车筐数=( 97+ 14×2+3)÷2=64(筐)+32)就相当于( 2+1)倍,简单的题目可以直接套用公式;复杂的题目变通后再用公式。

乙车筐数= 97- 64= 33(筐)那么,几天以后甲站的车辆数减少为例 1 甲乙两班共有学生 98 人,甲班比乙班多 6 人,求两班各有答:甲车原来装苹果 64 筐,乙车原来装苹果 33 筐。

(52+32)÷( 2+ 1)= 28(辆)多少人?所求天数为( 52- 28)÷( 28- 24)= 6(天)解甲班人数=(98+6)÷ 2=52(人) 4 和倍问题答: 6 天以后乙站车辆数是甲站的 2 倍。

乙班人数=( 98-6)÷ 2=46(人)已知两个数的和及大数是小数的几倍(或小数是大数的几分之例 4 甲乙丙三数之和是 170,乙比甲的 2 倍少 4,丙比甲的 3 倍答:甲班有 52 人,乙班有46 人。

几),要求这两个数各是多少,这类应用题叫做和倍问题。

多 6,求三数各是多少?例 2 长方形的长和宽之和为18 厘米,长比宽多 2 厘米,求长方总和÷(几倍+ 1)=较小的数解乙丙两数都与甲数有直接关系,因此把甲数作为 1 倍量。

形的面积。

总和-较小的数=较大的数因为乙比甲的 2 倍少 4,所以给乙加上4,乙数就变成甲数的 2 解长=( 18+ 2)÷ 2= 10(厘米)较小的数×几倍=较大的数倍;宽=( 18- 2)÷ 2= 8(厘米)简单的题目直接利用公式,复杂的题目变通后利用公式。

又因为丙比甲的 3 倍多 6,所以丙数减去 6 就变为甲数的 3 倍;长方形的面积=10×8= 80(平方厘米)例 1 果园里有杏树和桃树共248 棵,桃树的棵数是杏树的 3 倍,这时( 170 +4-6)就相当于( 1+2+ 3)倍。

那么,答:长方形的面积为 80 平方厘米。

求杏树、桃树各多少棵?甲数=( 170+ 4- 6)÷( 1+2+ 3)= 28例 3 有甲乙丙三袋化肥,甲乙两袋共重32 千克,乙丙两袋共重解(1)杏树有多少棵?248 ÷( 3+1)= 62(棵)乙数= 28×2- 4= 5230 千克,甲丙两袋共重 22 千克,求三袋化肥各重多少千克。

( 2)桃树有多少棵? 62 × 3= 186(棵)丙数= 28×3+ 6= 90解甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(32 答:杏树有 62 棵,桃树有186 棵。

答:甲数是 28,乙数是 52,丙数是 90。

- 30)= 2 千克,且甲是大数,丙是小数。

由此可知例 2 东西两个仓库共存粮480 吨,东库存粮数是西库存粮数的甲袋化肥重量=(22+2)÷ 2=12(千克)倍,求两库各存粮多少吨? 5 差倍问题丙袋化肥重量=(22-2)÷ 2=10(千克)解(1)西库存粮数= 480÷(+ 1)= 200(吨)已知两个数的差及大数是小数的几倍(或小数是大数的几分之乙袋化肥重量= 32- 12= 20(千克)( 2)东库存粮数= 480- 200= 280(吨)几),要求这两个数各是多少,这类应用题叫做差倍问题。

答:东库存粮 280 吨,西库存粮 200 吨。

两个数的差÷(几倍-1)=较小的数较小的数×几倍=较大的数剩下的小麦数量=(138- 94)÷( 3-1)= 22(吨)解( 1) 800 亩是 4 亩的几倍? 800 ÷ 4=200(倍)简单的题目直接利用公式,复杂的题目变通后利用公式。

运出的小麦数量=94- 22= 72(吨)(2) 800 亩收入多少元? 11111 × 200=2222200(元)例 1 果园里桃树的棵数是杏树的 3 倍,而且桃树比杏树多 124 运粮的天数= 72÷9= 8(天)(3) 16000 亩是 800 亩的几倍? 16000 ÷800= 20(倍)棵。

求杏树、桃树各多少棵?答: 8 天以后剩下的玉米是小麦的 3 倍。

(4) 16000 亩收入多少元?2222200 × 20=(元)解( 1)杏树有多少棵? 124 ÷( 3- 1)= 62(棵)答:全乡 800 亩果园共收入2222200 元,6倍比问题( 2)桃树有多少棵? 62 ×3=186(棵)全县 16000 亩果园共收入元。

答:果园里杏树是62 棵,桃树是186 棵。

有两个已知的同类量,其中一个量是另一个量的若干倍,解题时例 2 爸爸比儿子大27 岁,今年,爸爸的年龄是儿子年龄的先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫7 相遇问题4 倍,求父子二人今年各是多少岁?做倍比问题。

两个运动的物体同时由两地出发相向而行,在途中相遇。

这类应解( 1)儿子年龄= 27÷( 4-1)= 9(岁)总量÷一个数量=倍数用题叫做相遇问题。

相关文档
最新文档