基于51单片机的温度报警系统设计

合集下载

基于51单片机的温度报警系统设计

基于51单片机的温度报警系统设计

基于51单片机的温度报警系统设计温度报警系统是一种常见的安全监控系统,它可以监测环境温度,并在温度达到设定阈值时发出警报。

本文将介绍一个基于51单片机的温度报警系统的设计。

一、系统设计目标和功能本系统的设计目标是实时监测环境温度,并在温度达到预设阈值时发出警报。

具体功能包括:1.温度采集:通过温度传感器实时采集环境温度。

2.温度显示:将采集到的温度值通过数码管显示出来。

3.温度比较:将采集到的温度值与预设的阈值进行比较。

4.报警控制:当温度超过预设的阈值时,触发警报控制器。

5.报警指示:通过蜂鸣器或者LED灯等方式进行报警提示。

二、硬件设计本系统的硬件设计包括主控部分和外围部分。

1. 主控部分:使用51单片机作为主控芯片,通过AD转换器和温度传感器实现温度数据采集。

采用片内RAM和Flash存储器对数据进行处理和存储。

2.外围部分:包括数码管显示和报警指示。

使用数码管模块将温度值进行显示,使用LED灯或者蜂鸣器进行报警指示。

三、软件设计本系统的软件设计包括程序的编写和算法的设计。

1.程序编写:使用C语言编写单片机的程序。

程序主要包括温度采集、温度比较、报警控制和报警指示等功能。

2.算法设计:根据采集到的温度值与预设阈值进行比较,判断是否触发警报控制器。

同时,根据警报控制器的状态,控制报警指示的开关。

四、系统测试完成硬件和软件设计后,需要进行系统测试以验证系统的正确性和稳定性。

1.硬件测试:对硬件电路进行测试,包括电源、信号传输和外围器件等方面。

测试时需要注意电源的稳定性,信号的准确性和外围部件的工作状态。

2.软件测试:进行程序的运行测试,检查各功能是否正常运行。

特别关注温度采集和比较、报警控制和报警指示等功能。

五、系统性能分析对系统的性能进行分析,包括温度采集的准确性、报警控制的响应时间和报警指示的稳定性等方面。

1.温度采集准确性:主要受温度传感器的精度和ADC转换的准确性影响。

在设计中要选择合适的传感器和ADC。

《2024年基于51单片机的温度控制系统设计与实现》范文

《2024年基于51单片机的温度控制系统设计与实现》范文

《基于51单片机的温度控制系统设计与实现》篇一一、引言在现代工业控制领域,温度控制系统的设计与实现至关重要。

为了满足不同场景下对温度精确控制的需求,本文提出了一种基于51单片机的温度控制系统设计与实现方案。

该系统通过51单片机作为核心控制器,结合温度传感器与执行机构,实现了对环境温度的实时监测与精确控制。

二、系统设计1. 硬件设计本系统以51单片机为核心控制器,其具备成本低、开发简单、性能稳定等优点。

硬件部分主要包括51单片机、温度传感器、执行机构(如加热器、制冷器等)、电源模块等。

其中,温度传感器负责实时监测环境温度,将温度信号转换为电信号;执行机构根据控制器的指令进行工作,以实现对环境温度的调节;电源模块为整个系统提供稳定的供电。

2. 软件设计软件部分主要包括单片机程序与上位机监控软件。

单片机程序负责实时采集温度传感器的数据,根据设定的温度阈值,输出控制信号给执行机构,以实现对环境温度的精确控制。

上位机监控软件则负责与单片机进行通信,实时显示环境温度及控制状态,方便用户进行监控与操作。

三、系统实现1. 硬件连接将温度传感器、执行机构等硬件设备与51单片机进行连接。

具体连接方式根据硬件设备的接口类型而定,一般采用串口、并口或GPIO口进行连接。

连接完成后,需进行硬件设备的调试与测试,确保各部分正常工作。

2. 软件编程编写51单片机的程序,实现温度的实时采集、数据处理、控制输出等功能。

程序采用C语言编写,易于阅读与维护。

同时,需编写上位机监控软件,实现与单片机的通信、数据展示、控制指令发送等功能。

3. 系统调试在完成硬件连接与软件编程后,需对整个系统进行调试。

首先,对单片机程序进行调试,确保其能够正确采集温度数据、输出控制信号。

其次,对上位机监控软件进行调试,确保其能够与单片机正常通信、实时显示环境温度及控制状态。

最后,对整个系统进行联调,测试其在实际应用中的性能表现。

四、实验结果与分析通过实验测试,本系统能够实现对环境温度的实时监测与精确控制。

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介

单片机基于51单片机温度控制设计简介一、引言本文将介绍基于51单片机的温度控制设计,其中包括硬件设计和软件设计两个部分。

温度控制是工业自动化中非常重要的一部分,其应用范围非常广泛,如冷库、温室、恒温水槽等。

本文所介绍的温度控制设计可广泛应用于各种场合。

二、硬件设计1.传感器部分本设计采用DS18B20数字温度传感器,其具有精度高、抗干扰能力强等优点。

传感器的输出信号为数字信号,与51单片机通信采用单总线方式。

2.控制部分本设计采用继电器控制加热器的开关,继电器的控制信号由51单片机输出。

同时,为了保证控制精度,本设计采用PID控制算法,其中P、I、D系数均可根据实际情况进行调整。

3.显示部分本设计采用LCD1602液晶显示屏,可显示当前温度和设定温度。

4.电源部分本设计采用12V直流电源供电,其中需要注意的是,由于继电器的电流较大,因此需要采用稳压电源。

三、软件设计1.初始化在程序开始运行时,需要对各个模块进行初始化,包括DS18B20传感器、LCD1602液晶显示屏和PID控制器等。

2.采集温度程序需要不断地采集温度,通过DS18B20传感器获取当前温度值,并将其显示在LCD1602液晶显示屏上。

3.控制加热器根据当前温度和设定温度的差值,通过PID控制算法计算出控制信号,控制继电器的开关,从而控制加热器的加热功率。

4.调整PID参数为了保证控制精度,需要不断地调整PID控制算法中的P、I、D系数,以达到最优控制效果。

四、总结基于51单片机的温度控制设计,可以实现对温度的精确控制,具有应用广泛、控制精度高等优点。

本文所介绍的硬件设计和软件设计,可供读者参考和借鉴,同时也需要根据实际情况进行调整和改进。

基于51单片机温度警报器设计 单片机课程设计

基于51单片机温度警报器设计 单片机课程设计

《单片机原理及应用》课程设计任务书二级学院:电子信息与电气工程学院专业:班级:课程设计题目:基于单片机的数字温度报警器的设计姓名:学院:专业:班级:学号:指导教师:2011年9月15日目录摘要 (4)1 引言 (4)1.1课题背景 (4)1.2研究内容和意义 (6)2 芯片介绍 (6)2.1 DS18B20概述 (6)2.1.1 DS18B20封装形式及引脚功能 (7)2.1.2 DS18B20内部结构 (7)2.1.3 DS18B20供电方式 (9)2.1.4 DS18B20的测温原理 (10)2.1.5 DS18B20的ROM命令 (12)2.2 AT89C52概述 (13)2.2.1单片机AT89C52介绍 (13)2.2.2功能特性概述 (13)3 系统硬件设计 (14)3.1 单片机最小系统的设计 (14)3.2 温度采集电路的设计 (15)3.3 LED显示报警电路的设计 (16)4 总结 (16)致谢 (17)参考文献 (18)附录A 总电路图 (19)附录B 原器件清单 (19)附录C 温度报警器部分程序 (20)摘要随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。

本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。

详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

基于51单片机的温度报警器设计

基于51单片机的温度报警器设计

基于51单片机的温度报警器设计引言:温度报警器是一种用来检测环境温度并在温度超过设定阈值时发出警报的装置。

本文将基于51单片机设计一个简单的温度报警器,以帮助读者了解如何利用单片机进行温度监测和报警。

一、硬件设计硬件设计包括传感器选择、电路连接以及报警装置的设计。

1.传感器选择温度传感器的选择非常重要,它决定了监测温度的准确性和稳定性。

常见的温度传感器有热敏电阻(如NTC热敏电阻)、热电偶以及数字温度传感器(如DS18B20)。

在本设计中,我们选择使用DS18B20数字温度传感器,因为它具有高精度和数字输出的优点。

2.电路连接将DS18B20与51单片机连接,可以采用一根三线总线(VCC、GND、DATA)的方式。

具体连接方式如下:-将DS18B20的VCC引脚连接到单片机的VCC引脚(一般为5V);-将DS18B20的GND引脚连接到单片机的GND引脚;-将DS18B20的DATA引脚连接到单片机的任意IO引脚。

3.报警装置设计报警装置可以选择发出声音警报或者显示警报信息。

在本设计中,我们选择使用蜂鸣器发出声音警报。

将蜂鸣器的一个引脚连接到单片机的任意IO引脚,另一个引脚连接到单片机的GND引脚。

二、软件设计软件设计包括温度读取、温度比较和报警控制的实现。

1.温度读取通过51单片机的IO引脚和DS18B20进行通信,读取DS18B20传感器返回的温度数据。

读取温度数据的具体步骤可以参考DS18B20的通信协议和单片机的编程手册。

2.温度比较和报警控制将读取到的温度数据和设定的阈值进行比较,如果温度超过阈值,则触发报警控制。

可以通过控制蜂鸣器的IO引脚输出高电平或低电平来控制蜂鸣器是否发出声音警报。

三、工作原理整个温度报警器的工作原理如下:1.首先,单片机将发出启动信号,要求DS18B20开始温度转换。

2.单片机等待一段时间,等待DS18B20完成温度转换。

3.单片机向DS18B20发送读取信号,并接收DS18B20返回的温度数据。

基于 51 单片机的温度控制系统设计

基于 51 单片机的温度控制系统设计

基于 51 单片机的温度控制系统设计一、概述随着科技的不断进步,单片机技术在各个领域得到了广泛的应用,其中温度控制系统是其重要的应用之一。

温度控制系统的设计可以帮助我们在工业、农业、生活等领域实现精确的温度控制,提高生产效率和产品质量,降低能源消耗,提升人们的生活舒适度。

本文将讨论基于 51 单片机的温度控制系统设计。

二、系统设计原理1. 温度传感器原理温度传感器是温度控制系统中的关键元件,用于感知环境温度并将其转换为电信号。

常见的温度传感器包括热电偶、热敏电阻、半导体温度传感器等。

本系统选择半导体温度传感器,其工作原理是利用半导体材料的温度特性,通过材料的电阻、电压、电流等参数的变化来测量温度。

2. 控制系统原理温度控制系统的核心是控制器,它根据温度传感器采集到的温度信号进行逻辑判断,然后控制执行元件(如风扇、加热器等)来调节环境温度。

基于 51 单片机的控制系统,通过采集温度传感器信号,使用自身的算法进行温度控制,并输出控制信号给执行元件,从而实现温度的精确控制。

三、系统硬件设计1. 单片机选型本系统选择 51 单片机作为控制器,考虑到其成本低、易于编程和广泛的开发工具支持等优点。

常用的型号包括 STC89C51、AT89S51 等。

2. 温度传感器选型温度传感器的选型最终决定了系统测量的精度和稳定性。

选择适合的半导体温度传感器,如 LM35、DS18B20 等,其精度、响应时间、成本等因素需综合考虑。

3. 控制元件选型根据实际需要选择对应的执行元件,比如风扇、加热器、制冷器等,用于实现温度控制目标。

四、系统软件设计1. 控制算法设计控制系统应当具备良好的控制算法,通过对温度传感器信号的采集和处理,根据设定的温度范围和控制策略来输出对应的控制信号。

经典的控制算法包括比例积分微分(PID)控制算法、模糊控制算法等。

2. 硬件与软件接口设计单片机与传感器、执行元件之间的接口设计尤为重要,应当保证稳定可靠的通信。

基于51单片机的温度警报器的设计

基于51单片机的温度警报器的设计

基于51单片机的温度警报器的设计温度警报器是一种能够实时监测温度并在温度超过设定阈值时发出警报的装置。

本设计基于51单片机,通过温度传感器、LCD显示屏、蜂鸣器等元件实现温度监测和报警功能。

设计方案如下:1.硬件设计:a.温度传感器:选择一款常见的温度传感器,如DS18B20,通过数据线连接到单片机的GPIO口,实时获取温度数据。

b.LCD显示屏:使用16x2LCD显示屏,通过I2C接口与单片机连接,用于显示当前温度和报警信息。

c.蜂鸣器:选择一个合适的蜂鸣器,通过单片机的GPIO口控制,用于发出声音报警信号。

d.电源电路:为单片机和其他电路提供稳定的电源,可以选择直流电源或电池供电。

2.软件设计:a.初始化:对单片机进行初始化设置,包括IO口初始化、LCD初始化、温度传感器初始化等。

b.温度采集:通过温度传感器不断采集温度数据,并将其显示在LCD 屏幕上。

c.温度判断:获取当前温度值,并与设定的阈值进行比较。

如果高于阈值,进入报警状态。

d.报警处理:当温度超过设定阈值时,触发蜂鸣器发出声音报警信号,并在LCD上显示相应警告信息。

同时,可以选择触发其他动作,如发送短信或邮件通知。

e.报警解除:当温度恢复正常后,蜂鸣器停止报警,LCD屏幕上显示正常温度信息。

通过以上硬件和软件设计,我们可以实现一个基于51单片机的温度警报器。

该警报器能够实时监测环境温度,当温度超过设定阈值时,蜂鸣器会发出声音报警,并在LCD显示屏上显示相应报警信息。

当温度恢复正常后,报警器会自动停止报警,并显示正常温度信息。

除了基本的功能,还可以根据需求进行一些扩展。

比如,可以添加按钮控制来设置温度阈值,或者增加温度记录功能,实时记录温度变化并保存。

总之,基于51单片机的温度警报器设计具有可扩展性和实用性,可以满足不同环境的需求。

基于51单片机的温度警报器的设计单片机课程设计报告

基于51单片机的温度警报器的设计单片机课程设计报告

《单片机原理及应用》课程设计任务书二级学院:电子信息与电气工程学院专业:班级:课程设计题目:基于单片机的数字温度报警器的设计姓名:学院:专业:班级:学号:指导教师:2011年9月15日目录摘要 (4)1 引言 (4)1.1课题背景 (4)1.2研究内容和意义 (6)2 芯片介绍 (6)2.1 DS18B20概述 (6)2.1.1 DS18B20封装形式及引脚功能 (7)2.1.2 DS18B20内部结构 (7)2.1.3 DS18B20供电方式 (9)2.1.4 DS18B20的测温原理 (10)2.1.5 DS18B20的ROM命令 (12)2.2 AT89C52概述 (13)2.2.1单片机AT89C52介绍 (13)2.2.2功能特性概述 (13)3 系统硬件设计 (14)3.1 单片机最小系统的设计 (14)3.2 温度采集电路的设计 (15)3.3 LED显示报警电路的设计 (16)4 总结 (16)致谢 (17)参考文献 (18)附录A 总电路图 (19)附录B 原器件清单 (19)附录C 温度报警器部分程序 (20)摘要随着时代的进步和发展,温度的测试已经影响到我们的生活、工作、科研、各个领域,已经成为了一种非常重要的事情,因此设计一个温度测试的系统势在必行。

本文主要介绍了一个基于AT89C52单片机的数字温度报警器系统。

详细描述了利用数字温度传感器DS18B20开发测温系统的过程,重点对传感器在单片机下的硬件连接,软件编程以及各模块系统流程进行了详尽分析,对各部分的电路也一一进行了介绍,该系统可以方便的实现温度的采集和报警,并可以根据需要任意上下限报警温度,它使用起来相当方便,具有精度高、量程宽、灵敏度高、体积小、功耗低等优点,适合于我们日常生活和工、农业生产中的温度测量,也可以当做温度处理模块潜入其他系统中,作为其他主系统的辅助扩展。

DS18B20与AT89C52结合实现最简温度报警系统,该系统结构简单,抗干扰能力强,适合于恶劣环境下进行现场温度测量,有广泛的应用前景。

基于51单片机温度报警器的设计

基于51单片机温度报警器的设计

目录摘要 (2)第一章绪论 (4)1.1 系统背景 (4)1.2 温度控制系统设计的意义 (5)1.3 温度控制系统完成的功能 (5)第二章系统方案设计 (6)2.1 方案一 (6)2.2 方案二 (6)2.3 方案论证 (7)第三章硬件电路设计 (8)3.1系统总体设计 (8)3.2 各部分硬件电路设计 (9)3.2.1时钟电路设计 (9)3.2.2系统复位电路 (10)3.2.3报警与控制电路设计 (11)3.2.4 LED显示电路设计 (12)3.2.4温度检测电路设计 (14)3.2.5按键电路设计 (16)第四章软件设计 (17)4.1 主程序方案 (17)4.2 各个模块子程序设计 (20)4.2.1温度采集程序 (20)4.2.2数码管显示模块 (23)4.2.3温度处理程序 (24)第五章系统调试 (25)5.1测试环境及工具 (25)5.2测试方法 (25)5.3测试结果分析 (26)结论 (26)致谢 (26)参考文献 (27)附录一:系统原理图 (29)附录二:程序代码 (30)摘要随着现代信息技术的飞速发展,在生产中温度的准确测量是一个比较困难的事情从最初的酒精、水银温度计到现在的数字化、集成化的温度检测系统。

可见传感器的发展是飞快的。

它快速的发展必将带来新一轮的工业化的革命和社会发展的飞跃。

本文从硬软件两个方面介绍了基于AT89S52单片机温度自动检测系统的设计。

系统硬件由控制电路、温度采集电路、键盘和LED显示电路组成。

软件设计从设计思路、软件系统框图出发,先介绍整体的思路后,再逐一分析各模块程序算法的实现,最终编写出满足任务需求的程序。

最终通过DS18B20采集温度并显示出来,由此对周围环境的温度进行有效检测与报警。

基本上满足了温度检测与报警的要求,具有超调量小,采样值与设定值基本一致,操作简单等优点。

本设计创新点在于采用数字式温度传感器DS18B20 作为感温元件, 占用单片机引脚少, 因而可以利用空余引脚通过软件模拟和温度显示。

基于51单片机的温控系统设计流程框图

基于51单片机的温控系统设计流程框图

基于51单片机的温控系统设计流程框图下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!基于51单片机的温控系统设计流程详解在电子工程领域,51单片机因其简单易用、功能强大而被广泛应用。

(完整word版)基于51单片机的温度报警器设计

(完整word版)基于51单片机的温度报警器设计

题目基于51单片机的温度报警器设计姓名学号专业班级指导教师201 年月日毕业论文任务书主要实现:实时温度测量及显示,超出温度范围声光报警,上下限温度可通过按键设定等功能。

本数字温度报警器是基于51单片机及温度传感器DS18B20来设计的,温度测量范围0到99.9摄氏度,精度为0.1摄氏度,可见测量温度的范围广,精度高的特点。

可设置上下限报警温度,默认上限报警温度为38℃、默认下限报警温度为5℃(通过程序可以更改上下限值)。

报警值可设置范围:最低上限报警值等于当前下限报警值,最高下限报警值等于当前上限报警值。

将下限报警值调为0时为关闭下限报警功能。

目录前言 (1)1 设计要求与方案论证 (3)1.1 设计要求 (3)1.2 系统基本方案选择和论证 (3)1.2.1 单片机芯片的选择方案和论证 (3)1.2.2 温度传感器设计方案论证 (4)1.3 电路设计最终方案决定 (5)2 主要元件介绍 (5)2.1 STC89C51介绍 (6)2.1.1 STC89C51主要功能及PDIP封装 (6)2.1.2 STC89C51引脚介绍 (6)2.1.3 单片机最小系统: (7)2.2 DS18B20传感器介绍 (8)2.2.1 DS18B20概述 (8)2.2.2 DS18B20引脚介绍 (10)2.2.3 DS18B20的内部结构 (10)2.2.4 DS18B20的程序流程图 (11)2.3 数码管介绍 (12)2.3.1 数码管概述 (13)3 程序流程图 (13)结论 (14)参考文献 (15)致谢..................................................................................................... 错误!未定义书签。

附录1 系统原理图 (16)附录2 C语言程序 (17)基于51单片机的温度报警器设计学院专业班级姓名(5号黑体)摘要:单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度器,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。

基于51单片机的温度报警器设计毕业论文

基于51单片机的温度报警器设计毕业论文

基于51单片机的温度报警器设计毕业论文目录前言 (1)1 设计要求与方案论证 (2)1.1 设计要求 (2)1.2 系统基本方案选择和论证 (2)1.2.1 单片机芯片的选择方案和论证 (2)1.2.2 温度传感器设计方案论证 (3)1.3 电路设计最终方案决定 (4)2 主要元件介绍 (4)2.1 STC89C51介绍 (4)2.1.1 STC89C51主要功能及PDIP封装 (4)2.1.2 STC89C51引脚介绍 (4)2.1.3 单片机最小系统: (6)2.2 DS18B20传感器介绍 (6)2.2.1 DS18B20概述 (6)2.2.2 DS18B20引脚介绍 (7)2.2.3 DS18B20的部结构 (8)2.2.4 DS18B20的程序流程图 (8)2.3 数码管介绍 (9)2.3.1 数码管概述 (10)3 程序流程图 (10)结论 (11)参考文献 (12)致谢 (13)附录1 系统原理图 (14)附录2 C语言程序 (15)基于51单片机的温度报警器设计摘要:单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的数字温度器,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置围时,可以报警。

随着现代工农业技术的发展及人们对生活环境要求的提高,人们也迫切需要检测与控制温度。

本文通过采用蜂鸣器作为电声元件的温度报警器的设计,阐明了该装置进行设计与制作的具体过程及方法。

这种温度报警器结构简单,可操作性强,应用广泛。

工作时,温度测量围为5—38ºC。

当前环境温度若超过设定的高温临界温度,由单片机发出报警信号,从而防止带来的不必要的损失。

造成高温火灾有:电气线路短路、过载、接触电阻过大等引发高温或火灾;静电产生高温或或火灾;雷电等强电侵入导致高温或火灾;最主要是机房电脑、空调等用电设备长时间工作,导致设备老化,空调发生故障,而不能降温;因此机房所属的电子产品发热快,在短时间机房温度升高超出设备正常温度,导致系统瘫痪或产生火灾,这时温度报警系统就会发挥应有的功能。

基于51单片机的温控系统设计

基于51单片机的温控系统设计

基于51单片机的温控系统设计1.引言1.1 概述概述部分的内容可以包括以下几个方面:温控系统是一种广泛应用于各个领域的实时温度控制系统。

随着科技的发展和人们对生活质量的要求提高,温控系统在工业、家居、医疗、农业等领域得到了广泛应用。

温度作为一个重要的物理量,对于许多过程和设备的稳定运行至关重要。

因此,设计一种高效可靠的温控系统对于提高工作效率和产品质量具有重要意义。

本文将基于51单片机设计一个温控系统,通过对系统的整体结构和工作原理的介绍,可以深入了解温控系统在实际应用中的工作机制。

以及本文重点研究的51单片机在温控系统中的应用。

首先,本文将介绍温控系统的原理。

温控系统的核心是温度传感器、控制器和执行器三部分组成。

温度传感器用于实时检测环境温度,通过控制器对温度数据进行处理,并通过执行器对环境温度进行调节。

本文将详细介绍这三个组成部分的工作原理及其在温控系统中的作用。

其次,本文将重点介绍51单片机在温控系统中的应用。

51单片机作为一种经典的微控制器,具有体积小、功耗低、性能稳定等优点,广泛应用于各种嵌入式应用中。

本文将分析51单片机的特点,并介绍其在温控系统中的具体应用,包括温度传感器的数据采集、控制器的数据处理以及执行器的控制等方面。

最后,本文将对设计的可行性进行分析,并总结本文的研究结果。

通过对温控系统的设计和实现,将验证51单片机在温控系统中的应用效果,并对未来的研究方向和发展趋势进行展望。

通过本文的研究,可以为温控系统的设计与应用提供一定的参考和指导,同时也为利用51单片机进行嵌入式系统设计的工程师和研究人员提供一定的技术支持。

1.2文章结构文章结构部分的内容可以包含以下内容:文章结构部分旨在介绍整篇文章的组织结构和各个部分的内容。

本篇文章基于51单片机的温控系统设计,总共分为引言、正文和结论三部分。

引言部分主要包括概述、文章结构和目的三个小节。

首先,概述部分介绍了本文的主题,即基于51单片机的温控系统设计。

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计

基于51单片机的数字温度计设计数字温度计是一种广泛使用的电子测量设备,通过传感器将温度转化为数字信号,并显示出来。

本文将介绍基于51单片机的数字温度计的设计。

该设计将使得使用者能够准确、方便地测量温度,并实时显示在液晶显示屏上。

1. 硬件设计:- 传感器选择:在设计数字温度计时,我们可以选择使用NTC(负温度系数)热敏电阻或者DS18B20数字温度传感器作为温度传感器。

这里我们选择DS18B20。

- 信号转换:DS18B20传感器是一种数字传感器,需要通过单总线协议与51单片机进行通信。

因此,我们需要使用DS18B20专用的驱动电路,将模拟信号转换为数字信号。

- 51单片机的选择:根据设计要求选择合适的51单片机,如STC89C52、AT89S52等型号。

单片机应具备足够的IO口来与传感器和液晶显示屏进行通信,并具备足够的计算和存储能力。

- 显示屏选择:为了实时显示温度,我们可以选择使用1602型字符液晶显示屏。

该显示屏能够显示2行16个字符,足够满足我们的需求。

通过与51单片机的IO口连接,我们可以将温度数据显示在屏幕上。

2. 软件设计:- 采集温度数据:通过51单片机与DS18B20传感器进行通信,采集传感器传输的数字温度数据。

通过解析传感器发送的数据,我们可以获得当前的温度数值。

- 数据处理:获得温度数据后,我们需要对其进行处理。

例如,可以进行单位转换,从摄氏度到华氏度或者开尔文度。

同时,根据用户需求,我们还可以对数据进行滤波、校准等处理。

- 显示数据:通过与液晶显示屏的连接,我们可以将温度数据显示在屏幕上。

可以使用51单片机内部的LCD模块库来控制液晶显示屏,显示温度数据以及相应的单位信息。

- 用户交互:可以设置一些按键,通过与51单片机的IO口连接,来实现用户与数字温度计的交互。

例如,可以设置一个按钮来进行温度单位的切换,或者设置一个按钮来启动数据保存等功能。

3. 功能拓展:- 数据存储:除了实时显示当前温度,我们还可以考虑增加数据存储功能。

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现1. 系统设计概述温度控制系统是智能控制领域中的一个重要领域,主要应用于各种工业生产、制冷空调、农业温室等领域。

本文主要介绍基于51单片机的温度控制系统。

2. 系统硬件设计系统硬件设计主要分为两部分:传感器采集部分和控制执行部分。

其中传感器采集部分主要采用DS18B20数字温度传感器,控制执行部分则主要采用继电器进行控制。

3. 系统软件设计系统软件设计主要采用C语言进行编程实现。

具体包括温度采集、PID算法控制以及控制执行等功能。

4. 温度采集部分设计温度采集部分采用DS18B20数字温度传感器进行温度采集。

该传感器具有传输速度快、采集精度高等特点。

系统采用单总线模式进行控制,通过读取传感器中的温度数据并进行运算,得到当前温度值。

5. 基于PID算法的控制设计本系统采用PID算法进行控制,具体包括比例控制、积分控制和微分控制。

其中比例控制主要控制温度的偏差,积分控制主要控制温度的稳定性,微分控制主要控制温度的变化率。

6. 控制执行部分设计控制执行部分主要采用继电器进行控制。

当温度值达到设定值时,单片机通过控制继电器的开关状态来控制制冷或制热设备的开关。

7. 系统测试与优化在设计完整的软硬件系统后,需进行系统测试以得到有效的控制效果。

在测试过程中,发现系统存在延迟现象,需要对算法进行优化,以提高系统响应速度和稳定性。

8. 总结基于51单片机的温度控制系统具备采集精度高、响应速度快、控制稳定等特点,能够广泛应用于各种不同的领域。

但是在实践中,还需针对不同领域实际情况进行优化和调整,以提高系统效率和稳定性。

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现

基于51单片机的温度控制系统设计与实现一、本文概述本文旨在探讨基于51单片机的温度控制系统的设计与实现。

随着科技的快速发展,温度控制在各个领域都扮演着至关重要的角色,如工业生产、家庭生活、医疗设施等。

传统的温度控制系统大多依赖于复杂的硬件设备和昂贵的软件平台,而基于51单片机的温度控制系统则以其低成本、高性能和易于实现等优点,逐渐受到广大工程师和研究者的青睐。

本文将首先介绍51单片机的基本原理和特点,为后续的设计和实现奠定理论基础。

接着,我们将详细阐述温度控制系统的总体设计方案,包括硬件选择和软件设计思路。

在此基础上,我们将重点讨论如何实现温度采集、处理和控制的功能,包括传感器的选择、信号调理、A/D 转换、控制算法的实现等。

本文还将探讨温度控制系统的稳定性、可靠性和实时性等问题,并提出相应的优化措施。

通过实际应用的案例,我们将展示基于51单片机的温度控制系统在实际工作中的表现,并评估其性能。

本文将对基于51单片机的温度控制系统的设计和实现进行总结,并提出未来改进和发展的方向。

我们希望通过本文的探讨,能够为相关领域的研究者和工程师提供一些有益的参考和启示。

二、51单片机基础知识51单片机,又称8051微控制器,是由Intel公司在1980年代初推出的一款8位单片机。

由于其结构简单、功能完善、可靠性高且价格适中,51单片机在嵌入式系统领域一直占据重要地位。

尽管现在市面上已经出现了许多性能更强、功能更丰富的单片机,但51单片机由于其广泛的应用基础和良好的教学价值,仍然是许多初学者和工程师的首选。

51单片机的核心结构包括中央处理器(CPU)、4KB的ROM(只读存储器)、128B的RAM(随机存取存储器)、两个16位的定时器/计数器、四个8位的并行I/O口、一个全双工串行通信口以及一个中断控制系统。

它还具有一个5向量的两级中断结构,能够实现简单的中断处理。

51单片机采用冯·诺依曼结构,即指令和数据都存储在同一个存储器中,通过指令操作码的不同来实现不同的功能。

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现

基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。

基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。

本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。

一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。

市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。

根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。

2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。

(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。

通过引脚的连接,实现单片机对温度传感器的读取控制。

(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。

根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。

(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。

根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。

3. PCB设计根据电路设计的原理图,进行PCB设计。

根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。

二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。

汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。

根据实际情况,我们选择使用C语言进行编程。

2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。

根据温度传感器的通信规则,编写相应的代码实现数据的读取。

基于51单片机的温度检测报警系统与时钟课程设计

基于51单片机的温度检测报警系统与时钟课程设计

基于单片机的温度检测报警与万年历系统目录摘要〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1一、设计要求与方案论证1.1设计要求〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1 1.2系统方案选择和论证〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1 1.3电路最终方案确定〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 1二、电子万年历与温度采集报警硬件设计和实现2.1系统设计〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 2 2.1.1系统设计框图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 22.1.2系统硬件需求介绍〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 3 2.2系统硬件各模块作用〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 3 2.2.1单片机核心控制模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 42.2.2数字温度传感器模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃42.2.3彩屏显示电路模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃 52.2.4蜂鸣器电路模块〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃5 2.3系统电路图设计〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃6 2.3.1系统电路原理框图和原理图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃7三、软件设计与分析3.1系统软件流程图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃8 3.1.1DS18B20程序流程图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃8四、系统测试4.1测试工具〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 4.2软件测试〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃9 4.3硬件测试〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃10 参考文献〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃11 附录一:程序清单〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃12 附录二:PCB电路图〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃〃13基于单片机的温度检测报警与万年历系统摘要温度检测报警系统也是在日常生活和工业应用非常广泛的工具,能实时采集周围的温度信息进行显示,程序内部设定有报警上下限,根据应用环境不同可设定不同的报警上下限。

基于51单片机的温度报警器设计分解

基于51单片机的温度报警器设计分解

基于51单片机的温度报警器设计分解首先,对于硬件设计,我们需选择一个合适的温度传感器。

常见的温度传感器有NTC热敏电阻和DS18B20数字温度传感器。

根据实际需求进行选择。

这里我们以DS18B20数字温度传感器为例。

硬件设计中,需要将DS18B20传感器与51单片机连接。

具体的连接可以参考DS18B20的数据手册。

一般情况下,将DS18B20的数据引脚连接到单片机的I/O口。

同时,为了保证传输质量,还需要在传输线上加上4.7K的上拉电阻。

其次,需要设计电路。

这里我们可以采用51单片机控制电路。

具体的电路设计包括单片机控制、显示电路和报警电路。

单片机控制电路主要包括51单片机、晶振、复位电路等。

显示电路主要包括数码管或LCD屏幕等。

报警电路可以采用蜂鸣器或LED等。

这里采用51单片机作为控制器,通过读取DS18B20的温度值来实现对温度的监测。

如果温度超过设定阈值,那么蜂鸣器会响起或者LED灯会亮起。

接下来进行软件设计,主要包括程序编写和功能实现。

根据硬件设计的要求,来编写相应的程序,实现相应功能。

具体的流程大致如下:1.初始化单片机和DS18B20传感器;2.读取传感器的温度值;3.判断温度值是否超过设定阈值;4.如果温度超过设定阈值,则蜂鸣器响起或LED灯亮起;5.如果温度未超过设定阈值,则继续读取温度值;6.循环执行以上步骤。

在设计过程中,需要注意以下几点:1.硬件电路的连线要正确,确保各个元件能够正常工作;2.程序要根据实际情况进行调试,确保功能正常;3.温度阈值的设定要合理,保证报警的准确性。

总结来说,基于51单片机的温度报警器设计分为硬件设计和软件设计两部分。

硬件设计主要涉及传感器的选择和电路设计,软件设计则包括程序编写和功能实现。

通过合理的硬件设计和软件编程,可以实现对温度的监测和报警。

在设计过程中需要注意硬件的连接和程序的调试,保证整个系统的稳定性和准确性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于51单片机的温度报警系统基于51单片机的温度报警系统物理与电子工程学院机械电子工程设计题目:基于 51 的温度报警系统专业班级:机械电子工程2016级7班学号:姓名:指导教师:设计时间:设计地点:一、课题名称智能电子产品设计与制作二、设计目的为了进一步巩固学习的理论知识,增强学生对所学知识的实际应用能力和运用所学的知识解决实际问题的能力,开始为期两周的智能电子产品设计与制作课程设计。

通过实训使学生在巩固所学知识的基础之上具有初步的单片机系统设计与应用能力。

三、设计内容以 51 单片机为控制器,加上外围电路构成一控制系统,并以进行编程,要求能方便的进行人机交换。

四、设计要求1 、设计以 51 单片机为控制器的硬件系统。

2 、用 LED 或 LCD 进行显示该系统的基本功能参数,用键盘进行参数的输入。

4 、编写程序。

5 、对系统的进行综合和调试,使该同能稳定运行,实现其基本功能。

6 、编写课程设计的总结1 、方案论证1.1 设计要求题目:基于51单片机的温度报警系统功能:①在数码管上显示当前温度②超过温度设定值,蜂鸣器自动报警1.2 总体设计方案1.2.1方案一由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D转换电路,感温电路比较麻烦。

1.2.2 方案二进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。

从以上两种方案,很容易看出,采用方案二,电路比较简单,软件设计也比较简单,故采用了方案二。

1.3方案二的总体设计框图温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S51,温度传感器采用DS18B20,用3位共阳极数码管以并口传送数据实现温度显示。

图1 总体设计方框图2 硬件设计2.1 系统组成及工作原理2.1.1 主控制器单片机AT89S52具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。

2.1.2 显示电路显示部分采用三维共阳极数码管显示,温度显示范围为0~99.9摄氏度,从p0口输出段选信号,从P2.0~P2.2输出位选信号。

2.1.3 温度传感器DS18B20温度传感器是美国DALLAS半导体公司最新推出的一种改进型智能温度传感器,与传统的热敏电阻等测温元件相比,它能直接读出被测温度,并且可根据实际要求通过简单的编程实现9~12位的数字值读数方式。

DS18B20的性能特点如下:●独特的单线接口仅需要一个端口引脚进行通信;●多个DS18B20可以并联在惟一的三线上,实现多点组网功能;●无须外部器件;●可通过数据线供电,电压范围为3.0~5.5V;●零待机功耗;●温度以9或12位数字;●用户可定义报警设置;●报警搜索命令识别并标志超过程序限定温度(温度报警条件)的器件;●负电压特性,电源极性接反时,温度计不会因发热而烧毁,但不能正常工作;DS18B20采用3脚PR-35封装或8脚SOIC封装,其内部结构框图如图2所示。

图2 DS18B20内部结构框图64位ROM的结构开始8位是产品类型的编号,接着是每个器件的惟一的序号,共有48位,最后8位是前面56位的CRC检验码,这也是多个DS18B20可以采用一线进行通信的原因。

温度报警触发器TH和TL,可通过软件写入户报警上下限。

DS18B20温度传感器的内部存储器还包括一个高速暂存RAM和一个非易失性的可电擦除的EERAM。

高速暂存RAM的结构为8字节的存储器,结构如图3所示。

头2个字节包含测得的温度信息,第3和第4字节TH和TL的拷贝,是易失的,每次上电复位时被刷新。

第5个字节,为配置寄存器,它的内容用于确定温度值的数字转换分辨率。

DS18B20工作时寄存器中的分辨率转换为相应精度的温度数值。

该字节各位的定义如图3所示。

低5位一直为1,TM是工作模式位,用于设置DS18B20在工作模式还是在测试模式,DS18B20出厂时该位被设置为0,用户要去改动,R1和R0决定温度转换的精度位数,来设置分辨率。

由表1可见,DS18B20温度转换的时间比较长,而且分辨率越高,所需要的温度数据转换时间越长。

因此,在实际应用中要将分辨率和转换时间权衡考虑。

高速暂存RAM的第6、7、8字节保留未用,表现为全逻辑1。

第9字节读出前面所有8字节的CRC码,可用来检验数据,从而保证通信数据的正确性。

当DS18B20接收到温度转换命令后,开始启动转换。

转换完成后的温度值就以16位带符号扩展的二进制补码形式存储在高速暂存存储器的第1、2字节。

单片机可以通过单线接口读出该数据,读数据时低位在先,高位在后,数据格式以0.0625 ℃/LSB形式表示。

当符号位S=0时,表示测得的温度值为正值,可以直接将二进制位转换为十进制;当符号位S=1时,表示测得的温度值为负值,要先将补码变成原码,再计算十进制数值。

表2是一部分温度值对应的二进制温度数据。

DS18B20完成温度转换后,就把测得的温度值与RAM中的TH、TL字节内容作比较。

若T>TH或T<TL,则将该器件内的报警标志位置位,并对主机发出的报警搜索命令作出响应。

因此,可用多只DS18B20同时测量温度并进行报警搜索。

在64位ROM的最高有效字节中存储有循环冗余检验码(CRC)。

主机ROM的前56位来计算CRC值,并和存入DS18B20的CRC值作比较,以判断主机收到的ROM数据是否正确。

DS18B20的测温原理是这这样的,器件中低温度系数晶振的振荡频率受温度的影响很小,用于产生固定频率的脉冲信号送给减法计数器1;高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为减法计数器2的脉冲输入。

器件中还有一个计数门,当计数门打开时,DS18B20就对低温度系数振荡器产生的时钟脉冲进行计数进而完成温度测量。

计数门的开启时间由高温度系数振荡器来决定,每次测量前,首先将-55 ℃所对应的一个基数分别置入减法计数器1、温度寄存器中,计数器1和温度寄存器被预置在-55 ℃所对应的一个基数值。

减法计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当减法计数器1的预置值减到0时,温度寄存器的值将加1,减法计数器1的预置将重新被装入,减法计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到减法计数器计数到0时,停止温度寄存器的累加,此时温度寄存器中的数值就是所测温度值。

其输出用于修正减法计数器的预置值,只要计数器门仍未关闭就重复上述过程,直到温度寄存器值大致被测温度值。

2.2 DS18B20 温度传感器与单片机的接口电路DS18B20可以采用两种方式供电,一种是采用电源供电方式,此时DS18B20的1脚接地,2脚作为信号线,3脚接电源。

另一种是寄生电源供电方式,单片机端口接单线总线,为保证在有效的DS18B20时钟周期内提供足够的电流,可用一个MOSFET管来完成对总线的上拉。

当DS18B20处于写存储器操作和温度A/D转换操作时,总线上必须有强的上拉,上拉开启时间最大为10us。

采用寄生电源供电方式时VDD端接地。

由于单线制只有一根线,因此发送接口必须是三态的。

2.3 主板电路系统整体硬件电路包括:传感器数据采集电路,温度显示电路,报警调整电路,单片机主板电路等,如图所示。

数码管为三位一体共阳极数码管,显示当前温度。

2.4 显示电路显示电路是使用的并口显示,这种显示最大的优点就是使用简单,只用P0口2.5 报警电路报警器件主要采用了蜂鸣器,采用了三极管作为放大器件,当温度超过报警温度时,三极管道通,蜂鸣器报警,当温度较低时,三极管截止,,没有电流通过蜂鸣器。

3 、软件设计系统程序主要包括主程序,读出温度子程序,温度转换命令子程序,计算温度子程序,显示数据刷新子程序和中断检测温度值子程序等。

3.1 主程序主程序的主要功能是负责温度采集和实时显示、读出并处理DS18B20的测量的当前温度值,每20ms将当前温度值和警戒温度值比较一次,如果超过警戒值,这报警。

其程序流程见图8所示。

图4 程序流程图3.2 读出温度子程序读出温度子程序的主要功能是读出RAM中的9字节,在读出时需进行CRC校验,校验有错时不进行温度数据的改写。

其程序流程图如图9所示3.3 温度转换命令子程序温度转换命令子程序主要是发温度转换开始命令,当采用12位分辨率时转换时间约为750ms,在本程序设计中采用1s显示程序延时法等待转换的完成。

温度转换命令子程序流程图如上图,图9所示3.4 计算温度子程序计算温度子程序将RAM中读取值进行BCD码的转换运算,并进行温度值正负的判定,其程序流程图如图10所示。

图6 温度值转换子程序流程图4 调试4.1keil 调试成功的截图4.2 protues 仿真图5 实物组装及调试5.1 实际遇到问题及解决方法5.1.1 长距离走线问题?由于是用万用板进行元器件的布局以及走线,对于从P0口输出的段选与三位一体共阳极数码管直接相连过于麻烦以及影响电路板的美观,所以讲输入口接插针,然后通过跳线的方式进行连接,这样既简洁也方便焊接工作。

5.1.2 数码管的位选以及段选确定方法?显示模块是用的三位一体的共阳极数码管,实物有一共12个引脚,8个段选,三个位选,剩下一个引脚悬空,需要用万用表测试出段选以及位选。

可用万用表的红表笔任意接一个引脚,然后用黑表笔在其他引脚上扫过。

根据对应的段选亮了,就可以确定此引脚对应的段选,如果都不亮,说明红表笔接的不是位选端,可以讲红表笔重新移动一位,重复上操作,同时对应的哪一位数码管亮,可以确定红表笔接的是哪一位的位选端。

5.1.3 实际调试方法?电路板焊好之后,在上电之前,用万用表测试个个引脚之间是否存在短路现象,然后测试个个模块内部电路是否存在漏焊,虚焊,以及焊错现象,发现可以及时改正。

然后测试模块之间是否存在漏焊,虚焊,以及焊错现象。

在确定电路板没有焊错情况下可以上电测试了。

5.1.4 数码管显示较暗解决方法?实际测试时,发现数码管的显示亮度很暗,开始以为是软件部分数码管动态显示的时候扫描过快导致,在改动程序效果无较大改善的情况下,发现电路中是用单片机的I/0直接作为位选接到数码管的位选端。

由于此款单片机的I/O口作为共阳极数码管的位选端输出电流过小,所以想到在每个位选端接上500欧姆的上拉电阻,发现显示效果得到明显的改善。

6 心得体会两周的课程设计结束了,在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。

相关文档
最新文档