放大电路基本原理和分析方法

合集下载

2模拟部分第2章放大电路的基本原理和分析方法-放大

2模拟部分第2章放大电路的基本原理和分析方法-放大
第2章 放大电路的基本原理 和分析方法
2.1 2.2 2.3 2.4 2.5
BJT
基本共射极放大电路 放大电路的分析方法 放大电路静态工作点的稳定问题 共集电极放大电路和共基极放大电路
2.2 基本共射极放大电路
2.2.0 放大电路概述
2.2.1 基本共射极放大电路的组成 2.2.2 基本共射极放大电路的工作原理

2.2.0 放大电路概述
ii
由于
RS
io
Ri
Ro
+
ui
+
uo

RL
RL uo = Au0ui RL Ro
us −
+

Au 0ui
+

Ri
直流电源
即 Ro越小,输出电压越稳定,电路带载能力越强。
2.2.0 放大电路概述
(4) 全谐波失真度D
D=
2 U n n =2
U1
即谐波电压总有效值与基波电压有效值之比。
RL
uo

使集电极有合适的电流IC
RC
转换集电极电流信号为电压信号, 实现电压放大
2.2.1 基本共射极放大电路的组成
(1)电路的简化 只用一个电源,减 少电源数。考虑经 济实用。 (2)电路的简化画法
RB
VCC
RC
ui


C1

T
C2

RL
uo

不画电源符号, 只写出电源正极 对地的电位。

(一)图解法在放大电路静态分析中的应用 1.输入回路 列写输入回路方程 VCC=IBRB+UBE
VCC
RB
IB

放大电路基本原理和分析方法

放大电路基本原理和分析方法
b) 空载时,交流 负载线与直流负 载线重合
RL // RC)
交流负载线
iB=100μA
80
60
Q
40 20
0
0
直流负载线
VCC
UCE/V
Δui
ΔuBE
ΔiB
ΔiC
ΔiCRC
iC
ΔuCE
ΔuO
各点波形:
+ VCC
Cb 2
+
R b1 Cb 1
+
Rc
iB
+
+
ui
_
uEB
_
uCE
uo
_
_
uo比ui幅度放大且相位相反
(2) 交流放大工作情况 iB ib Q ui uBE
0
(mA)
iC/mA
iB=100μA 80
ic
60
40 20 0
ib
UCE/V
uce
假设在静态工作点的基 础上输入一微小的正弦信 号ui。
结论:
a) 放大电路中的信号是交直 流共存,可表示成:
ui
t uBE UBEQ
iB IBQ iC ICQ uCE UCEQ t uo t t
一般来说,Ri 越大越好。
五、输出电阻
ii
+
io
+
RS uS 信号源
放大电路 Ri
+
+
ui +
Ro uo
+
uo +
RL
Ri
Ro
负载
从放大电路的输出端看进去的等效电阻。
RO UO U S 0, RL IO
输出电阻表明放大电路带负载的能力。 Ro越小,放大电路带负载的能力越强,反 之则差。

放大电路的概念及性能指标、基本共射放大电路的工作原理、放大电路的分析方法

放大电路的概念及性能指标、基本共射放大电路的工作原理、放大电路的分析方法

U O1 RO ( 1) RL UO 2
U S U O1 ;
uS RS
Ro
US
Uo1 Ro
RL UO 2 U O1 RO RL
Au
US
RL
Uo2
U O1 U O1 RO RO ( 1) RL 1 UO2 UO2 RL
4 通频带BW
——描述放大电路对不同频率信号的放大能力。 放大倍数随频率变化的曲 线——幅频特性曲线 3dB 低 频 区 中频区 高 频 区
放大的实质:小能量对大能量的控制。
xi
放 大 器
xo 负

由小能量的输入信号去控制放大电路中的直流 电源,使之输出较大的能量,然后推动负载。
放大电路的核心器件:BJT或FET。 例: 扩音系统
放大的基 本特征: 功率放大
信 号 提 取
电 压 放 大
功 率 放 大
放大的前提: 不失真
基本放大电路及其模型
iO
uS RS Au
注意: 计算输出电阻时必须将独立 信号源置零并保留内阻。 输出电阻与负载无关。
uo
u O 输出电阻的定义式:R u 0 S O iO R L
方法2:测量法 (1) 将负载开路,测量开路(空载)输出电压UO1。 (2) 在输出端接入一个已知负载,测输出电压UO2。 (3) 计算。
IBQ VCC U B EQ Rb 12 0.7 ( ) mA 280 40 A
ICQ b IBQ = (50 0.04) mA = 2 mA UCEQ = VCC – ICQ Rc = (12 2 3)V = 6 V
估算静态工作点的步骤:
(1) 画出直流通路。出IB、IC、UBE、UCE。 (2) 列输入(出)回路的压方程。< IC=βIB >

放大电路的基本分析方法

放大电路的基本分析方法

学校工作总结本学期,我校工作在全体师生的大力支持下,按照学校工作计划及行事历工作安排,紧紧围绕提高教育教学质量的工作思路,不断强化学校内部管理,着力推进教师队伍建设,进一步提高学校办学水平,提升学校办学品位,取得了显著的成绩。

现将我校一学期来的工作总结如下:一、德育工作本学期我校德育工作围绕学校工作中心,精心安排了“文明守纪”、“良好习惯养成”、“光辉的旗帜”、“争先创优”等主题教育月活动,从培养学生的行为规范,狠抓养成教育入手,注重务实,探索途径,加强针对性、实效性和全面性,真正把德育工作落到实处。

1.强化学生养成教育,培养学生良好习惯。

本学期,我校德育工作十分注重学生的常规管理,尤其重视对学生的养成教育。

一是利用班队会、红领巾广播站、国旗下演讲对学生进行品德熏陶。

二是以文明监督岗为阵地,继续强化了“文明班集体”的创建评比活动,通过卫生、纪律、两操等各项常规的评比,增强了学生的竞争意识,同时也规范了学生的行为。

三是继续加大值周检查的力度,要求值周领导、教师、学生按时到岗,在校门口检查、督促学生有秩序出入校园,从而使学生的行为规范时时有人抓,处处有人管,形成了良好的局面。

2.抓好班主任队伍建设,营造全员育人氛围。

班主任是学校德育工作最重要的力量,为了抓好班主任队伍建设,提高班主任素质水平,学校在第十二周组织开展了班主任工作讲座,在学期末举行了班主任工作交流,在活动中探索行之有效的工作方法,总结经验,交流心得,使班级管理工作更上新台阶。

3.充分发挥主题班队会的教育功能。

主题班队会,是对学生进行德育教育的一种特殊而卓见成效的方式之一。

为了充分发挥主题班队会的教育意义,第十三周,四(3)中队举行了“祖国美,家乡好”主题队会观摩活动,有效规范了我校主题中队会程序,强化了主题队会对学生的思想教育作用。

二、学校管理工作1.建立健全规章制度。

学期初,学校制定了出明确的目标计划及管理措施,做到了目标明确、工作具体,有效地增强了全体教师参与学校管理的主人翁意识,充分调动了全体教师的工作积极性,保障了教育教学工作的顺利开展。

模电第二章 基本放大电路

模电第二章 基本放大电路
温 T ( C 度 ) I C T ( C I C ) E I C O
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I

CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点

第6讲 放大电路的分析方法

第6讲 放大电路的分析方法
交流通路
得: vCE = VCEQ+ ICQR L
图解分析 法
2.
通过图解分析,可得如下结论: 动态工作情况分析 1. vi vBE iB iC vCE |-vo| 2. vo与vi相位相反; 输入交流信号时的图解分析 3. 可以测量出放大电路的电压放大倍数; 4. 可以确定最大不失真输出幅度。
理想二极管
利用估算法求解静态工作点,实质上利用了直流模型。
2. 晶体管的h参数等效模型(交流等效模型)
• 在交流通路中可将晶体管看成 为一个二端口网络,输入回路、 输出回路各为一个端口。
u u BE f (iB, CE ) u iC f (iB, CE )
BJT的小信号建模
建立小信号模型的意义
在小信号情况下,对上两式取全微分得
dvBE diC vBE iB
VCE
diB
vBE vCE
IB
dvCE
i C i B
VCE
diB
i C vCE
IB
dvCE
用小信号交流分量表示 vbe= hieib+ hrevce
ic= hfeib+ hoevce
BJT的小 信号建模
解:(1)
IB VCC VBE 12V 40uA Rb 300k
共射极放大电路
I C I B 80 40uA 3.2mA
VCE VCC Rc I C 12V - 2k 3.2mA 5.6V
静态工作点为Q(40uA,3.2mA,5.6V),BJT工作在放大区。 V 12V I B CC 120uA I C I B 80 120uA 9.6mA (2)当Rb=100k时, Rb 100k

放大电路的工作原理和波形

放大电路的工作原理和波形

放大电路的工作原理和波形一、放大电路简介放大电路是电子电路中的一种基本电路,主要用于放大输入信号的幅度。

它将输入信号的能量转换成电流或电压,以产生一个幅度更大的输出信号。

放大电路广泛应用于各种电子设备和系统中,如音频放大器、视频处理器、通信系统等。

二、工作原理1.输入信号的处理放大电路的输入信号通常是由信号源提供的微弱信号,如声音、光、温度等。

这些信号被转换为电信号,通过放大电路的输入端进入。

2.电压放大放大电路的核心是电压放大器。

电压放大器通过利用晶体管的放大作用,将输入信号的电压幅度进行放大。

在电压放大阶段,放大器将输入信号的电压变化转换成更大的输出电压。

3.输出信号的处理经过电压放大后,输出信号的幅度会变得很大。

为了使输出信号能够满足实际应用的需要,需要进行必要的处理,如滤波、稳压等。

三、波形1.正弦波正弦波是一种常见的输入信号波形,用于模拟音频、视频等信号。

在放大电路中,正弦波经过放大后,其幅度会得到显著增大,但波形仍保持基本不变。

2.方波方波是一种常见的数字信号波形,常用于数字通信和数字电路中。

在放大电路中,方波经过放大后,其幅度和边缘锐度会得到增强。

3.三角波三角波是一种介于正弦波和方波之间的波形,常用于各种控制和调节电路中。

在放大电路中,三角波经过放大后,其幅度会得到增大,同时波形会变得更加光滑。

4.脉冲波脉冲波是一种短暂的高幅度信号,常用于控制和触发各种电子设备。

在放大电路中,脉冲波经过放大后,其幅度会得到显著增大,同时保持清晰的脉冲形状。

四、放大电路的应用放大电路的应用非常广泛,主要包括音频放大、视频处理、通信系统、传感器信号处理等。

在这些应用中,放大电路起到至关重要的作用,能够将微弱的信号转换成可用的输出信号,以满足实际需求。

五、总结放大电路是电子设备和系统中的重要组成部分,用于放大输入信号的幅度。

其工作原理包括输入信号的处理、电压放大和输出信号的处理等环节。

根据不同应用需求,放大电路可以处理各种波形,如正弦波、方波、三角波和脉冲波等。

放大电路工作原理

放大电路工作原理

放大电路工作原理
放大电路是一种通过增加输入信号的幅度,使其输出信号具有更大幅度的电路。

它的工作原理主要依靠放大器的放大作用。

放大电路一般包括输入端、输出端和放大器。

输入端接收外部信号,并将其传输给放大器。

放大器通过增加输入信号的幅度,使其输出信号具有更大幅度,并将其传输给输出端。

放大器的工作原理主要是利用放大器内部的电子元件(如晶体管、电子管等)实现信号的放大。

这些电子元件一般会增加输入信号的幅度,并在输出端提供一个更大、更强的输出信号。

具体来说,放大器通过调节电源电压、输入电阻、输出电阻等参数来实现对输入信号的放大。

在放大器中,输入信号会经过内部的放大器二极管等元件,使其幅度增大。

然后,放大器会将放大后的信号传输给输出端,输出端将输出信号传递给后续电路或设备。

需要注意的是,放大电路不仅仅可以实现信号的幅度放大,还可以实现信号的频率放大、相位放大等。

不同类型的放大电路有不同的工作原理和特点,例如,共射放大电路、共集放大电路、共基放大电路等。

总体来说,放大电路的工作原理是通过放大器对输入信号进行幅度放大,从而实现输出信号具有更大幅度的电路。

这种放大功能在电子设备和通信系统中具有广泛的应用,例如在音响设备、无线通信设备等中。

放大电路分析方法、图解法分析放大电路

放大电路分析方法、图解法分析放大电路

放⼤电路分析⽅法、图解法分析放⼤电路放⼤电路分析⽅法、图解法分析放⼤电路⼀、本⽂介绍的定义⼆、放⼤电路分析⽅法三、图解法⼀、本⽂介绍的定义放⼤电路分析、图解法、微变等效电路法、静态分析、动态分析、直流通路、交流通路、单管共射放⼤电路的直流和交流通路、静态⼯作点、图解法分析静态、直流负载线、交流负载线、电压放⼤倍数公式、交直流并存状态、电压放⼤作⽤、倒相作⽤、⾮线性失真、截⽌失真、饱和失真、最⼤输出幅度、电路参数对静态⼯作点的影响、⼆、放⼤电路分析⽅法放⼤电路分析:放⼤电路主要器件如双极型三极管、场效应管,特性曲线是⾮线性的,对放⼤电路定量分析,需要处理⾮线性问题,常⽤⽅法,图解法和微变等效电路法。

图解法:在放⼤管特性曲线上⽤作图的⽅法对放⼤电路求解。

微变等效电路法:将⾮线性问题转化成线性问题,也就是,在较⼩变化范围内,近似认为特性曲线是线性的,导出放⼤器件等效电路和微变等效参数,利⽤线性电路适⽤的定律定理对放⼤电路求解。

静态分析:讨论对象是直流成分,分析未加输⼊信号时,电路中各处的直流电压、直流电流。

动态分析:讨论对象是交流成分,加上交流输⼊信号,估算动态技术指标,电压放⼤倍数、输⼊电阻、输出电阻、通频带、最⼤输出功率。

直流通路:电容所在路视为开路;电感所在路视为短路。

交流通路:电容容抗为1/(wC),电容值⾜够⼤,电容所在路视为短路;电感感抗为wL;理想直流电压源Vcc视为短路(因为电压恒定不变);理想电流源,视为开路(因为电流变化量为0) 。

单管共射放⼤电路的直流和交流通路:如下图,直流通路,将隔直电容开路;交流通路,将隔直电容短路,直流电源Vcc短路。

静态⼯作点:三极管基极回路和集电极回路存在着直流电流和直流电压,这些电流电压在三极管输⼊输出特性曲线上对应⼀个点,称为静态⼯作点,静态⼯作点的基极电流Ibq、基极与发射极之间的电压Ubeq、集电极电流Icq、集电极与发射极电压Uceq。

三、图解法图解法分析静态:⽤作图的⽅法分析放⼤电路静态⼯作点。

第2章 放大电路分析基础分析

第2章 放大电路分析基础分析

第2章 放大电路分析基础
讨论一
画图示电路的直流通路和交流通路。
第2章 放大电路分析基础
二、图解法
uBE VBB iB Rb
应用实测特性曲线
uCE VCC iC Rc
1. 静态分析:图解二元方程组
输入回路 负载线 IBQ
负载线
Q
ICQ
Q
IBQ
UBEQ
UCEQ
第2章 放大电路分析基础
第2章 放大电路分析基础
一、放大的概念及放大电路的性能指标
1、放大的概念
放大的对象:变化量
放大的本质:能量的控制
放大的特征:功率放大
判断电路能否放 大的基本出发点
放大的基本要求:不失真,放大的前提
第2章 放大电均可看成为两端口网络。
输入电流
信号源 内阻 输出电流
2)输入电阻和输出电阻
从输入端看进去的 等效电阻
Ui Ri Ii
输入电压与 输入电流有 效值之比。
U Uo U Ro ( 1) RL Uo Uo RL
' o ' o
将输出等效 成有内阻的电 压源,内阻就 是输出电阻。
空载时输出 电压有效值
带RL时的输出电 压有效值
第2章 放大电路分析基础
第2章 放大电路分析基础
在基本共射放大电路中,电压和电流都得到放大(ic=ib, uoui),即功率得到放大。需要提醒大家的是,输出功
率并非来自输入信号 (信号源),而是来自直流电源 VCC。
正是由于 iB 或 iE 对 iC 的控制作用,使得在 ui 的作用下直 流电源VCC输出的电流中包含与 ui同样变化且被放大的 分量,即放大电路的输出功率是在输入信号的作用下 通过晶体管将直流电源的能量转换而来。因此,放大

放大电路的原理

放大电路的原理

放大电路的原理
放大电路的原理是基于利用放大器来增加输入信号的幅度。

放大器是一种能够增加信号电压、电流或功率的电子器件,其作用是将输入信号放大到所需的输出水平。

一种常见的放大电路是电压放大电路。

在这种电路中,输入信号经过放大器,放大器根据其设计原理(如共集电极、共射极或共基极)将输入电压放大,并输出到负载上。

放大器的输出信号的幅度将比输入信号的幅度大,从而实现信号的放大。

放大器一般由晶体管、场效应晶体管或操作放大器等器件构成。

通过调整放大器的电阻、电容或电感等元件的数值,可以实现不同程度的放大。

放大器的增益是一个重要参数,它衡量了输入信号放大后的增加倍数。

放大电路的原理也与反馈有关。

反馈通常用于控制放大器的增益和稳定性。

通过引入反馈回路,放大器的输出信号可以与输入信号进行比较,并调整放大器的增益来达到所需的放大效果。

总的来说,放大电路的原理是通过放大器将输入信号放大到所需的幅度。

放大器的类型和参数、反馈机制等都会影响放大电路的性能。

这些原理在各种电子设备和通信系统中起着重要作用,使得信号能够被有效地放大和传输。

放大电路的基本原理和分析方法

放大电路的基本原理和分析方法
1.41直流通路与交流通路 一、静态电路的分析
(一)、直流电路的画法 1.交直流共存的电路
Rb
C1
+ UI _
RC C2 T
+VCC
+ U0
_
2.静态电路的画法 (1)电容在直流通路中相当于开路 (电感在直流通路中相当于短路)
在画直流通路时,电容c1左边的部分相当于断开、c2右边 的部分也相当于断开,去掉断开的部分则直流通路就画出 来了如图
Rc
Rb
输出
VCC
回路
输入
VBB
回路
3.静态工作原理 电路中的电源VBB和VCC主要是使三极管工作在放大区 此时输入端在VBB的作用下基极有个电流,称为静态基流用IBQ表示 , 此时基极与发射极之间相应的电压为UBEQ,根据放大系数的定义得 到集电极电流ICQ,此电流流过集电极负载RC产生一个压降,则静态 时的集电极电压VCEQ =VCC-ICQ*RC
3.为了最终在电路的输出端能够得到放大了的信号在输出回路中,,即在输出回路中 要有电阻Rc。
五、电路的改进
1.改进的原因:(1)原来的电路不经济不实用
(2)交流,直流电路混杂不便分析。
2.改进措施:(1)将输入电压UI通过一个电容C1接到三极管的基极, 的
Rs=∞
3.试验测试:(1)测试方法:在输入端加上一个正弦信号电压Us,首先测出 负载开路时的输出电压U0’,接上阻值已知的负载电阻,测出此时的输出电压 U0则得到
U0=
四、最大输出幅度 1.定义:放大电路输出的电压(或电流)的幅值能够达到的最大限度一
般用电压的有效值表示。
五、最大输出功率与效率 1.最大输出功率:表示在输出波形基本不失真的情况下,能够向负

放大电路的基本原理

放大电路的基本原理

2. 当 值一定时,IEQ 愈大则 rbe 愈小,可以得到较
大的 Au ,这种方法比较有效。
(三) 等效电路法的步骤(归纳)
1. 首先利用图解法或近似估算法确定放大电路 的静态工作点 Q 。
2. 求出静态工作点处的微变等效电路参数 和
rbe 。 3. 画出放大电路的微变等效电路。可先画出三
极管的等效电路,然后画出放大电路其余部分的交 流通路。
误差很小。
4. 电压放大倍数 Au;输入电阻 Ri、输出电阻 RO
Rb C1+ + Ui
Rc +C2
VT RL
+VCC
+
UO
b Ib
+
Ic c
+
Ui Rb
rbe Ib
Rc RLUo
e
图 2.4.12 单管共射放大电路的等效电路
Au 所以
Uo Ui
Au

Uo Ui
Ui Ibrbe
RL
rbe
该恒流源为受控源;
Q
iB
iB
为 iB 对 iC 的控制。
O
uCE
图 2.4.10(b)
3. 三极管的简化参数等效电路
iB b
+
uBE
iC c
+
iB b
+
iC c
+
uCE
uBE rbe
iB uCE
rce
e
e
图 2.4.11 三极管的简化 h 参数等效电路
注意:这里忽略了 uCE 对 iC与输出特性的影响,在 大多数情况下,简化的微变等效电路对于工程计算来说
1. 静态工作点

第2章放大电路原理分析方法(16学时)

第2章放大电路原理分析方法(16学时)

图解法的应用
(一)用图解法分析非线性失真 1. 静态工作点 过低,引起 iB、iC、 uCE 的波形失真 —— 截止失真 结论:iB 波形失真
IBQ
O
iB / µ A
iB / µ A
ib Q t O
O
uBE/V uBE/V
t
ui
iC 、 uCE (uo )波形失真
iC / mA iC
NPN 管截止失真时 的输出 uo 波形。
Q
iB
输入回路 工作情况:
0
20
uBE/V t
0 0
0.68 0.7 0.72
可见在UBEQ从0.68到0.72变化 时,基极电流以40微安为中心,从 20微安变化到60微安。
uBE
uBE/V UBEQ
t
iC / mA iC / mA
4
交流负载线 80 60
IC
Q
iC 2
Q
IB = 4 0 µA
输出不失真的最大输出功率。用符号 Pom表示。
Pom PV
:效率
PV:直流电源消耗的功率
六、通频带
Aum fL:下限频率
1 2
Aum
BW fL fH
fH:上限频率
由于放大电路中存在电抗性元件,所以放大倍数会随 信号频率的变化而变化,通常将放大倍数在低频和高频段下 降至 1 Aum 时所包括的频率范围定义为放大电路的通频带 。 理论上希望通频带的宽度越大越好
要求:会画放大电路的直流通路和交流通路
共射放大电路
直流通路
+
交流通路
注意:实际的放大电路其直流和交流通路是叠加在一起的。 根据放大电路的直流通路和交流通路,即可分别进行静态分析和动态分 析,进行静态分析时,有时也采用一些简单实用的近似估算法。

基本放大电路的工作原理

基本放大电路的工作原理

基本放大电路的工作原理
基本放大电路的工作原理是通过放大器将输入信号的幅值增加,从而产生一个更大幅值的输出信号。

放大电路通常由一个输入端、一个输出端和一个能够增加输入信号幅值的放大器组成。

在基本放大电路中,输入信号通过输入端进入放大器。

放大器中的电子器件(如晶体管)会根据输入信号的特性(如幅值、频率等)对电流或电压进行调节。

通过放大器的放大作用,输入信号的幅值会被放大,生成一个更大幅值的输出信号。

输出信号以与输入信号相同的形式通过输出端输出。

放大器的工作原理主要基于电子器件的非线性特性和反馈机制。

非线性特性可以导致输入信号的幅值在放大器中发生非线性变化,使输出信号的幅值增大。

反馈机制可以通过将部分输出信号反馈到输入端,对输入信号进行调节和修正,进一步增强放大效果。

总之,基本放大电路通过放大器使输入信号的幅值增加,并生成一个更大幅值的输出信号。

这个过程基于电子器件的非线性特性和反馈机制。

放大电路分析方法

放大电路分析方法

放大电路分析方法放大电路是一种用于提高信号幅度的电路,广泛应用于各种电子设备中。

对于放大电路的分析,有许多不同的方法可供选择。

本文将介绍放大电路的几种常用分析方法,并重点讨论小信号模型法和大信号模型法。

一、小信号模型法小信号模型法是一种基于线性近似的方法,适用于分析非线性电路以及在其中一工作点附近的放大电路。

该方法的基本思想是将非线性电路视为线性电路的叠加,通过线性电路的分析求解非线性电路的行为。

以下是使用小信号模型法进行分析时需要遵循的步骤:1.选取工作点:首先,需要确定放大电路的工作点。

这通常涉及使用直流偏置电路来确定电路的直流工作条件。

2.建立小信号模型:其次,需要将放大电路线性化为小信号模型。

这涉及将非线性的器件(如晶体管)进行局部分析,并简化为线性等效电路。

3.求解等效电路:然后,需要对等效电路进行分析。

这通常涉及使用网络理论和线性系统的分析技巧来求解电路的响应。

4.评估放大性能:最后,需要根据等效电路的分析结果评估放大电路的性能。

这通常涉及计算增益、输入阻抗、输出阻抗等指标。

小信号模型法的优点是可以提供对放大电路行为的定量分析。

然而,由于其基于线性近似,只适用于工作点附近的小信号分析。

二、大信号模型法大信号模型法是一种基于非线性分析的方法,适用于分析工作点偏离很远的放大电路,或者涉及大信号激励的情况。

该方法的基本思想是直接分析非线性放大电路的行为,忽略器件的非线性特性。

以下是使用大信号模型法进行分析时需要遵循的步骤:1.建立非线性模型:首先,需要建立器件的非线性模型。

这可以通过等效电路、传输特性等方式实现。

2.求解非线性方程:其次,需要根据非线性模型和电路拓扑关系,建立非线性方程。

这通常涉及使用基本的电路分析技巧,如基尔霍夫定律。

3.进行数值模拟:然后,可以使用数值模拟工具,如SPICE软件,来求解非线性方程。

这可以提供对电路行为的详细分析。

4.评估放大性能:最后,可以根据数值模拟结果评估放大电路的性能。

模拟电路第02章放大电路基本原理

模拟电路第02章放大电路基本原理

Ro
Uo Io
US 0 RL
I
U
方法二:测量。
步骤:
1. 测量开路电压Uo 。
2. 测量接入负载后的输出电压Uo’ 。
Ro
Ro
Us' ~
Uo Us' ~
RL Uo'
3. 计算。
Ro
UUoo'
1RL
六、通频带
Au
Aum 0.7Aum
放大倍数 随频率变 化曲线
BW
fL 下限截 止频率
上限截 fH 止频率
T
Rb
VBB
电路改进:采用单电源供电 +VCC
C1
可以省去
Rc
C2
T Rb
VBB
Rb C1
+VCC
Rc
C2
T
阻容耦合单管 共射放大电路
单电源供电电路
2.3.2 单管共发射极放大电路的工作原理
一、静态工作点
由于电源的
存在,IB 0
Rb
C1
+VCC
Rc
ICQC2 IC 0
T
ui=0时 IBQ
IEQ=IBQ+ICQ
Rb=300K , =37.5。
解: UBEQ 0.7V
IBQ V CC 12 0.0m 4 A 40 A
R b 300
ICQ IBQ 3.5 70.0 41.5mA
U C E V C Q I C R c Q 1 1 . 5 2 4 6 V
请注意电路中IBQ 和ICQ 的数量级
2.4.3 图解法 直流负载线和交流负载线
t
ui UBE
假设uBE有一微小的变化 uCE怎么变化
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当uCE=0时,
0
20 0
iC
VCC RC
12 mA 4mA 3
12 uCE / V
(2)与IB=40μA 的交点,即是静态工作点Q。
iC/mA
iB=80 A
4
60
2
Q
40
20
0
0
6
12 uCE / V
由图知:ICQ=2mA, UCEQ=6V
(3)画交流负载线
RL

RC
//
RL

ib
交流分量
IB直流分量
t
§ 2.3 单管共发射极放大电路
三极管放 大电路有 三种形式
共射放大电路 共基放大电路 共集放大电路
以共射放 大电路为 例讲解工 作原理
2.3.1 单管共射放大电路的组成
放大元件iC= iB,
工作在放大区,要
RC
保证发射结正偏, 集电结反偏。
iB iC
VT +
+ uI-
第2章
放大电路的基本 原理和分析方法
教学内容
§2.1 放大的概念 §2.2 放大电路的主要技术指标 §2.3 单管共发射极放大电路 §2.4 放大电路的基本分析方法 §2.5 工作点的稳定问题 §2.6 放大电路的三种基本组态 §2.7 场效应管放大电路 §2.8 多级放大电路
教学要求
一.重点掌握的内容:
放大电路是否有一个合适的静态工作点,以保证
波形基本不失真。
P102题2-1
2.3.2 单管共发射极放大电路的工作原理
iC
+VCC
t
Rb C1
RC iB
iC C2
ui
+ iB ui
+
uCE
t - uCE
+ uo
uo
t
t -
t-
对比图2.4.6
ib
iB
t
iC
ic
Q
t
ib t
ui uBE
假设uBE有一微小的变化
直静流态通是路放:大只电考路虑正直常流工信作号的的基分础电路和。前提条件; 交动流态通则路是:放只大考电虑路交工流作信的号直的接分目电路的。。
分析电路的步骤:先静态,后动态。
对直流信号(只有+VCC)
+VCC
Rb C1
+
RC
C2
T
+
开路
uI
开路
uO
RL
-
-
直流通路
Rb RC
+VCC
对交流信号(输入信号ui)
-
使发射结
正 提V偏 供C, 适C 并 当
的静态工 作点。
电路改进:采用单电源供电
RC
iB iC
可以省去
VT +
+ uI-
Rb
VCC
uO
VBB
-
顺 利 输 入 输 出 。
的 联 系 , 同 时 能 使 信 号
隔 离 输 入 输 出 与 电 路 直 +流
Rb C1
uI
-
隔直流 通交流
RC
C2
VT
+
1.放大、静态与动态、直流通路与交流通路、静态 工作点、负载线、放大倍数、输入电阻、输出电阻 的概念;
2.用近似计算法估算单管共射放大电路的静态工作 点;
3.用微变等效电路法分析计算单管共射电路、分压 式工作点稳定电路的电压放大倍数Au和Aus,输入电 阻Ri和输出电阻Ro.
二、一般掌握的内容
1.图解法确定单管共射放大电路的静态工作点,定 性分析波形失真,观察电路参数对静态工作点的影 响,估算最大不失真输出的动态范围;
VCC
uO 耦合电容
(隔直电- 容)
简化画法
+VCC
Rb RC C1
C2
+
+
VT
uO uI
-
-
判断放大电路有无放大作用的原则:
外加直流电源的极性是否能保证三极管的发 射结正向偏置,集电结反向偏置。
输入回路的接法应保证信号能输入,以实现
uI
iB; 输出回路是否将放大了的信号能
送出来,以实现 ic
uo.
Q点过高,信号进入饱和区
iC ib
放大电路产生 饱和失真
输入波形

部 失
uCE

增大Rb,降低Q点,
输出波形 可消除该失真。
uo
(2)估算最大输出幅度 iC/mA
交流负载线
A
0 C
iB=80 A
60
Q
40
CD=UCEQ-UCES DE≈ICQRL′
20 B0
直流负载线
D
E uCE / V
最大不失真输出幅度Uom将由CD和DE二者中较小的
IC
+
UCE

直流通路
UCE~IC满足什么关系? 1. 三极管的输出特性。
2. UCE=VCC–ICRC 。
iC
VCC RC
直流负载线 斜率为-1/RC
Q
ICQ
IBQ
UCEQ
uCE
VCC
(2)图解分析动态
+
ui
Rb
-
ic
+
+
-uce
RC RL uo
-
交流通路
ic 1
uce
RL
其中: RL RL // RC
为了得到尽量大的输出信号,要把Q设置在交流负载线 的中间部分。如果Q设置不合适,信号进入截止区或饱和区 ,就会造成非线性失真。
选择静态工作点 iC
可输出的 最大不失 真信号
交流负载线
ib
uCE
Q点过低,信号进入截止区
iC
放大电路产生 截止失真
输入波形 ib
uCE 顶部失真
减小Rb,提高Q点,可 消除该失真。 输出波形
iB=80 A
Vcc Rc
Q2 Q1
0
60
40
20 0
增大Vcc,直流负载 线将平行右移,Q 点移向右上方。
Vcc uCE / V
iC/mA
Vcc Rc
Q1 Q2 0
iB=80 A
60
40 20
0
增大Rc,直流负
载线与纵轴的交
点(Vcc/Rc)下
降,而IBQ不变, Q点移近饱和区。
Vcc uCE / V
33 k 33
1.5k
iC/mA

ic 1
uce
RLBiblioteka iB=80 A460
取iC=4mA,则 uce=4×1.5=6V,
Q
40 作辅助线。
20 0
过Q点做其平行线。
0
6
12 uCE / V
2.图解法的应用 (1)分析非线性失真
在放大电路中,输出信号应该成比例地放大输入信号(即 线性放大);如果两者不成比例,则输出信号不能反映输入 信号的情况,放大电路产生非线性失真。

U
2 3
...
U1
7、最大输出功率与效率
基波 最大输出功率
Pom
PV
直流电源消耗的功率
符号规定
IB 大写字母、大写下标,表示直流(静态)量。 ib 小写字母、小写下标,表示交流瞬时值。 Ib 大写字母、小写下标,表示交流有效值。
iB 小写字母、大写下标,表示全量(直流+交流)
iB
全量
思考题:用示波器观察NPN管共射单极放大器 输出电压,得到下图所示三种削波失真的波形, 试分别写出失真的类型。
+ IBQ UBEQ
-
ICQC2 T + ( ICQ,UCEQ )
UCEQ
-
(IBQ,UBEQ) 和( ICQ,UCEQ )分别对应于输入输出 特性曲线上的一个点称为静态工作点。
IB
IC
IBQ
Q
ICQ
UBE UBEQ
Q
UCEQ
UCE
用估算法求静态工作点
Rb RC IB
+
UB-E
+VCC (1)根据直流通路估算IBQ
RL
例2.4.2:已知电路参数同2.4.1,三极管的输出特
性曲线如下图。
解:
(1) I BQ

VCC
U BEQ Rb
12 0.7 0.04 mA 40A
280
iC/mA
作直流负载线
iB=80 A
根据uCE=VCC–iCRC 。
4
60
当iC=0时,uCE=VCC=12V;
40
US ~
Ii
Ui
Au
Ri

U i Ii
3、输出电阻Ro
放大电路对其负载而言,相当于信号源,我们 可以将它等效为戴维南等效电路,这个戴维南等效 电路的内阻就是输出电阻。
输出电阻越小,说明放大电路的带负载能力越强。
US ~
Au
ro
US' ~
如何确定电路的输出电阻Ro ? 方法一:计算。 步骤: 1. 所有的电源置零 (将独立源置零,保留受控源)。 2. 加压求流法。
Rb C1
+
短路
uI
+VCC
RC
置零 C2
交流通路
T 短路 RL
+ +
uO ui Rb
+ RC RL uo
-
--
-
2.4.2 静态工作点的近似估算
1、静态工作点
由于电源的
相关文档
最新文档