初中数学同步训练人教7年级上册:课时9 有理数的加法(2)

合集下载

人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)

人教版七年级初一数学上册同步练习1.3.1有理数的加法(附答案)

11.3.1有理数的加法 同步练习基础巩固题:1、计算:(1)15+(-22) (2)(-13)+(-8)(3)(-0.9)+1.51 (4))32(21-+2、计算:(1)23+(-17)+6+(-22)(2)(-2)+3+1+(-3)+2+(-4)3、计算:(1))1713(134)174()134(-++-+-2(2))412(216)313()324(-++-+-4、计算:(1))2117(4128-+ (2))814()75(125.0)411(75.0-+-++-+应用与提高题1、(1)绝对值小于4的所有整数的和是________;(2)绝对值大于2且小于5的所有负整数的和是________。

2、若2,3==b a ,则=+b a ________。

3、已知,3,2,1===c b a 且a >b >c ,求a +b +c 的值。

4、若1<a <3,求a a -+-31的值。

35、计算:7.10)]323([3122.16---+-+-6、计算:(+1)+(-2)+(+3)+(-4)+…+(+99)+(-100)7、10袋大米,以每袋50千克为准:超过的千克数记作正数,不足的千克数记作负数,称重的记录如下:+0.5,+0.3,0,-0.2,-0.3,+1.1,-0.7,-0.2,+0.6,+0.7.10袋大米共超重或不足多少千克?总重量是多少千克?中考链接1、数轴上A 、B 两点所表示的有理数的和是________。

2、小明记录了今年元月份某五天的最低气温(单位:℃):1,2,0,-1,-2,这五天的最低温度的平均值是( )A 、1B 、2C 、0D 、-14参考答案基础检测1、-7,-21,0.61,-61 严格按照加法法则进行运算。

2、-10,-3.把符号相同的数就、或互为相反数的数结合进行简便运算3、-1,213-。

把同分母的数相结合进行简便运算。

4、756,4310-。

拆分带分数,整数部分和分数部分分别进行加法运算;把小数化成分数进行简便运算。

新人教数学7年级上同步训练:(1.3.1 有理数的加法)

新人教数学7年级上同步训练:(1.3.1 有理数的加法)

1.3 有理数的加减法1.3.1 有理数的加法5分钟训练(预习类训练,可用于课前)1.有理数的加法法则.(1)同号两数相加,取相同的______,并把绝对值______;(2)绝对值不相等的异号两数相加,取绝对值的加数的符号,并用较大的绝对值减去______的绝对值;(3)互为相反数的两个数相加得_______;(4)一个数同零相加仍得________.思路解析:法则有同号、异号、零三种情况分别运算.答案:(1)符号相加(2)较大较小(3)0(4)这个数本身2.小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.思路解析:利用运算法,把数的加法、进行分类运算、简化计算.答案:(1)相加(2)整数(3)相反数(4)同分母分数3.计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.思路解析:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.答案:(1)-9 (2)52 (3)-416(4)-2007200610分钟训练(强化类训练,可用于课中)1.判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()思路解析:(1)异号两数相加,当正数的绝对值较大时,和也是正数.(2)异号两数相加时,和的绝对值等于这两数绝对值之差.(4)当两个加数中有一个负数或0时,它们的和必小于或等于另一个加数.答案:(1)×(2)×(3)√(4)×(5)√2. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).思路解析:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算答案:(1)-5/9 (2)-0.01 (3)0 (4)-43. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).思路解析:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.解:(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=44.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87. 思路解析:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.答案:原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7995.8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元? 思路解析:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).答案: 8袋大米总共重404千克,这8袋大米值767.6元.快乐时光鲍比十分淘气,整天缠着妈妈不是要这,就是要那,嘴里也不停地叫着:“妈妈,妈妈!”有一次,妈妈被吵得不耐烦了,就对鲍比说:“你再叫一声‘妈妈’,我就把你扔出去!”鲍比不再做声了.过了一会儿,妈妈把他抱到床上睡觉,鲍比又开口道:“太太,我能喝点饮料吗?”30分钟训练(巩固类训练,可用于课后)1.计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).思路解析:应根据数字的特征,利用加法的交换律来解之.解:(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.2.计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).思路解析:先进行合理分组.即同分母的数分为一组. 答案:(1)-10 (2)-23.要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.思路解析:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. 答案:(1)x=7 (2)x=8 (3)x=04.某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?思路解析:把这20个数逐一相加是很麻烦的,而且容易出错注意到,这20个数都在200(千克)左右,若以200为准,超过的千克数记作正数,不足的千克数记作负数,那么通过计算差额来求总和则简便得多.解:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15思路解析:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌答案:本周该公司股票下跌0.80元.6.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?思路解析:我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题并未指出行走方向.根据我们所学过的用正负数来表示相反意义量,设向东为正,则向西为负.解:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10以上两种情形都具有类似的情形,即方向上是相反的,且结果具有类似之处.7.我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!思路解析:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!解:8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 14444444244444443天+(+2)=10(米). 8.若|y -3|+|2x -4|=0,求3x +y 的值.思路解析:根据绝对值的性质可以得到|y -3|≥0,|2x -4|≥0,所以只有当y -3=0且2x -4=0时,|y -3|+|2x -4|=0才成立.解:由y -3=0得y =3,由2x -4=0,得x =2.则3x +y 易求.。

数学人教新版七年级上册同步训练:(1.3.1有理数的加法)【含答案】

数学人教新版七年级上册同步训练:(1.3.1有理数的加法)【含答案】

数学人教新版七年级上册实用资料1.3 有理数的加减法1.3.1 有理数的加法5分钟训练(预习类训练,可用于课前)1.有理数的加法法则.(1)同号两数相加,取相同的______,并把绝对值______;(2)绝对值不相等的异号两数相加,取绝对值的加数的符号,并用较大的绝对值减去______的绝对值;(3)互为相反数的两个数相加得_______;(4)一个数同零相加仍得________.思路解析:法则有同号、异号、零三种情况分别运算.答案:(1)符号相加(2)较大较小(3)0(4)这个数本身2.里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便. (1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.思路解析:利用运算法,把数的加法、进行分类运算、简化计算.答案:(1)相加(2)整数(3)相反数(4)同分母分数3.计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.思路解析:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.答案:(1)-9 (2)52 (3)-416(4)-2007200610分钟训练(强化类训练,可用于课中)1.判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()思路解析:(1)异号两数相加,当正数的绝对值较大时,和也是正数.(2)异号两数相加时,和的绝对值等于这两数绝对值之差.(4)当两个加数中有一个负数或0时,它们的和必小于或等于另一个加数.答案:(1)×(2)×(3)√(4)×(5)√2. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).思路解析:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算答案:(1)-5/9 (2)-0.01 (3)0 (4)-43. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).思路解析:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.解:(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=44.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87. 思路解析:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.答案:原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7995.8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元? 思路解析:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).答案: 8袋大米总共重404千克,这8袋大米值767.6元.快乐时光鲍比十分淘气,整天缠着妈妈不是要这,就是要那,嘴里也不停地叫着:“妈妈,妈妈!”有一次,妈妈被吵得不耐烦了,就对鲍比说:“你再叫一声‘妈妈’,我就把你扔出去!”鲍比不再做声了.过了一会儿,妈妈把他抱到床上睡觉,鲍比又开口道:“太太,我能喝点饮料吗?”30分钟训练(巩固类训练,可用于课后)1.计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).思路解析:应根据数字的特征,利用加法的交换律来解之.解:(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.2.计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).思路解析:先进行合理分组.即同分母的数分为一组. 答案:(1)-10 (2)-23.要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.思路解析:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法. 答案:(1)x=7 (2)x=8 (3)x=04.某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?思路解析:把这20个数逐一相加是很麻烦的,而且容易出错注意到,这20个数都在200(千克)左右,若以200为准,超过的千克数记作正数,不足的千克数记作负数,那么通过计算差额来求总和则简便得多.解:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+ (-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.5.下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?思路解析:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌答案:本周该公司股票下跌0.80元.6.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?思路解析:我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题并未指出行走方向.根据我们所学过的用正负数来表示相反意义量,设向东为正,则向西为负.解:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10以上两种情形都具有类似的情形,即方向上是相反的,且结果具有类似之处.7.我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦!思路解析:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!解:8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 14444444244444443天+(+2)=10(米). 8.若|y -3|+|2x -4|=0,求3x +y 的值.思路解析:根据绝对值的性质可以得到|y -3|≥0,|2x -4|≥0,所以只有当y -3=0且2x -4=0时,|y -3|+|2x -4|=0才成立.解:由y -3=0得y =3,由2x -4=0,得x =2.则3x +y 易求.。

2.1.1有理数的加法+同步练习++2024—2025学年人教版(2024)数学七年级上册

2.1.1有理数的加法+同步练习++2024—2025学年人教版(2024)数学七年级上册

2.1.1 有理数的加法1.计算的结果等于()A.2 B.C.8 D.2.温度由上升是()A.B.C.D.3.下列各式中,计算结果为正的是()A.B.C.D.4.已知,b两个数在数轴上对应的点如图所示,则下列结论正确的是()A.B.C.D.5.算筹是中国古代的计算方法之一,宋代数学家用白色筹码代表正数,用黑色筹码代表负数图中算式一表示的是,按照这种算法,算式二被盖住的部分()A.B.C.D.6.______.7.计算:___________.8.绝对值不大于2.9的整数的和是_______________.9.计算的结果是______________.10.在一个的方格中填写9个数字,使得每行每列每条对角线上的三个数之和相等,得到的的方格称为一个三阶幻方.如图方格中填写了一些数和字母,为使该方格构成一个三阶幻方,则的值是__________.11.计算:(1); (2);(3); (4).12.计算:13.计算:14.体育课上全班男生进行了百米测试,达标成绩为秒,下面是第一小组8名男生的成绩记录,其中“”表示成绩大于秒,“”表示成绩小于秒.00(1)跑的最快的是百米跑了___________秒.(2)这个小组男生百米测试的达标的有___________人.(3)求这个小组8名男生的平均成绩是多少?15.“双减”政策实施后,同学们作业负担大大减少,小明记录了本周写家庭作业的时间,情况如下表(以分钟为标准,时间多于分钟用正数表示,时间少于分钟用负数表示):星期一二三四五六日与标准时间的差(分钟)(1)这一周内写家庭作业用时最多的是星期,用时最少的是星期;(2)求小明这一周每天写家庭作业的平均时间.。

人教版数学七年级上册一课一练1.3.1有理数的加法(2)(含答案)

人教版数学七年级上册一课一练1.3.1有理数的加法(2)(含答案)

七年级数学上册1.3.1 有理数的加法(2)基础闯关全练1.(2018福建长泰一中月考)小磊解题时,将式子先变成,再计算结果,则小磊运用了( ) A.加法交换律B.加法交换律和加法结合律C.加法结合律D.无法判断2.若m、n互为相反数,则m+8+n=____;已知a+c=-2019,b+(-d)=2020,则a+b+c+(-d)=____.3.某服装厂上半年各月的盈亏情况如下:盈利1285万元、亏损140万元、亏损955万元、盈利140万元、盈利168万元、盈利122万元,则该服装厂上半年盈利________万元.4.利用加法运算律计算下列各题.(1)(-5)+3+(+5)+(-2);(2);(3).能力提升全练1.计算:___________.2.阅读例题,再计算. 例题:.解:原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-655+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-329+⎪⎭⎫ ⎝⎛+4317+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-213=()()()[]17395+-+-+-+⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-43213265=0+⎪⎭⎫⎝⎛-411=411-. 仿照上面的方法计算:.三年模拟全练1.(2019山东青岛五中月考,5,★★☆)计算43+(-77)+27+(-43)的结果是 ( )A .50B .-104C .-50D .104 五年中考全练 一、选择题1.(2017山东滨州中考,1,★☆☆)计算-(-1)+|-1|,结果为( ) A .-2 B .2 C .0 D .-12.(2014广西玉林中考,1,★☆☆)下面的数与-2的和为0的是 ( )A .2B .-2C .21D .21 二、填空题3.(2015山东烟台中考,13,★☆☆)如图,数轴上点A ,B 所表示的两个数的和的绝对值是____.核心素养全练1.在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的【探究】. 【提出问题】两个有理a 、b 满足a 、b 同号,求的值.【解决问题】解:由a 、b 同号可知a 、b 有两种可能:①a ,b 都是正数;②a ,b 都是负数,①若a 、b 都是正数,即a >0,b >0,有|a| =a ,|b| =b ,则,②若a 、b 都是负数,即a <0,b <0,有|a| =-a ,|b| =-b ,则,所以的值为2或-2.【探究】请根据上面的解题思路解答下面的问题: (1)两个有理数a 、b 满足a 、b 异号,求的值;(2)已知|a| =3,|b| =7,且a<b,求a+b的值.答案1.B将式子先变成,再计算结果,运用了加法交换律和加法结合律,故选B.2.答案8;1解析因为m、n互为相反数,所以m+n=0,所以m+8+n= (m+n)+8=0+8=8,a+b+c+(-d)=(a+c)+[b+(-d)]=(-2 019)+2 020=1.3.答案620解析将盈利记为正,亏损记为负,则该服装厂上半年盈利1285+(-140)+(-955) +140+168+122= (1285+140+168+122)+(-140-955)=1715-1095= 620(万元).4.解析(1)(-5)+3+(+5)+(-2)=[(-5)+(+5)]+3+(-2)=1.(2).(3).能力提升全练 1.答案10 解析 原式==|-5|+5= 5+5=10.2.解析 原式=()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-652019+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-322018+4040+()⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-211=[(-2019)+(-2018)+(-1)+4040]+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-213265=2+(-2)=0三年模拟全练1.C 43+(-77)+27+(-43)=(- 43+43)+(- 77+27)=-50.故选C . 五年中考全练1.B 根据“负负得正”可知,-(-1)=1;根据“负数的绝对值等于它的相反数”可得|-1|=1,所以原式=1+1=2.2.A 因为互为相反数的两个数的和为0,而-2的相反数是2,所以这个数是2,故选A . 3.答案1解析 由题中数轴知,A 表示的数为-3,B 表示的数为2.|(-3)+2| =1. 核心素养全练2.解析 (1)∵两个有理数a 、b 满足a 、b 异号,∴有两种可能:①a 是正数,b 是负数;②b 是正数,a 是负数, ①当a >0,b <0时,;②当a<0,b>0时,.综上,的值为0.(2)∵|a| =3,|b| =7,且a<b,∴a=3或-3,b=7或-7①当a=-3时,b=7,此时a+b=4;②当a=3时,b=7,此时a+b= 10.综上,a+b的值为4或10.。

人教版数学七上 有理数的加法(2)

人教版数学七上  有理数的加法(2)

体验收获
今天我们学习了哪些知识? 1.我们学习了哪些加法运算律? 2.进行有理数的加法运算时,哪些情况下考虑使用加法运 算律呢?
达标测试
1.计算(+16)+(-25)+(+24)+(-35),先把 ___正___数和_____负_数分别结合在一起相加,计算比较 简便,计算结果是_____-_.20
解: 16 + (-25) + 24+ (-35) = 16 + 24 + [ (-25) + (-35)] =40+ (-60) =-20.
把正数或负数分别相加,从而使计算简化.
新知探究2
[8+(-5)]+(-4)与8+[(-5)+(-4)],两次所得的和相同吗?
解: [8+(-5)]+(-4) =3+(-4) =-1 8+[(-5)+(-4)] =8+(-9) =-1 答:两次所得的和相同
(3)星期五全部股票出手共可卖多少钱?
答案: (1)28元;
(2)32元,28元;
(3)29000元.
布置作业 教材24页习题1.3第2题.
∴它们从小到大的顺序是b<-a<a<-b.
达标测试
6.一股民上周五收盘时以每股27元的价格买了 1000股股票,下表为本周内每日该股票的涨跌情况 (正数表示比前一天上涨,负数表示比前一天下跌):
星期
一二 三 四 五
涨跌(元) +2 +3 -1.5 -2.5 +1
(1)星期四收盘时,每股是多少元? (2)本周内每股最高价、最低价分别是多少元?
_绝__对__值__较__大__的__加__数__的__符__号___, _并__且__用__较__大__的__绝__对__值____ _减__去__较__小__的__绝__对__值_____. (3)互为相反数的两个数相加得___0__ . (4)一个数与0相加,仍得 ___这__个__数____.

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)

人教新版初一上册数学有理数的加减法试题及答案(2)人教新版初一上册数学有理数的加减法试题参考答案一、选择题(共13小题)1.计算﹣10﹣8所得的结果是( )A.﹣2B.2C.18D.﹣18【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣10﹣8=﹣18.故选D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.2.哈市某天的最高气温为28℃,最低气温为21℃,则这一天的最高气温与最低气温的差为( )A.5℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】常规题型.【分析】根据有理数的减法,减去一个数等于加上这个数的相反数,可得答案.【解答】解:28﹣21=28+(﹣21)=7,故选:C.【点评】本题考查了有理数的减法,减去一个数等于加上这个数的相反数.3.某地某天的最高气温是8℃,最低气温是﹣2℃,则该地这一天的温差是( )A.﹣10℃B.﹣6℃C.6℃D.10℃【考点】有理数的减法.【专题】计算题.【分析】用最高温度减去最低温度,然后根据有理数的减法运算法则,减去一个数等于加上这个数的相反数进行计算即可得解.【解答】解:8﹣(﹣2)=8+2=10(℃).故选D.【点评】本题考查了有理数的减法运算法则,熟记减去一个数等于加上这个数的相反数是解题的关键.4.比1小2的数是( )A.3B.1C.﹣1D.﹣2【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:1﹣2=﹣1.故选C.【点评】本题考查了有理数的减法,是基础题.5.如果崇左市市区某中午的气温是37℃,到下午下降了3℃,那么下午的气温是( )A.40℃B.38℃C.36℃D.34℃【考点】有理数的减法.【专题】应用题.【分析】用中午的温度减去下降的温度,然后根据有理数的减法运算法则进行计算即可得解.【解答】解:37℃﹣3℃=34℃.故选:D.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.6.计算,正确的结果为( )A. B. C. D.【考点】有理数的减法.【分析】根据有理数的减法运算法则进行计算即可得解.【解答】解:﹣ =﹣ .故选D.【点评】本题考查了有理数的减法运算是基础题,熟记法则是解题的关键.7.计算:1﹣(﹣ )=( )A. B.﹣ C. D.﹣【考点】有理数的减法.【分析】根据有理数的减法法则,即可解答.【解答】解:1﹣(﹣ )=1+ = .故选:C.【点评】本题考查了有理数的减法,解决本题的关键是熟记有理数的减法法则.8.﹣2﹣1的结果是( )A.﹣1B.﹣3C.1D.3【考点】有理数的减法.【分析】根据有理数的减法法则:减去一个数等于加上这个数的相反数把原式化为加法,根据有理数的加法法则计算即可.【解答】解:﹣2﹣1=﹣2+(﹣1)=﹣3,故选:B.【点评】有本题考查的是有理数的减法法则:减去一个数等于加上这个数的相反数,掌握法则是解题的关键.9.计算2﹣3的结果是( )A.﹣5B.﹣1C.1D.5【考点】有理数的减法.【分析】减去一个数等于加上这个数的相反数,再运用加法法则求和.【解答】解:2﹣3=2+(﹣3)=﹣1.故选B.【点评】考查了有理数的减法,解决此类问题的关键是将减法转换成加法.10.桂林冬季里某一天最高气温是7℃,最低气温是﹣1℃,这一天桂林的温差是( )A.﹣8℃B.6℃C.7℃D.8℃【考点】有理数的减法.【专题】应用题.【分析】根据“温差”=最高气温﹣最低气温计算即可.【解答】解:7﹣(﹣1)=7+1=8℃.故选D.【点评】此题考查了有理数的减法,解题的关键是:明确“温差”=最高气温﹣最低气温.11.如图,这是某用户银行存折中2012年11月到2013年5月间代扣电费的相关数据,从中可以看出扣缴电费最多的一次达到( )A.147.40元B.143.17元C.144.23元D.136.83元【考点】有理数的加减混合运算;有理数大小比较.【专题】应用题.【分析】根据存折中的数据进行解答.【解答】解:根据存折中的数据得到:扣缴电费最多的一次是日期为121105,金额是147.40元.故选:A.【点评】本题考查了有理数大小比较的应用.解题的关键是学生具备一定的读图能力.12.五个城市的国际标准时间(单位:时)在数轴上表示如图所示,我市2013年初中毕业学业检测与高中阶段学校招生考试于2015年6月16日上午9时开始,此时应是(A.纽约时间2015年6月16日晚上22时B.多伦多时间2015年6月15日晚上21时C.伦敦时间2015年6月16日凌晨1时D.汉城时间2015年6月16日上午8时【考点】有理数的加减混合运算.【专题】应用题.【分析】求出两地的时差,根据北京时间求出每个地方的时间,再判断即可.【解答】解:A、∵纽约时间与北京差:8+5=13个小时,9﹣13=﹣4,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日21时,故本选项错误;B、∵多伦多时间与北京差:8+4=12个小时,9﹣12=﹣3,∴当北京时间2015年6月16日9时,纽约时间是2015年6月15日22时,故本选项错误;C、∵伦敦时间与北京差:8﹣0=8个小时,9﹣8=1,∴当北京时间2015年6月16日9时,伦敦时间是2015年6月16日1时,故本选项正确;D、∵汉城时间与北京差:9﹣8=1个小时,9+1=10,∴当北京时间2015年6月16日9时,首尔时间是2015年6月16日10时,故本选项错误;故选C.【点评】主要考查了数轴,要注意数轴上两点间的距离公式是|a ﹣b|.把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.13.与﹣3的差为0的数是( )A.3B.﹣3C.D.【考点】有理数的减法.【分析】与﹣3的差为0的数就是﹣3+0,据此即可求解.【解答】解:﹣3+0=﹣3.故选B.【点评】本题考查了有理数的减法运算,正确列出式子是关键.二、填空题(共5小题)14.计算:0﹣7= ﹣7 .【考点】有理数的减法.【分析】根据有理数的减法法则进行计算即可,减去一个数等于加上这个数的相反数.【解答】解:0﹣7=﹣7;故答案为:﹣7.【点评】此题考查了有理数的减法运算,熟练掌握减法法则是本题的关键,是一道基础题,较简单.15.计算:3﹣(﹣1)= 4 .【考点】有理数的减法.【分析】先根据有理数减法法则,把减法变成加法,再根据加法法则求出结果.【解答】解:3﹣(﹣1)=3+1=4,故答案为4.【点评】本题主要考查了有理数加减法则,能理解熟记法则是解题的关键.16.计算:3﹣4= ﹣1 .【考点】有理数的减法.【分析】本题是对有理数减法的考查,减去一个数等于加上这个数的相反数.【解答】解:3﹣4=3+(﹣4)=﹣1.故答案为:﹣1.【点评】有理数的减法法则:减去一个数等于加上这个数的相反数.17.计算:2000﹣2015= ﹣15 .【考点】有理数的减法.【专题】计算题.【分析】根据有理数的减法运算进行计算即可得解.【解答】解:2000﹣2015=﹣15.故答案为:﹣15.【点评】本题考查了有理数的减法,是基础题,熟记运算法则是解题的关键.18. |﹣7﹣3|= 10 .【考点】有理数的减法;绝对值.【专题】计算题.【分析】根据有理数的减法运算法则和绝对值的性质进行计算即可得解.【解答】解:|﹣7﹣3|=|﹣10|=10.故答案为:10.【点评】本题考查了有理数的减法运算法则和绝对值的性质,是基础题,熟记法则和性质是解题的关键初一数学复习指导一、多看主要是指认真阅读数学课本。

人教版七年级上册数学1.3.1有理数的加法同步训练(word版含简略答案)

人教版七年级上册数学1.3.1有理数的加法同步训练(word版含简略答案)

人教版七年级上册数学1.3.1 有理数的加法同步训练一、单选题1.比2-大6的数是( )A .8-B .8C .6D .4 2.春节假期期间某一天早晨的气温是3C ︒-,中午上升了8C ︒,则中午的气温是( ) A .5C ︒- B .5C ︒ C .11C ︒ D .11C ︒- 3.点A 在数轴上距离原点3个单位长度,且位于原点左侧,若将点A 向右移动5个单位长度到点B ,此时点B 表示的数是( )A .2B .-2C .8D .-8 4.若3a =,1=b ,且a ,b 同号,则a b +的值为( )A .4B .-4C .2或-2D .4或-4 5.在数轴上,点A 表示-2,若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .2B .4C .6D .-4 6.有理数a 、b 在数轴上对应的位置如图所示,则下列结论正确的是( )A .a +b =0B .a +b >0C .a +b <0D .a -b >0 7.已知||5a =,||3b =,且a b <,则a b +的值是( )A .2-或8-B .2-C .8-D .2-或8 8.绝对值大于2且不大于5的所有的整数的和是( )A .7B .-7C .0D .5二、填空题9.计算:﹣9+2=___.10.(1)同号两数相加,__________________________________________; (2)异号两数相加,绝对值相等时______________;绝对值不等时,________________;(3)一个数同0相加,_________________.11.已知2,3,4a b c ===,且a b c >>,则a b c ++=_____________12.绝对值大于1且小于6的所有负整数之和等于_____________.13.温度由4-℃上升7℃是________℃.14.绝对值小于3的所有负整数的和是__________.15.已知a 、b 互为相反数,c 是绝对值最小的数,d 是负整数中最大的数,则a b c d ++-=______.16.如果320x y ++-=,那么x y +=______.三、解答题17.计算:(1)()()156-+-= (2)()()927-+-= (3)()46+-= (4)()525-+= (5)()()1.1 3.9-+-= (6)()139-+= (7)()1000-+= (8)()77-+=18.已知m 是大于﹣4且不大于3的整数,求m 的所有整数的和.19.已知|a |=7,|b |=3,且|a ﹣b |=b ﹣a ,求a +b 的值.20.某产粮专业户出售余粮10袋,每袋重量如下(单位:千克):199、201、197、203、200、195、197、199、202、196(1)如果每袋余粮以200千克为标准,求这10袋余粮总计超过多少千克或者不足多少千克;(2)这10袋余粮一共多少千克?参考答案:1.D2.B3.A4.D5.A6.C7.A8.C9.7-10.取相同的符号,并把绝对值相加和为0取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值仍得这个数11.5-或9-12.-1413.314.-315.116.1-17.(1)-21;(2)-36;(3)-2;(4)20;(5)-5;(6)-4;(7)-100;(8)0.18.019.﹣4或﹣1020.(1)不足11千克;(2)1989千克答案第1页,共1页。

人教版七年级数学上册有理数的加法同步练习

人教版七年级数学上册有理数的加法同步练习

《有理数的加法》同步练习41.正负两数的和不是正数就是负数.( )2.两个绝对值不相等的有理数的和一定不等于0.( )3.若两个有理数之和是正数,则这两个有理数一定都是正数.( )4.绝对值相等的两个数的和等于零.( )5.两个数的和一定大于每个加数.( )6.两个负数的和一定是负数.( )二、填空.7.某潜水员潜入水下50m,记作___________m,然后又上升20m,记作___________,这两个数相加为___________m,所以潜水员在水下___________m处.如果这个潜水员下潜和上浮每10m用的时间都是1min的话,他上升和下潜的时间总共是___________min.(假设潜水员在水下50m处没有停留)8.(–3)+7+(–4)+3=+7+(–4)利用的是加法的___________.9.(–28)+29=29+(–28)利用的是加法的___________.10.(–3.14)+4.3的符号是___________,绝对值是___________,结果是___________.11.一个有理数由___________和___________两部分组成,所以进行加法运算时,必须分别确定___________和___________.12.依照例题,在括号内加注运算的说明或根据.例:180+(–20)解:180+(–20)=……………………………………………………(异号两数相加)+(180–20)=…………………………………………(取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值)160.(1)(–180)+0解:–180+0=…………………………………………………………()–180.…………………………………………………………()(2)20+(–20)解:20+(–20)=……………………………………………………()0.…………………………………………………()(3)–180+(–20)=………………………………………………()解:–180+(–20)=………………………………………………()–(180+20)=………………………………………………()计算.13.用简便方法计算.(1)(–2)+3+(–4)+5+(–6)+7+(–8)+9; (2);87432851213⎪⎭⎫⎝⎛+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-(3)12.32+(–14.17)+(–2.32)+(–5.83); (4);3141743241⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-(5);532573236.8324⎪⎭⎫⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++(6)(–5.2)+;612)2.5()6.7(311⎪⎭⎫ ⎝⎛++-+-+⎪⎭⎫ ⎝⎛+(7);11154)8.5(1110⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛-(8)(–0.125)+(–183)+(+100)+(–217)+;814⎪⎭⎫ ⎝⎛+(9);61)2.3(65514⎪⎭⎫⎝⎛-+-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+(10)(–41)+(+18)+(–39)+(+72). 14.(1);4193211-+⎪⎭⎫ ⎝⎛--(2);217432⎪⎭⎫⎝⎛-+-- (3);21413256⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛--(4);)8.32(23.5--+-- (5);0718+⎪⎭⎫⎝⎛-(6);734734⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-(7);61132⎪⎭⎫⎝⎛-+⎪⎭⎫ ⎝⎛- (8);21121⎪⎭⎫ ⎝⎛-+(9)(–1.1)+(+3.9);(10)(–1.1)+(–3.9); (11)(+15)+(+6);(12)(–15)+(–6);(13)(+15)+(–6);(14)(–15)+(+6).四、列式计算. 15.–2与415的和的绝对值加上431的相反数的和是多少?16.911的相反数的绝对值与9014的相反数的和是多少? 17.有6箱苹果,每箱标准重量为25kg,过秤的结果如下:24,24,26,25,25(单位:kg). 请你设计一种简单的运算方法,求出它们的总质量.18.运用有理数的加法法则解下列各题.(1)王叔叔在自己家门前一条东西走向的马路上晨练,他从门口出发,每隔10min 记录下自己的跑步情况:–1002,+1080,–983,+1010,–875,+965.(向东为正,向西为负,单位:m)(2)飞机从地面飞到8000m 的空中,遇到云团后紧急上升了500m,绕过云团后又下降了400m,这时飞机离地答案:一、1.×2.√3.×4.×5.×6.√ 二、7.–50 +20 –30 30 7 8.结合律9.交换律10.+1.16+1.1611.符号 绝对值 符号绝对值 12.(1)一个数与零相加仍得这个数(2)互为相反的两个数相加 得零 (3)同号两数相加 取相同的符号,并把绝对值相加三、13.(1)(–2)+3+(–4)+5+(–6)+7+(–8)+9 =(–8)+9=1+1+1+1=4. (2).⎪⎭⎫⎝⎛+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-87432851213=⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-87851432433=⎪⎭⎫⎝⎛-+-43455=–7. (3)12.32+(–14.17)+(–2.32)+(–5.83) =+=10+(–20) =–10.(4)⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-3141743241=7431324141+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=0+(–1)+.7374-= (5)⎪⎭⎫⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++532573236.8324=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+53257538323324=1+534=.535 (6)(–5.2)+⎪⎭⎫ ⎝⎛++-+-+⎪⎭⎫ ⎝⎛+612)2.5()6.7(311=+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+612311=(–18)+⎪⎭⎫⎝⎛213=.2114-(7)⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛++⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛-11154)8.5(1110 =⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+-545451111110=(–1)+(–5) =–6.(8)(–0.125)+(–183)+(+100)+(–217)+⎪⎭⎫ ⎝⎛+814=)100()]217()183[(81481++-+-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛-=4+(–400)+100 =–296.(9)⎪⎭⎫⎝⎛-+-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛+61)2.3(65514=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛6165513514 =1+(–1)=0.(10)(–41)+(+18)+(–39)+(+72) =+ =90+(–80)=10.14.(1)4193211-+⎪⎭⎫ ⎝⎛-- =4193211+=.121120(2)⎪⎭⎫ ⎝⎛-+--217432 =⎪⎭⎫⎝⎛-+-427432=.4110-(3)⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛--21413256 =21413256+=.6198(4)–∣–5.23∣+∣–(–32.8)∣ =–5.23+32.8=27.57. (5)718- (6)0 (7)651-(8)–1 (9)+2.8 (10)–5(11)21(12)–21 (13)+9 (14)–9四、15.⎪⎭⎫ ⎝⎛-++-4314152=.5.1431413=-16.⎪⎭⎫⎝⎛-+-9014911=1901491-=.1092- 五、17.方法不止一个,按照有理数的加法法则可以这样设计:以25kg 为标准,超过标准的记为“+”,低于标准的记为“–”,那么每箱苹果超出或不足就成为–1,–1,+1,+1,0,0. ∴这6箱苹果的总质量应当是 6×25+=150.18.(1)(–1002)+(+1080)+(–983)+(+1010)+(–875)+(+965) =+195(m).1002+1080+983+1010+875+965=5915(m).高频考点强化训练:三视图的有关判断及计算时间:30分钟 分数:50分 得分:________一、选择题(每小题4分,共24分)1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )2.(2016·贵阳中考)如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是【易错6】( )3.如图所示的主视图、左视图、俯视图是下列哪个物体的三视图( )4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是( )5.一个长方体的主视图、俯视图如图所示(单位:cm),则其左视图的面积为( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ………………………………密………………………………….封……………………….线…………………………………………………………………………..乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..A .36cm 2B .40cm 2C .90cm 2D .36cm 2或40cm 2第5题图 第6题图6.(2016·承德模拟)由一些大小相同的小正方体组成的几何体的俯视图和左视图如图所示,那么组成这个几何体的小正方体个数可能有( )A .8个B .6个C .4个D .12个二、填空题(每小题4分,共16分)7.下列几何体中:①正方体;②长方体;③圆柱;④球.其中,三个视图形状相同的几何体有________个,分别是________(填几何体的序号).8.如图,水平放置的长方体的底面是边长为3和5的长方形,它的左视图的面积为12,则长方体的体积等于________.9.如图,由五个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体的主视图和左视图的面积之和是________.第8题图 第9题图 第10题图10.(2016·秦皇岛卢龙县模拟)由若干个相同的小立方体搭成的一个几何乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则x 的值为________,y 的值为________.三、解答题(10分)11.如图所示的是某个几何体的三视图. (1)说出这个几何体的名称;(2)根据图中的有关数据,求这个几何体的表面积.中考必考点强化训练专题:简单三视图的识别◆类型一 简单几何体的三视图1.(2016·杭州中考)下列选项中,如图所示的圆柱的三视图画法正确的是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..第1 题图 第2题图 第3题图2.(2016·抚顺中考)如图所示几何体的主视图是( )3.(2016·南陵县模拟)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )4.(2016·肥城市一模)如图所示的四个几何体中,它们各自的主视图与俯视图不相同的几何体的个数是( )A .1个B .2个C .3个D .4个5.(2016·宁波中考)如图所示的几何体的主视图为( )6.(2016·鄂州中考)一个几何体及它的主视图和俯视图如图所示,那么它的左视图正确的是( )7.(2016·菏泽中考)如图所示,该几何体的俯视图是( )乡镇__________________ 学校_____________________ 班级____________ 姓名____________ 座号__________ ……………………密………………………………….封……………………….线…………………………………………………………………………..◆类型二简单组合体的三视图8.(2016·黔西南州中考)如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )9.(2016·营口中考)如图所示的物体是由两个紧靠在一起的圆柱体组成,小明准备画出它的三视图,那么他所画的三视图中的主视图应该是( )10.(2016·日照中考)如图,小明同学将一个圆锥和一个三棱柱组成组合图形,观察其三视图,其俯视图是( )11.(2016·烟台中考)如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为( )。

有理数的加法(计算题专项训练)(人教版)(解析版)

有理数的加法(计算题专项训练)(人教版)(解析版)

专题01 有理数的加法1.(2022秋·七年级课时练习)计算:(1)(−10)+(+6);(2)(+12)+(−4);(3)(−5)+(−7);(4)(+6)+(−9);(5)(−0.9)+(−27);(6)25+(−35); (7)(−13)+25; (8)(−314)+(−1112).【思路点拨】有理数的加法原则:同号相加,取相同的符号,并把绝对值相加,异号相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;有理数的减法原则:减去一个数等于加上这个数的相反数,根据原则内容计算即可.【解题过程】解:(1)(−10)+(+6)=−4(2)(+12)+(−4)=8(3)(−5)+(−7)=−12(4)(+6)+(−9)=−3(5)(−0.9)+(−27)=−27.9(6)25+(−35)=−15(7)(−13)+25=(−515)+615=115(8)(−314)+(−1112)=[(−3)+(−1)]+[(−14)+(−112)]=−413.2.(2023·江苏·七年级假期作业)计算:(1)(−0.9)+(−0.87);(2)(+456)+(−312);(3)(−5.25)+514; (4)(−89)+0.【思路点拨】(1)根据两个负数相加的运算法则进行计算即可;(2)根据绝对值不相等的异号的两数相加进行计算即可;(3)根据互为相反数的两数相加的法则进行计算即可;(4)根据一个数与0相加的法则进行计算即可.【解题过程】(1)解:(−0.9)+(−0.87)=−(0.9+0.87)=−1.77;(2)(+456)+(−312)=+(456−336)=113; (3)(−5.25)+514=0;(4)(−89)+0=−89.3.(2022·全国·七年级假期作业)计算:(1)(−6)+(−13)(2)(−45)+34+45 (3)(−15.7)+6+57(4)16+(−27)+(−56)+57【思路点拨】(1)根据有理数的加法法则可以解答本题;(2)先交换加数的位置,利用互为相反数的两个数和为0进行计算即可解答.(3)根据有理数的加法法则从左到右计算即可;(4)先交换加数的位置,分别计算同分母分数的加法,再进行通分计算即可解答.【解题过程】解:(1)(-6)+(-13)=-(6+13).=-19;(2)(−45)+34+45=(−45)+45+34 =0+34 =34;(3)(−15.7)+6+57=−9.7+57=47.3;(4)16+(−27)+(−56)+57=[16+(−56)]+[(−27)+57] =(−23)+37=(−1421)+921=−521. 4.(2023·全国·九年级专题练习)计算下列各题:(1)(−3)+40+(−32)+(−8)(2)13+(−56)+47+(−34)(3)43+(−77)+27+(−43)【思路点拨】优先负数和负数相加,正数和正数相加,能凑整先凑整的原则进行简便运算即可.【解题过程】(1)(−3)+40+(−32)+(−8)=−(32+8+3)+40=−43+40=−3(2)13+(−56)+47+(−34)=13+47+[(−56)+(−34)]=60+(−90)=−30(3)43+(−77)+27+(−43)=43+27+[(−77)+(−43)]=70+(−120)=−505.(2023·全国·七年级假期作业)计算(1)4.7+(−0.8)+5.3+(−8.2)(2)(−16)+(+13)+(−112)【思路点拨】对于(1),将两个正数,两个负数分别结合,再计算;对于(2),先通分,再结合计算即可.【解题过程】(1)原式=(4.7+5.3)+(-0.8-8.2)=10-9=1;(2)原式=(−212-112)+412=-312+412=112.6.(2022秋·湖南衡阳·七年级校考阶段练习)计算:(1)(−23)+(+58)+(−17);(2)(−2.8)+(−3.6)+(−1.5)+3.6.【思路点拨】(1)根据加法交换律与结合律,先将和为整数的数结合相加,再按有理数加法法则进行计算;(2)根据加法交换律与结合律,先将互为相反数的数结合相加,再按有理数加法法则进行计算.【解题过程】(1)解:原式=[(−23)+(−17)]+(+58)=−40+58=18.(2)解:原式=[(−2.8)+(−1.5)]+[(−3.6)+3.6]=−4.3+0=−4.3.7.(2023·全国·九年级专题练习)计算:(1)(−23)+72+(−31)+(+47);(2)(+1.25)+(−12)+(−34)+(+134).【思路点拨】(1)先把同号的两数先加,再按照绝对值不相等的异号两数相加的法则进行运算即可;(2)把和为整数的两个数先加,再通分,再按照绝对值不相等的异号两数相加的法则进行运算即可.【解题过程】(1)解:(−23)+72+(−31)+(+47)=(−54)+(+119)=65;(2)(+1.25)+(−12)+(−34)+(+134) =[(+114)+(+134)]+[(−24)+(−34)]=3+(−54) =74. 8.(2022秋·全国·七年级专题练习)计算:(1)3+(−10)+9+(−12)+7(2)(−0.19)+(−3.27)+(+6.19)+(−5)+2.27(3)147+(−213)+37+ 13 (4)4.4+(−13)+(−7)+(−323)+(−2.4)【思路点拨】(1)把同号的两数与互为相反数的两数先加,再进行计算即可;(2)把和为整数的两个数先加,再进行即可;(3)把和为整数的两数先加,再计算即可;(4)把和为整数的两数先加,再计算即可;【解题过程】(1)解:3+(−10)+9+(−12)+7=12−12−10+7=−3;(2)(−0.19)+(−3.27)+(+6.19)+(−5)+2.27=−0.19+6.19+2.27−3.27−5=6−1−5=0;(3)147+(−213)+37+ 13=147+37+13−213 =2−2=0;(4)4.4+(−13)+(−7)+(−323)+(−2.4) =4.4−2.4−13−323−7=2−4−7=−99.(2023·全国·七年级假期作业)计算(1)(−0.9)+1.5(2)12+(−23) (3)1+(−12)+13+(−16) (4)314+(−235)+534+(−825)【思路点拨】(1)利用有理数的加法运算法则直接计算即可得到答案;(2)利用有理数的加法运算法则直接计算即可得到答案;(3)利用有理数的加法运算律进行简便计算,即可得到答案;(4)利用有理数的加法运算律进行简便计算,即可得到答案.【解题过程】(1)解:(−0.9)+1.5=0.6;(2)解:12+(−23)=36−46=−16; (3)解:1+(−12)+13+(−16) =(1+13)+[(−12)+(−16)] =43+(−23) =23;(4)解:314+(−235)+534+(−825)=(314+534)+[(−235)+(−825)]=9+(−11) =−2.10.(2022秋·山东德州·七年级校考阶段练习)计算(1)(+15)+(-20)+(-7)+(+10)(2)(-35)+(-12)+34+(-25)+12+(-78)(3)(-20)+(+3)-(-5)-(+7)(4)545-(+216)+(-4.8)-(-456)【思路点拨】(1)利用有理数的加法法则进行计算即可;(2)利用加法交换律和结合律进行简便运算;(3)利用有理数的加减法则,从左到右依次运算即可;(4)利用加法交换律和结合律进行简便计算.【解题过程】(1)解:原式=15-20-7+10,=-5-7+10,=-12+10,=-2;(2)解:原式=(-35-25)+(-12+12)+(34-78),=-1+0-18,=-118;(3)解:原式=-20+3+5-7,=-17+5-7,=-12-7,=-19;(4)解:原式=(545-4.8)-(216-456),=1+223,=323.11.(2023·浙江·七年级假期作业)计算下列各式:(1)(−1.25)+(+5.25)(2)(−312)+(+713)−8 (3)0.36+(−7.4)+0.5+0.24+(−0.6)(4)315+(−0.5)+(−3.2)+512.【思路点拨】(1)根据有理数的加法法则计算,即可解答;(2)根据有理数的加减运算法则计算,即可解答;(3)利用加法的结合律和交换律,即可解答;(4)利用加法的结合律和交换律,即可解答.【解题过程】(1)原式=5.25−1.25=4;(2)原式=(−3)+(+7)−8+(−12)+13=−4−16=−256; (3)原式=0.36+0.24+(−0.6)+0.5+(−7.4)=0.5+(−7.4)=−6.9;(4)原式=3.2+(−3.2)+(−0.5)+5.5=5.12.(2022秋·七年级课时练习)计算:(1)(﹣3)+40+(﹣32)+(﹣8)(2)43+(﹣77)+27+(﹣43)(3)18+(﹣16)+(﹣23)+16(4)(﹣3)+(+7)+4+3+(﹣5)+(﹣4)(5)5.6+(﹣0.9)+4.4+(﹣8.1)(6)(﹣256)+171123+(+12223)+(﹣416)【思路点拨】(1)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(2)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(3)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(4)运用加法的交换律和结合律,同号的相结合,再按照异号两数相加的法则计算即可;(5)运用加法的交换律和结合律,同分母的相结合,再按照异号两数相加的法则计算即可.【解题过程】解:(1)(﹣3)+40+(﹣32)+(﹣8)=40+[(﹣3)+(﹣32)+(﹣8)]=40+(﹣43)=﹣3,(2)43+(﹣77)+27+(﹣43)=(43+27)+[(﹣77)+(﹣43)]=70+(﹣120)=﹣50,(3)18+(﹣16)+(﹣23)+16=(18+16)+[(﹣16)+(﹣23)]=34+(﹣39)=﹣5,(4)(﹣3)+(+7)+4+3+(﹣5)+(﹣4)=[(+7)+4+3]+[(﹣3)+(﹣5)+(﹣4)]=14+(﹣12)=2,(5)5.6+(﹣0.9)+4.4+(﹣8.1)=(5.6+4.4)+[(﹣0.9)+(﹣8.1)]=10+(﹣9)=1,(6)(−256)+171123+(+12223)+(−416)=[171123+(+12223)]+[(−256)+(−416)]=291323+(−7)=221323.13.(2023·浙江·七年级假期作业)计算(1)25.7+(−7.3)+(−13.7)+7.3;(2)(−2.125)+(+315)+(+518)+(−3.2). 【思路点拨】(1)利用加法交换律与加法结合律,把互为相反数的两数相加,另两数相加;(2)利用加法交换律与加法结合律,把小数部分相同的两数相加,互为相反数的两数相加.【解题过程】(1)解:25.7+(−7.3)+(−13.7)+7.3=[25.7+(−13.7)]+[(−7.3)+7.3]=12+0=12(2)(−2.125)+(+315)+(+518)+(−3.2) =[(−2.125)+518]+[315+(−3.2)] =3+0=314.(2023秋·全国·七年级专题练习)计算:(1)(-2)+(+3)+(+4)+(-3)+(+5)+(-4);(2)(−213)+(−234)+534+(−423). 【思路点拨】(1)按照加法的交换律和结合律把互为相反数的结合进行求解即可;(2)按照加法的交换律和结合律把同分母的结合进行求解即可;【解题过程】(1)原式=[(-2)+(+5)]+[(+3)+(-3)]+[(+4)+(-4)]=(+3)+0+0=3;(2)解:原式=[(−213)+(−423)]+[(−234)+534]=(−7)+(+3)=−4.15.(2023·全国·七年级假期作业)计算:(1)(−3)+12+(−17)+(+8)(2)234+523+(−2.75)+(−513) 【思路点拨】(1)原式运用加法的交换律和结合律进行计算即可得到答案;(2)原式先将−2.75化为−234,再运用加法的交换律和结合律进行计算即可得到答案.【解题过程】(1)(−3)+12+(−17)+(+8)=(−3−17)++(12+8)=−(3+17)++(12+8)=−20+20=0;(2)234+523+(−2.75)+(−513)=234+523+(−234)+(−513)=(234−234)+(523−513)=0+13 =13 16.(2023·浙江·七年级假期作业)计算:(1)|−7|+|−9715|(2)(−723)+(−356) (3)(+4.85)+(−3.25)(4)(−7)+(+10)+(−1)+(−2)(5)(−2.6)+(−3.4)+(+2.3)+1.5+(−2.3)(6)(+317)+(−3.36)+[(+7.36)+(+1417)].【思路点拨】(1)先去绝对值,再按照有理数的加法运算顺序计算.(2)先去括号,再按照有理数的加法运算顺序计算.(3)先去括号,再按照有理数的加法运算顺序计算.(4)先去括号,再按照有理数的加法运算顺序计算.(5)先去括号,再按照有理数的加法运算顺序计算.(6)先去小括号,后去中括号,再按照有理数的加法运算顺序计算.【解题过程】(1)解:|−7|+|−9715|=7+9715 =16715 (2)解:(−723)+(−356)=(−233)+(−236) =−696 =−232(3)解:(+4.85)+(−3.25)=4.85−3.25=1.6(4)解:(−7)+(+10)+(−1)+(−2)=−7+10−1−2=0(5)解:(−2.6)+(−3.4)+(+2.3)+1.5+(−2.3)=−2.6−3.4+2.3+1.5−2.3=−4.5(6)解:(+317)+(−3.36)+[(+7.36)+(+1417)]=(+317)+(−3.36)+(+7.36)+(+1417) =(+317)+(+1417)+(−3.36)+(+7.36) =1+4=517.(2022秋·浙江·七年级专题练习)计算:(1)314+(−235)+534+(−825);(2)(−0.5)+314+2.75+(−512); (3)−|−1.5|+|−32|+0. 【思路点拨】可以运用加法的交换律交换加数的位置,(1)可变为(314+534)+[(﹣235)+(﹣825)],(2)可变为[(﹣0.5)+(﹣512)]+(314+2.75),然后利用加法的结合律将两个加数相加.(3)先计算绝对值,再根据有理数的加法法则计算即可.【解题过程】(1)314+(−235)+534+(−825) =(314+534)+[(﹣235)+(﹣825)] =9﹣11=﹣2;(2)(−0.5)+314+2.75+(−512)=[(﹣0.5)+(﹣512)]+(314+2.75)=﹣6+6=0;(3)−|−1.5|+|−32|+0 =﹣1.5+32+0 =0.18.(2023·江苏·七年级假期作业)计算:(1)(−335)+(−2.71)+(+1.69)(2)|−512+4.25|+(−7+512).【思路点拨】(1)根据有理数的加法运算法则进行计算即可;(2)根据有理数的加法运算法则及求一个数的绝对值进行计算即可.【解题过程】(1)解:(−335)+(−2.71)+(+1.69) =(−3.6)+(−2.71)+1.69=−(3.6+2.71)+1.69=−6.31+1.69=−(6.31−1.69)=−4.62;(2)|−512+4.25|+(−7+512) =|−5.5+4.25|+(−7+5.5)=|−1.25|+(−1.5)=1.25+(−1.5)=−(1.5−1.25)=−0.25.19.(2022秋·福建龙岩·七年级统考期中)阅读下面文字:对于(−556)+(−923)+1734+(−312),可以按如下方法计算: 原式=[(−5)+(−56)]+[(−9)+(−23)]+(17+34)+[(−3)+(−12)] =[(−5)+(−9)+17+(−3)]+[(−56)+(−23)+34+(−12)] =0+(−114) =−114. 上面这种方法叫拆项法.仿照上面的方法,请你计算:(−202256)+(−202123)+(−112)+4044.【思路点拨】根据拆项法的定义,先把带分数拆成整数与分数两个部分,然后分别进行计算即可.【解题过程】解:原式=[(−2022)+(−56)]+[(−2021)+(−23)]+[(−1)+(−12)]+4044=[(−2022)+(−2021)+(−1)+4044]+[(−56)+(−23)+(−12)] =0+(−2)=−2.20.(2022秋·湖南岳阳·七年级统考期末)计算:12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960)【思路点拨】原式整理结合后,计算即可得到结果.【解题过程】解:设S =12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960), 则S =12+(23+13)+(34+24+14)+⋯+(5960+5860+⋯+260+160), 上下两式相加得2S =1+2+3+⋯+59=59×(1+59)2=1770, 所以S =885,即12+(13+23)+(14+24+34)+⋯+(160+260+⋯+5860+5960)=885.。

初中数学同步训练人教7年级上册:课时9 有理数的加法(2)

初中数学同步训练人教7年级上册:课时9 有理数的加法(2)

第9课时 1.3.1有理数的加法(2)一、课前小测——简约的导入1. 填空:(1)45+(-15)= ; (2)(-20)+50= ; (3)-23+(-12)= ; (4)-12+(-23)= ; (5)(-2.35)+2.35= .2. 计算:(1) [8+(-5)]+(-4); (2) 8+[(-5)+(-4)].二、典例探究——核心的知识例1. 计算:16+(-25)+24+(-35).例2. 用简便方法计算 ).31()41(65)32(41-+-++-+例3. 10袋小麦称重记录如下(单位:千克): 91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.110袋小麦的总重量是多少千克?如果每袋小麦的标准重量为90千克,10袋小麦总计超过多少千克或不足多少千克?三、平行练习——三基的巩固3. 绝对值大于3而小于6的所有整数的和是( ). A .9 B .-9 C .0 D .14. 计算:(1)(-7)+11+7+(-2); (2)3+12+(-3)+(-9).5. 计算:(1)(-2.2)+17.1+(-6)+2.2+(-17.1); (2)41.2+(-22.5)+28.8+(-27.5).6. 计算: (1)3+(-41)+(-51)+61; (2)⎪⎭⎫ ⎝⎛-++⎪⎭⎫⎝⎛-+546435322211. 四、变式练习——拓展的思维例4. 计算:(1) 23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4).变式1. 某商店在一周中每天的盈亏情况如下(盈 为正):+120,-25,-20,+30,-21,35,90,计算说明该周是盈还是亏(单位:元).变式2.某学校在一次数学考试中,记录了第三小组八名学生的成绩,以80分为良好, 高于80分记正数,不足80分记负数,这八名学生的成绩分别为:+3分,+5分,0分,-6分,-2分,-3分,+8分,+6分,这八名学生的总分是多少?变式3. 小虫从某点A出发在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬行的各段路程依次为:(单位:厘米)+5,-3,+10,-8,-6,+12,-10.(1)小虫最后是否回到出发点A?(2)小虫离开原点最远是多少厘米?(3)在爬行过程中,如果每爬行1厘米奖励一粒芝麻,则小虫一共得到多少粒芝麻?五、课时作业——必要的再现7. 某冷库的温度是16-℃,下降了5℃,又下降了4℃,则两次变化后的冷库的温度是_______.8.飞机从地面飞到8000m的空中,遇到云团后紧急上升了500m,绕过云团后又下降了400m,这时飞机离地面 m9.计算:(1) (-1)+(-2)+3+4+(-5);(2) -1.5+1.75+(-3.75)+(-1.5).10.计算:(1) ⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+⎪⎭⎫⎝⎛-+31413241;(2)85121475.083343+⎪⎭⎫⎝⎛-++⎪⎭⎫⎝⎛++⎪⎭⎫⎝⎛-11.张村共有10块小麦田,今年的收成与去年相比(增产为正,减产为负)•的情况如下:55kg,79kg,-40kg,-25kg,10kg,-16kg,27kg,-5kg,31kg,4kg,•今年的小麦总产量与去年相比情况如何?12.王叔叔在自己家门前一条东西走向的马路上晨练, 他从门口出发, 每隔10分钟记录下自己的跑步情况(向东为正,向西为负,单位为米):-1002,+1080,-983,+1010,-875,+965.若1小时后他停下来休息,这时他在门口的什么方位?距门口多远? 他总共跑了多少米?答案:1.(1)30;(2)30;(3)-35;(4)-35;(5)0.2.(1) -1; (2) -1.例1.解:原式=(16+24)+[(-25)+(-35)] = 40+(-60) = -20例2.61651-065)31()32()41(41-=++=+⎥⎦⎤⎢⎣⎡-+-+⎥⎦⎤⎢⎣⎡-+=)(解:原式 例3.解:10袋小麦的总重量是905.4千克;10袋小麦总计超过5.4千克. 3.C4.(1)9;(2)3.5.(1)-6;(2)20.6.(1)26043;(2)-1121例4.(1)-10; (2)-3 变式1(+120)+(-25)+(-20)+(+30)+(-21)+35+90 =[(+120)+(-20)]+[(-25)+ (+30)]+[(-21)+35]+90 =100+5+14+90 =209答:该周盈利209元. 变式2+3+5+0+(-6)+(-2)+(-3)+8+6 =[+3+5+(-6)+(-2)]+(-3)+8+6 =1180×8+11=651答:这八名学生的总分是651分. 变式3.(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A .(2)•第一次爬行距离原点是5cm ,第二次爬行距离原点是5-3=2(cm )•,•第三次爬行距离原点是2+10=12(cm ),第四次爬行距离原点是12-8=4(cm ),第五次爬行距离原点是│4-6│=│-2│(cm ),第六次爬行距离原点是-2+12=10(cm ),第七次爬行距离原点是10-•10=•0(cm),从上面可以看出小虫离开原点最远是12cm . (3)小虫爬行的总路程为:│+5│+│-3│+│+10│+│-8│+│-6│+│+12│+│-10丨=54(cm ),则小虫一共得到54•粒芝麻. 7.-25℃ 8.81009.(1)-1;(2)-5. 10.(1)-1;(2)0.5.11. 今年的小麦总产量与去年相比增加了120kg. 12.他停下休息时在门口东边,距门口195米,他总共跑了5915米.。

人教版七年级数学上册课后同步练习有理数的加减法

人教版七年级数学上册课后同步练习有理数的加减法

课后训练基础巩固1.下面是小华做的数学作业,其中算式中正确的是().①4477⎛⎫-+=⎪⎝⎭;②1107744⎛⎫--=⎪⎝⎭;③1155⎛⎫+-=-⎪⎝⎭;④1155⎛⎫-+=-⎪⎝⎭.A.①②B.①③C.①④D.②④2.下列交换加数位置的变形中,正确的是().A.1-4+5-4=1-4+5-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.73.下列计算结果中等于3的是().A.|-7|+|+4| B.|(-7)+(+4)|C.|+7|+|-4| D.|(+7)-(-4)|4.已知胜利企业第一季度盈利26 000元,第二季度亏本3 000元,该企业上半年盈利可用算式表示为().A.(+26 000)+(+3 000) B.(-26 000)+(+3 000)C.(+26 000)+(-3 000) D.(-26 000)+(-3 000)5.一个数加上-12得-5,那么这个数为().A.17 B.7C.-17 D.-76.将6-(+3)-(-7)+(-2)中的减法改成加法并写成省略加号的代数和的形式应是______.能力提升7.计算:(-5)-(+3)+(-9)-(-7)+12所得结果正确的是().A.1102-B.192-C.182D.1232-8.当x<0,y>0时,x,x+y,x-y,y中最小的数是().A.x B.x-y C.x+y D.y9.-0.25比-0.52大__________,比215-小2的数是__________.10.若a>0,b<0,则a-b__________0,b-a__________0.11.已知a=23,b=34-,c=12-,则式子(-a)+b-(-c)=__________.12.计算下列各式:(1)0-(-6)+2-(-13)-(+8);(2)3174⎛⎫+⎪⎝⎭-(+6.25)-182⎛⎫- ⎪⎝⎭-(+0.75)-1224;(3)-0.5-134⎛⎫- ⎪⎝⎭+2.75-172⎛⎫+⎪⎝⎭;(4)712143269696⎛⎫⎛⎫⎛⎫⎛⎫----++-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.13.下表是某中学七年级6名学生的体重情况:(1)根据已知情况完成下表:(3)最轻的与最重的相差多少?14.有一批食品罐头,标准质量为每听454 g,现抽取10听样品进行检测,结果如下表15.若|a-1|+|b+3|=0,则b-a-12的值为多少?16.一口3.5米深的井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米,此时它爬出井口了吗?参考答案1答案:D点拨:减去一个数等于加上这个数的相反数,所以②正确,一个数加上0或减去0,结果不变,③错误,④正确.2答案:D点拨:应用加法交换律交换加数的位置时,应连同符号一起移动,只有D 正确,故选D.3答案:B点拨:A、C是绝对值的和,B、D分别是和差的绝对值,只有B的结果等于3,故选B.4答案:C点拨:盈利记为正,亏本记为负,总盈利就是两季度盈利的和,所以C正确.5答案:B6答案:6-3+7-2点拨:省略加号和括号,遇负号可以用减法法则变为加法,也可以采用化简符号的方法.7答案:B点拨:根据法则统一为加法,运算结果是192-,故选B.8答案:B点拨:x<0,y>0,x<x+y<y,x-y<x,所以x-y<x<x+y<y.故选B.9答案:0.27235-点拨:根据题意列式计算得,-0.25-(-0.52)=0.27,215--2=235-.10答案:><点拨:减去一个负数相当于加上一个正数,所以a-b>0;减去一个正数相当于加上一个负数,所以b-a<0.11答案:2312-点拨:代入求值2312312334234212⎡⎤⎛⎫⎛⎫-+----=---=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.12解:(1)原式=6+2+13-8=13;(2)原式=31117228442-+-6.25-0.75=114822-+-7=4-7=-3;(3)原式=-0.5+3.25+2.75-7.5=-2;(4)原式=721142369966--+-=-7-3=-10.13解:(1)+543-33640(2)小刚的体重最重,小颖的体重最轻;(3)最轻的与最重的相差:45-34=11(kg)或+5-(-6)=11(kg).答:最轻的与最重的相差11 kg.点拨:(1)由小颖的体重数据可知平均体重为40 kg,所以小刚、小芳的体重减平均体重记为+5,-3,而小明、小京、小宁的体重分别是43 kg,36 kg,40 kg;根据(1)中表格可解决(2)(3).14解:把超过标准质量的克数用正数表示.不足标准质量的克数用负数表示,列出10(-10)+5+0+5+0+0+(-5)+0+5+10=[(-10)+10]+[(-5)+5]+(5+5)=10(g).因此,这10听罐头的总质量为454×10+10=4 550(g).点拨:当已知的一列数中和数都比较大,但都与某一个数比较接近时,一般就以这“某一个数”为基数,超过的记为正,不足的记为负,这样计算起来比较快捷、简便.15解:由题意,得a-1=0;b+3=0,所以a=1,b=-3,把a=1,b=-3,代入b-a-12,得b-a-12=-3-1-12=142.点拨:两个非负数相加得0,所以每个数只能是0,由此得a=1,b=-3,代入即可求出b-a-12的值.16解:将向上的方向记为正,向下的方向记为负,由题意知青蛙总的向上爬了:+0.7-0.1+0.42-0.15+1.25-0.2+0.75-0.1+0.65=(0.7+0.42+1.25+0.75+0.65)+(-0.1-0.15-0.2-0.1)=3.77-0.55=3.22(米).因为3.22<3.5,所以这只青蛙没爬出井口.点拨:可以将向上的方向记为正,向下的方向记为负,由题意知青蛙各次分别爬了+0.7和-0.1;+0.42和-0.15;+1.25和-0.2;+0.75和-0.1;+0.65.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A .x =yB .ax +1=ay -1C .ax =-ayD .3-ax =3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为( )A .100元B .105元C .110元D .120元8.如果一个角的余角是50°,那么这个角的补角的度数是( )A .130°B .40°C .90°D .140°9.如图,C ,D 是线段AB 上的两点,点E 是AC 的中点,点F 是BD 的中点,EF =m ,CD =n ,则AB 的长是( )A .m -nB .m +nC .2m -nD .2m +n10.下列结论:①若a +b +c =0,且abc ≠0,则a +c 2b =-12; ②若a +b +c =0,且a ≠0,则x =1一定是方程ax +b +c =0的解;③若a +b +c =0,且abc ≠0,则abc >0;④若|a |>|b |,则a -b a +b>0. 其中正确的结论是( )A .①②③B .①②④C .②③④D .①②③④二、填空题(每题3分,共24分)11.-⎪⎪⎪⎪⎪⎪-23的相反数是________,-15的倒数的绝对值是________. 12.若-13xy 3与2x m -2y n +5是同类项,则n m =________.13.若关于x 的方程2x +a =1与方程3x -1=2x +2的解相同,则a 的值为________.14.一个角的余角为70°28′47″,那么这个角等于____________.15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=1 2∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n 条“金鱼”需要火柴棒__________根.三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)19.计算:(1)-4+2×|-3|-(-5);(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.20.解方程:(1)4-3(2-x)=5x;(2)x-22-1=x+13-x+86.21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1. 22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)(2)某用户为了解日用电量,记录了9月前几天的电表读数.日期9月1日9月2日9月3日9月4日9月5日9月6日9月7日电表读123130137145153159165 数/度该用户9月的电费约为多少元?(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.(1)A,B两点间的距离是________.(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.(第26题)答案一、1.D 2.A 3.D 4.D 5.D 6.D7.A8.D9.C10.B二、11.23;512.-813.-514.19°31′13″15.316.717.>18.(6n+2)三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;(2)原式=12+(-8)÷4-1=12-2-1=9.20.解:(1)去括号,得4-6+3x=5x.移项、合并同类项,得-2x=2.系数化为1,得x=-1.(2)去分母,得3(x-2)-6=2(x+1)-(x+8).去括号,得3x-6-6=2x+2-x-8.移项、合并同类项,得2x=6.系数化为1,得x=3.21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.当x=1,y=-1时,原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.22.解:由题图可知-3<b<-2.所以1-3b>0,2+b<0,3b-2<0.所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.23.解:如图所示.24.解:(1)设∠COF=α,则∠EOF=90°-α.因为OF是∠AOE的平分线,所以∠AOE=2∠EOF=2(90°-α)=180°-2α.所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.所以∠BOE=2∠COF.(2)∠BOE=2∠COF仍成立.理由:设∠AOC=β,则∠AOE=90°-β,又因为OF是∠AOE的平分线,所以∠AOF=90°-β2.所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=90°-β2+β=12(90°+β).所以∠BOE=2∠COF.25.解:(1)0.5x;(0.65x-15)(2)(165-123)÷6×30=210(度),210×0.65-15=121.5(元).答:该用户9月的电费约为121.5元.(3)设10月的用电量为a度.根据题意,得0.65a-15=0.55a,解得a=150.答:该用户10月用电150度.26.解:(1)130(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.故点C表示的数为-50或25.(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,解得t=65.65×4=260,260+30=290,所以点D表示的数为-290.(4)ON-AQ的值不变.设运动时间为m s,则PO=100+8m,AQ=4m. 由题意知N为PO的中点,得ON=12PO=50+4m,所以ON+AQ=50+4m+4m=50+8m,ON-AQ=50+4m-4m=50.故ON-AQ的值不变,这个值为50.。

人教版七年级上册数学同步训练有理数的加法

人教版七年级上册数学同步训练有理数的加法

1.3 有理数的加减法1.3.1 有理数的加法5分钟训练(预习类训练,可用于课前)1.有理数的加法法则.(1)同号两数相加,取相同的______,并把绝对值______;(2)绝对值不相等的异号两数相加,取绝对值的加数的符号,并用较大的绝对值减去______的绝对值; (3)互为相反数的两个数相加得_______;(4)一个数同零相加仍得________.思路解析:法则有同号、异号、零三种情况分别运算.答案:(1)符号相加(2)较大较小(3)0(4)这个数本身2.小学里学过的加法交换律、结合律在有理数运算中仍然适用.利用加法运算律可以使运算简便.(1)同号结合法:先把正数与负数分别结合以后再_______.(2)凑整结合法:先把某些加数结合凑为_______再相加.(3)相反数结合法:先把互为________的数结合起来.(4)同分母结合法:遇有分数,先把_______结合起来.思路解析:利用运算法,把数的加法、进行分类运算、简化计算.答案:(1)相加(2)整数(3)相反数(4)同分母分数3.计算下列各题:(1)(+3)+(-12)=________;(2)(+20)+(+32)=________;(3)(-312)+(-23)=_______;(4)(-20072006)+0=________.思路解析:根据有理数的加法法则进行. (1)(+3)+(-12)=-(12-3)=-9;(2)(+20)+(+32)=+(20+32)=52;(3)(-312)+(-23)=-(312+23)=-416;(4)(-20072006)+0=-20072006.答案:(1)-9 (2)52 (3)-416(4)-2007200610分钟训练(强化类训练,可用于课中)1.判断题:(1)两个有理数的和为正数时,这两个数都是正数;()(2)两个数的和的绝对值一定等于这两个数绝对值的和;()(3)如果两个数的和为负,那么这两个加数中至少有一个是负数;()(4)两数之和必大于任何一个加数;()(5)如果两个有理数的和比其中任何一个加数都大,那么这两个数都是正数. ()思路解析:(1)异号两数相加,当正数的绝对值较大时,和也是正数.(2)异号两数相加时,和的绝对值等于这两数绝对值之差.(4)当两个加数中有一个负数或0时,它们的和必小于或等于另一个加数.答案:(1)×(2)×(3)√(4)×(5)√2. 计算:(1)(-718)+(-16);(2)(-1.13)+(+1.12);(3)(-237)+237;(4)0+(-4).思路解析:利用有理数的加法法则进行有理数的加法的基本步骤:第一步要判断是同号两数相加还是异号两数相加;第二步要判断结果是正号还是负号;第三步要判断用绝对值的和算还是用绝对值的差算答案:(1)-5/9 (2)-0.01 (3)0 (4)-43. 计算:(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-523)+(+425)+(-113).思路解析:运用有理数加法的运算律可以简化运算,在多个有理数相加时,往往实际运用交换律,又运用结合律.解:(1)原式=(+17)+(+24)+(-32)+(-16)+(-1)=(+41)+(-49)=-8;(2)原式=(+635)+(+425)+(-523)+(-113)=11-7=44.计算:88+95+92+89+86+91+90+88+92+90+86+92+87+89+91+93+88+94+91+87.思路解析:注意到数字都在90左右波动,可将之两两组合,或取整数90的20倍,再将差数求和.答案:原式=90×2+(-2+5+2-1-4+1-2+2-4+2-3-1+1+3-2+4+1-3)=1 7995.8袋大米,以每袋50千克为准,超过的千克数记作正数,分别为-2,+1,+5,+6,-3,-5,+5,-3.问8袋大米总共重多少千克.若每千克大米1.9元,这8袋大米值多少元?思路解析:注意这里以每袋50千克为准,故共重:50×8+(-2)+1+5+6+(-3)+(-5)+5+(-3)=404(千克),价值为404×1.9=767.6(元).答案: 8袋大米总共重404千克,这8袋大米值767.6元.快乐时光鲍比十分淘气,整天缠着妈妈不是要这,就是要那,嘴里也不停地叫着:“妈妈,妈妈!”有一次,妈妈被吵得不耐烦了,就对鲍比说:“你再叫一声‘妈妈’,我就把你扔出去!”鲍比不再做声了.过了一会儿,妈妈把他抱到床上睡觉,鲍比又开口道:“太太,我能喝点饮料吗?”30分钟训练(巩固类训练,可用于课后) 1.计算下列各式:(1)(-7)+512+(-312)+4;(2)(-5)+223+(-12)+(-223).思路解析:应根据数字的特征,利用加法的交换律来解之.解:(1)原式=(-7)+4+512+(-312)-3+2=-1;(2)原式=(-5)+(-12)+223+(-223)=-512.2.计算下列各式:(1)(-557)+(-612)+(-1427)+(+16.5);(2)(-423)+38+(-56)+(-58)+(334).思路解析:先进行合理分组.即同分母的数分为一组. 答案:(1)-10 (2)-23.要使下列各式成立,有理数x应取什么值?(1)-[-(-7)]+x=0;(2)x+(-512)=2.5;(3)x+[-(-1113)]=1113.思路解析:应先移项,将数字合并.或已知两个数的和与一个加数,求另一个加数,用减法.答案:(1)x=7 (2)x=8 (3)x=04.某产粮专业户出售余粮20袋,每袋重量如下:(单位千克)199、201、197、203、200、195、197、199、202、196、203、198、201、200、197、196、204、199、201、198.用简便方法计算出售的余粮总共多少千克?思路解析:把这20个数逐一相加是很麻烦的,而且容易出错注意到,这20个数都在200(千克)左右,若以200为准,超过的千克数记作正数,不足的千克数记作负数,那么通过计算差额来求总和则简便得多. 解:以200(千克)为基准,超过的千克数记作正数,不足的千克数记作负数,则这20个数的差的累计是:(-1)+(+1)+(-3)+(+3)+0+(-5)+(-3)+(-1)+(+2)+(-4)+(+3)+(-2)+(+1)+0+(-3)+(-4)+(+4)+(-1)+(+1)+(-2)=-14.200×20+(-14)=4 000-14=3 986(千克)答:余粮总共有3 986千克.5.下表为某公司股票在本周内每日的涨跌情况(股价上涨记为“+”,下跌记为“-”):星期一二三四五每股涨跌+4.35 -3.20 -0.35 -2.75 +1.15计算本周内该公司股票总的变化是上涨还是下降,上涨或下降的值是多少元?思路解析:把每日涨跌值相加即可,注意若和为正,则为上涨,反之为下跌答案:本周该公司股票下跌0.80元.6.一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?思路解析:我们知道,求两次运动的总结果,可以用加法来解答.可是上述问题并未指出行走方向.根据我们所学过的用正负数来表示相反意义量,设向东为正,则向西为负.解:(1)若两次都是向东走,则一共向东走了50米,表示:(+20)+(+30)=+50;(2)若两次都是向西走,则一共向西走了50米,表示:(-20)+(-30)= -50;(3)若第一次向东走20米,第二次向西走30米,则最后位于原来位置的西方10米,表示:(+20)+(-30)= -10;(4)若第一次向西走20米,第二次向东走30米,则最后位于原来位置的东方10米,表示:(- 20)+(+30)= +10以上两种情形都具有类似的情形,即方向上是相反的,且结果具有类似之处.7.我国古代有一道有趣的数学题:“井深十米,一只小蜗牛从井底向上爬,白天向上爬2米,夜间又掉下1米,问小蜗牛几天可爬出深井?”你能用有理数加法的知识解决这个古老的问题吗?千万别落入陷阱哦! 思路解析:这里注意最后一个白天蜗牛已经爬上井口,夜间就不会掉下了!解:8[(+2)+(-1)+[(+2)+(-1)]++[(+2)+(-1)] 天+(+2)=10(米).8.若|y-3|+|2x-4|=0,求3x+y的值.思路解析:根据绝对值的性质可以得到|y-3|≥0,|2x-4|≥0,所以只有当y-3=0且2x-4=0时,|y -3|+|2x-4|=0才成立.解:由y-3=0得y=3,由2x-4=0,得x=2.则3x+y易求.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

有理数的加法同步练习题2022-2023学年人教版七年级上册数学

有理数的加法同步练习题2022-2023学年人教版七年级上册数学
三、解答题
17.计算
(1)
(2)
18.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:
+10,-3,+4,-2,-8,-13,-7,+12,+7,+5
(1)收工时距离A地多远?
(2)若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?
13.绝对值不大于9的所有整数的和是______.
14.数轴上点A表示的数是 ,将点A沿数轴向右移动5个单位长度,得到点B,则点B表示的数是_______.
15.若 , ,则 __________.
16.小红在写作业时,不慎将一滴墨水滴在数轴上,根据图中的数据,请确定墨迹遮盖住的整数的和等于______.
(3)若点C所对应的数为 ,求出点A,B,D所对应数的和.
参考答案:
1.D
2.A
3.C
4.D
5.C
6.D
7.C
8.A
9.
10.<
11.
12.家的南边20米处/学校
13.0
14.3
15.1或9
16.0
17.(1)1
(2)
18.(1)收工时离A地5千米
(2)从A地出发到收工时,共耗油14.2千克.
19.点A表示的数为 ,点C表示的数为1,
人教版七年级上册数学1.3.1有理数的加法同步练习题
一、单选题
1.计算 的结果是()
A. B.8C.2D.
2.某检修小组乘一辆汽车沿东西方向的公路检修线路,约定向东为正,某天从A地出发到收工时行走记录(长度单位:千米)为:+15,﹣2,+5,﹣1,+10,﹣3.则收工时,检修小组在A地在()
A.东边24千米处B.西边24千米处
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9课时 1.3.1有理数的加法(2)
文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。

Word 精品文档,
可以编辑修改,放心下载
一、课前小测——简约的导入
1. 填空:
(1)45+(-15)= ; (2)(-20)+50= ; (3)-23+(-12)= ; (4)-12+(-23)= ; (5)(-2.35)+2.35= .
2. 计算:
(1) [8+(-5)]+(-4); (2) 8+[(-5)+(-4)].
二、典例探究——核心的知识
例1. 计算:16+(-25)+24+(-35).
例2. 用简便方法计算 ).3
1()41(65)32(41-+-++-+
例3. 10袋小麦称重记录如下(单位:千克): 91 91 91.5 89 91.2
91.3 88.7 88.8 91.8 91.1
10袋小麦的总重量是多少千克?如果每袋小麦的标准重量为90千克,10袋小麦总计超过多少千克或不足多少千克?
三、平行练习——三基的巩固
3. 绝对值大于3而小于6的所有整数的和是( ). A .9 B .-9 C .0 D .1
4. 计算:
(1)(-7)+11+7+(-2); (2)3+12+(-3)+(-9).
5. 计算:
(1)(-2.2)+17.1+(-6)+2.2+(-17.1); (2)41.2+(-22.5)+28.8+(-27.5).
6. 计算: (1)3+(-
41)+(-51)+6
1
; (2)⎪⎭
⎫ ⎝⎛-++⎪⎭



-+546435322211.
四、变式练习——拓展的思维
例4. 计算:
(1) 23+(-17)+6+(-22); (2)(-2)+3+1+(-3)+2+(-4).
答案:
1.(1)30;(2)30;(3)-35; (4)-35;(5)0.
2.(1) -1; (2) -1.
例1.解:原式=(16+24)+[(-25)+(-35)] = 40+(-60) = -20
例2.
6
16
5
1-065)31()32()41(4
1
-
=+
+=+
⎥⎦⎤⎢⎣⎡-+-+⎥⎦⎤⎢⎣⎡-+=)(解:原式 例3.解:10袋小麦的总重量是905.4千克;10袋小麦总计超过5.4千克. 3.C
4.(1)9;(2)3.
5.(1)-6;(2)20.
6.(1)2
6043;(2)-112
1
例4.(1)-10; (2)-3 变式1
(+120)+(-25)+(-20)+(+30)+(-21)+35+90 =[(+120)+(-20)]+[(-25)+ (+30)]+[(-21)+35]+90 =100+5+14+90 =209
答:该周盈利209元. 变式2
+3+5+0+(-6)+(-2)+(-3)+8+6
=[+3+5+(-6)+(-2)]+(-3)+8+6
=11
80×8+11=651
答:这八名学生的总分是651分. 变式3.
(1)因为+5-3+10-8-6+12-10=0,所以小虫最后回到出发点A .
(2)•第一次爬行距离原点是5cm ,第二次爬行距离原点是5-3=2(cm )•,•
第三次爬行距离原点是2+10=12(cm ),第四次爬行距离原点是12-8=4(cm ),
第五次爬行距离原点是│4-6│=│-2│(cm ),第六次爬行距离原点是-2+12=10(cm ),
第七次爬行距离原点是10-•10=•0(cm),从上面可以看出小虫离开原点最远是12cm . (3)小虫爬行的总路程为:
│+5│+│-3│+│+10│+│-8│+│-6│+│+12│+│-10丨
=54(cm ),
则小虫一共得到54•粒芝麻. 7.-25℃ 8.8100
9.(1)-1;(2)-5. 10.(1)-1;(2)0.5.
11. 今年的小麦总产量与去年相比增加了120kg. 12.他停下休息时在门口东边,距门口195米,他总共跑了5915米.
可以编辑的试卷(可以删除)。

相关文档
最新文档