人教版初中数学模拟试题(共8套)(含答案)
2024年最新人教版初一数学(上册)模拟考卷及答案(各版本)
2024年最新人教版初一数学(上册)模拟考卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最小的数是()A. 1B. 0C. 1D. 22. 已知a > b,则下列不等式成立的是()A. a b > 0B. a + b < 0C. a b < 0D. a + b > 03. 下列各数中,是有理数的是()A. √2B. √3C. √5D. √94. 下列运算中,先进行乘除后进行加减的是()A. (a + b) × cB. a + b × cC. a ÷ b + cD. a +b ÷ c5. 下列图形中,是平行四边形的是()A. 矩形B. 正方形C. 梯形D.菱形二、判断题5道(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 0是最小的自然数。
()3. 两个负数相乘,积为正数。
()4. 任何数乘以1都等于它本身。
()5. 一条直线上任意两点之间的距离都是相等的。
()三、填空题5道(每题1分,共5分)1. 3x 5 = 7,求解x的值是______。
2. 若a = 3,b = 2,则a + b的值是______。
3. 2的平方根是______。
4. 若一个正方形的边长为a,则它的面积是______。
5. 下列数中,最小的数是______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述平行线的性质。
3. 请简述一元一次方程的解法。
4. 请简述三角形内角和定理。
5. 请简述负整数指数幂的定义。
五、应用题:5道(每题2分,共10分)1. 小明有3个苹果,小红有5个苹果,他们一共有多少个苹果?2. 一个长方形的长是a,宽是b,求它的面积。
3. 一个数加上它的2倍,结果是15,求这个数。
4. 一个数的平方减去它的2倍,结果是8,求这个数。
5. 若a = 3,b = 2,求a b的值。
2022年人教版中考模拟考试《数学卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请把正确选项的代号写在答题卷的答题框中,不选、选错或多选的(不论是否写在括号内)一律得0分.1.四个有理数﹣2,5,0,﹣4,其中最小的是( ) A. ﹣2B. 5C. 0D. ﹣42.以下运算正确的是( ) A. 235a b ab += B. ()222m m m m -+= C. 3412x x x ⋅=D. ()2239x x =3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A. B. C. D.4.纳米(nm )是种非常小的长度单位,1nm=910-m ,如果某冠状病毒的直径为110nm ,那么用科学记数法表示该冠状病毒的直径为( ) A. 71.110m -⨯B. 81.110m -⨯C. 911010m -⨯D. 111.110m ⨯5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2度数是( )A. 64°B. 65 °C. 66°D. 67°6.为执行”均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( ) A. 2500(1+2x)=12000 B. 2500+2500(1+x)+2500(1+2x)=12000 C. 2500(1+x)2=1200D. 2500+2500(1+x)+2500(1+x)2=120007.下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟) 成绩(个/分钟) 140 160 169 170 177 180 人数 111232则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) A. 方差是135B. 平均数是170C. 中位数是173.5D. 众数是1778.关于x 的一元二次方程24500x ax --=,下列结论一定正确的是( ) A. 该方程没有实数根 B. 该方程有两个不相等的实数根 C. 该方程有两个相等的实数根D. 无法确定9.甲、乙两人在一条长为600m 笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( )A. B. C. D.10.如图,在边长为1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55的点P 的个数是( )A. 0B. 4C. 8D. 16二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:39x x -=_________.12.不等式组2335122x x x -≥⎧⎪⎨+>-⎪⎩的解集是_____.13.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,2AB =,以点A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 的周长是_____________(结果保留).14.对于实数a ,b ,定义新运算” “:ab= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.三、(本大题共2小题,每小题8分,满分16分)15.计算:1018()4cos45(3)2π-+---.16.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90︒,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.四、(本大题共2小题,每小题8分,满分16分)17.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?18.如图,正方形ABCD 内部有若干个点,则用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):(1)填写下表: 正方形ABCD 内点个数1234...n分割成三角形的个数46__________..._____(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD 内部有多少个点?若不能,请说明理由.五、(本大题共2小题,每小题10分,满分20分)19.很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点的西北方向有一辆小型轿车从B 处沿西向正东方向行驶,2秒钟后到达测速点北偏东60︒的方向上的C 处,如图.(1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)? (参考数据:2 1.43 1.7≈≈,)(2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分;时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.20.如图,反比例函数1ky x=和一次函数2y mx n =+相交于点()1,3A ,()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA ,试问在x 轴上是否存在点P ,使得OAP ∆为以OA 为腰的等腰三角形,若存在,直接写出满足题意的点P 的坐标;若不存在,说明理由.六、(本题满分12分)21.张老师把微信运动里”好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表: 组别 步数分组 频率 A x <6000 0.1 B 6000≤x <7000 0.5 C 7000≤x <8000 m D x ≥8000 n 合计1根据信息解答下列问题:(1)填空:m = ,n = ;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在 组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.七、(本题满分12分)22.某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN 、AM (AN =32m ,AM =10m ,∠MAN =45°),用8m 长的渔网搭建了一个养殖水域(即四边形ABCD ),圩梗边不需要渔网,AB ∥CD ,∠C =90°.设BC =xm ,四边形ABCD 面积为S (m 2). (1)求出S 关于x 的函数表达式及x 的取值范围;(2)x 为何值时,围成的养殖水域面积最大?最大面积是多少?八、(本题满分14分)23.如图,在ABC ∆中,AB<AC ,点D 、F 分别为BC 、AC 的中点,E 点在边AC 上,连接DE ,过点B 作DE 的垂线交AC 于点G ,垂足为点H ,且CDE ∆与四边形ABDE 的周长相等,设AC=b ,AB=c . (1)求线段CE 的长度; (2)求证:DF=EF ; (3)若BDH EGH S S ∆∆=,求b c的值.答案与解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请把正确选项的代号写在答题卷的答题框中,不选、选错或多选的(不论是否写在括号内)一律得0分.1.四个有理数﹣2,5,0,﹣4,其中最小的是( ) A. ﹣2 B. 5 C. 0 D. ﹣4【答案】D 【解析】 【分析】将各数按照从小到大顺序排列,找出最小的数即可. 【详解】根据题意得:﹣4<﹣2<0<5,则最小的数是﹣4. 故选:D .【点睛】本题考查了有理数的大小比较,正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小.2.以下运算正确的是( ) A. 235a b ab += B. ()222m m m m -+= C. 3412x x x ⋅= D. ()2239x x =【答案】D 【解析】 【分析】根据合并同类项法则,同底数幂的乘法法则以及积的乘方法则,逐一判断选项,即可得到答案. 【详解】A. 2,3a b 不是同类项,不能合并,故本选项错误, B. ()2222m m m m -+=,故本选项错误, C. 347x x x ⋅=,故本选项错误, D. ()2239x x =,故本选项正确, 故选D .【点睛】本题主要考查合并同类项法则,同底数幂的乘法法则以及积的乘方法则,熟练掌握上述运算法则,是解题的关键.3.由4个完全相同的小正方体组成的立体图形如图所示,则该立体图形的俯视图是( )A. B. C. D.【答案】B 【解析】 【分析】直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.【详解】根据题意,从上面看原图形可得到在水平面上有一个由两个小正方形和两个小长方形组成的长方形. 故选B .【点睛】此题考查简单组合体的三视图,解题关键在于掌握俯视图是从上往下看得到的平面图形. 4.纳米(nm )是种非常小的长度单位,1nm=910-m ,如果某冠状病毒的直径为110nm ,那么用科学记数法表示该冠状病毒的直径为( ) A. 71.110m -⨯ B. 81.110m -⨯C. 911010m -⨯D. 111.110m ⨯【答案】A 【解析】 【分析】先进行单位换算,再根据科学记数法的定义,写成科学记数法,即可. 【详解】110nm =110×910-m =71.110m -⨯. 故选A .【点睛】本题主要考查科学记数法的定义,掌握科学记数法的形式:10n a ⨯(110a ≤<,n 为整数)是解题的关键.5.如图,已知AB ∥CD ,直线EF 分别交AB ,CD 于点E ,F ,EG 平分∠BEF ,若∠1=48°,则∠2的度数是( )A. 64°B. 65°C. 66°D. 67°【答案】C【解析】【分析】根据平行线的性质和角平分线的定义求解.【详解】∵AB∥CD,∴∠BEF=180°﹣∠1=180°﹣48°=132°,∵EG平分∠BEF,∴∠BEG=132°÷2=66°,∴∠2=∠BEG=66°.故选C.【点睛】此题主要考查平行线的性质:两直线平行,同旁内角互补;两直线平行,内错角相等,以及角平分线的定义.6.为执行”均衡教育”政策,某区2017年投入教育经费2500万元,预计到2019年底三年累计投入1.2亿元,若每年投入教育经费的年平均增长百分率为x,则下列方程正确的是( )A. 2500(1+2x)=12000B. 2500+2500(1+x)+2500(1+2x)=12000C. 2500(1+x)2=1200D. 2500+2500(1+x)+2500(1+x)2=12000【答案】D【解析】【分析】设每年投入教育经费的年平均增长百分率为x,根据题意可得,2017年投入教育经费+2017年投入教育经费×(1+增长率)+2017年投入教育经费×(1+增长率)2=1.2亿元,据此列方程.【详解】设每年投入教育经费的年平均增长百分率为x,由题意得, 2500+2500(1+x)+2500(1+x)2=12000故选D.【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于根据题意列出方程.7.下表是某班体育考试跳绳项目模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是( ) A. 方差是135 B. 平均数是170C. 中位数是173.5D. 众数是177【答案】A 【解析】 【分析】根据平均数、方差、中位数和众数的定义,分别进行求解,进而即可得到答案. 【详解】这组数据的平均数=(140+160+169+170×2+177×3+180×2)÷10=170; 这组数据的方差=110[(140−170)2+(160−170)2+(169−170)2+2×(170−170)2+3×(177−170)2+2×(180−170)2]=134.8; ∵共有10个数,∴中位数是第5个和6个数的平均数, ∴中位数是:(170+177)÷2=173.5; ∵177出现了三次,出现的次数最多, ∴众数是177; ∴说法错误的是A . 故选A .【点睛】本题主要考查平均数、方差、中位数和众数的定义,熟练掌握上述定义和计算公式,是解题的关键.8.关于x 的一元二次方程24500x ax --=,下列结论一定正确的是( ) A. 该方程没有实数根 B. 该方程有两个不相等的实数根 C. 该方程有两个相等的实数根 D. 无法确定【答案】B 【解析】 【分析】根据一元二次方程根的判别式,即可得到答案. 【详解】∵关于x 的一元二次方程24500x ax --=,∴∆=22()44(50)8000a a --⨯⨯-=+>,∴该方程有两个不相等的实数根.故选B .【点睛】本题主要考查一元二次方程根的判别式,掌握一元二次方程根的判别式的值与根关系,是解题的关键.9.甲、乙两人在一条长为600m 的笔直道路上均匀地跑步,速度分别为4/m s 和6/m s ,起跑前乙在起点,甲在乙前面50m 处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是( ) A. B. C. D.【答案】C【解析】【分析】甲在乙前面50m 处,若两人同时起跑,在经过25秒,乙追上甲,则相距是0千米,相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是100秒,则相遇以后两人之间的最大距离是150米,据此即可作出判断.【详解】甲在乙前面50m 处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A 、 B 错误;相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D 错误; 相遇以后两人之间的最大距离是:2×(100−25)=150米.故选C .【点睛】本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.10.1522的正方形ABCD 中,点E ,F 是对角线AC 的三等分点,点P 在正方形的边上,则满足PE+PF=55P 的个数是( )A. 0B. 4C. 8D. 16【答案】B【解析】【分析】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM,由对称性可得CM=5,∠BCM=45°,根据勾股定理得EM=5【详解】作点F关于BC的对称点M,连接EM交BC于点P,则PE+PF的最小值为EM.∵正方形ABCD 1522,∴15222=15,∵点E,F是对角线AC的三等分点,∴EC=10,FC=AE=5,∵点M与点F关于BC对称,∴CF=CM=5,∠ACB=∠BCM=45°,∴∠ACM=90°,∴222210555EC CM+=+=∴在BC边上,只有一个点P满足PE+PF=5同理:在AB,AD,CD边上都存在一个点P,满足PE+PF=55∴满足PE+PF=55P的个数是4个.故选B.【点睛】本题主要考查正方形的性质,勾股定理,轴对称的性质,熟练掌握利用轴对称的性质求两线段和的最小值,是解题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.因式分解:39x x -=_________.【答案】()()33x x x +-【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】39x x -=()29x x -=()()33x x x +-, 故答案为:()()33x x x +-.【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.不等式组2335122x x x -≥⎧⎪⎨+>-⎪⎩的解集是_____. 【答案】71x -<≤-【解析】【分析】根据一元一次不等式组的解法求解即可.【详解】解:由不等式23x -≥可得1x ≤- ; 由不等式35122x x +>-可得7x >-; 故不等式组的解集是71x -<≤-故答案为:71x -<≤-.【点睛】本题主要考查了一元一次不等式组,掌握一元一次不等式组的解法是解题的关键.13.如图,在Rt ABC ∆中,90ACB ∠=︒,3BC =,2AB =,以点A 为圆心,以AC 为半径画弧,交AB 于D ,则扇形CAD 的周长是_____________(结果保留).【答案】3π+2 【解析】【分析】根据勾股定理求出AC 的长,再确定∠A 的度数,然后利用弧长公式求得弧长,加上两个半径,即可求得扇形CAD 的周长.【详解】∵在Rt ABC ∆中,90ACB ∠=︒,3BC =2AB =,∴221AB BC -=,∴∠B=30°,∠A=60°, ∴CD 的长=608011π⨯=3π, ∴扇形CAD 的周长=3π+2, 故答案为:3π+2. 【点睛】本题主要考查直角三角形的性质,勾股定理以及弧长公式,掌握弧长公式是解题的关键.14.对于实数a ,b ,定义新运算” “:ab= ()()22a ab a b b ab a b ⎧-≤⎪⎨->⎪⎩;若关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根,则t 的值为_________________.【答案】2.25或0【解析】【分析】令y=()()211x x +⊗-,并画出函数的图象,根据函数图象的交点个数就是对应的方程根的个数,即可得到直线y=t 与函数y 的图象的位置关系,进而即可求解.【详解】∵当()()211x x +≤-时,即:2x -≤时,()()()()()2221121211252x x x x x x x +⊗-=+-+-=++,当()()211x x +>-时,即:2x >-时,()()()()()2221112112x x x x x x x +⊗-=--+-=--+, ∴令y=()()211x x +⊗-=()()22222252x x x x x x ⎧≤-⎪⎨--+>-++⎪⎩, 画出函数图象,从图象上观察当关于x 的方程()()211x x t +⊗-=恰好有两个不相等的实根时,函数y 的图象与直线y=t 有两个不同的交点,即直线y=t 过抛物线y=22x x --+的顶点或直线y=t 与x 轴重合. ∴t=2.25或t=0.故答案是:2.25或0.【点睛】本题主要考查函数图象的交点与方程的根的关系,掌握二次函数的图象和性质,学会画二次函数的图象,理解函数图象的交点个数就是对应的方程根的个数,是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.1018()4cos45(3)2π---.【答案】1【解析】分析:代入45°角余弦函数值,结合”零指数幂的意义”、”负整数指数幂的意义”和”二次根式的相关运算法则”计算即可.详解: 原式2222412=-⨯-,222221=+--,1=.故答案为1.点睛:熟记”45°角的余弦函数值”、”零指数幂的意义:01?(0)a a =≠“及”负整数指数幂的意义:1p p a a-=(0a p ≠,为正整数)”是正确解答本题的关键. 16.如图所示,在边长为1个单位长度的小正方形组成的网格中,ABC 的顶点A ,B ,C 在格点(网格线的交点)上.(1)将ABC 绕点B 逆时针旋转90︒,得到11A BC ,画出11A BC ;(2)以点A 为位似中心放大ABC ,得到22AB C △,使22AB C △与ABC 的位似比为2:1,请你在网格内画出22AB C △.【答案】(1)见详解;(2)见详解【解析】【分析】(1)分别作出点A 、C 绕点B 逆时针旋转90°所得的对应点,再顺次连接,即可;(2)分别作出点B 、C 变换后的对应点,再顺次连接,即可.【详解】(1)如图所示, 11A BC 即为所求;(2)如图所示,22AB C △即为所求.【点睛】本题主要考查图形的旋转变换以及位似变换,掌握旋转变换和位似变换的定义和性质,是解题的关键.四、(本大题共2小题,每小题8分,满分16分)17.我国古代《算法统宗》里有这样一首诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗中后两句的意思是:如果每间客房住7人,那么有7人无房可住;如果每间客房住9人,那么就空出一间房.求该店有客房多少间?房客多少人?【答案】客房8间,房客63人【解析】【分析】设该店有间客房,以人数相等为等量关系列出方程即可.【详解】设该店有间客房,则+=-x x7799x=解得8x+=⨯+=7778763答:该店有客房8间,房客63人.【点睛】本题考查的是利用一元一次方程解决应用题,根据题意找到等量关系式是解题的关键.18.如图,正方形ABCD内部有若干个点,则用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠):(1)填写下表:正方形ABCD内 1 2 3 4 ...n(2)原正方形能否被分割成2021个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由.【答案】(1)8,10,2n+2;(2)原正方形不能被分割成2021个三角形,理由见详解.【解析】分析】(1)由图形中三角形的个数,观察发现,每多一个点,三角形的个数增加2,然后据此规律填表即可;(2)根据(1)中规律,列式求解,如果n是整数,则能分割,如果不是整数,则不能分割.【详解】(1)有1个点时,内部分割成4个三角形;有2个点时,内部分割成4+2=6个三角形;有3个点时,内部分割成4+2×2=8个三角形;有4个点时,内部分割成4+2×3=10个三角形;…以此类推,有n个点时,内部分割成4+2×(n−1)=(2n+2)个三角形,填表如下:故答案是:8,10,2n+2;(2)不能,理由如下:理由如下:由(1)知2n+2=2021,解得:n=1009.5,不是整数,不符合题意,∴原正方形不能被分割成2021个三角形.【点睛】本题主要考查几何图形规律探索,找出图形变化的规律,用代数式来表示规律,是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.很多交通事故是由于超速行驶导致的,为集中治理超速现象,高速交警在距离高速路40米的地方设置了一个测速观察点,现测得测速点的西北方向有一辆小型轿车从B 处沿西向正东方向行驶,2秒钟后到达测速点北偏东60︒的方向上的C 处,如图.(1)求该小型轿车在测速过程中的平均行驶速度约是多少千米/时(精确到1千米/时)?(参考数据:2 1.43 1.7≈≈,)(2)我国交通法规定:小轿车在高速路行驶,时速超过限定速度10%以上不到50%的处200元罚款,扣3分;时速超过限定速度50%以上不到70%的处1500元罚款,扣12分;时速超过限定时速70%以上的处1500元罚款,扣12分.若该高速路段限速120千米/时,你认为该小轿车驾驶员会受到怎样的处罚.【答案】(1)197千米/时;(2)小轿车的驾驶员会受到1500元罚款,扣12分的处罚.【解析】【分析】(1)过点A 作AD ⊥BC 于点D ,则AD=40m ,通过解直角三角形,求出BD ,CD 的长,从而求出BC 的长,进而即可求出速度;(2)求出小轿车的超速范围,即可得到结论.【详解】(1)过点A 作AD ⊥BC 于点D ,则AD=40m ,∵∠BAD=45°,∴∠ABD=45°,∴BD=AD=40m ,∵∠DAC=60°,∴CD=AD ×tan60°3,∴3≈109.28m ,∴小轿车速度=109.2810019723600≈(千米/小时), 答:该小型轿车在测速过程中的平均行驶速度约是197千米/时;(2)(197-120)÷120≈0.64=64%,∵50%<64%<70%,∴小轿车的驾驶员会受到1500元罚款,扣12分的处罚.【点睛】本题主要考查解直角三角形的实际应用,掌握三角函数的定义,是解题的关键.20.如图,反比例函数1k y x=和一次函数2y mx n =+相交于点()1,3A ,()3,B a -. (1)求一次函数和反比例函数解析式;(2)连接OA ,试问在x 轴上是否存在点P ,使得OAP ∆为以OA 为腰的等腰三角形,若存在,直接写出满足题意的点P 的坐标;若不存在,说明理由.【答案】(1)13y x=,22y x =+;(2)(2,0) 或10,0)或10,0). 【解析】【分析】 (1)根据图象上点的坐标特征,以及待定系数法,即可得到答案;(2)设P(t ,0),根据两点间的距离公式,分别表示出OA ,AP ,OP 的长,结合OA=AP 或OA=OP ,列出方程,即可得到答案.【详解】(1)∵反比例函数1k y x =和一次函数2y mx n =+相交于点()1,3A ,()3,B a -, ∴k=1×3=3, ∴13y x=, ∴-3a=3,解得:a=-1,∴B(-3,-1),∴331m n m n +=⎧⎨-+=-⎩,解得:12m n =⎧⎨=⎩, ∴22y x =+;(2)设P(t ,0),∵()1,3A ,∴=OP=t ,∵OAP ∆为以OA 为腰的等腰三角形,∴OA=AP 或OA=OP ,当OA=AP 时,22(1)9t -+=,解得:1220t t ==,(不符合题意,舍去),∴P(2,0);当OA=OP 时,t ,解得:t=±,∴,0)或,0),综上所述:存在点P ,使OAP ∆为以OA 为腰的等腰三角形,点P 坐标为:(2,0) 或,0)或,0).【点睛】本题主要考查反比例函数与一次函数的综合,涉及待定系数法,图象上点的坐标特征以及等腰三角形的性质,掌握两点间的距离公式以及方程思想,分类讨论思想是解题的关键.六、(本题满分12分)21.张老师把微信运动里”好友计步榜”排名前20的好友一天行走的步数做了整理,绘制了如下不完整的统计图表:B 6000≤x<7000 0.5C 7000≤x<8000 mD x≥8000n合计 1根据信息解答下列问题:(1)填空:m=,n=;并补全条形统计图;(2)这20名朋友一天行走步数的中位数落在组;(填组别)(3)张老师准备随机给排名前4名的甲、乙、丙、丁中的两位点赞,请求出甲、乙被同时点赞的概率.【答案】(1)0.3;0.1;条形统计图如图见解析;(2)B;(3)P(甲、乙被同时点赞)=16.【解析】【分析】(1)用A组的频数除以它的频率得到调查的总人数,再分别用C组、D组的频数除以总人数得到m、n的值,然后画条形统计图;(2)利用中位数的定义进行判断;(3)画树状图展示12种等可能的结果数,找出甲、乙被同时点赞的结果数,然后根据概率公式求解.【详解】(1)2÷0.1=20,m=620=0.3,n=220=0.1;故答案为0.3;0.1; 条形统计图如图(2)这20名朋友一天行走步数的中位数落在B组;故答案为B;(3)画树状图如下:共有12种等可能的结果数,其中甲、乙被同时点赞的结果数为2,∴P(甲、乙被同时点赞)=212=16.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.七、(本题满分12分)22.某市政府为了扶贫,鼓励当地农民养殖小龙虾,如图:张叔叔顺着圩梗AN、AM(AN=32m,AM=10m,∠MAN=45°),用8m长的渔网搭建了一个养殖水域(即四边形ABCD),圩梗边不需要渔网,AB∥CD,∠C =90°.设BC=xm,四边形ABCD面积为S(m2).(1)求出S关于x的函数表达式及x的取值范围;(2)x为何值时,围成的养殖水域面积最大?最大面积是多少?【答案】(1)S=﹣12x2+8x,0<x≤3;(2)当x=3时时,围成的养殖水域面积最大,最大面积是3922m.【解析】【分析】(1)过D作DE⊥AB于E,根据矩形的性质得到DE=x,求得AE=x,根据三角形和矩形的面积公式即可得到结论;(2)根据二次函数的性质,即可得到结论.【详解】(1)过D 作DE ⊥AB 于E ,∵BC =xm ,∴DE =xm ,∵∠A =45°,∴AE =xm ,∴S =S △AED +S 矩形DEBC =12x 2+(8﹣x )•x =﹣12x 2+8x , ∵AB =AE +EB =x +(8﹣x )=8m ,∴B 点为定点,∴DE 最大为3m ,∴0<x ≤3;(2)∵S =﹣12x 2+8x =﹣12(x ﹣8)2+32, ∴当x <8时,S 随x 的增大而增大,∵0<x ≤3,∴当x =3时,S 取得最大值,S 最大=﹣12×(3﹣8)2+32=392, 答:当x =3m 时,围成的养殖水域面积最大,最大面积是3922m .【点睛】本题主要考查二次函数的实际应用,掌握二次函数的增减性,是解题的关键.八、(本题满分14分)23.如图,在ABC ∆中,AB<AC ,点D 、F 分别为BC 、AC 的中点,E 点在边AC 上,连接DE ,过点B 作DE 的垂线交AC 于点G ,垂足为点H ,且CDE ∆与四边形ABDE 的周长相等,设AC=b ,AB=c .(1)求线段CE 的长度;(2)求证:DF=EF ;(3)若BDH EGH S S ∆∆=,求bc 的值.【答案】(1)2b c +;(2)见详解;(3)53【解析】【分析】 (1)根据题意得:AE+AB=CE ,结合AB+AC=b+c ,进而即可求解;(2)根据中位线的性质和定义得DF =12c ,CF=12b ,结合CE=2bc +,可得EF 的长,进而即可得到结论; (3)连接BE 、DG ,设BG ,DF 交于点M ,易得BE ∥DG ,从而得△ABE ∽△FDG ,进而得FG=14(b−c),再证∠EGH=∠ABG ,从而得AB=AG=c ,结合CF=FG+CG ,得到关于b ,c 的等式,即可得到结论.【详解】(1)∵CDE ∆与四边形ABDE 的周长相等,点D 为BC 的中点,∴AE+AB=CE ,∵AE+AB+CE=AB+AC=b+c ,∴CE=2AE AB CE ++=2b c +; (2)∵点D 、F 分别为BC 、AC 的中点,∵DF 是△CAB 的中位线,∴DF=12AB=12c ,AF=CF=12AC=12b , ∵CE=2b c +, ∴EF=CE-CF=2b c +−12b =12c , ∴DF=EF;(3)连接BE 、DG ,设BG ,DF 交于点M ,∵S △BDH =S △EGH ,∴S △BDG =S △DEG ,∴BE ∥DG ,∴∠EBC=∠GDC ,∵DF 是△CAB 的中位线,∴DF ∥AB ,∴∠ABC=∠FDC ,∠A=∠DFC ,∴∠ABC-∠EBC=∠FDC-∠GDC ,即:∠ABE=∠FDG ,∴△ABE ∽△FDG , ∴21AB AE DF FG ==, ∵AE=AC-CE=b-2b c +=12(b−c) ∴FG=12AE=12×12(b−c)=14(b−c), ∵DF=EF ,∴∠FED=∠FDE ,∵BG ⊥DE ,∴∠FED+∠EGH=∠FDE+∠DMH=90°,∴∠EGH=∠DMH ,又∵∠DMH=∠FMG ,∴∠EGH=∠FMG ,又∵∠FMG=∠ABG ,∴∠EGH=∠ABG ,∴AB=AG=c ,∴CG=b−c ,∴CF=12b=FG+CG=14(b−c)+(b−c), ∴3b=5c ,∴b c =53. 点睛】本题主要考查三角形的中位线的性质定理,等腰三角形的性质定理以及相似三角形的判定和性质定理,添加合适的辅助线,构造相似三角形,是解题的关键.。
人教版初三下册《数学》模拟考试卷及答案【可打印】
人教版九年级下册《数学》模拟考试卷一、选择题(每题3分,共30分)1.下列哪个数是实数?A. 2iB. 3C. √5D. 1/02.下列哪个函数的图像是一条直线?A. y=x²B. y=2x3C. y=x³D. y=|x|3.下列哪个数是负数?A. 5B. 0C. 5D. √94.下列哪个不等式成立?A. 2x+3<0B. 3x2>0C. 4x+1<0D. 5x3>05.下列哪个是正比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x36.下列哪个是反比例函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x37.下列哪个是二次函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x38.下列哪个是指数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x39.下列哪个是对数函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x310.下列哪个是三角函数?A. y=2x+1B. y=3x²C. y=4xD. y=5x3二、填空题(每题4分,共40分)11.下列数列中,第10项是几?1, 3, 5, 7,12.下列数列中,第n项是几?2, 4, 6, 8,13.下列数列中,第n项是几?1, 2, 4, 8,14.下列数列中,第n项是几?1, 3, 6, 10,15.下列数列中,第n项是几?1, 4, 9, 16,16.下列数列中,第n项是几?1, 8, 27, 64,17.下列数列中,第n项是几?1, 2, 4, 8,18.下列数列中,第n项是几?1, 3, 6, 10,19.下列数列中,第n项是几?1, 4, 9, 16,20.下列数列中,第n项是几?1, 8, 27, 64,三、解答题(每题10分,共50分)21.解方程:2x3=522.解方程组:\begin{align}2x+3y=7 \\3x2y=4\end{align}23.解不等式:3x2<024.解不等式组:\begin{align}2x+3y>7 \\3x2y<4\end{align}25.解方程:x²3x+2=026.解方程组:\begin{align}x²+y²=25 \\xy=5\end{align}27.解不等式:x²3x+2<028.解不等式组:\begin{align}x²+y²>25 \\xy<5\end{align}29.解方程:x³2x²+3x6=030.解方程组:\begin{align}x³+y³=27 \\x+y=3\end{align}四、证明题(每题10分,共20分)31.证明:若a²+b²=c²,则a、b、c为勾股数。
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)
2024年最新人教版七年级数学(上册)模拟试卷及答案(各版本)一、选择题(每题5分,共20分)1. 下列哪个选项是正确的数学定义?()A. 两个数的和等于它们的差B. 两个数的积等于它们的商C. 两个数的商等于它们的和D. 两个数的差等于它们的积2. 在下列四个选项中,哪个是正确的数学公式?()A. a² + b² = c²B. a² b² = c²C. a² + c² = b²D. a² c² = b²3. 下列哪个选项是正确的数学定理?()A. 平行四边形的对角线相等B. 平行四边形的对边相等C. 平行四边形的对角线互相垂直D. 平行四边形的对边互相垂直4. 下列哪个选项是正确的数学概念?()A. 正数B. 负数C. 零D. 所有实数二、填空题(每题5分,共20分)1. 一个数的平方根是它自己的数是______。
2. 一个数的立方根是它自己的数是______。
3. 一个数的倒数是它自己的数是______。
4. 一个数的相反数是它自己的数是______。
三、解答题(每题10分,共30分)1. 解答:求出下列方程的解。
x² 5x + 6 = 02. 解答:求出下列不等式的解集。
2x 3 < 73. 解答:求出下列方程组的解。
2x + 3y = 83x 2y = 5四、证明题(每题10分,共20分)1. 证明:两个角的和等于它们的补角的和。
2. 证明:两个直角三角形的斜边相等,则它们是全等的。
五、应用题(每题10分,共20分)1. 应用:小明从家出发,向东走了10米,然后向北走了5米,又向西走了3米。
问小明现在距离家有多远?2. 应用:一个长方形的长是8厘米,宽是5厘米。
求这个长方形的面积和周长。
六、附加题(每题10分,共20分)1. 附加:求出下列方程的解。
x³ 6x² + 11x 6 = 02. 附加:求出下列不等式的解集。
2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)
2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)一、选择题:每题1分,共5分1. 下列数中,既是有理数也是无理数的是( )A. 0B. 3/2C. √2D. 52. 已知函数f(x)=x²3x+2,那么f(1)= ( )A. 0B. 2C. 3D. 23. 在三角形ABC中,AB=AC,那么角B等于角C的( )A. 1/2B. 1C. 2D. 无法确定4. 下列哪个数是最大的( )A. √3B. √2C. √5D. √45. 已知函数f(x)=2x+3,那么f(2)= ( )A. 1B. 1C. 2D. 2二、判断题:每题1分,共5分1. 0是整数,也是有理数。
( )2. 任何一个正整数都能被表示为两个质数的和。
( )3. 两条平行线的斜率相等。
( )4. 任何两个奇数之和都是偶数。
( )5. √3是整数。
( )三、填空题:每题1分,共5分1. 2³=_______2. 已知函数f(x)=3x2,那么f(2)=_______3. 在三角形ABC中,AB=AC,那么角B等于_______4. 1/2的倒数是_______5. 2的平方根是_______四、简答题:每题2分,共10分1. 请简述有理数的定义。
2. 请简述平行线的性质。
3. 请简述一次函数的性质。
4. 请简述勾股定理。
5. 请简述概率的定义。
五、应用题:每题2分,共10分1. 已知函数f(x)=x²2x+1,求f(3)的值。
2. 在三角形ABC中,AB=3,AC=4,BC=5,求三角形ABC的面积。
3. 一个袋子里有3个红球,2个绿球,求摸出一个红球的概率。
4. 解方程:2x+3=7。
5. 已知函数f(x)=2x+1,求f(3)的值。
六、分析题:每题5分,共10分1. 已知函数f(x)=x²4x+3,求f(x)的最小值。
2. 在三角形ABC中,AB=AC,BC=6,求三角形ABC的面积。
人教版中考全真模拟测试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.计算1|2|2--+的结果是() A. 112-B. 0C. 112D. 1222.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A 58.5810⨯B. 60.85810⨯C. 58.5810-⨯D. 385810⨯3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.4.在下列图形中,既是轴对称图形,又是中心对称图形的是() A. 等边三角形B. 直角三角形C. 正五边形D. 矩形5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分一组D. 打开电视,正在播放动画片 6.下列运算中正确的是() A. 623a a a ÷=B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形B. 六边形C. 七边形D. 八边形8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A 0a b +>B. 0a c +>C. 0b c +>D. 0ac <9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<二、填空题11.如图,直线a 、b 被直线l 所截,a ∥b ,∠1=70°,则∠2= .12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表: 投中次数 3 5 6 7 8 人数 13222则这些队员投中次数众数为___________.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0ky k x=≠的图像上,当ABC ∆的面积最小时,的值__________.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.18.先化简,再求值:11221x x x x ⎛⎫÷-+ ⎪++⎝⎭,其中2x =.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE ADAC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________; (2)若点,,在同一直线上,求tan ABA '∠的值.21.某印刷厂的打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元. 公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表: 消耗墨盒数 22 23 24 25 打印机台数 1441(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值. 23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,CD =求O 半径的长.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -. (1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x = ①求,所满足的数量关系式; ②当OP=OA 时,求线段PN 的长度.答案与解析一.选择题1.计算1|2|2--+的结果是() A. 112- B. 0C. 112D. 122【答案】D 【解析】 【分析】先化简绝对值和负整数指数幂,然后再计算. 【详解】解:111|2|2=2+=222--+ 故选:D .【点睛】本题考查负整数指数幂的的计算,掌握计算法则正确计算是解题关键.2.自新型冠状病毒肺炎肆虑全球以来,万众一心战疫情已成为世界各国的共同语言,截止到2020年4月26日,全球感染新型冠状病毒肺炎的治愈人数已经突破858000人,将858000用科学记数法表示为() A. 58.5810⨯ B. 60.85810⨯C. 58.5810-⨯D. 385810⨯【答案】A 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于858000有6位,所以可以确定n=6-1=5. 【详解】解:858000=8.58×105. 故选:A .【点睛】此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 3.下列几何体中,俯视图...为三角形的是( ) A. B. C. D.【答案】C 【解析】【分析】依次观察四个选项,A中圆锥从正上看,是其在地面投影;B中,长方体从上面看,看到的是上表面;C中,三棱柱从正上看,看到的是上表面;D中四棱锥从正上看,是其在地面投影;据此得出俯视图并进行判断.【解答】A、圆锥俯视图是带圆心的圆,故本选项错误;B、长方体的俯视图均为矩形,故本选项错误;C、三棱柱的俯视图是三角形,故本选项正确;D、四棱锥的俯视图是四边形,故本选项错误;故选C.【点评】本题应用了几何体三视图的知识,从上面向下看,想象出平面投影是解答重点;4.在下列图形中,既是轴对称图形,又是中心对称图形的是()A. 等边三角形B. 直角三角形C. 正五边形D. 矩形【答案】D【解析】【分析】根据轴对称图形和中心对称图形的概念逐一判断可得.【详解】解:A.等边三角形轴对称图形,不是中心对称图形,不符合题意;B.直角三角形既不是轴对称图形,也不是中心对称图形,不符合题意;C.正五边形是轴对称图形,不是中心对称图形,不符合题意;D.矩形既是轴对称图形,又是中心对称图形,符合题意;故选:D.【点睛】本题主要考查中心对称图形和轴对称图形,解题的关键是掌握把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.5. 下列事件是必然事件的是( ).A. 随意掷两个均匀的骰子,朝上面的点数之和为6B. 抛一枚硬币,正面朝上C. 3个人分成两组,一定有2个人分在一组D. 打开电视,正在播放动画片【答案】C【解析】A.点数之和不一定是6;B.还可能是背面朝上;C.是必然事件;D.不一定,也可能会是其它节目. 故选C.6.下列运算中正确的是() A. 623a a a ÷= B. 23a a a ⋅=C. 2222a a -=D. ()22436a a -=【答案】B 【解析】 【分析】根据同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方法则进行计算,逐个判断即可. 【详解】解:A. 624a a a ÷=,故此选项不符合题意; B. 23a a a ⋅=,正确;C. 2222a a a -=,故此选项不符合题意;D. ()22439a a -=,故此选项不符合题意;故选:B .【点睛】本题考查同底数幂的除法,同底数幂的乘法,合并同类项,幂的乘方,掌握运算法则正确计算是解题关键.7.已知一个多边形的内角和等于900º,则这个多边形是( ) A. 五边形 B. 六边形C. 七边形D. 八边形【答案】C 【解析】试题分析:多边形的内角和公式为(n -2)×180°,根据题意可得:(n -2)×180°=900°,解得:n=7. 考点:多边形的内角和定理.8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A. 0a b +>B. 0a c +>C. 0b c +>D. 0ac <【解析】 【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答. 【详解】解:a b =,原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=, 故选项A 错误, 故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安.问几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列方程( ) A.7512x x+=+ B.2175x x++= C.7512x x-=+ D.275x x+= 【答案】B 【解析】 【分析】根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的27x +和5x,进而得出等式. 【详解】设甲乙经过x 日相逢,可列方程:2175x x++=. 故选B .【点睛】此题主要考查了由实际问题抽象出分式方程,正确表示出两人所走路程所占百分比解题关键. 10.若(),a b a b <是关于方程()()()10x m x n m n --+=<的两个实数根,则实数,,,a b m n 的大小关系是()A. a b m n <<<B. m n a b <<<C. a m n b <<<D. m a b n <<<【答案】D 【解析】利用a是关于x的一元二次方程(x-m)(x-n)+1=0的根得到(a-m)(a-n)=-1<0,进而判断出m<a<n,同理判断出m<b<n,即可得出结论.【详解】解:∵a是关于x的一元二次方程(x-m)(x-n)+1=0的根,∴(a-m)(a-n)+1=0,∴(a-m)(a-n)=-1<0,∵m<n,∴m<a<n,同理:m<b<n,∵a<b,∴m<a<b<n.故选:D.【点睛】此题主要考查了一元二次方程的解的定义,不等式的性质,判断出(a-m)(a-n)<0是解本题的关键.二、填空题11.如图,直线a、b被直线l所截,a∥b,∠1=70°,则∠2= .【答案】110°【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°12.某校男子篮球队10名队员进行定点投篮练习,每人投篮10次,他们投中的次数统计如表:投中次数 3 5 6 7 8人数 1 3 2 2 2则这些队员投中次数的众数为___________.【答案】5【解析】【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】解:在这一组数据中5是出现次数最多的,故众数是5;故答案为:5.【点睛】本题考查了众数的定义,能够熟记众数的定义是解答本题的关键,难度不大.13.如图,已知平行四边形ABCD 的对角线AC 与BD 相交于点,AB AC ⊥,若8AC =,120BOC ∠=︒,则BD 的长是__________.【答案】16【解析】【分析】由平行四边形的性质得出BO=DO ,AO=CO=12AC=4,由含30°角直角三角形的性质得出OB ,即可得出结果.【详解】解:∵▱ABCD 的对角线AC 与BD 相交于点O ,∴BO=DO ,AO=CO=12AC=4, ∵∠BOC=120°,∴∠AOB=180°-∠BOC=180°-120°=60°,∵AB ⊥AC ,∴∠BAO=90°,∠ABO=30°,∴OB=2AO=2×4=8, ∴BD=2OB=2×8=16, 故答案为:16.【点睛】本题考查了平行四边形的性质、平角、含30°角的直角三角形的性质等知识;熟练掌握平行四边形的性质是解题的关键.14.如图在圆内接四边形ABCD 中,::3:5:6A ABC BCD ∠∠∠=,分别延长AB ,DC 交于点,则P ∠的大小为__________.【答案】40°【解析】【分析】设∠A=3k ,∠ABC=5k ,∠BCD=6k ,根据圆内接四边形的性质得到k=20°,求得∠A=60°,∠ABC=5k=100°,∠D=80°,根据三角形的内角和即可得到结论.【详解】解:∵∠A :∠ABC :∠BCD=3:5:6,设∠A=3k ,∠ABC=5k ,∠BCD=6k ,∵∠A+∠BCD=180°,∴3k+6k=180°,∴k=20°,∴∠A=60°,∠ABC=5k=100°,∴∠D=80°,∴∠P=180°-∠A-∠D=40°,故答案为:40°.【点睛】本题考查了圆内接四边形的性质,三角形的内角和,熟练掌握圆内接四边形的性质是解题的关键. 15.如图,已知等边三角形ABC 的顶点,A B 分别在反比例函数1y x=图像的两个分支上,点在反比例函数()0k y k x=≠的图像上,当ABC ∆的面积最小时,的值__________.【答案】-3【解析】【分析】当等边三角形ABC 的边长最小时,△ABC 的面积最小,点A ,B 分别在反比例函数y=1x图象的两个分支上,则当A 、B 在直线y=x 上时最短,即此时△ABC 的面积最小,根据反比例函数图象的对称性可得OA=OB ,设OA=x ,则AC=2x ,x ,根据等边三角形三线合一可证明△AOE ∽△OCF ,根据相似三角形面积比等于相似比的平方可得结论.【详解】解:根据题意当A 、B 在直线y=x 上时,△ABC 的面积最小,函数y=1x图象关于原点对称, ∴OA=OB ,连接OC ,过A 作AE ⊥y 轴于E ,过C 作CF ⊥y 轴于F ,∵△ABC 等边三角形,∴AO ⊥OC ,∴∠AOC=90°,∠ACO=30°,∴∠AOE+∠COF=90°,设OA=x ,则AC=2x ,,∵AE ⊥y 轴,CF ⊥y 轴,∴∠AEO=∠OFC=∠AOE+∠OAE=90°,∴∠COF=∠OAE ,∴△AOE ∽△OCF ,∴221()3AOE OCF S OA S OC ===, ∵顶点A 在函数y=1x 图象的分支上, ∴S △AOE =12, ∴S △OCF =32, ∵点C 在反比例函数y=k x (k≠0)图象上, ∴k=-3,故答案为-3.【点睛】本题考查了综合运用反比例函数图象上点的坐标特征,反比例函数图象关于原点对称,相似三角形的判定与性质及等边三角形等知识点,难度不大,属于中档题.三.解答题16.解不等式组127111x x -≤⎧⎪⎨+<⎪⎩,并将解集在数轴上表示出来. 【答案】31x -≤<,数轴见解析.【解析】【分析】分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.【详解】解:127112x x -≤⎧⎪⎨+<⎪⎩①② 解不等式①,得3x ≥-解不等式②,得1x <不等式组的解集在数轴上表示为:∴不等式组的解集为:31x -≤<.【点睛】本题考查的是解一元一次不等式组,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.17.如图,在菱形ABCD 中,点、分别在AB 、CD 上,且AE CF =.求证:DAF DCE ∠=∠.【答案】证明见解析【解析】【分析】根据菱形的性质得出AD=CD,进而利用全等三角形的判定和性质解答即可.【详解】解:∵四边ABCD是菱形,∴AD=CD,∵AE=CF,∴AD-AE=CD-CF,即DE=DF,∵∠D=∠D,∴△ADF≌△CDE(SAS),∴∠DAF=∠DCE.【点睛】此题考查菱形的性质,关键是根据全等三角形的判定和性质解答.18.先化简,再求值:11221xxx x⎛⎫÷-+⎪++⎝⎭,其中2x=.【答案】12x;2.【解析】【分析】分式的混合运算,先做括号里面的,然后再做除法进行化简,然后将x的值代入计算即可.【详解】解:11221 xxx x⎛⎫÷-+⎪++⎝⎭=(1)(1)1 2211 x x xx x x+-⎡⎤÷+⎢⎥+++⎣⎦=211() 2211 x xx x x-÷++++=212(1)x x x x ++ =12x当2x =时,原式=12=422. 【点睛】本题考查分式的混合运算及二次根式的化简,掌握运算法则正确计算是解题关键.19.如图,ABC ∆中,是AB 边上一点.(1)在边AC 上求作一点,使得AE AD AC AB=.(要求:尺规作图,不写作法,保留作图痕迹) (2)在(1)的条件下,若ABC ∆的面积是ADE ∆面积的9倍,且6BC =,求DE 的长.【答案】(1)作图见解析;(2)2【解析】【分析】(1)在AB 的右侧作∠ADE=∠B ,则DE ∥BC ,故AE AD AC AB=; (2)依据∠A=∠A ,∠ADE=∠B ,即可得到△ADE ∽△ABC ,再根据相似三角形的性质,即可得出DE 的长.【详解】解:(1)如图,点E 就是所求作的点.(2)∵∠A=∠A ,∠ADE=∠B ,∴△ADE ∽△ABC ,∴2()ADEABC S DE S BC = ,即21()69DE =. 解得:DE=2.【点睛】本题主要考查了复杂作图以及相似三角形的判定与性质,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.如图,矩形ABCD 中,2BC =,AB m =,将矩形ABCD 绕点顺时针旋转90︒,点,,A B C 分别落在点,,处.(1)直接填空:当1m =时,点所经过的路径的长为___________;(2)若点,,在同一直线上,求tan ABA '∠的值.【答案】(15π;(251-. 【解析】【分析】(1)由题意可知点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长,然后用勾股定理求得BD 的长,再利用弧长公式求解即可;(2)由AB=m ,根据平行线的性质列出比例式求出m 的值,根据正切的定义求出tan ∠BA′C ,根据∠ABA′=∠BA′C 解答即可.【详解】解:(1)由题意可知,点B 经过的路径是以点D 为圆心,以BD 的长为半径,圆心角为90°的弧长, ∴连接'BD B D ,,当m=1时,AB=1,在矩形ABCD 中,AD=BC=2∴在Rt △ABD 中,225BD AB AD =+= ∴此时点所经过的路径的长为9055=1802ππ 5π. (2)由题意AB=m ,则CD=m ,A′C=m+2,∵AD∥BC,∴'''C D A DBC A C=,即222mm=+,解得,151m=,251m=-(舍去),∵AB∥CD,∴∠ABA′=∠BA′C,tan∠BA′C=51'2512BCA C==-+,∴tan∠51 -,【点睛】本题考查的是旋转的性质、矩形的性质以及锐角三角函数的定义,掌握旋转前、后的图形全等以及锐角三角函数的定义是解题的关键.21.某印刷厂打印机每5年需淘汰一批旧打印机并购买新机,买新机时,同时购买墨盒,每盒150元,每台新机最多可配买24盒;若非同时配买,则每盒需220元.公司根据以往的记录,十台打印机正常工作五年消耗墨盒数如表:消耗墨盒数22 23 24 25打印机台数 1 4 4 1(1)以这十台打印机消耗墨盒数为样本,估计”一年该款打印机正常工作5年消耗的墨盒数不大于24”的概率;(2)试以这10台打印机5年消耗的墨盒数的平均数作为决策依据,说明购买10台该款打印机时,每台应统一配买23盒墨还是24盒墨更合算?【答案】(1)910;(2)每台应统一配23盒墨更合算【解析】【分析】(1)直接利用概率公式求解即可;(2)分别求出购买23盒墨,24盒墨的费用即可判断.【详解】解:(1)因为10台打印机正常工作五年消耗的墨盒数不大24的台数为1+4+4=9,所以10台打印机正常工作五年消耗的墨盒数不大24的频率为910, 故可估计10台打印机正常工作五年消耗的墨盒数不大24的概率为910;(2)每台应统一配23盒墨更合算,理由如下:10台打印机五年消耗的墨盒数的平均数为:110414212323.510x ⨯+⨯+⨯+⨯=+= (盒), 若每台统一配买盒墨,则这台打印机所需费用为:23×150×10+(23.5-23)×220×10=35600(元); 若每台统一配买盒墨,则这台打印机所需费用为:24×150×10=36000(元). 因35600<36000,所以每台应统一配23盒墨更合算.【点睛】本题考查利用频率估计概率,加权平均数,列表法等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.22.某商场销售一种笔记本,进价为每本10元.试营销阶段发现:当销售单价为12元时,每天可卖出100本,如调整价格,每涨价1元,每天要少卖出10本.设该笔记本的销售单价为元,每天获得的销售利润为元.(1)当12x ≥时,求与之间的函数关系式;(2)当1215x ≤≤时,求销售单价为多少元时,该笔记本每天的销售利润最大?并求出最大值.【答案】(1)y=-10x 2+320x-2200;(2)销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【解析】【分析】(1)根据总利润=单件利润×销售量列出函数解析式即可;(2)把y=-10x 2+320x-2200化为y=-10(x-16)2+360,根据二次函数的性质即可得到结论.【详解】解:(1)y=(x-10)[100-10(x-12)=(x-10)(100-10x+120)=-10x 2+320x-2200;(2)y=-10x 2+320x-2200=-10(x-16)2+360,∴12≤x≤15时,∵a=-10<0,对称轴为直线x=16,∴抛物线开口向下,在对称轴左侧,y 随x 的增大而增大,∴当x=15时,y 取最大值为350元,答:销售单价为15元时,该文具每天的销售利润最大,最大值是350元.【点睛】本题考查的是二次函数的应用、掌握二次函数的性质是解题的关键.23.如图,已知ABC ∆,以AC 为直径的O 交边AB 于点,BC 与O 相切.(1)若45ABC ∠=︒,求证:AE BE =;(2)点是O 上一点,点,D E 两点在AC 的异侧.若2EAC ACD ∠=∠,6AE =,45CD =求O 半径的长.【答案】(1)证明见解析;(2)5【解析】【分析】(1)连接CE ,依据题意和圆周角定理求得△ABC 是等腰直角三角形,然后根据圆周角定理和等腰三角形三线合一的性质求解即可;(2)连接DO 并延长,交CE 于点M ,交O 于点G ,利用三角形外角的性质求得2=EAC ACD AOD ∠=∠∠,从而判定DG ∥AE ,得到90DMC AEC ∠=∠=,从而根据垂径定理可得EM=CM ,根据三角形中位线定理可求132OM AE ==,然后设圆的半径为x ,根据勾股定理列方程求解即可. 【详解】解:连接CE∵BC 与O 相切∴∠ACB=90°∵45ABC ∠=︒∴45ABC CAB ∠=∠=︒∴CA=CB又∵以AC 为直径的O 交边AB 于点,∴∠CEA=90° ∴根据等腰三角形三线合一的性质可知,CE 是底边AB 的中线∴AE=BE(2)连接DO 并延长,交CE 于点M ,交O 于点G 由(1)可知,∠CEA=90°∵2=EAC ACD AOD ∠=∠∠∴DG ∥AE∴90DMC AEC ∠=∠=∴EM=CM∴在△AEC 中,132OM AE == 设圆的半径为x ,在Rt △OMC 中,2223CM x =-在Rt △DMC 中,222(45)(3)CM x =-+∴22223(45)(3)x x -=-+,解得5x =或8x =-(负值舍去)∴O 半径的长为5.【点睛】本题考查切线的性质,圆周角定理,垂径定理的应用,题目难度不大,但有一定的综合性,正确添加辅助线利用勾股定理列方程求解圆的半径是解题关键.24.抛物线2(0)y ax bx c a =++≠与轴交于,A B 两点,与轴交于点.已知点()1,0A -,点()0,P p -.(1)当2a p =时,求点的坐标;(2)直线y x m =-+与抛物线交于,P N 两点,抛物线的对称轴为直线1x =①求,所满足的数量关系式;②当OP=OA 时,求线段PN 的长度.【答案】(1)(12,0);(2)①3p a =;②. 【解析】【分析】(1)利用待定系数法,将()1,0A -,点()0,P p -,2a p =代入函数解析式,求得b p =,从而求得函数解析式及对称轴,然后根据数轴上的对称性求得点B 的坐标;(2)①由抛物线的对称轴求得12b a-=,求得2b a =-,然后将点()1,0A -,点()0,P p -代入函数解析式求得p 与a 的数量关系;②由OP=OA 时,分情况讨论当P (0,1)或(0,-1),求得p 的值,从而确定二次函数和一次函数解析式,然后求其交点坐标,利用勾股定理求PN 的长度. 【详解】解:(1)将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩当2a p =时,可得20p b p --=,解得:b p =∴此时抛物线解析式为:22y px px p =+-,抛物线对称轴为1224p x p =-=-⨯ 设B 点坐标为(x ,0) ,则此时1124x -+=-,解得:12x = ∴B 点坐标为(12,0) (2)①将点()1,0A -,点()0,P p -代入函数解析式,得0a b c c p -+=⎧⎨=-⎩有题意可知:12b a-=,则2b a =- ∴(2)0a a p ---=,解得3p a =②当OP=OA 时,P (0,1)或(0,-1)当P (0,1)时,-p=1,即p=-1,则3=-1a ,解得13a =- ∴此时抛物线解析式为:212133y x x =-++ 又∵直线y x m =-+与抛物线交于P N ,两点∴一次函数解析式为:1y x =-+ 由此2121331y x x y x ⎧=-++⎪⎨⎪=-+⎩,解得01x y =⎧⎨=⎩或5-4x y =⎧⎨=⎩ ∴此时P (0,1)),N (5,-4)∴=当P (0,-1)时,-p=-1,即p=1,则3=1a ,解得13a = ∴此时抛物线解析式为:212133y x x =-- 又∵直线y x m =-+与抛物线交于P N ,两点 ∴一次函数解析式为:1y x =-- 由此2121331y x x y x ⎧=--⎪⎨⎪=--⎩,解得01x y =⎧⎨=-⎩或10x y ⎧⎨⎩=-= ∴此时P (0,-1)),N (-1,0)∴=∴综上所述,PN的长度为.【点睛】本题考查二次函数与一次函数的综合,掌握函数的图像性质,利用数形结合思想解题是关键.。
人教版初中数学模拟试题(11套)(含答案)
初中毕业升学考试模拟检测数学试题一.选择题(共10小题)1.计算:﹣5+2的结果是()A.﹣3 B.﹣1 C.1 D.32.如图所示的工件的主视图是()A.B.C.D.3.为研究上半年用水情况,小明把自己家1月至6月份的用水量绘制成折线统计图(如图),根据图中信息,可以判断相邻两个月用水量变化最大的是()A.1月至2月B.3月至4月C.4月至5月D.5月至6月4.在学校“争创美丽班级,争做文明学生”示范班级评比活动中,10位评委给九年级(1)班的评分情况如下表示:评分(分)75 80 85 90评委人数 2 3 4 1 则这10位评委评分的平均数是()A.80分B.82分C.82.5分D.85分5.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为9m,那么花圃的面积为()A.54πm2B.27πm2C.18πm2D.9πm26.已知点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系正确的是()A.y2<y3<y1B.y1<y3<y2C.y3<y2<y1D.y3<y1<y2 7.化简﹣的结果是()A.x+1 B.x﹣1 C.x D.﹣x8.已知关于x、y的二元一次方程组的解满足x+y<4,则满足条件的k 的最大整数为()A.3 B.2 C.1 D.09.如图,▱ABCD的边上一动点P从点C出发沿C﹣D﹣A运动至点A停止,运动的路程计为x,∠ABP与▱ABCD重叠部分面积计为y,其函数关系式如图所示,则▱ABCD中,BC边上的高为()A.2 B.3 C.4 D.610.如图,将⊙O上的沿弦BC翻折交半径OA于点D,再将沿BD翻折交BC于点E,连结DE.若AB=10,OD=1,则线段DE的长为()A.5 B.2C.2D.+1 二.填空题(共6小题)11.因式分解:m2+6m+9=.12.为了测试甲、乙两种电子表的走时误差,做了如下统计:=0,=0,S甲2=8.8,S乙2=4.8,则走时比较稳定的是种电子表.13.函数y=中,自变量x的取值范围是.14.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则OA2﹣AB2=.16.如图,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分别为BC,AC,AB边上的点,BF=3AF,∠DFE=90°,若△BDF与△FEA的面积比为3:2,则△CDE 与△DEF的面积比为.三.解答题(共8小题)17.(1)计算:﹣2cos30°+|﹣|.(2)化简:a(3﹣a)+(a+1)(a﹣1).18.如图,在正方形ABCD中,点E是对角线BD上任意一点,连接AE并延长AE交BC的延长线于点F,交CD于点G.(1)求证:∠DAE=∠DCE;(2)若∠F=30°,DG=2,求CG的长度.19.图①、图②、图③都是5×5的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,请在所给网格区域(含边界)上按要求画格点三角形.(1)在图①、图②中分别画一个△PAB,使△PAB的面积等于4(所画的两个三角形不全等).(2)在图③中,画一个△PAB,使tan∠APB=.20.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).21.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,,过点C作CD∥AB交BE的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求劣弧的长.22.名闻遐迩的秦顺明前茶,成本每斤500元,某茶场今年春天试营销,每周的销售量y(斤)与销售单价x(元/斤)满足的关系如下表:x(元/斤)550 600 650 680 700y(斤)450 400 350 320 300 (1)请根据表中的数据猜想并写出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利w元,试写w与x之间的函数关系式,并求出茶场每周的最大利润.(3)若该茶场每周获利不少于40000元,试确定销售单价x的取值范围.23.已知二次函数y=﹣x2+bx+c的图象经过点A(2,0),B(5,0),过点D(0,)作y轴的垂线DP交图象于E、F.(1)求b、c的值和抛物线的顶点M的坐标;(2)求证:四边形OAFE是平行四边形;(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式.24.如图,在△ABC中,AB=7,BC=4,∠ABC=45°,射线CD⊥AB于D,点P 为射线CD上一动点,以PD为直径的⊙O交PA、PB分别为E、F,设CP=x.(1)求sin∠ACD的值.(2)在点P的整个运动过程中:①当⊙O与射线CA相切时,求出所有满足条件时x的值;②当x为何值时,四边形DEPF为矩形,并求出矩形DEPF的面积.(3)如果将△ADC绕点D顺时针旋转150°,得△A′DC′,若点A′和点C′有且只有一个点在圆内,则x的取值范围是.参考答案与试题解析一.选择题(共10小题)1.计算:﹣5+2的结果是()A.﹣3 B.﹣1 C.1 D.3【分析】根据有理数的加法运算法则进行计算即可求解.【解答】解:﹣5+2=﹣(5﹣2)=﹣3.故选:A. 2.如图所示的工件的主视图是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、侧面和上面看,所得到的图形,本题找到从正面看所得到的图形即可.【解答】解:从物体正面看,看到的是一个横放的矩形,且一条斜线将其分成一个直角梯形和一个直角三角形.故选:B.3.为研究上半年用水情况,小明把自己家1月至6月份的用水量绘制成折线统计图(如图),根据图中信息,可以判断相邻两个月用水量变化最大的是()A.1月至2月B.3月至4月C.4月至5月D.5月至6月【分析】根据折线统计图解答即可得.【解答】解:由折线统计图知,相邻两个月用水量变化最大的是4月至5月,达到9吨,故选:C.4.在学校“争创美丽班级,争做文明学生”示范班级评比活动中,10位评委给九年级(1)班的评分情况如下表示:评分(分)75 80 85 90评委人数 2 3 4 1则这10位评委评分的平均数是()A.80分B.82分C.82.5分D.85分【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.【解答】解:这10位评委评分的平均数是:(75×2+80×3+85×4+90×1)÷10=82(分).故选:B.5.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB=120°,半径OA为9m,那么花圃的面积为()A.54πm2B.27πm2C.18πm2D.9πm2【分析】根据扇形的面积公式S扇形=,代入计算即可得出答案.【解答】解:S扇形=(m2),故选:B.6.已知点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,则y1、y2、y3的大小关系正确的是()A.y2<y3<y1B.y1<y3<y2C.y3<y2<y1D.y3<y1<y2【分析】根据反比例函数图象上点的坐标特征求出y1、y2、y3的值,比较后即可得出结论.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=﹣的图象上,∴y1=﹣=6,y2=﹣=﹣3,y3=﹣=﹣2,又∵﹣3<﹣2<6,∴y2<y3<y1.故选:A.7.化简﹣的结果是()A.x+1 B.x﹣1 C.x D.﹣x【分析】原式利用同分母分式的减法法则计算,约分即可得到结果.【解答】解:原式==x,故选:C.8.已知关于x、y的二元一次方程组的解满足x+y<4,则满足条件的k 的最大整数为()A.3 B.2 C.1 D.0【分析】方程组两方程相加表示出x+y,代入已知不等式求出k的范围,确定出k 的最大整数解即可.【解答】解:,①+②,得:3x+3y=6k,则x+y=2k,∵x+y<4,∴2k<4,解得:k<2,则满足条件的k的最大整数为1,故选:C.9.如图,▱ABCD的边上一动点P从点C出发沿C﹣D﹣A运动至点A停止,运动的路程计为x,∠ABP与▱ABCD重叠部分面积计为y,其函数关系式如图所示,则▱ABCD中,BC边上的高为()A.2 B.3 C.4 D.6【分析】观察图象可知;CD=4,AD=BC=8,设BC边上的高为h,由题意:BC•h=24,由此即可解决问题;【解答】解:观察图象可知;CD=4,AD=BC=8,设BC边上的高为h,由题意:BC•h=24,∴8h=24,∴h=3,故选:B.10.如图,将⊙O上的沿弦BC翻折交半径OA于点D,再将沿BD翻折交BC于点E,连结DE.若AB=10,OD=1,则线段DE的长为()A.5 B.2C.2D.+1【分析】连接CA、CD、OC,作CF⊥OA于F,如图,AD=4,先利用折叠和圆周角定理得到==,再利用弧、弦、圆心角的关系得到AC=CD=DE,则AF=DF=2,然后利用勾股定理计算出CF,接着再计算出CD即可.【解答】解:连接CA、CD、OC,作CF⊥OA于F,如图,AD=4,∵⊙O上的沿弦BC翻折交半径OA于点D,再将沿BD翻折交BC于点E,∴、和为等圆中的弧,∵它们所对的圆周角为∠ABC,∴==,∴AC=CD=DE,∴AF=DF=2,在Rt△OCF中,CF==4,在Rt△CDF中,CD==2,∴DE=2.故选:B.二.填空题(共6小题)11.因式分解:m2+6m+9=(m+3)2.【分析】直接运用完全平方公式进行分解.【解答】解:m2+6m+9=(m+3)2.12.为了测试甲、乙两种电子表的走时误差,做了如下统计:=0,=0,S甲2=8.8,S乙2=4.8,则走时比较稳定的是乙种电子表.【分析】根据方差的意义判断,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立,找出方差较小的即可.【解答】解:∵甲的方差是8.8,乙的方差是4.8,且4.8<8.8,∴这两种电子表走时稳定的是乙;故答案为:乙.13.函数y=中,自变量x的取值范围是x≥﹣2.【分析】函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x+2≥0,解得x≥﹣2.故答案为:x≥﹣2.14.小聪用100元钱去购买笔记本和钢笔共30件,已知每本笔记本2元,每支钢笔5元,则小聪最多可以买几支钢笔?设小聪购买x支钢笔,则可列关于x的一元一次不等式为5x+2(30﹣x)≤100.【分析】设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据总价=单价×购买数量结合总价不超过100元,即可得出关于x的一元一次不等式.【解答】解:设小聪买了x支钢笔,则买了(30﹣x)本笔记本,根据题意得:5x+2(30﹣x)≤100.故答案为5x+2(30﹣x)≤100.15.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则OA2﹣AB2=12.【分析】设OC=a,BD=b,则点A的坐标为(a,a),点B的坐标为(a+b,a﹣b),利用反比例函数图象上点的坐标特征可得出a2﹣b2=6,再由勾股定理可得出OA2﹣AB2=2a2﹣2b2=12,此题得解.【解答】解:设OC=a,BD=b,则点A的坐标为(a,a),点B的坐标为(a+b,a﹣b).∵反比例函数y=在第一象限的图象经过点B,∴(a+b)(a﹣b)=6,即a2﹣b2=6,∴OA2﹣AB2=2a2﹣2b2=2(a2﹣b2)=12.故答案为:12.16.如图,在Rt△ABC中,∠C=90°,BC=2AC,D,E,F分别为BC,AC,AB边上的点,BF=3AF,∠DFE=90°,若△BDF与△FEA的面积比为3:2,则△CDE 与△DEF的面积比为5:12.【分析】如图,过点D、E分别作AB的垂线DG、EH,由BF=3AF及△BDF与△FEA的面积比为3:2,可求得EH和DG的数量关系,设FG=x,DG=a,则BG=2a,AH=a,EH=2a,先证明△DFG∽△FEH,用x和a表示出FH,再根据BF=3AF,列出方程,用含a的式子表示出x,然后用含a的式子表示出相关线段,进而表示出△CDE与△DEF的面积,两者相比即可得解.【解答】解:如图,过点D、E分别作AB的垂线DG、EH∵BF=3AF,△BDF与△FEA的面积比为3:2,∴=∴EH=2DG∠C=90°,BC=2AC∴tan∠B=∴BG=2DG设FG=x,DG=a,则BG=2a,AH=a,EH=2a ∴AE==a∵∠DFE=90°,∴∠DFG+∠EFH=90°又∵∠FEH+∠EFH=90°∴∠DFG=∠FEH又∵∠FGD=∠EHF=90°∴△DFG∽△FEH∴=∴=∴FH=∵BF=3AF∴2a+x=3(a+)整理得:x2﹣ax﹣6a2=0解得:x=3a或x=﹣2a(舍)∴FH=,BA=4AF=4(a+)=∵∠C=90°,BC=2AC∴AC:BC:AB=1:2:∴AC==,BC=2AC=由勾股定理得:DF===a,EF===∴S△DEF=EF•DF=×a×=CE=AC﹣AE=,CD=CB﹣BD=﹣=∴S△CDE=××=∴S△CDE:S△DEF=:=5:12故答案为:5:12.三.解答题(共8小题)17.(1)计算:﹣2cos30°+|﹣|.(2)化简:a(3﹣a)+(a+1)(a﹣1).【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项,代入求出即可.【解答】解:(1)原式=1﹣2×+=1;(2)a(3﹣a)+(a+1)(a﹣1)=3a﹣a2+a2﹣1=3a﹣1.18.如图,在正方形ABCD中,点E是对角线BD上任意一点,连接AE并延长AE交BC的延长线于点F,交CD于点G.(1)求证:∠DAE=∠DCE;(2)若∠F=30°,DG=2,求CG的长度.【分析】(1)根据正方形的性质得出∠ADE=∠CDE,AD=CD,根据全等三角形的判定推出△ADE≌△CDE即可;(2)根据正方形的性质得出AD=DC,∠ADC=90°,AD∥BC,求出∠F=∠DAG =30°,解直角三角形求出AD,即可得出答案.【解答】(1)证明:∵四边形ABCD是正方形,∴∠ADE=∠CDE,AD=CD,在△ADE和△CDE中∴△ADE≌△CDE(SAS),∴∠DAE=∠DCE;(2)解:∵四边形ABCD是正方形,∴AD=DC,∠ADC=90°,AD∥BC,∴∠DAG=∠F,∵∠F=30°,∴∠DAG=30°,∵DG=2,∴AG=2DG=4,由勾股定理得:AD===2,∴DC=AD=2,∴CG=CD﹣DG=2﹣2.19.图①、图②、图③都是5×5的正方形网格,每个小正方形的顶点称为格点,每个小正方形的边长均为1,请在所给网格区域(含边界)上按要求画格点三角形.(1)在图①、图②中分别画一个△PAB,使△PAB的面积等于4(所画的两个三角形不全等).(2)在图③中,画一个△PAB,使tan∠APB=.【分析】(1)利用数形结合的思想解决问题即可;(2)利用数形结合的思想解决问题即可;【解答】解:(1)△PAB如图所示;(2)△PAB如图所示;20.某学校为了增强学生体质,决定开放以下体育课外活动项目:A.篮球、B.乒乓球、C.跳绳、D.踢毽子.为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图(如图(1),图(2)),请回答下列问题:(1)这次被调查的学生共有20人;(2)请你将条形统计图补充完整;(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答).【分析】(1)用喜欢篮球的人数除以喜欢篮球的人数所占的百分比,即可求出这些被调查的学生数;(2)用总人数减去喜欢篮球、乒乓球和踢毽子的人数,即可求出喜欢跳绳的人数,从而补全统计图;(3)根据题意列出表格,得出所有等可能的情况数,找出满足题意的情况数,即可求出所求的概率.【解答】解:(1)由扇形统计图可知:扇形A的圆心角是36°,所以喜欢A项目的人数占被调查人数的百分比=×100%=10%.由条形图可知:喜欢A类项目的人数有2人,所以被调查的学生共有2÷10%=20(人),故答案为:20.(2)喜欢C项目的人数=20﹣(2+8+4)=6(人),因此在条形图中补画高度为6的长方条,如图所示.(3)列表如下:甲乙丙丁甲﹣﹣﹣(乙,甲)(丙,甲)(丁,甲)乙(甲,乙)﹣﹣﹣(丙,乙)(丁,乙)丙(甲,丙)(乙,丙)﹣﹣﹣(丁,丙)丁(甲,丁)(乙,丁)(丙,丁)﹣﹣﹣所有等可能的结果为12种,其中符合要求的只有2种,∴恰好选中甲、乙两位同学的概率为=21.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,,过点C作CD∥AB交BE的延长线于D,AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF,若∠AOF=3∠FOE且AF=3,求劣弧的长.【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得:,由一组对边平行且相等可得四边形ABCD是平行四边形,由AB=BC可得结论;(2)先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程得:4x+2x+(180﹣3x)=180,求出x的值,接着求所对的圆心角和半径的长,根据弧长公式可得结论.【解答】(1)证明:∵,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180﹣3x)°,∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180﹣3x)=180,x=20°,∴∠AOF=3x=60°,∠AOE=80°,∴∠COF=80°×2﹣60°=100°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,∴的长==.22.名闻遐迩的秦顺明前茶,成本每斤500元,某茶场今年春天试营销,每周的销售量y(斤)与销售单价x(元/斤)满足的关系如下表:x(元/斤)550 600 650 680 700y(斤)450 400 350 320 300 (1)请根据表中的数据猜想并写出y与x之间的函数关系式;(2)若销售每斤茶叶获利不能超过40%,该茶场每周获利w元,试写w与x之间的函数关系式,并求出茶场每周的最大利润.(3)若该茶场每周获利不少于40000元,试确定销售单价x的取值范围.【分析】(1)利用待定系数法求解可得依次函数解析式;(2)根据“总利润=每斤的利润×周销售量”可得函数解析式,再利用二次函数的性质结合x的取值范围可得答案;(3)求出w=40000时x的值,利用二次函数的性质可得.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,根据题意,得:,解得:,则y=﹣x+1000;(2)w=(x﹣500)(﹣x+1000)=﹣x2+600x﹣500000,=﹣(x﹣750)2+62500,∵x﹣500≤500×40%,即x≤700,∴当x=700时,w取得最大值,最大值为60000,即最大利润为60000元.(3)当w=40000时,﹣(x﹣750)2+62500=40000,解得:x=900或x=600,∵a=﹣1,∴600≤x≤900.23.已知二次函数y=﹣x2+bx+c的图象经过点A(2,0),B(5,0),过点D(0,)作y轴的垂线DP交图象于E、F.(1)求b、c的值和抛物线的顶点M的坐标;(2)求证:四边形OAFE是平行四边形;(3)将抛物线向左平移的过程中,抛物线的顶点记为M′,直线DP与抛物线的左交点为E′,连接OM′,OE′,当OE′+OM′的值最小时求直线OE′的解析式.【分析】(1)由抛物线的交点式可直接得到抛物线的解析式,从而可求得b、c的值,然后利用配方法可求得顶点M的坐标;(2)先求得点E和点F的坐标,从而可得到EF=OA,然后依据平行四边形的判定定理进行证明即可;(3)设抛物线向左平移m个单位时,则M′(﹣m,),E′(﹣m,),作点M′关于x轴的对称点M″,则点M″(﹣m,﹣),当点E′、O、M″在一条直线上时,OE′+OM′有最小值,然后再依据E′M″的图象为正比例函数图形列出关于m的比例式,从而可求得m的值,然后可求得OE′的解析式.【解答】解:(1)抛物线解析式为y=﹣(x﹣2)(x﹣5),即y=﹣x2+7x﹣10,∴b=7,c=﹣10,∵y=﹣x2+7x﹣10=﹣(x﹣)2+,∴顶点M的坐标为(,);(2)证明:当y=时,﹣(x﹣)2+=,解得x1=,x2=,则E(,),F(,),∵EF=﹣=2,而OA=2,∴EF=OA,∵EF∥OA,∴四边形OAFE是平行四边形;(3)设抛物线向左平移m个单位时,OE′+OM′有最小值,则M′(﹣m,),E′(﹣m,),作点M′关于x轴的对称点M″,则点M″(﹣m,﹣).由轴对称的性质可知:OM′=OM″,则OE′+OM′=OE′+OM″.∴当点E′、O、M″在一条直线上时,OE′+OM′有最小值.∴=,解得:m=.∴k==﹣.∴OE′的解析式为y=﹣x.24.如图,在△ABC中,AB=7,BC=4,∠ABC=45°,射线CD⊥AB于D,点P 为射线CD上一动点,以PD为直径的⊙O交PA、PB分别为E、F,设CP=x.(1)求sin∠ACD的值.(2)在点P的整个运动过程中:①当⊙O与射线CA相切时,求出所有满足条件时x的值;②当x为何值时,四边形DEPF为矩形,并求出矩形DEPF的面积.(3)如果将△ADC绕点D顺时针旋转150°,得△A′DC′,若点A′和点C′有且只有一个点在圆内,则x的取值范围是<x<7.【分析】解:(1)如图,在Rt△BCD中,BC=4,∠ABC=45°计算AD、CD 即可求解;(2)①⊙O与射线CA相切包括P在AB两侧两种情况,当P在AB左侧时,如图,sin∠ACD==,而CD=x+2r=4,可求x,同理当P在AB右侧时可解;②设圆的半径为r,四边形DEPF为矩形,包括P在AB两侧两种情况,当P在AB右侧时,如图设:PD=x﹣4=a,利用三角形APD的面积:ED=、DF=,利用ED2=DF2可以求解,同理当当P在AB左侧的情况;(3)如图,PA′2=()2+(﹣x)2=x2﹣11x+,PC2=32+16﹣(8+4)x+x2,即可求解.【解答】解:(1)如上图,在Rt△BCD中,BC=4,∠ABC=45°,则:CD=4,BD=4,∴AD=AB﹣BD=3,sin∠ACD==;(2)①⊙O与射线CA相切,包括P在AB两侧两种情况,当P在AB左侧时,如下图,圆的半径为r,圆与AC相切于点H,则在Rt△CHO中,OC=x+r,OH=r,sin∠ACD=,sin∠ACD==,而CD=x+2r=4,解得:x=1,同理当P在AB右侧时,求得x=4+6=10,所有满足条件时x的值为x=1或x=10;②设圆的半径为r,四边形DEPF为矩形,包括P在AB两侧两种情况,当P在AB右侧时,原图的简图如下图,设∠ABP=∠DPE=α,设:PD=x﹣4=a,在Rt△ADP中,利用三角形APD的面积=ED•AP=AP•PD,解得:ED=,同理可得:DF=,PF2=a2﹣DF2,四边形DEPF为矩形,∴ED2=DF2,解得:a=2,x=4+2,则sinα=,cosα=,S四边形DEPF=DP•sinα•cosα=,同理当当P在AB左侧时,此时PD=4﹣x=a,经计算a=2,x=4﹣2,S四边形DEPF=DP•sinα•cosα=,答:当x=4±2时,四边形DEPF为矩形,矩形DEPF的面积为;(3)如下图,连接PA′、PC′,在△PDA′中,AD′=3,PD=4﹣x,∠PDA=150°,利用勾股定理得:PA′2=()2+(﹣x)2=x2﹣11x+,当r2=PA′2时,解得:x=7,同理可得:PC2=32+16﹣(8+4)x+x2,当r2=PC′2时,解得:x=,∴x的取值范围为:<x<7.中考数学一诊试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 《习近平总书记系列重要讲话读本》中讲到“绿水青山就是金山银山”,我们要尊重自然、顺应自然、保护自然的理念,贯彻节约资源和保护环境的基本国策.在下列环保标志中既是轴对称图形又是中心对称图形的是()A. B. C. D.2、(3分) 下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(-a3)2=a53、(3分) 中国高速路里程已突破13万公里,居世界第一位,将13万用科学记数法表示为()A.0.13×105B.1.3×104C.1.3×105D.13×1044、(3分) 把方程x-4x=4的解用数轴上的点表示出来,那么该点在图中的()A.点M,点N之间B.点N,点O之间C.点O,点P之间D.点P,点Q之间5、(3分) 如图,是一个几何体的三视图,则这个三视图,则这个几何体是()A.长方体B.圆柱体C.球体D.圆锥体6、(3分) 某地区汉字听写大赛中,10名学生得分情况如下表:那么这10名学生所得分数的中位数和众数分别是()A.85和85B.85.5和85C.85和82.5D.85.5和807、(3分) 已知点(-2,y1),(-1,y2),(1,y3)都在直线y=-x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y28、(3分) 如图,在▱ABCD中,用直尺和圆规作得AE,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.109、(3分) 三角形的外心是指什么线的交点?()A.三边中线B.三内角的平分线C.三边高线D.三边垂直平分线10、(3分) 如图,池中心竖直水管的顶端安一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m,水柱落地处离池中心3m,水管的长为()A.2.1mB.2.2mC.2.3mD.2.25m二、填空题(本大题共 9 小题,共 36 分))−3=______.11、(4分) 计算:(1212、(4分) 如图,将香港特别行政区标志紫荆花图案绕中心旋转,当此图案第一次与自身重合时,其旋转角的大小为______.13、(4分) 如图,将△ABC沿BC边上的中线AD平移到△A′B′C′的位置,已知△ABC的面积为18,阴影部分三角形的面积为8,若AA′=1,则A′D的值为______.14、(4分) 如果关于x的一元二次方程(m-2)x2+2x+1=0有两个不相等的实数根,那么m 的取值范围为______.15、(4分) 如图,已知矩形OABC与矩形ODEF是位似图形,P是位似中心,若点B的坐标为(2,4),点E的坐标为(-1,2),则点P的坐标为______.16、(4分) 设α、β是方程x2-x-2018=0的两根,则α3+2019β-2018的值为______.x−a与双17、(4分) 从-2,-1,0,1,2这5个数中随机抽取一个数记为a,则使直线y=14有1个交点的概率为______.曲线y=3a+2x18、(4分) 在△ABC中,∠ACB=90°,BC=8,AC=6,以点C为圆心,4为半径的圆上有一动点D,连接AD,BD,CD,则12BD+AD的最小值是______.19、(4分) 对于一个函数,如果它的自变量x与函数值y满足:当-1≤x≤1时,-1≤y≤1,则称这个函数为“闭函数”.例如:y=x,y=-x均是“闭函数”.已知y=ax2+bx+c(a≠0)是“闭函数”,且抛物线经过点A(1,-1)和点B(-1,1),则a的取值范围是______.三、解答题(本大题共 8 小题,共 74 分)20、(12分) (1)计算:3tan30°-√12−√2cos45∘+(π−2019)0(2)化简:m 2+2m+1m2+2m ÷(1−1m+2)21、(6分) 解不等式组:{3x+4≥2x①x+25−x−34≥1①22、(8分) 一艘观光游船从港口A以北偏东60°的方向出港观光,航行80海里至C处时发生了侧翻沉船事故,立即发出了求救信号,一艘在港口正东方向的海警船接到求救信号,测得事故船在它的北偏东37°方向,马上以40海里每小时的速度前往救援,求海警船到达事故船C处所需的大约时间.(温馨提示:sin53°≈0.8,cos53°≈0.6)23、(8分) 一个不透明的口袋里装有分别标有汉字“优”、“教”、“郫”、“都”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“优”的概率为多少?(2)从中任取一球,不放回,再从中任取一球,请用树状图或列表的方法,求取出两个球上的汉字能组成“优教”或“郫都”的概率.在第一象限内交于A、B两点,已知A(1,24、(10分) 如图,直线y1=k1x+b与双曲线y2=k2xm),B(2,1).(1)直接写出不等式y2>y1的解集;(2)求直线AB的解析式;(3)设点P是线段AB上的一个动点,过点P作PD⊥x轴于点D,E是y轴上一点,求△PED的面积S的最大值.25、(8分) 某商店准备购进一批电冰箱和空调,每台电冰箱的进价比每台空调的进价多400元,商店用8000元购进电冰箱的数量与用6400元购进空调的数量相等.(1)求每台电冰箱与空调的进价分别是多少?(2)已知电冰箱的销售价为每台2100元,空调的销售价为每台1750元.若商店准备购进这两种家电共100台,其中购进电冰箱x台(33≤x≤40),那么该商店要获得最大利润应如何进货?26、(10分) 如图,点E是正方形ABCD的边BC延长线上一点,连接DE,过顶点B作BF⊥DE,垂足为F,BF交边DC于点G.(1)求证:DG•BC=DF•BG;(2)连接CF,求∠CFB的大小;(3)作点C关于直线DE的对称点H,连接CH,FH.猜想线段DF,BF,CH之间的数量关系并加以证明.27、(12分) 如图,抛物线y=-x2+mx+2m2(m>0)与x轴交于A、B两点,点A在点B的左边,C是抛物线上一个动点(点C与点A、B不重合),D是OC的中点,连接BD并延长,交AC于点E.(1)用含m的代数式表示点A、B的坐标;(2)求证:CEAE =23;(3)若点C、点A到y轴的距离相等,且s△CDE=1.6时,求抛物线和直线BE的解析式.四、计算题(本大题共 1 小题,共 10 分)28、(10分) 如图,在△ABC中,∠C=90°,∠ABC的平分线交AC于点E,过点E作BE的垂线交AB于点F,⊙O是△BEF的外接圆.(1)求证:AC是⊙O的切线;(2)过点E作EH⊥AB,垂足为H,求证:CD=HF;(3)若CD=1,EF=√10,求AF长.2019年四川省成都市郫都区中考数学一诊试卷答案【第 1 题】【答案】B【解析】解:A、是轴对称图形,不是中心对称图形.故本选项错误;B、既是轴对称图形又是中心对称图形.故本选项正确;C、不是轴对称图形,不是中心对称图形.故本选项错误;D、不是轴对称图形,不是中心对称图形.故本选项错误.故选:B.根据轴对称图形与中心对称图形的概念求解.本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.【第 2 题】【答案】C【解析】解:(A)a4+a4=2a4,故A错误;(B)a5•a4=a9,故B错误;(C)a4÷a=a3,故B正确;(D)(-a3)2=a6,故D错误;故选:C.根据整式的运算法则即可求出答案.本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.【第 3 题】【答案】C【解析】解:将13万用科学记数法表示为:1.3×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【第 4 题】【答案】A【解析】,解:解方程x-4x=4得到:x=-43∵-2<-4<-1,3∴该点在图中的位置是点M与点N之间,故选:A.通过解一元一次方程求得x=-4,将其在数轴上找出来即可.3考查了数轴,用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.【第 5 题】【答案】B【解析】解:圆柱体的主视图和左视图均为矩形,俯视图是圆,故选:B.根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.此题考查了由三视图判断几何体,关键是对三视图能熟练掌握和灵活运用,体现了对空间想象能力的考查.【答案】A【解析】解:把这组数据从小到大排列,处于中间位置的两个数都是85,那么由中位数的定义可知,这组数据的中位数是85;在这一组数据中85出现的次数最多,则众数是85;故选:A.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.本题考查了众数与中位数的意义.众数是一组数据中出现次数最多的数据;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.【第 7 题】【答案】A【解析】解:∵直线y=-x+b,k=-1<0,∴y随x的增大而减小,又∵-2<-1<1,∴y1>y2>y3.故选:A.先根据直线y=-x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.本题考查的是一次函数的增减性,即一次函数y=kx+b(k≠0)中,当k>0,y随x的增大而增大;当k<0,y随x的增大而减小.。
人教版中考仿真模拟检测《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题 1.13-的相反数是( ) A. 13 B. 13- C. 3 D. -32.下列图形中,不是轴对称图形的是( )A. B.C. D.3.结果为a 2的式子是( )A. a 6÷a 3B. a 4·a -2C. (a -1)2D. a 4-a 2 4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角 5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <y B. x >y C. x≤y D. x≥y6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.7.函数13xyx+=-中自变量x取值范围是()A. x≥B. x≠3C. x≥且x≠3D. 1x<-8.样本数据3、6、a、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 39.如图,⊙O是△ABC的外接圆,∠C=30°,AB=2 cm,则⊙O的半径为()A. 5 cmB. 4 cmC. 3 cmD. 2 cm10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 111.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A 2 B. 3 C. 5 D. 612.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示为 .14.因式分解:34a a -=_______________________.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.16.如图,已知双曲线(0)k y x x=>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.三、解答题17.计算:1011()(3)2cos 45221π---+-+- 18.解方程:11322x x x-=---. 19.我校数学社团成员想利用所学知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A 1,A 2,A 3,A 4,现对A 1,A 2,A 3,A 4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A 1所在扇形的圆心角的度数;(3)现从A 1,A 2中各选出一人进行座谈,若A 1中有一名女生,A 2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.21.如图,四边形ABCD 内接于⊙O ,BD 是⊙O 直径,AE ⊥CD 交CD 的延长线于点E ,DA 平分∠BDE . ⑴求证:AE 是⊙O 的切线;⑵若AE =4cm ,CD =6cm ,求AD 的长.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:脐橙品种 A B C每辆汽车运载量(吨) 6 5 4每吨脐橙获利(百元) 12 16 10(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.答案与解析一、选择题1.13-的相反数是()A. 13B.13- C. 3 D. -3【答案】A 【解析】试题分析:根据相反数的意义知:13-的相反数是13.故选A.【考点】相反数.2.下列图形中,不是轴对称图形的是( )A. B.C. D.【答案】A【解析】【分析】根据轴对称图形的概念对各图形分析判断即可得解.【详解】A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:A.【点睛】本题考查轴对称的定义,牢记定义是解题关键.3.结果为a2的式子是()A. a6÷a3B. a4·a-2C. (a-1)2D. a4-a2【答案】B【解析】【分析】根据同底数幂的乘除法以及幂的乘方公式,即可求得答案.【详解】解:A. a 6÷a 3=633a a -=,错误; B. a 4·a -2= a 4-2=2a ,正确;C. (a -1)2=2a -,错误;D .a 4-a 2≠a 2,错误.故选B .【点睛】本题考查整式的乘法,涉及的知识点有同底数幂的乘除法以及幂的乘方,熟练掌握整式乘法的运算法则是解题的关键.4.已知:如图, AB CD ⊥,垂足为,EF 为过点的一条直线,则1∠与2∠的关系一定成立的是( )A. 相等B. 互补C. 互余D. 互为对顶角【答案】C【解析】【分析】 根据互余的定义,结合图形解答即可.【详解】∵AB CD ⊥,∴∠BOC=90°,∴∠1+∠COE=90°.∵∠2=∠COE ,∴∠1+∠2=90°,∴1∠与2∠互余.故选C.【点睛】本题考查了垂直的定义,对顶角的性质,以及余角的定义,如果两个角的和等于90°那么这两个角互为余角,其中一个角叫做另一个角的余角.5.某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤,价格为每斤y 元.后来他以每斤2x y +元的价格卖完后,结果发现自己赔了钱,其原因是( ) A. x <yB. x >yC. x≤yD. x≥y【答案】B【解析】 【详解】解:根据题意得,他买黄瓜每斤平均价是302050x y +, 以每斤2x y +元的价格卖完后,结果发现自己赔了钱 则302050x y +>2x y + 解之得,x >y .所以赔钱的原因是x >y .故选B .6.在物理实验课上,小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是【 】A. B. C. D.【答案】C【解析】根据浮力的知识,铁块露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.因为小明用弹簧称将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度. 故选C .7.函数1x y +=x 的取值范围是( ) A. x ≥B. x ≠3C. x ≥且x ≠3D. 1x <-【答案】C【解析】【详解】解:根据被开方数为非负数和分母不分0列不等式:10{30x x +≥-≠, 解得:x ≥且x ≠3.故选C .【点睛】本题考查函数自变量的取值范围.8.样本数据3、6、a 、4、2的平均数是5,则这个样本的方差是( )A. 8B. 5C. 22D. 3【答案】A【解析】【分析】本题可先求出a 的值,再代入方差的公式即可.【详解】∵3、6、a 、4、2的平均数是5,∴a=10, ∴方差22222211[35651054525]40855S =-+-+-+-+-=⨯=()()()()(). 故选A . 【点睛】本题考查的知识点是平均数和方差的求法,解题关键是熟记计算方差的步骤是:①计算数据的平均数;②计算偏差,即每个数据与平均数的差;③计算偏差的平方和;④偏差的平方和除以数据个数. 9.如图,⊙O 是△ABC 的外接圆,∠C =30°,AB =2 cm ,则⊙O 的半径为( )A. 5 cmB. 4 cmC. 3 cmD. 2 cm【答案】D【解析】【分析】 连接OA 、OB ,根据一条弧所对的圆周角等于它所对的圆心角的一半,可知△OAB 是等边三角形,即可求得⊙O 的半径OA=OB=AB=2.【详解】解:如图:连接OA 、OB ,则OA 、OB 即为半径,∵∠C=30°,∴∠AOB=60°,又∵OA=OB,∴△OAB为等边三角形,且AB=2 cm,∴OA=OB= AB=2 cm.故选D.【点睛】本题考查圆周角与三角形的综合运用,熟练掌握圆周角定理,作出辅助线是解题的关键.10.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()A. 4B. 3C. 2D. 1【答案】A【解析】【分析】先由两组对边分别平行的四边形为平行四边形,根据DE∥CA,DF∥BA,得出四边形AEDF是平行四边形,故①正确;当∠BAC=90°,根据推出的平行四边形AEDF,利用有一个角为直角的平行四边形为矩形可得出②正确;如果AD平分∠BAC,通过等量代换可得∠EAD=∠EDA,可得平行四边形AEDF的一组邻边相等,即可得到四边形AEDF是菱形,故③正确;由AD⊥BC且AB=AC,根据等腰三角形的三线合一可得AD平分∠BAC,同理可得四边形AEDF是菱形,故④正确;进而得到正确说法的个数.【详解】解:∵DE∥CA,DF∥BA∴四边形AEDF是平行四边形,①正确;若∠BAC=90°∴平行四边形AEDF为矩形,②正确;若AD平分∠BAC∴∠EDA=∠FAD又DE∥CA,∴∠EAD=∠EDA,∴AE=DE.∴平行四边形AEDF为菱形,③正确;若AD⊥BC,AB=AC,∴AD平分∠BAC,同理可得平行四边形AEDF为菱形,④正确;故选A.【点睛】本题考查四边形与三角形结合的相关知识,熟练掌握平行四边形、矩形、菱形的判定定理是解答本题的关键.11.如图,在等边△ABC中,AC=9,点O在AC上,且AO=3,点P是AB上一动点,连结OP,将线段OP 绕点O逆时针旋转60°得到线段OD.要使点D恰好落在BC上,则AP的长是()A. 2B. 3C. 5D. 6【答案】D【解析】【分析】根据∠A+∠APO=∠POD+∠COD,可得∠APO=∠COD,进而可以证明△APO△COD,进而可以证明AP=CO,即可解题.【详解】解:∵∠A+∠APO=∠POD+∠COD,∠A=∠POD,∴∠APO=∠COD,在△APO和△COD中A CAPO CODOD OP∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APO △COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为6.【点睛】本题是全等三角形与旋转的综合题型,理解题意,找出全等的三角形,再通过代换求得答案是解题的关键.12.已知抛物线y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论①abc <0,②a +b +c =2,③a >12④0<b <1中正确的有( )A. ①②B. ①②③C. ①②④D. ①②③④【答案】B【解析】【分析】 根据抛物线的开口方向可以判断a 与0的关系,由抛物线与y 轴交点判断c 与0的关系,然后根据对称轴以及抛物线与x 轴交点情况进行推理,进而得到结论. 【详解】解:∵抛物线的开口向上,∴a 0>当x=0时,可得c 0<,∵对称轴x=- 02b a<,∴a 、0b b >同号,即,∴abc <0,故①正确;当x=1时,即a++c=2故②正确;当x=-1时,a-+c 0<,又a++c=2,∴a+c=2-,将上式代入a-+c 0<,即2-2b 0<,∴b 1>.故④错误;∵对称轴x=- 12b a >-, 解得 2b < a , 因为b 1>, ∴a 12>, 故③正确.故选B .【点睛】本题是二次函数图像的综合题型,掌握二次函数的定义,对称轴等相关知识是解题的关键,是中考的必考点.二、填空题13.股市有风险,投资须谨慎.截止今年5月底,我国股市开户总数约95000000,正向1亿挺进,95000000用科学记数法表示 .【答案】9.5×710【解析】【分析】实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.将一个绝对值较大的数写成科学记数法a×10n 的形式时,其中1≤|a|<10,n 为比整数位数少1的数,而且a×10n (1≤|a|<10,n 为整数)中n 的值是易错点.【详解】解:根据题意95 000 000=9.5×107. 故答案为:9.5×107. 【点睛】本题考查科学计数法,在a×10n 中,a 的整数部分只能取一位整数,且n 的数值比原数的位数少1,95 000 000的数位是8,则n 的值为7.14.因式分解:34a a -=_______________________.【答案】(2)(2)a a a +-【解析】【分析】先提公因式,再用平方差公式分解.【详解】解:()3244(2)(2)a a a a a a a -=-=+-【点睛】本题考查因式分解,掌握因式分解方法是关键.15.如图,∠AOB =45°,过OA 上到点O 的距离分别为1,3,5,7,9,11,的点作OA 的垂线与OB 相交,得到并标出一组黑色梯形,它们的面积分别为S 1,S 2,S 3,S 4,…,观察图中的规律,求出第10个黑色梯形的面积S 10=_____.【答案】76【解析】【分析】仔细观察可发现规律:第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2,然后按此公式求得上下底,再利用面积公式计算面积就行了.【详解】解法①:从图中可以看出,第一个黑色梯形的上底为1,下底为3,第2个黑色梯形的上底为5=1+4,下底为7=1+4+2,第3个黑色梯形的上底为9=1+2×4,下底为11=1+2×4+2,则第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2, ∴第10个黑色梯形的上底=1+(10﹣1)×4=37,下底=1+(10﹣1)×4+2=39, ∴第10个黑色梯形面积S 10=12×(37+39)×2=76. 解法②根据图可知:S 1=4,S 2=12,S 3=20,以此类推得Sn =8n ﹣4,S 10=8×10﹣4=76.【点睛】本题是找规律题,找到第n 个黑色梯形的上底=1+(n ﹣1)×4,下底=1+(n ﹣1)×4+2是解题的关键.16.如图,已知双曲线(0)k y x x =>经过矩形OABC 边AB 的中点,交BC 于点,且四边形OEBF 的面积为2,则k =_______.【答案】2【解析】【分析】如果设F (x ,y ),表示点B 坐标,再根据四边形OEBF 的面积为2,列出方程,从而求出k 的值. 【详解】解:∵双曲线(0)k y x x =>经过矩形OABC 边AB 中点 设F (x ,y ),E (a ,b ),那么B (x ,2y ),∵点E 在反比例函数解析式上,∴S △COE =12ab=12k , ∵点F 在反比例函数解析式上, ∴S △AOF =12xy=12k ,即xy=k ∵S 四边形OEBF =S 矩形ABCO -S △COE -S △AOF ,且S 四边形OEBF =2,∴2xy-12k-12xy=2, ∴2k-12k-12k=2, ∴k=2.故答案为:2.【点睛】本题的难点是根据点F 的坐标得到其他点的坐标.在反比例函数上的点的横纵坐标的积等于反比例函数的比例系数.三、解答题17.计算:101()(3)2cos 45221π--+-+-【答案】-2.【解析】【分析】原式利负指数幂法则,零指数幂,特殊角的三角函数,分母有理化,进行计算即可解答【详解】原式=2(21)12--+++=-2. 【点睛】此题考查了零指数幂,负整数指数幂,三角函数,解题关键在于掌握运算法则18.解方程:11322x x x-=---. 【答案】无解 【解析】【详解】解:方程两边同乘(2)x -,得1(1)3(2)x x =----.解这个方程,得2x =.检验:当2x =时,20x -=,所以2x =是增根,原方程无解.解分式方程步骤:去分母转化成一元一次方程即可,但需要特别注意,需要检验方程的根是否是原方程的增根19.我校数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN 的长).直线MN 垂直于地面,垂足为点P ,在地面A 处测得点M 的仰角为60°,点N 的仰角为45°,在B 处测得点M 的仰角为30°,AB =5米.且A 、B 、P 三点在一直线上,请根据以上数据求广告牌的宽MN 的长.(结果保留根号)535-米 【解析】【分析】设AP=NP=x ,在Rt △APM 中可以求出3,在Rt △BPM 中,∠MBP=30°,求得x ,利用MN =MP -NP 即可求得答案.【详解】解:∵在Rt △APN 中,∠NAP =45°,∴PA =PN ,在Rt△APM中,tan∠MAP=MP AP,设PA=PN=x,∵∠MAP=60°,∴MP=AP·tan∠MAP=3x,在Rt△BPM中,tan∠MBP=MP BP,∵∠MBP=30°,AB=5,∴33=3x5x+,∴x=52,∴MN=MP-NP=3x-x=5352-.答:广告牌的宽MN的长为5352-米.【点睛】本题考查解直角三角形在实际问题中的应用,将实际问题抽象为数学问题,选用适当的锐角三角函数解直角三角形是解题的关键,属于中考的必考点.20.当前,”精准扶贫”工作已进入攻坚阶段,凡贫困家庭均要”建档立卡”.某初级中学七年级共有四个班,已”建档立卡”的贫困家庭的学生人数按一、二、三、四班分别记为A1,A2,A3,A4,现对A1,A2,A3,A4统计后,制成如图所示的统计图.(1)求七年级已”建档立卡”的贫困家庭的学生总人数;(2)将条形统计图补充完整,并求出A1所在扇形的圆心角的度数;(3)现从A1,A2中各选出一人进行座谈,若A1中有一名女生,A2中有两名女生,请用树状图表示所有可能情况,并求出恰好选出一名男生和一名女生的概率.【答案】(1)15人;(2)补图见解析 (3)1 2 .【解析】【分析】(1)根据三班有6人,占的百分比是40%,用6除以所占的百分比即可得总人数;(2)用总人数减去一、三、四班的人数得到二班的人数即可补全条形图,用一班所占的比例乘以360°即可得A1所在扇形的圆心角的度数;(3)根据题意画出树状图,得出所有可能,进而求恰好选出一名男生和一名女生的概率.【详解】解:(1)七年级已”建档立卡”的贫困家庭的学生总人数:6÷40%=15人;(2)A2的人数为15﹣2﹣6﹣4=3(人)补全图形,如图所示,A1所在圆心角度数为:215×360°=48°;(3)画出树状图如下:共6种等可能结果,符合题意的有3种∴选出一名男生一名女生的概率为:P=31 62 .【点睛】本题考查了条形图与扇形统计图,概率等知识,准确识图,从图中发现有用的信息,正确根据已知画出树状图得出所有可能是解题关键.21.如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD交CD的延长线于点E,DA平分∠BDE.⑴求证:AE是⊙O的切线;⑵若AE=4cm,CD=6cm,求AD的长.【答案】(1)证明见解析;(2)AD=25.【解析】【分析】(1)根据等边对等角得出∠ODA=∠OAD,进而得出∠OAD=∠EDA,证得EC∥OA,从而证得AE⊥OA,即可证得AE是⊙O的切线;(2)过点O作OF⊥CD,垂足为点F.从而证得四边形AOFE是矩形,得出OF=AE=4cm,根据垂径定理得出DF=12CD=3cm,在Rt△ODF中,根据勾股定理即可求得⊙O的半径,得出ED,根据勾股定理即可求得AD.【详解】(1)证明:连结OA.∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)过点O作OF⊥CD,垂足为点F.∵∠OAE=∠AED=∠OFD=90°∴四边形AOFE是矩形.∴OF=AE=4cm. EF=OA,又∵OF⊥CD,∴DF=12CD=3cm.在Rt△ODF中,22OF DF=5cm,即⊙O的半径为5cm,∴EF=OA=5cm,∴ED=EF-DF=5-3=2cm,在Rt△AED中,【点睛】此题考查等腰三角形的性质,垂径定理,平行线的判定和性质,切线的判定和性质,勾股定理的应用,熟练掌握性质定理和作辅助线是解题的关键.A B C三种品牌脐橙共100吨参加上海世博会,按计划,20辆汽车都要22.我市某镇组织20辆汽车装运完,,装运,每辆汽车只能装运用一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:从A,B两地运往甲,乙两地的费用如下表:(1)设装运种脐橙的车辆数为,装运种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案?(3)若要使此次销售获利最大,应采用哪种安排方案?请求出最大利润的值【答案】(1)y=20-2x;(2)详见解析;(3)当装运A种脐橙4车、B种脐橙12车、C种脐橙4车时,获利最大,最大利润为14.08万元.【解析】【分析】(1)等量关系为:车辆数之和=20;(2)关系式为:装运每种脐橙的车辆数≥4;(3)总利润为:装运A种脐橙的车辆数×6×12+装运B种脐橙的车辆数×5×16+装运C种脐橙的车辆数×4×10,然后按x的取值来判定.【详解】解:(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有:6x+5y+4(20-x-y)=100整理得:y=-2x+20(1≤x≤9且为整数);(2)由(1)知,装运A、B、C三种脐橙的车辆数分别为x,-2x+20,x.由题意得42204 xx⎧⎨-+⎩解得:4≤x≤8因x为整数,所以x的值为4,5,6,7,8,所以安排方案共有5种.方案一:装运A种脐橙4车,B种脐橙12车,C种脐橙4车;方案二:装运A种脐橙5车,B种脐橙10车,C种脐橙5车,方案三:装运A种脐橙6车,B种脐橙8车,C种脐橙6车,方案四:装运A种脐橙7车,B种脐橙6车,C种脐橙7车,方案五:装运A种脐橙8车,B种脐橙4车,C种脐橙8车;(3)设利润为W(百元)则:W=6x×12+5(-2x+20)×16+4x×10=-48x+1600∵k=-48<0∴W的值随x的增大而减小.要使利润W最大,则x=4,故选方案一W最大=-48×4+1600=1408(百元)=14.08(万元)答:当装运A种脐橙4车,B种脐橙12车,C种脐橙4车时,获利最大,最大利润为14.08万元.【点睛】解决本题的关键是读懂题意,根据关键描述语,找到所求量的等量关系.确定x的范围,得到装在的几种方案是解决本题的关键.23.如图,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).动点M,N同时从B点出发,分别沿B→A,B→C 运动,速度是1厘米/秒.过M作直线垂直于AB,分别交AN,CD于P,Q.当点N到达终点C时,点M 也随之停止运动.设运动时间为t秒.(1)若a=4厘米,t=1秒,则PM=______厘米;(2)若a=5厘米,求时间t,使△PNB∽△PAD,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN与梯形PQDA的面积相等,求a的取值范围;【答案】(1)34;(2)2∶3;(3)3<a≤6.【解析】【分析】(1)由题意可知,t =1秒时,BN=BM=1,又因为PM ⊥BC ,所以△ANB ∽△APM ,根据相似三角形的性质,即可求得PM ;(2)根据题意,当△PNB ∽△PAD 时,对应边之比等于高之比,即NB BM AD AM=,进而可以求出时间t 以及相似比;(3)设BN=t ,则0t 3≤≤,则BM=t ,再用t 表示出PM ,就可以用t 表示出两个梯形的面积,求出t 的值,进而求出a 的取值范围.【详解】解:(1)当t =1时,MB =1,NB =1,AM =4-1=3,∵PM ∥BN ,∴△ANB ∽△APM , ∴PM AM NB AB=, ∴PM =34. (2)作出△PNB 和△PAD ,则BM 和AM 分别是它们的高,若△PNB ∽△PAD ,则NB BM AD AM =, 即35t t t=-,解得t=2, 即t =2时,使得△PNB ∽△PAD ,∴相似比为2∶3.(3)∵PM ⊥AB ,CB ⊥AB ,∠AMP =∠ABC ,△AMP ∽△ABN , ∴PM AM NB AB =,即PM a t t a-=, ∴()PM t a t a -=,∴()QP 3t a t a -=-,当梯形PMBN 与梯形PQDA 的面积相等时,即()()()()()332222t a t t a t a t t t a QP AD DQ MP BN BM a ⎛⎫-⎛⎫-+- ⎪-+ ⎪++⎝⎭⎝⎭===, 化简得t =66a a +, ∵t3, ∴636a a≤+,则a6, ∴3a6.【点睛】本题是矩形中动点与相似三角形的的综合问题,难度一般,根据所求正确的找出相似三角形,再利用对应边成比例是解题的关键,是中考的重要考点.24.如图,抛物线L1:y=-x2-2x+3交x轴于A,B两点,交y轴于M点抛物线L1向右平移2个单位得到抛物线L2,L2交x轴于C,D两点.(1)求抛物线L2对应的函数表达式;(2)抛物线L1或L2在x轴上方的部分是否存在点N,使以A,C,M,N为顶点的四边形是平行四边形?若存在,求出点N的坐标;若不存在,请说明理由;(3)若点P是抛物线L1上的一个动点(P不与点A,B重合),那么点P关于原点的对称点Q是否在抛物线L2上?请说明理由.【答案】(1)y=-x2+2x+3;(2)存在,N(2,3),N′(-2,3);(3)点Q不在抛物线L2上.【解析】【分析】(1)由于是平移,所以抛物线的开口方向和开口大小不变,先求出L1与x轴的交点,再求出L2与x轴的交点,即可求出抛物线L2的解析式;(2)因为是平移,根据平移的性质,连接各组对应点的线段平行且相等,故存在符合条件的点N,即可求得N 点坐标;(3)先设出L1上的点(x1,y1),进而求得关于原点的对称点(-x1,-y1),再将(-x1,-y1)代入函数L2的解析式,成立则在图像上,不成立则不在图像上.【详解】解:(1)令y=0,得-x2-2x+3=0,∴x1=-3,x2=1,∴A(-3,0),B(1,0) ,∵抛物线L1向右平移2个单位得抛物线L2,∴C(-1,0),D(3,0),a=-1,∴抛物线L 2为y =-(x +1)(x -3) .即y =-x 2+2x +3.(2)存在;令x =0,得y =3,∴M(0,3),∵抛物线L 2是L 1向右平移2个单位得到的,∴点N(2,3)在L 2上,且MN =2,MN ∥AC ,又∵AC =2,∴MN =AC ,∴四边形ACNM 为平行四边形.同理,L 1上的点N′(-2,3)满足N′M ∥AC ,N′M =AC ,∴四边形ACMN′是平行四边形.∴N(2,3)或N′(-2,3)即所求.(3)设P(x 1,y 1)是L 1上任意一点(y 1≠0),则点P 关于原点的对称点Q(-x 1,-y 1),且211123y x x =--+,将点Q 的横坐标代入L 2,得:2111123Q y x x y y =--+=≠-∴点Q 不在抛物线L 2上.【点睛】本题目是二次函数的综合题型,涉及的知识点有平移、平行四边形的判定、对称等相关知识,是中考的常考点,同学们需要熟练掌握解题技巧方能快速解题.。
2024年最新人教版初一数学(下册)模拟试卷及答案(各版本)
2024年最新人教版初一数学(下册)模拟试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列哪个数是有理数?A. √2B. 3/4C. πD. √12. 下列哪个数是素数?A. 0B. 1C. 4D. 73. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 三角形4. 下列哪个数是无理数?A. 1/2B. √9C. √16D. π5. 下列哪个图形是圆?A. 正方形B. 矩形C. 梯形D. 圆形二、判断题5道(每题1分,共5分)1. 0是最小的自然数。
()2. 任何一个正整数都可以分解为几个质数的乘积。
()3. 两个负数相乘的结果是正数。
()4. 任何一个正数都有两个平方根。
()5. 任何一个正数都有两个立方根。
()三、填空题5道(每题1分,共5分)1. 3的绝对值是______。
2. 3的平方是______。
3. 2的立方是______。
4. 5的平方根是______。
5. 27的立方根是______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述无理数的定义。
3. 请简述平行四边形的性质。
4. 请简述矩形的性质。
5. 请简述圆的性质。
五、应用题:5道(每题2分,共10分)1. 计算下列各式的值:a) 3 + 7b) 5 9c) 4 × (3)d) 6 ÷ 32. 解下列方程:a) 2x + 3 = 9b) 5 x = 2c) 3(x 2) = 6d) x/4 + 2 = 53. 计算下列各式的值:a) √36b) √49c) √64d) √814. 解下列方程:a) x² = 16b) x² = 25c) x² = 49d) x² = 815. 计算下列各式的值:a) ³√27b) ³√64c) ³√125d) ³√216六、分析题:2道(每题5分,共10分)1. 有一块长方形的菜地,长为10米,宽为8米,请计算菜地的面积。
2022年人教版中考一模考试《数学卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题.每小题都給出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1. 下列各数中,与2020的和为1的数是( )A. 2019-B. 2020-C. 2021-D. 120202. 下列运算中,正确( )A. 2232a a -=B. ()325a a =C. 369a a a ⋅=D. ()22422a a = 3. 国务院新闻办公室2020年1月17日举行新闻发布会称,数据显示,2019年全年出生人口1465万人,这里的”1465万”用科学记数法表示( )A. 4146510⨯B. 61.46510⨯C. 81.46510⨯D. 71.46510⨯ 4. 下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个D. 4个5. 据省统计局公布的数据,某市2019年第三季度GDP 总值约为亿元,第四季度GDP 总值比第三季度增长了8.59%,受”新型冠状肺炎”疫情的影响,该市2020年第一季度GDP 总值比2019年第四季度降低了17.8%,则该市2020年第一季度GDP 总值可用代数式表示为( )A. 8.5%17.8%⨯a 亿元B. ()18.5%17.8%+-a 亿元 C ()()18.5%117.8%-⨯+a 亿元D. ()()18.5%1% 17.8+⨯-a 亿元6. 下列说法正确的是( )A. 对”新型冠状肺炎”疑似病例的核酸检查宜采用抽样调查B. 调查全省中小学生对疫情期间”网课”的满意程度宜采用全面调查C. 一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38D. 我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,所以”胖五”发射成功的概率是127. 关于的一元二次方程()210--=mx x 有两个实数根,则实数的取值范围( )A. 1m ≥-B. 1m ≥-且0m ≠C. 1m >-D. 1m >-且0m ≠ 8. 如图,为ABC 的边AC 上一点,4AB BC CD ===,2∠=∠DBC A ,则BD 的长为( )A 225-+ B. 225-- C. 225+ D. 51-9. 如图,等边ABC 的边长为6cm ,动点从点出发,以每秒2cm 的速度,沿A B C →→的方向运动,到达点时停止,设运动时间为秒,2y PC =,则关于的函数图像大致为( )A. B. C. D. 10. 如图,在边长为1的正方形ABCD 中,点,分别在边CD ,BC 上,且DF CE =,连接BF 、AE 交于点,连接CP ,则线段CP 的最小值为( )A. 512B. 512C. 51D. 51二、填空题11. 因式分解:22242x xy y -+=_________.12. 如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.13. 如图,以等腰OAB 的顶点为圆心的O 与AB 相切于点,并与OA 、OB 交于、两点,连接CD .若30A ∠=︒,且CED 的长为4π3,则CD 的长为______.14. 在CAB 中,90A ∠=︒,4AB AC ==,点,分别是边AC 、AB 上的点,且1AD =,连接DE ,以线段DE 为直角边作等腰直角DEF ,当点恰好落在BC 边上时,则BE 的长______.三、简答题15. 先化简,再求值:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭,其中3a =. 16. 李华家到学校的路是一段平路和一段下坡路.已知李华在平路骑自行车的速度为240米/分钟,在下坡路骑自行车的速度为320米/分钟,在上坡路骑自行车的速度为160米/分钟,若李华从家里到学校需20分钟,从学校到家里需30分钟.请问李华家与学校的距离是多少?(不考虑其他因素)17. 在如图所示的1212⨯网格中,ABC 和222A B C △都是格点三角形,已知格点线段MN .(我们把网格线的交点叫做格点)(1)画出ABC 关于MN 对称的图形111A B C △;(2)说明222A B C △是由111A B C △经过怎样的平移得到的?18. 观察点阵图中点与等式之间关系,寻找规律.①2221211-⨯=+;②2232221-⨯=+;③2243231-⨯=+;④2254241-⨯=+;…按照你发现的规律解答下列问题:(1)第⑥个等式______;(2)用含 (为正整数)的等式表示第n 个等式,并证明其正确性.19. 如图所示,在一个坡度1:2i =的山坡CB 的顶端处竖直立着一个电视发射塔AB .为测得电视发射塔的高度,小明站在山脚的平地处测得电视发射塔的顶端的仰角为40°,若测得斜坡BC 长为1005米,点到点的水平距离20CD =米,求电视发射塔AB 的高度.(参考数值:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,结果保留整数)20. 如图,在矩形ABCD 中,1AB =,2BC =ADC ∠的平分线交边BC 于点,AH DE ⊥于点,连接AE ,连接CH 并延长交AE 于点.(1)求证:ABE AHE ≌△△;(2)求证:2AE FH =.21. 某校为了解九年级学生对安徽省2020年中考新变化的了解情况,随机抽查了部分九年级学生(了解程度分为:”A :非常了解”、”B :比较了解”、”C :不太了解”、”D :完全不了解”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项而且只能选一项),并将统计结果制成如下两幅不完整的统计图,图1中的、、的高度之比为3:11:1,并且知道被调查的学生中非常了解和比较了解的共84人.请你根据以上提供的信息,解答下列问题.(1)被调查的学生中选”A :非常了解”的有______人;(2)一共调查了多少人?(3)若该校九年级有960名学生,请你估算该校九年级学生中对安徽省2020年中考新变化”不太了解”的有多少人?22. 如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线:2y kx =+与抛物线交于、两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)若FOC 的面积为4,求的值;(3)当点在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断.23. 在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过分别作AE AC ⊥交BC 于,AF BD ⊥于.①求证:ABC EAF ∠=∠; ②求BF AC值.答案与解析一、选择题.每小题都給出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1. 下列各数中,与2020的和为1的数是( )A. 2019-B. 2020-C. 2021-D. 12020 【答案】A【解析】【分析】根据题意列式1-2020求值即可.【详解】由题意得1-2020=1+(-2020)=-2019,故选:A .【点睛】此题考查有理数的减法计算法则:减去一个数等于加上这个数的相反数.2. 下列运算中,正确( )A. 2232a a -=B. ()325a a =C. 369a a a ⋅=D. ()22422a a =【答案】C【解析】【分析】先根据合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方求出每个式子的值,再判断即可.【详解】解:A 、结果是2a 2,故本选项不符合题意;B 、结果是a 6,故本选项不符合题意;C 、结果正确,故本选项符合题意;D 、结果是4a 4,故本选项不符合题意;故选:C .【点睛】本题考查了合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方等知识点,能求出每个式子的值是解此题的关键.3. 国务院新闻办公室2020年1月17日举行新闻发布会称,数据显示,2019年全年出生人口1465万人,这里的”1465万”用科学记数法表示( )A. 4146510⨯B. 61.46510⨯C. 81.46510⨯D. 71.46510⨯ 【答案】D【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.【详解】解:1465万=14650000,用科学记数法表示时n=7,∴14650000=71.46510⨯.故选:D .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4. 下面四个几何体中,左视图是四边形的几何体共有()A. 1个B. 2个C. 3个D. 4个【答案】B【解析】简单几何体的三视图. 【分析】左视图是从左边看到的图形,因为圆柱的左视图是矩形,圆锥的左视图是等腰三角形,球的左视图是圆,正方体的左视图是正方形,所以,左视图是四边形的几何体是圆柱和正方体2个.故选B . 5. 据省统计局公布的数据,某市2019年第三季度GDP 总值约为亿元,第四季度GDP 总值比第三季度增长了8.59%,受”新型冠状肺炎”疫情的影响,该市2020年第一季度GDP 总值比2019年第四季度降低了17.8%,则该市2020年第一季度GDP 总值可用代数式表示为( )A. 8.5%17.8%⨯a 亿元B. ()18.5%17.8%+-a 亿元C. ()()18.5%117.8%-⨯+a 亿元D. ()()18.5%1% 17.8+⨯-a 亿元【答案】D【解析】【分析】根据”2020年第一季度GDP 总值=2019年第四季度GDP 总值×(1-降低率)”解答可得.【详解】解:根据题意知到2019年第四季度GDP 总值为1×(1+8.5%)a 亿元,则2020年第一季度GDP 总值为:()()18.5%1% 17.8+⨯-a 亿元,【点睛】本题考查了根据实际问题列代数式,解题的关键是弄清题意,准确表达所求的量.6. 下列说法正确的是( )A. 对”新型冠状肺炎”疑似病例的核酸检查宜采用抽样调查B. 调查全省中小学生对疫情期间”网课”的满意程度宜采用全面调查C. 一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38D. 我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,所以”胖五”发射成功的概率是12【答案】C【解析】【分析】根据全面调查和抽样调查的概念判断.A 、B 选项,根据概率计算方法判断C 、D 选项即可【详解】A .对”新型冠状肺炎”疑似病例的核酸检查宜采用全面调查,此选项错误;B .调查全省中小学生对疫情期间”网课”的满意程度宜采用抽样调查,此选项错误;C .一个不透明的袋子里装有大小、质地完全相同的3个红球和5个白球,从中随机摸出一个球是红球的概率是38,此选项正确; D .根据概率的定义,我国大功率火箭”胖五”目前进行了两次发射,一次成功,一次失败,只经过两次实验,次数太少,不能说明”胖五”发射成功的概率是12,此选项错误, 故选:C .【点睛】本题考查全面调查与抽样调查、概率定义与计算,会根据实际情况选择调查方式,会求事件的概率是解答的关键.7. 关于的一元二次方程()210--=mx x 有两个实数根,则实数的取值范围( )A. 1m ≥-B. 1m ≥-且0m ≠C. 1m >-D. 1m >-且0m ≠ 【答案】B【解析】【分析】根据一元二次方程的定义和判别式与根的关系解答即可.【详解】∵一元二次方程()210--=mx x 即2210mx x --=有两个实数根,∴()20,241440m m m ≠=--=+≥, 解得:m ≠0且m ≥﹣1,故选:B .【点睛】本题考查一元二次方程的定义及根的判别式、解一元一次不等式,熟练掌握一元二次方程的根与判别式的关系是解答的关键.8. 如图,为ABC 边AC 上一点,4AB BC CD ===,2∠=∠DBC A ,则BD 的长为( )A. 225-+B. 225--C. 225+ 51【答案】A【解析】【分析】 根据已知证明△ADB ∽△ABC,利用AB BD AC BC=代值求解即可. 【详解】∵4AB BC CD ===,∴∠A=∠C ,∠DBC=∠BDC ,∵∠DBC=2∠A ,∴∠BDC=∠A+∠ABD=2∠A ,∴∠ABD=∠A=∠C ,∴△ADB ∽△ABC ,AD=BD ∴AB BD AC BC=, 设BD=AD=x ,则44x x =,即24160x x +-=, 解得:12225,225x x =-+=--不符题意,舍去), ∴25BD =-+故选:A .【点睛】本题考查等腰三角形的判定与性质、相似三角形的判定与性质、解一元二次方程,熟练掌握相似三角形的判定与性质是解答的关键.9. 如图,等边ABC 的边长为6cm ,动点从点出发,以每秒2cm 的速度,沿A B C →→的方向运动,到达点时停止,设运动时间为秒,2y PC =,则关于的函数图像大致为( )A. B. C. D.【答案】C【解析】【分析】分段讨论,当03x ≤≤,作PQ ⊥AC 于Q ,根据锐角三角函数求出AQ=x ,3x ,得到CQ=6-x ,利用勾股定理求出2223412364()272PC x x x =-+=-+,是二次函数;当36x <≤时,PC=12-2x ,求出222(122)4(6)PC x x =-=-,是二次函数,根据函数的性质判断图象.【详解】当03x ≤≤,作PQ ⊥AC 于Q ,∵AP=2x ,∠A=60°,∴AQ=x ,3x ,∴CQ=6-x ,∴22241236PQ CQ x x +=-+, ∴2223412364()272PC x x x =-+=-+, 当36x <≤时,PC=12-2x ,∴222(122)4(6)PC x x =-=-,故选:C .【点睛】此题考查等边三角形的性质,锐角三角函数,勾股定理,动点问题与分段函数图象,正确理解分段情况,依据图形的特点求出2PC 是解题的关键.10. 如图,在边长为1的正方形ABCD 中,点,分别在边CD ,BC 上,且DF CE =,连接BF 、AE 交于点,连接CP ,则线段CP 的最小值为( )51- B. 512 51 51【答案】A【解析】【分析】首先判断出△ABE ≌△BCF ,即可判断出∠BAE=∠CBF ,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,所以∠APB=90°;然后根据∠APB=90°保持不变,可得点P 的路径是一段以AB 为直径的弧,设AB 的中点为G ,连接CG 交弧于点P ,此时CP 的长度最小,最后在Rt △BCG 中,根据勾股定理,求出CG 的长度,再求出PG 的长度,即可求出线段CP 的最小值为多少.【详解】如图,∵DF CE =,CD BC =,∴CF BE =,在ABE △和BCF △中,190AB BC ABE BCF BE CF ==⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△BCF ,∴BAE CBF ∠=∠,∵90BAE BEA ∠+∠=︒,∴90CBF BEA ∠+∠=︒,∴90APB ∠=︒,∵点在运动中保持90APB ∠=︒,∴点的路径是一段以AB 为直径的弧,设AB 的中点为,连接CG 交弧于点,此时CP 的长度最小,在Rt BCG 中,222215122CG BC BG ⎛⎫=+=+= ⎪⎝⎭, ∵1122PG AB ==, ∴5151222CP CG PG -=-=-=,即线段CP 的最小值为512-.【点睛】此题还考查了全等三角形的判定和性质的应用,正方形的性质和应用,直角三角形的性质和应用,以及勾股定理的应用,解答此题的关键是判断出什么情况下,CP 的长度最小.二、填空题11. 因式分解:22242x xy y -+=_________.【答案】22()x y -【解析】【分析】先提取公因式(常数2),再对余下的多项式利用完全平方公式继续分解.【详解】222222422(2)2()x xy y x xy y x y -+=-+=-故答案为:22()x y -【点睛】本题主要考查利用完全平方式进行因式分解,熟练掌握完全平方式是解题的关键.12. 如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数表达式是__.【答案】5y x =+【解析】试题分析:首先设点P 的坐标为(x ,y),根据矩形的周长可得:2(x+y)=10,则y=-x+5,即该直线的函数解析式为y=-x+5.13. 如图,以等腰OAB 的顶点为圆心的O 与AB 相切于点,并与OA 、OB 交于、两点,连接CD .若30A ∠=︒,且CED 的长为4π3,则CD 的长为______.【答案】3【解析】【分析】由等腰三角形的性质求得∠AOC=120º,由圆的切线定理得OE ⊥AB ,可证得∠COE=BOE=60º,进而证得OF ⊥CD ,CF=DF ,再由弧长公式求得OC=OD=2,然后由CF=OC ·sin60º即可解得CD 的长.【详解】设OE 与CD 交于点F ,∵△AOB 是等腰三角形,∠A=30º,∴∠AOB=120º,∵O 与AB 相切于点,∴OE ⊥AB ,∴∠COE=BOE=60º,∵OC=OD ,∴OF ⊥CD ,CF=DF , ∵CED 的长为4π3, ∴1204π1803OC π=,即OC=2,∴CF=OC ·sin60º=3232⨯=, ∴CD=2CF=23,故答案为:23.【点睛】本题考查了等腰三角形的性质、切线定理、弧长公式、特殊角的三角函数、解直角三角形,熟练掌握这些知识的运用是解答的关键. 14. 在CAB 中,90A ∠=︒,4AB AC ==,点,分别是边AC 、AB 上的点,且1AD =,连接DE ,以线段DE 为直角边作等腰直角DEF ,当点恰好落在BC 边上时,则BE 的长______.【答案】52或2 【解析】【分析】根据题目信息作等腰直角DEF ,分别讨论①当90DEF ∠=︒或②当90EDF ∠=︒时,证明CDF BFE ∽△△,即可列出等式计算BE 的长度.【详解】解:分两种情况:①当90DEF ∠=︒时,如图1所示:∵ABC 和DEF 是等腰直角三角形, ∴4AC AB ==,45B C EFD EDF ∠=∠=∠=∠=︒,242BC AB ==,2DF EF =, ∵1AD =,∴3CD AC AD =-=,∵EFC EFD CFD B BEF ∠=∠+∠=∠+∠,∴CFD BEF ∠=∠,∴CDF BFE ∽△△, ∴2CF CD DF BE BF EF=== ∴32222BF ===, ∴322222CF BC BF =-==,∴522CF BE ==; ②当90EDF ∠=︒时,如图2所示:同①得:CDF BFE ∽△△,∴12CF CD DF BE BF EF ===, ∴232BF CD ==, ∴42322CF BC BF =-=-=, ∴22BE CF ==;综上所述,BE 的长是52或2. ∴答案为:52或2.【点睛】本题主要考查了等腰直角三角形的性质和相似三角形的证明及性质,其中证明出CDF BFE ∽△△相似是解题的关键.三、简答题15. 先化简,再求值:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭,其中3a =. 【答案】221a a -+,1 【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a 的值代入计算可得. 【详解】解:2221221118a a a a a a a +-⎛⎫⋅-÷ ⎪-+-⎝⎭ ()()()()()()22212181111a a a a a a a a +-=⋅-⋅++-- ()()()()()22181111a a a a a a +=--++-()()()22111a a a -=-+ 221a a -=+, 当3a =时,原式62131-==+. 【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则. 16. 李华家到学校的路是一段平路和一段下坡路.已知李华在平路骑自行车的速度为240米/分钟,在下坡路骑自行车的速度为320米/分钟,在上坡路骑自行车的速度为160米/分钟,若李华从家里到学校需20分钟,从学校到家里需30分钟.请问李华家与学校的距离是多少?(不考虑其他因素)【答案】李华家与学校的距离是5600米【解析】【分析】设平路有米,坡路有米,根据”李华从家里到学校的时间=20分钟,从学校到家里的时间=30分钟”即可列出方程组,解方程组求出x 、y 的值后进一步即可求出答案.【详解】解:设平路有米,坡路有米,根据题意,得:2024032030160240x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,解得24003200x y =⎧⎨=⎩, 所以240032005600x y +=+=米.答:李华家与学校的距离是5600米.【点睛】本题考查了二元一次方程组的应用,属于常考题型,正确理解题意、找准相等关系是解题的关键. 17. 在如图所示的1212⨯网格中,ABC 和222A B C △都是格点三角形,已知格点线段MN .(我们把网格线的交点叫做格点)(1)画出ABC 关于MN 对称图形111A B C △;(2)说明222A B C △是由111A B C △经过怎样的平移得到的?【答案】(1)见解析;(2)先向右平移6个单位长度,再向下平移2个单位长度【解析】【分析】(1)根据轴对称的性质,作出对应点,再把对应点顺次连接作答即可;(2)根据对应点的平移方向和距离作答即可.【详解】解:(1)如图;(2)先向右平移6个单位长度,再向下平移2个单位长度.【点睛】本题考查是网格中图形的变换,图形的变换有三种:平移、旋转和轴对称,正确理解和运用图形的变换规律是解本题的关键18. 观察点阵图中点与等式之间的关系,寻找规律.①2221211-⨯=+;②2232221-⨯=+;③2243231-⨯=+;④2254241-⨯=+;…按照你发现的规律解答下列问题:(1)第⑥个等式是______;(2)用含 (为正整数)的等式表示第n 个等式,并证明其正确性.【答案】(1)2276261-⨯=+;(2)()22121n n n +-=+,证明见解析【解析】【分析】(1)接着第4个等式,写出第5个和第6个等式即可;(2)根据前四个等式与n 的关系,写出第n 个等式,利用完全平方公式展开证明等式成立即可.【详解】解:(1)接着第4个等式,得:第5个等式为:2252561-⨯=+,第6个等式为:2276261-⨯=+,故答案为:2276261-⨯=+;(2)()22121n n n +-=+,证明:左边222121n n n n =++-=+,右边21n =+,∴左边右边,等式成立.【点睛】本题考查探究数字型变化规律、完全平方公式,认真观察,仔细思考,善用联想并借用公式证明是解决这类题的方法.19. 如图所示,在一个坡度1:2i =的山坡CB 的顶端处竖直立着一个电视发射塔AB .为测得电视发射塔的高度,小明站在山脚的平地处测得电视发射塔的顶端的仰角为40°,若测得斜坡BC 长为1005米,点到点的水平距离20CD =米,求电视发射塔AB 的高度.(参考数值:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,结果保留整数)【答案】85米【解析】【分析】如图,根据坡比设BE=x ,EC=2x ,在RtBEC 中,根据勾股定理列出关于x 的方程求出BE 和CE ;在R AEDt △中,利用正切的定义求出AE 问题得解.【详解】解:如图,作AB DC ⊥交DC 的延长线于点,在Rt BCE 中,∵:1:2i BE CE ==,设BE x =,则2CE x =,1005BC =,根据勾股定理得()(22225x x +=, 解得100x =,∴100BE =(米),200CE =(米),∴220DE CE CD =+=(米),在Rt ADE △中, ∵tan 40AE DE︒=, ∴2200.84184.8AE ≈⨯=,∴184.810084.885AB AE BE =-≈-=≈(米),答:电视发射塔AB 的高度约为85米.【点睛】本题考查了坡比的概念、仰角概念及锐角三角函数定义,要求学生能借助仰角、坡比构造直角三角形并结合图形利用三角函数解直角三角形.20. 如图,在矩形ABCD 中,1AB =,2BC =ADC ∠的平分线交边BC 于点,AH DE ⊥于点,连接AE ,连接CH 并延长交AE 于点.(1)求证:ABE AHE ≌△△;(2)求证:2AE FH =.【答案】(1)见解析;(2)见解析【解析】【分析】(1)由矩形的性质得到2,AD =证明ADH 是等腰直角三角形,求解1,AH = 从而利用斜边直角边公理证明ABE AHE ≌△△.(2)由EDC △是等腰直角三角形,Rt ABE Rt AHE ≌△△,求解67.5,AEH ∠=︒ 再求解67.5,DHC ∠=︒ 利用等腰三角形的性质可得答案.【详解】解:(1)在矩形ABCD 中,2AD BC ==, ∵DE 平分ADC ∠,∴45ADE ∠=︒,∵AH DE ⊥,∴ADH 是等腰直角三角形, ∴2AD AH =,∴1AH =,∴1AH AB ==,又∵AE AE =,∴Rt ABE Rt AHE ≌△△.(2)证明:∵EDC △是等腰直角三角形,∴45EDC DEC ∠∠==︒,∵Rt ABE Rt AHE ≌△△, ∴1801804567.522DEC AEH ︒-∠︒-︒∠===︒, 在等腰直角ADH 中,1DH AH ==,在矩形ABCD 中,1DC AB ==,∴DH DC =, ∴1801804567.522HDC DHC ︒-∠︒-︒∠===︒, ∴67.5FHE DHC ∠=∠=︒∴AEH FHE ∠=∠,∴FE FH =,AH DE ⊥90,AEH FAH FHE FHA ∴∠+∠=︒=∠+∠,FAH FHA ∴∠=∠FA FH ∴=,∴2AE FH =.【点睛】本题考查的是矩形的性质,等腰三角形的判定,等腰直角三角形的性质,三角形全等的判定与性质,掌握以上知识是解题的关键.21. 某校为了解九年级学生对安徽省2020年中考新变化的了解情况,随机抽查了部分九年级学生(了解程度分为:”A :非常了解”、”B :比较了解”、”C :不太了解”、”D :完全不了解”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项而且只能选一项),并将统计结果制成如下两幅不完整的统计图,图1中的、、的高度之比为3:11:1,并且知道被调查的学生中非常了解和比较了解的共84人.请你根据以上提供的信息,解答下列问题.(1)被调查的学生中选”A :非常了解”的有______人;(2)一共调查了多少人?(3)若该校九年级有960名学生,请你估算该校九年级学生中对安徽省2020年中考新变化”不太了解”的有多少人?【答案】(1)18;(2)120人;(3)240人.【解析】【分析】(1)设被调查的学生中选A 的人数为人,从而可得选B 、D 的人数,再根据选A 、B 的共有84人建立方程求出x 的值,由此即可得出答案;(2)先根据(1)求出选D 的人数,再根据扇形统计图中的数据即可得;(3)先求出选”C :不太了解”的学生人数占比,再乘以960即可得.【详解】(1)设被调查的学生中选A 的人数为人,则选B 的人数为11x 人,选D 的人数为人由题意得:31184x x +=解得6x =则318x =即被调查的学生中选A 的人数为18人故答案为:18;(2)由(1)可知,选D 的人数为6人则65%120÷=(人)答:一共调查了120人;(3)由(1)可知,选A 、B 、D 的学生人数为3111515690x x x x ++==⨯=(人)则选”C :不太了解”的学生人数占比为12090100%25%120-⨯= 96025%240⨯=(人) 答:估计该校九年级学生中对安徽省2020年中考新变化”不太了解”的有240人.【点睛】本题考查了条形统计图和扇形统计图的信息关联等知识点,熟练掌握统计调查的相关知识是解题关键.22. 如图,已知抛物线2y ax c =+过点()2,2-,()4,5,过定点()0,2F 的直线:2y kx =+与抛物线交于、两点,点在点的右侧,过点作轴的垂线,垂足为.(1)求抛物线的解析式;(2)若FOC 的面积为4,求的值;(3)当点在抛物线上运动时,判断线段BF 与BC 的数量关系(、、),并证明你的判断.【答案】(1)2114y x =+;(2)34k =;(3)BF=BC ,证明见解析【解析】【分析】(1)把点()2,2-,()4,5代人2y ax c =+即可求解;(2)根据FOC 的面积求出OC 的长度,从而得到点B 的横坐标,将点B 的横坐标代入二次函数2114y x =+中求得B 的纵坐标,将B 的坐标代入一次函数2y kx =+中,即可求出k 的值;(3)设21,14B x x ⎛⎫+ ⎪⎝⎭,而()0,2F ,则2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,2114BC x =+,故BF=BC . 【详解】解:(1)把点()2,2-,()4,5代人2y ax c =+得42165,a c a c +=⎧⎨+=⎩ 解得1,41a c ⎧=⎪⎨⎪=⎩ ∴抛物线的解析式为2114y x =+; (2)∵142FOC S OC OF =⨯=△,2OF =, ∴4OC =,把4x =代入二次函数2114y x =+得5y =, 把()4,5代入2y kx =+得34k =; (3)BF BC =. 证明:设21,14B x x ⎛⎫+ ⎪⎝⎭,而()0,2F , ∴2222222221111211444BF x x x x x ⎛⎫⎛⎫⎛⎫=++-=+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ∴2114BF x =+, ∵BC x ⊥轴, ∴2114BC x =+,∴BF BC =.【点睛】本题考查了一次函数的定义,利用待定系数法求二次函数解析式,两点间的距离等知识,属于二次函数综合题.两点间的距离公式:设A(x 1,y 1),B(x 2,y 2),则()()221212A y B x x y -+-=.23. 在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠.(1)如图1,若3AB =,5AC =,求AD 的长.(2)如图2,过分别作AE AC ⊥交BC 于,AF BD ⊥于. ①求证:ABC EAF ∠=∠;②求BF AC的值. 【答案】(1)95AD =;(2)①见解析;②12 【解析】【分析】 (1)由已知易证ABD ACB ∽△△,利用AD AB AB AC=可求得AD 的长; (2)①由(1)和已知易证ABF ECA ∽△△,进而证得ABC EAF ∠=∠;②过作//AG BC ,与BD 的延长线交于,易证:BDC 、ABG 和ADG 均为等腰三角形,进而得到AC=BG ,根据等腰三角形的”三线合一”性质即可得证.【详解】解:(1)∵在ABC 中,2ABC ACB ∠=∠,BD 平分ABC ∠,∴ABD DBC ACB ∠=∠=∠,又∠A=∠A ,∴ABD ACB ∽△△,∴AD AB AB AC=, ∵3AB =,5AC =,∴95AD =; (2)①∵AE AC ⊥交BC 于,AF BD ⊥于,∴∠AFB=∠EAC ,又∠ABF=∠ACB ,∴ABF ECA ∽△△,∴BAF AEC ∠=∠,∵BAF BAE EAF ∠=∠+∠,AEC ABC BAE ∠=∠+∠,∴ABC EAF ∠=∠;②过作//AG BC ,与BD 的延长线交于,∵ABD DBC ACB ∠=∠=∠,∴ABD DBC ACB CAG G ∠=∠=∠=∠=∠,∴BDC 、ABG 和ADG 均等腰三角形,∴AC BG =,∵在等腰ABG 中,AF BG ⊥于,∴2BG BF =,即12BF BG =, ∴BF AC的值为12.【点睛】本题考查了等腰三角形的判定与性质、相似三角形的判定与性质、平行线的性质,熟练掌握相似三角形的判定与性质,会借助作平行线,用等腰三角形的”三线合一”性质解决问题是解答的关键.。
2022年人教版中考冲刺模拟考试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1 2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 03.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C. D.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒ 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A. B. 0 C. 1 D. 不能确定 7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3B. 3C. 5D. 58.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a <9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 2810.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 812.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B.C. D.15.如图,是反比例函数3yx=和7yx=-在轴上方的图象,轴的平行线AB分别与这两个函数图象相交于点,A B,点在轴上.则点从左到右的运动过程中,APB△的面积是()A. 10B. 4C. 5D. 从小变大再变小 16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤ 326326m ≤≤ D. 326326m -≤二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .18.不等式21303x --<的最大整数解是____. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯;(2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____.(2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下(1)请补充完成下面的成绩统计分析表:(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______.(2)当BD DE =时,证明:ABC EAF ≌.(3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______;(2)试用文字说明:交点所表示的实际意义.(3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发时间.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM .(1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长.(3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.答案与解析一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有项是符合题目要求的)1.下列四个数中最小的数是( )A. 1B. 0C. -2D. -1【答案】C【解析】 根据实数的大小关系,正数大于0,负数小于0,两负数相比较,绝对值大的反而小,可知最小的数为-2. 故选C.2.计算:222a a -+=( )A. 2aB. 2a -C. 22aD. 0 【答案】A【解析】【分析】根据合并同类项的法则,即可求解.【详解】222a a -+=2a ,故选A .【点睛】本题主要考查合并同类项的法则,掌握”合并同类项时,系数相加,字母和字母的指数不变”是解题的关键.3.如图是五个相同的小正方体搭成的几何体,其俯视图是( )A. B.C.D.【答案】C【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中. 【详解】解:如图是五个相同的小正方体搭成的几何体,其俯视图是. 故选C .【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4. 2. 5PM 是指大气中直径小于或等于0.0000025m 的颗粒物,是衡量空气污染程度的重要指标.将0.0000025用科学记数法表示为2.510n ⨯,则的值是( )A.B. 6-C.D. 【答案】B【解析】【分析】根据科学记数法的定义,即可得到答案.【详解】∵0.0000025=62.510-⨯,∴n=-6.故选B .【点睛】本题主要考查科学记数法的定义,掌握科学记数法的形式:10n a ⨯(110a ≤<,n 为整数)是解题的关键.5.如图,130,60,B AB AC ∠=︒∠=︒⊥,则下列说法正确的是( )A. AC CD ⊥B. AB CD ∥C. AD BC ∥D. 180DAB D ∠+∠=︒【答案】C【解析】【分析】 根据平行线的判定定理,即可得到结论.【详解】∵130∠=︒,AB AC ⊥,∴∠BAC=90°+30°=120°,∵∠B=60°,∴∠BAC+∠B=120°+60°=180°,∴//AD BC .故C 正确以当前条件,无法得到AC ⊥CD ,AB ∥CD ,∠DAB+∠D=180°,故A 、B 、D 错误,故选C .【点睛】本题主要考查平行线的判定定理,掌握”同旁内角互补,两直线平行”是解题的关键. 6.已知332(1)x ax bx cx d -=+++,则+++a b c d 的值为( )A.B. 0C. 1D. 不能确定【答案】B【解析】【分析】根据多项式乘多项式的法则,求出a ,b ,c ,d 的值,进而即可求解.【详解】∵32(1)(1)(1)x x x -=--=2(21)(1)x x x -+-32331x x x =-+-,∴a=1,b=-3 ,c=3,d=-1,∴+++a b c d =0.故选B .【点睛】本题主要考查多项式乘以多项式的法则,数量掌握运算法则,是解题的关键.7.如图,在直角坐标系中,菱形OACB 的顶点在原点,点的坐标为(4,0),点的纵坐标是,则菱形OACB 的边长为( )A. 3 3 C. 5 5【答案】D【解析】【分析】 连接AB 交OC 于点M ,根据菱形的性质得OM=2,OC ⊥AB ,再根据勾股定理,即可求解.【详解】连接AB 交OC 于点M ,∵四边形OACB 是菱形,∴OM=CM=12OC=12×4=2,OC ⊥AB , ∵点的纵坐标是,∴BM=1,∴OB=22OM BM +=22215+=,即:菱形的边长为5.故选D .【点睛】本题主要考查菱形的性质定理以及勾股定理,掌握”菱形的对角线互相垂直平分”是解题的关键. 8.已知:关于的一元二次方程220x x a +-=有实数根,则的取值范围是( )A. 1a -B. 1a -C. 1a >D. 1a < 【答案】A【解析】 【分析】根据一元二次方程有实数根,可得∆≥0,从而得到关于a 的不等式,进而即可求解. 【详解】∵关于的一元二次方程220x x a +-=有实数根,∴∆=2241()a -⨯⨯-=4+4a ≥0,∴1a -,故选A .【点睛】本题主要考查一元二次方程根的情况与判别式的关系,掌握一元二次方程有实数根等价于∆≥0,是解题的关键.9.如图,EF 是ABC 纸片的中位线,将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,已知AEF 的面积为7,则图中阴影部分的面积为( )A. 7B. 14C. 21D. 28【答案】B【解析】【分析】根据中位线的性质得:∆AEF~∆ABC ,12EF BC =,进而得到ABC 的面积为28,结合折叠的性质,即可得到答案.【详解】∵EF 是ABC 纸片的中位线,∴EF ∥BC ,12EF BC =, ∴∆AEF~∆ABC ,∴:1:4AEF ABC S S ∆∆=,∵AEF 的面积为7,∴ABC 的面积为28,∵将AEF 沿EF 所在的直线折叠,点落在BC 边上的点处,∴DEF 的面积=AEF 的面积=7,∴阴影部分的面积=28-7-7=14.故选B .【点睛】本题主要考查中位线的性质,折叠的性质以及相似三角形的判定和性质定理,掌握相似三角形的面积比等于相似比的平方,是解题的关键.10.如图,四边形 ABCD 是⊙O 的内接四边形,若∠BOD =88°,则∠BCD 的度数是A. 88°B. 92°C. 106°D. 136°【答案】D【解析】【分析】 首先根据∠BOD=88°,应用圆周角定理,求出∠BAD 的度数;然后根据圆内接四边形的性质,可得∠BAD+∠BCD=180°,据此求出∠BCD 的度数【详解】由圆周角定理可得∠BAD=12∠BOD=44°, 根据圆内接四边形对角互补可得∠BCD=180°-∠BAD=180°-44°=136°,故答案选D .考点:圆周角定理;圆内接四边形对角互补.11.如图,在正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =.则AEF 的面积是( )A. 5B. 6C. 7D. 8【答案】A【解析】【分析】 根据正方形的性质和勾股定理,可得EF ,AE ,AF 的长,再根据勾股定理的逆定理,可知∆AEF 是直角三角形,进而即可求解.【详解】∵正方形ABCD 中,4,AB E =是CD 的中点,点在BC 上,且14FC BC =, ∴FC=1,EC=2,DE=2,AD=4,BF=3,∠B=∠C=∠D=90°,∴22125EF =+=222420AE =+22345AF +=,∴222EF AE AF +=,即:∆AEF 是直角三角形,∠AEF=90°,∴AEF 面积=12AE∙EF =12×520. 故选A .【点睛】本题主要考查正方形的性质定理以及勾股定理及其逆定理,掌握勾股定理及其逆定理,是解题的关键.12.如图,在等腰ABC 中,AB AC =,把ABC 沿EF 折叠,点的对应点为,连接AO ,使AO 平分BAC ∠,若50BAC CFE ∠=∠=︒,则点是( )A. ABC的内心B. ABC的外心C. ABF的内心D. ABF的外心【答案】B【解析】【分析】连接BO、CO,由等腰三角形的性质得:AO是BC的垂直平分线,从而得BO=CO,根据根据折叠的性质以及三角形内角和定理得∠FCO=40°,∠ACB=65°,进而得∠OAC=∠OCA=25°,即可得到结论.【详解】连接BO、CO,∵AB=AC,AO平分∠BAC,∠BAC=50°,∴AO是BC的垂直平分线,∠BAO=∠CAO=25°.∴BO=CO,根据折叠的性质,可知:CF=OF,∠OFE=∠CFE=50°,∴∠OFC=50°+50°=100°,∴∠FCO=12(180°-100°)=40°,又∵AB=AC,∠BAC=50°,∴∠ACB=12(180°-50°)=65°,∴∠OCA=∠ACB-∠FCO=65°-40°=25°,∴∠OAC=∠OCA=25°,∴AO=CO,∴AO=BO=CO,∴点O是ABC的外心.故选B.【点睛】本题主要考查等腰三角形的性质,折叠的性质,中垂线的性质以及三角形内角和定理,掌握等腰三角形的性质,是解题的关键.13.已知2410x x--=,则代数314xx x---的值是()A. 7B. 6C. 5D. 【答案】C【解析】【分析】先把方程进行变形得241x x-=,再把代数式314xx x---进行通分化简,然后整体代入求值,即可.【详解】∵2410x x--=,∴241x x-=,∴314xx x---=(3)(4)(4)x x xx x----=22344x x xx x--+-=22444x xx x-+-=1451+=.故选C.【点睛】本题主要考查分式的化简求值,掌握分式的通分以及等式的基本性质,是解题的关键.14.用直尺和圆规作Rt△ABC斜边AB上的高线CD,以下四个作图中,作法错误的是( )A. B. C. D.【答案】D【解析】A 、由图示可知应用了垂径定理作图的方法,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; B 、由直径所对的圆周角是直角可知∠BDC=90°,所以CD 是Rt△ABC 斜边AB 上的高线,不符合题意; C 、根据相交两圆的公共弦被连接两圆的连心线垂直平分可知,CD 是Rt△ABC 斜边AB 上的高线,不符合题意; D 、无法证明CD 是Rt△ABC 斜边AB 上的高线,符合题意.故选D .点睛:本题主要考查尺规作图,能正确地确定作图的步骤是解决此类问题的关键.15.如图,是反比例函数3y x =和7y x=-在轴上方的图象,轴的平行线AB 分别与这两个函数图象相交于点,A B ,点在轴上.则点从左到右的运动过程中,APB △的面积是( )A. 10B. 4C. 5D. 从小变大再变小【答案】C【解析】【分析】 连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=, ∴APB △的面积是:5.故选C .点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.16.如图,在平面直角坐标系xOy 中()(),3,0,3,0A B -,若在直线y x m =-+上存在点满足60APB ∠=︒,则的取值范围是( )653653m ≤≤B. 653653m -≤≤m ≤≤D. m ≤【答案】D【解析】【分析】根据题意可以知道当60APB ∠=︒时,此时以AB 所对的圆心角等于120,而且圆心在AB 的垂直平分线上,只有直线y x m =-+与圆相切的时候,此时取最值,所以根据如图所示可以求出结果.【详解】解:如图所示:当60APB ∠=︒时,此时以AB 所对的圆心角等于120,即120AO B '∠=,只有直线y x m =-+与圆相切的时候,此时取最值,此时60AO O '∠=,设,2,OO x AO x ''==根据勾股定理可以求出AO O P ''==,OO '=,y x m =-+与y 轴夹角为45,CPO '∴∆为等腰直角三角形,O C P ''∴===OO '=OC ∴=+,m ∴+同理在y 轴负半轴和其对称最小值为-m ≤≤故选D.【点睛】本题主要考察圆周角与圆心角的关系,以及临界情况是相切的时候m 取得最值点,本题难度较高,应该认真分析题意.二、填空题(本大题有3个小题,共10分.17、18小题3分;19小题有2个空,每空2分.) 17.分解因式:ax 2-4a = .【答案】【解析】试题分析:要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此, 先提取公因式a 后继续应用平方差公式分解即可:()()()22ax 4a a x 4a x 2x 2-=-=+-. 18.不等式21303x --<的最大整数解是____. 【答案】4x =【解析】【分析】先去分母,移项,合并同类项,未知数化为1,求出不等式的解,进而求出最大的整数解,即可.【详解】21303x --<, 2190x --<,210x <,x <5.∴不等式21303x --<最大整数解是:4x =. 故答案是:4x =.【点睛】本题主要考查求一元一次不等式的整数解,掌握解一元一次不等式的基本步骤,是解题的关键. 19.在平面直角坐标系xOy 中,点坐标是(3,1)-.当把坐标系绕点顺时针选择30°时,点在旋转后的坐标系中的坐标是____;当把坐标系绕点逆时针选择30°时,点在旋转后的坐标系中的坐标是____.【答案】 (1). (2,0)- (2). (1,3)-【解析】【分析】根据题意,画出图形,连接AO ,过点A 作AB ⊥x 轴于点B ,得AO=2,∠AOB=30°,当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,分别进行求解,即可.【详解】连接AO ,过点A 作AB ⊥x 轴于点B ,∵点坐标是(3,1)-,∴AB=1,BO=3,∴AO=221(3)+=2,∠AOB=30°.∵当把坐标系绕点顺时针旋转30°时,相当于把OA 绕点O 逆时针旋转30°,∴点在旋转后的坐标系中x 轴的负半轴上,即:A(-2,0).∵当把坐标系绕点逆时针旋转30°时,相当于把OA 绕点O 顺时针旋转30°,∴∠B ′OA ′=60°,OA ′=OA=2,∴A ′B ′= OA ′×sin60°=2×32=3,OB ′= OA ′×cos60°=2×12=1, ∴(1,3)A -′.故答案是:(2,0)-;(1,3)-.【点睛】本题主要考查旋转的性质,图形与坐标,解直角三角形的应用,掌握点的坐标的定义,锐角三角函数的定义,是解题的关键.三、解答题(本大题有7个小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.小丽同学准备化简:()()2236826x x x x ----,算式中”□”是”+,-,×,÷”中的某一种运算符号.(1)如果”□”是”×”,请你化简:()()2236826x x x x ----⨯; (2)若2230x x --=,求()()2236826x x x x -----的值;(3)当1x =时,()()2236826x x x x ----的结果是4-,请你通过计算说明”□”所代表的运算符号. 【答案】(1)2268x x +-;(2);(3)□处应为” -”. 【解析】 【分析】(1)先去括号,再合并同类项,即可求解;(2)先去括号,再合并同类项,再整体代入求值,即可;(3)把1x =代入原式,化简得:268-=-,进而即可得到答案. 【详解】(1)()()2236826x x x x ----⨯2236812x x x x =---+2268x x =+-;(2)()()2236826x x x x -----2236826x x x x =---++2242x x =--, 2230x x --=, 223x x ∴-=,∴原式=()22242222624x x x x --=--=-=; (3)”□”所代表的运算符号是”-”,当1x =时,原式(368)(126)4=----=-,整理得:11(126)4,1267,268---=--=--=-,即□处应为”-”.【点睛】本题主要考查整式的化简以及求值,掌握去括号法则以及合并同类项法则,是解题的关键. 21.如下表,从左边第一个格子开始向右数,在每个小格子中都填入一个整数,使得其中仼意三个相邻格子中所填整数之和都相等.(1)可求得x =_____;y =_____;z =_____. (2)第2019个格子中的数为______;(3)前2020个格子中所填整数之和为______.(4)前个格子中所填整数之和是否可能为2020?若能,求出的值,若不能,请说明理由.【答案】(1)5x =,4y =,8z =-;(2)4;(3)665;(4)能;前6060,6071或6085个格子中所填整数之和为2020. 【解析】 【分析】(1)根据题意,直接求出x ,y ,z 的值,即可;(2)由题意得:表格中的数字是3个以循环,进而即可求解;(3)由”表格中的数字是3个以循环” ,2020÷3=673…1,即可求解; (4)分三种情况,分类讨论,即可求解.【详解】(1)由题意得:-8+x+y=x+y+z ,解得:8z =-, x+y+z= y+z+5,解得:5x =,∴表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…, ∴4y =.故答案是:5x =,4y =,8z =-;(2)∵表格中的数字是3个以循环,即:-8,5,4,-8,5,4,…,2019÷3=673, ∴第2019个格子中的数为:4. 故答案是:4;(3)∵2020÷3=673…1,-8+5+4=1,∴前2020个格子中所填整数之和为:673×1+(-8)=665. 故答案是:665.(4)能,理由如下: ①8541202012020-++=÷=,,202036060∴⨯=;②∵2020+8=2028, ∴2028316085⨯+=; ③∵2020+8-5=2023, ∴2023326071⨯+=;综上所述:前6060或6071或6085个格子中所填整数之和为2020.【点睛】本题主要考查数字的排列规律以及有理数的运算,找出数列的循环规律,是解题的关键. 22.为了迎接体育中考,初三7班的体育老师对全班48名学生进行了一次体能模拟测试,得分均为整数,满分10分,成绩达到6分以上(包括6分)为合格,成绩达到9分以上(包括9分)为优秀,这次模拟测试中男、女生全部成绩分布的条形统计图如下 (1)请补充完成下面的成绩统计分析表: 平均分 方差 中位数 合格率 优秀率 男生 6.9 2.4 ______ 917% 16.7% 女生 ______1.3______83.3%8.3%(2)男生说他们的合格率、优秀率均高于女生,所以他们的成绩好于女生,但女生不同意男生的说法,认为女生的成绩要好于男生,请给出两条支持女生观点的理由;(3)体育老师说,咱班的合格率基本达标,但优秀率太低,我们必须加强体育锻炼,两周后的目标是:全班优秀率达到50%.如果女生新增优秀人数恰好是男生新增优秀人数的两倍,那么男、女生分别新增多少优秀人数才能达到老师的目标?【答案】(1)7,7,7;(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小;(3)男生新增优秀人数为6人,女生新增优秀人数为12人【解析】 【分析】(1)本题需先根据中位数的定义,再结合统计图得出它们的平均分和中位数即可求出答案; (2)本题需先根据以上表格,再结合女生的平均分和方差两方面说出支持女生的观点; (3)根据之前男、女生优秀人数+新增男、女生优秀人数=总人数50%⨯,列方程求解可得.【详解】解:(1)由条形统计图可知,男生一共2+6+8+4+4=24人,其中位数是第12、第13个数的平均数, 第12、13两数均为7,故男生中位数是7; 女生成绩平均分为:5462710869224⨯+⨯+⨯+⨯+⨯=7(分),其中位数是:772+=7(分); 补充完成的成绩统计分析表如下:(2)从平均数上看,女生平均分高于男生;从方差上看,女生的方差低于男生,波动性小; (3)设男生新增优秀人数为x 人, 则:2+4+x+2x=48×50%, 解得:x=6, 故6×2=12(人). 答:男生新增优秀人数为6人,女生新增优秀人数为12人.【点睛】本题考查的是条形统计图的综合运用,熟练进行平均数和中位数的计算是基础,读懂统计图,从统计图中的到必要的信息是解决问题的关键. 23.如图,在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=.AD BC ⊥于.为边BC 上的一个(不与、重合)点,且AE EF ⊥于,,E EAF B AF ∠=∠相交于点.(1)填空:AC =______;F ∠=______. (2)当BD DE =时,证明:ABC EAF ≌. (3)EAF △面积的最小值是_______.(4)当EAF △的内心在ABC 的外部时,直接写出AE 的范围______. 【答案】(1)23,30︒;(2)见解析;(3334)223AE << 【解析】 【分析】(1)根据锐角三角函数的定义以及三角形内角和定理,即可求解; (2)由ASA ,即可证明ABC EAF ≌; (3)由题意得:EAF △面积32,当AE ⊥BC 时,AE 3; (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,易证ABE △是等边三角形,此时,AE=2,进而即可得到结论.【详解】(1)∵在ABC 中,90,60,2BAC B AB ∠=︒∠=︒=,∴tan 2323AC AB B =⋅== ∵AE EF ⊥,EAF B ∠=∠, ∴F ∠=180°-90°-60°=30°. 故答案是:3︒,; (2)AE EF ⊥于,90AEF ∴∠=︒,又∵90BAC ∠=︒,AEF BAC ∴∠=∠, ,AD BC BD DE ⊥=,AB AE =∴,又∵EAF B ∠=∠,()ABC EAF ASA ∴△≌△;(3)∵EAF B ∠=∠=60°, ∴EF=3AE , ∴EAF △面积=12EF ∙AE=32AE 2, ∴当AE 的长最小时,EAF △面积的最小,即:AE ⊥BC 时,EAF △面积的最小. ∴AE 的最小值=AB∙sin60°=2×32=3,此时,EAF △面积的最小值=332. 故答案是:332. (4)当EAF △的内心恰好落在AC 上时,设EAF △的内心为N ,连接EN , ∵N 是EAF △的内心,∴AN 平分∠EAF ,EN 平分∠AEF , ∴∠EAC=12∠EAF=30°, ∵∠BAC=90°,∴∠BAE=∠BAC-∠EAC=90°-30°=60°, 又∵∠B=60°,∴ABE △是等边三角形, ∴AE=AB=2,∵为边BC 上的一个(不与、重合)点,由(1)可知23AC =, ∴当EAF △的内心在ABC 的外部时,223AE <<. 故答案是:223AE <<.【点睛】本题主要考查解直角三角形的应用,直角三角形的性质以及等边三角形的判定和性质,掌握锐角三角函数的定义,是解题的关键.24.小东从地出发以某一速度向地走去,同时小明从地出发以另一速度向地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离地的距离1y 、2y (千米)与所用时间 (小时)的关系.(1)写出1y 、2y 与的关系式:_______,_______; (2)试用文字说明:交点所表示的实际意义. (3)试求出、两地之间的距离.(4)求出小东、小明相距4千米时出发的时间.【答案】(1)1520y x =-+, 23y x =;(2)交点所表示的实际意义是:经过2.5小时后,小东与小明在距离地7.5千米处相遇;(3)A B 、两地之间的距离为20千米;(4)小东、小明相距4千米时出发的时间是2小时或3小时. 【解析】 【分析】(1)根据待定系数法,即可得到答案;(2)由点P 的坐标直接写出它的实际意义,即可; (3)把x=0代入1520y x =-+,求出1y 的值,即可;(4)分两种情况:①若相遇前相距4千米,②若相遇后相距4千米,分别求出时间,即可. 【详解】(1)设1y kx b =+, 把(2.5,7.5)代入得: 2.57.540k b k b +=⎧⎨+=⎩,解得:520k b =-⎧⎨=⎩,∴1520y x =-+. 设2y mx =,把(2.5,7.5) 代入得:2.5m=7.5,解得:m=3,∴23y x =.故答案是:1520y x =-+,23y x =;(2)交点P 表示的实际意义为:经过2.5小时后,小东与小明在距离地7.5千米处相遇; (3)令x=0代入1520y x =-+,得:120y =, ∴、两地之间的距离是20千米;(4)由题意得:小东的速度为:20÷4=5(km/h ),小明的速度为:7.5÷3=2.5(km/h ), ①若相遇前相距4千米,则(20-4)÷(5+3)=2(小时), ②若相遇后相距4千米,则(20+4)÷(5+3)=3(小时), 答:小东、小明相距4千米时出发的时间为2小时或3小时.【点睛】本题主要考查一次函数的实际应用,掌握一次函数的图象和性质,理解函数图象上的点的坐标的实际意义,是解题的关键.25.如图,在AOB 中,90AOB ∠=︒,6AO =,63BO =,以点为圆心,以为半径作优弧DE ,交AO 于点,交BO 于点.点M 在优弧DE 上从点开始移动,到达点时停止,连接AM . (1)当42AM =时,判断AM 与优弧DE 的位置关系,并加以证明; (2)当MO AB ∥时,求点M 在优弧DE 上移动的路线长及线段AM 的长. (3)连接BM ,设ABM 的面积为,直接写出的取值范围.备用图【答案】(1)AM 与优弧的相切(2)272133)12312183S +【解析】 【分析】(1)根据勾股定理的得到∠AMO=90°即可得到AM 与优弧DE 的相切;(2)根据题意分MO 在直线AO 的左侧和右侧两种情况讨论,用三角函数及相似三角形的性质进行求解;(3)根据题意作过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小,分别求出ABM S △最大值与最小值即可求解.【详解】在Rt AOB △中,6AO =,63BO =,60BOA ∴∠=︒ 30OBA ∠=︒. (1)AM 与优弧的相切; 如图1,当42AM =时,2OM =,6AO =且()2222242236AM OM AO +=+==AMO ∴△为直角三角形,90AMO ∠=︒,点M 在O 上,OM AM ⊥AM ∴与优弧DE 相切.(2)当MO AB ∥时,第一种情况:如图 2所示,MO 在直线AO 的左侧;60AOM ∠=︒60221803DM ππ⨯== 过点M 作MG AO ⊥于点 在Rt MOG △中,3sin 602MG MO ︒==3MG ∴= ,1OG =,5AG =在Rt AMG △中,据勾股定理可知()22225327AG AG MG =+=+=.第二种情况:如图 3所示,MO 在直线AO 的右侧;连接AM 240281803DM ππ⨯==MO AB ∥ OMH BAH ∴△∽△OH OM BH AB =,OH OMOB OH AB=- 21263OH =-63OH ∴=在Rt AOH △中,据勾股定理得:6527AH = 由OMH ABH △∽△可知7522136AM AH ===.(3)如图4,过点作OH AB ⊥于点,交O 于点M 此时ABM S △的面积最大在Rt AOB △中,6AO =,63BO =63tan 363OA ABO OB ∠===30ABO ∴∠=︒在Rt AMG △中1332OH OB == 233MH OM OH ∴=+=+()11122331218322ABM S AB MH =⨯=⨯⨯+=+△如图5,过点作DH AB ⊥于点,即点M 与点重合,此时ABM S △的面积最小 在Rt AHD △中3sin 604232DH AD =︒=⨯=11122312322ABMFS AB DH ⨯=⨯⨯=△ 12312183S ∴+.【点睛】此题主要考查圆的综合问题,解题的关键熟知切线的判定方法、三角函数的应用及相似三角形的判定与性质.26.如图,已知二次函数23y x ax =++的图象经过点(2,3)P -.(1)求的值和图象的顶点坐标;(2)点(,)Q m n 在该二次函数图象上.①当2m =时,求的值;②若点Q 到轴的距离小于2,请根据图象直接写出的取值范围;③直接写出点Q 与直线5y x =+2时的取值范围.【答案】(1)2a =,图象的顶点坐标为(1,2)-;(2)①当2m =时,11n =;②211n ≤<;1171711,0m m ---<<-<<. 【解析】【分析】(1)根据待定系数法,即可求出a 的值,把二次函数解析式,化为顶点式,即可得到顶点坐标;(2)①把2m =代入二次函数解析式,即可;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,可得:A(-2,3),B(2,11),进而即可求解;③设直线5y x =+交x 轴,y 轴于点D ,C ,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,可得∆QNM 是等腰直角三角形,当2时,则QN=2,设2(,23)Q m m m ++,N(m ,m+5),列出关于m 的方程,求出m 的值,进而即可得到结论.【详解】(1)把(2,3)P -代入23y x ax =++中,得:23(2)23a =--+2a ∴=,∴2223(1)2y x x x =++=++,∴图象的顶点坐标为(12)-,;(2)①(,)Q m n 在该二次函数图象上,∴当2m =时,2222311n =+⨯+=;②设直线x=-2和直线x=2与抛物线的交点为A ,B ,如图,把x=2或x=-2,代入223y x x =++,得y=11或3,∴A(-2,3),B(2,11),当点Q 到轴的距离小于2时,点Q 在A ,B 之间的抛物线上(不包含A ,B ),211n ∴≤<;③设直线5y x =+交x 轴,y 轴于点D ,C ,则D(-5,0),C(0,5),∴OC=OD ,∠DCO=45°,过点Q 作QM ⊥CD 于点M ,过点Q 作QN ∥y 轴,交CD 于点N ,∴∠QNM=∠DCO=45°,∴∆QNM 是等腰直角三角形,当时,则QN=2,(,)Q m n 在该二次函数图象上,点N 在直线5y x =+上,∴设2(,23)Q m m m ++,N(m ,m+5), ∴22352m m m ++--=,化简得:240m m +-=或20m m +=,解得:123411=0122m m m m --+===-,,∴点Q 与直线5y x =+1,0m m <<-<<.【点睛】本题主要考查二次函数、一次函数与平面几何的综合,掌握二次函数与一次函数的性质和图象,函数图象上点的坐标特征,是解题的关键.。
2024-2025学年初中八年级上学期9月月考数学试题及答案(人教版)
人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.2. 以下列数据为三边长能构成三角形的是( )A. 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4 3. 下列各组图形中,BD 是ABC 的高的图形是( )A B.C. D.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 95. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形7. 如图,已知ABC 六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A 50° B. 45° C. 40° D. 25°9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB ∥CF ,E 为AC 的中点,若FC =6cm ,DB =3cm ,则AB =________.12. 如图,A B C D E F ∠+∠+∠+∠+∠+∠=______.的.13. 一个n 边形内角和等于1620°,则边数n 为______.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.三.解答题(共9小题,满分72分)17. 如果一个三角形一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形周长.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.的的19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.20. 将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,ACDE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求∠21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高BE ;(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?人教版数学2024-2025学年八年级上学期数学9月月考模拟试卷(全国通用)一.选择题(共10小题,满分30分,每小题3分)1. 下列各组图形中,属于全等图形的是( )A. B.C. D.【答案】C【解析】【分析】本题考查了全等图形.根据全等图形的定义(能够完全重合的两个图形叫做全等形)逐项判断即可得.【详解】解:A 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意; B 、两个图形的大小不相同,不能够完全重合,不是全等图形,则此项不符合题意;C 、两个图形能够完全重合,是全等图形,则此项符合题意;D 、两个图形的形状不相同,不能够完全重合,不是全等图形,则此项不符合题意;故选:C .2. 以下列数据为三边长能构成三角形的是( )A 1,2,3B. 2,3,4C. 14,4,9D. 7,2,4【答案】B【解析】【分析】利用三角形三边关系进行判定即可.【详解】解:A 、123+=,不符合三角形三边关系,错误,不符合题意;B 、234+>,成立,符合题意;C 、4913+<,不符合三角形三边关系,错误,不符合题意;D 、247+<,不符合三角形三边关系,错误,不符合题意;故选B .【点睛】本题考查三角形三边关系,判定形成三角形的标准是两小边之和大于最大边,熟练掌握运用三角形.三边关系是解题关键.3. 下列各组图形中,BD 是ABC 的高的图形是( )A. B.C. D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线,顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知,只有选项B 中的线段BD 是△ABC 的高,故选:B .【点睛】考查了三角形的高的概念,掌握高的作法是解题的关键.4. 已知三角形两边的长分别是3和5,则这个三角形第三边的长可能为( )A. 1B. 2C. 7D. 9 【答案】C【解析】【分析】先根据三角形的三边关系求出x 的取值范围,再求出符合条件的x 的值即可.【详解】解:设三角形第三边的长为x ,则5-3<x <5+3,即2<x <8,只有选项C 符合题意.故选C .【点睛】本题主要考查了三角形的三边关系,即任意两边之和大于第三边,任意两边之差小于第三边. 5. 两个同样大小的直角三角板按如图所示摆放,其中两条一样长的直角边交于点M ,另一直角边BE ,CD 分别落在PAQ ∠的边AP 和AQ 上,且AB AC =,连接AM ,则在说明AM 为PAQ ∠的平分线的过程中,理由正确的是( )A. SASB. SSAC. HLD. SSS【答案】C【解析】 【分析】根据全等三角形的判定和性质定理以及角平分线的定义即可得结论,从而作出判断.【详解】解:根据题意可得:90ABM ACM ∠=∠=°,∴ABM 和ACM △都是直角三角形,在Rt ABM 和Rt ACM 中,AB AC AM AM = =∴()Rt Rt HL ABM ACM ≌,∴BAM CAM ∠=∠,∴AM 为PAQ ∠的平分线,故选:C .【点睛】本题考查角平分线的判定和全等三角形的判定和性质的应用,解题的关键是掌握全等三角形的判定方法.6. 一个多边形的内角和是720°,这个多边形是( )A. 五边形B. 六边形C. 七边形D. 八边形【答案】B【解析】【分析】本题考查了多边形的内角和公式,根据多边形的内角和公式解答即可.【详解】设边数为n ,根据题意,得 ()2180720n −⋅°=°,解得6n =. ∴这个多边形为六边形,故选:B .7. 如图,已知ABC 的六个元素,则下面甲、乙、丙三个三角形中,和ABC 全等的图形是( )A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙【答案】B【解析】 【分析】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键,分别利用全等三角形的判定方法逐个判断即可.【详解】解:在ABC 中,边a 、c 的夹角为50°,∴与乙图中的三角形满足SAS ,可知两三角形全等,在丙图中,由三角形内角和可求得另一个角为58°,且58°角和50°角的夹边为a ,ABC ∴ 和丙图中的三角形满足ASA ,可知两三角形全等,在甲图中,和ABC 满足的是SSA ,可知两三角形不全等,综上可知能和ABC 全等的是乙、丙,故选:B .8. 如图在BCD △中,A 为BD 边上一点,AE CD ∥,AC 平分BCD ∠,235∠=°,60D ∠=°,则B ∠=( )A. 50°B. 45°C. 40°D. 25°【答案】A【解析】 【分析】本题主要考查了平行线的性质,三角形内角和定理,角平分线的定义,根据平行线的性质和角平分线的定义,可以求得BCD ∠的度数,再根据三角形内角和.即可求得B ∠的度数.【详解】解:∵AE CD ∥,235∠=°,∴1235∠=∠=°,∵AC 平分BCD ∠,∴2170BCD ∠=∠=°,∵60D ∠=°,∴180180607050B D BCD ∠=°−∠−∠=°−°−°=°,故选:A .9. 下列多边形材料中,不能单独用来铺满地面的是( )A. 三角形B. 四边形C. 正五边形D. 正六边形【答案】C【解析】【分析】一个多边形的镶嵌应该符合其内角度数可以整除360°【详解】A 、三角形内角和为180°,能整除360°,能密铺,故此选项不合题意;B 、四边形内角和为360°,能整除360°,能密铺,故此选项不合题意;C 、正五边形每个内角是180°﹣360°÷5=108°,不能整除360°,不能密铺,故此选项合题意;D 、正六边形每个内角为180°﹣360°÷6=120°,能整除360°,能密铺,故此选项不合题意; 故选C .【点睛】本题主要考查图形的镶嵌问题,重点是掌握多边形镶嵌的原理.10. 如图所示,△ABC 中,点D 、E 、F 分别在三边上,E 是AC 的中点,AD 、BE 、CF 交于一点G ,BD =2DC ,S △GEC =3,S △GDC =4,则△ABC 的面积是( )A. 25B. .30C. 35D. 40【答案】B【解析】 【分析】由于BD=2DC ,那么结合三角形面积公式可得S △ABD =2S △ACD ,而S △ABC =S △ABD +S △ACD ,可得出S △ABC =3S △ACD ,而E 是AC 中点,故有S △AGE =S △CGE ,于是可求S △ACD ,从而易求S △ABC . 【详解】.解:BD =2DC ,∴S △ABD =2S △ACD , ∴S △ABC =3S △ACD ,∵E 是AC 的中点,∴S△AGE=S△CGE,又∵S△GEC=3,S△GDC=4,∴S△ACD=S△AGE+S△CGE+S△CGD=3+3+4=10,∴S△ABC=3S△ACD=3×10=30.故选B.【点睛】此题考查三角形的面积公式、三角形之间的面积加减计算.解题关键在于注意同底等高的三角形面积相等,面积相等、同高的三角形底相等.二.填空题(共6小题,满分18分,每小题3分)11. 如图,已知AB∥CF,E为AC的中点,若FC=6cm,DB=3cm,则AB=________.【答案】9cm【解析】【详解】试题解析:AB∥CF,∴∠=∠∠=∠A FCE ADE CFE..E为AC的中点,∴=AE CE.△ADE≌△CFE,∴==DA FC6.AB AD DB cm∴=+=+=639.cm故答案为9.∠+∠+∠+∠+∠+∠=______.12. 如图,A B C D E F【答案】180°##180度【解析】【分析】本题主要考查三角形的外角的性质,三角形的内角和为180°,将所求角的度数转化为某些三角形的内角和是解题的关键;将所求的角的度数转化为HNG △的内角和,即可得到答案.【详解】解:,,A B GHN C D GNH E F HGN ∠+∠=∠∠+∠=∠∠+∠=∠ ,∴180A B C D E F GNH GHN HGN ∠+∠+∠+∠+∠+∠=∠+∠+∠=°,故答案为:180°.13. 一个n 边形内角和等于1620°,则边数n 为______.【答案】11【解析】【分析】根据多边形内角和公式,列方程求解即可.【详解】解:由题意,得()18021620n −=,解得:11n =,故答案为:11.【点睛】本题考查多边形内角和,熟练掌握多边形内角和公式是解题的关键.14. 如图,在ABC 中,已知点D ,E ,F 分别为边BC ,AD ,CE 的中点,且ABC 的面积等于24cm ,则阴影部分图形面积等于_____2cm .【答案】1【解析】【分析】此题考查了三角形中线的性质,根据三角形的中线分得的两个三角形的面积相等,就可证得12BEF BEC S S = ,12BDE ABD S S = ,12DE CD S S =△C △A ,12ABD ABC S S = ,再由ABC 的面积为4,就可得到BEF △的面积,解题的关键是熟练掌握三角形中线的性质及其应用.【详解】解:∵点F 是CE 的中点, ∴12BEF BEC S S = , ∵点E 是AD 的中点, ∴12BDE ABD S S = , 同理可证12DE CD S S =△C △A , ∵点D 是BC 的中点, ∴114222ABD ABC S S ==×= , ∴1212BDE CDE S S ==×= , ∴112BEC S =+= , ∴1212BEF S =×=△, 故答案为:1.15. 已知,如图ABC ,点D 是ABC 内一点,连接BD CD ,,则BDC ∠与12A ∠∠∠,,之间的数量关系为______.【答案】12BDC A ∠=∠+∠+∠【解析】【分析】本题考查了三角形的外角性质,延长BBBB 交AC 于点E ,由三角形外角性质可得1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,进而即可求解,正确作出辅助线是解题的关键.【详解】解:延长BBBB 交AC 于点E ,如图,∵BEC ∠是ABE 的外角,∴1BEC A ∠=∠+∠,∵BDC ∠是CDE 的外角,∴2BDC BEC ∠=∠+∠,即12BDC A ∠=∠+∠+∠,故答案为:12BDC A ∠=∠+∠+∠.16. △ABC 中,AD 是BC 边上的高,∠BAD=50°,∠CAD=20°,则∠BAC=___________.【答案】70°或30°【解析】【分析】根据AD 的不同位置,分两种情况进行讨论:AD 在△ABC 的内部,AD 在△ABC 的外部,分别求得∠BAC 的度数.【详解】①如图,当AD 在△ABC 的内部时,∠BAC=∠BAD+∠CAD=50°+20°=70°.②如图,当AD 在△ABC 的外部时,∠BAC=∠BAD -∠CAD=50°-20°=30°.故答案为:70°或30°.【点睛】本题主要考查了三角形高的位置情况,充分考虑三角形的高在三角形的内部或外部进行分类讨论是解题的关键.三.解答题(共9小题,满分72分)17. 如果一个三角形的一边长为9cm ,另一边长为2cm ,若第三边长为x cm .(1)求第三边x 的范围;(2)当第三边长为奇数时,求三角形的周长.【答案】(1)7<x <11(2)20cm【解析】【分析】(1)根据三角形的三边关系得到有关第三边的取值范围即可;(2)根据(1)得到的取值范围确定第三边的值,从而确定三角形的周长.【小问1详解】由三角形的三边关系得:9292x −<<+,即711x <<;【小问2详解】∵第三边长的范围为711x <<,且第三边长为奇数,∴第三边长为9,则三角形的周长为:99220cm ++=【点睛】本题考查了三角形的三边关系,解题的关键是能够根据三角形的三边关系列出有关x 的取值范围,难度不大.18. 已知:如图,点B ,F ,C ,E 在一条直线上,AB DE =,AB DE ∥,BF EC =.求证:ABC DEF ≌△△.【答案】证明见解析【解析】【分析】根据两直线平行,内错角相等,得出ABC DEF ∠=∠,再根据线段之间的数量关系,得出BC EF =,再根据“边角边”,即可得出结论.【详解】证明:∵AB DE ∥,∴ABC DEF ∠=∠,∵BF EC =,∴BF FC EC FC +=+,∴BC EF =,在ABC 和DEF 中,AB DE ABC DEF BC EF = ∠=∠ =, ∴()ABC DEF SAS ≌.【点睛】本题考查了平行线的性质、全等三角形的判定定理,解本题的关键在熟练掌握全等三角形的判定方法.19. 如图,CE 是ABC 外角ACD ∠的平分线,且CE 交BA 的延长线于点E ,42B ∠=°,25E ∠=°,(1)求ECD ∠的度数;(2)求BAC ∠的度数.【答案】(1)67°(2)92°【解析】【分析】本题考查角平分线定义及三角形外角性质.(1)根据三角形外角性质求出ECD ∠;(2)由已知可求出ACE ∠,根据三角形外角性质求出BAC ∠即可.【小问1详解】解:ECD ∠ 是BCE 的外角,ECD B E ∴∠=∠+∠,42B ∠=° ,25E ∠=°,∴67ECD ∠=°;【小问2详解】解:EC 平分ACD ∠,67ACE ECD ∠=∠=°∴,BAC ∠ 是ACE △的外角,BAC ACE E ∴∠=∠+∠,672592BAC ∴∠=°+°=°.20. 将两个三角形纸板ABC 和DBE 按如图所示方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=°,求BED ∠的度数.【答案】(1)见解析 (2)36BED ∠=°【解析】【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=°,即可得解.【小问1详解】解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBEBAC BDE AC DE∠=∠ ∠=∠ = ,所以()AAS ABC DBE ≌.【小问2详解】因为ABC DBE ≌△△,所以BD BA =,BCA BED ∠=∠.的在DBC △和ABC 中,DC AC CB CB BD BA = = =,所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=°, 所以36BED BCA ∠=∠=°.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等.21. 如图,在44×的正方形网格中,点A ,B ,C 均为小正方形的顶点,用无刻度的直尺作图,不写作法,保留作图痕迹;(1)在图1中,作ABD △与ABC 全等(点D 与点C 不重合);(2)在图2中,作ABC 的高(3)在图3中,作AFC ABC ∠=∠(点F 为小正方形的顶点,且不与点B 重合); (4)在图3中,在线段AC 上找点P ,使得BPC ABC ∠=∠.【答案】(1)见解析 (2)见解析(3)见解析 (4)见解析【解析】【分析】本题考查作图-应用与设计作图,全等三角形的判定与性质等知识,作三角形的高,三角形内角和,勾股定理,解题的关键是学会利用数形结合的思想解决问题.(1)利用全等三角形的判定方法,构造全等三角形即可;(2)取格点T ,连接BT 交AC 于点E ,线段BE 即为所求;(3)构造全等三角形即可;(4)利用勾股定理可知45A ∠=°,根据三角形内角和定理,作45QBC A ∠=∠=°,QB 交AC 点P 即可.【小问1详解】如图1,ABD △即为所求;【小问2详解】如图,BE 即为所求;【小问3详解】如图,AFC ∠即为所求;【小问4详解】如图,点P 即为所求.22. (1)阅读理解:课外兴趣小组活动时,老师提出了如下问题:在ABC 中,9AB =,5AC =,求BC 边上的中线AD 的的取值范围. 小明在组内经过合作交流,得到了如下的解决方法(如图1):①延长AD 到Q ,使得DQ AD =;②再连接BQ ,把2AB AC AD 、、集中在ABQ 中;根据小明的方法,请直接写出图1中AD 的取值范围是 .(2)写出图1中AC 与BQ 的位置关系并证明.(3)如图2,在ABC 中,AD 为中线,E 为AB 上一点,AD 、CE 交于点F ,且AE EF =.求证:AB CF =.【答案】(1)27AD <<;(2)AC BQ ∥,证明见解析;(3)见解析 【解析】【分析】(1)先证()SAS BDQ CDA ≌ ,推出5BQCA ==,再利用三角形三边关系求解; (2)根据BDQ CDA ≌可得BQD CAD ∠=∠,即可证明AC BQ ∥; (3)(3)延长AD 至点G ,使GD AD =,连接CG ,先证明()SAS ≌ADB GDC ,即可得出AB GC G BAD =∠=∠,,再根据AE EF =,得出AFE FAE ∠=∠,最后根据等角对等边,即可求证AB CF =.【详解】解:(1)延长AD 到Q ,使得DQ AD =,再连接BQ ,∵AD 是ABC 的中线,∴BD CD =,又∵DQ AD =,BDQ CDA ∠=∠, ∴()SAS BDQ CDA ≌ ,∴5BQCA ==, 在ABQ 中,AB BQ AQ AB BQ −<<+,∴9595AQ −<<+,即414AQ <<,∴27AD <<,故答案为:27AD <<;(2)AC BQ ∥,证明如下:由(1)知BDQ CDA ≌,∴BQD CAD ∠=∠, ∴AC BQ ∥;(3)延长AD 至点G ,使GD AD =,连接CG ,∵AD 为BC 边上中线,∴BD CD =,在ADB 和GDC 中,的BD CD ADB GDC AD GD = ∠=∠ =, ∴()SAS ≌ADB GDC ,∴AB GC G BAD =∠=∠,,∵AE EF =,∴AFE FAE ∠=∠,∴DAB AFE CFG ∠=∠=∠,∴∠=∠G CFG ,∴CG CF =,∴AB CF =.【点睛】本题考查全等三角形的判定和性质,平行线的判定和性质,三角形三边关系的应用等,解题的关键是通过倍长中线构造全等三角形.23. 如图,在四边形ABCD 中,60120AD AB DC BC DAB DCB ==∠=°∠=°,,,,E 是AD 上一点,F 是AB 延长线上一点,且DE BF =.(1)求D ∠的度数;(2)求证:CE CF =;(3)若G 在AB 上且60ECG ∠=°,试猜想DE EG BG ,,之间的数量关系,并证明.【答案】(1)见解析 (2)见解析(3)EG BG DE =+,证明见解析【解析】【分析】本题考查了全等三角形的判定与性质、四边形内角和定理以及角的计算;根据全等三角形的性质找出相等的边角关系是关键.(1)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出30DAC ∠=°,60DCA ∠=°,即可求解;(2)通过角的计算得出D CBF ∠=∠,证出()CDE CBF SAS ≌,由此即可得出CE CF =; (3)结合AD AB DC BC ==、即可证出ABC ADC △△≌,由此即可得出60BCA DCA ∠=∠=°,再根据60ECG ∠=°即可得出DCE ACG ∠=∠,ACE BCG ∠=∠,由(2)可知CDE CBF △△≌,进而得知DCE BCF ∠=∠,根据角的计算即可得出ECG FCG ∠=∠,结合DE DF =即可证出CEG CFG ≌ ,即得出EG FG =,由相等的边与边之间的关系即可证出DE BG EG +=.【小问1详解】解:ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,BCA DCA ∴∠=∠,DAC BAC ∠=∠,60120DAB DCB ∠=°∠=° ,,1302DAC DAB ∴∠=∠=°,1602DCA DCB ∠=∠=°, 180D DAC DCA ∠+∠+∠=° ,180306090D ∴∠=°−°−°=°;【小问2详解】证明:36060120D DAB ABC DCBDAB DCB ∠+∠+∠+∠=°∠=°∠=°,, , 36060120180D ABC ∴∠+∠=°−°−°=°.180CBF ABC ∠+∠=° ,D CBF ∴∠=∠.在CDE 和CBF 中,DC BC D CBF DE BF = ∠=∠ =, ()CDE CBF SAS ∴ ≌.CE CF ∴=.【小问3详解】解:猜想DE EG BG 、、之间的数量关系为:DE BG EG +=.理由如下:在在ABC 和ADC △中,AB AD AC AC BC DC = = =, ()ABC ADC SSS ∴ ≌,111206022BCA DCA DCB °=°∴∠=∠=∠=×. 60ECG ∠=° ,DCE ACG ACE BCG ∴∠=∠∠=∠,.由(2)可得:CDE CBF △△≌,DCE BCF ∴∠=∠.60BCG BCF ∴∠+∠=°,即60FCG ∠=°.ECG FCG ∴∠=∠.在CEG 和CFG △中,CE CF ECG FCG CG CG = ∠=∠ =, ()CEG CFG SAS ∴ ≌,EG FG ∴=.DE BF FG BF BG ==+, ,DE BG EG ∴+=.24. 在ABC 中,90ACB ∠=°,分别过点A 、B 两点作过点C 的直线m 的垂线,垂足分别为点D 、E . (1)如图,当AC CB =,点A 、B 在直线m 的同侧时,猜想线段DE ,AD 和BE 三条线段有怎样的数量关系?请直接写出你的结论:__________;(2)如图,当AC CB =,点A 、B 在直线m 的异侧时,请问(1)中有关于线段DE 、AD 和BE 三条线段的数量关系的结论还成立吗?若成立,请你给出证明;若不成立,请给出正确的结论,并说明理由.(3)当16cm AC =,30cm CB =,点A 、B 在直线m 的同侧时,一动点M 以每秒2cm 的速度从A 点出发沿A →C →B 路径向终点B 运动,同时另一动点N 以每秒3cm 的速度从B 点出发沿B →C →A 路径向终点A 运动,两点都要到达相应的终点时才能停止运动.在运动过程中,分别过点M 和点N 作MP m ⊥于P ,NQ m ⊥于Q .设运动时间为t 秒,当t 为何值时,MPC 与NQC 全等?【答案】(1)DE AD BE =+;(2)不成立,理由见解析;(3)当9.2t =或14或16秒时,MPC 与NQC 全等【解析】【分析】(1)根据AD m ⊥,BE m ⊥,得90ADC CEB ∠=∠=°,而90ACB ∠=°,根据等角的余角相等得CAD BCE ∠=∠,然后根据“AAS”可判断()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =+=+;(2)同(1)易证()ACD CBE AAS ∆∆≌,则=AD CE ,CD BE =,于是DE CE CD AD BE =−=−;(3)只需根据点M 和点N 的不同位置进行分类讨论即可解决问题.【详解】(1)猜想:DE AD BE =+(2)不成立;理由:∵AD m ⊥,BE m ⊥,∴90ADC CEB ∠=∠=°,∵90ACB ∠=°,∴90ACD CAD ACD BCE ∠+∠=∠+∠=°,∴CAD BCE ∠=∠,在ACD 和CBE △中,ADC CEB CAD BCE AC CB ∠=∠ ∠=∠ =∴()ACD CBE AAS ∆∆≌,∴=AD CE ,CD BE =,∴DE CE CD AD BE =−=−;(3)①当08t ≤<时,点M 在AC 上,点N 在BC 上,如图,此时2AM t =,3BN t =,16AC =,30CB =,则MC AC AM =−,NC BC BN =−,当MC NC =,即162303t t −=−,解得:14t =,不合题意;②当810t ≤<时,点M 在BC 上,点N 也在BC 上,此时相当于两点相遇,如图,∵MC NC =,点M 与点N 216303t t −=−,解得:9.2t =; ③当46103t ≤<时,点M 在BC 上,点N 在AC 上,如图,∵MC NC =,∴216330t t −=−,解得:14t =; ④当46233t ≤≤时,点N 停在点A 处,点M 在BC 上,如图,∵MC NC =,∴21616t −=,解得:16t =;综上所述:当9.2t =或14或16秒时,MPC ∆与NQC ∆全等.【点睛】此题是三角形综合题,主要考查了全等三角形的判定和性质,同角的余角相等,判断出ACD CBE ∆∆≌是解本题的关键,还用到了分类讨论的思想.25. 在平面直角坐标系中,点A (0,5),B (12,0),在y 轴负半轴上取点E ,使OA =EO ,作∠CEF =∠AEB ,直线CO 交BA 的延长线于点D .(1)根据题意,可求得OE = ;(2)求证:△ADO ≌△ECO ;(3)动点P 从E 出发沿E ﹣O ﹣B 路线运动速度为每秒1个单位,到B 点处停止运动;动点Q 从B 出发沿B ﹣O ﹣E 运动速度为每秒3个单位,到E 点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PM ⊥CD 于点M ,QN ⊥CD 于点N .问两动点运动多长时间△OPM 与△OQN 全等?【答案】(1)5;(2)见解析;(3)当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等 【解析】【分析】(1)根据OA=OE 即可解决问题.(2)根据ASA 证明三角形全等即可解决问题.(2)设运动的时间为t 秒,分三种情况讨论:当点P 、Q 分别在y 轴、x 轴上时;当点P 、Q 都在y 轴上时;当点P 在x 轴上,Q 在y 轴时若二者都没有提前停止,当点Q 提前停止时;列方程即可得到结论.【详解】(1)∵A (0,5),∴OE =OA =5,故答案为5.(2)如图1中,∵OE =OA ,OB ⊥AE ,∴BA =BE ,∴∠BAO =∠BEO ,∵∠CEF =∠AEB ,∴∠CEF =∠BAO ,∴∠CEO =∠DAO ,在△ADO 与△ECO 中,CE0DA0OA 0ECOE AOD ∠=∠ = ∠=∠, ∴△ADO ≌△ECO (ASA ).(2)设运动的时间为t 秒,当PO =QO 时,易证△OPM ≌△OQN .分三种情况讨论:①当点P 、Q 分别在y 轴、x 轴上时PO =QO 得:5﹣t =12﹣3t ,解得t =72(秒), ②当点P 、Q 都在y 轴上时PO =QO 得:5﹣t =3t ﹣12,解得t =174(秒), ③当点P x 轴上,Q 在y 轴上时,若二者都没有提前停止,则PO =得:t ﹣5=3t ﹣12,解得t =72(秒)不合题意; 当点Q 运动到点E 提前停止时,有t ﹣5=5,解得t =10(秒), 综上所述:当两动点运动时间为72、174、10秒时,△OPM 与△OQN 全等. 【点睛】本题属于三角形综合题,考查了全等三角形的判定,坐标与图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.在。
人教版初中数学七年级上期末目标检测数学试卷(1-8套)及答案
DC BA图 2七年级(上)期末目标检测数学试卷(二)一、选择题(每小题3分,共30分)1、3的相反数是()A 、3-B 、3C 、13D 、13-2、在一次智力竞赛中,主持人问了这样的一道题目:“a 是最小的正整数,b 是最大的负整数的相反数,c 是绝对值最小的有理数,请问:a 、b 、c 三数之和为多少?”你能回答主持人的问题吗?其和应为()A 、-1B 、0C 、1D 、23、如图2,三棱柱的平面展开图的是()4、截止2008年6月1日12时,我国各级政府共投入四川汶川救灾资金达22609000000元,这项资金用科学记数法表示为()A 、9102609.2⨯元;B 、10102609.2⨯元;C 、11102609.2⨯元;D 、11102609.2-⨯元5、已知关于x 的方程432x m -=的解是x m =,则m 的值是()A 、2B 、-2C 、27D 、-276、55°角的余角是()A 、55°B 、45°C 、35°D 、125°7、在直线l 上顺次取A 、B 、C 三点,使得AB=5㎝,BC=3㎝,如果O 是线段AC 的中点,那么线段OB的长度是()A 、0.5㎝B 、1㎝C 、1.5㎝D 、2㎝8、下列计算:①5)5(0-=--;②12)9()3(-=-+-;③234932)(-=-⨯;④4)9()36(-=-÷-,其中正确的有()A 、1个B 、2个C 、3个D 、4个9、已知52=-x y ,那么6063)2(52-+--y x y x 的值为()A 、10B 、40C 、80D 、21010、小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x 月后他能捐出100元,则下列方程中能正确计算出x 的是()A 、10x +20=100B 、10x -20=100C 、20-10x =100D 、20x +10=100图 3ED OCBA二、填空题(每小题2分,共20分)1、15-的倒数是。
人教版中考模拟检测《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题1.下列图形是中心对称图形而不是轴对称图形是()A. B. C. D.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.3.如图,AB是⊙O的弦,OC⊥AB,交⊙O于点C,连接OA,OB,BC,若∠ABC=20°,则∠AOB的度数是( )A. 40°B. 50°C. 70°D. 80°4.已知点A(m,n)在第二象限,则点B(|m|,﹣n)在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 47.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣58.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 82;C. 413;D. 241;9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 410.已知四边形OABC是矩形,边OA在x轴上,边OC在y轴上,双曲线与边BC交于点D、与对角线OB 交于点中点E,若△OBD的面积为10,则k的值是( )A. 10B. 5C. 103D.203二.填空题11.若点A(2x﹣1,5)和点B(4,y+3)关于点(﹣3,2)对称,那么点A在第_____象限.12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.14.如图,在扇形AOB中,AC为弦,∠AOB=130°,∠CAO=60°,OA=6,则BC的长为______.15.已知a2+a﹣3=0,则a3+3a2﹣a+4的值为_____.16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为________ m2.三.解答题17.解方程:2220x x+-=.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.20.如图,△ABC 的三个顶点都在⊙O 上,直径AD =6cm ,∠DAC =2∠B ,求AC 的长.21.若n 是一个两位正整数,且n 个位数字大于十位数字,则称n 为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率. 22.如图,在平面直角坐标系xOy 中,直线y =x+1与双曲线y =k x 的一个交点为P(m ,2). (1)求k 值;(2)M(20191009,a),N(n ,b)是双曲线上的两点,直接写出当a >b 时,n 的取值范围.23.在锐角△ABC 中,边BC 长为18,高AD 长为12(1)如图,矩形EFCH 边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.答案与解析一.选择题1.下列图形是中心对称图形而不是轴对称图形的是()A. B. C. D.【答案】A【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是中心对称图形,不是轴对称图形;故本选项正确;B、是中心对称图形,也是轴对称图形;故本选项错误;C、是中心对称图形,也是轴对称图形;故本选项错误;D、不是中心对称图形,是轴对称图形;故本选项错误;故选A.【点睛】考核知识点:轴对称图形与中心对称图形识别.2.下列事件中是必然事件的是()A. 从一个装有黄、白两色球的缸里摸出一个球,摸出的球是白球;B. 小丹的自行车轮胎被钉子扎坏;C. 小红期末考试数学成绩一定得满分;D. 将豆油滴入水中,豆油会浮在水面上.【答案】D【解析】【分析】必然事件就是一定会发生的事件,依据定义即可作出判断.【详解】解:A、是随机事件.故选项错误;B、随机事件.故选项错误;C、是随机事件.故选项错误;D、正确.故选D.【点睛】本题考查随机事件和必然事件,理解概念是本题的解题关廉.3.如图,AB 是⊙O 的弦,OC ⊥AB ,交⊙O 于点C ,连接OA ,OB ,BC ,若∠ABC =20°,则∠AOB 的度数是( )A. 40°B. 50°C. 70°D. 80°【答案】D【解析】分析】 根据圆周角定理得出∠AOC=40°,进而利用垂径定理得出∠AOB=80°即可.【详解】∵∠ABC=20°, ∴∠AOC=40°, ∵AB 是⊙O 的弦,OC ⊥AB ,∴∠AOC=∠BOC=40°, ∴∠AOB=80°, 故选D .【点睛】此题考查圆周角定理,关键是根据圆周角定理得出∠AOC=40°. 4.已知点A(m ,n )在第二象限,则点B(|m|,﹣n )在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】【分析】点在第二象限的条件是:横坐标是负数,纵坐标是正数,即可确定出m 、n 的正负,从而确定|m|,-n 的正负,即可得解.【详解】解:∵点A (,)m n 第二象限,∴m <0,n >0,∴|m|>0,-n <0,∴点B (,)m n 在第四象限.故选D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,熟记各象限内点的坐标的符号是解题的关键.5.如图,过⊙O上一点C作⊙O的切线,交⊙O直径AB的延长线于点D.若∠D=40°,则∠A的度数为( )A. 20°B. 25°C. 30°D. 40°【答案】B【解析】【分析】直接利用切线的性质得出∠OCD=90°,进而得出∠DOC=50°,进而得出答案.【详解】解:连接OC,∵DC是⊙O的切线,C为切点,∴∠OCD=90°,∵∠D=40°,∴∠DOC=50°,∵AO=CO,∴∠A=∠ACO,∴∠A=12∠DOC=25°.故选:B.【点睛】此题主要考查了切线的性质,正确得出∠DOC=50°是解题关键.6.如图,若D、E分别为△ABC中AB、AC边上的点,且∠AED=∠B,AD=3,AC=6,DB=5,则AE的长度为( )A. 94B.52C.185D. 4【答案】D 【解析】【分析】根据相似三角形的判定首先证出△ADE∽△ACB,然后根据相似三角形的性质得出AEAB=ADAC,从而求出AE的长度.【详解】解:∵∠A=∠A,∠AED=∠B,∴△ADE∽△ACB,∴AEAB=ADAC,又∵AD=3,AC=6,DB=5,∴AB=AD+DB=8,∴AE=8×3÷6=4.故选D.【点睛】本题主要考查了相似三角形判定及性质.有两角对应相等的两个三角形相似.相似三角形的三边对应成比例.7.抛物线y=ax2+bx﹣3与x轴交于A,B两点,与y轴交于点C,且OB=OC=3OA,求抛物线的解析式( )A. y=x2﹣2x﹣3B. y=x2﹣2x+3C. y=x2﹣2x﹣4D. y=x2﹣2x﹣5【答案】A【解析】【分析】由抛物线与y轴的交点坐标可求OC得长,根据OB=OC=3OA,进而求出OB、OA,得出点A、B坐标,再用待定系数法求出函数的关系式.【详解】解:在抛物线y=ax2+bx﹣3中,当x=0时,y=﹣3,点C(0,﹣3)∴OC=3,∵OB=OC=3OA,∴OB=3,OA=1,∴A(﹣1,0),B(3,0)把A(﹣1,0),B(3,0)代入抛物线y=ax2+bx﹣3得:a﹣b﹣3=0,9a+3b﹣3=0,解得:a=1,b=﹣2,∴抛物线的解析式为y=x2﹣2x﹣3,故选:A.【点睛】本题考查待定系数法求二次函数解析式;是一道二次函数综合题.8.如图,在平面直角坐标系中,⊙M 与x 轴相切于点A(8,0).与y轴分别交于点B(0,4)与点C(0,16).则圆心M 到坐标原点O 的距离是( )A. 10;B. 2;C. 13D. 41【答案】D【解析】【分析】如图连接BM、OM,AM,作MH⊥BC于H,先证明四边形OAMH是矩形,根据垂径定理求出HB,在Rt△AOM中求出OM即可.【详解】解:如图连接BM、OM,AM,作MH⊥BC于H.已知⊙M与x轴相切于点A(8,0),可得AM⊥OA,OA=8,即可得∠OAM=∠MH0=∠HOA=90°,所以四边形OAMH是矩形,根据矩形的性质可得AM=OH,因MH⊥BC,由垂径定理得HC=HB=6,所以OH=AM=10,在RT△AOM中,由勾股定理可求得OM==241.故答案选D.【点睛】本题考查切线的性质、坐标与图形性质、垂径定理、勾股定理等知识,解题的关键是正确添加辅助线,构造直角三角形.9.函数y=x2+bx+c与y=x的图象如图所示,有以下结论:①b2﹣4c>0;②b+c+1=0;③3b+c+6=0;④当1<x<3时,x2+(b﹣1)x+c<0.其中正确的个数为A. 1B. 2C. 3D. 4【答案】B【解析】分析:∵函数y=x2+bx+c与x轴无交点,∴b2﹣4c<0;故①错误.当x=1时,y=1+b+c=1,故②错误.∵当x=3时,y=9+3b+c=3,∴3b+c+6=0.故③正确.∵当1<x<3时,二次函数值小于一次函数值,∴x2+bx+c<x,∴x2+(b﹣1)x+c<0.故④正确.综上所述,正确的结论有③④两个,故选B .10.已知四边形OABC 是矩形,边OA 在x 轴上,边OC 在y 轴上,双曲线与边BC 交于点D 、与对角线OB 交于点中点E ,若△OBD 的面积为10,则k 的值是( )A. 10B. 5C. 103D. 203【答案】D【解析】【分析】 设双曲线的解析式为:k y x=,E 点的坐标是(x ,y ),根据E 是OB 的中点,得到B 点的坐标,求出点E 的坐标,根据三角形的面积公式求出k . 【详解】解:设双曲线的解析式为:k y x =,E 点的坐标是(x ,y ), ∵E 是OB 的中点,∴B 点的坐标是(2x ,2y ),则D 点的坐标是(2k y,2y ), ∵△OBD 的面积为10, ∴12×(2x ﹣2k y )×2y =10, 解得,k =203, 故选:D .【点睛】本题考查反比例系数k 的几何意义,过双曲线上的任意一点分别向两条坐标作垂线,与坐标轴围成的矩形面积就等于|k|.二.填空题11.若点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,那么点A 在第_____象限.【答案】二.【解析】【分析】根据点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,列方程求得x ,y 的值,结果可得.【详解】解:∵点A (2x ﹣1,5)和点B (4,y +3)关于点(﹣3,2)对称,∴﹣3﹣(2x ﹣1)=4﹣(﹣3),解得:x =﹣92, ∴点A (﹣10,5),∴点A 在第二象限,故答案为:二.【点睛】本题考查轴对称及平面直角坐标系内点的坐标特征,熟练掌握相关知识是解题关键. 12.在1×2的正方形网格格点上放三枚棋子,按图所示的位置已放置了两枚棋子,如果第三枚棋子随机放在其它格点上,那么以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为____.【答案】34. 【解析】 【详解】解:显然第三枚棋子随机放在其他格点上构成三角形,共有4种等可能的结果,且以这三枚棋子所在的格点为顶点的三角形是直角三角形的有3种情况,所以以这三枚棋子所在的格点为顶点的三角形是直角三角形的概率为34. 故答案为:34. 【点睛】此题考查了概率公式应用.注意概率=所求情况数与总情况数之比.13.若抛物线的顶点坐标为(2,9),且它在轴截得的线段长为,则该抛物线的表达式为________.【答案】2(2)9y x =--+【解析】【分析】设此抛物线的解析式为:y=a (x-h )2+k ,由已知条件可得h=2,k=9,再由条件:它在x 轴上截得的线段长为6,求出a 的值即可.【详解】解:由题意,设此抛物线的解析式为: y=a (x-2)2+9,∵且它在x 轴上截得的线段长为6,令y=0得,方程0=a (x-2)2+9,即:ax 2-4ax+4a+9=0,∵抛物线ya (x-2)2+9在x 轴上的交点的横坐标为方程的根,设为x 1,x 2,∴x 1+x 2=4,x 1•x 2=49a a+ , ∴|x 1-x 2|=21212()46x x x x +-=即16-4×49a a+=36 解得:a=-1,y=-(x-2)2+9,故答案为:y=-(x-2)2+9.【点睛】此题主要考查了用顶点式求二次函数的解析式和一元二次方程与二次函数的关系,函数与x 轴的交点的横坐标就是方程的根.14.如图,在扇形AOB 中,AC 为弦,∠AOB =130°,∠CAO =60°,OA =6,则BC 的长为______.【答案】73π. 【解析】解:连接OC ,如图,∵OA =OC ,∴∠OCA =∠CAO =60°,∴∠AOC =60°,∴∠BOC =130°﹣60°=70°,∴BC 的长=706180π⨯=73π.故答案为73π.点睛:本题考查了弧长的计算:圆周长公式:C =2πR ;弧长公式:l =180n R π(弧长为l ,圆心角度数为n ,圆的半径为R ),在弧长的计算公式中,n 是表示1°的圆心角的倍数,n 和180都不要带单位.15.已知a 2+a ﹣3=0,则a 3+3a 2﹣a +4的值为_____.【答案】10.【解析】【分析】已知a 2+a ﹣3=0,得出a 2=3﹣a ,a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,然后代入代数式求得即可.【详解】解:∵a 2+a ﹣3=0,∴a 2=3﹣a ,∴a 3=a •a 2=a (3﹣a )=3a ﹣a 2=3a ﹣(3﹣a )=4a ﹣3,∴a 3+3a 2﹣a +4=4a ﹣3+3(3﹣a )﹣a +4=10.故答案为10.【点睛】本题是一道涉及因式分解的计算题,考查了拆项法分解因式的运用,提公因式法的运用. 16.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m 宽的门.已知计划中的材料可建墙体(不包括门)总长为27m ,则能建成的饲养室面积最大为________ m 2 .【答案】75【解析】试题分析:首先设垂直于墙面的长度为x ,则根据题意可得:平行于墙面的长度为(30-3x),则S=x(30-3x)=-32(5)x -+75,,则当x=5时,y 有最大值,最大值为75,即饲养室的最大面积为75平方米.考点:一元二次方程的应用.三.解答题17.解方程:2220x x +-=.【答案】11=-x ,21=-x【解析】【分析】把常数项移到右边 ,然后利用配方法进行求解即可.【详解】2220x x +-=,222x x +=,22121x x ++=+,()213x +=,1x +=11=-x ,21=-x【点睛】本题考查了配方法解一元二次方程,熟练掌握配方法的步骤是解题的关键.配方法的步骤:先把常数项移到等号的右边,把二次项系数化1,然后方程两边同时加上一次项系数一半的平方,左边配成完全平方式,两边开平方进行求解.18.关于x 的一元二次方程(m ﹣1)x 2﹣2mx +m +1=0有两个实数根,若方程的两个实数根都是正整数,求整数m 的值.【答案】m =2或m =3.【解析】【分析】先求出方程的解,根据此方程的两个根都是正整数列出关于m 的不等式,解不等式即可求解.【详解】解:(m ﹣1)x 2﹣2mx +m +1=0,[(m ﹣1)x ﹣(m +1)](x ﹣1)=0,x 1=11m m +-,x 2=1, ∵此方程的两个实数根都是正整数, 由11m m +->0解得m <﹣1或m >1, ∴m =2或m =3.【点睛】本题考查了公式法解一元二次方程.要会熟练运用公式法求得一元二次方程的解.19.正方形ABCD 的边长为1,AB 、AD 上各有一点P 、Q ,如果APQ ∆的周长为2,求PCQ ∠的度数.【答案】45°. 【解析】【分析】首先从△APQ 的周长入手求出PQ=DQ+BP ,然后将△CDQ 逆时针旋转90°,使得CD 、CB 重合,然后利用全等来解.【详解】解:如图所示,△APQ 的周长为2,即AP+AQ+PQ=2①,正方形ABCD 的边长是1,即AQ+QD=1,AP+PB=1,∴AP+AQ+QD+PB=2②,①-②得,PQ-QD-PB=0,∴PQ=PB+QD .延长AB 至M ,使BM=DQ .连接CM ,△CBM ≌△CDQ (SAS ),∴∠BCM=∠DCQ ,CM=CQ ,∵∠DCQ+∠QCB=90°,∴∠BCM+∠QCB=90°,即∠QCM=90°,PM=PB+BM=PB+DQ=PQ .在△CPQ 与△CPM 中,CP=CP ,PQ=PM ,CQ=CM ,∴△CPQ ≌△CPM (SSS ),∴∠PCQ=∠PCM=12∠QCM=45°. 【点睛】本题考查正方形的性质及全等三角形的判定与性质,熟练掌握正方形的性质,会运用正方形的性质进行一些简单的运算是本题的解题关键.20.如图,△ABC的三个顶点都在⊙O上,直径AD=6cm,∠DAC=2∠B,求AC的长.【答案】3cm.【解析】【分析】先连接OC,根据AO=AC=OC,判定△AOC是等边三角形,进而得到AC=AO=12AD=3cm.【详解】解:如图,连接OC,∵∠AOC=2∠B(圆周角定理),∠DAC=2∠B,∴∠AOC=∠DAC,∴AO=AC,又∵OA=OC,∴△AOC是等边三角形,∴AC=AO=12AD=3cm.【点睛】此题考查了圆周角定理以及等边三角形判定及性质.注意掌握辅助线的作法以及数形结合思想的应用.21.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为”两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的”两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的”两位递增数”;(2)请用列表法或树状图,求抽取的”两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)1 5 .【解析】【分析】(1)根据”两位递增数”定义可得;(2)画树状图列出所有”两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.【详解】解:(1)根据题意所有个位数字是5的”两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.【点睛】本题考查列表法与树状图法求概率,掌握概率公式是本题的解题关键.22.如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=kx的一个交点为P(m,2).(1)求k的值;(2)M(20191009,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.【答案】(1)m=1,k=2;(2)n>20191009或n<0.【解析】【分析】(1)将点P坐标代入两个解析式可求m,k的值;(2)根据反比例函数图象性质可求解.【详解】(1)∵直线y=x+1与双曲线y=kx的一个交点为P(m,2).∴122 mkm+=⎧⎪⎨=⎪⎩∴m=1,k=2;(2)∵k=2,∴双曲线每个分支上y随x的增大而减小,当N在第一象限时,∵a>b∴n>2019 1009,当N在第三象限时,∴n<0综上所述:n>20191009或n<0.【点睛】本题考查了一次函数和反比例函数交点问题,函数图象的性质,熟练掌握函数图象上点的坐标满足函数解析式.23.在锐角△ABC中,边BC长为18,高AD长为12(1)如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;(2)设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.【答案】(1)32;(2)54.【解析】【分析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+54,可得当x=6时,S有最大值为54.【详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+54.当x=6时,S有最大值为54.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.24.如图1,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD⊥AB于点D,过点C作∠BCE,使∠BCE =∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线.(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF井延长交EC的延长线于点G.①试探究线段CF与CD之间满足的数量关系;②若CD=4,BD=2,求线段FG的长.【答案】(1)详见解析;(2)①CF=2CD;②FG 165.【解析】【分析】(1)如图1,连接OC,根据等边对等角得:∠OBC=∠OCB,由垂直定义得:∠OBC+∠BCD=90°,根据等量代换可得:∠OCB+∠BCE=90°,即OC⊥CE,可得结论;(2)①如图2,过O作OH⊥CF于点H,证明△COH≌△COD,则CH=CD,得CF=2CD;②先根据勾股定理求BC22CD BD+5CF=2CD=8,设OC=OB=x,则OD=x﹣2,根据勾股定理列方程得:x2=(x﹣2)2+42,可得x的值,证明△GFC∽△CBO,列比例式可得FG的长.【详解】(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,∵CD⊥AB,∴∠OBC+∠BCD=90°,∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(2)解:①线段CF与CD之间满足的数量关系是:CF=2CD,理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;②∵CD=4,BD=2,∴BC225①得:CF=2CD=8,CD BD设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴FG FC CB BO=,∴85 25FG=,∴FG=1655.【点睛】此题考查的知识点是垂直的定义、全等三角形的判定、勾股定理及相似三角形性的判定与性质,熟练掌握并运用是解题关键.。
人教版中考模拟考试数学试卷及答案(共七套)
19.(1) ;
(2)如下表:
小辰
A
A
A
B
B
B
C
C
C
小安
A
B
C
A
B
C
A
B
C
同一型号
√
√ቤተ መጻሕፍቲ ባይዱ
√
由表知:他们选择同一型号的概率为 。
20.(1)由两张图知:A有32人,占40%,所以样本容量是80人;
(2)求出B的人数是16人,补全条形图如图;
(3)D等占10%,扇形圆心角是36°;
(4)在被抽到的80人中,C等级24人,占30%,
以此估计全校2000人中评为C的可能有
2000×30%=600,即可能有600人。
21. 解:设增加了 行,则共有( )行,( )列,
根据题意: , ,
∵ ,∴ ,
答:增加了3列。
22. 提示(1)AB是直径,∠ACB=90°,∠B+∠2=90°;
DC=AC,那么∠D=∠1,而∠D=∠B,
(1)小辰随机选择一种型号是凝胶型免洗洗手液的概率是________;
(2)请你用列表法或画树状图法,求小辰和小安选择同一型号免洗洗手液的概率。
20.(本题8分)
学史明理,学史增信,学史崇德,学史力行。在建党100周年之际,某校对全校学生进行了一次党史知识测试,成绩评定共分为A,B,C,D四个等级,随机抽取了部分学生的成绩进行调查,将获得的数据整理绘制成如下两幅不完整的统计图:
则D(8,6),CD=5,
而A(5,0),OA=5,∴CD=OA,
∵CD∥OA,且CD=OA,∴四边形OADC是平行四边形;
(3)点C纵坐标为6,则CD与OA之间的距离为 ,
2024年全新初一数学上册模拟试卷及答案(人教版)
专业课原理概述部分一、选择题:每题1分,共5分1. 下列哪个数是质数?A. 31B. 39C. 49D. 642. 下列哪个分数是无理数?A. √2B. √3C. √4D. √93. 下列哪个图形是平行四边形?A. 矩形B. 正方形C. 梯形D. 圆形4. 下列哪个数是偶数?A. 101B. 102C. 103D. 1045. 下列哪个图形是立体图形?A. 正方形B. 矩形C. 圆形D. 立方体二、判断题:每题1分,共5分1. 两个质数的和一定是偶数。
()2. 0是最小的自然数。
()3. 任何两个奇数的和都是偶数。
()4. 任何两个偶数的积都是偶数。
()5. 任何两个奇数的积都是奇数。
()三、填空题:每题1分,共5分1. 1千米等于______米。
2. 1千克等于______克。
3. 1平方米等于______平方分米。
4. 1升等于______毫升。
5. 1吨等于______千克。
四、简答题:每题2分,共10分1. 请简述偶数和奇数的定义。
2. 请简述质数和合数的定义。
3. 请简述等边三角形的特点。
4. 请简述等腰三角形的特点。
5. 请简述长方形的特点。
五、应用题:每题2分,共10分1. 小明有3个苹果,小红比小明多2个苹果,小丽比小红少1个苹果。
请问小红和小丽一共有多少个苹果?2. 一个长方形的长是10厘米,宽是5厘米,请计算这个长方形的面积。
3. 一个正方形的边长是8厘米,请计算这个正方形的面积。
4. 一个圆锥的底面半径是3厘米,高是4厘米,请计算这个圆锥的体积。
5. 一个圆柱的底面半径是2厘米,高是10厘米,请计算这个圆柱的体积。
六、分析题:每题5分,共10分1. 小华买了一本书,原价是80元,书店打9折出售。
请问小华实际支付了多少钱?2. 一个长方形的长是12厘米,宽是5厘米。
请问这个长方形的对角线长度是多少?七、实践操作题:每题5分,共10分1. 请用直尺和圆规画一个边长为5厘米的正方形。
人教版中考冲刺模拟测试《数学试卷》含答案解析
人教版数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 52.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D.3. 下列计算正确的是A. 4312a a a ⋅=B. 93=C. ()02x 10+=D. 若x 2=x ,则x=1 4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒5.如图,△ABC 内接于⊙O ,AD 是⊙O 直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°6.某社区青年志愿者小分队年龄情况如下表所示:年龄(岁)18 19 20 21 22 人数2 4 4 5 1则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC =∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二.填空题9.因式分解:xy3﹣x=_____.10.在函数y=3x+中,自变量x的取值范围是_____.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.12.不等式组2340x xx+<⎧⎨-≤⎩解集为_____.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x乙=8.5,则测试成绩比较稳定的是.(填”甲”或”乙”)15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.16.如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=14OA=2,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭19.如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P320千米处.(1)说明本次台风会影响B市;(2)求这次台风影响B市的时间.20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?23. 正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN 的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x值.24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C、A、A′,求此抛物线解析式;(2)求平行四边形ABOC和平行四边形A′B′OC′重叠部分△OC′D的周长;(3)点M是第一象限内抛物线上的一动点,问:点M在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M的坐标.答案与解析一.选择题 1.-15的倒数是( ) A. 15 B. -15 C. -5 D. 5【答案】C【解析】 试题分析:根据倒数的定义即若两个数的乘积是1,我们就称这两个数互为倒数,即可得出答案. 试题解析:-15的倒数是-5; 故选C .考点:倒数.2.下列”QQ 表情”中属于轴对称图形的是( )A. B. C. D. 【答案】C【解析】【分析】根据轴对称图形的概念,一一判断四个选项即可得到答案.【详解】解:A 、B 、D 都不关于某一条直线对称,故不是轴对称图形,C 关于直线对称,故是轴对称图形.故选:C .【点睛】本题考查了轴对称图形的概念(如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形),掌握轴对称图形的概念是解题的关键.3. 下列计算正确的是A. 4312a a a ⋅=93= C. ()02x 10+= D. 若x 2=x ,则x=1 【答案】B【解析】试题分析:根据同底数幂的乘法,算术平方根,零指数幂运算法则和解一元二次方程逐一计算作出判断: A 、43437a a a a +⋅==,故本选项错误;B 29333===,故本选项正确;C 、∵x 2+1≠0,∴()02x 11+=,故本选项错误;D 、由题意知,x 2﹣x=x(x ﹣1)=0,则x=0或x=1.故本选项错误.故选B .4.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A. 32︒B. 58︒C. 138︒D. 148︒【答案】D【解析】【分析】 根据三角形的一个外角等于与它不相邻的两个内角的和求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.【详解】如图,由三角形的外角性质得:∠3=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠3=148°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.5.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是( )A. 25°B. 60°C. 65°D. 75°【答案】C【解析】【分析】首先根据直径所对的圆周角是直角,可求得∠ACD=90°,又由圆周角定理的推论可得∠D=∠ABC=25°,继而求得答案.【详解】解:∵AD是⊙O的直径,∴∠ACD=90°,∵∠D=∠ABC=25°,∴∠CAD=90°﹣∠D=65°.故选:C.【点睛】本题主要考查圆周角定理的推论,掌握圆周角定理的推论是解题的关键.6.某社区青年志愿者小分队年龄情况如下表所示:则这12名队员年龄的众数、中位数分别是()A. 5,20岁B. 5,21岁C. 20岁,20岁D. 21岁,20岁【答案】D【解析】【分析】根据众数和中位数的概念求解可得.【详解】这组数据中出现次数最多的是21,所以众数为21岁,第8、9个数据分别是20岁、20岁,所以这组数据的中位数为20220=20(岁),故选:D.【点睛】本题考查中位数和众数,熟练掌握中位数的求法是解答本题关键.7.小明从家骑车上学,先上坡到达A地后再下坡到达学校,所用的时间与路程如图所示.如果返回时,上下坡的速度仍然保持不变,那么他从学校回到家需要的时间是().A. 8.6分钟B. 9分钟C. 12分钟D. 16分钟【答案】C【解析】【分析】根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而速度是0.5千米/分钟,由此即可求出答案.【详解】解:把上下坡的速度求出来是解题的关键,根据图象可知:小明从家骑车上学,上坡的路程是1千米,用5分钟,则上坡速度是0.2千米/分钟;下坡路长是2千米,用4分钟,因而下坡速度是0.5千米/分钟,回家时下坡是1千米,上坡路程是2千米,所以他从学校回到家需要的时间是120.50.2=12分钟.故选C.【点睛】读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.8.如图,CB=CA,∠ACB=90°,点D在边BC上(与B,C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】试题解析:∵四边形ADEF为正方形,∴∠FAD=90°,AD=AF=EF,∴∠CAD+∠FAG=90°,∵FG⊥CA,∴∠GAF+∠AFG=90°, ∴∠CAD=∠AFG ,在△FGA 和△ACD 中,{G CAFG CAD AF AD∠∠∠∠===,∴△FGA ≌△ACD(AAS),∴AC=FG ,①正确;∵BC=AC ,∴FG=BC ,∵∠ACB=90°,FG ⊥CA , ∴FG ∥BC ,∴四边形CBFG 是矩形,∴∠CBF=90°,S △FAB =12FB•FG=12S 四边形CBFG ,②正确; ∵CA=CB ,∠C=∠CBF=90°, ∴∠ABC=∠ABF=45°,③正确; ∵∠FQE=∠DQB=∠ADC ,∠E=∠C=90°, ∴△ACD ∽△FEQ ,∴AC :AD=FE :FQ ,∴AD•FE=AD 2=FQ•AC ,④正确;故选D .【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键.二.填空题9.因式分解:xy 3﹣x =_____.【答案】x (y +1)(y ﹣1)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】解:原式=x (y 2﹣1)=x (y +1)(y ﹣1),故答案为:x (y +1)(y ﹣1) .【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.10.在函数y x的取值范围是_____.【答案】x≥﹣3【解析】【分析】因为二次根式的被开方数要为非负数,即x+3≥0,解此不等式即可.【详解】解:根据题意得:x+3≥0,解得:x≥﹣3.【点睛】本题考查了求自变量的取值范围,解题的关键是掌握当函数表达式是二次根式时,被开方数为非负数.11.新冠肺炎疫情发生以来,我国人民上下齐心,共同努力抗击疫情,逐渐取得了胜利.截止3月13日,我国各级财政安排的疫情防控投入已经达到了1169亿元,1169亿元用科学记数法表示为_____元.【答案】1.169×1011【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:1169亿=116900000000用科学记数法表示为:1.169×1011.故答案为:1.169×1011.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.不等式组2340x xx+<⎧⎨-≤⎩的解集为_____.【答案】1<x≤4【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式x+2<3x,得:x>1,解不等式x﹣4≤0,得:x≤4,则不等式组的解集为:1<x≤4,故答案为:1<x≤4.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知”同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,四边形ABCD中,E,F,G,H分别是边AB,BC,CD,DA的中点.请你添加一个条件,使四边形EFGH为矩形,应添加的条件是_____.【答案】AC⊥BD【解析】【分析】根据三角形的中位线定理,可以证明所得四边形的两组对边分别和两条对角线平行,所得四边形的两组对边分别是两条对角线的一半,再根据平行四边形的判定就可证明该四边形是一个平行四边形;所得四边形要成为矩形,则需有一个角是直角,故对角线应满足互相垂直.【详解】解:如图,∵E,F分别是边AB,BC的中点,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,EF=HG,∴四边形EFGH是平行四边形;要使四边形EFGH是矩形,则需EF⊥FG,即AC⊥BD;故答案为:AC⊥BD.【点睛】此题主要考查了三角形的中位线定理的运用.同时熟记此题中的结论:顺次连接四边形各边中点所得四边形是平行四边形;顺次连接对角线互相垂直的四边形各边中点所得四边形是矩形.14.甲、乙两名射击运动员在某场测试中各射击10次,两人的测试成绩如下:甲7 7 8 8 8 9 9 9 10 10乙7 7 7 8 8 9 9 10 10 10这两人10次射击命中的环数的平均数x甲=x=8.5,则测试成绩比较稳定的是.(填”甲”或”乙乙”)【答案】甲【解析】【分析】分别计算出两人的方差,方差较小的成绩比较稳定.=(7×2+9×3+10×2+3×8)÷10=8.5,【详解】解:x甲S2甲=[(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.05,x=8.5,乙S2乙=[(7-8.5)2+(7-8.5)2+(7-8.5)2+(8-8.5)2+(8-8.5)2+(9-8.5)2+(9-8.5)2+(10-8.5)2+(10-8.5)2+(10-8.5)2]÷10=1.45,∵S2甲<S2乙,∴甲组数据稳定.故答案为:甲.【点睛】此题主要考查了方差公式的应用,方差是各变量值与其均值离差平方的平均数,它是测算数值型数据离散程度的最重要的方法.15.如图,某地修建高速公路,要从B地向C地修一座隧道(B,C在同一水平上),某工程师乘坐热气球从B 地出发,垂直上升100m到达A处,在A处观测C地的俯角为30°,则B、C两地之间的距离为__________m.【答案】3【解析】【分析】利用题意得到∠C=30°,AB=100,然后根据30°正切可计算出BC .【详解】根据题意得∠C=30°,AB=100,∵tanC=AB BC , ∴BC=0100tan 30=0100tan 30=100=100333=1003(m ). 故答案为1003.【点睛】本题考查了解直角三角形的应用-仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角当图形中没有直角三角形时,要通过作高或垂线构造直角三角形.16.如图,直角梯形OABC 的直角顶点是坐标原点,边OA ,OC 分别在x 轴,y 轴的正半轴上.OA ∥BC ,D 是BC 上一点,BD =14OA =2,AB =3,∠OAB =45°,E ,F 分别是线段OA ,AB 上的两个动点,且始终保持∠DEF =45°.设OE =x ,AF =y ,则y 与x 的函数关系式为_____.【答案】21233y x x =+ 【解析】【分析】 首先过B 作x 轴的垂线,设垂足为M ,由已知易求得OA 2,在Rt △ABM 中,已知∠OAB 的度数及AB 的长,即可求出AM 、BM 的长,进而可得到BC 、CD 的长,再连接OD ,证△ODE ∽△AEF ,通过得到的比例线段,即可得出y 与x 的函数关系式.【详解】解:过B 作BM ⊥x 轴于M .在Rt △ABM 中,∵AB =3,∠BAM =45°,∴AM =BM 32,∵BD =14OA ,OA ∴=,∴BC =OA ﹣AM =CD =BC ﹣BD =2,∴D ),32OD ∴== . 连接OD ,则点D 在∠COA 的平分线上,所以∠DOE =∠COD =45°.又∵在梯形DOAB 中,∠BAO =45°,∴由三角形外角定理得:∠ODE =∠DEA ﹣45°,又∠AEF =∠DEA ﹣45°,∴∠ODE=∠AEF ,∴△ODE ∽△AEF ,OE OD AF AE∴= 即x y =∴y 与x 解析式为:2133y x x =-+.故答案为:2133y x x =-+.【点睛】本题主要考查二次函数的应用,掌握相似三角形的判定及性质是解题的关键.三.解答题17.计算:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2.【答案】1023 3-【解析】【分析】分别计算绝对值、零指数幂,特殊角的三角形函数值,及负整数指数幂,然后得出各部分的最简值,继而合并可得出答案.【详解】解:13-﹣(3.14﹣π)0+(1﹣cos30°)×(12)﹣2=13114 3⎛-+⨯⎝⎭=11423 3-+-=1023 3-【点睛】本题主要考查了绝对值的计算、零指数幂,特殊角的三角形函数值、及负整数指数幂的计算,熟练掌握各知识点是解题的关键.18.计算22a b11. ab a b-⎛⎫÷-⎪⎝⎭【答案】a b--.【解析】【分析】先计算括号内分式的减法,再将除法转化为乘法,约分即可得.【详解】解:原式()()a b a b b a ab ab+--=÷, ()()()a b a b ab ab a b +-=⋅--, ()a b =-+,a b =--.【点睛】考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.19.如图,台风中心位于点P ,并沿东北方向PQ 移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B 市位于点P 的北偏东75°方向上,距离点P 320千米处.(1)说明本次台风会影响B 市;(2)求这次台风影响B 市的时间.【答案】(1)会;(2)8小时【解析】分析】(1)作BH ⊥PQ 于点H ,在Rt △BHP 中,利用特殊角的三角函数值求出BH 的长与200千米相比较即可.(2)以B 为圆心,以200为半径作圆交PQ 于P 1、P 2两点,根据垂径定理即可求出P 1P 2的长,进而求出台风影响B 市的时间.【详解】(1)如图所示:∵台风中心位于点P ,并沿东北方向PQ 移动,B 市位于点P 的北偏东75°方向上,∴∠QPG=45°,∠NPB=75°,∠BPG=15°,∴∠BPQ=30°作BH ⊥PQ 于点H ,在Rt △BHP 中,由条件知,PB=320,得 BH=320sin30°=160<200,∴本次台风会影响B市.(2)如图,若台风中心移动到P1时,台风开始影响B市,台风中心移动到P2时,台风影响结束.由(1)得BH=160,由条件得BP1=BP2=200,∴所以P1P2 = 222200160=240∴台风影响的时间t =24030= 8(小时).20.某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D 四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A 级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)求出D级学生的人数占全班总人数的百分比;(2)求出扇形统计图中C级所在的扇形圆心角的度数;(3)该班学生体育测试成绩的中位数落在哪个等级内;(4)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?【答案】(1)4%;(2)72°;(3)落在B等级内;(4)380人【解析】【分析】(1)先求出总人数,再求D成绩的人数占的比例;(2)C成绩的人数为10人,占的比例=10÷50=20%,表示C的扇形的圆心角=360°×20%=72°,(3)根据中位数的定义判断;(4)该班占全年级的比例=50÷500=10%,所以,这次考试中A级和B级的学生数=(13+25)÷10%=380人,【详解】(1)总人数为25÷50%=50人,D成绩的人数占的比例:2÷50=4%;(2)表示C的扇形的圆心角360°×(10÷50)=360°×20%=72°;(3)由于A成绩人数为13人,C成绩人数为10人,D成绩人数为2人,而B成绩人数为25人,故该班学生体育测试成绩的中位数落在B等级内;(4)这次考试中A级和B级的学生数:(13+25)÷(50÷500)=(13+25)÷10%=380(人).【点睛】本题主要考查统计图和用样本估计总体,提取统计图中的有效信息是解答此题的关键.21.如图,已知AB是⊙O的直径,点C,D在⊙O上,且AB=5,BC=3.(1) 求sin∠BAC的值;(2) 如果OE⊥AC, 垂足为E,求OE的长;(3) 求tan∠ADC的值.(结果保留根号)【答案】(1)35(2)32(3)43【解析】【分析】(1)根据圆周角定理可得到∠ACB是直角,再根据三角函数求解即可;(2)首先根据垂径定理得出E是AC中点.再根据中位线定理求解即可;(3)根据同弧或等弧所对的圆周角相等可得∠ADC=∠ABC,在RtACB中求出tan∠ABC即可.【详解】解:(1)∵AB⊙O直径∴∠ACB=90°∵AB=5,BC=3∴sin∠BAC==35;(2)∵OE⊥AC,O是⊙O的圆心∴E是AC中点.又∵O是AB的中点.∴OE=12BC=32;(3)在RtACB中,∠ACB=90°∵AB=5,BC=3∴=4 ∵∠ADC=∠ABC∴tan∠ADC=tan∠ABC=43 ACBC=.【点睛】此题主要考查锐角三角函数的定义,综合运用了圆周角定理、中位线定理、勾股定理等知识点.求出OE是△ACB的中位线和得出tan∠ADC=tan∠ABC是解题的关键.22.某地2015年为做好”精准扶贫”,投入资金1280万元用于异地安置,并规划投入资金逐年增加,2017年在2015年的基础上增加投入资金1600万元.(1)从2015年到2017年,该地投入异地安置资金的年平均增长率为多少?(2)在2017年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?【答案】(1)50%;(2)今年该地至少有1900户享受到优先搬迁租房奖励.【解析】【分析】(1)设年平均增长率为x,根据”2015年投入资金×(1+增长率)2=2017年投入资金”列出方程,解方程即可;(2)设今年该地有a户享受到优先搬迁租房奖励,根据”前1000户获得的奖励总数+1000户以后获得的奖励总和≥500万”列不等式求解即可.【详解】(1)设该地投入异地安置资金的年平均增长率为x,根据题意,得:1280(1+x)2=1280+1600,解得:x=0.5或x=﹣2.5(舍),答:从2015年到2017年,该地投入异地安置资金的年平均增长率为50%;(2)设今年该地有a户享受到优先搬迁租房奖励,根据题意,得:1000×8×400+(a﹣1000)×5×400≥5000000,解得:a≥1900,答:今年该地至少有1900户享受到优先搬迁租房奖励.考点:一元二次方程的应用;一元一次不等式的应用.23.正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM ∽Rt△MCN;(2)设BM=x,梯形ABCN的面积为y,求y与x之间的函数关系式;当M点运动到什么位置时,四边形ABCN的面积最大,并求出最大面积;(3)当M点运动到什么位置时Rt△ABM∽Rt△AMN,求此时x的值.BM=时,四边形ABCN面积最大为10;(3)当点M运动到BC的中点时,【答案】(1)证明见解析;(2)当2∽,此时2ABM AMNx=.【解析】试题分析:(1)、根据AM⊥MN得出∠CMN+∠AMB= 90°,根据Rt△ABM得出∠CMN=∠MAB,从而得出三角形相似;(2)、根据三角形相似得出CN与x的关系,然后根据梯形的面积计算法则得出函数解析式;(3)、根据要使三角形相似则需要满足,结合(1)中的条件得出BM=CM,即M为BC的中点. 试题解析:(1)在正方形ABCD中,AB=BC=CD=4,∠B=∠C =90°,∵AM⊥MN ∴∠AMN= 90°. ∴∠CMN+∠AMB= 90°.在Rt△ABM中,∠MAB+∠AMB=90°,∴∠CMN=∠MAB.∴Rt△AMN∽Rt△MCN;(2)∵Rt△ABM∽Rt△MCN,∴∴∴CN=∴y===当x=2时,y取最大值,最大值为10;故当点肘运动到BC的中点时,四边形ABCN的面积最大,最大面积为10;(3)∵∠B=∠AMN= 90°,∴要使Rt△ABM∽Rt△AMN,必须有由(1)知∴BM=MC∴当点M运动到BC的中点时,Rt△ABM∽Rt△AMN,此时x=2考点:(1)、相似三角形的应用;(2)、二次函数的应用24.平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是为(0,3)、(-1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线过点C 、A 、A′,求此抛物线的解析式;(2)求平行四边形ABOC 和平行四边形A′B′OC′重叠部分△OC′D 的周长;(3)点M 是第一象限内抛物线上的一动点,问:点M 在何处时;△AMA′的面积最大?最大面积是多少?并求出此时点M 的坐标.【答案】(1)y=-x 2+2x+3;(2)2101+;(3)当点M 的坐标为(32,154)时,△AMA′的面积有最大值,且最大值为278. 【解析】【分析】(1)根据旋转的性质,可得A′点,根据待定系数法,可得答案;(2)根据相似三角形的判定与性质,可得答案;(3)根据面积的和差,可得二次函数,根据二次函数的性质,可得答案.【详解】解:(1)∵▱A′B′O′C′由▱ABOC 旋转得到,且A 的坐标为(0,3),得点A′的坐标为(3,0).设抛物线的解析式为y=ax 2+bx+c ,将A ,A′C 的坐标代入,得03930a b c c a b c -+⎧⎪⎨⎪++⎩===,解得123a b c -⎧⎪⎨⎪⎩===, 抛物线的解析式y=-x 2+2x+3;(2)∵AB ∥OC ,∴∠OAB=∠AOC=90°, ∴22=10OA AB +又∠OC′D=∠OCA=∠B ,∠C′OD=∠BOA ,∴△C′OD ∽△BOA ,又OC′=OC=1,∴1010C OD OCBOA OB''==的周长的周长,又△ABO的周长为4+10,∴△C′OD的周长为4+1010210=1+105().(3)作MN⊥x轴交AA′于N点,设M(m,-m2+2m+3),AA′的解析式为y=-x+3,N点坐标为(m,-m+3),MN的长为-m2+3m,S△AMA′=12MN•x A′=12(-m2+3m)×3=-32(m2-3m)=-32(m-32)2+278,∵0<m<3,∴当m=32时,-m2+2m+3=154,M(32,154),△AMA′的面积有最大值278.点睛:本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的判定与性质;解(3)的关键是利用面积的很差得出二次函数.。
人教版九年级数学中考模拟试卷及答案解析
人教版九年级数学中考模拟试卷一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×1074.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣35.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1910.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣411.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= .15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= .18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .三、解答题(本大题2小题,每小题8分,共16分19.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.20.(8分)某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).22.(10分)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.23.(10分)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.24.(10分)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.26.(12分)如图,抛物线y=﹣x2+x+3 与 x 轴交于点 A,点 B,与 y 轴交于点C,点D 与点C关于 x 轴对称,点 P 是 x 轴上的一个动点,设点P 的坐标为(m,0),过点P 作 x 轴的垂线 l 交抛物线于点 Q.(1)求直线BD的解析式;(2)当点P在线段OB上运动时,直线 l 交 BD 于点M,当△DQB面积最大时,在x轴上找一点E,使QE+EB的值最小,求E的坐标和最小值.(3)在点P的运动过程中,是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题:本大题共12小题,每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案的代号填涂在答题卡上.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】15:绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.在下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C. D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,也不是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、不是轴对称图形,是中心对称图形.故错误.故选C.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.在我市2016年春季房地产展示交易会上,全市房地产开发企业提供房源的参展面积达到5400000平方米,将数据5400000用科学记数法表示为()A.0.54×107B.54×105C.5.4×106D.5.4×107【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:5400000用科学记数法表示为5.4×106,故选:C.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.函数y=中自变量x的取值范围是()A.x>3 B.x<3 C.x≤3 D.x≥﹣3【考点】E4:函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,3﹣x>0,解得x<3.故选B.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.5.下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a【考点】47:幂的乘方与积的乘方;35:合并同类项.【分析】合并同类项法则,积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、2a和3b不能合并,故本选项错误;B、结果是9a6,故本选项错误;C、a6和a2不能合并,故本选项错误;D、结果是﹣a,故本选项正确;故选D.【点评】本题考查了同类项,合并同类项,积的乘方的应用,能正确运用法则进行计算是解此题的关键,难度不是很大.6.如图,AB∥CD,CP交AB于O,AO=PO,若∠C=50°,则∠A的度数为()A.25° B.35° C.15° D.50°【考点】JA:平行线的性质;KH:等腰三角形的性质.【分析】根据AB∥CD,CP交AB于O,可得∠POB=∠C,再利用AO=PO,可得∠A=∠P,然后即可求得∠A的度数.【解答】解:∵AB∥CD,CP交AB于O,∴∠POB=∠C,∵∠C=50°,∴∠POB=50°,∵AO=PO,∴∠A=∠P,∴∠A=25°.故选:A.【点评】此题主要考查学生对平行线的性质,三角形外角的性质,等腰三角形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.要求学生应熟练掌握.7.如图,四边形ABCD内接于⊙O,若∠B=130°,则∠AOC的大小是()A.130°B.120°C.110°D.100°【考点】M6:圆内接四边形的性质;M5:圆周角定理.【分析】先根据圆内接四边形的性质得到∠D=180°﹣∠B=50°,然后根据圆周角定理求∠AOC.【解答】解:∵∠B+∠D=180°,∴∠D=180°﹣130°=50°,∴∠AOC=2∠D=100°.故选D.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了圆内接四边形的性质.8.下列调查中,最适合采用抽样调查的是()A.乘坐高铁对旅客的行李的检查B.了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度C.调查初2016级15班全体同学的身高情况D.对新研发的新型战斗机的零部件进行检查【考点】V2:全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:乘坐高铁对旅客的行李的检查适合采用全面调查,A错误;了解全校师生对重庆一中85周年校庆文艺表演节目的满意程度适合采用全抽样调查,B正确;调查初2016级15班全体同学的身高情况适合采用全面调查,C错误;对新研发的新型战斗机的零部件进行检查适合采用全面调查,D错误,故选:B.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】38:规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n 个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.10.当a,b互为相反数时,代数式a2+ab﹣4的值为()A.4 B.0 C.﹣3 D.﹣4【考点】53:因式分解﹣提公因式法.【分析】首先利用相反数的定义得出a+b=0,再利用提取公因式法将原式变形求出答案.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣4=a(a+b)﹣4=0﹣4=﹣4.故选:D.【点评】此题主要考查了提取公因式的应用以及相反数的定义,正确将原式变形是解题关键.11.如图1,某超市从一楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,则二楼的层高BC约为(精确到0.1米,sin42°≈0.67,tan42°≈0.90)()A.10.8米B.8.9米C.8.0米D.5.8米【考点】TA:解直角三角形的应用﹣仰角俯角问题;T9:解直角三角形的应用﹣坡度坡角问题.【分析】延长CB交PQ于点D,根据坡度的定义即可求得BD的长,然后在直角△CDA中利用三角函数即可求得CD的长,则BC即可得到.【解答】解:延长CB交PQ于点D.∵MN∥PQ,BC⊥MN,∴BC⊥PQ.∵自动扶梯AB的坡度为1:2.4,∴==.设BD=5k(米),AD=12k(米),则AB=13k(米).∵AB=13(米),∴k=1,∴BD=5(米),AD=12(米).在Rt△CDA中,∠CDA=90゜,∠CAD=42°,∴CD=AD•tan∠CAD≈12×0.90≈10.8(米),∴BC=10.8﹣5≈5.8(米).故选:D.【点评】本题考查仰角和坡度的定义,要求学生能借助仰角构造直角三角形并解直角三角形.12.使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和是()A.﹣2 B.﹣3 C.﹣7 D.0【考点】B2:分式方程的解;CB:解一元一次不等式组.【分析】根据不等式组有解,可得m的范围,根据分式方程有非负整数解,可得5+m是3的倍数,根据有理数的加法,可得答案.【解答】解:不等式组整理得:,由不等式组有解,得到m﹣9<﹣2m+6,解得:m<5,分式方程整理得: +=2,去分母得:1+m﹣x=2x﹣4,解得:x=,由分式方程﹣=2有非负整数解,得5+m=0,m1=﹣5,5+m=3,m2=﹣2,5+m=6,m3=1(舍),5+m=9,m4=4,使得关于x的不等式组有解,且使分式方程﹣=2有非负整数解的所有的m的和﹣5+(﹣2)+4=﹣3,故选:B.【点评】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(本大题6小题,每小题题4分,共24分)请将每小题的答案直接填写在答题卡中对应的横线上.13.已知△ABC与△DEF的相似比为2:3,则△ABC与△DEF的面积比为4:9 .【考点】S7:相似三角形的性质.【分析】直接根据相似三角形的性质即可得出结论.【解答】解:∵△ABC∽△DEF,且△ABC与△DEF的相似比为2:3,∴S△ABC:S△DEF=()2=4:9.故答案为:4:9.【点评】本题考查的是相似三角形的性质,熟知相似三角形面积的比等于相似比的平方是解答此题的关键.14.计算(﹣)﹣1+(2﹣1)0﹣|tan45°﹣2|= ﹣2.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂;T5:特殊角的三角函数值.【分析】原式利用零指数幂、负整数指数幂法则,绝对值的代数意义化简即可得到结果.【解答】解:原式=﹣2+1﹣2+1=﹣2,故答案为:﹣2【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.15.从﹣1,0,1,3,4五个数字中,随机抽取一个数,记为a.那么,使一次函数y=﹣3x+a 不经过三象限的概率是.【考点】X4:概率公式;F7:一次函数图象与系数的关系.【分析】根据一次函数y=﹣3x+a不经过三象限得出a的符号,进而可得出结论.【解答】解:∵一次函数y=﹣3x+a不经过三象限,∴a≥0,∴五个数字中符合条件的数有:0,1,3,4共4个,∴一次函数y=﹣3x+a不经过三象限的概率=.故答案为:.【点评】本题考查的是概率公式,熟知概率=所求情况数与总情况数之比是解答此题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC 于M,N两点,则图中阴影部分的面积是(保留π).【考点】MO:扇形面积的计算;KQ:勾股定理;MC:切线的性质.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步600米,先到终点的人原地休息.已知甲先出发2秒.在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则b= 192 .【考点】FH:一次函数的应用.【分析】由图象可以看出甲2秒跑了8米可以求出甲的速度为4米/秒,由乙跑的距离﹣甲跑的距离就可以得出结论.【解答】解:由图象,得甲的速度为:8÷2=4米/秒,乙走完全程时甲乙相距的路程为:b=600﹣4(100+2)=192,故答案为:192.【点评】此题考查了一次函数的应用,追击问题的运用,解答时求出甲的速度是解答本题的关键.18.如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE折叠,使点B 落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF= .【考点】PB:翻折变换(折叠问题);LB:矩形的性质.【分析】首先连接CC′,可以得到CC′是∠EC′D的平分线,所以CB′=CD,又AB′=AB,所以B′是对角线中点,AC=2AB,所以∠ACB=30°,即可得出答案.【解答】解:连接CC′,∵将△ABE沿AE折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在EB′与AD的交点C′处.∴EC=EC′,∴∠1=∠2,∵∠3=∠2,∴∠1=∠3,在△CC′B′与△CC′D中,,∴△CC′B′≌△CC′D,∴CB′=CD,又∵AB′=AB,∴AB′=CB′,所以B′是对角线AC中点,即AC=2AB=8,所以∠ACB=30°,∴∠BAC=60°,∠ACC′=∠DCC′=30°,∴∠DC′C=∠1=60°,∴∠DC′F=∠FC′C=30°,∴C′F=CF=2DF,∵DF+CF=CD=AB=4,∴DF=.故答案为:.【点评】此题主要考查了翻折变换的性质和角平分线的判定与性质,解答此题要抓住折叠前后的图形全等的性质,得出CC′是∠EC′D的平分线是解题关键.三、解答题(本大题2小题,每小题8分,共16分19.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】KD:全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.20.某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行统计调查,并绘制了统计表及统计图,如图所示.(1)这50名学生每人一周内的零花钱数额的平均数是12 元/人;(2)如果把全班50名学生每人一周内的零花钱按照不同数额人数绘制成扇形统计图,则一周内的零花钱数额为20元的人数所占的圆心角度数是36°.(3)据统计该校的1500人中,每人每周的零花钱有75%在学校超市消费,试估计该校学生每周在学校超市消费的零花钱总金额为多少元?【考点】VB:扇形统计图;V5:用样本估计总体;W2:加权平均数.【分析】(1)根据加权平均数的计算公式计算可得;(2)用样本中零花钱数额为20元的人数所占的比例乘以360°即可得;(3)用平均数乘以总人数,再乘以75%即可得.【解答】解:(1)平均数是×(5×10+10×15+15×20+20×5)=12元,故答案为:12;(2)一周内的零花钱数额为20元的人数所占的圆心角度数是360°×=36°,故答案为:36°;(3)1500×12×75%=13500元,答:估计该校学生每周在学校超市消费的零花钱总金额为13500元.【点评】此题考查了条形统计图、扇形统计图以及用样本估计总体,弄清题中的数据是解本题的关键.四、解答题(本大题4小题,每小题10分,共40分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.21.(10分)(2017•开县一模)化简下列各式(1)(a﹣b)2+(2a﹣b)(a﹣2b)(2).【考点】6C:分式的混合运算;4I:整式的混合运算.【分析】(1)利用乘法公式展开,然后合并同类项即可;(2)先把括号内通分后进行同分母的减法运算,再把分子分母因式分解和除法运算化为乘法运算,然后约分即可.【解答】解:(1)原式=a2﹣2ab+b2+2a2﹣ab﹣4ab+2b2=3a2﹣7ab+3b2;(2)原式=、====.【点评】本题考查了分式的混合运算:分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.也考查了整式的混合运算.22.(10分)(2004•黄冈)如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求直线与双曲线的两个交点A、C的坐标和△AOC的面积.【考点】GB:反比例函数综合题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)交点A、C的坐标是方程组的解,解之即得;从图形上可看出△AOC的面积为两小三角形面积之和,根据三角形的面积公式即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),A、C两点坐标满足∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC=S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.23.(10分)(2017•开县一模)小程经营的是一家服装店,店里有一款毛衣和一款牛仔裤销售非常可观,至2016年1月开店以来,平均每天可卖出毛衣10件,牛仔裤20件,已知买1件毛衣和3件牛仔裤与买2件毛衣和1件牛仔裤需要的钱一样多,都为500元.(1)求买一件毛衣和一件牛仔裤各需要多少钱?(2)双十一将至,小程经营的网店提前对该毛衣和牛仔裤开启了促销活动,活动当天,毛衣每件售价降低了a%,销售量在原来的基础上上涨2a%,牛仔裤每件售价也降低了a%,但销售量和原来一样,当天,这两件商品总的销售额为3960元,求a的值.【考点】AD:一元二次方程的应用.【分析】(1)可设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,根据等量关系:①买1件毛衣的钱数+买3件牛仔裤的钱数=500元;②买2件毛衣的钱数+买1件牛仔裤的钱数=500元,列出方程组求解即可;(2)根据等量关系:两件商品总的销售额为3960元,列出方程求解即可.【解答】解:(1)设买一件毛衣需要x元钱,买一件牛仔裤需要y元钱,依题意有,解得.答:买一件毛衣需要200元钱,买一件牛仔裤需要100元钱.(2)依题意有:200(1﹣a%)×10(1+2a%)+100(1﹣a%)×20=3960,解得a1=﹣10(舍去),a2=10.故a的值为10.【点评】考查了二元一次方程组的应用,一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程(组),再求解.24.(10分)(2017•开县一模)当一个多位数位数为偶数时,在其中间位插入一位数k,(0≤k≤9,且k为整数)得到一个新数,我们把这个新数称为原数的关联数.如:435729中间插入数字6可得435729的一个关联数4356729,其中435729=729+435×1000,4356729=729+6×1000+435×10000.请阅读以上材料,解决下列问题.(1)若一个三位关联数是原来两位数的9倍,请找出满足这样的三位关联数;(2)对于任何一个位数为偶数的多位数,中间插入数字m,得其关联数(0≤m≤9,且m为3的倍数),试证明:所得的关联数与原数10倍的差一定能被3整除.【考点】#6:约数与倍数;1C:有理数的乘法.【分析】(1)设原数为ab=10a+b,其关联数为amb=100a+10m+b,根据关联数为原数的9倍即可得出b与a、m之间的关系,结合a、b、m的特点即可得出结论;(2)设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,找出原数的10倍,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),再根据m 和9均为3的倍数,由此即可证出结论.【解答】(1)解:设原数为ab=10a+b,其关联数为amb=100a+10m+b,∵amb=9ab,∴100a+10m+b=9×(10a+b),∴5a+5m=4b,∴5(a+m)=4b,∵b、m为整数,a为正整数,且a、b、m均为一位数,∴b=5,a+m=4,∴a=1,m=3;a=2,m=2;a=3,m=1;a=4,b=0.∴满足条件的三位关联数为135、225、315和405.(2)证明:设原数为a1a2a3…a n﹣2a n﹣1a n(n为偶数),关联数为a1a2a3…m…a n﹣2a n﹣1a n,原数10倍为a1a2a3…a n﹣2a n﹣1a n0,将关联数与原数10倍相减得:m•﹣9×(…a n﹣1a n),∵m和9均为3的倍数,∴关联数与原数10倍的差一定能被3整除.【点评】本题考查了约数与倍数以及有理数的乘法,解题的关键是:(1)找出b与a、m(2)将关联数与原数的10做差得出m•﹣9×(…a n﹣1a n).本之间的关系;题属于中档题,难度不大,解决该题型题目时,设出合适的未知量是解题的关键.五.解答题.(本大题共2小题,25题10分,共22分)解答题时每小题必须给出必要的演算过程或推理步骤,画出必要的图形(包括作辅助线),请将解答过程书写在答题卡中对应的位置上.25.(10分)(2017•开县一模)△ABC是等腰直角三角形,AC=BC,∠ACB=90°,(1)如图1,点M是BA延长线上一点,连结CM,K是AC上一点,BK延长线交CM于N,∠MBN=∠MCA=15°,BK=8求CM的长度.(2)如图2,直线l经过点C,AF⊥l于点F,AE⊥l于点E,点D是AB的中点,连接ED.求证:AF=BE+DE.【考点】KD:全等三角形的判定与性质;KW:等腰直角三角形.【分析】(1)如图1,过C作CD⊥AB于D,根据等腰直角三角形的性质得到∠ABC=∠BAC=45°,得到∠KBC=30°,根据直角三角形的性质得到BC=4,求得CD=BC=2,解直角三角形即可得到结论;(2)如图2,连接DF,CD,根据等腰直角三角形的性质得到CD=BD,∠CDB=90°,由全等三角形的性质得到BE=CF,CE=AF,推出△BDE≌△CDF,根据全等三角形的性质得到∠EDB=∠FDC,DE=DF,根据余角的性质得到∠EDF=90°,根据等腰直角三角形的性质得到EF=DE,于是得到结论.【解答】解:(1)如图1,过C作CD⊥AB于D,∵AC=BC,∠ACB=90°,∴∠ABC=∠BAC=45°,∵∠MBN=15°,∴∠KBC=30°,∵BK=8,∴BC=4,∴CD=BC=2,∵∠MCA=15°,∠BAC=45°,∴∠M=30°,∴CM=2CD=4;(2)如图2,连接DF,CD,∵BE⊥CE,∴∠BEC=∠ACB=90°,∴∠EBC+∠BCE=∠BCE+∠ACF=90°,∴∠EBC=∠CAF,∵AF⊥l于点F,∴∠AFC=90°,在△BCE与△ACF中,。
人教版初中数学模拟试题(共8套)(含答案)
初中毕业生学业(升学)考试数学科试题特别提示:1.本卷为数学试题单,共26个题,满分150分,共6页。
考试时间120分钟。
2.考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答。
3.答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写。
一、选择题(本大题10个小题,每小题3分,共30分)1. 2019的相反数是( )A. -2019B. 2019C. -20191 D. 201912. 中国陆地面积约为9600 000 km 2,将数字9600 000用科学记数法表示为( )A. 96 ×105B. 9.6×106C. 9.6×107D. 0.96×1083. 如图,该立体图形的俯视图是( )A. B. C. D.4. 下列运算中,计算正确的是( )A. (a 2b )3=a 5b 3B. (3a 2)3 =27a 6C. a6÷a2=a3D. (a+b)2=a2+b25. 在平面直角坐标系中,点P (-3,m2+1)关于原点对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350,则∠2的度数是()A. 350,B. 450,C. 550,D. 650,7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF的是()A. ∠A=∠DB. AC=DFC. AB=EDD. BF=EC8.如图,半径为3的⊙A经过原点O和点C (1 , 2 ),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()第6题图第7题图A.31B. 22C.322 D. 429.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE .则下列说法错误的是( )A. ∠ABC =600,B. S △ABE =2 S △ADEC. 若AB =4,则B E =74D. sin ∠CBE =1421 10. 如图,已知二次函数y =ax 2+bx +c 的图象与x 轴分别交于A 、B 两点,与y 轴交于C 点,OA =OC 则由抛物线的特征写出如下结论:① abc >0; ② 4ac -b 2>0;③ a -b +c >0; ④ ac +b +1=0.二、填空题(本大题共8个小题,每小题4分,共32分) 11. 函数y =2-x 自变量x 的取值范围为___________. 12. 若实数a 、b 满足|a +1|+2-b =0,则a +b =___________.第8题图第9题图第10题图13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=1200,则该圆锥母线l 的长为___________.14. 某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5 x 万千克,根据题意列方程为___________.15. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=x k 1(x >0)及y 2=xk2(x >0)的图象分别交于A 、B 两点,连接OA 、OB ,已知△OAB 的面积为4,则k 1-k 2=___________.16. 已知一组数据x 1 ,x 2 ,x 3, …, x n 的方差为2,则另一组数据3x 1 ,3x 2 ,3x 3, …, 3x n 的方差为__________.17. 如图,在Rt △ABC 中,∠BAC =900,且BA =3, AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM ⊥AB 于点M, DN ⊥AC 于点N ,连接MN,则线段MN 的最小值为__________.18. 如图,将从1开始的自然数按下规律排列,例如位于第3行、第4行的数是12,则位于第45行、第7列的数是__________.第13题图第15题图第17题图三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(本题8分)计算:(-2)-1-9+cos 600+(20182019-)0+82019×(-0.125)2019.20.(本题10分)先化简(1+32-x )÷96122+--x x x ,再从不等式组⎩⎨⎧+<<-42342x x x 的整数解中选一个合适的x 的值代入求值.21.(本题10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千元)与每千元降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?第18题图第21题图22. (本题10分) 阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550-1617年), 纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M •N )=log a M + log a N (a >0, a ≠1, M >0, N >0), 理由如下: 设log a M =m , log a N =n ,则M =a m , N =a n ,∴ M •N =a m •a n =a m +n ,由对数的定义得 m +n =log a (M •N ) 又∵m +n =log a M + log a N∴log a (M •N )=log a M + log a N 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式__________;(2)求证:log a NM=log a M - log a N (a >0, a ≠1, M >0, N >0),(3)拓展运用:计算log 69 + log 68 -log 62=_________.23.(本题12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解C .基本了解;D .不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度百分比A . 非常了解 5%B . 比较了解 15%C . 基本了解 45%D . 不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有_________,n =_________; (2)扇形统计图中D 部分扇形所对应的圆心角是________度; (3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球对雾霾天气了解程度的统计对雾霾天气了解程度的扇形统计对雾霾天气了解程度的条形统计BDA 5%C 45%图1 表1上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.24.(本题12分)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB,AD,DC 转化在一个三角形中即可判断.AB , AD , DC 之间的等量关系________________________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.25. (本题12分)如图,在△ABC 中,AB =AC,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH ⊥AC 于点H .(1)判断DH 与⊙O 的位置关系,并说明理由;(2)求证:点H 为CE 的中点; (3)若BC =10,cosC =55,求AE 的长.26. (本题14分)如图,抛物线y =21x 2+bx+c 与直线y =21x+3分别相交于A, B 两点,且此抛物线与x 轴的一个交点为C ,连接AC , BC . 已知A (0,3),C (-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB -MC |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若还在存在,请说明理由.第26题图第25题图2019年贵州省安顺市中考数学评分意见及评分意见初中毕业生学业(升学)考试是义务教育阶段的终结性考试。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业生学业(升学)考试数学科试题特别提示:1.本卷为数学试题单,共26个题,满分150分,共6页。
考试时间120分钟。
2.考试采用闭卷形式,用笔在特制答题卡上答题,不能在本题单上作答。
3.答题时请仔细阅读答题卡上的注意事项,并根据本题单各题的编号在答题卡上找到答题的对应位置,用规定的笔进行填涂和书写。
一、选择题(本大题10个小题,每小题3分,共30分)1. 2019的相反数是( )A. -2019B. 2019C. -20191 D. 201912. 中国陆地面积约为9600 000 km 2,将数字9600 000用科学记数法表示为( )A. 96 ×105B. 9.6×106C. 9.6×107D. 0.96×1083. 如图,该立体图形的俯视图是( )A. B. C. D.4. 下列运算中,计算正确的是( )A. (a 2b )3=a 5b 3B. (3a 2)3 =27a 6C. a6÷a2=a3D. (a+b)2=a2+b25. 在平面直角坐标系中,点P (-3,m2+1)关于原点对称点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6. 如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350,则∠2的度数是()A. 350,B. 450,C. 550,D. 650,7.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC ≌△DEF的是()A. ∠A=∠DB. AC=DFC. AB=EDD. BF=EC8.如图,半径为3的⊙A经过原点O和点C (1 , 2 ),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()第6题图第7题图A.31B. 22C.322 D. 429.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于21CD 的长为半径作弧,两弧相交于M 、N 两点;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E ,连接BE .则下列说法错误的是( )A. ∠ABC =600,B. S △ABE =2 S △ADEC. 若AB =4,则B E =74D. sin ∠CBE =1421 10. 如图,已知二次函数y =ax 2+bx +c 的图象与x 轴分别交于A 、B 两点,与y 轴交于C 点,OA =OC 则由抛物线的特征写出如下结论:① abc >0; ② 4ac -b 2>0;③ a -b +c >0; ④ ac +b +1=0.二、填空题(本大题共8个小题,每小题4分,共32分) 11. 函数y =2-x 自变量x 的取值范围为___________. 12. 若实数a 、b 满足|a +1|+2-b =0,则a +b =___________.第8题图第9题图第10题图13.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r =2,扇形的圆心角θ=1200,则该圆锥母线l 的长为___________.14. 某生态示范园计划种植一批蜂糖李,原计划总产量达36万千克,为了满足市场需求,现决定改良蜂糖李品种,改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万千克,种植亩数减少了20亩,则原计划和改良后平均每亩产量各多少万千克?设原计划平均亩产量为x 万千克,则改良后平均每亩产量为1.5 x 万千克,根据题意列方程为___________.15. 如图,直线l ⊥x 轴于点P ,且与反比例函数y 1=x k 1(x >0)及y 2=xk2(x >0)的图象分别交于A 、B 两点,连接OA 、OB ,已知△OAB 的面积为4,则k 1-k 2=___________.16. 已知一组数据x 1 ,x 2 ,x 3, …, x n 的方差为2,则另一组数据3x 1 ,3x 2 ,3x 3, …, 3x n 的方差为__________.17. 如图,在Rt △ABC 中,∠BAC =900,且BA =3, AC =4,点D 是斜边BC 上的一个动点,过点D 分别作DM ⊥AB 于点M, DN ⊥AC 于点N ,连接MN,则线段MN 的最小值为__________.18. 如图,将从1开始的自然数按下规律排列,例如位于第3行、第4行的数是12,则位于第45行、第7列的数是__________.第13题图第15题图第17题图三、解答题(本大题共8个小题,满分88分,解答应写出必要的文字说明或演算步骤)19.(本题8分)计算:(-2)-1-9+cos 600+(20182019-)0+82019×(-0.125)2019.20.(本题10分)先化简(1+32-x )÷96122+--x x x ,再从不等式组⎩⎨⎧+<<-42342x x x 的整数解中选一个合适的x 的值代入求值.21.(本题10分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千元)与每千元降价x (元)(0<x <20)之间满足一次函数关系,其图象如图所示:(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?第18题图第21题图22. (本题10分) 阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J .Nplcr ,1550-1617年), 纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr ,1707-1783年)才发现指数与对数之间的联系.对数的定义:一般地,若x a =N (a >0且a ≠1),那么x 叫做以a 为底N 的对数,记作x =log a N,比如指数式24=16可以转化为对数式4=log 216,对数式2=log 525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a (M •N )=log a M + log a N (a >0, a ≠1, M >0, N >0), 理由如下: 设log a M =m , log a N =n ,则M =a m , N =a n ,∴ M •N =a m •a n =a m +n ,由对数的定义得 m +n =log a (M •N ) 又∵m +n =log a M + log a N∴log a (M •N )=log a M + log a N 根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式__________;(2)求证:log a NM=log a M - log a N (a >0, a ≠1, M >0, N >0),(3)拓展运用:计算log 69 + log 68 -log 62=_________.23.(本题12分)近年来,在习近平总书记“既要金山银山,又要绿水青山”思想的指导下,我国持续的大面积雾霾天气得到了较大改善.为了调查学生对雾霾天气知识的了解程度,某校在学生中做了一次抽样调查,调查结果共分为四个等级:A .非常了解;B .比较了解C .基本了解;D .不了解.根据调查统计结果,绘制了如图所示的不完整的三种统计图表.对雾霾天气了解程度百分比A . 非常了解 5%B . 比较了解 15%C . 基本了解 45%D . 不了解n请结合统计图表,回答下列问题:(1)本次参与调查的学生共有_________,n =_________; (2)扇形统计图中D 部分扇形所对应的圆心角是________度; (3)请补全条形统计图;(4)根据调查结果,学校准备开展关于雾霾的知识竞赛,某班要从“非常了解”程度的小明和小刚中选一人参加,现设计了如下游戏来确定,具体规则是:把四个完全相同的乒乓球分别标上数字1,2,3,4,然后放到一个不透明的袋中充分摇匀,一个人先从袋中随机摸出一个球,另一人再从剩下的三个球中随机摸出一个球.若摸出的两个球对雾霾天气了解程度的统计对雾霾天气了解程度的扇形统计对雾霾天气了解程度的条形统计BDA 5%C 45%图1 表1上的数字和为奇数,则小明去,否则小刚去.请用树状图或列表法说明这个游戏规则是否公平.24.(本题12分)(1)如图①,在四边形ABCD 中,AB ∥CD ,点E 是BC 的中点,若AE 是∠BAD 的平分线,试判断AB ,AD ,DC 之间的等量关系.解决此问题可以用如下方法:延长AE 交DC 的延长线于点F ,易证△AEB ≌△FEC 得到AB =FC ,从而把AB,AD,DC 转化在一个三角形中即可判断.AB , AD , DC 之间的等量关系________________________;(2)问题探究:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,点E 是BC 的中点,若AE 是∠BAF 的平分线,试探究AB ,AF ,CF 之间的等量关系,并证明你的结论.25. (本题12分)如图,在△ABC 中,AB =AC,以AB 为直径的⊙O 与边BC ,AC 分别交于D ,E 两点,过点D 作DH ⊥AC 于点H .(1)判断DH 与⊙O 的位置关系,并说明理由;(2)求证:点H 为CE 的中点; (3)若BC =10,cosC =55,求AE 的长.26. (本题14分)如图,抛物线y =21x 2+bx+c 与直线y =21x+3分别相交于A, B 两点,且此抛物线与x 轴的一个交点为C ,连接AC , BC . 已知A (0,3),C (-3,0).(1)求抛物线的解析式;(2)在抛物线对称轴l 上找一点M ,使|MB -MC |的值最大,并求出这个最大值; (3)点P 为y 轴右侧抛物线上一动点,连接PA ,过点P 作PQ ⊥PA 交y 轴于点Q ,问:是否存在点P 使得以A ,P ,Q 为顶点的三角形与△ABC 相似?若存在,请求出所有符合条件的点P 的坐标;若还在存在,请说明理由.第26题图第25题图2019年贵州省安顺市中考数学评分意见及评分意见初中毕业生学业(升学)考试是义务教育阶段的终结性考试。
考试的目的是全面、准确地反映初中毕业生在学科学习目标方面所达到的水平。
考试结果既是衡量学生是否达到毕业标准的主要依据,也是作为上一级学校招生录取的重要依据之一。
评卷是考试的重要环节,在评卷工作中要处理好评价标准的统一性和学生答案多样性问题。
统一性是反映学科学习目标应达到的基本水平,学生答案鑫样性反映学生个体的差异,在保证考试应达到的基本要求的前提下,应充分关注学生的个性表现。