2020年初中数学中考模拟卷试题及答案
2020年初中数学中考模拟试题及答案
2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。
A。
$\sqrt{2}$。
B。
$-2$。
C。
$\dfrac{1}{2}$。
D。
$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。
A。
菱形。
B。
等边三角形。
C。
平行四边形。
D。
等腰梯形3.(3分)图中立体图形的主视图是()。
A。
B。
C。
D。
4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。
A。
$10\%x=330$。
B。
$(1-10\%)x=330$。
C。
$(1-10\%)2x=330$。
D。
$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。
A。
平均数。
B。
中位数。
C。
众数。
D。
方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。
A。
B与C。
B。
C与D。
C。
E与F。
D。
7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。
A。
$x\geq1$。
B。
$x\geq2$。
C。
$x>1$。
D。
$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。
A。
B。
C。
D。
9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。
求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。
A。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。
B。
$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。
2020年初三数学中考模拟试卷(含答案)
A. 17D.-7A .37. 已知 ⎨⎧ x = -1 ⎩ y = 2 ⎩ nx - y = 12020 年中考数学模拟卷一、选择题(每小题 3 分,共 30 分)1. 7 的相反数是()7 B.7C. - 12. 改革开放以来,我国国内生产总值由 1978 年的 3645 亿元增长到 2014 年的 636100 亿元。
将636100 万用科学记数法表示应为( )A. 0.6361⨯106B. 6.361⨯105C. 6.361⨯104D. 63.61⨯1043.在下列的四个几何体中,同一几何体的主视图与俯视图相同的是()A .B .C .D .4.现有四条线段,长度依次是 2,3,4,5,从中任选三条,能组成三角形的概率是()1 2 1 B .C .D .42 3 45.下列命题中,是真命题的是()A .等腰三角形都相似B .等边三角形都相似C .锐角三角形都相似D .直角三角形都相似6.如果表示 a ,b 两个实数的点在数轴上的位置如图所示,那么化简| a - b | + (a + b )2 的结果等于( )A .-2bB .2bC .-2aD .2a⎧3x + 2 y = m是二元一次方程组 ⎨ 的解,则 m ﹣n 的值是()A 、1B 、2C 、3D 、4 △8.如图, ABC 中,CD ⊥AB 于 D ,①∠1=∠A ;② CD:AD=DB:CD ;③∠B+∠2=90°;④BC :AC :AB=3:4:5;⑤ACBD=ADCD .一定能确定△ABC 为直角三角形的条件的 个数是( )A .1B .2C .3D .4第8题图第9题图第10题图9.如图,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)交于A,B两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:①抛物线y=ax2(a≠0)的图象的顶点一定是原点;②x>0时,直线y=kx+b(k≠0)与抛物线y=ax2(a≠0)的函数值都随着x的增大而增大;③AB的长度可以等于5;④△OAB有可能成为等边三角形;⑤当-3<x<2时,ax2+kx<b,其中正确的结论是()A.①②B.①②⑤C.②③④D.①②④⑤10.如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC·tanB =()A.2B.3C.4D.5二、填空题(每小题4分,共24分)11.不等式2x-4≥0的解集是__________________.12.在综合实践课上,六名同学做的作品的数量(单位:件)分别是:5,7,3,x,6,4;若这组数据的平均数是5,则这组数据的中位数是______13.如图,在四边形ABCD中,已知AB与CD不平行,∠ABD=∠ACD,请你添加一个条件:_________________,使得加上这个条件后能够推出AD∥BC且AB=CD.14.如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和为_______________15.如图,△ABC中,BD和CE是两条高,如果∠A=45°,则DEBC=.16.如图,正方形纸片ABCD的边长为1,M、N分别是AD、BC边上的点,将纸片的一角沿过点B的直线折叠,使A落在MN上,落点记为A′,折痕交AD于点E,若M、N分别是AD、BC边的中点,则A′N=;若M、N分别是AD、BC边的上距DC最近的n等分点(n≥2,且n为整数),则A′N=(用含有n的式子表示)A E MA'DB N C第13题图第14题图第15题图第16题图三、解答题(本题共66分)117.(6分)(1)计算:8+()-1-4cos45︒(2)因式分解:a3-4a2b+4ab2218.(6分)解方程:1-1x-2 =x x19.(6分)如图,点O、A、B的坐标分别为(0,0)、(3,0)、(3,-2),将△OAB绕点O按逆时针方向旋转90°△得到OA′B′.(1)画出旋转后的△OA′B′,并求点B′的坐标;(2)求在旋转过程中,点A所经过的路径弧AA’的长度.(结果保留π)20.(8分)小明,小亮和小强都积极报名参加校运动会的1500米比赛,由于受到参赛名额的限制,三人中只有一人可以报名,体委权衡再三,决定用抽签的方式决定让谁参加。
2020年中考数学模拟试卷(含答案)
2020年中考数学模拟试卷一、选择题(本大题有16个小题,共42分.1〜10小题各3分,11〜16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数中,小于﹣3的数是()A.0B.1C.﹣2D.﹣42.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()3.(3分)下列计算正确的是()A.(﹣a3)2=﹣a6B.3x+2y=6xy C.3﹣2=D.=±34.若k≠0,b<0,则y=kx+b的图象可能是()5. 图1是数学家皮亚特•海恩(Piet Hein)发明的索玛立方块,它由四个及四个以内大小相同的立方体以面相连接构成的不规则形状组件组成.图2不可能是下面哪个组件的视图()A.B.C.D.6.3分)四个小朋友玩跷跷板,他们的体重分别为P、Q、R、S,如图所示,则他们的体重大小关系是()A.P>R>S>Q B.Q>S>P>R C.S>P>Q>R D.S>P>R>Q 7.(3分)已知方程组的解为,则〇、□分别为()A.1,2B.1,5C.5,I D.2,48.(3分)证明:平行四边形对角线互相平分.已知:四边形ABCD是平行四边形,如图所示.求证:AO=CO,BO=DO.以下是排乱的证明过程,正确的顺序应是①∵∠ABO=∠CDO,∠BAC=∠DCA.②∵四边形ABCD是平行四边形.③∴AB∥CD,AB=DC.④△AOB≌△COD.⑤∴OA=OC,OB=OD()A.②①③④⑤B.②③⑤①④C.②③①④⑤D.③②①④⑤9.((3分)如图,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB与△OCD 的面积分别是S1和S2,△OAB与△OCD的周长分别是C1和C2,则下列等式一定成立的是()A.B.C.D.10.(3分)如图,在△ABC中,CA=CB=4,∠ACB=90°,以AB中点D为圆心,作圆心角为90°的扇形DEF,点C恰好在弧EF上,则图中阴影部分的面积是()A.π﹣2B.π﹣1C.2π﹣4D.不确定11.(2分)在东西方向的海岸线上有A,B两个港口,甲货船从A港沿东北方向以5海里/时的速度出发,同时乙货船从B港口沿北偏西60°的方向出发,2h后相遇在点P处,如图所示.问A港与B港相距____海里.()A.10B.5+5C.10+5D.2012.(2分)下表是某校合唱团成员的年龄分布,对于不同的x,下列关于年龄的统计量不会发生改变的是()年龄/岁13141516频数515x10﹣x A.平均数、中位数B.众数、方差C.平均数、方差D.众数、中位数13.(2分)某市对城区内某一段道路的一侧全部栽上梧桐树,要求路的两端各栽一棵,并且每两棵树的间隔相等,如果每隔4米栽1棵,则树苗缺21棵:如果每隔5米栽1棵,则树苗正好用完.设原有树苗x棵,根据题意列方程,正确的是()A.4(x+21﹣1)=5(x﹣1)B.4(x+21)=5(x﹣1)C.4(x+21﹣1)=5x D.4(x+21)=5x14.(2分)已知,在△ABC中,AB=AC,求作△ABC的外心O,以下是甲、乙两同学的作法:对于两人的作法:甲:如图1,(1)作AB的垂直平分线DE;(2)作BC的垂直平分线FG;(3)DE,FG交于点O,则点O即为所求.乙:如图2,(1)作∠ABCC的平分线BD;(2)作BC的垂直平分线EF;(3)BD,EF交于点O,则点O即为所求.对于两人的作法,正确的是()A.两人都对B.两人都不对C.甲对,乙不对D.甲不对,乙对15.(2分)如图,在△ABC中,点I为△ABCC的内心,点D在BC上,且ID⊥BC,若∠ABC=44°,∠C=56°,则∠AID的度数为()A.174°B.176°C.178°D.180°16.(2分)如图,已知点A(0,2),B(2,2),C(﹣1,0),抛物线y=a(x﹣h)2+k过点C,顶点M位于第一象限且在线段AB的垂直平分线上.若抛物线与线段AB无公共点,则k的取值范围是()A .0<k <2B .0<k <2或k >C .k >D .0<k <2或k >二、填空题(本大题有3个小题,共12分,17~18小题各3分;19小题有2个空,每空3分,把答案写在题中横线上) 17.(3分)8×21= 。
2020年中考模拟试卷数学试卷及答案共5套精品版
中考模拟试卷 数学卷考生须知:1、本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2、答题前,必须在答题卷的密封区内填写校名、姓名和准考证号.3 、所有答案都必须做在答题卷标定的位置上,务必注意试题序号和答题序号相对应.4 、考试结束后,上交试题卷和答题卷.试 题 卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应的格子内。
注意可以用多种不同的方法来选取正确答案。
1.北京时间3月11日,日本发生了9.0级大地震,地震发生后, 中国红十字会一直与日本红十字会保持沟通,密切关注灾情发展。
截至目前,中国红十字会已经累计向日本红十字会提供600万元人民币的人道援助。
这里的数据“600万元”用科学计数法表示为( ▲ )(第1题) A . 4610⨯元 B . 5610⨯元 C .6610⨯元 D .7610⨯元 2. 若15a =,55b =,则a b 、两数的关系是( ▲ )A 、a b =B 、5ab =C 、a b 、互为相反数D 、a b 、互为倒数 3. 公务员行政能力测试中有一类图形规律题,可以运用我们初中数学中的图形变换再结合变化规律来解决,下面一题问号格内的图形应该是( ▲ )(第3题)4. 某市2008年4月的一周中每天最低气温如下:13,11,7,12,13,13,12, 则在这一周中,最低气温的众数和中位数分别是( ▲ ) A. 13和11 B. 12和13 C. 11和12 D. 13和125.若有甲、乙两支水平相当的NBA 球队需进行总决赛,一共需要打7场,前4场2比2,最后三场比赛,规定三局两胜者为胜方,如果在第一次比赛中甲获胜,这时乙最终取胜的可能性有多大?(不考虑主场优势)( ▲ ) A .21 B .31C .41D . 156. 如图,△ABC 内接于⊙O ,∠C=45°,AB=2,则⊙O 的半径为( ▲ )A .1B .22C .2D .2(第6题)(第7题)7. 如图,小亮同学在晚上由路灯A 走向路灯B ,当他走到点P 时,发现他的身影顶部正好接触路灯B 的底部,这时他离路灯A 25米,离路灯B 5米,如果小亮的身高为1.6米,那么路灯高度为 ( ▲ )A .6.4米B . 8米C .9.6米D . 11.2米8. 如图,圆内接四边形ABCD 是由四个全等的等腰梯形组成,AD 是⊙O 的直径,则∠BEC 的度数为( ▲ )A .15°B .30°C .45°D .60°(第9题)9.如图,直线l 和双曲线ky x=(0k >)交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为1S 、△BOD 的面积为2S 、△POE 的面积为3S ,则 ( ▲ ) A .123S S S << B .123S S S >> C . 123S S S => D . 123S S S =<10.如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB =4,点E 、F 分别是线段CD ,AB 上的动点,设AF =x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( ▲ )Oxy 4 4A . Ox y4 4 B .Ox y4 4 C .Ox y4 4 D .(第10题)C DE FAB (第8题)二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案. 11.分解因式:x x 43-= ▲12.已知函数y 1=2x-5,y 2= -2x +15,如果y 1<y 2 ,则x 的取值范围是 ▲13.如图,相离的两个圆⊙O 1和⊙O 2在直线l 的同侧。
2020年中考数学模拟试卷【答案+解析】
2020年中考数学模拟试卷考试时间120分钟,试卷满分120分第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)﹣2020的相反数是()A.B.C.2020D.﹣20202.(3分)下列运算正确的是()A.+=B.5x2y﹣3x2y=2C.(a2b)3=a6b3D.=a+b3.(3分)如图:∠1=50°,∠2=70°,∠3=60°,下列条件能得到DE∥BC的是()A.∠B=60°B.∠C=60°C.∠B=70°D.∠C=70°4.(3分)篆体是我国古代汉字书体之一.下列篆体字“复”,“兴”,“之”,“路”中,是轴对称图形的为()A.B.C.D.5.(3分)一组同学参加植树活动,如果每人种5棵,还剩下3棵树苗;如果每人种6棵,缺少5棵树苗.设共有x名学生,树苗共有y棵.根据题意可列方程组()A.B.C.D.6.(3分)从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.7.(3分)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以大于的长为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.若∠B=34°,则∠BDC的度数是()A.68°B.112°C.124°D.146°8.(3分)甲、乙两组工人同时加工某种零件,乙组在工作中有一次停产更换设备,之后乙组的工作效率是原来的1.2倍,甲、乙两组加工出的零件合在一起装箱,每200件装一箱,零件装箱的时间忽略不计,两组各自加工零件的数量y(件)与时间x(时)的函数图象如图,以下说法错误的是()A.甲组加工零件数量y与时间x的关系式为y甲=40xB.乙组加工零件总量m=280C.经过2小时恰好装满第1箱D.经过4小时恰好装满第2箱9.(3分)图中圆柱的主视图与俯视图如图所示,一只蚂蚁从A点沿着圆柱的侧面爬行到B 点的最短路线长为()。
2020年中考数学模拟试卷(含解析)
2020中考全真模拟卷数学第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列各数中,比2-小的数是A.12-B.32-C.52-D.1-【答案】C.【解析】根据两个负数,绝对值大的反而小可知 2.52-<-.故选C.2.天津到上海的铁路里程约1326000米,用科学记数法表示1326000的结果是A.70.132610⨯B.61.32610⨯C.513.2610⨯D.71.32610⨯【答案】B.【解析】用科学记数法表示1326000的结果是61.32610⨯,故选B.3.下列四个著名数学图形中,既是轴对称图形,又是中心对称图形的是A. B. C. D.【答案】B.【解析】A、不是轴对称图形,是中心对称的图形,故本选项不符合题意;B、既是轴对称图形,又是中心对称的图形,故本选项符合题意;C、是轴对称图形,不是中心对称的图形,故本选项不符合题意;D、是轴对称图形,不是中心对称的图形,故本选项不符合题意.故选B.4.已知不等式组2010xx-<⎧⎨+⎩…,其解集在数轴上表示正确的是A.B.C.D.【解析】2010x x -<⎧⎨+⎩①②…,解①得:2x <,解②得:1x -…,故不等式组的解集为:12x -<„, 故解集在数轴上表示为:.故选D .5.一组从小到大排列的数据:a ,3,5,5,6,(a 为正整数),唯一的众数是5,则该组数据的平均数是 A .3.8 B .4 C .3.6或3.8 D .4.2或4【答案】D .【解析】Q 数据:a ,3,5,5,6(a 为正整数),唯一的众数是4,1a ∴=或2, 当1a =时,平均数为1355645++++=;当2a =时,平均数为235564.25++++=;故选D .6.如图,将直尺与含30︒角的三角尺摆放在一起,若120∠=︒,则2∠的度数是A .30︒B .40︒C .50︒D .60︒【答案】C .【解析】如图,BEF ∠Q 是AEF ∆的外角,120∠=︒,30F ∠=︒,150BEF F ∴∠=∠+∠=︒, //AB CD Q ,250BEF ∴∠=∠=︒,故选C .7.下列计算正确的是 A .236a a a =gB .2232a a -=C .623a a a ÷=D .22(2)4a a -=【解析】A 、235a a a =g ,故此选项错误;B 、22232a a a -=,故此选项错误; C 、624a a a ÷=,故此选项错误;D 、22(2)4a a -=,正确.故选D .8.已知等腰三角形的一边长为3cm ,且它的周长为12cm ,则它的底边长为 A .3cm B .6cm C .9cm D .3cm 或6cm【答案】A .【解析】当3cm 是等腰三角形的腰时,底边长12326cm =-⨯=, 336+=Q ,不能构成三角形,∴此种情况不存在;当3cm 是等腰三角形的底边时,腰长1234.52cm -==.∴底为3cm ,故选A . 9.在同一直角坐标系中,函数(0)y mx m m =+≠与(0)my m x=≠的图象可能是 A . B .C .D .【答案】C .【解析】A 、由反比例函数图象得0m <,则一次函数图象经过第二、三、四象限,所以A 选项错误;B 、由反比例函数图象得0m >,则一次函数图象经过第一、二、三象限,所以B 选项错误;C 、由反比例函数图象得0m >,则一次函数图象经过第一、二、三象限,所以C 选项正确;D 、由反比例函数图象得0m <,则一次函数图象经过第二、三、四象限,所以D 选项错误. 故选C .10.如图,ABD ∆与AEC ∆都是等边三角形,AB AC ≠,下列结论中,正确的个数是①BE CD =;②60BOD ∠=︒;③BDO CEO ∠=∠;④若90BAC ∠=︒,且//DA BC ,则BC CE ⊥.A .1B .2C .3D .4【答案】C .【解析】ABD ∆Q 与AEC ∆都是等边三角形,AD AB ∴=,AE AC =,60ADB ABD ∠=∠=︒,60DAB EAC ∠=∠=︒,DAB BAC EAC BAC ∴∠+∠=∠+∠,DAC BAE ∴∠=∠,在DAC ∆和BAE ∆中,AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩,()DAC BAE SAS ∴∆≅∆,BE DC ∴=,ADC ABE ∠=∠, 180********()1206060BOD ODB DBA ABE ODB ADC ODB ADC ∠=︒-∠-∠-∠=︒-∠-︒-∠=︒-∠+∠=︒-︒=︒Q ,60BOD ∴∠=︒,∴①正确;②正确;ABD ∆Q 与AEC ∆都是等边三角形,60ADB AEC ∴∠=∠=︒,但根据已知不能推出ADC AEB ∠=∠,BDO CEO ∴∠=∠错误,∴③错误;//DA BC Q ,60DAB ABC ∴∠=∠=︒,90BAC ∠=︒Q ,30ACB ∴∠=︒,60ACE ∠=︒Q , 90ECB ∴∠=︒,BC CE ∴⊥,④正确,综上所述,①②④正确,故选C .第Ⅱ卷二、填空题(本大题共7小题,每小题4分,共28分) 11. 228a b c ÷__________22a bc =. 【答案】4b .【解析】222824a b c a bc b ÷=.故答案为4b .12.一个多边形的每一个内角都是120︒,则这个多边形的内角和等于__________度. 【答案】720.【解析】边数是:360606÷=,内角和是:(62)180720-︒=︒g.故答案为:720. 13.方程233x x=-的解为x =__________. 【答案】9.【解析】方程两边同乘(3)x x -,得23(3)x x =-,解得9x =.经检验9x =是原方程的解. 14.在半径为6cm 的圆中,有两条互相垂直的弦,其中一条被另一条分成3cm 和7cm 的两段,则圆心到两条弦的距离分别为__________.和2cm .【解析】在图形中7AE cm =,3BE cm =.则10AB AE BE cm =+=. 152AM BM AB cm ∴===.532ME BM BE cm ∴=-=-=;∴在直角OAM ∆中,OM ==.则O 到弦AB ,到弦CD 的距离是2cm 和2cm .15.若2212x x --=,则代数式224x x -的值为__________. 【答案】6.【解析】2212x x --=Q ,即223x x -=,∴原式22(2)6x x =-=,故答案为:6. 16.如图,线段AB 是O e 的直径,弦CD AB ⊥,8AB =,22.5CAB ∠=︒,则CD 的长等于__________.【答案】【解析】连接OC ,如图所示:AB Q 是O e 的直径,弦CD AB ⊥,142OC AB ∴==, OA OC =Q ,22.5A OCA ∴∠=∠=︒,COE ∠Q 为AOC ∆的外角,45COE ∴∠=︒,COE ∴∆为等腰直角三角形,2CE ∴==,2CD CE ∴==,故答案为:17.如图,在直线AP 上方有一个正方形ABCD ,30PAD ∠=︒,以点B 为圆心,AB 长为半径作弧,与AP 交于点A ,M ,分别以点A ,M 为圆心,AM 长为半径作弧,两弧交于点E ,连结ED ,则ADE ∠的度数为__________.【答案】15︒或45︒.【解析】Q 四边形ABCD 是正方形,AD AE ∴=,90DAE ∠=︒,180903060BAM ∴∠=︒-︒-︒=︒,AD AB =,如图示:当点E 与正方形ABCD 的直线AP 的同侧时,由题意得,点E 与点B 重合,45ADE ∴∠=︒, 当点E 与正方形ABCD 的直线AP 的两侧时,由题意得,E A E M '=',∴△AE M '为等边三角形,60E AM ∴∠'=︒,36012090150DAE ∴∠'=︒-︒-︒=︒,AD AE ='Q ,15ADE ∴∠'=︒,故答案为:15︒或45︒.三、解答题(一)(本大题共3小题,每小题6分,共18分)18.计算:011(3.14)|1()2sin604π--++--︒.【答案】–4.【解析】原式1144=--=-.19.先化简,再求值:22222441x y x xy y x y x y --+-÷+-,其中2x =-,12y =. 【答案】2y x y --,原式16=. 【解析】原式22()()11(2)22x y x y x y x y yx y x y x y x y-+--=-=-=-+---g ,当2x =-,12y =时,原式16=. 20.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地(阴影部分)上种植草坪,使草坪的面积为2570m .求每条道路的宽.【解析】设道路的宽为xm ,则草坪的长为(322)x m -,宽为(20)x m -, 根据题意得:(322)(20)570x x --= 整理得:236350x x -+=,解得:11x =,235x =(不合题意,舍去). 答:每条道路的宽为1米.四、解答题(二)(本大题共3小题,每小题7分,共21分) 21.已知:如图,Rt ABC ∆中,90ACB ∠=︒(1)用直尺和圆规作ABC ∠的平分线,交AC 于点O ;(2)在(1)的条件下,若3BC =,4AC =,求点O 到AB 的距离.【解析】(1)如图,BO 为所求作;(2)过点O 作OD AB ⊥于点D ,如图,BO Q 平分ABC ∠,OC BC ⊥,OD AB ⊥,OC OD ∴=,3BD BC ∴==,在Rt ABC ∆中,5AB =,2AD ∴=,设OD x =,则OC x =,4OA x =-, 在Rt AOD ∆中,222(4)2x x +-=,解得32x =,即点O 到AB 的距离为32. 22.为了解家长对“学生在校带手机”现象的看法,某校“九年级兴趣小组”随机调查了该校学生家长若干名,并对调查结果进行整理,绘制如下不完整的统计图.根据以上信息,解答下列问题:(1)这次接受调查的家长总人数为__________人.(2)在扇形统计图中,求“很赞同”所对应的扇形圆心角的度数;(3)若在这次接受调查的家长中,随机抽出一名家长,恰好抽到“无所谓”的家长概率是多少?【解析】(1)这次接受调查的家长总人数为5025%200÷=人, 故答案为:200;(2)Q “无所谓”的人数为20020%40⨯=人,∴ “很赞同”的人数为200(504090)20-++=人,则“很赞同”所对应的扇形圆心角的度数为2036036200︒⨯=︒; (3)Q 在所抽取的200人中,表示“无所谓”的人数为40,∴恰好抽到“无所谓”的家长概率是400.2200=. 23.如图所示是小强洗漱时的侧面示意图,洗漱台(矩形)ABCD 靠墙摆放,宽48AB cm =,小强身高166cm ,下半身100FG cm =,洗漱时下半身与地面成80(80)FGK ︒∠=︒,身体前倾成125(125)EFG ︒∠=︒,脚与洗漱台距离15GC cm =(点D 、C 、G 、K 在同一直线上).小强希望他的头部E 恰好在洗漱盆AB 的中点O 的正上方,他应当前进或后退多少?(sin800.98︒≈,cos800.17︒≈ 1.41≈,结果精确到0.1)【解析】过点F 作FH DK ⊥于H ,过点E 作EL FH ⊥于L ,在Rt FGH ∆中,cos GHFGH GF∠=. cos 1000.1717GH GF FGH ∴=∠=⨯=g ,在Rt EFL ∆中,1801251045EFL ∠=︒-︒-︒=︒,16610066EF cm =-=,46.81EL cm ∴=≈,48151780DH DC CG GH =++=++=,∴小强的头距墙:8046.8133.19-=,而洗漱盆的中心距墙48224÷=, 小强应该向前移动:33.19249.2()cm -≈.五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,AB 为O e 的直径,C 、F 为O e 上两点,且点C 为弧BF 的中点,过点C 作AF 的垂线,交AF 的延长线于点E ,交AB 的延长线于点D . (1)求证:DE 是O e 的切线; (2)如果半径的长为3,3tan 4D =,求AE 的长.【解析】(1)证明:连接OC ,如图,Q 点C 为弧BF 的中点,∴弧BC =弧CF .BAC FAC ∴∠=∠,OA OC =Q ,OCA OAC ∴∠=∠. OCA FAC ∴∠=∠,//OC AE ∴,AE DE ⊥Q ,OC DE ∴⊥.DE ∴是O e 的切线;(2)在Rt OCD ∆中,3tan 4OC D CD ==Q ,3OC =,4CD ∴=,5OD ∴=, 8AD OD AO ∴=+=,在Rt ADE ∆中,3sin 5OC AE D OD AD ===Q , 245AE ∴=. 25.(1)如图1,在ABC ∆中,AB AC >,点D ,E 分别在边AB ,AC 上,且//DE BC ,若2AD =,32AE =,则BD CE 的值是__________;(2)如图2,在(1)的条件下,将ADE ∆绕点A 逆时针方向旋转一定的角度,连接CE 和BD ,BDCE的值变化吗?若变化,请说明理由;若不变化,请求出不变的值; (3)如图3,在四边形ABCD 中,AC BC ⊥于点C ,BAC ADC θ∠=∠=,且3tan 4θ=,当6CD =,3AD =时,请直接写出线段BD 的长度.【解析】(1)//DE BC Q ,∴24332BD AD CE AE ===;故答案为:43; (2)BD CE 的值不变化,值为43;理由如下: 由(1)得://DE B C ,ADE ABC ∴∆∆∽,∴AD AE AB AC=, 由旋转的性质得:BAD CAE ∠=∠,ABD ACE ∴∆∆∽,∴43BD AD CE AE ==; (3)作AE CD ⊥于E ,DM AC ⊥于M ,DN BC ⊥于N ,如图3所示:则四边形DMCN 是矩形,DM CN ∴=,DN MC =, BAC ADC θ∠=∠=Q ,且3tan 4θ=, ∴34BC AC =,34AE DE =,∴35AE AD =, 3393555AE AD ∴==⨯=,41235DE AE ==, 1218655CE CD DE ∴=-=-=,AC∴==34BC AC∴=ACD∆Q的面积1122AC DM CD AE=⨯=⨯,9659CN DM⨯∴===,BN BC CN∴=+=,AM===DN MC AM AC∴==+,BD∴==.。
2020年中考数学模拟试卷及答案(共三套)
2020年中考数学模拟试卷及答案(共三套)中考数学模拟试卷及答案(一)[满分:120分考试时间:120分钟]一、选择题(每小题3分,共36分)1.下列四个图形中,是轴对称图形但不是中心对称图形的有( )图M2-12.下列运算正确的是( )A.(x-y)2=x2-y2 B.x2·x4=x6C.(-3)2=-3 D.(2x2)3=6x63.下列二次根式中,与3是同类二次根式的是( )A.13B.18C.24D.0.34.据统计,2013年河南省旅游业总收入达到约3875.5亿元,若将3875.5亿用科学记数法表示为3.8755×10n,则n等于( )A.10 B.11C.12 D.13图M2-25.如图M2-2,在平面直角坐标系中,点A的坐标为(4,3),那么cosα的值是( )A.34B.43C.35D.456.把8a 3-8a 2+2a 进行因式分解,结果正确的是( ) A .2a(4a 2-4a +1) B .8a 2(a -1) C .2a(2a -1)2 D .2a(2a +1)27.不等式组⎩⎪⎨⎪⎧12x -1≤7-32x ,5x -2>3(x +1)的解集表示在数轴上,正确的是()图M2-3图M2-48.已知菱形OABC 在平面直角坐标系的位置如图M2-4所示,顶点A(5,0),OB =4 5,点P 是对角线OB 上的一个动点,D(0,1),当CP +DP 最短时,点P 的坐标为( ) A .(0,0) B .(1,12) C .(65,35) D .(107,57)9.为了响应学校“书香校园”建设,阳光班的同学们积极捐书,其中宏志学习小组的同学捐书册数分别是:5,7,x ,3,4,6.已知他们平均每人捐5本,则这组数据的众数、中位数和方差分别是( )A .5,5,32B .5,5,10C .6,5.5,116D .5,5,5310.已知下列命题:①若||a =-a ,则a≤0;②若a>||b ,则a 2>b 2;③两个位似图形一定是相似图形;④平行四边形的对边相等.其中原命题与逆命题均为真命题的个数是( )A .1个B .2个C .3个D .4个11.若x =-3是关于x 的一元二次方程x 2+2ax +a 2=0的一个根,则a 的值为( ) A .4 B .-3 C .3 D .-4图M2-512.二次函数y =ax 2+bx +c 的图象如图M2-5所示,对称轴是直线x =-1,有以下结论:①abc>0;②4ac<b 2;③2a+b =0;④a-b +c>2.其中正确的结论的个数是( )A .1B .2C .3D .4二、填空题(每小题3分,共24分) 13.计算:2cos45°-()π+10+14+⎝ ⎛⎭⎪⎫12-1=________. 14.在一个不透明的袋子中装有8个红球和16个白球,它们只有颜色上的区别.现从袋中取走若干个白球,并放入相同数量的红球,搅拌均匀后,要使从袋中任意摸出一个球是红球的概率是58,则取走的白球为________个.15.化简:(a 2a -3+93-a )÷a +3a=________.16.如图M2-6,△ABC 内接于⊙O,AH ⊥BC 于点H ,若AC =24,AH =18,⊙O 的半径OC =13,则AB =________.图M2-617.在一条笔直的公路上有A ,B ,C 三地,C 地位于A ,B 两地之间,甲,乙两车分别从A ,B 两地出发,沿这条公路匀速行驶至C 地停止.从甲车出发至甲车到达C 地的过程,甲、乙两车各自与C 地的距离y(km)与甲车行驶时间t(h)之间的函数关系如图M2-7表示,当甲车出发________h 时,两车相距350 km.图M2-718.若关于x 的分式方程x +m x -2+2m2-x=3的解为正实数,则实数m 的取值范围是________.19.如图M2-8,点A 在双曲线y =5x 上,点B 在双曲线y =8x 上,且AB ∥x 轴,则△OAB的面积等于________.图M2-820.如图M2-9,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB 、CD 交于点E 、F ,连接BF 交AC 于点M ,连接DE 、BO ,若∠COB=60°,FO =FC ,则下列结论:①FB 垂直平分OC ;②△EOB ≌△CMB ;③DE=EF ;④S △AOE ︰S △BCM =2︰3.其中所有正确的结论的序号是________.图M2-9三、解答题(共60分)21.(8分)垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.运动员甲测试成绩表图M2-10(1)写出运动员甲测试成绩的众数和中位数;(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为s甲2=0.8、s乙2=0.4、s丙2=0.81)(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能地传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)22.(8分)如图M2-11所示,某数学活动小组选定测量小河对岸大树BC的高度,他们在斜坡上D处测得大树顶端B的仰角为30°,朝大树方向下坡走6米到达坡底A处,在A处测得大树顶端B的仰角是48°.若坡角∠FAE=30°,求大树的高度.(结果保留整数.参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73)图M2-1123.(10分)某种商品的标价为400元/件,经过两次降价后的价格为324元/件,并且两次降价的百分率相同.(1)求该种商品每次降价的百分率;(2)若该种商品进价为300元/件,两次降价共售出此种商品100件,为使两次降价销售的总利润不少于3210元.问第一次降价后至少要售出该种商品多少件?24.(10分)如图M2-12,在△ABC中,AB=AC,以AC为直径的⊙O分别交AB、BC 于点M、N,点P在AB的延长线上,且∠CAB=2∠BCP.(1)求证:直线CP是⊙O的切线;(2)若BC=2 5,sin∠BCP=55,求点B到AC的距离;(3)在(2)的条件下,求△ACP的周长.图M2-1225.(12分)如图M2-13①,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连接DE,过点E作EG⊥DE,使EG=DE.连接FG,FC.(1)请判断:FG与CE的数量关系是________,位置关系是________;(2)如图M2-13②,若点E、F分别是CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请给出判断并予以证明;(3)如图M2-13③,若点E、F分别是BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断.图M2-1326.(12分)如图M2-14,在平面直角坐标系中,已知抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,与y 轴交于点C.(1)求该抛物线的解析式;(2)直线y =-x +n 与该抛物线在第四象限内交于点D ,与线段BC 交于点E ,与x 轴交于点F ,且BE =4EC.①求n 的值;②连接AC ,CD ,线段AC 与线段DF 交于点G ,△AGF 与△CGD 是否全等?请说明理由; (3)直线y =m(m>0)与该抛物线的交点为M ,N(点M 在点N 的左侧),点M 关于y 轴的对称点为点M′,点H 的坐标为(1,0).若四边形OM′NH 的面积为53.求点H 到OM′的距离d 的值.图M2-14参考答案1.B 2.B 3.A 4.B 5.D 6.C 7.A8.D [解析] 如图,连接AD ,交OB 于点P ,P 即为所求的使CP +DP 最短的点;连接CP ,AC ,AC 交OB 于点E ,过E 作EF⊥OA,垂足为F.∵点C 关于OB 的对称点是点A , ∴CP =AP ,∴CP +DP 的最小值即为AD 的长度; ∵四边形OABC 是菱形,OB =4 5, ∴OE =12OB =2 5,AC ⊥OB.又∵A(5,0), ∴在Rt △AEO 中,AE =OA 2-OE 2=52-(2 5)2=5; 易知Rt △OEF ∽Rt △OAE ,∴OE OA =EF AE, ∴EF =OE·AE OA =2 5×55=2,∴OF =OE 2-EF 2=(2 5)2-22=4. ∴E 点坐标为(4,2).设直线OE 的解析式为:y =kx ,将E(4,2)的坐标代入,得y =12x ,设直线AD 的解析式为:y =kx +b ,将A(5,0),D(0,1)的坐标代入,得y =-15x +1,⎩⎪⎨⎪⎧y =12x ,y =-15x +1,解得⎩⎪⎨⎪⎧x =107,y =57.∴点P 的坐标为⎝ ⎛⎭⎪⎫107,57.9.D 10.A 11.C12.C [解析] ①a<0,b<0,c>0,故正确,②Δ=b 2-4ac>0,故正确,③x =-1,即-b2a=-1,b =2a ,故错误.④当x =-1时,a -b +c>2.故正确.13.2+3214.715.a [解析] 先算小括号,再算除法.原式=(a 2a -3-9a -3)÷a +3a =a 2-9a -3÷a +3a =(a +3)·aa +3=a.故答案为a.16.39217.32[解析] 由题意,得AC =BC =240 km , 甲车的速度为240÷4=60(km/h),乙车的速度为240÷3=80(km/h). 设甲车出发x 小时甲、乙两车相距350 km ,由题意,得 60x +80(x -1)+350=240×2,解得x =32,即甲车出发32h 时,两车相距350 km.故答案为32.18.m<6且m≠219.32 [解析] 设点A 的坐标为(a ,5a ). ∵AB ∥x 轴, ∴点B 的纵坐标为5a.将y =5a 代入y =8x ,求得x =8a 5.∴AB =8a 5-a =3a 5.∴S △OAB =12·3a 5·5a =32.故答案为32.20.①③④21.[解析] (1)众数是一组数据中出现次数最多的数,观察表格可以知道甲运动员测试成绩的众数是7分.中位数是一组数据按从大到小或从小到大的顺序排列,最中间的一个或两个数的平均数,观察表格并将数据按从小到大排列得5,6,7,7,7,7,7,8,8,8,可以知道甲运动员测试成绩的中位数是7分.(2)经计算x 甲=7分,x 乙=7分,x 丙=6.3分,根据题意不难判断. (3)画出树状图,即可解决问题.解:(1)甲运动员测试成绩的众数和中位数都是7分.(2)选乙运动员更合适,理由:经计算x 甲=7分,x 乙=7分,x 丙=6.3分, ∵x 甲=x 乙>x 丙,s 丙2>s 甲2>s 乙2, ∴选乙运动员更合适. (3)画树状图如图所示.由树状图知共有8种等可能的结果,回到甲手中的结果有2种,故P(回到甲手中)=28=14. 22.解:过点D 作DM ⊥EC 于点M ,DN ⊥BC 于点N ,设BC =h ,在直角三角形DMA 中,∵AD =6,∠DAE =30°,∴DM =3,AM =3 3,则CN =3,BN =h -3.在直角三角形BDN 中,∵∠BDN =30°,∴DN =3BN =3(h -3);在直角三角形ABC 中,∵∠BAC =48°,∴AC =h tan48°,∵AM +AC =DN ,∴3 3+htan48°=3(h -3),解之得h≈13.答:大树的高度约为13米.23.解:(1)设该种商品每次降价的百分率为x%, 依题意得:400×(1-x%)2=324, 解得:x =10或x =190(舍去). 答:该种商品每次降价的百分率为10%.(2)设第一次降价后售出该种商品m 件,则第二次降价后售出该种商品(100-m)件,第一次降价后的单件利润为:400×(1-10%)-300=60(元/件);第二次降价后的单件利润为:324-300=24(元/件).依题意得:60m+24×(100-m)=36m+2400≥3210,解得:m≥22.5.∴m≥23.答:为使两次降价销售的总利润不少于3210元,第一次降价后至少要售出该种商品23件.24.解:(1)证明:连接AN.∵AC是直径,∴∠ANC=90°.∵AB=AC,∴∠CAB=2∠CAN.∵∠CAB=2∠BCP,∴∠CAN=∠BCP.∵∠CAN+∠ACN=90°,∴∠BCP+∠ACN=90°,∴直线CP是⊙O的切线.(2)∵BC=2 5,∴CN= 5.过B点作BD⊥AC交AC于点D.∵sin∠BCP=sin∠CAN=5 5,∴AC=5.∴AN=2 5.∵AC·BD=BC·AN,∴5·BD=2 5·2 5.∴BD=4.故点B到AC的距离为4.(3)∵AB=AC=5,BD=4,∴AD=3.∴C △ADBC △ACP =AD AC =35=12C △ACP ,∴C △ACP =20.25.解:(1)相等 平行[解析] ∵四边形ABCD 是正方形, ∴∠ABC =∠BCD=90°,AB =BC =CD. ∵CE =BF ,∴△ECD ≌△FBC , ∴CF =DE ,∠DEC =∠BFC. ∴∠DEC +∠BCF=90°,∴FC ⊥DE. ∵EG ⊥DE ,EG =DE , ∴FC ∥GE ,GE =CF ,∴四边形GECF 是平行四边形, ∴GF ∥CE ,GF =CE. (2)成立.证明:∵四边形ABCD 是正方形, ∴∠ABC =∠BCD=90°,AB =BC =CD. ∵CE =BF ,∴△ECD≌△FBC, ∴CF =DE ,∠DEC =∠BFC . ∴∠DEC +∠BCF=90°,∴FC ⊥DE. ∵EG ⊥DE ,EG =DE , ∴FC ∥GE ,GE =CF ,∴四边形GECF 是平行四边形, ∴GF ∥CE ,GF =CE.(3)仍然成立. [解析] 证明方法同上.26.[解析] (1)由已知点的坐标,利用待定系数法求得抛物线的解析式为y =32x 2-32x -3;(2)①利用待定系数法求出直线BC 解析式为y =32x -3,求出E 点坐标,将E 点坐标代入直线解析式y =-x +n 中求出n =-2;②利用一次函数与二次函数解析式求出交点D 的坐标,再利用平行线的性质得角相等证明两个三角形全等;(3)先证明四边形OM′NH 是平行四边形,由面积公式,根据点M 、N 关于直线x =12对称,点M 与点M′关于y 轴对称,求解点M 、M′的坐标,最后由勾股定理和平行四边形面积公式求得d =5 4141.解:(1)∵抛物线y =32x 2+bx +c 与x 轴交于A(-1,0),B(2,0)两点,∴⎩⎪⎨⎪⎧32-b +c =0,6+2b +c =0,解得⎩⎪⎨⎪⎧b =-32,c =-3,∴该抛物线的解析式为y =32x 2-32x -3.(2)①过点E 作EE′⊥x 轴于点E′. ∴EE ′∥OC , ∴BE′OE′=BE CE , ∵BE =4CE , ∴BE ′=4OE′.设点E 坐标为(x ,y),OE ′=x ,BE ′=4x.∵点B 坐标为(2,0), ∴OB =2,∴x +4x =2,∴x =25.∵抛物线y =32x 2-32x -3与y 轴交于点C ,∴当x =0时,y =-3,即C(0,-3). 设直线BC 的解析式为y =kx +b 1. ∵B(2,0),C(0,-3),∴⎩⎪⎨⎪⎧2k +b 1=0,b 1=-3,解得⎩⎪⎨⎪⎧k =32,b 1=-3,∴直线BC 的解析式为y =32x -3.∵当x =25时,y =-125,∴E(25,-125).∵点E 在直线y =-x +n 上, ∴-25+n =-125,得n =-2.②全等;理由如下:∵直线EF 的解析式为y =-x -2, ∴当y =0时,x =-2,即F(-2,0),OF =2. ∵A(-1,0),∴OA =1,AF =1. 由⎩⎪⎨⎪⎧y =32x 2-32x -3,y =-x -2,解得⎩⎪⎨⎪⎧x 1=-23,y 1=-43,和⎩⎪⎨⎪⎧x 2=1,y 2=-3.∵点D 在第四象限,∴D(1,-3). ∵点C(0,-3), ∴CD ∥x 轴,CD =1,∴∠AFG =∠CDG,∠FAG =∠DCG, 又∵CD=AF =1, ∴△AGF ≌△CGD. (3)∵-b 2a =12.∴该抛物线的对称轴是直线x =12.∵直线y =m 与该抛物线交于M 、N 两点, ∴点M 、N 关于直线x =12对称,设N(t ,m),则M(1-t ,m),∵点M 与点M′关于y 轴对称, ∴M ′(t -1,m), ∴点M′在直线y =m 上,∴M ′N ∥x 轴,M ′N =t -(t -1)=1, ∵H(1,0),∴OH =1, ∴OH =M′N,∴四边形OM′NH 是平行四边形, 设直线y =m 与y 轴交于点P ,∵S ▱OM ′NH =53,即OH·OP=OH·m=53,得m =53,∴当32x 2-32x -3=53时,解得x 1=-43,x 2=73,∴点M 的坐标为(-43,53),M ′(43,53),∴OP =53,PM ′=43,在Rt △OPM ′中,∠OPM ′=90°, ∴OM ′=OP 2+PM′2=413. ∵S ▱OM ′NH =53,∴OM ′·d =53,d =5 4141.中考数学模拟试卷及答案(二)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.-2的相反数是( ) A .- 2 B.22C. 2 D .-222.函数y =x -2x +3中自变量x 的取值范围是( )A .x ≠-3B .x≥2C .x >2D .x ≠03.统计显示,2016年底某市各类高中在校学生人数约是11.4万人,将11.4万用科学记数法表示应为( )A .11.4×104B .1.14×104C .1.14×105D .0.114×106 4.下列运算正确的是( ) A .a 2+a 3=a 5B .(-2a 2)3÷(a 2)2=-16a 4C .3a -1=13aD .(2 3a 2-3a)2÷3a 2=4a 2-4a +1图M1-15.如图M1-1,已知半径OD 与弦AB 互相垂直,垂足为点C ,若AB =8 cm ,CD =3 cm ,则圆O 的半径为( )A.256 cm B .5 cm C .4 cm D.196cm6.一个袋子中装有3个红球和2个黄球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中摸出的2个球的颜色相同的概率是( )A.34B.15C.35D.257.方程(m -2)x 2-3-mx +14=0有两个实数根,则m 的取值范围为( )A .m>52B .m ≤52且m≠2C .m ≥3D .m ≤3且m≠28.已知等边三角形的边长为3,点P 为等边三角形内任意一点,则点P 到三边的距离之和为( )A.32B.3 32C.32D .不能确定 9.下列命题中,原命题与逆命题均为真命题的个数是( ) ①若a =b ,则a 2=b 2; ②若x >0,则|x|=x ;③一组对边平行且对角线相等的四边形是矩形; ④一组对边平行且不相等的四边形是梯形. A .1个 B .2个 C .3个 D .4个10.如图M1-2,在Rt △ABC 中,∠ACB =90°,AB =10,BC =6,将Rt △ABC 绕点B 旋转90°至△DBE 的位置,连接EC 交BD 于F ,则CF∶FE 的值是( )图M1-2A .3∶4B .3∶5C .4∶3D .5∶311.定义新运算,a*b =a(1-b),若a 、b 是方程x 2-x +14m =0(m<0)的两根,则b*b-a*a 的值为( )A .0B .1C .2D .与m 有关方程图M1-312.反比例函数y =a x (a >0,a 为常数)和y =2x 在第一象限内的图象如图M1-3所示,点M 在y =a x 的图象上,MC ⊥x 轴于点C ,交y =2x 的图象于点A ;MD⊥y 轴于点D ,交y =2x 的图象于点B ,当点M 在y =ax的图象上运动时,以下结论:①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( ) A .0 B .1 C .2 D .3二、填空题(每小题3分,共24分) 13.计算:8-312+2=________.14.不等式组⎩⎪⎨⎪⎧x -1≤2-2x ,2x 3>x -12的解集为________.图M1-415.如图M1-4,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC =3,点P 到OA 的距离为________.16.小亮应聘小记者,进行了三项素质测试,测试成绩分别是:采访写作90分,计算机输入85分,创意设计70分,若将采访写作、计算机输入、创意设计三项成绩按5∶2∶3的比例来计算平均成绩,则小亮的平均成绩是________分.图M1-517.如图M1-5,Rt △A ′BC ′是由Rt △ABC 绕B 点顺时针旋转而成的,且点A ,B ,C ′在同一条直线上,在Rt △ABC 中,若∠C=90°,BC =2,AB =4,则斜边AB 旋转到A′B 所扫过的扇形面积为________.18.化简x x 2+2x +1÷(1-1x +1)=________.19.如图M1-6,在Rt △ABC 中,∠B =90°,AB =3,BC =4,点D 在BC 上,以AC 为对角线的所有▱ADCE 中,DE 最小的值为________.M1-6M1-720.如图M1-7,CB=CA,∠ACB=90°,点D在边BC上(与B、C不重合),四边形ADEF为正方形,过点F作FG⊥CA,交CA的延长线于点G,连接FB,交DE于点Q,给出以下结论:①AC=FG;②S△FAB∶S四边形CBFG=1∶2;③∠ABC=∠ABF;④AD2=FQ·AC,其中所有正确结论的序号是________.三、解答题(共60分)21.(8分)某校为组织代表队参加市“拜炎帝、诵经典”吟诵大赛,初赛后对选手成绩进行了整理,分成5个小组(x表示成绩,单位:分).A组:75≤x<80;B组:80≤x <85;C组:85≤x<90;D组:90≤x<95;E组:95≤x<100,并绘制如图M1-8两幅不完整的统计图.请根据图中信息,解答下列问题:(1)参加初赛的选手共有________名,请补全频数分布直方图;(2)扇形统计图中,C组对应的圆心角是________,E组人数占参赛选手的百分比是________;(3)学校准备组成8人的代表队参加市级决赛,E组6名选手直接进入代表队,现要从D组中的两名男生和两名女生中,随机选取两名选手进入代表队,请用列表或画树状图的方法,求恰好选中一名男生和一名女生的概率.图M1-822.(8分)数学活动课上,老师和学生一起去测量学校升旗台上旗杆AB 的高度.如图M1-9,老师测得升旗台前斜坡FC 的坡比为i FC =1∶10(即EF∶CE=1∶10),学生小明站在离升旗台水平距离为35 m(即CE =35 m)处的C 点,测得旗杆顶端B 的仰角为α,已知tan α=37,升旗台高AF =1 m ,小明身高CD =1.6 m ,请帮小明计算出旗杆AB 的高度.图M1-923.(10分)某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车按规定满载,并且只装一种水果).下表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),设装运甲种水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?24.(10分)如图M1-10,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O 与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.图M1-1025.(12分)提出问题:(1)如图M1-11①,在正方形ABCD中,点E,H分别在BC,AB上,若AE⊥DH于点O,求证:AE=DH.类比探究:(2)如图②,在正方形ABCD中,点H,E,G,F分别在AB,BC,CD,DA 上.若EF⊥HG于点O.探究线段EF与HG的数量关系,并说明理由.综合运用:(3)在(2)问条件下,HF∥GE,如图③所示,已知BE=EC=2,OE=2OF,求图中阴影部分的面积.图M1-1126.(12分)如图M1-12,已知抛物线y=ax2+bx+c(a≠0)经过A(-1,0),B(4,0),C(0,2)三点.(1)求这条抛物线的解析式;(2)E为抛物线上一动点,是否存在点E使以A、B、E为顶点的三角形与△COB相似?若存在,试求出点E的坐标;若不存在,请说明理由;(3)若将直线BC平移,使其经过点A,且与抛物线相交于点D,连接BD,试求出∠BDA 的度数.图M1-12参考答案1.C 2.B 3.C 4.D 5.A 6.D 7.B [解析] 因为方程有两个实数根, 所以⎩⎪⎨⎪⎧m -2≠0,(-3-m )2-4×14(m -2)≥0, 解得m≤52且m≠2.故选B.8.B [解析] 如图,△ABC 是等边三角形,AB =3,点P 是△ABC 内任意一点,过点P 分别向三边AB ,BC ,CA 作垂线,垂足依次为D ,E ,F ,过点A 作AH⊥BC 于H.则BH =32,AH =AB 2-BH 2=3 32.连接PA ,PB ,PC ,则S △PAB +S △PBC +S △PCA =S △ABC . ∴12AB·PD+12BC·PE+12CA ·PF =12BC·AH. ∴PD +PE +PF =AH =3 32.故选B.9.A 10.A11.A [解析] b*b -a*a =b(1-b)-a(1-a)=b -b 2-a +a 2,因为a ,b 为方程x 2-x +14m =0的两根,所以a 2-a +14m =0,化简得a 2-a =-14m ,同理b 2-b =-14m ,代入上式得原式=-(b 2-b)+a 2-a =14m +(-14m)=0.12.D 13.32 2 14.-3<x≤115.3 [解析] 如图,过P 作PD⊥OA 于D ,∵OP 为∠AOB 的平分线,PC ⊥OB , ∴PD =PC , ∵PC =3,∴PD =3.故答案为3. 16.83 17.16π318.1x +1 19.320.①②③④ [解析] ∵∠G=∠C=∠FAD=90°, ∴∠CAD =∠AFG. ∵AD =AF , ∴△FGA ≌△ACD. ∴AC =FG , ①正确.∵FG =AC =BC ,FG ∥BC ,∠C =90°, ∴四边形CBFG 为矩形, ∴S △FAB =12FB·FG=12S 四边形CBFG ,②正确.∵CA =CB ,∠C =∠CBF=90°, ∴∠ABC =∠ABF=45°, 故③正确.∵∠FQE =∠DQB=∠ADC,∠E =∠C=90°, ∴△ACD ∽△FEQ ,∴AC ∶AD =FE∶FQ, ∴AD ·FE =AD 2=FQ·AC, ④正确.21.[解析] (1)由A 组或D 组对应频数和百分比可求选手总数为40,进而求出B 组频数;(2)C 组对应的圆心角=1240×360°,E 组人数占参赛选手的百分比是640×100%;(3)用列表或画树状图表示出所有可能的结果,注意选取不放回.解:(1)40,补全频数分布直方图如图;(2)108°,15%;(3)两名男生分别用A 1、A 2表示,两名女生分别用B 1、B 2表示.根据题意可画出如下树状图:或列表如下:综上可知,所有可能出现的结果有12种,这些结果出现的可能性相等,选中一名男生和一名女生的结果有8种.∴选中一名男生和一名女生的概率是812=23.22.解:∵i FC =1∶10,CE =35 m , EF =3510=3.5(m).过点D 作BE 的垂线交BE 于点G.在Rt △BGD 中 ,∵tan α=37,DG =CE =35 m ,∴BG =15 m.又∵CD=1.6 m ,CD =EG , ∴FG =3.5-1.6=1.9(m). 又∵AF=1 m ,∴AB =BG -AF -FG =15-1-1.9=12.1(m).23.解:(1)设装运乙、丙两种水果的汽车分别为x 辆,y 辆,由题意得⎩⎪⎨⎪⎧x +y =8,2x +3y =22,∴⎩⎪⎨⎪⎧x =2,y =6.答:装运乙种水果有2辆车,装运丙种水果有6辆车. (备注:也可列一元一次方程)(2)设装运乙、丙两种水果的车分别为a 辆,b 辆,由题意得⎩⎪⎨⎪⎧m +a +b =20,4m +2a +3b =72,∴⎩⎪⎨⎪⎧a =m -12,b =32-2m.(3)设总利润为w 千元,w =4×5m+2×7(m-12)+4×3(32-2m) =10m +216,∵⎩⎪⎨⎪⎧m≥1,m -12≥1,32-2m≥1, ∴13≤m ≤15.5. ∵m 为正整数, ∴m =13,14,15.在w =10m +216中,w 随m 的增大而增大, 当m =15时,w 最大=366千元.答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆时,有最大利润,最大利润为366千元.24.解:(1)证明:连接OD. ∵BC 与⊙O 相切于点D ,∴OD ⊥BC.又∵∠C=90°,∴OD ∥AC ,∴∠CAD =∠ODA. ∵OA =OD ,∴∠OAD =∠ODA, ∴∠CAD =∠BAD,∴AD 平分∠CAB. (2)①DF=DH.理由如下:∵FH 平分∠AFE,∴∠AFH =∠EFH, 又∠DFG=∠EAD=∠HAF, ∴∠DFG +∠GFH=∠HAF+∠HFA, 即∠DFH=∠DHF,∴DF =DH. ②设HG =x ,则DH =DF =1+x. ∵OH ⊥AD ,∴AD =2DH =2(1+x). ∵∠DFG =∠DAF,∠FDG =∠AD F , ∴△DFG ∽△DAF ,∴DFAD=DGDF,∴1+x2(1+x)=11+x,∴x=1.∴DF=2,AD=4.∵AF为直径,∴∠ADF=90°,∴AF=DF2+AD2=22+42=2 5,∴⊙的半径为 5.25.解:(1)证明:如图①,在正方形ABCD中,AD=AB,∠B=90°,∴∠1+∠3=90°,∵AE⊥DH,∴∠1+∠2=90°.∴∠2=∠3.∴△ADH≌△BAE(AAS).∴AE=DH.(2)相等,理由如下:如图②,过点D作DH′∥GH交AB于H′,过点A作AE′∥FE 交BC于E′,AE′分别交DH′,GH于点S,T,DH′交EF于点R.∴四边形ORST为平行四边形.又∵EF⊥HG,∴四边形ORST为矩形,∴∠RST=90°.由(1)可知,DH′=AE′.∵AF∥EE′,∴四边形AE′EF是平行四边形,∴EF=AE′.同理,HG=DH′,∴EF=GH.(3)如图③,延长FH,CB交于点P,过点F作FQ⊥BC于点Q.∵AD∥BC,∴∠AFH=∠P,∵HF ∥GE ,∴∠GEC =∠P, ∴∠AFH =∠GEC.又∵∠A=∠C=90°,∴△AFH ∽△CEG. ∴AF CE =HF EG =OF OE =OF 2OF =12. ∵BE =EC =2,∴AF =1, ∴BQ =AF =1,QE =1.设OF =x ,∴OE =2OF =2x ,∴EF =3x ,∴HG =EF =3x. ∵HF ∥GE ,∴OH OG =OF OE =12,∴OH =OF =x ,OG =OE =2x.在Rt △EFQ 中,∵QF 2+QE 2=EF 2, ∴42+12=(3x)2,解得x =173. ∴S 阴影=S △HOF +S △EOG =12x 2+12(2x)2=52x 2=52×(173)2=8518.26.解:(1)∵该抛物线过点C(0,2), ∴可设该抛物线的解析式为y =ax 2+bx +2, 将A(-1,0),B(4,0)代入,得⎩⎪⎨⎪⎧a -b +2=0,16a +4b +2=0,解得⎩⎪⎨⎪⎧a =-12,b =32.∴该抛物线的解析式为y =-12x 2+32x +2.(2)存在.由图可知,以A ,B 为直角顶点的△ABE 不存在,所以△ABE 只可能是以点E 为直角顶点的三角形.在Rt △BOC 中,OC =2,OB =4, ∴BC =22+42=2 5.在Rt △BOC 中,设BC 边上的高为h , 则12BC×h=12×2×4, ∴h =455.∵△BEA ∽△COB ,设E 点坐标为(x ,y),∴AB BC =|y|45 5,∴y =±2,当y =-2时,不合题意舍去, ∴E 点坐标为(0,2),(3,2).(3)如图,连接AC ,作DE⊥x 轴于点E ,作BF⊥AD 于点F ,∴∠BED =∠BFD=∠AFB=90°. 设BC 的解析式为y =kx +b ,由图像,得⎩⎪⎨⎪⎧2=b ,0=4k +b ,∴⎩⎪⎨⎪⎧k =-12,b =2.∴y BC =-12x +2.由BC∥AD,设AD 的解析式为y =-12x +n ,由图象,得0=-12×(-1)+n ,∴n =-12,y AD =-12x -12,∴-12x 2+32x +2=-12x -12,解得:x 1=-1,x 2=5. ∴D(-1,0)与A 重合,舍去, ∴D(5,-3).∵DE ⊥x 轴,∴DE =3,OE =5. 由勾股定理,得BD =10. ∵A(-1,0),B(4,0),C(0,2), ∴OA =1,OB =4,OC =2, ∴AB =5.在Rt △AOC ,Rt △BOC 中,由勾股定理,得AC =5,BC =2 5, ∴AC 2=5,BC 2=20,AB 2=25, ∴AB 2=AC 2+BC 2, ∴△ACB 是直角三角形, ∴∠ACB =90°. ∵BC ∥AD ,∴∠CAF +∠ACB=180°, ∴∠CAF =90°.∴∠CAF =∠ACB=∠AFB=90°,∴四边形ACBF 是矩形, ∴AC =BF =5,在Rt △BFD 中,由勾股定理,得DF =5, ∴DF =BF , ∴∠ADB =45°.中考数学模拟试卷及答案(三)[满分:120分 考试时间:120分钟]一、选择题(每小题3分,共36分) 1.下列各实数中最小的是( ) A .- 2 B .-12 C .0 D .|-1| 2.下列等式一定成立的是( ) A .a 2·a 5=a 10 B.a +b =a + b C .(-a 3)4=a 12 D.a 2=a 3.估计7+1的值( )A .在1和2之间B .在2和3之间C .在3和4之间D .在4和5之间 4.3tan30°的值等于( ) A. 3 B .3 3 C.33 D.325.小明同时向上掷两枚质地均匀、同样大小的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数之和是3的倍数的概率是( )A.13B.16C.518D.566.将下列多项式分解,结果中不含有因式a +1的是( ) A .a 2-1 B .a 2+aC .a 2+a -2D .(a +2)2-2(a +2)+17.正六边形的边心距为3,则该正六边形的边长是( ) A. 3 B .2 C .3 D .2 38.在平面直角坐标系中,将△AOB 绕原点O 顺时针旋转180°后得到△A 1OB 1,若点B 的坐标为(2,1),则点B 的对应点B 1的坐标为( )A .(1,2)B .(2,-1)C .(-2,1)D .(-2,-1) 9.化简a 2-b 2ab -ab -b 2ab -a 2等于( ) A.b a B.a b C .-b a D .-a b10.如图M3-1,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:图M3-1①DE BC =12;②S △DOE S △COB=12;③AD AB =OE OB;④S △ODE S △ADE=13. 其中正确的个数有( ) A .1个 B .2个 C .3个 D .4个 11.已知下列命题: ①若a>0,b>0,则a +b>0; ②若a≠b,则a 2≠b 2;③角平分线上的点到角两边的距离相等; ④平行四边形的对角线互相平分.其中原命题与逆命题均为真命题的个数是( ) A .1个 B .2个 C .3个 D .4个12.如图M3-2是二次函数y =ax 2+bx +c 图象的一部分,图象过点A(-3,0),对称轴为直线x =-1,给出四个结论:①c >0;②若点B(-32,y 1),C(-52,y 2)为函数图象上的两点,则y 1<y 2;③2a -b =0; ④4ac -b 24a<0.其中,正确结论的个数是( )图M3-2A .1B .2C .3D .4二、填空题(每小题3分,共24分)13.计算:(-5)0+12cos30°-(13)-1=________.14.已知一组数据:3,3,4,7,8,则它的方差为________.15.如图M3-3,OP 平分∠AOB,∠AOP =15°,PC ∥OA ,PD ⊥OA 于点D ,PC =4,则PD =________.图M3-316.如图M3-4,△ABC 是⊙O 的内接正三角形,⊙O 的半径为3,则图中阴影部分的面积是________图M3-417.如图M3-5,直线y =x +b 与直线y =kx +6交于点P(3,5),则关于x 的不等式x +b>kx +6的解集是________.图M3-518.若关于x 的一元二次方程x 2+(2k +1)x +k 2+1=0有两个不等实根x 1,x 2满足x 1+x 2=-x 1·x 2,则k =________.19.如图M3-6,在平面直角坐标系中,矩形ABCD 的边AB∶BC=3∶2,点A(3,0),B(0,6)分别在x 轴,y 轴上,反比例函数y =kx (x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为________.图M3-620.如图M3-7,正方形ABCD 中,点E 、F 分别在BC 、CD 上,△AEF 是等边三角形,连接AC 交EF 于G ,下列结论:①BE=DF ,②∠DAF =15°,③AC 垂直平分EF ,④BE +DF =EF ,⑤S △CEF =2S △ABE .其中正确结论有________.三、解答题(共60分)21.(8分)为了解某地某个季度的气温情况,用适当的抽样方法从该地这个季度中抽取30天,对每天的最高气温x(单位:℃)进行调查,并将所得的数据按照12≤x<16,16≤x<20,20≤x<24,24≤x<28,28≤x<32分成五组,得到下面频数分布直方图.(1)求这30天最高气温的平均数和中位数(各组的实际数据用该组的组中值代表);(2)每月按30天计算,各组的实际数据用该组的组中值代表,估计该地这个季度中最高气温超过(1)中平均数的天数;(3)如果从最高气温不低于24 ℃的两组内随机选取两天,请你直接写出这两天都在气温最高一组内的概率.图M3-822.(8分)如图M3-9,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A,C,E在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度.(结果保留根号)23.(10分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为1000 m 2的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为x(m 2),种草所需费用y 1(元)与x(m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x<600),k 2x +b (600≤x≤1000),其图象如图M3-10所示;栽花所需费用y 2(元)与x(m 2)的函数关系式为y 2=-0.01x 2-20x +30000(0≤x≤1000).(1)请直接写出k 1,k 2和b 的值;(2)设这块1000 m 2空地的绿化总费用为W(元),请写出W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.图M3-1024.(10分)如图M3-11,在Rt △ABC 中,∠ABC =90°,以CB 为半径作⊙C,交AC于点D ,交AC 的延长线于点E ,连接BD ,BE.(1)求证:△ABD∽△AEB; (2)当AB BC =43时,求tanE ;(3)在(2)的条件下,作∠BAC 的平分线,与BE 交于点F ,若AF =2,求⊙C 的半径.图M3-1125.(12分)如图M3-12,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,BC =10 cm ,AD =8 cm ,点P 从点B 出发,在线段BC 上以每秒3 cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2 cm 的速度沿DA 方向匀速平移,分别交AB ,AC ,AD 于点E ,F ,H.当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t(t>0)秒.(1)当t =2时,连接DE ,DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的△PEF 的面积存在最大值,当△PEF 的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使△PEF 为直角三角形?若存在,请求出此时t 的值,若不存在,请说明理由.图M3-1226.(12分)如图M3-13,顶点为A(3,1)的抛物线经过坐标原点O,与x轴交于点B.(1)求抛物线对应的二次函数的表达式;(2)过B作OA的平行线交y轴于点C,交抛物线于点D,求证:△OCD≌△OAB;(3)在x轴上找一点P,使得△PCD的周长最小,求出P点的坐标.图M3-13参考答案1.A 2.C 3.C 4.A 5.A6.C [解析] A :原式=(a +1)(a -1),不符合题意; B :原式=a(a +1),不符合题意; C :原式=(a +2)(a -1),符合题意; D :原式=(a +2-1)2=(a +1)2,不符合题意. 故选C. 7.B8.D [解析] ∵△A 1OB 1是将△AOB 绕原点O 顺时针旋转180°后得到的图形, ∴点B 和点B 1关于原点对称, ∵点B 的坐标为(2,1), ∴点B 1的坐标为(-2,-1). 故选D.9.B 10.C 11.B 12.B 13.114.4.4 [解析] 这组数据的平均数是:(3+3+4+7+8)÷5=5,则这组数据的方差为:15[(3-5)2+(3-5)2+(4-5)2+(7-5)2+(8-5)2]=4.4.15.216.3π [解析] ∵△ABC 是等边三角形, ∴∠C =60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是120π·32360=3π,故答案为:3π. 17.x>3 18.219.(2,7) [解析] 过点D 作DF⊥x 轴于点F ,则∠AOB=∠DFA=90°, ∴∠OAB +∠ABO=90°, ∵四边形ABCD 是矩形, ∴∠BAD =90°,AD =BC , ∴∠OAB +∠DAF=90°, ∴∠ABO =∠DA F , ∴△AOB ∽△DFA ,∴OA ∶DF =OB∶AF=AB∶AD,∵AB ∶BC =3∶2,点A(3,0),B(0,6), ∴AB ∶AD =3∶2,OA =3,OB =6, ∴DF =2,AF =4, ∴OF =OA +AF =7, ∴点D 的坐标为(7,2),∴反比例函数的解析式为y =14x .①点C 的坐标为(4,8),设直线BC 的解析式为y =kx +b ,则⎩⎪⎨⎪⎧b =6,4k +b =8,。
2020年数学中考模拟试卷含答案
2020年数学中考模拟试卷含答案一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A.9B.8C.7D.62.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.3.在下面的四个几何体中,左视图与主视图不相同的几何体是()A.B.C.D.4.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)+米5.如图,在平面直角坐标系中,菱形ABCD的顶点A,B在反比例函数kyx=(0k>,x>)的图象上,横坐标分别为1,4,对角线BD x∥轴.若菱形ABCD的面积为452,则k的值为()A.54B.154C.4D.56.如图,菱形ABCD 的两条对角线相交于O,若AC=6,BD=4,则菱形ABCD 的周长是( )A .24B .16C .413D .237.如图,在直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上, OC 在y 轴上,如果矩形OA′B′C′与矩形OABC 关于点O 位似,且矩形OA′B′C′的面积等于矩形OABC 面积的14,那么点B′的坐标是( )A .(-2,3)B .(2,-3)C .(3,-2)或(-2,3)D .(-2,3)或(2,-3) 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃9.下列计算正确的是( ) A .()3473=a b a b B .()232482--=--b a b ab b C .32242⋅+⋅=a a a a a D .22(5)25-=-a a10.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A .6折B .7折C .8折D .9折 11.下列各式化简后的结果为2 的是( )A 6B 12C 18D 3612.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-二、填空题13.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.14.已知a,b,c是△ABC的三边长,a,b满足|a﹣7|+(b﹣1)2=0,c为奇数,则c=_____.15.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为______.16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)17.如图,一张三角形纸片ABC,∠C=90°,AC=8cm,BC=6cm.现将纸片折叠:使点A与点B重合,那么折痕长等于 cm.18.分式方程32xx2--+22x-=1的解为________.19.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.20.如图,反比例函数y=kx的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k=_____.三、解答题21.2x =600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.22.计算:219(34)02cos 452-︒⎛⎫-+-- ⎪⎝⎭. 23.如图1,△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,交BC 于点E (BE >EC ),且BD=23.过点D 作DF ∥BC ,交AB 的延长线于点F .(1)求证:DF 为⊙O 的切线;(2)若∠BAC=60°,DE=7,求图中阴影部分的面积;(3)若43AB AC =,DF+BF=8,如图2,求BF 的长.24.阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:232212+=(),善于思考的小明进行了以下探索: 设(2a b 2m 2+=+(其中a b m n 、、、均为整数),则有22a b 2m 2n 2+=++ ∴22a m 2n b 2mn =+=,.这样小明就找到了一种把部分a b 2+法. 请你仿照小明的方法探索并解决下列问题:当a b m n 、、、均为正整数时,若(2a b 3m 3+=+,用含m 、n 的式子分别表示a b 、,得a = ,b = ;(2)利用所探索的结论,找一组正整数a b m n 、、、,填空: + =( + 3)2;(3)若(233a m +=+,且a b m n 、、、均为正整数,求a 的值. 25.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】分析:根据多边形的内角和公式计算即可.详解:.答:这个正多边形的边数是9.故选A.点睛:本题考查了多边形,熟练掌握多边形的内角和公式是解答本题的关键.2.A解析:A【解析】【分析】作线段BC的垂直平分线可得线段BC的中点.【详解】作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选A.【点睛】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图.3.B解析:B【解析】【分析】由几何体的三视图知识可知,主视图、左视图是分别从物体正面、左面看所得到的图形,细心观察即可求解.【详解】A、正方体的左视图与主视图都是正方形,故A选项不合题意;B、长方体的左视图与主视图都是矩形,但是矩形的长宽不一样,故B选项与题意相符;C、球的左视图与主视图都是圆,故C选项不合题意;D、圆锥左视图与主视图都是等腰三角形,故D选项不合题意;故选B.【点睛】本题主要考查了几何题的三视图,解题关键是能正确画出几何体的三视图.4.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD∴AB=AD+BD=100(故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.5.D解析:D【解析】【分析】设A(1,m),B(4,n),连接AC交BD于点M,BM=4-1=3,AM=m-n,由菱形的面积可推得m-n=154,再根据反比例函数系数的特性可知m=4n,从而可求出n的值,即可得到k的值.【详解】设A(1,m),B(4,n),连接AC交BD于点M,则有BM=4-1=3,AM=m-n,∴S菱形ABCD=4×12 BM•AM,∵S菱形ABCD=452,∴4×12×3(m-n)=452,∴m-n=154,又∵点A,B在反比例函数kyx ,∴k=m=4n,∴n=54,∴k=4n=5,故选D.【点睛】本题考查了反比例函数k的几何意义、菱形的性质、菱形的面积等,熟记菱形的对角线互相垂直平分是解题的关键.6.C解析:C【解析】【分析】由菱形ABCD的两条对角线相交于O,AC=6,BD=4,即可得AC⊥BD,求得OA与OB 的长,然后利用勾股定理,求得AB的长,继而求得答案.【详解】∵四边形ABCD是菱形,AC=6,BD=4,∴AC⊥BD,OA=12AC=3,OB=12BD=2,AB=BC=CD=AD,∴在Rt△AOB中,222+313∴菱形的周长为13故选C.7.D【解析】如果两个图形不仅是相似图形,而且每组对应点的连线交于一点,对应边互相平行或在一 条直线上,那么这两个图形叫做位似图形。
2020年数学中考模拟试卷(带答案)
故选 A.
4.A
解析:A 【解析】 【分析】
设索长为 x 尺,竿子长为 y 尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一 托”,即可得出关于 x、y 的二元一次方程组. 【详解】 设索长为 x 尺,竿子长为 y 尺,
x y5
根据题意得:
(1) A 在甲组的概率是多少? (2) A,B 都在甲组的概率是多少?
24.直线 AB 交⊙O 于 C、D 两点,CE 是⊙O 的直径,CF 平分∠ACE 交⊙O 于点 F,连接 EF,
过点 F 作 FG∥ED 交 AB 于点 G.
(1)求证:直线 FG 是⊙O 的切线; (2)若 FG=4,⊙O 的半径为 5,求四边形 FGDE 的面积. 25.已知:如图,△ABC 为等腰直角三角形∠ACB=90°,过点 C 作直线 CM,D 为直线 CM 上一点,如果 CE=CD 且 EC⊥CD. (1)求证:△ADC≌△BEC; (2)如果 EC⊥BE,证明:AD∥EC.
B.4 和 5 之间
C.5 和 6 之间
D.6 和 7 之间
11.某服装加工厂加工校服 960 套的订单,原计划每天做 48 套.正好按时完成.后因学校
要求提前 5 天交货,为按时完成订单,设每天就多做 x 套,则 x 应满足的方程为( )
A. 960 960 5 B. 960 5 960 C. 960 960 5 D. 960 960 5
∵四边形 BMNC 是矩形, ∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,
∵反比例函数 y= 的图象在第一、三象限,
∴ab>0,即 a、b 同号,
当 a<0 时,抛物线 y=ax2-2x 的对称轴 x= <0,对称轴在 y 轴左边,故 D 错误;
2020年中考数学模拟试卷(解析版)
设购买A,B两品牌足球的总费用为W元,则W=0.8×50a+30(60﹣a)=10a+1800,
∵k=10>0,∴W随x的增大而增大,
∴当a=45时,花费最少,最少费用为:10×45+1800=2250(元).
答:购买A品牌足球45个,B品牌足球15个花费最少,最少费用为2250元.
A. B. C. D.
C【解析】过点D作DG⊥BC的延长线,垂足为G.
由做图痕迹可知,CF为∠BCD的角平分线,
∴∠BCF=∠DCF,∵AD∥BC,∴∠BCF=∠DFC,∴∠DFC=∠DCF,∴DF=DC=4,
∵AB∥CD,∴∠DCG=∠ABC=60°,∴CG=CD·cos60°=2,DG=CD·sin60°= ,
∵OA=OC,∴∠CAO=∠ACO,∴∠CAO+∠GAE=90°,即∠GAO=90°,
∵OA为半径,∴AG为⊙O的切线;
(2)答案为:60°; .提示如下:
①若四边形ABOF为菱形,∴AB=AO,又∵AO=BO,∴△AOB为等边三角形,∴∠ABC=60°,
∴∠ACB=90°-60°=30°,∴∠AEG=∠DEC=90°-30°=60°;
D【解析】∵∠AOC=42°,∴∠BOD=∠AOC=42°,∵OE平分∠BOD,∴∠BOE=21°,∵OF⊥OE,∴∠BOF=90°﹣21°=69°.故选:D.
4.下列运算正确的是( )
A. B. C. D.
D【解析】A、 , 非同类项,无法合并,故此选项不合题意;
B、 = = ,故此选项不合题意;
A.0.3×10﹣10mB.3×10﹣10m
C.0.3×10﹣11mD.30×10﹣11m
2020年数学中考模拟试题(及答案)
2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。
2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。
最新2020年九年级数学中考模拟试题带解析
2020年九年级中考模拟考试数 学 试 题第Ⅰ卷(选择题 共30分)一、选择题(本大题共10个小题,每小题3分,共30分) 在每小题给出的四个选项中,只有一个选项符合题意.1.已知资阳市某天的最高气温为19℃,最低气温为15℃,那么这天的最低气温比最高气温低( ).A .4℃B .-4℃C .4℃或者-4℃D .34℃ 2. 下列计算正确的是( ).A .2a a a +=B .33(2)6a a = C.3332a a a ⨯=D .32a a a ÷=3. 为你点赞,你是最棒的!下列四种QQ 表情图片都可以用来为你点赞!其中是轴对称图形的是( )A .B. C. D.4.如图1,这个立体图形中小正方体的个数是( ) A .9个 B .10个 C .11个 D .12个5. 如图2,在平行四边形ABCD 中,CE ⊥AB ,E 为垂足.如果∠A =118°,则∠BCE =( )A .28oB .38oC .62oD .72o6.2015年开春以来,某楼盘为了促销,对商品房连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为a元/平方米,原价为b 元/每平方米,则可列方程为( )A .a (1-x )+a (1-x )2=bB .b (1-x )+b (1-x )2=aC .a (1-x )2=bD .b (1-x )2=a 7.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环).下列说法中正确的是( )A .若这5次成绩的中位数为8,则x=8B .若这5次成绩的众数是8,则x=8C .若这5次成绩的方差为8,则x=8D .若这5次的平均成绩是8,则 x=8 8. 如图3,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式可能是( ).A .y=x +2B .y=x 2+2 C .y=x +2 D . y=1x +29.如图4,扇形AOB 中,圆心角∠AOB=15°,半径OA=2,过点A 作AC ⊥OB ,垂足为C ,则图中阴影部分的面积为( )A. 13π B. 16π C. 1132π-D. 1162π- 10.如图5,已知抛物线2y x m =-+(m >0)的图象分别图1A EB CD图2 图3C O 图4交x 轴于A 、B 两点,交y 轴于点C ,点D 是y 轴上一点,线段BC 的延长线交线段AD 于点P .若BP=36,△DPC 与△COB 的面积相等,则点C 的坐标为( ).A .(0,6)B .(0,3)C .(0,2)D .(0,1第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共6各小题,每小题3分,共18分)把答案直接填在题中横线上.11.根据国家统计局消息,2014年全国网上零售额达到27898亿元,比上年增加9047亿元,增长49.7%.请将2014年全国网上零售额用科学计数法表示为 亿元.12.一个等腰三角形有两边长分别是3和7,则该三角形的周长为 .13.计算:27-2tan60° +( 13 )0= .14.湖南卫视推出的电视节目《我是歌手第三季》于3月27日落下帷幕,歌手韩红夺得歌王称号.在这个节目中,7位歌手每场比赛的成绩排位顺序是由现场500位大众评委投票决定的,每场比赛每位大众评委有3张票(必须使用)以投给不同的3位歌手.在某一场比赛中,假设全部票都有效,也不会产生并列冠军,那么要夺得冠军至少要获得_________张票.15.如图6,△ABC 三个顶点的坐标分别为A (2,2),B (4,2),C (6,4),以原点O 为位似中心,将△ABC 缩小,使变换后得到的△DEF 与△ABC 的位似比为1∶2,则线段AC 的中点P 变换后对应的点的坐标为 .16.如图7,在平面直角坐标系xOy 的第一象限内依次作等边三角形△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…点A 1、A 2、A 3…在x 轴的正半轴上,点B 1、B 2、B 3…在射线OM 上,若∠B 1OA 1=30°,OA 1=1,则点B 2015的坐标是 .三、解答题:(本大题共8小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.图6 xyB3B2OA1A2B1A3A4M图7x yPABCOD图5AD B17.(本小题满分7分)先化简,再求值:21(x-÷44422-+-xxx,其中x=2.18.(本小题满分8分)“五一”节快到了,某公园计划在园内一个三角形区域栽花.如图8,已知∠CAB=21.3°,∠CBD=63.5°,AB=60米.(1)如果栽花的成本是每平方米25元,那么将△ABC内栽满花需要多少元?(2)在准备栽花时,有人建议从B处修一条道路到AC边方便游客行走,求道路最短多少米?(参考数据:sin21.3°≈925,tan21.3°≈25,sin63.5°≈910,tan63.5°≈2)19. (本小题满分8分)由甲、乙两运输队承包运输15000立方米沙石的任务,要求在10天之内(包含10天)完成.已知两队共有20辆汽车,甲队每辆车每天能够运输100立方米的沙石,乙队每辆车每天能够运输80立方米的沙石,前3天两队一共运输了5520立方米.(1)求甲乙两队各有多少辆汽车?(2)3天后,甲队另有紧急任务需要抽调车辆支援,在不影响工期的情况下,甲队最多可以抽调多少辆汽车走?20.(本小题满分8分)2015年2月27日,在中央全面深化改革领导小组第十次会议上,审议通过了《中国足球改革总体方案》,体制改革、联赛改革、校园足球等成为改革的亮点.在联赛方面,作为国内最高水平的联赛——中国足球超级联赛今年已经进入第12个年头,中超联赛已经引起了世界的关注.图9是某一年截止倒数第二轮比赛各队的积分统计图.(1)根据图,请计算该年有支中超球队参赛;(2)补全图一中的条形统计图;(3)根据足球比赛规则,胜一场得3分,平一场得1分,负一场得0分,最后得分最高者为冠军.倒数第二轮比赛后积分位于前4名的分别是A队49分,B队49分,C队48分,D队45分.在最后一轮的比赛中,他们分别和第4名以后的球队进行比赛,已知在已经结束的一场比赛中,A队和对手打平.请用列表或者画树状图的方法,计算C队夺得冠军的概率是多少?21.(本小题满分9分)如图10,在平面直角坐标系xOy中,将直线y=x向右平移2个单位后与双曲线y=ax(x>0)有唯一公共点A,交另一双曲线y=kx(x>0)于B.(1)求直线AB的解析式和a的值;(2)若x轴平分△AOB的面积,求k的值.图4图1022.(本小题满分9分)已知:如图11,菱形ABCD 中,对角线AC ,BD 相交于点O ,且AC=8cm ,BD=6cm .(1)点E 是AB 边上一动点(不与A 、B 重合),过点E 作EF //BD ,交AD 于点F .求证:△BOE ≌△DOF ;(2)若点E 在直线AB 上移动,EF //BD ,交直线AD 于点F ,判断△BOE 与△DOF 是否还全等?(直接回答,不必证明)(3)在(1)的条件下,AE 为何值时,△OEF 的面积最大?23. (本小题满分11分)已知:如图12,⊙O 是△ABC 的内切圆,切点分别是D 、E 、F ,AB=AC .连结AD ,交⊙O 于H ;直线HF 交BC 的延长线于G .(1)求证:圆心O 在AD 上;(2)求证:CD=CG ;(3)若AH :AF=3:4,CG=10,求HF 的长.C图11G图1224.(本小题满分12分)如图13,已知抛物线y=ax2+bx+c与x轴的一个交点为A(-1,0),与y轴的交点为C(0,3),对称轴为x=1,与x轴相交于点N,抛物线顶点为D.(1)求抛物线的解析式;(2)已知点P为抛物线对称轴上的一个动点,当△ACP周长最小时,求点P的坐标;(3)在(2)的条件下,连接AP交y轴于点E,将△BCD沿BC翻折得到△BCD′.在抛物线上是否存在点M,使△BCM的面积等于四边形CPED′面积的3倍?若存在,求出点M的坐标,若不存在,说明理由.。
2020年数学中考模拟试卷(附答案)
2020年数学中考模拟试卷(附答案)一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个2.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( ).A.7710⨯﹣B.80.710⨯﹣C.8710⨯﹣D.9710⨯﹣3.下列计算正确的是()A.2a+3b=5ab B.(a-b)2=a2-b2C.(2x2)3=6x6D.x8÷x3=x54.如图,若一次函数y=﹣2x+b的图象与两坐标轴分别交于A,B两点,点A的坐标为(0,3),则不等式﹣2x+b>0的解集为()A.x>32B.x<32C.x>3D.x<35.小军旅行箱的密码是一个六位数,由于他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是()A.110B.19C.16D.156.如图,矩形ABCD中,O为AC中点,过点O的直线分别与AB、CD交于点E、F,连结BF交AC于点M,连结DE、BO.若∠COB=60°,FO=FC,则下列结论:①FB垂直平分OC;②△EOB≌△CMB;③DE=EF;④S△AOE:S△BCM=2:3.其中正确结论的个数是()A.4个B.3个C.2个D.1个7.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°8.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④9.如图,将一个小球从斜坡的点O处抛出,小球的抛出路线可以用二次函数y=4x﹣1 2 x2刻画,斜坡可以用一次函数y=12x刻画,下列结论错误的是()A.当小球抛出高度达到7.5m时,小球水平距O点水平距离为3mB.小球距O点水平距离超过4米呈下降趋势C.小球落地点距O点水平距离为7米D.斜坡的坡度为1:210.二次函数y=ax2+bx+c的图象如图所示,对称轴是x=-1.有以下结论:①abc>0,②4ac<b2,③2a+b=0,④a-b+c>2,其中正确的结论的个数是()A .1B .2C .3D .411.下列各曲线中表示y 是x 的函数的是( )A .B .C .D .12.如图,点A ,B 在反比例函数y =(x >0)的图象上,点C ,D 在反比例函数y =(k >0)的图象上,AC ∥BD ∥y 轴,已知点A ,B 的横坐标分别为1;2,△OAC 与△CBD 的面积之和为,则k 的值为( )A .2B .3C .4D .二、填空题13.如图,在平面直角坐标系中,点O 为原点,菱形OABC 的对角线OB 在x 轴上,顶点A 在反比例函数y=2x的图像上,则菱形的面积为_______.14.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____.15.在函数3y x=-的图象上有三个点(﹣2,y 1),(﹣1,y 2),(12,y 3),则y 1,y 2,y 3的大小关系为_____.16.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数kyx =在第一象限的图象经过点D,交BC于E,若点E是BC的中点,则OD的长为_____.17.计算:82-=_______________.18.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当△为直角三角形时,BE的长为 .19.从﹣2,﹣1,1,2四个数中,随机抽取两个数相乘,积为大于﹣4小于2的概率是_____.20.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.电器专营店的经营利润受地理位置、顾客消费能力等因素的影响,某品牌电脑专营店设有甲、乙两家分店,均销售A、B、C、D四种款式的电脑,每种款式电脑的利润如表1所示.现从甲、乙两店每月售出的电脑中各随机抽取所记录的50台电脑的款式,统计各种款式电脑的销售数量,如表2所示.表1:四种款式电脑的利润电脑款式A B C D利润(元/台)160200240320表2:甲、乙两店电脑销售情况电脑款式A B C D甲店销售数量(台)2015105乙店销售数量(台)88101418试运用统计与概率知识,解决下列问题:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为 ; (2)经市场调查发现,甲、乙两店每月电脑的总销量相当.现由于资金限制,需对其中一家分店作出暂停营业的决定,若从每台电脑的平均利润的角度考虑,你认为应对哪家分店作出暂停营业的决定?并说明理由.22.先化简,再求值:(2)(2)(4)a a a a +-+-,其中14a =. 23.已知:如图,在ABC V 中,AB AC =,AD BC ⊥,AN 为ABC V 外角CAM ∠的平分线,CE AN ⊥.(1)求证:四边形ADCE 为矩形;(2)当AD 与BC 满足什么数量关系时,四边形ADCE 是正方形?并给予证明24.解方程组:226,320.x y x xy y +=⎧⎨-+=⎩25.解方程:3x x +﹣1x=1.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确; ②由横纵坐标看出,第一小时两人都跑了10千米,故②正确; ③由横纵坐标看出,乙比甲先到达终点,故③错误; ④由纵坐标看出,甲乙二人都跑了20千米,故④正确; 故选C .2.D解析:D 【解析】 【分析】由科学记数法知90.000000007710-=⨯; 【详解】解:90.000000007710-=⨯; 故选:D . 【点睛】本题考查科学记数法;熟练掌握科学记数法10n a ⨯中a 与n 的意义是解题的关键.3.D解析:D 【解析】分析:A .原式不能合并,错误;B .原式利用完全平方公式展开得到结果,即可做出判断;C .原式利用积的乘方运算法则计算得到结果,即可做出判断;D .原式利用同底数幂的除法法则计算得到结果,即可做出判断. 详解:A .不是同类项,不能合并,故A 错误; B .(a ﹣b )2=a 2﹣2ab +b 2,故B 错误; C .( 2x 2 )3=8x 6,故C 错误; D .x 8÷x 3=x 5,故D 正确. 故选D .点睛:本题考查了完全平方公式,合并同类项,幂的乘方及积的乘方,以及同底数幂的除法,熟练掌握公式及法则是解答本题的关键.4.B解析:B 【解析】 【分析】根据点A 的坐标找出b 值,令一次函数解析式中y=0求出x 值,从而找出点B 的坐标,观察函数图象,找出在x 轴上方的函数图象,由此即可得出结论. 【详解】解:∵一次函数y =﹣2x+b 的图象交y 轴于点A (0,3), ∴b =3,令y =﹣2x+3中y =0,则﹣2x+3=0,解得:x =32, ∴点B (32,0). 观察函数图象,发现:当x<32时,一次函数图象在x轴上方,∴不等式﹣2x+b>0的解集为x<32.故选:B.【点睛】本题考查了一次函数与一元一次不等式,解题的关键是找出交点B的坐标.本题属于基础题,难度不大,解决该题型题目时,根据函数图象的上下位置关系解不等式是关键.5.A解析:A【解析】∵密码的末位数字共有10种可能(0、1、 2、 3、4、 5、 6、 7、 8、 9、 0都有可能),∴当他忘记了末位数字时,要一次能打开的概率是1 10.故选A.6.A解析:A【解析】【分析】①利用线段垂直平分线的性质的逆定理可得结论;②证△OMB≌△OEB得△EOB≌△CMB;③先证△BEF是等边三角形得出BF=EF,再证▱DEBF得出DE=BF,所以得DE=EF;④由②可知△BCM≌△BEO,则面积相等,△AOE和△BEO属于等高的两个三角形,其面积比就等于两底的比,即S△AOE:S△BOE=AE:BE,由直角三角形30°角所对的直角边是斜边的一半得出BE=2OE=2AE,得出结论S△AOE:S△BOE=AE:BE=1:2.【详解】试题分析:①∵矩形ABCD中,O为AC中点,∴OB=OC,∵∠COB=60°,∴△OBC是等边三角形,∴OB=BC,∵FO=FC,∴FB垂直平分OC,故①正确;②∵FB垂直平分OC,∴△CMB≌△OMB,∵OA=OC,∠FOC=∠EOA,∠DCO=∠BAO,∴△FOC≌△EOA,∴FO=EO,易得OB⊥EF,∴△OMB≌△OEB,∴△EOB≌△CMB,故②正确;③由△OMB≌△OEB≌△CMB得∠1=∠2=∠3=30°,BF=BE,∴△BEF是等边三角形,∵DF ∥BE 且DF=BE , ∴四边形DEBF 是平行四边形, ∴DE=BF , ∴DE=EF , 故③正确;④在直角△BOE 中∵∠3=30°, ∴BE=2OE , ∵∠OAE=∠AOE=30°, ∴AE=OE , ∴BE=2AE ,∴S △AOE :S △BOE =1:2, 又∵FM:BM=1:3,∴S △BCM =34 S △BCF =34S △BOE ∴S △AOE :S △BCM =2:3 故④正确;所以其中正确结论的个数为4个考点:(1)矩形的性质;(2)等腰三角形的性质;(3)全等三角形的性质和判定;(4)线段垂直平分线的性质7.C解析:C 【解析】 【分析】首先设此多边形为n 边形,根据题意得:180(n-2)=540,即可求得n=5,再由多边形的外角和等于360°,即可求得答案. 【详解】解:设此多边形为n 边形, 根据题意得:180(n-2)=540, 解得:n=5,∴这个正多边形的每一个外角等于:3605=72°. 故选C . 【点睛】此题考查了多边形的内角和与外角和的知识.注意掌握多边形内角和定理:(n-2)•180°,外角和等于360°.8.C解析:C 【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2ba,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确.9.A解析:A 【解析】分析:求出当y=7.5时,x 的值,判定A ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出抛物线与直线的交点,判断C ,根据直线解析式和坡度的定义判断D . 详解:当y=7.5时,7.5=4x ﹣12x 2, 整理得x 2﹣8x+15=0, 解得,x 1=3,x 2=5,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5侧面cm ,A 错误,符合题意; y=4x ﹣12x 2 =﹣12(x ﹣4)2+8, 则抛物线的对称轴为x=4,∴当x >4时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,不符合题意;214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩, 解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩,则小球落地点距O 点水平距离为7米,C 正确,不符合题意; ∵斜坡可以用一次函数y=12x 刻画, ∴斜坡的坡度为1:2,D 正确,不符合题意; 故选:A .点睛:本题考查的是解直角三角形的﹣坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.10.C解析:C 【解析】 【详解】①∵抛物线开口向下,∴a <0,∵抛物线的对称轴为直线x ==﹣1,∴b =2a <0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;②∵抛物线与x轴有2个交点,∴△=b2-4ac>0,∴4ac <b2,所以②正确;③∵b=2a,∴2a﹣b=0,所以③错误;④∵x=﹣1时,y>0,∴a﹣b+c>2,所以④正确.故选C.11.D解析:D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.12.C解析:C【解析】【分析】由题意,可得A(1,1),C(1,k),B(2,),D(2,k),则△OAC面积=(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),根据△OAC与△CBD的面积之和为,即可得出k的值.【详解】∵AC∥BD∥y轴,点A,B的横坐标分别为1、2,∴A(1,1),C(1,k),B(2,),D(2,k),∴△OAC面积=×1×(k-1),△CBD的面积=×(2-1)×(k-)=(k-1),∵△OAC与△CBD的面积之和为,∴(k-1)+ (k-1)=,∴k=4.故选C.【点睛】本题考查反比例函数系数k的几何意义,三角形面积的计算,解题的关键是用k表示出△OAC与△CBD的面积.二、填空题13.4【解析】【分析】【详解】解:连接AC交OB于D∵四边形OABC是菱形∴AC⊥OB∵点A在反比例函数y=的图象上∴△AOD的面积=×2=1∴菱形OABC的面积=4×△AOD的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形,∴AC ⊥OB .∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:414.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.15.y2>y1>y3【解析】【分析】根据图象上的点(xy )的横纵坐标的积是定值k 可得xy=k 据此解答即可【详解】解:∵函数y=-的图象上有三个点(-2y1)(-1y2)(y3)∴-2y1=-y2=y3=解析:y 2>y 1>y 3.【解析】【分析】根据图象上的点(x ,y )的横纵坐标的积是定值k ,可得xy=k ,据此解答即可.【详解】解:∵函数y=-3x 的图象上有三个点(-2,y 1),(-1,y 2),(12,y 3), ∴-2y 1=-y 2=12y 3=-3, ∴y 1=1.5,y 2=3,y 3=-6,∴y 2>y 1>y 3.故答案为y 2>y 1>y 3.【点睛】本题考查了反比例函数的图象上点的坐标特征.解题时注意:图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k .16.【解析】【分析】设D (x2)则E (x+21)由反比例函数经过点DE 列出关于x 的方程求得x 的值即可得出答案【详解】解:设D (x2)则E (x+21)∵反比例函数在第一象限的图象经过点D 点E ∴2x =x+2 解析:12x x 【解析】【分析】设D (x ,2)则E (x+2,1),由反比例函数经过点D 、E 列出关于x 的方程,求得x 的值即可得出答案.【详解】解:设D (x ,2)则E (x+2,1), ∵反比例函数k y x=在第一象限的图象经过点D 、点E , ∴2x =x+2,解得x =2,∴D (2,2),∴OA =AD =2,∴OD ==故答案为:【点睛】本题主要考查反比例函数图象上点的坐标特征,解题的关键是根据题意表示出点D 、E 的坐标及反比例函数图象上点的横纵坐标乘积都等于反比例系数k . 17.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键解析:2【解析】【分析】先把8化简为22,再合并同类二次根式即可得解.【详解】-=22-2=2.82故答案为2.【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.18.3或32【解析】【分析】当△CEB′为直角三角形时有两种情况:①当点B′落在矩形内部时如答图1所示连结AC先利用勾股定理计算出AC=5根据折叠的性质得∠AB′E=∠B=90°而当△CEB′为直角三角解析:3或.【解析】【分析】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【详解】当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC==5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2,设BE=x,则EB′=x,CE=4-x,在Rt△CEB′中,∵EB′2+CB′2=CE2,∴x2+22=(4-x)2,解得,∴BE=;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴BE=AB=3.综上所述,BE的长为或3.故答案为:或3.19.【解析】【分析】列表得出所有等可能结果从中找到积为大于-4小于2的结果数根据概率公式计算可得【详解】列表如下:-2 -1 1 2 -2 2 -2 -4 -1 2 -1 -2 1 -2 -解析:1 2【解析】【分析】列表得出所有等可能结果,从中找到积为大于-4小于2的结果数,根据概率公式计算可得.【详解】列表如下:-2-112-22-2-4-12-1-21-2-122-4-22∴积为大于-4小于2的概率为612=12,故答案为12. 【点睛】 此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14. 【解析】【分析】【详解】 试题分析:画树状图如下:∴P (两次摸到同一个小球)=416=14.故答案为14. 考点:列表法与树状图法;概率公式.三、解答题21.(1)310(2)应对甲店作出暂停营业的决定 【解析】【分析】(1)用利润不少于240元的数量除以总数量即可得;(2)先计算出每售出一台电脑的平均利润值,比较大小即可得.【详解】解:(1)从甲店每月售出的电脑中随机抽取一台,其利润不少于240元的概率为1053201510510+=+++, 故答案为310;(2)甲店每售出一台电脑的平均利润值为160202001524010320550⨯+⨯+⨯+⨯=204(元), 乙店每售出一台电脑的平均利润值为160820010240143201850⨯+⨯+⨯+⨯=248(元),∵248>204, ∴乙店每售出一台电脑的平均利润值大于甲店;又两店每月的总销量相当,∴应对甲店作出暂停营业的决定.【点睛】本题主要考查概率公式的应用,解题的关键是熟练掌握概率=所求情况数与总情况数之比及加权平均数的定义.22.44a -,3-.【解析】试题分析:根据平方差公式和单项式乘以多项式可以对原式化简,然后将a=14代入化简后的式子,即可解答本题.试题解析:原式=2244a a a -+-=44a -; 当a=14时,原式=1444⨯-=14-=3-. 考点:整式的混合运算—化简求值. 23.(1)见解析 (2) 12AD BC =,理由见解析. 【解析】【分析】(1)根据矩形的有三个角是直角的四边形是矩形,已知CE ⊥AN ,AD ⊥BC ,所以求证∠DAE=90°,可以证明四边形ADCE 为矩形.(2)由正方形ADCE 的性质逆推得AD DC =,结合等腰三角形的性质可以得到答案.【详解】(1)证明:在△ABC 中,AB=AC ,AD ⊥BC , ∴∠BAD=∠DAC ,∵AN 是△ABC 外角∠CAM 的平分线, ∴∠MAE=∠CAE ,∴∠DAE=∠DAC+∠CAE=12×180°=90°, 又∵AD ⊥BC ,CE ⊥AN , ∴∠ADC=∠CEA=90°,∴四边形ADCE 为矩形.(2)当12AD BC =时,四边形ADCE 是一个正方形. 理由:∵AB=AC , AD ⊥BC ,BD DC ∴=12AD BC =Q ,AD BD DC ∴== , ∵四边形ADCE 为矩形, ∴矩形ADCE 是正方形. ∴当12AD BC =时,四边形ADCE 是一个正方形. 【点睛】本题考查矩形的判定以及正方形的性质的应用,同时考查了等腰三角形的性质,熟练掌握这些知识点是关键.24.114,2;x y =⎧⎨=⎩223,3.x y =⎧⎨=⎩ 【解析】【分析】 先对x 2-3xy+2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.【详解】将方程22320x xy y -+= 的左边因式分解,得20x y -=或0x y -=.原方程组可以化为6,20x y x y +=⎧⎨-=⎩或6,0.x y x y +=⎧⎨-=⎩解这两个方程组得114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 所以原方程组的解是114,2;x y =⎧⎨=⎩ 223,3.x y =⎧⎨=⎩ 【点睛】本题考查了高次方程组,将高次方程化为一次方程是解题的关键.25.分式方程的解为x=﹣34. 【解析】【分析】方程两边都乘以x (x+3)得出方程x ﹣1+2x=2,求出方程的解,再代入x (x+3)进行检验即可.【详解】两边都乘以x (x+3),得:x 2﹣(x+3)=x (x+3),解得:x=﹣34, 检验:当x=﹣34时,x (x+3)=﹣2716≠0, 所以分式方程的解为x=﹣34. 【点睛】本题考查了解分式方程,熟练掌握解分式方程的方法与注意事项是解题的关键.。
2020年中考数学全真模拟试卷含答案(精选4套)
2020年初中毕业生学业考试数学模拟试卷(一)【说明】1、答题前,请将姓名、考生号、考场、试室号和座位号用规定的笔写在答题卡指定的位置上,将条形码粘贴好.2、全卷分二部分,第一部分为选择题,第二部分为非选择题,共4页。
考试时间90分钟,满分100分.3、本卷试题,考生必须在答题卡上按规定作答;凡在试卷、草稿纸上作答的,其答案一律无效。
答题卡必须保持清洁,不能折叠.4、本卷选择题1—12,每小题选出答案后,用2B 铅笔将答题卡选择题答题区内对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案;非选择题13—23,答案(含作辅助线)必须用规定的笔,按作答题目序号,写在答题卡非选择题答题区规定范围内.5、考试结束,请将本试卷和答题卡一并交回.第一部分 选择题一、(本部分共12小题,每小题3分,共36分.每小题给出4个选项,其中只有一个是正确..的) 1. -2的相反数是( ) A.21 212.“送人玫瑰,手留余香”,年轻的深圳有一批无私奉献的义工,截至2012年7月深圳注册义工达35000人,用科学计数法表示为( )A.3105.3⨯B. 4105.3⨯C. 31035⨯D. 51035.0⨯ 3.下图中既是中心对称图形,又是轴对称图形的是( )A B C D 4. 要摆出如图1所示的几何体,则最少需要( )个正方体. A .6个 个 个 个 5.下列运算正确的是( )俯视图 左视图 图1A.()222y x y x +=+ B.()422xy y x = C.()322xy xy y x =+ D.224x x x =÷6.已知点A ()1,2-+a a 在平面直角坐标系的第四象限内,则α的取值范围为 ( ) A.12<<-a B.12≤≤-a C.21<<-a D.21≤≤-a7.如图2,直线a ∥b ,∠1的度数是( ) ° ° ° °8.从一个袋中摸出一个球(袋中每一个球被摸到的可能性相等),恰为红球的概率为41,若袋中原有红球4个,则袋中球的总数大约是( )9.某玩具店用6000元购进甲、乙两种陀螺,甲种单价比乙种单价便宜5元,单独买甲种比单独买乙种可多买40个.设甲种陀螺单价为x 元,根据题意列方程为( )A.40560006000+-=x x B.40560006000--=x x C.40560006000++=x xD.40560006000-+=x x 10.下列命题中错误的是( )A.两组对边分别相等的四边形是平行四边形B.正方形对角线相等C.对角线相等的四边形是矩形D.菱形的对角线互相垂直11.如图3,在矩形ABCD 中,动点P 从B 点以秒/1cm 速度出发,沿BC 、CD 、DA 运动到A 点停止,设点P 运动时间为x 秒,ABP ∆面积为y 2cm ,y 关于x 的函数图象如图4所示,则矩形ABCD 面积是( )2cmABC D P图3O2 7 9x5y图4ba1150°图2图512. 如图5,已知双曲线)0k (xky >=经过直角三角形OAB 斜边OB 的中点D ,与直角边AB 相交于点C .若△OBC 的面积为3,则k 值是( ) D.23 第二部分 非选择题二、填空题(本题共4小题,每小题3分,共12分.) 13. 分解因式:=+-a a a 36323 .14.如图6,平行四边形ABCD 的周长是18cm ,对角线AC 、BD 相交于点O , 若△AOD 与△AOB 的周长差是5cm ,则边AB 的长是 cm.15. 二次函数6+2-=2x x y 的顶点坐标是 .16.如图7所示,在⊙○中,点A 在圆内,B 、C 在圆上,其中OA=7,BC=18, ∠A=∠B=60°,则tan OBC ∠=______.三、解答题(本题共7小题,其中第17小题6分,第18小题6分,第19小题7分,第20小题7分,第21小题8分,第22小题9分,第23小题9分,共52分.) 17.(本题6分)计算:()()︒--+-+-30sin 201312020131π18.(本题6分)先化简,再求值:121412-+÷⎪⎪⎭⎫ ⎝⎛-+-x x x x x ,其中2=x .图6OCBA图719.(本题7分)“地球一小时(Earth Hour )”是世界自然基金会(WWF )应对全球气候变化所提出的一项倡议,希望个人、社区、企业和政府在每年3月最后一个星期六20:30-21:30熄灯一小时,来唤醒人们对节约资源保护环境的意识.2013年,因为西方复活节的缘故,活动提前到2013年3月23日,在今年的活动中,关于南京电量不降反升的现象,有人以“地球一小时——你怎么看”为主题对公众进行了调查,主要有4种态度A :了解、赞成并支持 B :了解,忘了关灯 C :不了解,无所谓 D :纯粹是作秀,不支持,请根据图8中的信息回答下列问题: (1)这次抽样的公众有__________人; (2)请将条形统计图补充完整;(3)在扇形统计图中,“不了解,无所谓”部分所对应的圆心角是_________度;(4)若城区人口有300万人,估计赞成并支持“地球一小时”的有__________人.并根据统计信息,谈谈自己的感想.AB 30%DCA 人数/人DB C 50 态度图820.(本题7分)图9为学校运动会终点计时台侧面示意图,已知: 1=AB 米,5=DE 米,DC BC ⊥,︒60=∠︒30=∠BEC ADC ,.(1)求AD 的长度.(2)如图10,为了避免计时台AB 和AD 的位置受到与水平面成︒45角的光线照射,计时台上方应放直径是多少米的遮阳伞(即求DG 长度)21.(本题8分)如图11,E 是正方形ABCD 的边DC 上的一点,过A 作AF ⊥AE ,交CB 延长线于点F 。
2020年中考数学模拟试卷带答案
2020年中考数学模拟试卷带答案一、选择题1.如图,在热气球C 处测得地面A 、B 两点的俯角分别为30°、45°,热气球C 的高度CD 为100米,点A 、D 、B 在同一直线上,则AB 两点的距离是( )A .200米B .2003米C .2203米D .100(31)+米 2.已知二次函数y =ax 2+bx+c(a≠0)的图象如图所示,给出以下结论:①a+b+c <0;②a ﹣b+c <0;③b+2a <0;④abc >0.其中所有正确结论的序号是( )A .③④B .②③C .①④D .①②③3.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45° 4.下列运算正确的是( ) A .23a a a +=B .()2236a a =C .623a a a ÷=D .34a a a ⋅= 5.函数21y x =-中的自变量x 的取值范围是( ) A .x ≠12 B .x ≥1 C .x >12 D .x ≥126.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为( )A .5B .4C .213D .4.87.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm ,正方形A 的边长为6cm 、B 的边长为5cm 、C 的边长为5cm ,则正方形D 的边长为( )A .14cmB .4cmC .15cmD .3cm8.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50° 9.某商品的标价为200元,8折销售仍赚40元,则商品进价为( )元.A .140B .120C .160D .100 10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .11.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( )A .﹣1B .0C .1或﹣1D .2或012.已知实数a ,b ,若a >b ,则下列结论错误的是A .a-7>b-7B .6+a >b+6C .55ab > D .-3a >-3b二、填空题13.如图,小明的父亲在相距2米的两棵树间拴了一根绳子,给小明做了一个简易的秋千.拴绳子的地方距地面高都是2.5米,绳子自然下垂呈抛物线状,身高1米的小明距较近的那棵树0.5米时,头部刚好接触到绳子,则绳子的最低点距地面的距离为米.14.如图,在平面直角坐标系中,点O为原点,菱形OABC的对角线OB在x轴上,顶点A在反比例函数y=2x的图像上,则菱形的面积为_______.15.使分式的值为0,这时x=_____.16.分式方程32xx2--+22x-=1的解为________.17.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x千米/时,依题意,可列方程为_____.18.82=_______________.19.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2,a a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)20.在学校组织的义务植树活动中,甲、乙两组各四名同学的植树棵数如下,甲组:9,9,11,10;乙组:9,8,9,10;分别从甲、乙两组中随机选取一名同学,则这两名同学的植树总棵数为19的概率______.三、解答题21.光明中学全体学生900人参加社会实践活动,从中随机抽取50人的社会实践活动成绩制成如图所示的条形统计图,结合图中所给信息解答下列问题:()1填写下表:中位数众数随机抽取的50人的社会实践活动成绩(单位:分)()2估计光明中学全体学生社会实践活动成绩的总分.22.在一个不透明的盒子中装有三张卡片,分别标有数字1,2,3,这些卡片除数字不同外其余均相同.小吉从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片.用画树状图或列表的方法,求两次抽取的卡片上数字之和为奇数的概率.23.荆门市是著名的“鱼米之乡”.某水产经销商在荆门市长湖养殖场批发购进草鱼和乌鱼(俗称黑鱼)共75千克,且乌鱼的进货量大于40千克.已知草鱼的批发单价为8元/千克,乌鱼的批发单价与进货量的函数关系如图所示.(1)请直接写出批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式;(2)若经销商将购进的这批鱼当日零售,草鱼和乌鱼分别可卖出89%、95%,要使总零售量不低于进货量的93%,问该经销商应怎样安排进货,才能使进货费用最低?最低费用是多少?24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.先化简(31a+-a+1)÷2441a aa-++,并从0,-1,2中选一个合适的数作为a的值代入求值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】在热气球C处测得地面B点的俯角分别为45°,BD=CD=100米,再在Rt△ACD中求出AD的长,据此即可求出AB的长.【详解】∵在热气球C处测得地面B点的俯角分别为45°,∴BD=CD=100米,∵在热气球C处测得地面A点的俯角分别为30°,∴AC=2×100=200米,∴AD=22=1003米,200100∴AB=AD+BD=100+1003=100(1+3)米,故选D.【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.2.C解析:C【解析】试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①当x=1时,y=a+b+c=0,故本选项错误;②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<0,故本选项正确;③由抛物线的开口向下知a<0,∵对称轴为1>x=﹣>0,∴2a+b<0,故本选项正确;④对称轴为x=﹣>0,∴a、b异号,即b>0,∴abc<0,故本选项错误;∴正确结论的序号为②③.故选B.点评:二次函数y=ax2+bx+c系数符号的确定:(1)a由抛物线开口方向确定:开口方向向上,则a>0;否则a<0;(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>0;否则c<0;(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.3.A解析:A【解析】试题分析:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故选A.考点:平行线的性质.4.D解析:D【解析】【分析】【详解】解:A、a+a2不能再进行计算,故错误;B、(3a)2=9a2,故错误;C、a6÷a2=a4,故错误;D、a·a3=a4,正确;故选:D.【点睛】本题考查整式的加减法;积的乘方;同底数幂的乘法;同底数幂的除法.5.D解析:D【解析】【分析】由被开方数为非负数可行关于x的不等式,解不等式即可求得答案.【详解】由题意得,2x-1≥0,解得:x≥12,【点睛】本题考查了函数自变量的取值范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.6.C解析:C【解析】【分析】先根据圆周角定理得∠ACB=90°,则利用勾股定理计算出BC=6,再根据垂径定理得到142CD AD AC ===,然后利用勾股定理计算BD 的长. 【详解】 ∵AB 为直径,∴90ACB ︒∠=,∴6BC ==,∵OD AC ⊥, ∴142CD AD AC ===,在Rt CBD ∆中,BD ==故选C .【点睛】 本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理.7.A解析:A【解析】运用直角三角形的勾股定理,设正方形D 的边长为x ,则22222(65)(5)10x +++=,x =(负值已舍),故选A8.D解析:D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.9.B解析:B【解析】【分析】设商品进价为x元,则售价为每件0.8×200元,由利润=售价-进价建立方程求出其解即可.【详解】解:设商品的进价为x元,售价为每件0.8×200元,由题意得10.B解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A.是轴对称图形,不是中心对称图形;B.是轴对称图形,也是中心对称图形;C.是轴对称图形,不是中心对称图形;D.是轴对称图形,不是中心对称图形.故选B.点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.11.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.D解析:D【解析】A.∵a>b,∴a-7>b-7,∴选项A正确;B.∵a>b,∴6+a>b+6,∴选项B正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.5【解析】【分析】根据题意运用待定系数法建立适当的函数解析式代入求值即可解答【详解】以左边树与地面交点为原点地面水平线为x 轴左边树为y 轴建立平面直角坐标系由题意可得A(025)B(225)C(051解析:5【解析】【分析】根据题意,运用待定系数法,建立适当的函数解析式,代入求值即可解答.【详解】以左边树与地面交点为原点,地面水平线为x 轴,左边树为y 轴建立平面直角坐标系,由题意可得A (0,2.5),B (2,2.5),C (0.5,1)设函数解析式为y =ax 2+bx +c把A. B. C 三点分别代入得出c =2.5同时可得4a +2b +c =2.5,0.25a +0.5b +c =1解得a =2,b =−4,c =2.5.∴y =2x 2−4x +2.5=2(x −1)2+0.5.∵2>0∴当x =1时,y min =0.5米.14.4【解析】【分析】【详解】解:连接AC 交OB 于D ∵四边形OABC 是菱形∴A C ⊥OB ∵点A 在反比例函数y=的图象上∴△AOD 的面积=×2=1∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:4解析:4【解析】【分析】【详解】解:连接AC 交OB 于D .∵四边形OABC 是菱形,∴AC ⊥OB .∵点A 在反比例函数y=2x 的图象上, ∴△AOD 的面积=12×2=1, ∴菱形OABC 的面积=4×△AOD 的面积=4故答案为:415.1【解析】试题分析:根据题意可知这是分式方程x2-1x+1=0然后根据分式方程的解法分解因式后约分可得x-1=0解之得x=1经检验可知x=1是分式方程的解答案为1考点:分式方程的解法 解析:1【解析】试题分析:根据题意可知这是分式方程,=0,然后根据分式方程的解法分解因式后约分可得x-1=0,解之得x=1,经检验可知x=1是分式方程的解.答案为1.考点:分式方程的解法 16.【解析】【分析】根据解分式方程的步骤即可解答【详解】方程两边都乘以得:解得:检验:当时所以分式方程的解为故答案为【点睛】考查了解分式方程解分式方程的基本思想是转化思想把分式方程转化为整式方程求解解分 解析:x 1=【解析】【分析】根据解分式方程的步骤,即可解答.【详解】方程两边都乘以x 2-,得:32x 2x 2--=-,解得:x 1=,检验:当x 1=时,x 21210-=-=-≠,所以分式方程的解为x 1=,故答案为x 1=.【点睛】考查了解分式方程,()1解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解().2解分式方程一定注意要验根.17.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键【解析】【分析】.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.20.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果两名同学的植树总棵数为19的结果有5种结果∴这两名同学的植树总棵数为19的概率为解析:516.【解析】【分析】【详解】画树状图如图:∵共有16种等可能结果,两名同学的植树总棵数为19的结果有5种结果,∴这两名同学的植树总棵数为19的概率为516.三、解答题21.()14,4;()2 3150分.【解析】【分析】()1根据抽取的人数可以确定中位数的位置,从而确定中位数,小长方形最高的小组的分数为该组数据的众数;()2算出抽取的50名学生的平均分乘以全校的总人数即可得到光明中学全体学生社会实践活动成绩的总分.【详解】解:()1由题意,将50人的成绩从小到大排序后,第25和第26个的平均数就是中位数,∵2+9+13=24∴第25和第26个成绩都是4,故本组数据的中位数为4∵成绩在4分的同学人数最多∴本组数据的众数是4故填表如下:2随机抽取的50人的社会实践活动成绩的平均数是:1229313414512x 3.5(50⨯+⨯+⨯+⨯+⨯==分). 估计光明中学全体学生社会实践活动成绩的总分是:3.59003150(⨯=分). 【点睛】考查了条形统计图的知识,题目相对比较简单,解题的关键是正确的识图,并从图形中整理出有关的解题的信息.22.49. 【解析】【分析】 首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次抽取的卡片上数字之和是奇数的情况,再利用概率公式即可求得答案即可.【详解】解:画树状图得:∵共有9种等可能的结果,两次抽取的卡片上数字之和是奇数的有4种情况,∴两次两次抽取的卡片上数字之和是奇数的概率为49.【点睛】本题考查列表法与树状图法.23.(1)y=26(2040)24(40)x xx x⎧⎨>⎩剟;(2)该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.【解析】【分析】【详解】(1)批发购进乌鱼所需总金额y(元)与进货量x(千克)之间的函数关系式y=26(2040) 24(40)x xx x⎧⎨>⎩剟;(2)设该经销商购进乌鱼x千克,则购进草鱼(75﹣x)千克,所需进货费用为w元.由题意得:4089%(75)95%93%75 xx x>⎧⎨⨯-+⨯⎩…解得x≥50.由题意得w=8(75﹣x)+24x=16x+600.∵16>0,∴w的值随x的增大而增大.∴当x=50时,75﹣x=25,W最小=1400(元).答:该经销商应购进草鱼25千克,乌鱼50千克,才能使进货费用最低,最低费用为1400元.24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】解:341 {5122x xxx≥--->①②解不等式①可得x≤1,解不等式②可得x>-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.【解析】试题分析:首先把括号的分式通分化简,后面的分式的分子分解因式,然后约分化简,接着计算分式的乘法,最后代入数值计算即可求解.试题解析:原式=223111(2)a aa a-++⨯+-=2(2)(2)11(2)a a aa a-+-+⨯+-=22aa+--;当a=0时,原式=1.考点:分式的化简求值.。
2020中考数学模拟试卷(含答案解析)
中考数学模拟试卷一、选择题(共10小题,每小题3分,共30分)1.化简的结果为()A.±5B.25C.﹣5D.52.若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣96.点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)7.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.8.西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.a sin26.5°B.C.a cos26.5°D.9.如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小10.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.计算:cos45°=.12.计算结果是.13.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.15.如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.如图,等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD=1时,则AE的长为.三、解答题(共8小题,共72分)17.解方程组.18.如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG 经过点A,问FH多少里?21.已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD 于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a 经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.中考数学模拟试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.【分析】根据算术平方根的定义,直接得出表示25的算术平方根,即可得出答案.【解答】解:∵表示25的算术平方根,∴=5.故选:D.【点评】此题主要考查了算术平方根的定义,此题容易出错选择A,应引起同学们的注意.2.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,40.故选:D.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.【分析】将原式直接套用平方差公式展开即可得.【解答】解:(a+3)(a﹣3)=a2﹣32=a2﹣9,故选:C.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.6.【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.【点评】此题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.7.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.8.【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:,故选:B.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.9.【分析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,=AC•CQ=(m﹣1)n=mn﹣n.则S四边形ACQE∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).=AC•CQ=4﹣n,∴S四边形ACQE∵当m>1时,n随m的增大而减小,=4﹣n随m的增大而增大.∴S四边形ACQE故选:A.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.10.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin ∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sin C===,∴sin∠DMN=,故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了直角三角形斜边上的中线性质.二、填空题(共6小题,每小题3分,共18分)11.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是基础题,考查了分式的加减法,同分母的分式相加减的法则:分母不变,分子相加.13.【分析】依据∠α=∠3,以及∠1=∠4=52°,即可得到∠α=(180°﹣52°)=64°.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.14.【分析】根据三角形的中位线得出DE=BC,DE∥BC,推出△ADE∽△ABC,根据相似三角形的性质得出即可.【解答】解:∵D、E分别为AB、AC的中点,∴DE=BC,DE∥BC,∴△ADE∽△ABC,∴=()2=,故答案为:1:4.【点评】本题考查了三角形的性质和判定,三角形的中位线的应用,注意:相似三角形的面积比等于相似比的平方.15.【分析】设点C坐标为(a,),根据AC与BD的中点坐标相同,可得出点D的坐标,将点D的坐标代入函数解析式可得出k关于a的表达式,再由BC=2AB=2,可求出a的值,继而得出k的值.【解答】解:设点C坐标为(a,),(k<0),点D的坐标为(x,y),∵四边形ABCD是平行四边形,∴AC与BD的中点坐标相同,∴(,)=(,),则x=a﹣1,y=,代入y=,可得:k=2a﹣2a2 ①;在Rt△AOB中,AB==,∴BC=2AB=2,故BC2=(0﹣a)2+(﹣2)2=(2)2,整理得:a4+k2﹣4ka=16a2,将①k=2a﹣2a2,代入后化简可得:a2=4,∵a<0,∴a=﹣2,∴k=﹣4﹣8=﹣12.故答案为:﹣12.方法二:因为ABCD是平行四边形,所以点C、D是点A、B分别向左平移a,向上平移b得到的.故设点C坐标是(﹣a,2+b),点D坐标是(﹣1﹣a,b),(a>0,b>0)根据K的几何意义,|﹣a|×|2+b|=|﹣1﹣a|×|b|,整理得2a+ab=b+ab,解得b=2a.过点D作x轴垂线,交x轴于H点,在直角三角形ADH中,由已知易得AD=2,AH=a,DH=b=2a.AD2=AH2+DH2,即20=a2+4a2,得a=2.所以D坐标是(﹣3,4)所以|K|=12,由函数图象在第二象限,所以k=﹣12.【点评】本题考查了反比例函数的综合题,涉及了平行四边形的性质、中点的坐标及解方程的知识,解答本题有两个点需要注意:①设出点C坐标,表示出点D坐标,代入反比例函数解析式;②根据BC=2AB=2,得出方程,难度较大,注意仔细运算.16.【分析】分四种情形分别画出图形,利用全等三角形或相似三角形的性质解决问题即可;【解答】解:分四种情形:①如图1中,当点D在边BC上,点E在边AC上时.∵△ABC是等边三角形,∴AB=BC=AC=3,∠ABD=∠BCE=60°,∵∠BAD=∠CBE,∴△ABD≌△BCE(ASA),∴BD=EC=1,∴AE=AC﹣EC=2.②如图2中,当点D在边BC上,点E在AC的延长线上时.作EF∥AB交BC的延长线于F.∵∠CEF=∠CAB=60°,∠ECF=∠ACB=60°,∴△ECF是等边三角形,设EC=CF=EF=x,∵∠ABD=∠BFE=60°,∠BAD=∠FBE,∴△ABD∽△BFE,∴=,∴=,∴x=,∴AE=AC+CE=③如图3中,当点D在CB的延长线上,点E在AC的延长线上时.∵∠ABD=∠BCE=120°,AB=BC,∠BAD=∠FBE,∴△ABD≌△BCE(ASA),∴EC=BD=1,∴AE=AC+EC=4.④如图4中,当点D在CB的延长线上,点E在边AC上时.作EF∥AB交BC于F,则△EFC 是等边三角形.设EC=EF=CF=m,由△ABD∽△BFE,可得=,∴=,∴x=,∴AE=AC﹣EC=,综上所述,满足条件的AE的值为2或4或或.故答案为2或4或或.【点评】本题是三角形综合题、考查等边三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形或相似三角形解决问题,属于中考压轴题.三、解答题(共8小题,共72分)17.【分析】方程组利用加减消元法求出解即可.【解答】解:,②﹣①得:x=6,将x=6代入①得:y=4,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.【分析】利用△PCF∽△PBA,求出PC的长,从而可得PE,再利用△PGE∽△AGD,即可求出DG的长.【解答】解:在正方形ABCD中,有△PCF∽△PBA∴而DF=2CF,即CF=CD∴=∴=即而AB=BC=6,∴PC=3又∵点E是BC的中点∴DE=3,PE=6∵AD∥EP∴△PGE∽△AGD∴而PE=AD=6,∴GE=GD=故DG的长为.【点评】本题是利用三角形相似,对应边成比例,从而根据比例线段来求未知线段,关键是要找准能够运用的相似三角形.19.【分析】(1)关键描述语是:买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元;设甲种笔记本的单价是x元,乙种笔记本的单价是y元,列方程组解x,y的值即可;(2)关键描述语是:本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元;设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个;可得m+(2m﹣10)≥80,3(2m﹣10)+5m≤320,求得m的整数值范围.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320 解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.20.【分析】首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.【解答】解:∵EG⊥AB,FH⊥AD,HG经过点A,∴FA∥EG,EA∥FH,∴∠AEG=∠HFA=90°,∠EAG=∠FHA,∴△GEA∽△AFH,∴=.∵AB=9里,AD=7里,EG=15里,∴AF=3.5里,AE=4.5里,∴=,∴FH=1.05里.【点评】本题考查了相似三角形的应用,矩形的性质,解题的关键是从实际问题中整理出相似三角形,难度不大.21.【分析】(1)欲证明∠EBA=∠C,只要证明△BAE∽△CEB即可;(2)欲证明AB2=AD•AC,只要证明△BAD∽△CAB即可;【解答】(1)证明:∵ED2=EA•EC,∴=,∵∠BEA=∠CEB,∴△BAE∽△CEB,∴∠EBA=∠C.(2)证明:∵EF垂直平分线段BD,∴EB=ED,∴∠EDB=∠EBD,∴∠C+∠DBC=∠EBA+∠ABD,∵∠EBA=∠C,∴∠DBC=∠ABD,∵DB=DC,∴∠C=∠DBC,∴∠ABD=∠C,∵∠BAD=∠CAB,∴△BAD∽△CAB,∴=,∴AB2=AD•AC.【点评】本题考查相似三角形的判定和性质,线段的垂直平分线的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考常考题型.22.【分析】(1)利用反比例函数图象上点的坐标特征可得出y1=,y2=,将其代入x1+y1=x2+y2中可得出x1﹣x2=,结合x1<x2可得出x2=y1,x1=y2,再利用两点间的距离公式可证出OC=OD;(2)由正切的定义可得出=,结合+=10可求出x1,y1的值,再由点C在第一象限即可得出点C的坐标;(3)由点C的坐标,利用反比例函数图象上点的坐标特征可求出m的值,重复(2)的过程可得出点D的坐标,再由点C,D的坐标,利用待定系数法即可求出直线CD的解析式.【解答】(1)证明:∵C,D是反比例函数y=图象在第一象限内的分支上的两点,∴y1=,y2=.∵x1+y1=x2+y2,即x1+=x2+,∴x1﹣x2=.又∵x1<x2,∴=1,∴=x2=y1,=x1=y2.∴OC==,OD==,∴OC=OD.(2)解:∵tan∠BOC=,∴=.又∵OC=,∴+=10,∴x1=1,y1=3或x1=﹣1,y1=﹣3.∵点C在第一象限,∴点C的坐标为(1,3).(3)解:∵∠BOC=∠AOD,∴tan∠AOD=,∴=.∵点C(1,3)在反比例函数y=的图象上,∴m=1×3=3,∴x2•y2=3,∴x2=3,y2=1或x2=﹣3,y2=﹣1.∵点D在第一象限,∴点D的坐标为(3,1).设直线CD的解析式为y=kx+b(k≠0),将C(1,3),D(3,1)代入y=kx+b,得:,解得:,∴直线CD的解析式为y=﹣x+4.【点评】本题考查了反比例函数图象上点的坐标特征、两点间的距离公式、正切的定义以及待定系数法求一次函数解析式,解题的关键是:(1)利用反比例函数图象上点的坐标特征结合x1+y1=x2+y2,找出x2=y1,x1=y2;(2)利用正切的定义、OC=及点C在第一象限,求出点C 的坐标;(3)根据点C,D的坐标,利用待定系数法求出一次函数解析式.23.【分析】(1)由AC=BD知+=+,得=,根据OD⊥AC知=,从而得==,即可知∠AOD=∠DOC=∠BOC=60°,利用AF=AO sin∠AOF可得答案;(2)连接BC,设OF=t,证OF为△ABC中位线及△DEF≌△BEC得BC=DF=2t,由DF=1﹣t可得t=,即可知BC=DF=,继而求得EF=AC=,由余切函数定义可得答案;(3)先求出BC、CD、AD所对圆心角度数,从而求得BC=AD=、OF=,从而根据三角形面积公式计算可得.【解答】解:(1)∵OD⊥AC,∴=,∠AFO=90°,又∵AC=BD,∴=,即+=+,∴=,∴==,∴∠AOD=∠DOC=∠BOC=60°,∵AB=2,∴AO=BO=1,∴AF=AO sin∠AOF=1×=,则AC=2AF=;(2)如图1,连接BC,∵AB为直径,OD⊥AC,∴∠AFO=∠C=90°,∴OD∥BC,∴∠D=∠EBC,∵DE=BE、∠DEF=∠BEC,∴△DEF≌△BEC(ASA),∴BC=DF、EC=EF,又∵AO=OB,∴OF是△ABC的中位线,设OF=t,则BC=DF=2t,∵DF=DO﹣OF=1﹣t,∴1﹣t=2t,解得:t=,则DF=BC=、AC===,∴EF=FC=AC=,∵OB=OD,∴∠ABD=∠D,则cot∠ABD=cot∠D===;(3)如图2,∵BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,∴∠BOC=、∠AOD=∠COD=,则+2×=180,解得:n=4,∴∠BOC=90°、∠AOD=∠COD=45°,∴BC=AC=,∵∠AFO=90°,∴OF=AO cos∠AOF=,则DF=OD﹣OF=1﹣,∴S=AC•DF=××(1﹣)=.△ACD【点评】本题主要考查圆的综合题,解题的关键是掌握圆周角和圆心角定理、中位线定理、全等三角形的判定与性质及三角函数的应用等知识点.24.【分析】(1)根据坐标轴上点的坐标特征可求点B的坐标,根据平移的性质可求点C的坐标;(2)根据坐标轴上点的坐标特征可求点A的坐标,进一步求得抛物线的对称轴;(3)结合图形,分三种情况:①a>0;②a<0,③抛物线的顶点在线段BC上;进行讨论即可求解.【解答】解:(1)与y轴交点:令x=0代入直线y=4x+4得y=4,∴B(0,4),∵点B向右平移5个单位长度,得到点C,∴C(5,4);(2)与x轴交点:令y=0代入直线y=4x+4得x=﹣1,∴A(﹣1,0),∵点B向右平移5个单位长度,得到点C,将点A(﹣1,0)代入抛物线y=ax2+bx﹣3a中得0=a﹣b﹣3a,即b=﹣2a,∴抛物线的对称轴x=﹣=﹣=1;(3)∵抛物线y=ax2+bx﹣3a经过点A(﹣1,0)且对称轴x=1,由抛物线的对称性可知抛物线也一定过A的对称点(3,0),①a>0时,如图1,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a<4,a>﹣,将x=5代入抛物线得y=12a,∴12a≥4,a≥,∴a≥;②a<0时,如图2,将x=0代入抛物线得y=﹣3a,∵抛物线与线段BC恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段BC上时,则顶点为(1,4),如图3,将点(1,4)代入抛物线得4=a﹣2a﹣3a,解得a=﹣1.综上所述,a≥或a<﹣或a=﹣1.【点评】本题考查了待定系数法求函数解析式、二次函数的性质以及解一元一次不等式,解题的关键是熟练掌握解一元一次方程,待定系数法求抛物线解析式.本题属于中档题,难度不大,但涉及知识点较多,需要对二次函数足够了解才能快捷的解决问题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年初中数学中考模拟卷时间:90分钟 总分:120分学校:_____________ 班级:____________ 姓名:____________ 学号:_____________ 一、选择题(本大题共10小题,每小题3分,共30分) 1.-2020的相反数是( )A .-2020B .±2020C .20201- D .20202.函数y =3x -中自变量x 的取值范围是( ) A. x ≥3B. x ≥﹣3C. x ≠3D. x >0且x ≠33.已知科学家发现某种新型病毒的直径约为0.000 000 794米,将0.000 000 794用科学记数法表示为( ) A .6-1094.7⨯ B .71094.7-⨯ C .61094.7⨯ D .71094.7⨯ 4.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.某小组7位同学的中考体育测试成绩依次为27,30,29,27,30,28,30,则这组数据的众数与中位数分别是( ) A. 30,27B. 30,29C. 29,30D. 30,286.一条直线y =kx +b ,其中k +b =﹣5、kb =6,那么该直线经过( ) A . 第二、四象限 B . 第一、二、三象限C . 第一、三象限D . 第二、三、四象限7.如图,直线a ∥b ,∠1=85°,∠2=35°,则∠3=( ) A. 85° B. 60° C. 50°D. 35°8.下列一元二次方程中,有两个相等实数根的是( ) A. x 2﹣8=0 B. 2x 2﹣4x +3=0 C. 5x +2=3x 2 D. 9x 2+6x +1=09.若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为( ) A. 4B. ﹣4C. ﹣16D. 1610.如图,已知A ,B 是反比例函数y =kx(k >0,x >0)图象上的两点,BC ∥x 轴,交y 轴于点C ,动点P 从坐标原点O 出发,沿O→A →B →C (图中“→”所示路线)匀速运动,终点为C ,过P 作PM ⊥x 轴,垂足为M .设三角形OMP 的面积为S ,P 点运动时间为t ,则S 关于t 的函数图象大致为( )ACBA .B .C .D .二、填空题(本大题共7小题,每小题4分,共28分) 11.不等式组⎩⎨⎧<+>-0322x xx 的解集是 .12.分解因式2422+-x x 的最终结果是 .13.若一个多边形的每个外角都等于30°,则这个多边形的内角和为 ____________ . 14.已知230a b ++-=,则 a b +=____________.15.在一个不透明的盒子中装有n 个小球,他们只有颜色上的区别,其中有3个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.16.有一组等式:22221223++=,22222367++= ,2222341213++= ,2222452021++= …… 请你观察它们的构成规律,用你发现的规律写出第8个等式为 . 17.如图,四边形ABCD 、DEFG 都是正方形,点E 在线段AD 上,连接CE 、AG ,AG 和EF 相交于点H .下列结论:①△CDE 绕点D 旋转后可以和△ADG 重合;②CE ⊥AG ;③DE 2=FH ·AD ;④ABCDDEFGCDE FGH S S S S 正方形正方形=∆∆.其中结论正确的序号是 .三、解答题(一)(本大题共3小题,每小题6分,共18分) 18.计算:()()︒++45cos 43-8-1-01-π.19.如图,在Rt △ABC 中,∠BAC =90°,∠C =30°.(1)请在图中用尺规作图的方法作出BC 的垂直平分线,交BC 于点D ,交AC 于点E (不写作法,保留作图痕迹).(2)在(1)的条件下,连接BE ,若AE =1,求BC 的长.H B AE20.为了解我县九年级学生身体素质情况,从九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A 级:优秀;B 级:良好;C 级:及格;D 级:不及格),并将测试结果绘成了如下两幅不完整的统计图. 请根据统计图中的信息解答下列问题: (1)本次抽样测试的学生人数为________,扇形统计图中D 级学生的百分比为________; (2)图中∠α的度数为_______,并把条形统计图补充完整;四、解答题(二)(本大题共3小题,每小题8分,共24分)21. 今年年初,爱国华侨张先生为支援祖国抗击“新冠病毒”,在国外用20000元购进一批医用口罩并捐赠回国。
随着国内疫情暴发,张先生又紧急购进第二批同样的医用口罩捐赠回国,所购进的口罩数量是第一批数量的4倍,但单价贵了5元/包,结果第二批口罩用了90000元。
求张先生一共捐赠了多少包医用口罩?22. 如图,将矩形纸片ABCD 折叠,使点C 落在AD 边上的点G 点处,折痕为EF ,连接EC . (1)求证:四边形CEGF 是菱形; (2)若ED =3,CD =4,求折痕EF 的长。
23. 如图,在平面直角坐标系系中,反比例函数()0≠=k xky 与一次函数y =ax +b (a ≠0)的图象交于A ,B 两点。
AD ⊥x 轴于点D ,直线AB 交y 轴于E (0,-1),交x 轴于点C ,连接OA 。
若△AOE 的面积为3,且点OC =21CD 。
(1)分别求直线AB 及双曲线的解析式;(2)若点P 在双曲线上,且S △P AD =3S △CAD ,求点P 的坐标。
EABDGDCBO A五、解答题(三)(本大题共2小题,每小题10分,共20分)24.如图,点P 是⊙O 外一点,P A 切⊙O 于点A ,AB 是⊙O 的直径,连接OP ,过点B 作BC ∥OP 交⊙O 于点C ,连接AC 交OP 于点D . (1)求证:PC 是⊙O 的切线; (2)若PD =316c m ,AC =8c m ,求图中阴影部分的面积; (3)在(2)的条件下,若点E 是弧AB 的中点,连接CE ,求CE 的长.25.如图,四边形ABCD 为矩形,AB =4c m ,AD =3c m ,动点M ,N 分别从点D ,B 同时出发,都以1c m/s 的速度运动.点M 沿DA 向终点A 运动,点N 沿BC 向终点C 运动.过点N 作NP ⊥BC ,交AC 于点P ,连接MP .已知动点运动了t 秒(0<t <3). (1)填空:当t = 时,PM ∥AB ;(2)若四边形CDMP 的面积为S ,试求S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t 使四边形CDMP 面积与四边形ABCD 面积比为3:8,若存在,请求出t 的值;若不存在,请说明理由;(4)在点M ,N 运动过程中,△MP A 能否成为一个等腰三角形?若能,求出所有可能的t 值;若不能,试说明理由.2020年初中数学中考模拟卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)1.D2.A3.B4.D5.B6.D7.C8.D9.C 10.A二、填空题(本大题共7小题,每小题4分,共28分)11. x <-3 12.2)1(2-x 13.1800° 14.1 15.15 16.2222737298=++ 17.①②③④三、解答题(一)(本大题共3小题,每小题6分,共18分)分分分原式解60 42222- 2224122-1-:18.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯+=⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⨯++=19.解:(1)作图如图所示。
……………………………………………3分(2)由作图可知:DE 是BC 的垂直平分线,∴CE =BE ,∴∠AEB =2∠C =60° 故在Rt △ABE 中, AB =AE ·tan ∠AEB=1×3=3.…………………………5分在Rt △ABC 中,BC =2AB =23.…………………………6分20.解:(1)40,20%;(2)54°,图略;………………………………………………(每空1.5分)四、解答题(二)(本大题共3小题,每小题8分,共24分)21. 解:设第一批口罩的单价是x 元/包.列方程得:590000420000+=⨯x x ,……………………………………3分 整理得:9x =8(x +5), 解得:x =40. ……………………………………5分 经检验: x =40是原方程的解,且满足题意. ………………………………6分故两次共捐赠口罩:250054020000520000=⨯=⨯x 包. …………………………7分 答: 张先生一共捐赠了25000包医用口罩.…………………………8分22. 解: (1)证明: 由折叠可知: 四边形CDEF ≌四边形GHEF∴∠1=∠2,且GF =CF , …………………1分 ∵AD ∥BC ,∴∠2=∠3, ∴∠1=∠3,∴GE =GF . …………………………………3分 故CF =GF =GE ,且GE ∥FC即:四边形CEGF 是菱形. ……………………5分 (2)过E 点作EM ⊥BC 于M 点.则四边形CDEM 为矩形,MC =ED =3,EM =CD =4 由ED =3,CD =4,且∠D =90°得EC =522=+ED CD ,………………………6分 由(1)得FC =EC =5,FM =FC -CM =2, 故在Rt △EFM 中,EM =4,FM =2,∴EF =5222=+ME FM ……………………8分23 解: (1) ∵AD ⊥x 轴,OE ⊥x 轴, ∴OE ∥AD ,∵OC =21CD ,OE =1 ∴AD =2OE =2. ………………………1分 而S △AOE =21OE ×OD =3, 故OD =6,即A 点坐标为(6,2) …………2分由点A 在双曲线上,可知: k =6×2=12, …………3分 将A ,E 两点分别代入直线得: ⎩⎨⎧-==+126b b a解得: a =21,b =-1. 即直线AB 的解析式为: 121-=x y ,双曲线的解析式为xy 12=.………………5分 321M HEDAG(2)设P 点的坐标为(m ,n ). 过点P 作PQ ⊥AD 于Q . ∵S △P AD =3S △CAD ,即:AD ×PQ =3AD ×CD .∴PQ =3CD =2OD =12. ……………………………………6分 ∴|m -6|=12, 故m =18或-6. ………………………7分 相应的, 3212==m n 或-2. 即: 点P 的坐标为⎪⎭⎫⎝⎛32,18或(-6,-2) ………………………8分五、解答题(三)(本大题共2小题,每小题10分,共20分)24.证明:(1)如图,连接OC ,∵P A 切⊙O 于A . ∴∠P AO =90º. ∵OP ∥BC ,∴∠AOP =∠OBC ,∠COP =∠OCB . ∵OC =OB , ∴∠OBC =∠OCB , ∴∠AOP =∠COP . 又∵OA =OC ,OP =OP , ∴△P AO ≌△PCO (SAS ). ∴∠P AO =∠PCO =90 º, 又∵OC 是⊙O 的半径,∴PC 是⊙O 的切线. ……………………………………………………………3分 (2)由(1)得P A ,PC 都为圆的切线,∴P A =PC ,OP 平分∠APC ,∠ADO =∠P AO =90 º ∴∠P AD +∠DAO =∠DAO +∠AOD ∴∠P AD =∠AOD ∴△ADO ∽△PDA ∴AD DOPD AD= ∴2AD PD DO =⋅ ∵ PD =163,AD =12AC =4 ∴OD =3,AO =5由题意知OD 为△ABC 的中位线∴BC =2OD =6,AB =10∴()22⊙248258621521cm S S S ACB -=⨯⨯-⋅=-=∆ππ半阴影答:阴影部分的面积为22548cm 2π-……………………………………………………6分 (3)如图,连接AE ,BE ,过点B 作BM ⊥CE 于点M ∴∠CMB =∠EMB =∠AEB =90º 又∵点E 是的中点∴∠ECB =∠CBM =∠ABE =45º,CM =MB =32BE =ABcos 45º=52∴ EM 22=42BE BM -∴CE =CM +EM =2()cm ………………………………………………………………10分25.解:(1)32t =;……………………………………………………………2分 (2)如图,延长NP 交AD 于点Q ,则PQ ⊥AD由题意知,DM =BN =t ,AM =CN =3﹣t ∵PN ∥AB ∴△PNC ∽△ABC ∴,PN CNAB CB =即3,43PN t -= 解得: ()443433PN t t =-=-,∵PQ ⊥AD∴∠QAB =∠B =∠NQA =90° ∴四边形ABNQ 是矩形 则AB =QN =4∴444433PQ QN PN t t ⎛⎫=-=--= ⎪⎝⎭,∴四边形CDMP 的面积()21142343262233s t t t t =⨯⨯-⨯-⨯-=+;………………5分(3)∵S 矩形ABCD =3×4=12∴222612833CDMPABCDS t t S -=+=四边形矩形,解得:32t =;所以32t =时四边形CDMP 的面积与四边形ABCD 的面积比为3:8;………………7分 (4)△MP A 能成为等腰三角形,共有三种情况,以下分类说明:①若PM =P A , ∵PQ ⊥MA ,∴四边形ABNQ 是矩形, ∴QA =NB =t , ∴MQ =QA =t , 又∵DM +MQ +QA =AD ∴3t =3,即t =1②若MP =MA ,则MQ =3﹣2t ,43PQ t =, MP =MA =3﹣t ,在Rt △PMQ 中,由勾股定理得:MP 2=MQ 2+PQ 2 ∴()()22243323t t t ⎛⎫--+ ⎪⎝⎭=, 解得:t =4354(t =0不合题意,舍去) ③若AP =AM ,由题意可得:AP =53t ,AM =3﹣t∴533t t =-, 2020年惠东县初中数学中考模拟卷参考答案 解得:t =89, 综上所述,当t =1或t =4354或t =89时,△MP A 是等腰三角形.…………………10分。