2020年中考数学模拟试卷及答案

合集下载

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案

2020年初中数学中考模拟试题及答案2020年九年级数学中考模拟试题第Ⅰ卷(选择题)一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列实数中,无理数是()。

A。

$\sqrt{2}$。

B。

$-2$。

C。

$\dfrac{1}{2}$。

D。

$0.5$2.(3分)下列图形中,既是轴对称又是中心对称图形的是()。

A。

菱形。

B。

等边三角形。

C。

平行四边形。

D。

等腰梯形3.(3分)图中立体图形的主视图是()。

A。

B。

C。

D。

4.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()。

A。

$10\%x=330$。

B。

$(1-10\%)x=330$。

C。

$(1-10\%)2x=330$。

D。

$(1+10\%)x=330$5.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()。

A。

平均数。

B。

中位数。

C。

众数。

D。

方差6.(3分)用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于()之间。

A。

B与C。

B。

C与D。

C。

E与F。

D。

7.(3分)若代数式 $A=\dfrac{x+1}{x-1}$,$B=\dfrac{2x-1}{x-2}$ 有意义,则实数x的取值范围是()。

A。

$x\geq1$。

B。

$x\geq2$。

C。

$x>1$。

D。

$x>2$8.(3分)下列曲线中不能表示y是x的函数的是()。

A。

B。

C。

D。

9.(3分)某校美术社团为练素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本。

求第一次买了多少本资料?若设第一次买了x本资料,列方程正确的是()。

A。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480-20}$。

B。

$120=\dfrac{(x+20)\times(4x-480)}{4x-480}$C。

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷04含解析

2020年中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知点M(1﹣m,2﹣m)在第三象限,则m的取值范围是()A.m>3 B.2<m<3 C.m<2 D.m>2【答案】D【解析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.根据题意知,解得m>2,故选:D.2.已知x=2是方程2x﹣3a+2=0的根,那么a的值是()A.﹣2 B.C.2 D.【答案】C【解析】根据一元一次方程的解定义,将x=2代入已知方程列出关于a的新方程,通过解新方程即可求得a的值.∵x=2是方程2x﹣3a+2=0的根,∴x=2满足方程2x﹣3a+2=0,∴2×2﹣3a+2=0,即6﹣3a=0,解得,a=2;故选:C.3.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中△ABC相似的是()A.B.C.D.【答案】B【解析】本题主要应用两三角形相似判定定理,三边对应成比例,分别对各选项进行分析即可得出答案.已知给出的三角形的各边AB、CB、AC分别为、2、、只有选项B的各边为1、、与它的各边对应成比例.故选:B.4.某高速公路概算总投资为79.67亿元,请将79.67亿用科学记数法表示为()A.7.967×101B.7.967×1010C.7.967×109D.79.67×108【答案】C【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于79.67亿有10位,所以可以确定n=10﹣1=9.79.67亿=7 967 000 000=7.967×109.故选:C.5.已知圆锥的底面半径为6cm,高为8cm,则圆锥的侧面积为()A.36πcm2B.48πcm2C.60πcm2D.80πcm2【答案】C【解析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.由勾股定理得:圆锥的母线长==10,∵圆锥的底面周长为2πr=2π×6=12π,∴圆锥的侧面展开扇形的弧长为12π,∴圆锥的侧面积为:×12π×10=60π.故选:C.6.已知,且﹣1<x﹣y<0,则k的取值范围为()A.﹣1<k<﹣B.0<k<C.0<k<1 D.<k<1【答案】D【解析】利用第二个方程减去第一个方程,得到一个不等式,根据﹣1<x﹣y<0得到一个不等式,组成不等式组解这个不等式即可.第二个方程减去第一个方程得到x﹣y=1﹣2k,根据﹣1<x﹣y<0得到:﹣1<1﹣2k<0即解得<k<1,k的取值范围为<k<1.故选:D.7.如图所示实数a,b在数轴上的位置,以下四个命题中是假命题的是()A.a3﹣ab2<0 B.C.D.a2<b2【答案】B【解析】由数轴可知a>0,b<0,且|a|<|b|,由此可判断a+b<0,a﹣b>0,再逐一检验.依题意,得a>0,b<0,且|a|<|b|,∴a+b<0,a﹣b>0,A、a3﹣ab2=a(a+b)(a﹣b)<0,正确;B、∵a+b<0,∴=﹣(a+b),错误;C、∵0<a<a﹣b,∴<,正确;D、∵(a+b)(a﹣b)<0,∴a2﹣b2<0,即a2<b2,正确.故选:B.8.如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP,若阴影部分的面积为9π,则弦AB的长为()A.3 B.4 C.6 D.9【答案】C【解析】本题可先由题意OD=PC=r,再根据阴影部分的面积为9π,得出R2﹣r2=9,即AD==3,进而可知AB=2×3=6.设PC=r,AO=R,连接PC,⊙O的弦AB切⊙P于点C,故AB⊥PC,作OD⊥AB,则OD∥PC.又∵AB∥OP,∴OD=PC=r,∵阴影部分的面积为9π,∴πR2﹣πr2=9π,即R2﹣r2=9,于是AD==3.∵OD⊥AB,∴AB=3×2=6.故选:C.9.因为sin30°=,sin210°=,所以sin210°=sin(180°+30°)=﹣sin30°;因为sin45°=,sin225°=,所以sin225°=sin(180°+45°)=﹣sin45°,由此猜想,推理知:一般地当α为锐角时有sin(180°+α)=﹣sinα,由此可知:sin240°=()A.B.C.D.【答案】C【解析】阅读理解:240°=180°+60°,因而sin240°就可以转化为60°的角的三角函数值.根据特殊角的三角函数值,就可以求解.∵当α为锐角时有sin(180°+α)=﹣sinα,∴sin240°=sin(180°+60°)=﹣sin60°=﹣.故选:C.10.如图,两个反比例函数和(其中k1>k2>0)在第一象限内的图象依次是C1和C2,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,下列说法正确的是()①△ODB与△OCA的面积相等;②四边形PAOB的面积等于k2﹣k1;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.A.①②B.①②④C.①④D.①③④【答案】C【解析】根据反比例函数系数k所表示的意义,对①②③④分别进行判断.①A、B为上的两点,则S△ODB=S△OCA=k2,正确;②由于k1>k2>0,则四边形PAOB的面积应等于k1﹣k2,错误;③只有当P的横纵坐标相等时,PA=PB,错误;④当点A是PC的中点时,点B一定是PD的中点,正确.故选:C.第二部分非选择题(共110分)二.填空题(本大题共6小题,每小题4分,共24分.)11.分解因式:ax2﹣2ax+a=.【答案】a(x﹣1)2【解析】本题考查了用提公因式法和公式法进行因式分解,先提公因式a,再利用完全平方公式继续分解因式.ax2﹣2ax+a=a(x2﹣2x+1)=a(x﹣1)2.12.暑假中,小明,小华将从甲、乙、丙三个社区中随机选取一个参加综合实践活动,若两人不在同一社区,则小明选择到甲社区、小华选择到乙社区的可能性为.【答案】【解析】画树状图得:,∵共有9种等可能的结果,小明选择到甲社区、小华选择到乙社区的有1种情况,∴小明选择到甲社区、小华选择到乙社区的可能性为:.故答案为:.13.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E =度.【答案】80【解析】设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.14.一个多边形的每一个外角为30°,那么这个多边形的边数为.【答案】12【解析】一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.15.如图,点A,B,是⊙O上三点,经过点C的切线与AB的延长线交于D,OB与AC交于E.若∠A =45°,∠D=75°,OB=,则CE的长为.【答案】2【解析】连接OC,如图,∵∠A=45°,∠D=75°,∴∠ACD=60°,∵CD为切线,∴OC⊥CD,∴∠OCD=90°,∵∠BOC=2∠A=90°,∴OB∥CD,∴∠CEO=∠ACD=60°,在Rt△COE中,sin∠CEO=,∴CE===2.故答案为2.16.如图,点A是反比例函数y=图象上的任意一点,过点A做AB∥x轴,AC∥y轴,分别交反比例函数y=的图象于点B,C,连接BC,E是BC上一点,连接并延长AE交y轴于点D,连接CD,则S△DEC﹣S△BEA=.【答案】【解析】点A是反比例函数y=图象上的任意一点,可设A(a,),∵AB∥x轴,AC∥y轴,点B,C,在反比例函数y=的图象上,∴B(,),C(a,),∴AB=a,AC=,∴S△DEC﹣S△BEA=S△DAC﹣S△BCA=××(a﹣a)=××a=.故答案为:.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)计算:﹣12019+|﹣2|+2cos30°+(2﹣tan60°)0.【解析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.解:原式=﹣1+2﹣++1=2.18.(本小题满分8分)先化简,,然后从﹣1≤x≤2的范围内选取一个合适的整数作为x的值代入求值.【解析】先根据分式的混合运算顺序和运算法则化简原式,再选取使分式有意义的x的值代入计算可得.解:原式=[﹣]÷=•=﹣,∵x≠±1且x≠0,∴在﹣1≤x≤2中符合条件的x的值为x=2,则原式=﹣=﹣2.19.(本小题满分8分)如图,已知点E、C在线段BF上,且BE=CF,CM∥DF,(1)作图:在BC上方作射线BN,使∠CBN=∠1,交CM的延长线于点A(用尺规作图法,保留作图痕迹,不写作法);(2)在(1)的条件下,求证:AC=DF.【解析】(1)①以E为圆心,以EM为半径画弧,交EF于H,②以B为圆心,以EM为半径画弧,交EF于P,③以P为圆心,以HM为半径画弧,交前弧于G,④作射线BG,则∠CBN就是所求作的角.(2)证明△ABC≌△DEF可得结论.解:(1)如图所示,即为所求;(2)∵CM∥DF,∴∠MCE=∠F,∵BE=CF,∴BE+CE=CF+CE,即BC=EF,在△ABC和△DEF中,∵,∴△ABC≌△DEF,∴AC=DF.20.(本小题满分8分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(本小题满分8分)某大型超市投入15000元资金购进A、B两种品牌的矿泉水共600箱,矿泉水的成本价和销售价如下表所示:(1)该大型超市购进A、B品牌矿泉水各多少箱?(2)全部销售完600箱矿泉水,该超市共获得多少利润?销售价(元/箱)类别/单价成本价(元/箱A品牌20 32B品牌35 50【解析】解:(1)设该超市进A品牌矿泉水x箱,B品牌矿泉水y箱,依题意,得:,解得:.答:该超市进A品牌矿泉水400箱,B品牌矿泉水200箱.(2)400×(32﹣20)+200×(50﹣35)=7800(元).答:该超市共获利润7800元.22.(本小题满分10分)如图,在Rt△ABC中,∠BAC=90°,AD平分∠BAC,过AC的中点E作FG ∥AD,交BA的延长线于点F,交BC于点G,(1)求证:AE=AF;(2)若BC=AB,AF=3,求BC的长.【解析】解:(1)∵∠BAC=90°,AD平分∠BAC,∴∠DAB=∠CAB=×90°=45°,∵FG∥AD,∴∠F=∠DAB=45°,∠AEF=45°,∴∠F=∠AEF,∴AE=AF;(2)∵AF=3,∴AE=3,∵点E是AC的中点,∴AC=2AE=6,在Rt△ABC中,AB2+AC2=BC2,AB2+32=()2,AB=,BC=.23.(本小题满分10分)如图,在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象与反比例函数y=(n≠0)的图象交于第二、四象限内的A、B两点与x轴交于点C,点B坐标为(m,﹣1),AD⊥x轴,且AD=3,tan∠AOD=(1)求该反比例函数和一次函数的解析式;(2)连接OB,求S△AOC﹣S△BOC的值;(3)点E是x轴上一点,且△AOE是等腰三角形请直接写出满足条件的E点的个数(写出个数即可,不必求出E点坐标).【解析】解:(1)∵AD⊥x轴,∴∠ADO=90°,在Rt△ADO中,AD=3,tan∠AOD==,∴OD=2,∴A(﹣2,3),∵点A在反比例函数y=的图象上,∴n=﹣2×3=﹣6,∴反比例函数的解析式为y=﹣,∵点B(m,﹣1)在反比例函数y=﹣的图象上,∴﹣m=﹣6,∴m=6,∴B(6,﹣1),将点A(﹣2,3),B(6,﹣1)代入直线y=kx+b中,得,∴,∴一次函数的解析式为y=﹣x+2;(2)由(1)知,A(﹣2,3),直线AB的解析式为y=﹣x+2,令y=0,∴﹣x+2=0,∴x=4,∴C(4,0),∴S△AOC﹣S△BOC=OC•|y A|﹣OC•|y B|=×4(3﹣1)=4;(3)设E(m,0),由(1)知,A(﹣2,3),∴OA2=13,OE2=m2,AE2=(m+2)2+9,∵△AOE是等腰三角形,∴①当OA=OE时,∴13=m2,∴m=±,∴E(﹣,0)或(,0),②当OA=AE时,13=(m+2)2+9,∴m=0(舍)或m=4,∴E(4,0),③当OE=AE时,m2=(m+2)2+9,∴m=﹣,∴E(﹣,0),即:满足条件的点P有四个.24.(本小题满分12分)如图,在⊙O中,半径OD⊥直径AB,CD与⊙O相切于点D,连接AC交⊙O 于点E,交OD于点G,连接CB并延长交⊙于点F,连接AD,EF.(1)求证:∠ACD=∠F;(2)若tan∠F=①求证:四边形ABCD是平行四边形;②连接DE,当⊙O的半径为3时,求DE的长.【解析】(1)证明:∵CD与⊙O相切于点D,∴OD⊥CD,∵半径OD⊥直径AB,∴AB∥CD,∴∠ACD=∠CAB,∵∠EAB=∠F,∴∠ACD=∠F;(2)①证明:∵∠ACD=∠CAB=∠F,∴tan∠GCD=tan∠GAO=tan∠F=,设⊙O的半径为r,在Rt△AOG中,tan∠GAO==,∴OG=r,∴DG=r﹣r=r,在Rt△DGC中,tan∠DCG==,∴CD=3DG=2r,∴DC=AB,而DC∥AB,∴四边形ABCD是平行四边形;②作直径DH,连接HE,如图,OG=1,AG==,CD=6,DG=2,CG==2,∵DH为直径,∴∠HED=90°,∴∠H+∠HDE=90°,∵DH⊥DC,∴∠CDE+∠HDE=90°,∴∠H=∠CDE,∵∠H=∠DAE,∴∠CDE=∠DAC,而∠DCE=∠ACD,∴△CDE∽△CAD,∴=,即=,∴DE=.25.(本小题满分14分)如图,在平面直角坐标系xOy第一象限中有正方形OABC,A(4,0),点P(m,0)是x轴上一动点(0<m<4),将△ABP沿直线BP翻折后,点A落在点E处,在OC上有一点M(0,t),使得将△OMP沿直线MP翻折后,点O落在直线PE上的点F处,直线PE交OC 于点N,连接BN.(I)求证:BP⊥PM;(II)求t与m的函数关系式,并求出t的最大值;(III)当△ABP≌△CBN时,直接写出m的值.【解析】解:(Ⅰ)由折叠知,∠APB=∠NPB,∠OPM=∠NPM,∵∠APN+∠OPN=180°,∴2∠NPB+2∠NPM=180°,∴∠NPB+∠NPM=90°,∴∠BPM=90°,∴BP⊥PM;(Ⅱ)∵四边形OABC是正方形,∴∠OAB=90°,AB=OA,∵A(4,0),∴AB=OA=4,∵点P(m,0),∴OP=m,∵0<m<4,∴AP=OA﹣OP=4﹣m,∵M(0,t),∴OM=t,由(1)知,∠BPM=90°,∴∠APB+∠OPM=90°,∵∠OMP+∠OPM=90°,∴∠OMP=∠APB,∵∠MOP=∠PAB=90°,∴△MOP∽△PAB,∴,∴,∴t=﹣m(m﹣4)=﹣(m﹣2)2+1∵0<m<4,∴当m=2时,t的最大值为1;(Ⅲ)∵△ABP≌△CBN,∴∠CBN=∠ABP,BP=BN,由折叠知,∠ABP=∠EBP,∠BEP=∠BAP=90°,∴NE=PE,∠NBE=∠PBE,∴∠CBN=∠NBE=∠EBP=∠PBA,∴∠CBE=∠ABE=45°,连接OB,∵四边形OABC是正方形,∴∠OBC=∠OBA=45°,∴点E在OB上,∴OP=ON=m,∴PN=m,∵OM=t,∴MN=ON=OM=m﹣t,如图,过点N作OP的平行线交PM的延长线于G,∴∠OPM=∠G,由折叠知,∠OPM=∠NPM,∴∠NPM=∠G,∴NG=PN=m,∵GN∥OP,∴△OMP∽△NMG,∴,∴=①,由(2)知,t=﹣m(m﹣4)②,联立①②解得,m=0(舍)或m=8﹣.。

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)含答案解析

2020年海南省中考数学模拟仿真试卷(三)一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±32.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a33.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤24.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×1055.如图所示的几何体的主视图是()A.B.C.D.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.37.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣38.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.49.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800 10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= .16.不等式组的解集为.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项):A.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了名学生;在扇形图中,x= ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有名.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.2020年海南省中考数学模拟仿真试卷(三)参考答案与试题解析一、选择题(本题有14小题,每小题3分,共42分)1.若|a|=3,则a的值是()A.﹣3 B.3 C.D.±3【考点】绝对值.【分析】根据绝对值的定义求解.因为|+3|=3,|﹣3|=3,从而得出a的值.【解答】解:因为|+3|=3,|﹣3|=3,所以若|a|=3,则a的值是±3.故选D.2.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.2a3•a=2a4D.(3a)3=9a3【考点】单项式乘单项式;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项、幂的乘方、单项式乘以单项式、积的乘方,即可解答.【解答】解:A、3a2﹣a2=2a2,故本选项错误;B、(a2)3=a6,故本选项错误;C、2a3•a=2a4,故本选项正确;D、(3a)3=27a3,故本本选项错误;故选:C.3.要使式子有意义,则x的取值范围是()A.x>0 B.x≥﹣2 C.x≥2 D.x≤2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:根据题意得,2﹣x≥0,解得x≤2.故选D.4.2020年12月30日,全球首条环岛高铁南海环岛高速通车了,环绕全岛的环岛高铁,犹如一条镶嵌于海南岛上的“珍珠链”、“幸福圈”,覆盖了全省12个市县约7820000人口,数据7820000用科学记数法表示为()A.×108B.×107C.×106D.×105【考点】科学记数法—表示较大的数.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:7820000=×106.故选:C.5.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看得到的图形即可,看到的棱用实线表示;实际存在,没有被其他棱挡住,又看不到的棱用虚线表示.【解答】解:如图所示的几何体的主视图是.故选:A.6.数据2,3,﹣4,﹣1,0,3的中位数是()A.﹣1 B.0 C.1 D.3【考点】中位数.【分析】先把题干中的数据按照从小到大的顺序排列,从而可以得到这组数据的中位数,本题得以解决.【解答】解:数据2,3,﹣4,﹣1,0,3按照从小到大的顺序排列是:﹣4,﹣1,0,2,3,3,故这组数据的中位数是:,故选C.7.方程2x﹣1=3x+2的解为()A.x=1 B.x=﹣1 C.x=3 D.x=﹣3【考点】解一元一次方程.【分析】方程移项合并,把x系数化为1,即可求出解.【解答】解:方程2x﹣1=3x+2,移项得:2x﹣3x=2+1,合并得:﹣x=3.解得:x=﹣3,故选D.8.已知双曲线y=经过点(2,1),则k的值等于()A.﹣1 B.1 C.2 D.4【考点】反比例函数图象上点的坐标特征.【分析】直接把点(2,1)代入双曲线y=,求出k的值即可.【解答】解:∵双曲线y=经过点(2,1),∴2=k﹣2,解得k=4.故选D.9.某小区在规划设计时,准备在两栋楼房之间,设置一块面积为800平方米的矩形绿地,并且长比宽多10米,设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=800 B.x(x+10)=800 C.10(x+10)=800 D.2(x+x+10)=800【考点】由实际问题抽象出一元二次方程.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=800.故选B.10.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,则女生当组长的概率是()A.B.C.D.【考点】概率公式.【分析】由一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担当组长,直接利用概率公式求解即可求得答案.【解答】解:∵一个学习兴趣小组有4名女生,6名男生,∴女生当组长的概率是: =.故选A.11.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,则∠2的度数为()A.65° B.50° C.45° D.40°【考点】平行线的性质.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.故选B.12.如图,⊙O是△ABC的外接圆,连接OA、OB,∠OBA=50°,则∠C的度数为()A.30° B.40° C.50° D.80°【考点】圆周角定理.【分析】根据三角形的内角和定理求得∠AOB的度数,再进一步根据圆周角定理求解.【解答】解:∵OA=OB,∠OBA=50°,∴∠OAB=∠OBA=50°,∴∠AOB=180°﹣50°×2=80°,∴∠C=∠AOB=40°.故选:B.13.如图,在平面直角坐标系中,△ABC的三个顶点均在格点上,将△ABC绕点O旋转180°后得到三角A′B′C′,则点B的对应点B′的坐标为()A.(﹣2,﹣1)B.(﹣3,3)C.(1,3)D.(0,3)【考点】坐标与图形变化-旋转.【分析】根据题意可得B与B′关于原点对称,因此根据关于原点对称的点的坐标特点:横纵坐标均互为相反数可得答案.【解答】解:根据平面直角坐标系可得B(0,﹣3),将△ABC绕点O旋转180°后得到三角A′B′C′,因此B与B′关于原点对称,则B′(0,3),故选:D.14.如图,点P是等边△ABC的边上的一个作匀速运动的动点,其由点A开始沿AB边运动到B,再沿BC边运动到C为止,设运动时间为t,△ACP的面积为y,则y与t的大致图象是()A.B.C. D.【考点】动点问题的函数图象.【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P 在AB上运动时△ACP的面积为y,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【解答】解:设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为y=hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=h(AB+BC﹣vt)=﹣hvt+h(AB+BC),是关于t的一次函数关系式;故选B.二、填空题(本大题满分16分,每小题4分)15.分解因式:2a2﹣4a+2= 2(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】原式提取2,再利用完全平方公式分解即可.【解答】解:原式=2(a2﹣2a+1)=2(a﹣1)2.故答案为:2(a﹣1)2.16.不等式组的解集为x<3 .【考点】解一元一次不等式组.【分析】首先分别计算出两个不等式的解集,再根据小小取小确定不等式组的解集.【解答】解:,由①得:x<4,由②得:x<3,不等式组的解集为:x<3,故答案为:x<3.17.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过点O作OH⊥AC于H.若OH=3,AB=12,BO=13.则弦AC的长为8 .【考点】切线的性质;勾股定理;垂径定理.【分析】首先根据切线的性质可得∠OAB=90°,利用勾股定理计算出AO的长,再利用勾股定理计算出AH的长,根据垂径定理可得AC=2AH,进而可得答案.【解答】解:∵AB是⊙O的切线,A为切点,∴∠OAB=90°,∵AB=12,BO=13,∴AO===5,∵OH⊥AC,∴AC=2AH,∵OH=3,∴AH==4,∴AC=8,故答案为:8.18.如图,在▱ABCD中,AB=6,AD=10,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AG=,则△CEF的周长为.【考点】平行四边形的性质.【分析】由于AE平分∠BAD,那么∠BAE=∠DAE,由AD∥BC,可得内错角∠DAE=∠BEA,等量代换后可证得AB=BE,即△ABE是等腰三角形,求出CE、CF的长,根据等腰三角形“三线合一”的性质得出AE=2AG,而在Rt△ABG中,求得AG的长,再证明∴△ABE∽△FCE,求出EF的长,即可求得△CEF的周长.【解答】解:∵AE平分∠BAD,∴∠DAE=∠BAE;又∵四边形ABCD是平行四边形,∴AD∥BC,CD=AB=6,BC=AD=10,∴∠BEA=∠DAE=∠BAE,∴AB=BE=6,同理;DF=AD=10,∴CE=BC﹣BE=4,CF=DF﹣CD=4,BE:CE=6:4=3:2.∵BG⊥AE,垂足为G,∴AG=EG=,∴AE=5,∵AB∥FC,∴△ABE∽△FCE,∴AE:EF=BE:CE=3:2,∴EF=AE=×5=,∴△CEF的周长=CE+CF+EF=4+4+=;故答案为:.三、解答题(本大题满分62分)19.(1)计算:(﹣2)×5+÷﹣()﹣1;(2)解方程: +1=.【考点】二次根式的混合运算;负整数指数幂;解分式方程.【分析】(1)根据二次根式的除法法则和负整数指数幂的意义计算;(2)先去分母,把分式方程化为整式方程,解整式方程,然后检验确定分式方程的解.【解答】解:(1)原式=﹣10+﹣3=﹣10+2﹣3=﹣11;(2)去分母得x﹣3+x﹣2=3,解得x=4,检验:当x=4时,x﹣2≠0,所以原方程的解为x=4.20.“2020年2月1日首届海南国际旅游岛三角梅花展盛大开幕.”三角梅繁花似锦、绚丽满枝,花期长,象征着热情、坚忍不拔、顽强奋进的精神,是我们海南省的省花.海口市某公司在花卉基地购买了6盆紫色三角梅和4盆朱红色三角梅,共花了3080元,已知朱红色三角梅比紫色三角梅每盆贵320元,问紫色三角梅和朱红色三角梅每盆售价各是多少元【考点】二元一次方程组的应用.【分析】设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据“购买了6盆紫色三角梅和4盆朱红色三角梅共花了3080元,朱红色三角梅比紫色三角梅每盆贵320元”列方程组求解可得.【解答】解:设紫色三角梅每盆售价是x元,朱红色三角梅每盆售价是y元,根据题意,得:,解得:,答:紫色三角梅每盆售价是180元,朱红色三角梅每盆售价是500元.21.某中学数学老师在做“利用信息技术培养学生自学能力”的课题研究时,就“你最喜欢哪种方式获取知识”对本校八年级部分学生进行了随机抽样问卷调查,其中调查问卷设置以下选项(只选一项): AA.通过老师单纯讲解B.通过网络查找资源自主学习C.在老师的指导下,合作学习或自主学习D.其他方式并将调查结果绘制成了两幅不完整的统计图.根据以上信息,解答下列问题:(1)在这次问卷调查中,一共抽查了120 名学生;在扇形图中,x= 15 ;(2)请将条形图补充完整;在扇形图中,B选项所对应的圆心角是108 度;(3)如果全校八年级学生有1100名,那么估计选择“B”的学生有330 名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据题意可以求得本次调查的学生数和在扇形中x的值;(2)根据统计图可以求得D的学生数,从而可以将统计图补充完整,计算出B选项所对应的圆心角的度数;(3)根据统计图中的数据可以估计全校八年级学生选择“B”的学生.【解答】解:(1)本次调查的学生有:48÷40%=120(名),x%=18÷120×100%=15%,故答案为:120,15;(2)选D的学生有:120﹣18﹣36﹣48=18(名),补全的条形统计图如右图1所示,B选项多对的圆心角是:360°×=108°,故答案为:108;(3)全校八年级学生有1100名,选择“B”的学生有:1100×=330(名),故答案为:330.22.如图,某轮船位于A处,观测到某港口城市C位于轮船的北偏西67°,轮船以21海里/时的速度向正北方向行驶,行驶5小时后该船到达B处,这时观测到城市C位于该船的南偏西37°方向,求此时轮船所处位置B与城市C的距离.(参考数据:sin37°≈,tan37°≈,sin67°≈,tan67°≈)【考点】解直角三角形的应用-方向角问题.【分析】首先过点C作CP⊥AB于点P,然后设PC=x海里,分别在Rt△APC中与Rt△PCB中,利用正切函数求得出AP与BP的长,由AB=21×5,即可得方程,解此方程即可求得x的值,继而求得答案.【解答】解:过点C作CP⊥AB于点P,设PC=x海里.在Rt△APC中,∵tan∠A=,∴AP===.在Rt△PCB中,∵tan∠B=,∴BP==,.∵AP+BP=AB=21×5,∴+x=21×5,解得:x=60.∵sin∠B=,∴CB==60×=100(海里).答:轮船所处位置B与城市C的距离为100海里.23.如图,已知O为正方形ABCD对角线的交点,CE平分∠ACB交AB于点E,延长CB到点F,使BF=BE,连接AF,交CE的延长线于点G,连接OG.(1)求证:△BCE≌△BAF;(2)求证:OG=OC;(3)若AF=2﹣,求正方形ABCD的面积.【考点】四边形综合题.【分析】(1)由四边形ABCD是正方形,BF=BE,可利用SAS证得:△BCE≌△BAF;(2)由△BCE≌△BAF,易证得CG⊥AF,又由CE平分∠ACB,可得△ACF是等腰三角形,G 是AF的中点,继而可得OG是△ACF的中位线,则可证得结论;(3)首先设边长为x,由(2)可表示出BF的长,然后由勾股定理得方程:(2﹣)2=[(﹣1)x]2+x2,继而求得答案.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC,∠ABF=∠EBC=90°,在△BCE和△BAF中,,∴△BCE≌△BAF(SAS);(2)∵△BCE≌△BAF,∴∠BCE=∠BAF,∵∠BEC=∠MEG,∴∠AGE=∠EBC=90°,∴CG⊥AF,∵CE平分∠ACB,∴AC=FC,AG=FG,∵OA=OC,∴OG∥BC,∴∠OGC=∠FCG,∵∠OCG=∠FCG,∴∠OGC=∠OCG,∴OG=OC;(3)设AB=x,则AC=FC=x,∴BF=FC﹣BC=(﹣1)x,在Rt△ABF中,AF2=BF2+AB2,∴(2﹣)2=[(﹣1)x]2+x2,解得:x2=.∴正方形ABCD的面积为:.24.如图,二次函数y=ax2+bx+c的图象与x轴监狱点A(﹣3,0)和点B,与y轴交于点C,顶点D的坐标为(﹣1,4).点P是第二象限内抛物线上的一动点,过点P做PM⊥x轴于M,交线段AC于点E.(1)求该二次函数的解析式和直线AC的解析式;(2)当△PAC面积为3时,求点P的坐标;(3)过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于N.若点P在点Q左边,当矩形PQMN的周长最大时:①求EM的长;②直接判断△PCE是什么特殊三角形.【考点】二次函数综合题.【分析】(1)待定系数法可分别求得二次函数与一次函数解析式;(2)作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),表示出PH、OH、AO、CH的长,由S△PAC=S梯形PHOA ﹣S△PCH﹣S△AOC=3得出关于a的方程,求解即可得a的值,即可知点P的坐标;(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,根据矩形周长公式表示出C关于m 的函数解析式,求得其最值情况即可知点P坐标,结合直线AC的解析式即可得知EM的长;②根据①知点P、E、C坐标,求出PE、PC、CE的长即可判断△PCE的形状.【解答】解:(1)由题意可设抛物线解析式为y=a(x+1)2+4,将点A(﹣3,0)代入,得:4a+4=0,解得:a=﹣1,∴抛物线解析式为y=﹣(x+1)2+4=﹣x2﹣2x+3,则点C坐标为(0,3),设直线AC的解析式为y=kx+b,将点A(﹣3,0)、C(0,3)代入,得:,解得:,∴直线AC的解析式为y=x+3;(2)如图,作PH⊥y轴,连接PC,设点P(a,﹣a2﹣2a+3),则PH=﹣a,OH=﹣a2﹣2a+3,OA=3,∵S△PAC =S梯形PHOA﹣S△PCH﹣S△AOC=3,∴×(﹣a+3)(﹣a2﹣2a+3)﹣×(﹣a)(﹣a2﹣2a+3﹣3)﹣×3×3=3,整理,得:a2+3a+2=0,解得:a=﹣1或a=﹣2,∴点P的坐标为(﹣1,4)或(﹣2,3);(3)①设P(m,﹣m2﹣2m+3),矩形PQMN的周长为C,则PQ=﹣2m﹣2,PM=﹣m2﹣2m+3,∵C=2[(﹣2m﹣2)+(﹣m2﹣2m+3)]=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时,矩形PQMN的周长最大,此时点P(﹣2,3),当x=﹣2时,y=x+3=﹣2+3=1,即EM=1;②由①知点E(﹣2,1),∵点P(﹣2,3)、C(0,3),∴PE=2,PC=2,CE==2,∵PE2+PC2=CE2,且PE=PC,∴△PCE是等腰直角三角形.2020年8月27日。

2020年浙江省宁波市中考数学模拟试卷(三) 解析版

2020年浙江省宁波市中考数学模拟试卷(三)  解析版

2020年浙江省宁波市中考数学模拟试卷(三)一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.12.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×10124.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2 6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.129.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣412.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)二.填空题13.把多项式x2﹣3x因式分解,正确的结果是.14.已知扇形的面积为3π,圆心角为120°,则它的半径为.15.若分式的值为0,则x的值为.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为米(结果保留根号).18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.20.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a 的值.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.2020年浙江省宁波市中考数学模拟试卷(三)参考答案与试题解析一.选择题1.在﹣3,﹣1,0,1这四个数中,最小的数是()A.﹣3B.﹣1C.0D.1【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得﹣3<﹣1<0<1,最小的数是﹣3,故选:A.2.在平面直角坐标系中,点P(1,2)关于原点的对称点P'的坐标是()A.(1,2)B.(﹣1,2)C.(1,﹣2)D.(﹣1,﹣2)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数,可得答案.【解答】解:点P(1,2)关于原点的对称点P'的坐标是(﹣1,﹣2),故选:D.3.研究表明,可燃冰是一种可替代石油的新型清洁能源,在我国某海域已探明的可燃冰储存量达150000000000立方米,其中数字150000000000用科学记数法可表示为()A.15×1010B.0.15×1012C.1.5×1011D.1.5×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:150000000000=1.5×1011,故选:C.4.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差B.中位数C.众数D.平均数【分析】根据各自的定义判断即可.【解答】解:有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的方差,故选:A.5.一元一次不等式组的解集是()A.x>﹣1B.x≤2C.﹣1<x≤2D.x>﹣1或x≤2【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式2x>x﹣1,得:x>﹣1,解不等式x≤1,得:x≤2,则不等式组的解集为﹣1<x≤2,故选:C.6.如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.7.一个布袋里装有4个只有颜色不同的球,其中3个红球,1个白球.从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球,则两次摸到的球都是红球的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出红球情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,两次摸出红球的有9种情况,∴两次摸出红球的概率为;故选:D.8.如果三角形的两边分别为4和6,那么连接该三角形三边中点所得三角形的周长可能是()A.6B.8C.10D.12【分析】本题依据三角形三边关系,可求第三边大于2小于10,原三角形的周长大于12小于20,连接中点的三角形周长是原三角形周长的一半,那么新三角形的周长应大于6而小于10,看哪个符合就可以了.【解答】解:设三角形的三边分别是a、b、c,令a=4,b=6,则2<c<10,12<三角形的周长<20,故6<中点三角形周长<10.故选:B.9.如图,已知等腰三角形ABC,AB=AC.若以点B为圆心,BC长为半径画弧,交腰AC 于点E,则下列结论一定正确的是()A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE 【分析】利用等腰三角形的性质分别判断后即可确定正确的选项.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵以点B为圆心,BC长为半径画弧,交腰AC于点E,∴BE=BC,∴∠ACB=∠BEC,∴∠BEC=∠ABC=∠ACB,∴∠A=∠EBC,故选:C.10.下列关于函数y=x2﹣6x+10的四个命题:①当x=0时,y有最小值10;②n为任意实数,x=3+n时的函数值大于x=3﹣n时的函数值;③若n>3,且n是整数,当n≤x≤n+1时,y的整数值有(2n﹣4)个;④若函数图象过点(a,y0)和(b,y0+1),其中a>0,b>0,则a<b.其中真命题的序号是()A.①B.②C.③D.④【分析】分别根据二次函数的图象与系数的关系、抛物线的顶点坐标公式及抛物线的增减性对各选项进行逐一分析.【解答】解:∵y=x2﹣6x+10=(x﹣3)2+1,∴当x=3时,y有最小值1,故①错误;当x=3+n时,y=(3+n)2﹣6(3+n)+10,当x=3﹣n时,y=(n﹣3)2﹣6(3﹣n)+10,∵(3+n)2﹣6(3+n)+10﹣[(n﹣3)2﹣6(3﹣n)+10]=0,∴n为任意实数,x=3+n时的函数值等于x=3﹣n时的函数值,故②错误;∵抛物线y=x2﹣6x+10的对称轴为x=3,a=1>0,∴当x>3时,y随x的增大而增大,当x=n+1时,y=(n+1)2﹣6(n+1)+10,当x=n时,y=n2﹣6n+10,(n+1)2﹣6(n+1)+10﹣[n2﹣6n+10]=2n﹣5,∵n是整数,∴2n﹣5是整数,∴y的整数值有(2n﹣4)个;故③正确;∵抛物线y=x2﹣6x+10的对称轴为x=3,1>0,∴当x>3时,y随x的增大而增大,x<3时,y随x的增大而减小,∵y0+1>y0,∴当0<a<3,0<b<3时,a>b,当a>3,b>3时,a<b,当0<a<3,b>3时,a<b,故④错误,故选:C.11.如图,平行于x轴的直线与函数y=(k1>0,x>0),y=(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若△ABC的面积为4,则k1﹣k2的值为()A.8B.﹣8C.4D.﹣4【分析】设A(a,h),B(b,h),根据反比例函数图象上点的坐标特征得出ah=k1,bh =k2.根据三角形的面积公式得到S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,求出k1﹣k2=8.【解答】解:∵AB∥x轴,∴A,B两点纵坐标相同.设A(a,h),B(b,h),则ah=k1,bh=k2.∵S△ABC=AB•y A=(a﹣b)h=(ah﹣bh)=(k1﹣k2)=4,∴k1﹣k2=8.故选:A.12.我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2,P2P3,P3P4,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A.(﹣6,24)B.(﹣6,25)C.(﹣5,24)D.(﹣5,25)【分析】观察图象,推出P9的位置,即可解决问题.【解答】解:由题意,P5在P2的正上方,推出P9在P6的正上方,且到P6的距离=21+5=26,所以P9的坐标为(﹣6,25),故选:B.二.填空题13.把多项式x2﹣3x因式分解,正确的结果是x(x﹣3).【分析】直接提公因式x即可.【解答】解:原式=x(x﹣3),故答案为:x(x﹣3).14.已知扇形的面积为3π,圆心角为120°,则它的半径为3.【分析】根据扇形的面积公式,可得答案.【解答】解:设半径为r,由题意,得πr2×=3π,解得r=3,故答案为:3.15.若分式的值为0,则x的值为2.【分析】根据分式的值为零的条件可以得到,从而求出x的值.【解答】解:由分式的值为零的条件得,由2x﹣4=0,得x=2,由x+1≠0,得x≠﹣1.综上,得x=2,即x的值为2.故答案为:2.16.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=(k≠0)的图象恰好经过点A′,B,则k的值为.【分析】设B(m,1),得到OA=BC=m,根据轴对称的性质得到OA′=OA=m,∠A′OD=∠AOD=30°,求得∠A′OA=60°,过A′作A′E⊥OA于E,解直角三角形得到A′(m,m),列方程即可得到结论.【解答】解:∵四边形ABCO是矩形,AB=1,∴设B(m,1),∴OA=BC=m,∵四边形OA′B′D与四边形OABD关于直线OD对称,∴OA′=OA=m,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函数y=(k≠0)的图象恰好经过点A′,B,∴m•m=m,∴m=,∴k=.故答案为:.17.如图,某高速公路建设中需要测量某条江的宽度AB,飞机上的测量人员在C处测得A,B两点的俯角分别为45°和30°.若飞机离地面的高度CH为1200米,且点H,A,B 在同一水平直线上,则这条江的宽度AB为1200(﹣1)米(结果保留根号).【分析】在Rt△ACH和Rt△HCB中,利用锐角三角函数,用CH表示出AH、BH的长,然后计算出AB的长.【解答】解:由于CD∥HB,∴∠CAH=∠ACD=45°,∠B=∠BCD=30°在Rt△ACH中,∵∴∠CAH=45°∴AH=CH=1200米,在Rt△HCB,∵tan∠B=∴HB====1200(米).∴AB=HB﹣HA=1200﹣1200=1200(﹣1)米故答案为:1200(﹣1)18.如图,已知点A,C在反比例函数y=(a>0)的图象上,点B,D在反比例函数y =(b<0)的图象上,AB∥CD∥x轴,AB,CD在x轴的两侧,AB=3,CD=2,AB 与CD的距离为5,则a﹣b的值是6.【分析】利用反比例函数k的几何意义,结合相关线段的长度来求a﹣b的值.【解答】解:如图,设CD交y轴于E,AB交y轴于F.连接OD、OC.由题意知:DE•OE=﹣b,CE•OE=a,∴a﹣b=OE(DE+CE)=OE•CD=2OE,同法:a﹣b=3•OF,∴2OE=3OF,∴OE:OF=3:2,又∵OE+OF=5,∴OE=3,OF=2,∴a﹣b=6.故答案是:6.三.解答题19.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=5.【分析】先用平方差公式和单项式乘以多项式的方法将代数式化简,然后将a的值代入化简的代数式即可求出代数式的值.【解答】解:(a+2)(a﹣2)+a(1﹣a)=a2﹣4+a﹣a2=a﹣4将a=5代入上式中计算得,原式=a﹣4=5﹣4=120.一个不透明的布袋里装有2个白球,1个黑球和若干个红球,它们除颜色外其余都相同,从中任意摸出1个球,是白球的概率为.(1)布袋里红球有多少个?(2)先从布袋中摸出1个球后不放回,再摸出1个球,请用列表法或画树状图等方法求出两次摸到的球都是白球的概率.【分析】(1)设红球的个数为x,根据白球的概率可得关于x的方程,解方程即可;(2)画出树形图,即可求出两次摸到的球都是白球的概率.【解答】解:(1)设红球的个数为x,由题意可得:,解得:x=1,经检验x=1是方程的根,即红球的个数为1个;(2)画树状图如下:∴P(摸得两白)==.21.如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA =37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)【分析】(1)作CH⊥AB于H.在Rt△ACH中,根据三角函数求得CH,AH,在Rt△BCH中,根据三角函数求得BH,再根据AB=AH+BH即可求解;(2)在Rt△BCH中,根据三角函数求得BC,再根据AC+BC﹣AB列式计算即可求解.【解答】解:(1)作CH⊥AB于H.在Rt△ACH中,CH=AC•sin∠CAB=AC•sin25°≈10×0.42=4.2(千米),AH=AC•cos∠CAB=AC•cos25°≈10×0.91=9.1(千米),在Rt△BCH中,BH=CH÷tan∠CBA=4.2÷tan37°≈4.2÷0.75=5.6(千米),∴AB=AH+BH=9.1+5.6=14.7(千米).故改直的公路AB的长14.7千米;(2)在Rt△BCH中,BC=CH÷sin∠CBA=4.2÷sin37°≈4.2÷0.6=7(千米),则AC+BC﹣AB=10+7﹣14.7=2.3(千米).答:公路改直后比原来缩短了2.3千米.22.如图,在五边形ABCDE中,∠BCD=∠EDC=90°,BC=ED,AC=AD.(1)求证:△ABC≌△AED;(2)当∠B=140°时,求∠BAE的度数.【分析】(1)根据∠ACD=∠ADC,∠BCD=∠EDC=90°,可得∠ACB=∠ADE,进而运用SAS即可判定全等三角形;(2)根据全等三角形对应角相等,运用五边形内角和,即可得到∠BAE的度数.【解答】(1)证明:∵AC=AD,∴∠ACD=∠ADC,又∵∠BCD=∠EDC=90°,∴∠ACB=∠ADE,在△ABC和△AED中,,∴△ABC≌△AED(SAS);(2)解:当∠B=140°时,∠E=140°,又∵∠BCD=∠EDC=90°,∴五边形ABCDE中,∠BAE=540°﹣140°×2﹣90°×2=80°.23.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).(1)求b,m的值;(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a 的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵点P(1,b)在直线l1:y=2x+1上,∴b=2×1+1=3;∵点P(1,3)在直线l2:y=mx+4上,∴3=m+4,∴m=﹣1.(2)当x=a时,y C=2a+1;当x=a时,y D=4﹣a.∵CD=2,∴|2a+1﹣(4﹣a)|=2,解得:a=或a=.∴a的值为或.24.计划在某广场内种植A、B两种花木共6600棵,若A花木数量是B花木数量的2倍少600棵.(1)A、B两种花木的数量分别是多少棵?(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?【分析】(1)首先设A种花木的数量为x棵,B种花木的数量为y棵,根据题意可得等量关系:①A、B两种花木共6600棵;②A花木数量=B花木数量的2倍﹣600棵,根据等量关系列出方程,再解即可;(2)首先设应安排a人种植A花木,则安排(26﹣a)人种植B花木,由题意可等量关系:种植A花木所用时间=种植B花木所用时间,根据等量关系列出方程,再解即可.【解答】解:(1)设A种花木的数量为x棵,B种花木的数量为y棵,由题意得:,解得:,答:A种花木的数量为4200棵,B种花木的数量为2400棵;(2)设应安排a人种植A花木,由题意得:=,解得:a=14,经检验:a=14是原方程的解,26﹣a=12,答:应安排14人种植A花木,应安排,12人种植B花木,才能确保同时完成各自的任务.25.定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC.∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长;②若AC⊥BD,求证:AD=CD;(2)如图2.在矩形ABCD中,AB=5.BC=9,点P是对角线BD中点,过点P作直线分别交边AD,BC于点E,F.使四边形ABFE是等腰直角四边形,求四边形DPFC的面积.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=CD=1,AB∥CD,∴四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC==.②如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD(SAS),∴AD=CD.(2)若EF⊥BC,则四边形ABFE是矩形,AE=BF=BC=4.5,∵AB=5,∴AE≠AB∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2﹣1中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×4×=.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∴S△PDCF=S△BDC﹣S△BPF=×5×9﹣×5×=,综上所述,四边形DPFC的面积为或.26.如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D分别是P A,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.【分析】(1)根据三角形ABP是等腰三角形,可得∠B的度数,再连接MD,根据MD 为△P AB的中位线,可得∠MDB=∠APB=28°,进而得到=2∠MDB=56°;(2)根据∠BAP=∠ACB,∠BAP=∠B,即可得到∠ACB=∠B,进而得出AC=AB;(3)①记MP与圆的另一个交点为R,根据AM2+MR2=AR2=AC2+CR2,即可得到PR =,MR=,再根据Q为直角三角形锐角顶点,分四种情况进行讨论:当∠ACQ =90°时,当∠QCD=90°时,当∠QDC=90°时,当∠AEQ=90°时,即可求得MQ 的值为或或;②先判定△DEG是等边三角形,再根据GMD=∠GDM,得到GM=GD=1,过C作CH ⊥AB于H,由∠BAC=30°可得CH=AC=1=MG,即可得到CG=MH=﹣1,进而得出S△ACG=CG×CH=,再根据S△DEG=,即可得到△ACG和△DEG 的面积之比.【解答】解:(1)∵MN⊥AB,AM=BM,∴P A=PB,∴∠P AB=∠B,∵∠APB=28°,∴∠B=76°,如图1,连接MD,∵MD为△P AB的中位线,∴MD∥AP,∴∠MDB=∠APB=28°,∴=2∠MDB=56°;(2)∵∠BAC=∠MDC=∠APB,又∵∠BAP=180°﹣∠APB﹣∠B,∠ACB=180°﹣∠BAC﹣∠B,∴∠BAP=∠ACB,∵∠BAP=∠B,∴∠ACB=∠B,∴AC=AB;(3)①如图2,记MP与圆的另一个交点为R,∵MD是Rt△MBP的中线,∴DM=DP,∴∠DPM=∠DMP=∠RCD,∵∠ACR=∠AMR=90°,∴AM2+MR2=AR2=AC2+CR2,∴12+MR2=22+PR2,∴12+(4﹣PR)2=22+PR2,∴PR=,∴MR=,Ⅰ.当∠ACQ=90°时,AQ为圆的直径,∴Q与R重合,∴MQ=MR=;Ⅱ.如图3,当∠QCD=90°时,在Rt△QCP中,PQ=2PR=,∴MQ=;Ⅲ.如图4,当∠QDC=90°时,∵BM=1,MP=4,∴DP=BP=,∵cos∠MPB==,∴PQ=,∴MQ=;Ⅳ.如图5,当∠AEQ=90°时,由对称性可得∠AEQ=∠BDQ=90°,∴MQ=;综上所述,MQ的值为或或;②△ACG和△DEG的面积之比为.理由:如图6,∵DM∥AF,DE∥AB,∴四边形AMDE是平行四边形,四边形AMDF是等腰梯形,∴DF=AM=DE=1,又由对称性可得GE=GD,∴△DEG是等边三角形,∴∠EDF=90°﹣60°=30°,∴∠DEF=75°=∠MDE,∴∠GDM=75°﹣60°=15°,∴∠GMD=∠PGD﹣∠GDM=15°,∴∠GMD=∠GDM,过C作CH⊥AB于H,由∠BAC=30°可得CH=AC=AB=1=MG,AH=,∴CG=MH=﹣1,∴S△ACG=CG×CH=,∵S△DEG=,∴S△ACG:S△DEG=.。

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷03含解析 (2)

2020年中考数学模拟试卷第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在实数实数0,−√5,√6,﹣2中,最小的是( ) A .0 B .−√5C .√6D .﹣2【答案】B【解析】∵−√5<﹣2<0<√6, ∴所给的数中,最小的数是−√5. 故选B . 2.函数1x y x+=-的自变量取值范围是( ) A .0x > B .0x <C .0x ≠D .1x ≠-【答案】C【解析】当0x ≠时,分式有意义。

即1x y x+=-的自变量取值范围是0x ≠。

故答案为:C3.下列说法正确的是( )A .调查某班学生的身高情况,适采用抽样训查B .对端午节期间市场上粽子质量情况的调查适合采用全面调查C .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的率是1D .“若,m n 互为相反数,则0m n +=”,这一事件是必然事件 【答案】D【解析】A 、调查你所在班级同学的身高,采用普查;B 、调查端午节期间市场上粽子质量情况,采用抽样调查;C 、小南抛掷两次硬币都是正面向上,不能说明抛掷硬币正面向上的率是1;D 、若,m n 互为相反数,则有0m n +=成立,故这一事件是必然事件;故选D . 4.点()2,3A -关于原点对称的点的坐标为( ) A .()2,3 B .()3,2-C .()2,3-D .()3,2-【答案】C【解析】点()2,3A -关于原点对称的点的坐标为()2,3- 故选C.5.如图是一个几何体的三视图,则此几何体是( )A .圆柱B .棱柱C .圆锥D .棱台【答案】A【解析】由于主视图和左视图为正方形可得此几何体为柱体,由俯视图为圆形可得为圆柱.故选A .6.九(1)班有2名升旗手,九(2)班、九(3)班各1名,若从4人中随机抽取2人担任下周的升旗手,则抽取的2人恰巧都来自九(1)班的概率是( )A .34B .23C .25D .16【答案】D【解析】画树状图如下:由树状图知,共有12种等可能结果,其中抽取的2人恰巧都来自九(1)班的有2种结果,所以抽取的2人恰巧都来自九(1)班的概率为21= 126,故选D.7.已知关于x,y的方程组24x y mx y m+=⎧⎨-=⎩的解为3x+2y=14的一个解,那么m的值为( )A.1 B.-1 C.2 D.-2 【答案】C【解析】解方程组24x y mx y m+=⎧⎨-=⎩,得3x my m=⎧⎨=-⎩,把3x m=,y m=-代入3214x y+=得:9214m m-=,2m∴=,故选C.8.在平面直角坐标系中,二次函数y=ax2+bx+c(a≠0)的图象如图所示,现给以下结论:①abc<0;②c+2a<0;③9a﹣3b+c=0;④a﹣b≥m(am+b)(m为实数);⑤4ac﹣b2<0.其中错误结论的个数有()A.1个B.2个C.3个D.4个【答案】A【解析】①由抛物线可知:a >0,c <0,对称轴x =﹣2ba<0, ∴b >0,∴abc <0,故①正确;②由对称轴可知:﹣2ba=﹣1, ∴b =2a ,∵x =1时,y =a+b+c =0, ∴c+3a =0,∴c+2a =﹣3a+2a =﹣a <0,故②正确; ③(1,0)关于x =﹣1的对称点为(﹣3,0), ∴x =﹣3时,y =9a ﹣3b+c =0,故③正确; ④当x =﹣1时,y 的最小值为a ﹣b+c , ∴x =m 时,y =am 2+bm+c , ∴am 2+bm+c ≥a-b+c ,即a ﹣b ≤m (am+b ),故④错误; ⑤抛物线与x 轴有两个交点, ∴△>0, 即b 2﹣4ac >0,∴4ac ﹣b 2<0,故⑤正确;故选A .9.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A.6 B.8 C.10 D.12 【答案】C【解析】连接BD交AC于O,∵四边形ABCD是正方形,∴AC⊥BD,OD=OB,即D、B关于AC对称,∴DN=BN,连接BM交AC于N,则此时DN+MN最小,∴DN=BN,∴DN+MN=BN+MN=BM,∵四边形ABCD是正方形,∴∠BCD=90°,BC=8,CM=8-2=6,由勾股定理得:=,∴DN+MN的最小值为10,故选C .10.如图,在半径为6的⊙O 中,正六边形ABCDEF 与正方形AGDH 都内接于⊙O ,则图中阴影部分的面积为( )A .27﹣B .C .54﹣D .54【答案】C【解析】设EF 交AH 于M 、交HD 于N ,连接OF 、OE 、MN ,如图所示: 根据题意得:△EFO 是等边三角形,△HMN 是等腰直角三角形, ∴EF =OF =6,∴△EFO 的高为:OF •sin60°=6×2=MN =2(6﹣12﹣∴FM =12(6﹣12+3,∴阴影部分的面积=4S △AFM =4×12(3)×54﹣ 故选C .二、填空题(本大题共6小题,每小题3分,共18分) 11.因式分解:3x 3﹣12x=_____. 【答案】3x (x+2)(x ﹣2) 【解析】3x 3﹣12x =3x (x 2﹣4) =3x (x+2)(x ﹣2), 故答案为3x (x+2)(x ﹣2).12.在学校举行“中国诗词大会”的比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,这组数据的众数是_____. 【答案】90【解析】这组数据中数据90出现了2次,出现次数最多,所以这组数据的众数为90, 故答案为:90.13.化简2221m m nm n ---的结果是____.【答案】1m n+. 【解析】原式=2()()()()m m n m n m n m n m n +-+-+-=()()m n m n m n -+-=1m n+.故答案为:1m n+14.如图,在▱ABCD中,AB AD=4,将▱ABCD沿AE翻折后,点B恰好与点C重合,则折痕AE的长为_____.【答案】3【解析】∵翻折后点B恰好与点C重合,∴AE⊥BC,BE=CE,∵BC=AD=4,∴BE=2,∴3AE===.故答案为3.15.如图,直线y=12x与双曲线y=kx(k>0,x>0)交于点A,将直线y=12x向上平移2个单位长度后,与y轴交于点C,与双曲线交于点B,若OA=3BC,则k的值为____.【答案】98.【解析】如图,∵将直线y=1x2向上平移2个单位长度后,与y轴交于点C,∴平移后直线的解析式为y=12x+2,如图:分别过点A、B作AD⊥x轴,BE⊥x轴,CF⊥BE于点F,设A(3x,32 x),),∵OA=3BC,BC∥OA,CF∥x轴,∴△BCF∽△AOD,∴CF=13 OD,∵点B在直线y=12x+2上,∴B(x,12x+2),∵点A、B在双曲线y=kx,∴313222x x x x⎛⎫⋅=⋅+⎪⎝⎭,解得x=12,∴111922228k⎛⎫=⨯⨯+=⎪⎝⎭.故答案为:9 816.如图,∠AOC=90°,P为射线OC上任意一点(点P不与点O重合),分别以AO,AP为边在∠AOC的内部作两个等边△AOE和△APQ,连接QE并延长交OP于点F,则∠OEF的度数是_____.【答案】30°【解析】∵△AOE,△APQ都是等边三角形,∴AE=AO,AQ=AP,∠EAO=∠QAP=60°,∴∠QAE=∠PAO,∴△QAE≌△PAO(SAS),∴∠AEQ=∠AOP,∵∠AOP=90°,∴∠AEQ=∠AEF=90°,∵∠AEO=60°,∴∠OEF=30°,故答案为30°.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分8分)解不等式组:3(2)421152x x x x --⎧⎪-+⎨<⎪⎩…. 【解析】3(2)4(1)211(2)52x x x x --⎧⎪-+⎨<⎪⎩… 不等式()1可化为364x x -+≥,解得1x ≤,不等式()2可化为()()22151x x -<+,4255x x -<+,解得7x >-.把解集表示在数轴上为:∴原不等式组的解集为71x -<≤.18.(本小题满分8分)如图,点B 在DC 上,BE 平分∠ABD ,∠ABE =∠C ,求证:BE ∥AC .【解析】∵BE 平分∠ABD,∴∠DBE=∠ABE;∵∠ABE=∠C,∴∠DBE=∠C,∴BE∥AC.19.(本小题满分8分)某服饰公司为我学校七年级学生提供L码、M码、S码三种大小的校服,我校1000名学生购买校服,随机抽查部分订购三种型号校服的人数,得到如图统计图:(1)一共抽查了人;(2)购买L码人数对应的圆心角的度数是;(3)估计该服饰公司要为我校七年级学生准备多少件M码的校服?【解析】(1)本次调查的总人数为22÷22%=100人,故答案为100;(2)购买L码人数对应的扇形的圆心角的度数是360°×30100=108°,故答案为108°;(3)估计该服饰公司要为我校七年级学生准备M码的校服1000×1003022100--=480(件).20.(本小题满分8分)如图,在下列9×9的网格中,横纵坐标均为整数的点叫做格点,例如:A(1,1)、B(8,3)都是格点,E、F为小正方形边的中点,C为AE、BF的延长线的交点.(1)AE的长等于;(2)若点P在线段AC上,点Q在线段BC上,且满足AP=PQ=QB,请在如图示所示的网格中,用无刻度的直尺,画出线段PQ,并直接写出P、Q两点的坐标.=;【解析】(1)AE2(2)如图,AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.故答案为:AC与网格线相交,得到P,取格点M,连接AM,并延长与BC交于Q,连接PQ,则线段PQ即为所求.∴P(3,4),Q(6,6).21.(本小题满分8分)如图1,△ABC是等腰三角形,O是底边BC中点,腰AB与⊙O相切于点D(1)求证:AC是⊙O的切线;(2)如图2,连接CD,若BC的长.【解析】(1)证明:连接OD ,OA ,作OF⊥AC 于F ,如图,∵△ABC 为等腰三角形,O 是底边BC 的中点,∴AO⊥BC,AO 平分∠BAC,∵AB 与⊙O 相切于点D ,∴OD⊥AB,而OF⊥AC,∴OF=OD ,∴AC 是⊙O 的切线;(2)过D 作DF⊥BC 于F ,连接OD ,∵tan∠BCD=4,∴4DF CF设DF a ,OF =x ,则CF =4a ,OC =4a ﹣x ,∵O 是底边BC 中点,∴OB=OC =4a ﹣x ,∴BF=OB﹣OF=4a﹣2x,∵OD⊥AB,∴∠BDO=90°,∴∠BDF+∠FDO=90°,∵DF⊥BC,∴∠DFB=∠OFD=90°,∠FDO+∠D OF=90°,∴∠BDF=∠DOF,∴△DFO∽△BFD,∴BF DFDF FO=,x=,解得:x1=x2=a,∵⊙O∵DF2+FO2=DO2,x)2+x2=)2,∴x1=x2=a=1,∴OC=4a﹣x=3,∴BC=2OC=6.22.(本小题满分10分)某校两次购买足球和篮球的支出情况如表:(2)学校准备给帮扶的贫困学校送足球、篮球共计60个,恰逢市场对两种球的价格进行了调整,足球售价提高了10%,篮球售价降低了10%,如果要求一次性购得这批球的总费用不超过4000元,那么最多可以购买多少个足球?【解析】(1)设购买一个足球需要x元,购买一个篮球的花费需要y元,根据题意,得23310 52500x yx y+=⎧⎨+=⎩,解得:8050 xy=⎧⎨=⎩.答:购买一个足球和一个篮球的花费各需要80和50元;(2)设购买a个足球,根据题意,得:(1+10%)×80a+(1﹣10%)×50(60﹣a)≤4000,解得:a≤1300 43,又∵a为正整数,∴a的最大值为30.答:最多可以购买30个足球.23.(本小题满分10分)如图,正方形ABCD的对角线交于点O,点E在边BC上,BE=1n BC,AE交OB于点F,过点B作AE的垂线BG交OC于点G,连接GE.(1)求证:OF=OG.(2)用含有n的代数式表示tan∠OBG的值.(3)若BF=2,OF=1,∠GEC=90°,直接写出n的值.【解析】(1)∵四边形ABCD是正方形,∴AO=BO,AC⊥BD,∴∠AFO+∠FAO=90°,∵AE⊥BG,∴∠BFE+∠FBG=90°,且∠BFE=∠AFO,∴∠FAO=∠FBG,且OA=OB,∠AOF=∠BOG,∴△AOF≌△BOG(ASA),∴OF=OG;(2)以B为原点,BC所在直线为x轴,AB所在直线为y轴建立平面直角坐标系,∵BE=1n BC,∴设BC=n,则BE=1,∴点A(0,n),点E(1,0),点C坐标(n,0),∴直线AC解析式为:y=﹣x+n,直线AE解析式为:y=﹣nx+n,∵BG⊥AE,∴直线BG的解析式为:y=1nx,∴1nx=﹣x+n,∴x=21nn +,∴点G坐标(21nn+,1nn+),∵点A(0,n),点E(1,0),点C坐标(n,0),∴BO=2n,点O坐标(2n,2n),∴OG=() ()1 21nn-+,∴tan∠OBG=11 OG nOB n-=+;(3)∵OB=OF+BF,BF=2,OF=1,∴OB=3,且OF=OG,OC=OB,BO⊥CO,∴OC=3,OG=1,BC=,∴CG=2,∵∠GEC=90°,∠ACB=45°,∴GE=EC∴BE=BC﹣EC=,∴23 BEBC=,∴BE=23BC=1nBC,∴n=32.24.(本小题满分12分)如图,抛物线y=-x2+bx+c的顶点为C,对称轴为直线x=1,且经过点A(3,-1),与y轴交于点B.(1)求抛物线的解析式;(2)判断△ABC的形状,并说明理由;(3)经过点A的直线交抛物线于点P,交x轴于点Q,若S△OPA=2S△OQA,试求出点P的坐标.【解析】(1)由题意得:()121931bb c⎧-=⎪⨯-⎨⎪-++=-⎩,解得:22bc=⎧⎨=⎩,∴抛物线的解析式为y=-x2+2x+2;(2)∵由y=-x2+2x+2得:当x=0时,y=2,∴B(0,2),由y=-(x-1)2+3得:C(1,3),∵A(3,-1),∴AB,BC,AC∴AB2+BC2=AC2,∴∠ABC=90°,∴△ABC是直角三角形;(3)①如图,当点Q在线段AP上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=1,∴PE=AD=1∵由-x2+2x+2=1得:x=1,∴P(,1)或(,1),②如图,当点Q在PA延长线上时,过点P作PE⊥x轴于点E,AD⊥x轴于点D ∵S△OPA=2S△OQA,∴PA=2AQ,∴PQ=3AQ∵PE∥AD,∴△PQE∽△AQD,∴PEAD=PQAQ=3,∴PE=3AD=3∵由-x2+2x+2=-3得:x,∴P(,-3),或(,-3),综上可知:点P的坐标为(,1)、(,1)、(,-3)或(,-3).。

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷1+参考答案+评分标准

2020中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1. 在-4,2,-1,3这四个数中,比-2小的数是( )A. -4B. 2C. -1D. 32. 计算 8×2的结果是( )A. 10B. 4C. 6D. 23. 移动互联网已经全面进入人们的日常生活.截至2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A. 1.62×104B. 162×106C. 1.62×108D. 0.162×109 4. 下列几何体中,俯视图是矩形的是( )5. 与1+5最接近的整数是( )A. 4B. 3C. 2D. 16. 我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2015年这两年的年平均增长率为x ,则下列方程正确的是( )A. 1.4(1+x )=4.5B. 1.4(1+2x )=4.5C. 1.4(1+x )2=4.5D. 1.4(1+x )+1.4(1+x )2=4.57. 某校九年级(1)班全体学生2015年初中毕业体育学业考试的成绩统计如下表:成绩(分) 35 39 42 44 45 48 50 人数2566876根据上表中的信息判断,下列结论中错误..的是( ) A. 该班一共有40名同学B. 该班学生这次考试成绩的众数是45分C. 该班学生这次考试成绩的中位数是45分D. 该班学生这次考试成绩的平均数是45分8. 在四边形ABCD 中,∠A =∠B =∠C ,点E 在边AB 上,∠AED =60°,则一定有( ) A. ∠ADE =20° B. ∠ADE =30° C. ∠ADE =12∠ADC D. ∠ADE =13∠ADC9. 如图,矩形ABCD 中,AB =8,BC =4,点E 在AB 上,点F 在CD 上,点G 、H 在对角线AC 上,若四边形EGFH 是菱形,则AE 的长是( )第9题图A. 25B. 35C. 5D. 610. 如图,一次函数y 1=x 与二次函数y 2=ax 2+bx +c 的图象相交于P 、Q 两点,则函数y =ax 2+(b -1)x +c 的图象可能为( )二、填空题(本大题共4小题,每小题5分,满分20分)11. -64的立方根是________.12. 如图,点A 、B 、C 在⊙O 上,⊙O 的半径为9,AB ︵的长为2π,则∠ACB 的大小是________.第12题图13. 按一定规律排列的一列数:21,22,23,25,28,213,…,若x 、y 、z 表示这列数中的连续三个数,猜测x 、y 、z 满足的关系式是________.14. 已知实数a 、b 、c 满足a +b =ab =c ,有下列结论:①若c ≠0,则1a +1b=1;②若a =3,则b +c =9; ③若a =b =c ,则abc =0;④若a 、b 、c 中只有两个数相等,则a +b +c =8.其中正确的是________.(把所有正确结论的序号都选上) 三、(本大题共2小题,每小题8分,满分16分)15. 先化简,再求值:(a 2a -1+11-a )·1a ,其中a =-12.16. 解不等式:x3>1-x -36.四、(本大题共2小题,每小题8分,满分16分)17. 如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.第17题图18. 如图,平台AB 高为12米,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度.(3≈1.7)第18题图五、(本大题共2小题,每小题10分,满分20分)19. A、B、C三人玩篮球传球游戏,游戏规则是:第一次传球由A将球随机地传给B、C两人中的某一人,以后的每一次传球都是由上次的接球者将球随机地传给其他两人中的某一人.(1)求两次传球后,球恰在B手中的概率;(2)求三次传球后,球恰在A手中的概率.20. 在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.(1)如图①,当PQ∥AB时,求PQ长;(2)如图②,当点P在BC上移动时,求PQ长的最大值.第20题图六、(本题满分12分)21. 如图,已知反比例函数y=k1x与一次函数y=k2x+b的图象交于A(1,8),B(-4,m).(1)求k1、k2、b的值;(2)求△AOB的面积;(3)若M(x1,y1)、N(x2,y2)是反比例函数y=k1x图象上的两点,且x1<x2,y1<y2,指出点M、N各位于哪个象限,并简要说明理由.第21题图七、(本题满分12分)22. 为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80米的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度是x 米,矩形区域ABCD 的面积为y 平方米.(1)求y 与x 之间的函数关系式,并注明自变量x 的取值范围; (2)x 取何值时,y 有最大值?最大值是多少?第22题图八、(本题满分14分)23. 如图①,在四边形ABCD 中,点E 、F 分别是AB 、CD 的中点,过点E 作AB 的垂线,过点F 作CD 的垂线,两垂线交于点G ,连接GA 、GB 、GC 、GD 、EF ,若∠AGD =∠BGC .(1)求证:AD =BC ;(2)求证:△AGD ∽△EGF ;(3)如图②,若AD 、BC 所在直线互相垂直,求ADEF的值.图① 图②第23题图参考答案与试题解析1. A 【解析】把-4,2,1,3和-2在数轴上分别表示出来如解图,由数轴上左边的数总比右边的数小,即-4<-2,故选A.第1题解图2. B 【解析】根据二次根式的运算法则可得8×2=8×2=16=4. 【一题多解】对于二次根式的运算,也可以先将二次根式化为最简二次根式,然后进行计算.8×2=22×2=22×2=24=4.3. C 【解析】大数的科学记数法的表示形式为a ×10n ,其中1≤a <10,n 的值等于原数的整数位数减1.含计数单位的数用科学记数法表示时,要把计数单位转化为数字.因为1亿=108,所以1.62亿=1.62×108.4. B 【解析】选项 逐项分析正误 A 圆锥的俯视图是带圆心的圆 B 水平放置的圆柱的俯视图是矩形 √ C 三棱柱的俯视图是三角形D球的俯视图是圆5. B 【解析】∵5≈2.236,∴1+5≈3.236,即1+5介于整数3和4之间,且距离3较近,故选B.【一题多解】∵22<5<32,∴2<5<3,∵(5)2=5,(52)2=6.25,∴5<52,1+5<72,∴1+5距离3较近.6. C 【解析】根据题意可知,2014年与2015年这两年的平均增长率均为x ,所以2014年的快递业务量为1.4(1+x ) 亿件,2015年的快递业务量1.4(1+x )(1+x )亿件,即1.4(1+x )2=4.5 亿件,故选C .选项 逐项分析正误 A 把表格中的人数相加,得:2+5+6+6+8+7+6=40,所以该班一共有40名同学 √ B由表格可知,这7列数据中成绩45出现的次数最多,出现了8次,所以众数是45分 √C中位数是把这7列数据中的分数按照从小到大的顺序排列,位于最中间的两个数(第20,21个数)的平均数,所以中位数为45+452=45分√ D平均数为:35×2+39×5+42×6+44×6+45×8+48×7+50×640=44.425分≠45分× =120°-x ,而在四边形ABCD 中,∠ADC =360°-∠A -∠B -∠C =360°-3x ,∵120°-x =13(360°-3x ),∴∠ADE =13∠ADC .第8题解图9. C 【解析】如解图①,连接EF ,交AC 于点O ,由四边形EGFH 是菱形,可得FH =GE ,FH ∥GE ,∴∠FHG =∠EGH ,所以∠AGE =∠CHF , 在矩形ABCD 中,AB =8,BC =4,则由勾股定理得AC =82+42=4 5.由矩形性质,可得∠GAE =∠HCF ,则△GAE ≌△HCF (AAS),∴AG =CH ,由菱形的对角线 EF 垂直平分GH ,可得OG =OH ,EO ⊥AC .∴AG +OG =CH +OH ,即OA =OC .∴AO =12AC =25,∵∠B =∠AOE =90°,∠BAC =∠OAE ,∴Rt △AOE ∽Rt △ABC .则AO AB =AE AC ,即258=AE45,解得AE =5.第9题解图① 第9题解图②【一题多解——最优解】如解图②,设G 点和A 点重合,H 点和C 点重合,设AE =x ,则CE =x ,EB =8-x ,在Rt △BCE 中,有x 2=42+(8-x )2,解得x =5,∴AE =5.10. A 【解析】本题考查二次函数与一元二次方程的关系.根据一次函数y 1=x 与二次函数y 2=ax 2+bx +c 图象在第一象限相交于P 、Q 两点,观察图象可知一元二次方程ax 2+bx +c = x 的根为两个正根,即关于x 的一元二次方程ax 2+bx +c -x =0有两个正实数根,故函数y =ax 2+(b -1)x +c 的图象与x 轴交点的横坐标均为正数,故选A.第10题解图11. -4 【解析】∵(-4)3=-64 ,∴-64的立方根是-4.12. 20° 【解析】如解图,连接OA 、OB ,由已知可得:l AB ︵=n πr 180=n π×9180=2π,解得n =40,即∠AOB=40°,∴∠ACB =12∠AOB =20°.第12题解图13. xy =z 【解析】观察这一列数可得:23=21·22,25=22·23,28=23·25,213=25·28,…,即从第三个数起每个数都等于前两个数之积 ,由x 、y 、z 表示这列数中的连续三个数,则有xy =z .序号 逐个分析正误 ①若c ≠0,则a ≠0,b ≠0,对于a +b =ab 两边同除以ab ,可得1b +1a=1√ ② 若a =3,则3+b =3b ,则b =32,c =ab =92, b +c =32+92=6× ③若a =b =c ,则2c =c 2=c ,所以c =0,则a =b =0, 则abc =0 √④ 若a 、b 、c 中只有两个数相等,假设a =b ≠c ,则c =b 2=2b ,有b =2,则a =2,c =4, 则a +b +c =8;若b =c ≠a ,a +c =ac =c ,由ac =c 可得a =1,由a +c =c ≠b ,可得a =0,矛盾;同理若a =c ≠b ,可得b =0,b =1,矛盾.故只能是a =b√15. 解:原式=(a 2a -1 - 1a -1)·1a=a 2-1a -1·1a.............(3分) =(a +1)(a -1)a -1·1a =a +1a. ......................(6分) 当a =-12时,原式=a +1a =-12+1-12=-1. ............(8分)16. 解:去分母得:2x >6-(x -3), .........(3分) 去括号得:2x >6-x +3,移项、合并同类项得:3x >9, 系数化为1得:x >3,所以,不等式的解集为x >3. .............(8分)17. (1)解:△A 1B 1C 1如解图①所示. ...................(4分)第17题解图①(2)解:线段A 2C 2和△A 2B 2C 2如解图②所示(符合条件的△A 2B 2C 2不唯一)......(8分)第17题解图②18. 解:如解图,作BE ⊥CD 于点E ,则CE =AB =12.在Rt △BCE 中,BE =CE tan ∠CBE =12tan30°=12 3. ...........(3分)第18题解图在Rt △BDE 中,∵∠DBE =45°,∠DEB =90°, ∴∠BDE =45°,∴DE =BE =123, ..............(5分) ∴CD =CE +DE =12+123≈32.4,∴楼房CD 的高度约为32.4米. ............(8分)19. (1)解:根据题意画树状图如解图①所示: .............(3分)第19题解图①由树状图知,两次传球共有4种等可能的情况,球恰在B 手中的情况只有一种, 所以两次传球后,球恰在B 手中的概率为:P =14 . .................(5分)(2)解:根据题意画树状图如解图②所示: .................(7分)第19题解图②由树状图知,三次传球共有8种等可能的情况,球恰在A 手中的情况有2种, 所以三次传球后,球恰在A 手中的概率为:P =28=14. .........(10分)20. (1)解:∵OP ⊥PQ ,PQ ∥AB ,∴OP ⊥AB .在Rt △OPB 中,OP =OB ·tan ∠ABC =3·tan30°= 3. ............(3分) 如解图①,连接OQ ,在Rt △OPQ 中,PQ =OQ 2-OP 2=32-(3)2= 6. ..........(5分) (2)解:如解图②,连接OQ ,∵OP ⊥PQ , ∴△OPQ 为直角三角形, ∴PQ 2=OQ 2-OP 2=9-OP 2,∴当OP 最小时,PQ 最大,此时OP ⊥BC . ..........(7分)OP =OB·sin ∠ABC =3·sin30°=32.∴PQ 长的最大值为9-(32)2=332. ...........(10分)图① 图②第20题解图21. (1)解:把A (1,8),代入y =k 1x ,得k 1=8,∴y =8x ,将B (-4,m )代放y =8x,得m =-2.∵A (1,8),B (-4,-2)在y =k 2x +b 图象上,∴⎩⎪⎨⎪⎧k 2+b =8-4k 2+b =-2, 解得k 2=2,b =6. ................(4分)(2)解:设直线y =2x +6与x 轴交于点C ,当y =0时,x =-3, ∴OC =3.∴S △AOB =S △AOC +S △BOC =12×3×8+12×3×2=15. ....................(8分)(3)解:点M 在第三象限,点N 在第一象限. ............(9分) 理由:由图象知双曲线y =8x在第一、三象限内,因此应分情况讨论:①若x 1<x 2<0,点M 、N 在第三象限分支上,则y 1>y 2,不合题意; ②若0<x 1<x 2,点M 、N 在第一象限分支上,则y 1>y 2,不合题意;③若x 1<0<x 2,点M 在第三象限,点N 在第一象限,则y 1<0<y 2,符合题意. .....(11分) ∴点M 在第三象限,点N 在第一象限. ..........(12分) 22. (1)解:设AE =a ,由题意,得AE ·AD =2BE ·BC ,AD =BC , ∴BE =12a ,AB =32a . ..........(3分)由题意,得2x +3a +2·12a =80,∴a =20-12x . ..............(4分)∵BC =x >0,AE =a =20-12x >0,∴0<x <40,∴y =AB ·BC =32a ·x =32(20-12x )x ,即y =-34x 2+30x (0<x <40). ........................(8分)(2)解:∵y =-34x 2+30x =-34(x -20)2+300, ...........(10分)∴当x =20时,y 有最大值,最大值是300平方米. .......(12分)23. (1)证明:∵点E 、F 分别是AB 、CD 的中点,且GE ⊥AB ,GF ⊥CD , .......(2分) ∴GE 、GF 分别是线段AB 、CD 的垂直平分线, ∴GA =GB ,GC =GD ,在△AGD 和△BGC 中,⎩⎪⎨⎪⎧GA =GB ∠AGD =∠BGC GD =GC ,∴△AGD ≌△BGC (SAS),∴AD =BC . ...........(5分)(2)证明:∵∠AGD =∠BGC ,∴∠AGB =∠DGC . 在△AGB 和△DGC 中,GA GD =GBGC ,∠AGB =∠DGC ,∴△ABG ∽△DCG , ........(8分) ∴AG DG =EGFG,∠GAE =∠GDF , 又∵∠GEA =∠GFD =90°,∴∠AGE =∠GEA -∠GAE ,∠DGF =∠GFD -∠GDF , 即∠AGE =∠DGF , ∴∠AGD =∠EGF ,∴△AGD ∽△EGF . .................(10分)(3)解:如解图①,延长AD 交GB 于点M ,交BC 的延长线于点H ,则AH ⊥BH . 由△AGD ≌△BGC ,知∠GAD =∠GBC .在△GAM 和△HBM 中,∠GAD =∠GBC ,∠GMA =∠HMB , ∴△GMA ∽△HMB , ∴∠AGB =∠AHB =90°, ...............(12分) ∴∠AGE =12∠AGB =45°,∴AG EG= 2.又∵△AGD ∽△EGF ,∴AD EF =AGEG= 2. ..............(14分)第23题解图【一题多解】解法一:如解图②,过点F 作FM ∥BC 交BD 于点M ,连接EM . ∵GF 是DC 的垂直平分线, ∴DF =CF ,∵FM ∥BC ,FM =12BC .∴DM =BM .∵GE 是AB 的垂直平分线, ∴AE =BE ,∴EM ∥AD ,EM =12AD .∵AD ⊥BC , ∴EM ⊥FM . ∵AD =BC , ∴EN =FM , ∴EF =2EM , ∴AD EF =2EM EF= 2. 解法二:如解图③,过点D 作DH ⊥AD ,交BF 的延长线于点H . ∵AD ⊥BC ,DH ⊥AD , ∴DH ∥BC ,∴∠DHF =∠CBF ,∠HDF =∠BCF , 又DF =CF ,∴△DHF ≌△CBF ,∴DH =BC ,HF =BF ,∴DH =AD . 在Rt △ADH 中,∠ADH =90°,AD =DH , ∴AH =2AD .∵AE =BE ,HF =BF , ∴EF ∥AH ,EF =12AH ,∴EF =22AD , ∴ADEF= 2.。

陕西省2020年中考数学模拟试卷(三)及解析

陕西省2020年中考数学模拟试卷(三)及解析

2020年陕西省中考数学模拟试卷(三)一、选择题(共10小题,每小题3分,计30分.每小题只有一个选项是符合题意的)1.(3分)9的倒数是()A.9B.C.﹣9D.2.(3分)如图所示,该几何体的俯视图是()A.B.C.D.3.(3分)下列计算正确的是()A.2x+3y=5xy B.(﹣2x2)3=﹣6x6C.3y2•(﹣y)=﹣3y2D.6y2÷2y=3y4.(3分)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为()A.75°B.65°C.45°D.30°5.(3分)已知:点A(a,b),B(a+1,b﹣2)均在正比例函数y=kx(k≠0)的图象上,则k值为()A.﹣1B.﹣2C.﹣3D.﹣46.(3分)如图,在Rt△ABC中,∠C=30°,AB=4,D,F分别是AC,BC的中点,等腰直角三角形DEH的边DE经过点F,EH交BC于点G,且DF=2EF,则CG的长为()A.2B.2﹣1C.D.+17.(3分)直线y=﹣x+1与y=2x+a的交点在第一象限,则a的取值不可能是()A.B.﹣C.﹣D.﹣8.(3分)如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD,CD于G,F两点.若M,N分别是DG,CE的中点,则MN的长为()A.3B.C.D.49.(3分)如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E,则tan∠OEA的值是()A.B.C.D.10.(3分)在平面直角坐标系中,有两条抛物线关于x轴对称,且它们的顶点相距6个单位长度,若其中一条抛物线的函数表达式为y=﹣x2+4x+m,则m的值是()A.1或7B.﹣1或7C.1或﹣7D.﹣1或﹣7二、填空题(共4小题,每小题3分,计12分)11.(3分)在﹣2,,,,这5个数中,无理数有个.12.(3分)在正六边形中,其较短对角线与较长对角线的比值为.13.(3分)如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B的坐标为(8,4),反比例函数y=(k >0)的图象分别交边BC、AB于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是.14.(3分)如图,在正方形ABCD中,AB=4,E,F分别为BC,AD上的点,过点E,F的直线将正方形ABCD 的面积分为相等的两部分,过点A作AG⊥EF于点G,连接DG,则线段DG的最小值为.三、解答题(共11小题,计78分.解答应写出过程)15.(5分)计算:(π﹣2020)0+|1﹣|+2﹣1﹣2sin60°.16.(5分)化简:(x)17.(5分)赵凯想利用一块三角形纸片ABC裁剪一个菱形ADEF,要求一个顶点为A,顶点D在三角形的AC边上,点E在三角形的BC边上,点F在三角形的AB边上,请你利用尺规作图把这个菱形作出来.(不写作法,保留作图痕迹)18.(5分)如图,点A、E、F、C在一直线上,DE∥BF,DE=BF,AE=CF.求证:AB∥CD.19.(7分)为了给顾客提供更好的服务,某商场随机对部分顾客进行了关于“商场服务工作满意度”的调查,并根据调查结果绘制成如下不完整的统计图表.满意度人数所占百分比非常满意1210%满意54m比较满意n40%不满意65%根据图表信息,解答下列问题:(1)本次调查的总人数为,表中m的值为;(2)请补全条形统计图;(3)根据统计,该商场平均每天接待顾客约3600名,若将“非常满意”和“满意”作为顾客对商场服务工作的肯定,请你估计该商场服务工作平均每天得到多少名顾客的肯定.20.(7分)为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度约为多少米(精确到0.1米).21.(7分)春节期间,某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品3件共需270元;购进甲商品3件和乙商品2件共需230元.(1)求甲、乙两种商品每件的进价分别是多少元?(2)商场决定甲商品以每件40元出售,乙商品以每件90元出售,为满足市场需求,需购进甲、乙两种商品共100件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.22.(7分)小明最喜欢吃芝麻馅的汤圆了,一天早晨小明妈妈给小明下了四个大汤圆,一个花生馅,一个水果馅,两个芝麻馅,四个汤圆除内部馅料不同外,其他一切均相同.(1)求小明吃第一个汤圆恰好是芝麻馅的概率;(2)请利用树状图或列表法,求小明吃前两个汤圆恰好是芝麻馅的概率.23.(8分)如图,已知⊙O经过平行四边形ABCD的顶点A,B及对角线的交点M,交AD于点E且圆心〇在AD 边上,∠BCD=45°.(1)求证:BC为⊙O的切线;(2)连接ME,若ME=﹣1,求⊙O的半径.24.(10分)综合与探究:如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣3,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线解析式;(2)抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,求点H坐标;(3)若抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,求点P坐标;(4)若点M是∠BAC平分线上的一点,点N是平面内一点,若以A、B、M、N为顶点的四边形是矩形,请直接写出点N坐标.25.(12分)问题提出(1)如图1,直线l1,l2,l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有处.问题探究(2)如图2,在△ABC中,内角∠ABC的平分线BE和外角∠ACF的平分线CE,相交于点E,连接AE,若∠BEC=40°,请求出∠EAC的度数.问题解决(3)如图3,某地在市政工程施工中需要对一直角区域(∠AOB=90°)内部进行围挡,直角区域∠AOB内部有一棵大树(点P),工作人员经过测量得到点P到OA的距离PC为10米,点P到OB的距离PD为20米,为了保护大树及节约材料,设计要求围挡牌要经过大树位置(点P)并且所用材料最少,即围挡区域△EOF周长最小,请你根据以上信息求出符合设计的△EOF周长的最小值,并说明理由.参考答案与试题解析1.B.2.C.3.D.4.A.5.B.6.B.7.D.8.C.9.D.10.D.11.3.12.:2.13.12.14.2﹣2.15.解:原式=1+﹣1+﹣2×=.16.解:原式=•=•=x(x﹣1)=x2﹣x.17.解:如图所示:先作∠BAC的平分线交BC边于点E,再作线段AE的垂直平分线交AC于点D,交AB于点F 连接DE、EF,易证△EAD≌△EAF(SAS),则F A=DA而由线段的垂直平分线的性质可得DA=DE、F A=FE∴F A=DA=DE=FE∴四边形ADEF为菱形则菱形ADEF即为所求作的菱形.18.证明:∵DE∥BF∴∠DEF=∠BFE∵AE=CF∴AF=CE,且DE=BF,∠DEF=∠BFE∴△AFB≌△CED(SAS)∴∠A=∠C∴AB∥CD19.解:(1)本次调查的总人数为:12÷10%=120,m=54÷120×100%=45%,故答案为:120,45%;(2)比较满意的人数为:120×40%=48,补全的条形统计图如右图所示;(3)3600×(10%+45%)=3600×55%=1980(名),答:该商场服务工作平均每天得到1980名顾客的肯定.20.解:∵∠CED=∠AEB,CD⊥DB,AB⊥BD,∴△CED∽△AEB,∴=,∵CD=1.6米,DE=2.4米,BE=8.4米,∴=,∴AB==5.6米.故答案为:5.6米.21.解:(1)设甲、乙两种商品每件的进价分别是x元、y元,,解得,,即甲、乙两种商品每件的进价分别是30元、70元;(2)设购买甲种商品a件,获利为w元,w=(40﹣30)a+(90﹣70)(100﹣a)=﹣10a+2000,∵a≥4(100﹣a),解得,a≥80,∴当a=80时,w取得最大值,此时w=1200,即获利最大的进货方案是购买甲种商品80件,乙种商品20件,最大利润是1200元.22.解:(1)小明吃第一个汤圆,可能的结果有4种,其中是芝麻馅的结果有2种,∴小明吃第一个汤圆恰好是芝麻馅的概率==;(2)分别用A,B,C表示花生馅,水果馅,芝麻馅的大汤圆,画树状图得:∵共有12种等可能的结果,小明吃前两个汤圆恰好是芝麻馅的有2种情况,∴小明吃前两个汤圆恰好是芝麻馅的概率为=.23.(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=45°,∴∠BOD=2∠BAD=90°,∵AD∥BC,∴∠DOB+∠OBC=180°,∴∠OBC=90°,∴OB⊥BC,∴BC为⊙O切线;(2)解:连接OM,∵四边形ABCD是平行四边形,∴BM=DM,∵∠BOD=90°,∴OM=BM,∵OB=OM,∴OB=OM=BM,∴∠OBM=60°,∴∠ADB=30°,连接EM,过M作MF⊥AE于F,∵OM=DM,∴∠MOF=∠MDF=30°,设OM=OE=r,∴FM=r,OF=r,∴EF=r﹣r,∵EF2+FM2=EM2,∴(r﹣r)2+(r)2=(﹣1)2,解得:r=(负值舍去),∴⊙O的半径为.24.解:(1)∵抛物线与y轴交于点C,∴点C坐标为(0,﹣4),把A(﹣3,0)、B(4,0)坐标代入y=ax2+bx﹣4得解得∴抛物线解析式为:.(2)抛物线的对称轴为:x=,由三角形任意两边之差小于第三边,可知抛物线对称轴上存在一点H,连接AH、CH,当|AH﹣CH|值最大时,点H为AC直线与对称轴的交点,由A(﹣3,0)、C(0,﹣4)易得直线AC解析式为:,当x=时,y=,故点H的坐标为:(,﹣).(3)∵抛物线上存在一点P(m,n),mn>0,当S△ABC=S△ABp时,∴点P(m,n)只能位于第一象限,C(0,﹣4)∴n=4∴由4=﹣4解得x=或x=(舍)故点P坐标为(,4).(4)若以A、B、M、N为顶点的四边形是矩形,则点M和点N的位置有两种如图所示点M和点M’点N和点N’易得OA=3,OC=4,AC=5,点M是∠BAC平分线上的一点,作QF⊥AC,则OQ=QF,∴OQ=QF=1.5,∴在直角三角形AOQ和直角三角形ABM中,,∴,∴BM=3.5,∴点N(﹣3,﹣3.5)同理在直角三角形AEN’和直角三角形ABN’中,可解得点N’(﹣,).故点N的坐标为(﹣3,﹣3.5)或(﹣,).25.解:作直线l1、l2、l3所围成的三角形的外角平分线和内角平分线,外角平分线相交于点P1、P2、P3,内角平分线相交于点P4,根据角平分线的性质可得到这4个点到三条公路的距离分别相等.故答案为:4;(2)解:∵∠ABC与∠ACD的角平分线相交于点E,∴∠CBE=∠ABC,∠ECD=∠ACD,由三角形的外角性质得,∠ACD=∠ABC+∠BAC,∠ECD=∠BEC+∠CBE,∴∠ACD=∠BEC+∠ABC,∴(∠ABC+∠BAC)=∠BEC+∠ABC,整理得,∠BAC=2∠BEC,∵∠BEC=40°,∴∠BAC=2×40°=80°,过点E作EH⊥BA交延长线于H,作EG⊥AC于G,作EF⊥BC于F,∵BE平分∠ABC,∴EF=EH,∵CE平分∠ACD,∴EG=EF,∴EH=EG,∴AE是∠CAF的平分线,∴∠CAE=(180°﹣∠BAC)=(180°﹣80°)=50°;(3)如图,设∠AOB、∠AEF、∠BFE的角平分线交于点Q,作QN⊥OB于N,QM⊥OA于M,QH⊥EF于H.连接QP.则QN=QH=QM=y,FH=FN,EH=EM,∴△OEF的周长:OE+OF+EF=OF+FN+OE+EM=ON+OM=QN+QM=2QN=2y,∵PDOC是矩形,且PD=20,PC=10,∴ND=y﹣10,CM=y﹣20,∴QP2=(y﹣10)2+(y﹣20)2∵PQ≥QH,∴(y﹣10)2+(y﹣20)2≥y2∴y2﹣60y+500≥0,∴(y﹣30)2≥400,∴y≥50或y≤10(舍),∴2y≥100,当且仅当P、H重合时取等号.即△OEF的周长的最小值为100.。

2020年新疆乌鲁木齐市中考数学模拟试卷(三)(解析版)

2020年新疆乌鲁木齐市中考数学模拟试卷(三)(解析版)

2020年新疆乌鲁木齐市中考数学模拟试卷(三)一.选择题(共9小题)1.下列各数中,最小的数是()A.0B.﹣1C.πD.12.某几何体的展开图如图所示,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱3.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=70°,则∠4的度数为()A.110°B.100°C.80°D.70°4.下列四个运算中,正确的个数是()①30+3﹣1=﹣3;②(3x3)2=9x5;③﹣=;④﹣x6÷x3=﹣x3.A.1个B.2个C.3个D.4个5.某校学生会主席竞选中,参与投票的学生必须从进入决赛的四名选手中选1名,且只能选1名进行投票,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票数为()A.80B.90C.100D.4006.如图,在▱ABCD中,∠ADB=40°,依据尺规作图的痕迹可判断∠1的度数是()A.100°B.110°C.120°D.130°7.关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=24009.在矩形ABCD中,AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,设∠AGE=α(0°<α<90°),下列四个结论:①AE=CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=.正确的个数是()A.1B.2C.3D.4二.填空题(共6小题)10.使有意义的x的取值范围是.11.小华同学计算一组数据的方差时,写下的计算过程如下:s2=[(3.5﹣)2+(4.2﹣)2+(7.8﹣)2+(6﹣)2+(8.5﹣)2],则其中的=.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形M的边长是3,则正方形A、B、C、D、E、F的面积之和是.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,……试猜想,32020的个位数字是.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m (am+b).其中正确的结论为.(注:只填写正确结论的序号)三.解答题(共8小题)16.计算:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2.17.先化简,再求值:(﹣1)÷,其中x=.18.如图,在矩形ABCD中,过对角线BD中点O的直线分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)若AB=3,BC=4,当四边形BEDF是菱形时,求EF的长.19.如图,一次函数y=﹣x+6的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,m)和B两点,与x轴交于点C,连接OA、OB.(1)求反比例函数的解析式;(2)若点P在x轴上,且S△APC=S△OAB,求点P的坐标.20.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关,第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡“没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第一题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡“?为什么?21.如图,无人机在离地面40米的D处,测得楼房顶点C处俯角为37°,测得地面点B 的俯角为45°.已知点B到楼房AC的距离为60米,求楼房AC的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△ABC的三边AB,BC,AC分别相切于点D,E,F,则△ABC 叫做⊙O的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD 叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD AD+BC(横线上填“>,<或=“);(2)利用图2证明你的猜想(写出已知,求证,证明过程);(3)用文字叙述上面证明的结论:.(4)若圆外切四边形的周长为32,相邻的三条边的比为2:5:6,求此四边形各边的长.23.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点,交y轴于点C,AB=4,对称轴是直线x=﹣1.(1)求抛物线的解析式及点C的坐标;(2)连接AC,E是线段OC上一点,点E关于直线x=﹣1的对称点F正好落在AC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点A运动,到达点A即停止运动,过点M作x轴的垂线交抛物线于点N,交线段AC于点Q.设运动时间为t(t>0)秒.①连接BC,若△BOC与△AMN相似,请直接写出t的值;②△AOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.参考答案与试题解析一.选择题(共9小题)1.下列各数中,最小的数是()A.0B.﹣1C.πD.1【分析】先根据实数的大小比较法则比较数的大小,再得出答案即可.【解答】解:∵﹣1<0<1<π,∴最小的数是﹣1,故选:B.2.某几何体的展开图如图所示,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:观察图可得,这是个上底面、下底面为三角形,侧面有三个长方形的三棱柱的展开图.故选:C.3.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=70°,则∠4的度数为()A.110°B.100°C.80°D.70°【分析】由∠1=∠2,证出a∥b,由平行线的性质即可得出∠4=∠3=70°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=70°,故选:D.4.下列四个运算中,正确的个数是()①30+3﹣1=﹣3;②(3x3)2=9x5;③﹣=;④﹣x6÷x3=﹣x3.A.1个B.2个C.3个D.4个【分析】利用零次幂的性质、积的乘方的计算法则、二次根式的减法法则、同底数幂的除法法则分别进行计算即可.【解答】解:①30+3﹣1=1+=1;②(3x3)2=9x6;③和不能合并;④﹣x6÷x3=﹣x3.计算正确是④,共1个,故选:A.5.某校学生会主席竞选中,参与投票的学生必须从进入决赛的四名选手中选1名,且只能选1名进行投票,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票数为()A.80B.90C.100D.400【分析】根据A选手的票数和所占的百分比求出票数,再用总票数乘以C所占的百分比,求出C选手的票数,最后再用总票数减去A、C、D选手的票数,即可求出B的得票数.【解答】解:调查总人数:140÷35%=400(人),C选手的票数:400×30%=120(票),B选手的得票:400﹣140﹣120﹣40=100(票);故选:C.6.如图,在▱ABCD中,∠ADB=40°,依据尺规作图的痕迹可判断∠1的度数是()A.100°B.110°C.120°D.130°【分析】根据作图痕迹可得,EO是BD的垂直平分线,BF平分∠DBC,再根据平行四边形的性质和三角形外角定义即可求出∠1的度数.【解答】解:根据作图痕迹可知:EO是BD的垂直平分线,∴∠EOB=90°∵在▱ABCD中,AD∥BC,∴∠DBC=∠ADB=40°,∵BF平分∠DBC,∴∠OBF=DBC=20°,∴∠1=90°+20°=110°.故选:B.7.关于x的一元二次方程x2+2x+k=0有实数根,则k的取值范围在数轴上表示正确的是()A.B.C.D.【分析】利用判别式的意义得到22﹣4k≥0,解不等式得到k的范围,然后利用数轴表示不等式解集的方法可对各选项进行判断.【解答】解:根据题意得△=22﹣4k≥0,解得k≤1.故选:D.8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为()A.(62﹣x)(42﹣x)=2400B.(62﹣x)(42﹣x)+x2=2400C.62×42﹣62x﹣42x=2400D.62x+42x=2400【分析】设道路的宽为x米,利用“道路的面积”作为相等关系可列方程(62﹣x)(42﹣x)=2400.【解答】解:设道路的宽为x米,根据题意得(62﹣x)(42﹣x)=2400.故选:A.9.在矩形ABCD中,AD=2,AB=1,G为AD的中点,一块足够大的三角板的直角顶点与点G重合,将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,设∠AGE=α(0°<α<90°),下列四个结论:①AE=CF;②∠AEG=∠BFG;③AE+CF=1;④S△GEF=.正确的个数是()A.1B.2C.3D.4【分析】过点G作GH⊥BC于H,可证四边形ABHG是矩形,可得AB=GH=1,AG=BH=1,∠AGH=90°=∠EGF,由“ASA”可证△AEG≌△HFG,可得AE=HF,GE =GF,∠AEG=∠BFG,即可判断②;由旋转的性质可得点F的位置不确定,可判断①③;由锐角三角函数可得GE==,可求出△GEF的面积,可判断④,即可求解.【解答】解:如图,过点G作GH⊥BC于H,∵在矩形ABCD中,AD=2,AB=1,G为AD的中点,∴∠A=∠B=90°,AG=DG=1=AB,又∵GH⊥BC,∴四边形ABHG是矩形,∴AB=GH=1,AG=BH=1,∠AGH=90°=∠EGF,∴∠AGE=∠FGH,又∵∠A=∠GHF=90°,AG=GH=1,∴△AEG≌△HFG(ASA)∴AE=HF,GE=GF,∠AEG=∠BFG,故②正确,∵将三角板绕点G旋转,三角板的两直角边分别交AB、BC(或它们的延长线)于点E、F,∴点F的位置不确定,∴HF不一定等于CF,∴AE不一定等于CF,故①不正确,若点F在线段CH上时,CH=HF+CF=AE+CF=1,若点F在HC的延长线上时,CH=HF﹣CF=AE﹣CF=1,故③不正确,在Rt△AEG中,GE==,∵GE=GF,∠EGF=90°,∴S△EFG=EG2=×,故④不正确,故选:A.二.填空题(共6小题)10.使有意义的x的取值范围是x≥﹣1.【分析】根据二次根式中的被开方数必须是非负数,可得x+1≥0,据此求出x的取值范围即可.【解答】解:∵有意义,∴x+1≥0,∴x的取值范围是:x≥﹣1.故答案为:x≥﹣1.11.小华同学计算一组数据的方差时,写下的计算过程如下:s2=[(3.5﹣)2+(4.2﹣)2+(7.8﹣)2+(6﹣)2+(8.5﹣)2],则其中的=6.【分析】由方差公式得出这组数据为3.5、4.2、7.8、6、8.5,再根据算术平均数概念计算可得.【解答】解:由题意知,这组数据为3.5、4.2、7.8、6、8.5,则这组数据的平均数==6,故答案为:6.12.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若最大正方形M的边长是3,则正方形A、B、C、D、E、F的面积之和是18.【分析】根据正方形的面积公式,运用勾股定理可以证明:6个小正方形的面积和等于最大正方形面积的2倍.【解答】解:根据勾股定理得到:A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是M的面积.即A、B、C、D、E、F的面积之和为2个M的面积.∵M的面积是32=9,∴A、B、C、D、E、F的面积之和为9×2=18.故答案为:18.13.如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,CD=2,则阴影部分的面积为.【分析】连接OD,则根据垂径定理可得出CE=DE,继而将阴影部分的面积转化为扇形OBD的面积,代入扇形的面积公式求解即可.【解答】解:连接OD.∵CD⊥AB,∴CE=DE=CD=(垂径定理),故S△OCE=S△ODE,即可得阴影部分的面积等于扇形OBD的面积,又∵∠CDB=30°,∴∠COB=60°(圆周角定理),∴OC=2,故S扇形OBD==,即阴影部分的面积为.故答案为:.14.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,……试猜想,32020的个位数字是1.【分析】根据给出的规律,3n的个位数字是3,9,7,1,是4个循环一次,用2020去除以4,看余数是几,再确定个位数字.【解答】解:设n为自然数,∵34n+1的个位数字是3,与31的个位数字相同,34n+2的个位数字是9,与32的个位数字相同,34n+3的个位数字是7,与33的个位数字相同,34n的个位数字是1,与34的个位数字相同,∴32020=3505×4的个位数字与34的个位数字相同,应为1,故答案为:1.15.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣,0),对称轴为直线x=1,下列5个结论:①abc<0;②a﹣2b+4c=0;③2a+b>0;④2c﹣3b<0;⑤a+b≤m (am+b).其中正确的结论为②⑤.(注:只填写正确结论的序号)【分析】根据二次函数的图象与系数的关系即可求出答案.【解答】解:①函数的对称轴在y轴右侧,则ab<0,而c<0,故abc>0,故①错误,不符合题意;②将点(﹣,0)代入函数表达式得:a﹣2b+4c=0,故②正确,符合题意;③函数的对称轴为直线x=﹣=1,即b=﹣2a,故2a+b=0,故③错误,不符合题意;④由②③得:a﹣2b+4c=0,b=﹣2a,则c=﹣,故2c﹣3b=>0,故④错误,不符合题意;⑤当x=1时,函数取得最小值,即a+b+c≤m(am+b)+c,故⑤正确,符合题意;故答案为②⑤.三.解答题(共8小题)16.计算:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、负整数指数幂的性质分别化简得出答案.【解答】解:﹣12020+2sin30°+(﹣π)0+(﹣)﹣2=﹣1+2×+1+4=﹣1+1+1+4=5.17.先化简,再求值:(﹣1)÷,其中x=.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当x=时,原式==.18.如图,在矩形ABCD中,过对角线BD中点O的直线分别交边AD,BC于点E,F.(1)求证:四边形BEDF是平行四边形;(2)若AB=3,BC=4,当四边形BEDF是菱形时,求EF的长.【分析】(1)证△BOE≌△DOF(ASA),得出EO=FO,即可得出结论;(2)在Rt△ADE中,由勾股定理得出方程,解方程求出BE,由勾股定理求出BD,得出OB,再由勾股定理求出EO,即可得出EF的长.【解答】(1)证明:∵四边形ABCD是矩形,O是BD的中点,∴∠A=90°,AD=BC=4,AB∥DC,OB=OD,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴EO=FO,∴四边形BEDF是平行四边形;(2)解:∵四边形BEDF为菱形,∴BE=DE DB⊥EF,∵AB=3,BC=4,设BE=DE=x,则AE=4﹣x,在Rt△ADE中,32+(4﹣x)2=x2,∴x=,∴DE=,∵BD==5,∴DO=BO=BD=,∴OE===,∴EF=2OE=.19.如图,一次函数y=﹣x+6的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,m)和B两点,与x轴交于点C,连接OA、OB.(1)求反比例函数的解析式;(2)若点P在x轴上,且S△APC=S△OAB,求点P的坐标.【分析】(1)先把A(1,m)代入y=﹣x+6中求出m得到A点坐标,然后把A点坐标代入y=中求出k,从而得到反比例函数解析式;(2)通过解方程组得B(5,1),再确定C(6,0),利用三角形面积公式计算出S△OAB=12,则S△APC=6,设P(t,0),列方程×|t﹣6|×5=6,然后解方程求出t 得到P点坐标.【解答】解:(1)把A(1,m)代入y=﹣x+6得m=﹣1+6=5,则A(1,5),把A(1,5)代入y=得k=1×5=5,∴反比例函数解析式为y=;(2)解方程组得或,∴B(5,1),当y=0时,﹣x+6=0,解得x=6,∴C(6,0),∵S△OAB=S△OAC﹣S△OBC=×6×5﹣×6×1=12,∴S△APC=S△OAB=6,设P(t,0),∵×|t﹣6|×5=6,解得t=或t=,∴P点坐标为(,0)或(,0).20.一个智力挑战赛需要全部答对两道单项选择题,才能顺利通过第一关,第一道题有4个选项,第二道题有3个选项,这两道题小新都不会,不过小新还有一个“求助卡“没有用,使用“求助卡”可以让主持人去掉其中一题的一个错误选项.(1)如果小新在第一题使用“求助卡”,请用树状图或者列表来分析小新顺利通过第一关的概率;(2)从概率的角度分析,你建议小新在第几题使用“求助卡“?为什么?【分析】(1)画树状图展示所有9种等可能的结果数,找出小新都选对的结果数,然后根据概率公式计算;(2)如果小新在第二题使用“求助卡”,画树状图展示所有8种等可能的结果数,找出小新都选对的结果数,利用概率公式计算出小新顺利通过第一关的概率,然后比较两个概率的大小可判断小新在第几题使用“求助卡“.【解答】解:(1)画树状图为:共有9种等可能的结果数,其中小新都选对的结果数为1,所以小新顺利通过第一关的概率=;(2)如果小新在第二题使用“求助卡”,画树状图为:共有8种等可能的结果数,其中小新都选对的结果数为1,所以小新顺利通过第一关的概率=,因为>,即小新在第二题使用“求助卡”,顺利通过第一关的概率大,所以建议小新在第二题使用“求助卡“.21.如图,无人机在离地面40米的D处,测得楼房顶点C处俯角为37°,测得地面点B 的俯角为45°.已知点B到楼房AC的距离为60米,求楼房AC的高度.(结果保留整数,参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点D作DE⊥AB于点E,CF⊥DE于点F,根据题意可得四边形ACFE是矩形,得CF=AE,AC=EF,再根据锐角三角函数即可求出楼房AC的高度.【解答】解:如图,过点D作DE⊥AB于点E,CF⊥DE于点F,根据题意可知:CA⊥AB,所以四边形ACFE是矩形,∴CF=AE,AC=EF,∵∠B=45°,∴DE=BE=40,∴AE=AB﹣BE=60﹣40=20,∴CF=AE=20,DF=DE﹣EF=DE﹣AC=40﹣AC,在Rt△CFD中,∠DCF=37°,∴DF=CF•tan∠DCF即40﹣AC=20×tan37°,解得AC≈25(米).答:楼房AC的高度为25米.22.我们知道,与三角形各边都相切的圆叫做三角形的内切圆,则三角形可以称为圆的外切三角形.如图1,⊙O与△ABC的三边AB,BC,AC分别相切于点D,E,F,则△ABC 叫做⊙O的外切三角形.以此类推,各边都和圆相切的四边形称为圆外切四边形.如图2,⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,则四边形ABCD 叫做⊙O的外切四边形.(1)如图2,试探究圆外切四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,猜想:AB+CD=AD+BC(横线上填“>,<或=“);(2)利用图2证明你的猜想(写出已知,求证,证明过程);(3)用文字叙述上面证明的结论:圆外切四边形的对边和相等.(4)若圆外切四边形的周长为32,相邻的三条边的比为2:5:6,求此四边形各边的长.【分析】(1)根据圆外切四边形的定义猜想得出结论;(2)根据切线长定理即可得出结论;(3)由(2)可得出答案;(4)根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.【解答】解:(1)∵⊙O与四边形ABCD的边AB,BC,CD,DA分别相切于点E,F,G,H,∴猜想AB+CD=AD+BC,故答案为:=.(2)已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H,求证:AD+BC=AB+CD,证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.(3)由(2)可知:圆外切四边形的对边和相等.故答案为:圆外切四边形的对边和相等;(4)∵相邻的三条边的比为2:5:6,∴设此三边为2x,5x,6x,根据圆外切四边形的性质得,第四边为2x+6x﹣5x=3x,∵圆外切四边形的周长为32,∴2x+5x+6x+3x=16x=32,∴x=2,∴此四边形的四边的长为2x=4,5x=10,6x=12,3x=6.即此四边形各边的长为:4,10,12,6.23.如图,已知抛物线y=x2+bx+c与x轴交于A、B两点,交y轴于点C,AB=4,对称轴是直线x=﹣1.(1)求抛物线的解析式及点C的坐标;(2)连接AC,E是线段OC上一点,点E关于直线x=﹣1的对称点F正好落在AC上,求点F的坐标;(3)动点M从点O出发,以每秒2个单位长度的速度向点A运动,到达点A即停止运动,过点M作x轴的垂线交抛物线于点N,交线段AC于点Q.设运动时间为t(t>0)秒.①连接BC,若△BOC与△AMN相似,请直接写出t的值;②△AOQ能否为等腰三角形?若能,求出t的值;若不能,请说明理由.【分析】(1)点A、B关于直线x=﹣1对称,AB=4,由对称性质知A(﹣3,0),B(1,0),即可求解;(2)设点E(0,m),则点F(﹣2,m),将点F的坐标代入直线AC的表达式,即可求解;(3)①当△BOC与△AMN相似,,即=3或,即可求解;②分AO=AQ、QO=AQ、AO=OQ三种情况,分别求解即可.【解答】解:(1)∵点A、B关于直线x=﹣1对称,AB=4,∴由对称性质知A(﹣3,0),B(1,0),将点A、B的坐标代入y=﹣x2+bx+c中,得:y=(x+3)(x﹣1)=x2+2x﹣3,令x=0,则y=﹣3,故点C(0,﹣3);(2)设直线AC的表达式为:y=kx+m,则,解得:,故直线AC的表达式为:y=﹣x﹣3;设点E(0,m),则点F(﹣2,m),将点F的坐标代入直线AC的表达式的:m=2﹣3=﹣1,故点F(﹣2,﹣1);(3)①t秒时,点M的坐标为(﹣2t,0),则点Q(﹣2t,2t﹣3),点N[﹣2t,(﹣2t)2+2×(﹣2t)﹣3],即(﹣2t,4t2﹣4t﹣3),则MN=﹣4t2+4t+3,AM=3﹣2t,∵△BOC与△AMN相似,∴,即=3或,解得:t=或1或﹣(舍去和﹣),故t=1;②点Q(﹣2t,2t﹣3),点A(﹣3,0),则AO2=9,AQ2=2(2t﹣3)2,OQ2=(﹣2t)2+(2t﹣3)2,当AO=AQ时,即9=2(2t﹣3)2,解得:t=(舍去);当QO=AQ时,同理可得:t=;当AO=OQ时,同理可得:t=0或(舍去);综上,t=或.。

2020年天津市中考数学模拟试题(含答案) (4)

2020年天津市中考数学模拟试题(含答案)  (4)

2020年天津市中考数学模拟试卷(典型考点整理)一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为美元.9.(3分)已知k为整数,且满足<k<,则k的值是.10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是°.12.(3分)已知二元一次方程组,则2a+3b=.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是.14.(3分)已知不等式组无解,则a的取值范围是.15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,选择正确选项的字母代号涂在答题卡相应的位置上)1.(3分)﹣3的相反数是()A.3B.﹣3C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.【点评】本题考查了相反数的意义.只有符号不同的数为相反数,0的相反数是0.2.(3分)把下列数字看成图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,是中心对称图形,故本选项错误;B、是轴对称图形,不是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项错误;D、是轴对称图形,也是中心对称图形,故本选项正确.故选:D.【点评】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)已知P为线段AB的黄金分割点,且AP>PB,则()A.AP2+BP2=AB2B.BP2=AP•ABC.AP2=AB•BP D.AB2=AP•PB【分析】如图所示,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项(即ABAC=ACBC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点.其中AC=AB≈0.618AB,并且线段AB的黄金分割点有两个.【解答】解:∵P为线段AB的黄金分割点,且AP<PB,∴PB2=AP•AB.故选:C.【点评】本题考查了黄金分割的概念,熟记定义是解题的关键.4.(3分)三角形的重心是()A.三角形三条边上中线的交点B.三角形三条边上高线的交点C.三角形三条边垂直平分线的交点D.三角形三条内角平分线的交点【分析】根据三角形的重心是三条中线的交点解答.【解答】解:三角形的重心是三条中线的交点,故选:A.【点评】本题考查了三角形重心的定义.掌握三角形的重心是三条中线的交点是解题的关键.5.(3分)现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是()A.平均数不变,方差变大B.平均数不变,方差不变C.平均数不变,方差变小D.平均数变小,方差不变【分析】根据方差和平均数的定义即可得到结论.【解答】解:原数据的平方数为=165;原数据的方差为[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2+(165﹣165)2=;去掉最后一个数165后的数据的平均数为=165,去掉最后一个数165后的数据的方差为×[(165﹣165)2+(160﹣165)2+(166﹣165)2+(170﹣165)2+(164﹣165)2]=,故平均数不变,方差变大,故选:A.【点评】本题考查了方差和平均数,数据定义是解题的关键.6.(3分)如图,在平面直角坐标系中,过y轴正半轴上一点C作直线l,分别与y=﹣(x <0)和y=(x>0)的图象相交于点A、B,且C是AB的中点,则△ABO的面积是()A.B.C.2D.5【分析】根据题意A、B的横坐标化为相反数,所以设A(﹣m,﹣)则B(m,),根据题意中位线等于上下底和的一半,求得表示出OC,然后根据S△ABO=S△AOC+S△BOC 即可求得.【解答】解:∵C是AB的中点,∴设A(﹣m,﹣)则B(m,),∴OC=(+)=,∴S△ABO=S△AOC+S△BOC=××2m=.故选:B.【点评】本题考查了反比例函数和一次函数的交点,根据题意表示出交点的坐标是解题的关键.二、填空题(本大题共10小题,每小题3分,满分30分.请把答案直接填写在答题卡相应位置上.)7.(3分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.【点评】解题关键是掌握绝对值的规律.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.8.(3分)2018年中国与“一带一路”沿线国家进出口总额约13000 0000 0000美元,用科学记数法表示这个进出口总额为 1.3×1012美元.【分析】用科学记数法表示较大的数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:13000 0000 0000=1.3×1012.故答案为:1.3×1012.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.(3分)已知k为整数,且满足<k<,则k的值是3.【分析】先估算出和的范围,再得出答案即可.【解答】解:∵2<<3,3<<4,∴整数k=3,故答案为:3.【点评】本题考查了估算无理数的大小和实数的大小比较,能估算出和的范围是解此题的关键10.(3分)抛掷一枚质地均匀的硬币两次,出现一正一反的概率.【分析】列举出所有情况,看所求的情况占总情况的多少即可得出答案.【解答】解:共(正,正)、(反,反)、(正,反)、(反、正)4种情况,则出现一正一反的概率是=;故答案为:.【点评】此题考查了列举法求概率,解题的关键是找到所有的情况,用到的知识点为:概率=所求情况数与总情况数之比.11.(3分)把一副三角板按如图所示方式放置,则图中钝角α是105°.【分析】利用三角形内角和定理计算即可.【解答】解:由三角形的内角和定理可知:α=180°﹣30°﹣45°=105°,故答案为:105.【点评】本题考查三角形内角和定理,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考基础题.12.(3分)已知二元一次方程组,则2a+3b=9.【分析】将两方程相减即可得.【解答】解:,①﹣②,得:2a+3b=9,故答案为:9.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)若正多边形的每一个内角为135°,则这个正多边形的边数是8.【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【解答】解:∵所有内角都是135°,∴每一个外角的度数是180°﹣135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形.故答案为:8.【点评】本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14.(3分)已知不等式组无解,则a的取值范围是a≤1.【分析】根据不等式组无解,则两个不等式的解集没有公共部分解答.【解答】解:∵不等式组无解,∴a的取值范围是a≤1.故答案为:a≤1.【点评】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).15.(3分)已知:a﹣b=b﹣c=1,a2+b2+c2=2,则ab+bc+ac的值等于﹣1.【分析】由已知得出a﹣c=2,求出a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc ﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,即可得出所求的值.【解答】解:∵a﹣b=b﹣c=1,∴a﹣c=2,∴a2+b2+c2﹣ab﹣bc﹣ac=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ac)=[(a﹣b)2+(b﹣c)2+(c﹣a)2]=3,∴ab+bc+ac=a2+b2+c2﹣3=2﹣3=﹣1;故答案为:﹣1.【点评】本题考查了完全平方式以及配方法;能够运用完全平方式熟练推导与记忆a2+b2+c2﹣ab﹣bc﹣ac=[(a﹣b)2+(b﹣c)2+(a﹣c)2]是解题的关键.16.(3分)如图,已知Rt△ABC中,∠ACB=90°,BC=3,AC=4,点D为斜边AB的中点,点E在AC上,以AE为直径作⊙O,当⊙O与CD相切时,则⊙O的半径为.【分析】设⊙O与CD相切于F,连接OF,得到∠OFE=90°,根据勾股定理得到AB =5,根据直角三角形的性质得到AD=CD,由相似三角形的性质即可得到结论.【解答】解:设⊙O与CD相切于F,连接OF,∴∠OFE=90°,∵∠ACB=90°,BC=3,AC=4,∴AB=5,∵点D为斜边AB的中点,∴AD=CD,∴∠A=∠ACD,∵∠OFC=∠ACB=90°,∴△COF∽△ABC,∴=,设⊙O的半径为r,∴OC=4﹣r,∴=,∴r=,故答案为:.【点评】本题考查了切线的性质,直角三角形的性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.三、解答题(本大题共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(12分)(1)计算:+(π﹣1)0﹣6tan30°+()﹣2(2)解方程:+1=【分析】(1)原式利用二次根式性质,零指数幂、负整数指数幂法则,以及特殊角的三角函数值计算即可求出值;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)原式=2+1﹣6×+9=10;(2)去分母得:3(5x﹣4)+3x﹣6=4x+10,解得:x=2,经检验:x=2是增根,原方程无解.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.18.(8分)在学校组织的朗诵比赛中,甲、乙两名学生以抽签的方式从3篇不同的文章中抽取一篇参加比赛,抽签规则是:在3个相同的标签上分别标注字母A、B、C,各代表1篇文章,一名学生随机抽取一个标签后放回,另一名学生再随机抽取.用画树状图或列表的方法列出所有等可能的结果,并求甲、乙抽中同一篇文章的概率.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙抽中同一篇文章的结果,再利用概率公式求解即可求得答案.【解答】解:如图:所有可能的结果有9种,甲、乙抽中同一篇文章的情况有3种,概率为=.【点评】本题主要考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.19.(8分)我市中小学学生素养提升五项工程自启动以来,越来越受到教师、家长和学生的喜爱.为进一步了解学生对“规范书写”、“深度阅读”、“课堂演讲”、“阳光体艺”、“实验实践”的喜爱程度,某学生总数是1800人的九年一贯制学校,从每个年级随机抽取了部分学生进行了调查(每位学生只可选其中一项),并将结果整理、绘制成统计图如下:根据以上统计图,解答下列问题:(1)本次接受调查的学生共有80人,补全条形统计图;(2)求扇形统计图中a的值;(3)估计该校全体学生中喜爱“实验实践”的人数.【分析】(1)32÷40%=80(人),课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人),据此补图;(2),所以a=20;(3)根据题意得:1800×=360(人),所以该校全体学生中喜爱“实验实践”的人数约为360人.【解答】解:(1)32÷40%=80(人),故答案为80,课堂演讲人数:80﹣8﹣8﹣32﹣16=16(人)补图如下(2),所以a=20;(3)根据题意得:1800×=360(人),答:该校全体学生中喜爱“实验实践”的人数约为360人.【点评】本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.20.(8分)已知:如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC 的平分线交AD于点F.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,平行四边形ABCD的面积是36,求AD的长.【分析】(1)由平行四边形的性质和角平分线的性质可证BA=BE=AF,即可证四边形ABEF是菱形;(2)由菱形的性质和勾股定理可求BE=5,由菱形的面积公式可求AH=,由平行四边形的面积公式可求AD的长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴BA=BE,同理:AB=AF∴AF=BE,又∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形(2)如图,过A作AH⊥BE,∵四边形ABEF是菱形,∴AO=EO=AE=3,BO=FO=BF=4,AE⊥BF,∴BE==5,∵S菱形ABEF=AE•BF=×6×8=24,∴BE•AH=24,∴AH=,∴S平行四边形ABCD=AD×AH=36,∴AD=.【点评】本题考查了菱形的性质和判定,平行四边形的性质,熟练运用菱形的性质是本题的关键.21.(10分)已知关于x的一元二次方程x2﹣(m+2)x+2m=0.(1)求证:不论m为何值,该方程总有两个实数根;(2)若直角△ABC的两直角边AB、AC的长是该方程的两个实数根,斜边BC的长为3,求m的值.【分析】(1)根据一元二次方程根的判别式和非负数的性质即可得到结论;(2)根据勾股定理和一元二次方程根的判别式解方程即可得到结论.【解答】(1)证明:∵△=[﹣(m+2)]2﹣4×2m=(m﹣2)2≥0,∴不论m为何值,该方程总有两个实数根;(2)解:∵AB、AC的长是该方程的两个实数根,∴AB+AC=m+2,AB•AC=2m,∵△ABC是直角三角形,∴AB2+AC2=BC2,∴(AB+AC)2﹣2AB•AC=BC2,即(m+2)2﹣2×2m=32,解得:m=±,∴m的值是±.又∵AB•AC=2m,m为正数,∴m的值是.【点评】本题考查了一元二次方程根的判别式,勾股定理,熟练掌握勾股定理是解题的关键.22.(10分)如图,△ABC内接于⊙O,AD为⊙O的直径,AD与BC相交于点E,且BE=CE.(1)请判断AD与BC的位置关系,并说明理由;(2)若BC=6,ED=2,求AE的长.【分析】(1)如图,连接OB、OC,根据全等三角形的性质即可得到结论;(2)设半径OC=r,根据勾股定理即可得到结论..【解答】解:(1)AD⊥BC,理由:如图,连接OB、OC,在△BOE与△COE中,,∴△BOE≌△COE(SSS),∴∠BEO=∠CEO=90°,∴AD⊥BC;(2)设半径OC=r,∵BC=6,DE=2,∴CE=3,OE=r﹣2,∵CE2+OE2=OC2,∴32+(r﹣2)2=r2,解得r=,∴AD=,∵AE=AD﹣DE,∴AE=﹣2=.【点评】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.23.(10分)我市楚水商城销售一种进价为10元/件的饰品,经调查发现,该饰品每天的销售量y(件)与销售单价x(元)满足函数y=﹣2x+100,设销售这种饰品每天的利润为W(元).(1)求W与x之间的函数关系式;(2)在确保顾客得到优惠的前提下,该商城还要通过销售这种饰品每天获利750元,应将销售单价定为多少元?【分析】本题是通过构建函数模型解答销售利润的问题.(1)根据销售利润=销售量×(售价﹣进价),依据题意易得出W与x之间的函数关系式,(2)令W=750,求解即可,因为要确保顾客得到优惠,故最后x应取最小值【解答】解:(1)根据题意,得:W=(﹣2x+100)(x﹣10)整理得W=﹣2x2+120x﹣1000∴W与x之间的函数关系式为:W=﹣2x2+120x﹣1000(2)∵每天销售利润W为750元,∴W=﹣2x2+120x﹣1000=750解得x1=35,x2=25又∵要确保顾客得到优惠,∴x=25答:应将销售单价定位25元【点评】本题考查了二次函数的性质在实际生活中的应用.我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.再根据销售利润=销售量×(售价﹣进价),建立函数关系式,此题为数学建模题,借助二次函数解决实际问题.24.(10分)我市最近开通了“1号水路”观光游览专线,某中学数学活动小组带上高度为1.6m的测角仪,对其标志性建筑AO进行测量高度的综合实践活动,如图,在BC处测得直立于地面的AO顶点A的仰角为30°,然后前进20m至DE处,测得顶点A的仰角为75°.(1)求AE的长(结果保留根号);(2)求高度AO(精确到个位,参考数据:≈1.4,≈1.7)【分析】(1)延长CE交AO于点G,过点E作EF⊥AC垂足为F.解直角三角形即可得到结论;(2)解直角三角形即可得到结论.【解答】解:(1)如图,延长CE交AO于点G,过点E作EF⊥AC垂足为F.由题意可知:∠ACG=30°,∠AEG=75°,CE=20,∴∠EAC=∠AEG﹣∠ACG=45°,∵EF=CE×Sin∠FCE=10,∴AE==10,∴AE的长度为10m;(2)∵CF=CE×cos∠FCE=10,AF=EF=10,∴AC=CF+AF=10+10,∴AG=AC×Sin∠ACG=5+5,∴AO=AG+GO=5+5+1.6=5+6.6≈15,∴高度AO约为15m.【点评】本题考查了解直角三角形的应用、勾股定理、三角函数;由勾股定理得出方程是解决问题的关键.25.(12分)如图,已知正方形ABCD的边长为3,E是对角线BD上一点(BE>DE).(1)利用直尺和圆规,在图中过点E作AE的垂线,交BC边于点F(保留作图痕迹,不写作法);(2)在(1)中,求证:AE=EF;(3)若(1)中四边形ABFE的面积为4,求AE的长.【分析】(1)过点E作AE的垂线即可;(2)如图,过点E作EM⊥AB、EN⊥BC,先证明矩形MBNE是正方形,则∠AEM=∠FEN,再证明△AEM≌△FEN,从而得到AE=EF;(3)利用△AEM≌△FEN得到S△AEM=S△FEN,则S四边形ABFE=S正方形MBNE,利用正方形面积公式得到BM=2,则AM=AB﹣BM=1,然后利用勾股定理计算AE的长.【解答】解:(1)如图,(2)如图,过点E作EM⊥AB、EN⊥BC,∴∠EMB=∠MBN=∠ENB=90°,∴四边形MBNE是矩形,又∵四边形ABCD为正方形,∴BD平分∠ABC,∴EM=EN,∴矩形MBNE是正方形,∵∠AEM+∠MEF=∠MEF+∠FEN=90°,∴∠AEM=∠FEN,又∵∠AME=∠FNE=90°,EM=EN,∴△AEM≌△FEN(ASA),∴AE=EF;(3)∵△AEM≌△FEN,∴S△AEM=S△FEN,∴S四边形ABFE=S正方形MBNE,∵四边形ABFE的面积为4,∴BM2=4,∴BM=2(取正舍负),∴AM=AB﹣BM=1,∴AE==.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了正方形的性质.26.(14分)已知,关于x的二次函数y=ax2﹣2ax(a>0)的顶点为C,与x轴交于点O、A,关于x的一次函数y=﹣ax(a>0).(1)试说明点C在一次函数的图象上;(2)若两个点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,是否存在整数k,满足=?如果存在,请求出k的值;如果不存在,请说明理由;(3)若点E是二次函数图象上一动点,E点的横坐标是n,且﹣1≤n≤1,过点E作y 轴的平行线,与一次函数图象交于点F,当0<a≤2时,求线段EF的最大值.【分析】(1)先求出二次函数y=ax2﹣2ax=a(x﹣1)2﹣a顶点C(1,﹣a),当x=1时,一次函数值y=﹣a所以点C在一次函数y=﹣ax的图象上;(2)存在.将点(k,y1)、(k+2,y2)(k≠0,±2)代入二次函数解析式,y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),因为满足=,,整理,得,,解得k=±4,经检验:k=±4是原方程的根,所以整数k的值为±4;(3)分两种情况讨论:①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a.【解答】解:(1)∵二次函数y=ax2﹣2ax=a(x﹣1)2﹣a,∴顶点C(1,﹣a),∵当x=1时,一次函数值y=﹣a∴点C在一次函数y=﹣ax的图象上;(2)存在.∵点(k,y1)、(k+2,y2)(k≠0,±2)都在二次函数的图象上,∴y1=ak2﹣2ak,y2=a(k+2)2﹣2a(k+2),∵满足=,∴,整理,得,∴,∴,解得k=±4,经检验:k=±4是原方程的根,∴整数k的值为±4.(3)∵点E是二次函数图象上一动点,∴E(n,an2﹣2an),∵EF∥y轴,F在一次函数图象上,∴F(n,﹣an).①当﹣1≤n≤0时,EF=y E﹣y F=an2﹣2an﹣(﹣an)=a(n﹣)2﹣a,∵a>0,∴当n=﹣1时,EF有最大值,且最大值是2a,又∵0<a≤2,∴0<2a≤4,即EF的最大值是4;②当0<n≤1时,EF=y F﹣y E=﹣an﹣(an2﹣2an)=﹣a(n﹣)2+a,此时EF的最大值是,又∵0<a≤2,∴0<≤,即EF的最大值是;综上所述,EF的最大值是4.【点评】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

(完整word版)2020年河南省中考数学模拟试卷解析版

(完整word版)2020年河南省中考数学模拟试卷解析版

2020年河南省中考数学模拟试卷解析版一.选择题(共10小题,满分30分,每小题3分)1.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|2.根据制定中的通州区总体规划,将通过控制人口总量上限的方式,努力让副中心远离“城市病”.预计到2035年,副中心的常住人口规模将控制在130万人以内,初步建成国际一流的和谐宜居现代化城区.130万用科学记数法表示为( )A.1。

3×106B.130×104C.13×105D.1。

3×1053.将一个正方体沿图1所示切开,形成如图2的图形,则图2的左视图为()A.B.C.D.4.如图,直线a∥b,点C,D分别在直线b,a上,AC⊥BC,CD平分∠ACB,若∠1=65°,则∠2的度数为()A.65°B.70°C.75°D.80°5.为迎接体育中考,九年级(1)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( )A.40,41 B.42,41 C.41,42 D.41,406.不等式组的解集在数轴上表示正确的是()A.B.C.D.7.如图,菱形ABCD中,对角线AC、BD交于点O,点E为AB的中点,连接OE,若OE=3,∠ADC=60°,则BD 的长度为()A.6B.6 C.3D.38.两个不透明的袋子中分别装有标号1、2、3、4和标号2、3、4的7个小球,7个小球除标号外其余均相同,随机从两个袋子中抽取一个小球,则其标号数字和大于6的概率为()A.B.C.D.9.如图,在平面直角坐标系中,等边△OBC的边OC在x轴正半轴上,点O为原点,点C坐标为(12,0),D 是OB上的动点,过D作DE⊥x轴于点E,过E作EF⊥BC于点F,过F作FG⊥OB于点G.当G与D重合时,点D的坐标为()A.(1,)B.(2,2)C.(4,4)D.(8,8)10.如图1.已知正△ABC中,E,F,G分别是AB,BC,CA上的点,且AE=BF=CG,设△EFG的面积为y,AE 的长为x,y关于x的函数图象如图2,则△EFG的最小面积为( )A.B.C.2 D.二.填空题(共5小题,满分15分,每小题3分)11.计算:(﹣π)0﹣=.12.如图,在⊙O中,直径EF⊥CD,垂足为M,EM•MF=12,则CD的长度为.13.如果函数y=﹣2x与函数y=ax2+1有两个不同的交点,则实数a的取值范围是.14.如图,等腰三角形ABC中,AB=AC=2,∠B=75°,以C为旋转中心将△ABC顺时针旋转,当点B落在AB 上点D处时,点A的对应点为E,则阴影部分面积为.15.如图,将三角形纸片ABC沿AD折叠,使点C落在BD边上的点E处.若BC=10,BE=2,则AB2﹣AC2的值为.三.解答题(共8小题,满分75分)16.(8分)先化简,再求值:(x﹣2﹣)÷,其中x=2﹣4.17.(9分)某超市对今年“元旦"期间销售A、B、C三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;(2)补全条形统计图;(3)如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?18.(9分)如图,⊙O中,AB为直径,点P为⊙O外一点,且PA=AB,PA、PB交⊙O于D、E两点,∠PAB 为锐角,连接DE、OD、OE.(1)求证:∠EDO=∠EBO;(2)填空:若AB=8,①△AOD的最大面积为;②当DE=时,四边形OBED为菱形.19.(9分)济南大明湖畔的“超然楼"被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)20.(9分)如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.21.(10分)开学前夕,某文具店准备购进A、B两种品牌的文具袋进行销售,若购进A品牌文具袋和B品牌文具袋各5个共花费125元,购进A品牌文具袋3个和B品牌文具袋各4个共花费90元.(1)求购进A品牌文具袋和B品牌文具袋的单价;(2)若该文具店购进了A,B两种品牌的文具袋共100个,其中A品牌文具袋售价为12元,B品牌文具袋售价为23元,设购进A品牌文具袋x个,获得总利润为y元.①求y关于x的函数关系式;②要使销售文具袋的利润最大,且所获利润不超过进货价格的40%,请你帮该文具店设计一个进货方案,并求出其所获利润的最大值.22.(10分)已知:AD是△ABC的高,且BD=CD.(1)如图1,求证:∠BAD=∠CAD;(2)如图2,点E在AD上,连接BE,将△ABE沿BE折叠得到△A′BE,A′B与AC相交于点F,若BE=BC,求∠BFC的大小;(3)如图3,在(2)的条件下,连接EF,过点C作CG⊥EF,交EF的延长线于点G,若BF=10,EG=6,求线段CF的长.23.(11分)如图1,抛物线y=x2+(m﹣2)x﹣2m(m>0)与x轴交于A、B两点(A在B左边),与y轴交于点C.连接AC、BC,D为抛物线上一动点(D在B、C两点之间),OD交BC于E点.(1)若△ABC的面积为8,求m的值;(2)在(1)的条件下,求的最大值;(3)如图2,直线y=kx+b与抛物线交于M、N两点(M不与A重合,M在N左边),连MA,作NH⊥x轴于H,过点H作HP∥MA交y轴于点P,PH交MN于点Q,求点Q的横坐标.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.【分析】根据绝对值的定义进行分析即可得出正确结论.【解答】解:选项A、B、C中,a与b的关系还有可能互为相反数.故选D.【点评】绝对值相等的两个数的关系是相等或互为相反数.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130万用科学记数法表示为1。

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案

2020年河北省石家庄市中考数学模拟试题及参考答案(考试时间120分钟,总分120分)一、选择题(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一种零件的直径尺寸在图纸上是(单位:mm),它表示这种零件的标准尺寸是20mm,则加工要求尺寸最大不超过()A.0.03mm B.0.02nn C.20.03mm D.19.98mm2.将一副三角板按如图所示位置摆放,其中∠α=∠β的是()A.①②B.②③C.①④D.②④3.在数轴上与原点的距离小于8的点对应的x满足()A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>84.北京大兴国际机场采用“三纵一横”全向型跑道构型,可节省飞机飞行时间,遇极端天气侧向跑道可提升机场运行能力.跑道的布局为:三条南北向的跑道和一条偏东南走向的侧向跑道.如图,侧向跑道AB在点O南偏东70°的方向上,则这条跑道所在射线OB与正北方向所成角的度数为()A.20°B.70°C.110°D.160°5.在下列图形中是轴对称图形的是()A.B.C.D.6.下列事件中,属于不可能事件的是()A.某个数的绝对值大于0 B.任意一个五边形的外角和等于540°C.某个数的相反数等于它本身D.长分别为3,4,6的三条线段能围成一个三角形7.下列选项中,左边的平面图形能够折成右边封闭的立体图形的是()A.B.C.D.8.已知△ABC,两个完全一样的三角板如图摆放,它们的一组对应直角边分别在AB,AC上,且这组对应边所对的顶点重合于点M,点M一定在()A.∠A的平分线上B.AC边的高上C.BC边的垂直平分线上D.AB边的中线上9.如图,在菱形ABCD中,E是AB的中点,F点是AC的中点,连接EF.如果EF=4,那么菱形ABCD的周长为()A.9 B.12 C.24 D.3210.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限11.如图,已知∠MON及其边上一点A.以点A为圆心,AO长为半径画弧,分别交OM,ON于点B和C.再以点C为圆心,AC长为半径画弧,恰好经过点B.错误的是()A.S△AOC=S△ABC B.∠OCB=90°C.∠MON=30°D.OC=2BC12.两个工程队共同参与一项筑路工程,甲队单独施工3个月,这时增加了乙队,两队又共同工作了2个月,总工程全部完成,已知甲队单独完成全部工程比乙队单独完成全部工程多用2个月,设甲队单独完成全部需x个月,则根据题意可列方程中错误的是()A.+=1 B.++=1 C.+=1 D.+2(+)=1 13.如图,已知△ABC,∠ACB=90°,BC=3,AC=4,小红按如下步骤作图:①分别以A、C为圆心,以大于AC的长为半径在AC两边作弧,交于两点M、N;②连接MN,分别交AB、AC于点D、O;③过C作CE∥AB交MN于点E,连接AE、CD.则四边形ADCE的周长为()A.10 B.20 C.12 D.2414.下图中反比例函数y=与一次函数y=kx﹣k在同一直角坐标系中的大致图象是()A.B.C.D.15.有编号为Ⅰ,Ⅱ,Ⅲ的3个信封,现将编号为Ⅰ,Ⅱ的两封信,随机地放入其中两个信封里,则信封与信编号都相同的概率为()A. B.C.D.16.如图,已知EF是⊙O的直径,把∠A为60°的直角三角板ABC的一条直角边BC放在直线EF 上,斜边AB与⊙O交于点P,点B与点O重合,且AC大于OE,将三角板ABC沿OE方向平移,使得点B与点E重合为止.设∠POF=x,则x的取值范围是()A.30≤x≤60 B.30≤x≤90 C.30≤x≤120 D.60≤x≤120二、填空题(本大题有3个小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17如图,边长为1的正方形网格中,AB3.(填“>”,“=”或“<”)18.若,则x2+2x+1=.19.已知:如图,在平面直角坐标系xOy中,点A在抛物线y=x2﹣4x+6上运动,过点A作AC⊥x 轴于点C,以AC为对角线作正方形ABCD。

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

浙江省杭州市萧山区2020年中考数学模拟试卷(含答案解析)

2020年浙江省杭州市萧山区中学中考数学模拟试卷选择题(共10小题,满分30分,每小题3分)一.1.函数y=(x+1)°-2的最小值是()A.1B.-1C.2D.-22.从1978年12月18日党的^一届三中全会决定改革开放到如今已经40周年了,我国GDP(国内生产总值)从1978年的1495亿美元到2017年已经达到了122400亿美元,全球排名第二,将122400用科学记数法表示为(A.12.24X104B. 1.224X105C.0.1224X106D. 1.224X1063.若2'〃=5,4"=3,则4in m的值是()A•会C.2D.44.“龟兔赛跑”是同学们熟悉的寓言故事.如图所示,表7K了寓言中的龟、兔的路程S和时间,的关系(其中直线段表示乌龟,折线段表示兔子).下列叙述正确的是()B.乌龟在这次比赛中的平均速度是0.1米/分钟C.兔子比乌龟早到达终点10分钟D.乌龟追上兔子用了20分钟5.一组数据:201、200、199、202、200,分别减去200,得到另一组数据:1、0、-1、2、0,其中判断错误的是()A.前一组数据的中位数是200B.前一组数据的众数是200C.后一组数据的平均数等于前一组数据的平均数减去200D.后一组数据的方差等于前一组数据的方差减去2006.如图,己知直线AB、CD被直线AC所截,AB//CD,E是平面内任意一点(点E不在直线AB、CD、AC_b),设/BAE=a,ZDCE=^.下列各式:①a+8,②a",③&-a,④360。

-a-p, ZAEC 的度数可能是( )A.①②③B.①②④C.①③④D.①②③④7.把抛物线y= - 2x 向上平移1个单位,再向右平移1个单位,得到的抛物线是()A. y= - 2 (x+1) ?+1B. y= -2 (x- 1) 2+1C. y= - 2 (x- 1) 2 - 1D. y= - 2 (x+1) 2 - 18.现在把一张正方形纸片按如图方式剪去一个半径为40柄厘米的圆面后得到如图纸片,且该纸片所能剪出的最大圆形纸片刚好能与前面所剪的扇形纸片围成一圆锥表面,则该正方形纸片的边长约为( )厘米.(不计损耗、重叠,结果精确到1厘米,插F.41,寸*1.73)A. 6470 D. 739.如图,^ABCD 的对角线AC 、BD 交于点O, DE 平分ZAD C 交AB 于点E, ZBCD=60° , AD =*43,连接 OE.下列结论:①S°abcd =AD・BD ;②DB 平分ZCDE ; @AO=DE ; @S a ADE =5S m )fe ,其中正确的个数有()A. 9AB. 10 人C. 3个D. 4个如果一共碰杯55次,则参加酒会的人数为(c. II A D. 12 A二.填空题(共6小题,满分24分,每小题4分)11.若二次函数y=2 (x+1) 2+3的图象上有三个不同的点A (xi ,4)、B (羽+电,n )、C (电,4),则〃的值为.12,某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是13.如图,已知函数y=x+2的图象与函数尸直•(切0)的图象交于A、B两点,连接80并延长交X函数y=—Ck^O)的图象于点C,连接AC,若△ABC的面积为8.则k的值为.x14.如图1为两个边长为1的正方形组成的2X1格点图,点A,B,C,£>都在格点上,AB,CD交于点P,则tanZBPD=,如果是"个边长为1的正方形组成的“X1格点图,如图2,那15.如图,动点。

2020年河南省洛阳市中考数学模拟试卷(三) 解析版

2020年河南省洛阳市中考数学模拟试卷(三)  解析版

2020年河南省洛阳市中考数学模拟试卷(三)一、选择题(每题3分,共30分)1.(3分)下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.2.(3分)下列运算正确的是()A.(﹣a3)2=a6B.a2+a3=a5C.(a﹣b)2=a2﹣b2D.(﹣2a3)2=﹣4a63.(3分)智能手机的芯片都是采用光刻技术制作出来的半导体集成电路,随着科技的迅猛发展,纳米芯片的特征尺寸已达到10纳米(1米=109纳米),那么10纳米用科学记数法表示为()米.A.1.0×10﹣7B.1.0×10﹣8C.1.0×10﹣9D.1.0×10﹣10 4.(3分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.(3分)下列等式是四位同学解方程﹣1=过程中去分母的一步,其中正确的是()A.x﹣1=2x B.x﹣1=﹣2x C.x﹣x﹣1=﹣2x D.x﹣x+1=﹣2x 6.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C 的度数是()A.100°B.120°C.130°D.150°7.(3分)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:成绩(分)808284868790人数8129358则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分8.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣2,则另一个根是()A.2B.1C.﹣1D.09.(3分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.10.(3分)如图所示,把多块大小不同的30°角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3.按此规律继续下去,则线段OB2020的长为()A.2×()2020B.2×()2021C.()2020D.()2021二、填空题(每题3分,共15分)11.(3分)计算:|﹣2|﹣=.12.(3分)如图,已知△ABC的周长为13,根据图中尺规作图的痕迹,直线分别与BC、AC交于D、E两点,若AE=2,则△ABD的周长为.13.(3分)为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是.14.(3分)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.15.(3分)菱形ABCD的边长是4,∠ABC=120°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△AˊMN,若△AˊDC恰为等腰三角形,则AP的长为.三、解答题(共75分)16.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.17.(9分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量,a为:(2)n为°,E组所占比例为%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有名.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是时,以A,O,P,C为顶点的四边形是正方形;②当的长度是时,以A,D,O,P为顶点的四边形是菱形.19.(9分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).21.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为;方案二中,当0≤x≤100时,y与x的函数关系式为;当x>100时,y与x的函数关系式为;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?22.(10分)已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C逆时针旋转60°,得到线段CF.(1)如图1,当P为AC的中点时,求证:FC⊥PD;(2)如图2,当P为△ABC内任一点时,连接P A,PF,AF试判断△P AF的形状,并证明你的结论;(3)当B,P,F三点共线且AB=,PB=3时,求P A的长.23.(11分)如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.2020年河南省洛阳市中考数学模拟试卷(三)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列各数中是负数的是()A.|﹣3|B.﹣3C.﹣(﹣3)D.【分析】根据负数的定义可得B为答案.【解答】解:﹣3的绝对值=3>0;﹣3<0;﹣(﹣3)=3>0;>0.故选:B.2.(3分)下列运算正确的是()A.(﹣a3)2=a6B.a2+a3=a5C.(a﹣b)2=a2﹣b2D.(﹣2a3)2=﹣4a6【分析】根据幂的乘方的运算法则,合并同类项的法则,完全平方公式,幂的乘方和积的乘方的运算法则计算得到结果,即可作出判断.【解答】解:A、(﹣a3)2=a6,原计算正确,故此选项符合题意;B、a2与a3不是同类项,不能合并,原计算错误,故此选项不符合题意;C、(a﹣b)2=a2﹣2ab+b2,原计算错误,故此选项不符合题意;D、(﹣2a3)2=4a6,原计算错误,故此选项不符合题意.故选:A.3.(3分)智能手机的芯片都是采用光刻技术制作出来的半导体集成电路,随着科技的迅猛发展,纳米芯片的特征尺寸已达到10纳米(1米=109纳米),那么10纳米用科学记数法表示为()米.A.1.0×10﹣7B.1.0×10﹣8C.1.0×10﹣9D.1.0×10﹣10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:10纳米用科学记数法表示为1.0×10﹣8米.故选:B.4.(3分)如图是由6个大小相同的立方体组成的几何体,在这个几何体的三视图中,是中心对称图形的是()A.主视图B.左视图C.俯视图D.主视图和左视图【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个田字,“田”字是中心对称图形,故选:C.5.(3分)下列等式是四位同学解方程﹣1=过程中去分母的一步,其中正确的是()A.x﹣1=2x B.x﹣1=﹣2x C.x﹣x﹣1=﹣2x D.x﹣x+1=﹣2x 【分析】两边都乘以x﹣1,再去括号可得答案.【解答】解:两边都乘以x﹣1,得:x﹣(x﹣1)=﹣2x,即x﹣x+1=﹣2x,故选:D.6.(3分)如图,已知直线AB∥CD,BE平分∠ABC,交CD于D,∠CDE=150°,则∠C 的度数是()A.100°B.120°C.130°D.150°【分析】求出∠CDB,根据平行线的性质求出∠ABD,根据角平分线的定义求出∠ABC,再根据平行线的性质求出即可.【解答】解:∵∠CDE=150°,∴∠CDB=180°﹣150°=30°,∵DC∥AB,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB∥CD,∴∠C+∠ABC=180°,∴∠C=120°,故选:B.7.(3分)九年级一班数学老师对全班学生在模拟考试中A卷成绩进行统计后,制成如下的统计表:成绩(分)808284868790人数8129358则该班学生A卷成绩的众数和中位数分别是()A.82分,82分B.82分,83分C.80分,82分D.82分,84分【分析】根据中位数与众数的定义进行解答即可.【解答】解:把这组数据从小到大排列,则该班学生成绩的中位数是84;82出现了12次,出现的次数最多,则众数是82;故选:D.8.(3分)若关于x的一元二次方程x2+(k+3)x+2=0的一个根是﹣2,则另一个根是()A.2B.1C.﹣1D.0【分析】根据一元二次方程的根与系数的关系x1•x2=来求方程的另一个根.【解答】解:设x1、x2是关于x的一元二次方程x2+(k+3)x+2=0的两个根,由韦达定理,得x1•x2=2,即﹣2x2=2,解得,x2=﹣1.即方程的另一个根是﹣1.故选:C.9.(3分)如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A.6π﹣B.6π﹣9C.12π﹣D.【分析】连接OD,如图,利用折叠性质得由弧AD、线段AC和CD所围成的图形的面积等于阴影部分的面积,AC=OC,则OD=2OC=6,CD=3,从而得到∠CDO=30°,∠COD=60°,然后根据扇形面积公式,利用由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD,进行计算即可.【解答】解:连接OD,如图,∵扇形纸片折叠,使点A与点O恰好重合,折痕为CD,∴AC=OC,∴OD=2OC=6,∴CD==3,∴∠CDO=30°,∠COD=60°,∴由弧AD、线段AC和CD所围成的图形的面积=S扇形AOD﹣S△COD=﹣•3•3=6π﹣,∴阴影部分的面积为6π﹣.故选:A.10.(3分)如图所示,把多块大小不同的30°角三角板,摆放在平面直角坐标系中,第一块三角板AOB的一条直角边与x轴重合且点A的坐标为(2,0),∠ABO=30°,第二块三角板的斜边BB1与第一块三角板的斜边AB垂直且交x轴于点B1,第三块三角板的斜边B1B2与第二块三角板的斜边BB1垂直且交y轴于点B2,第四块三角板斜边B2B3与第三块三角板的斜边B1B2垂直且交x轴于点B3.按此规律继续下去,则线段OB2020的长为()A.2×()2020B.2×()2021C.()2020D.()2021【分析】根据题意和图象可以发现题目中的变化规律:OB=2×,OB1=2×()2,OB2=2×()3,……,从而可以推算出OB2020的长.【解答】解:由题意可得,∵OB=OA•tan60°=2×=2,∴B(0,2),∵OB1=OB•tan60°=2×=2×()2,∴B1(﹣2×()2,0),∵OB2=OB1•tan60°=2×()3,∴B2(0,﹣2×()3),∵OB3=OB2•tan60°=2×()4,∴B3(2×()4,0),……∴线段OB2020的长为2×()2021.故选:B.二、填空题(每题3分,共15分)11.(3分)计算:|﹣2|﹣=﹣1.【分析】根据绝对值和立方根的定义计算即可.【解答】解:|﹣2|﹣=2﹣3=﹣1.故答案为:﹣1.12.(3分)如图,已知△ABC的周长为13,根据图中尺规作图的痕迹,直线分别与BC、AC交于D、E两点,若AE=2,则△ABD的周长为9.【分析】根据线段的垂直平分线的判定和性质解决问题即可.【解答】解:由作图可知,DE垂直平分线段AC,∴DA=DC,AE=EC,∵AB+BC+AC=13,AC=2AE=4,∴AB+BC=9,∴△ABD的周长=AB+BD+DA=AB+BD+DC=AB+BC=9,故答案为9.13.(3分)为迎接文明城市的验收工作,某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是.【分析】将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.【解答】解:将三个小区分别记为A、B、C,列表如下:A B CA(A,A)(B,A)(C,A)B(A,B)(B,B)(C,B)C(A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为=.故答案为:.14.(3分)如图1,在四边形ABCD中,AD∥BC,∠B=30°,直线l⊥AB.当直线l沿射线BC方向,从点B开始向右平移时,直线l与四边形ABCD的边分别相交于点E、F.设直线l向右平移的距离为x,线段EF的长为y,且y与x的函数关系如图2所示,则四边形ABCD的周长是.【分析】根据题意和函数图象中的数据,可以得到AB、BC、AD的长,再根据平行线的性质和图形中的数据可以得到CD的长,从而可以求得四边形ABCD的周长.【解答】解:∵∠B=30°,直线l⊥AB,∴BE=2EF,由图可得,AB=4cos30°=4×=2,BC=5,AD=7﹣4=3,由图象可得,AN=5﹣4=1,ND=CM=7﹣5=2,DM=2,∵∠B=30°,EF⊥AB,∴∠M=60°,又∵DM=MC=2,∴△DMC是等边三角形,∴DC=DM=2,∴四边形ABCD的周长是:AB+BC+AD+CD=2+5+3+2=10+2,故答案为:10+2.15.(3分)菱形ABCD的边长是4,∠ABC=120°,点M、N分别在边AD、AB上,且MN⊥AC,垂足为P,把△AMN沿MN折叠得到△AˊMN,若△AˊDC恰为等腰三角形,则AP的长为或2﹣2.【分析】△A'DC恰为等腰三角形,分两种情况进行讨论:当A'D=A'C时,当CD=CA'=4时,分别通过解直角三角形,求得AA'的长,即可得到AP的长.【解答】解:①如图,当A'D=A'C时,∠A'DC=∠A'CD=30°,∴∠AA'D=60°,又∵∠CAD=30°,∴∠ADA'=90°,∴Rt△ADA'中,AA'===,由折叠可得,AP=AA'=;②如图,当CD=CA'=4时,连接BD交AC于O,则Rt△COD中,CO=CD×cos30°=4×=2,∴AC=4,∴AA'=AC﹣A'C=4﹣4,由折叠可得,AP=AA'=2﹣2;故答案为:或2﹣2.三、解答题(共75分)16.(8分)先化简,再求值:(﹣)÷,其中x的值从不等式组的整数解中选取.【分析】首先化简(﹣)÷,然后根据x的值从不等式组的整数解中选取,求出x的值是多少,再把求出的x的值代入化简后的算式,求出算式的值是多少即可.【解答】解:(﹣)÷=÷=解不等式组,可得:﹣2<x≤2,∴x=﹣1,0,1,2,∵x=﹣1,0,1时,分式无意义,∴x=2,∴原式==﹣.17.(9分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛.从中抽取了部分学生成绩(得分数取正整数,满分为100分)进行统计,绘制统计频数分布直方图(未完成)和扇形图如下,请解答下列问题:(1)A组的频数a比B组的频数b小24,样本容量200,a为16:(2)n为126°,E组所占比例为12%:(3)补全频数分布直方图;(4)若成绩在80分以上优秀,全校共有2000名学生,估计成绩优秀学生有940名.【分析】(1)由于A组的频数比B组小24,而A组的频率比B组小12%,则可计算出调查的总人数,然后计算a和b的值;(2)用360度乘以D组的频率可得到n的值,根据百分比之和为1可得E组百分比;(3)计算出C和E组的频数后补全频数分布直方图;(4)利用样本估计总体,用2000乘以D组和E组的频率和即可.【解答】解:(1)调查的总人数为24÷(20%﹣8%)=200,所以a=200×8%=16,b=200×20%=40,故答案为:200,16;(2)D部分所对的圆心角=360°×=126°,即n=126,E组所占比例为1﹣(8%+20%+25%+×100%)=12%,故答案为126,12;(3)C组的频数为200×25%=50,E组的频数为200﹣16﹣40﹣50﹣70=24,补全频数分布直方图为:(4)2000×=940,所以估计成绩优秀的学生有940人.18.(9分)如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC交⊙O 于另一点D,连接P A、PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则①当弦AP的长是2时,以A,O,P,C为顶点的四边形是正方形;②当的长度是π或π时,以A,D,O,P为顶点的四边形是菱形.【分析】(1)利用切线的性质得OP⊥PC,再证明AC∥OP得到∠1=∠3,加上∠2=∠3,所以∠1=∠2;(2)①当∠AOP=90°,根据正方形的判定方法得到四边形AOPC为正方形,从而得到AP=2;②根据菱形的判定方法,当AD=AP=OP=OD时,四边形ADOP为菱形,所以△AOP和△AOD为等边三角形,然后根据弧长公式计算的长度.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,根据弧长公式计算的长度.【解答】(1)证明:∵PC切⊙O于点P,∴OP⊥PC,∵AC⊥PC,∴AC∥OP,∴∠1=∠3,∵OP=OA,∴∠2=∠3,∴∠1=∠2,∴AP平分∠CAB;(2)解:①当∠AOP=90°,四边形AOPC为矩形,而OA=OP,此时矩形AOPC为正方形,AP=OP=2;②当AD=AP=OP=OD时,四边形ADOP为菱形,△AOP和△AOD为等边三角形,则∠AOP=60°,的长度==π.当AD=DP=PO=OA时,四边形ADPO为菱形,△AOD和△DOP为等边三角形,则∠AOP=120°,的长度==π.故答案为2,π或π.19.(9分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?【分析】(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DP A中,DP=AD,以及P A=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF﹣EF=15(﹣1)≈10.9(米);若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9m;(2)过点D作DP⊥AC,垂足为P.在Rt△DP A中,DP=AD=×30=15,P A=AD•cos30°=×30=15.在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6.答:建筑物GH高约为45.6米.20.(9分)如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=(x>0)的函数图象经过点D,点P是一次函数y=kx+3﹣3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)对于一次函数y=kx+3﹣3k(k≠0),当y随x的增大而增大时,确定点P的横坐标的取值范围(不必写出过程).【分析】(1)由B(3,1),C(3,3)得到BC⊥x轴,BC=2,根据平行四边形的性质得AD=BC=2,而A点坐标为(1,0),可得到点D的坐标为(1,2),然后把D(1,2)代入y=即可得到m=2,从而可确定反比例函数的解析式;(2)把x=3代入y=kx+3﹣3k(k≠0)得到y=3,即可说明一次函数y=kx+3﹣3k(k ≠0)的图象一定过点C;(3)设点P的横坐标为a,由于一次函数y=kx+3﹣3k(k≠0)过C点,并且y随x的增大而增大时,则P点的纵坐标要小于3,横坐标要小于3,当纵坐标小于3时,由y=得到a>,于是得到a的取值范围.【解答】解:(1)∵四边形ABCD是平行四边形,∴AD=BC,∵B(3,1),C(3,3),∴BC⊥x轴,AD=BC=2,而A点坐标为(1,0),∴点D的坐标为(1,2).∵反比例函数y=(x>0)的函数图象经过点D(1,2),∴2=∴m=2,∴反比例函数的解析式为y=;(2)当x=3时,y=kx+3﹣3k=3k+3﹣3k=3,∴一次函数y=kx+3﹣3k(k≠0)的图象一定过点C;(3)设点P的横坐标为a,则a的范围为<a<3.21.(10分)在购买某场足球赛门票时,设购买门票数为x(张),总费用为y(元).现有两种购买方案:方案一:若单位赞助广告费10000元,则该单位所购门票的价格为每张60元;(总费用=广告赞助费+门票费)方案二:购买门票方式如图所示.解答下列问题:(1)方案一中,y与x的函数关系式为y=60x+10000;方案二中,当0≤x≤100时,y与x的函数关系式为y=100x;当x>100时,y与x的函数关系式为y=80x+2000;(2)如果购买本场足球赛超过100张,你将选择哪一种方案,使总费用最省?请说明理由;(3)甲、乙两单位分别采用方案一、方案二购买本场足球赛门票共700张,花去总费用计58000元,求甲、乙两单位各购买门票多少张?【分析】(1)依题意可得y与x的函数关系式y=60x+10000;本题考查了分段函数的有关知识(0≤x≤100;x>100);(2)设60x+10000>80x+2000,可用方案二买;当60x+1000=80x+2000时,两种方案均可选择;当60x+1000<80x+200时,可选择方案一;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张,分别可采用方案一或方案二购买.【解答】解:(1)方案一:y=60x+10000;当0≤x≤100时,y=100x;当x>100时,y =80x+2000;(2)因为方案一y与x的函数关系式为y=60x+10000,∵x>100,方案二的y与x的函数关系式为y=80x+2000;当60x+10000>80x+2000时,即x<400时,选方案二进行购买,当60x+10000=80x+2000时,即x=400时,两种方案都可以,当60x+10000<80x+2000时,即x>400时,选方案一进行购买;(3)设甲、乙单位购买本次足球赛门票数分别为a张、b张;∵甲、乙单位分别采用方案一和方案二购买本次足球比赛门票,∴乙公司购买本次足球赛门票有两种情况:0<b≤100或b>100.当b≤100时,乙公司购买本次足球赛门票费为100b,解得不符合题意,舍去;当b>100时,乙公司购买本次足球赛门票费为80b+2000,解得符合题意.答:甲、乙单位购买本次足球赛门票分别为500张、200张.22.(10分)已知△ABC是等边三角形,点P是平面内一点,且四边形PBCD为平行四边形,将线段CD绕点C逆时针旋转60°,得到线段CF.(1)如图1,当P为AC的中点时,求证:FC⊥PD;(2)如图2,当P为△ABC内任一点时,连接P A,PF,AF试判断△P AF的形状,并证明你的结论;(3)当B,P,F三点共线且AB=,PB=3时,求P A的长.【分析】(1)如图1,由等边三角形和平行四边形的性质求得∠FCD+∠D=90°,易得FC⊥PD.(2)△P AF是等边三角形.如图2,连接P A,PF,延长BC,构造全等三角形:△ABP ≌△ACF(SAS),由该全等三角形的对应边相等、对应角相等以及等边三角形的判定定理证得结论;(3)需要分类讨论:当点P在线段BF上和当点P落在线段FB的延长线上两种情况,通过作辅助线,构造直角三角形,结合勾股定理求得线段P A的长度.【解答】(1)证明:如图1,∵△ABC是等边三角形,且P为AC的中点,∴∠PBC=∠ABC=×60°=30°,∵四边形PBCD为平行四边形,∴∠D=∠PBC=30°.∵∠FCD=60°∴∠FCD+∠D=90°,∴FC⊥PD.(2)△P AF是等边三角形,理由如下:如图2,延长BC,证明∵△ABC为等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∠2=60°﹣∠1,∠4=180°﹣60°﹣60°﹣∠3=60°﹣∠3.∵四边形P ACD是平行四边形,∴PB∥CD,PB=CD=FC.∴∠1=∠3.∴∠2=∠4.又AB=AC,PB=FC,∴△ABP≌△ACF(SAS).∴AP=AF,∠BAP=∠CAF.∵∠BAP+∠P AC=60°,∴∠P AC+∠CAF=∠P AF=60°,∴△P AF是等边三角形.(3)①当点P在线段BF上时,如图3,过A作AE⊥BF于E,由(2)可得∠APF=60°,设PE=x,则AE=x,于是得:(x+3)2+32=19,x1=1,x2=﹣(不合题意,故舍去)∴P A=2x=2.②当点P落在线段FB的延长线上时,如图4,过B作BE⊥P A于E,则在Rt△PBE中,PB=3,由(2)可得∠BPE=60°,∴∠PBE=30°.∴PE=,BE=.在Rt△ABE中,AB=,BE=.∴AE==,∴P A=PE+AE=5.由于P点不可能线段BF的延长线上,所以,综上所述,P A的长为2或5.23.(11分)如图,抛物线y=ax2+bx+过点A(1,0),B(5,0),与y轴相交于点C.(1)求抛物线的解析式;(2)定义:平面上的任一点到二次函数图象上与它横坐标相同的点的距离,称为点到二次函数图象的垂直距离.如:点O到二次函数图象的垂直距离是线段OC的长.已知点E为抛物线对称轴上的一点,且在x轴上方,点F为平面内一点,当以A,B,E,F为顶点的四边形是边长为4的菱形时,请求出点F到二次函数图象的垂直距离.(3)在(2)中,当点F到二次函数图象的垂直距离最小时,在以A,B,E,F为顶点的菱形内部是否存在点Q,使得AQ,BQ,FQ之和最小,若存在,请求出最小值;若不存在,请说明理由.【分析】(1)将A,B两点代入可求解析式.(2)分类讨论,以AB为边的菱形和以AB为对角线的菱形,抓住菱形边长为4和E的横坐标为3,可解F点坐标,即可求点F到二次函数图象的垂直距离.(3)构造三角形,根据两点之间线段最短,可得最短距离为AN,根据勾股定理求AN.【解答】解:(1)∵抛物线y=ax2+bx+过点A(1,0),B(5,0),∴0=a+b+0=25a+5b+∴a=,b=﹣3∴解析式y=x2﹣3x+(2)当y=0,则0=x2﹣3x+∴x1=5,x2=1∴A(1,0),B(5,0)∴对称轴直线x=3,顶点坐标(3,﹣2),AB=4∵抛物线与y轴相交于点C.∴C(0,)如图1①如AB为菱形的边,则EF∥AB,EF=AB=4,且E的横坐标为3∴F的横坐标为7或﹣1∵AE=AB=4,AM=2,EM⊥AB∴EM=2∴F(7,2),或(﹣1,2)∴当x=7,y=×49﹣7×3+=6∴点F到二次函数图象的垂直距离6﹣2②如AB为对角线,如图2∵AEBF是菱形,AF=BF=4∴AB⊥EF,EM=MF=2∴F(3,﹣2)∴点F到二次函数图象的垂直距离﹣2+2(3)当F(3,﹣2)时,点F到二次函数图象的垂直距离最小如图3,以BQ为边作等边三角形BQD,将△BQF绕B逆时针旋转60°到△BDN位置,连接AN,作PN⊥AB于P∵等边三角形BQD∴QD=QB=BD,∵将△BQF绕B逆时针旋转60°到△BDN位置∴NB=BF=4,∠FBN=60°,DN=FQ∵AQ+BQ+FQ=AQ+QD+DN∴当AQ,QD,DN共线时AQ+BQ+FQ的和最短,即最短值为AN的长.∵AF=BF=4=AB,∴∠ABF=60°∴∠NBP=60°且BN=4,∴BP=2,PN=2∴AP=6在Rt△ANP中,AN==4∴AQ+BQ+FQ的和最短值为4.。

2020年内蒙古省包头市中考数学(4月份)模拟试卷(Word 含解析)

2020年内蒙古省包头市中考数学(4月份)模拟试卷(Word 含解析)

2020年内蒙古省包头市中考数学模拟试卷(4月份)一、选择题1.计算|﹣2020|的结果是()A.﹣2020B.2020C.﹣D.2.如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°3.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()A.75°B.90°C.105°D.115°4.下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=5.不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x6.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3B.5C.﹣1D.﹣37.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1B.2C.3D.49.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24B.24πC.96D.96π10.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.11.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.212.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0二、填空题:(本大题共8小题,每小题3分,合计24分)13.计算:×﹣tan45°=.14.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为.15.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是.16.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是.时间(小时)0.51 1.52 2.5人数(人)1222105317.如图,在正方形ABCD中,AB=1,点E、F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是.18.已知等腰三角形的底角是30°,腰长为2,则它的周长是.19.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共块.20.不等式组的解集为.三、解答题:(本大题共6小题,合计60分)21.化简:1﹣.22.如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.23.某区教育系统为了更好地宣传扫黑除恶专项斗争,印制了应知应会手册,该区教育局想了解教师对扫黑除恶专项斗争应知应会知识掌握程度,抽取了部分教师进行了测试,并将测试成绩绘制成下面两幅统计图,请根据统计图中提供的信息,回答下面问题:(1)计算样本中,成绩为98分的教师有人,并补全两个统计图;(2)样本中,测试成绩的众数是,中位数是;(3)若该区共有教师6880名,根据此次成绩估计该区大约有多少名教师已全部掌握扫黑除恶专项斗争应知应会知识?24.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.25.已知直线y=kx+b经过点A(0,2),B(﹣4,0)和抛物线y=x2.(1)求直线的解析式;(2)将抛物线y=x2沿着x轴向右平移,平移后的抛物线对称轴左侧部分与y轴交于点C,对称轴右侧部分抛物线与直线y=kx+b交于点D,连接CD,当CD∥x轴时,求平移后得到的抛物线的解析式;(3)在(2)的条件下,平移后得到的抛物线的对称轴与x轴交于点E,P为该抛物线上一动点,过点P作抛物线对称轴的垂线,垂足为Q,是否存在这样的点P,使以点E,P,Q为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在,请说明理由.26.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.参考答案一、选择题:(本大题共12小题,每小题3分,合计36分)1.计算|﹣2020|的结果是()A.﹣2020B.2020C.﹣D.【分析】根据绝对值的性质直接解答即可.解:|﹣2020|=2020;故选:B.2.如图,a∥b,若∠1=110°,则∠2的度数是()A.110°B.80°C.70°D.60°【分析】根据两直线平行,同位角相等,即可求得∠3的度数,进而得出∠2的度数.解:∵a∥b,∴∠1=∠3=110°.∵∠2+∠3=180°,∴∠2=180°﹣∠3=70°,故选:C.3.将一副三角板(∠A=30°,∠E=45°)按如图所示方式摆放,使得BA∥EF,则∠AOF 等于()A.75°B.90°C.105°D.115°【分析】依据AB∥EF,即可得∠FCA=∠A=30°,由∠F=∠E=45°,利用三角形外角性质,即可得到∠AOF=∠FCA+∠F=30°+45°=75°.解:∵BA∥EF,∠A=30°,∴∠FCA=∠A=30°.∵∠F=∠E=45°,∴∠AOF=∠FCA+∠F=30°+45°=75°.故选:A.4.下列运算正确的是()A.3x3﹣5x3=﹣2x B.8x3÷4x=2xC.=D.+=【分析】直接利用合并同类项法则以及单项式除以单项式、分式的约分、二次根式的加减运算法则分别化简得出答案.解:A、3x3﹣5x3=﹣2x3,故此选项错误;B、8x3÷4x=2x2,故此选项错误;C、=,正确;D、+无法计算,故此选项错误.故选:C.5.不等式1﹣2x≥0的解集是()A.x≥2B.x≥C.x≤2D.x【分析】先移项,再系数化为1即可.解:移项,得﹣2x≥﹣1系数化为1,得x≤;所以,不等式的解集为x≤,故选:D.6.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3B.5C.﹣1D.﹣3【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.解:把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k(k﹣1),解得:k1=﹣1,k2=5,因为正比例函数的y=kx(k≠0)的图象经过二,四象限,所以k<0,所以k=﹣1,故选:C.7.篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分,某队在10场比赛中得到16分.若设该队胜的场数为x,负的场数为y,则可列方程组为()A.B.C.D.【分析】设这个队胜x场,负y场,根据在10场比赛中得到16分,列方程组即可.解:设这个队胜x场,负y场,根据题意,得.故选:A.8.二次函数y=ax2+bx+c(a≠0)的图象如图,给出下列四个结论:①4ac﹣b2<0;②3b+2c <0;③4a+c<2b;④m(am+b)+b<a(m≠﹣1),其中结论正确的个数是()A.1B.2C.3D.4【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0,可判断①;根据对称轴是x=﹣1,可得x=﹣2、0时,y的值相等,所以4a﹣2b+c>0,可判断③;根据﹣=﹣1,得出b=2a,再根据a+b+c<0,可得b+b+c<0,所以3b+2c<0,可判断②;x=﹣1时该二次函数取得最大值,据此可判断④.解:∵图象与x轴有两个交点,∴方程ax2+bx+c=0有两个不相等的实数根,∴b2﹣4ac>0,∴4ac﹣b2<0,①正确;∵﹣=﹣1,∴b=2a,∵a+b+c<0,∴b+b+c<0,3b+2c<0,∴②是正确;∵当x=﹣2时,y>0,∴4a﹣2b+c>0,∴4a+c>2b,③错误;∵由图象可知x=﹣1时该二次函数取得最大值,∴a﹣b+c>am2+bm+c(m≠﹣1).∴m(am+b)<a﹣b.故④正确∴正确的有①②④三个,故选:C.9.一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24B.24πC.96D.96π【分析】由已知三视图为圆柱,首先得到圆柱底面半径,从而根据圆柱体积=底面积乘高求出它的体积.解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故选:B.10.从1,2,3,4中任取两个不同的数,分别记为a和b,则a2+b2>19的概率是()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与a2+b2>19的情况,再利用概率公式即可求得答案.解:画树状图得:∵共有12种等可能的结果,任取两个不同的数,a2+b2>19的有4种结果,∴a2+b2>19的概率是=,故选:D.11.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.2【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.12.下列关于一次函数y=kx+b(k<0,b>0)的说法,错误的是()A.图象经过第一、二、四象限B.y随x的增大而减小C.图象与y轴交于点(0,b)D.当x>﹣时,y>0【分析】由k<0,b>0可知图象经过第一、二、四象限;由k<0,可得y随x的增大而减小;图象与y轴的交点为(0,b);当x>﹣时,y<0;解:∵y=kx+b(k<0,b>0),∴图象经过第一、二、四象限,A正确;∵k<0,∴y随x的增大而减小,B正确;令x=0时,y=b,∴图象与y轴的交点为(0,b),∴C正确;令y=0时,x=﹣,当x>﹣时,y<0;D不正确;故选:D.二、填空题:(本大题共8小题,每小题3分,合计24分)13.计算:×﹣tan45°=﹣1.【分析】根据二次根式的乘法运算的法则和特殊角的三角函数值计算即可.解:×﹣tan45°=﹣1=﹣1,故答案为:﹣1.14.2019年1月12日,“五指山”舰正式入列服役,是我国第六艘071型综合登陆舰艇,满载排水量超过20000吨,20000用科学记数法表示为2×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.解:20000用科学记数法表示为2×104.故答案是:2×104.15.在平面直角坐标系中,点P(4,2)关于直线x=1的对称点的坐标是(﹣2,2).【分析】先求出点P到直线x=1的距离,再根据对称性求出对称点P′到直线x=1的距离,从而得到点P′的横坐标,即可得解.解:∵点P(4,2),∴点P到直线x=1的距离为4﹣1=3,∴点P关于直线x=1的对称点P′到直线x=1的距离为3,∴点P′的横坐标为1﹣3=﹣2,∴对称点P′的坐标为(﹣2,2).故答案为:(﹣2,2).16.东营市某中学为积极响应“书香东营,全民阅读”活动,助力学生良好阅读习惯的养成,形成浓厚的阅读氛围,随机调查了部分学生平均每天的阅读时间,统计结果如表所示,则在本次调查中,学生阅读时间的中位数是1.时间(小时)0.51 1.52 2.5人数(人)12221053【分析】由统计表可知总人数为52,得到中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,即可确定出中位数为1.解:由统计表可知共有:12+22+10+5+3=52人,中位数应为第26与第27个的平均数,而第26个数和第27个数都是1,则中位数是1.故答案为:1.17.如图,在正方形ABCD中,AB=1,点E、F分别在边BC和CD上,AE=AF,∠EAF =60°,则CF的长是.【分析】在AD上取一点G,使∠GFA=∠DAF,先证明Rt△ABE≌Rt△ADF,得∠DAF 的度数,设DF=x,用x表示DG,AG,再由正方形的边长列出x的方程求得x,便可求得结果.解:∵四边形ABCD是正方形,∴∠B=∠D=∠BAD=90°,AB=BC=CD=AD=1,在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴∠BAE=∠DAF,∵∠EAF=60°,∴∠BAE+∠DAF=30°,∴∠DAF=15°,在AD上取一点G,使∠GFA=∠DAF=15°,如图所示,∴AG=FG,∠DGF=30°,∴DF=FG=AG,DG=DF,设DF=x,则DG=x,AG=FG=2x,∵AG+DG=AD,∴2x+x=1,解得:x=2﹣,∴DF=2﹣,∴CF=CD﹣DF=1﹣(2﹣)=﹣1;故答案为.18.已知等腰三角形的底角是30°,腰长为2,则它的周长是6.【分析】作AD⊥BC于D,根据直角三角形的性质求出AD,根据勾股定理求出BD,根据三角形的周长公式计算即可.解:作AD⊥BC于D,∵AB=AC,∴BD=DC,在Rt△ABD中,∠B=30°,∴AD=AB=,由勾股定理得,BD==3,∴BC=2BD=6,∴△ABC的周长为:6+2+2=6+4,故答案为:6+4.19.用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品;要生产甲种产品37件,乙种产品18件,则恰好需用A、B两种型号的钢板共11块.【分析】设需用A型钢板x块,B型钢板y块,根据“用1块A型钢板可制成4件甲种产品和1件乙种产品;用1块B型钢板可制成3件甲种产品和2件乙种产品”,可得出关于x,y的二元一次方程组,用(①+②)÷5可求出x+y的值,此题得解.解:设需用A型钢板x块,B型钢板y块,依题意,得:,(①+②)÷5,得:x+y=11.故答案为:11.20.不等式组的解集为﹣7≤x<1.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.解:解不等式x﹣3(x﹣2)>4,得:x<1,解不等式≤,得:x≥﹣7,则不等式组的解集为﹣7≤x<1,故答案为:﹣7≤x<1.三、解答题:(本大题共6小题,合计60分)21.化简:1﹣.【分析】直接利用分式的混合运算法则计算得出答案.解:原式=1﹣=1﹣=﹣.22.如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.【分析】(1)根据反比例函数的对称性可得点A与点B关于原点中心对称,则B(2,a),由于BC⊥x轴,所以C(2,0),先利用三角形面积公式得到×2×a=2,解得a=2,则可确定A(﹣2,2),然后把A点坐标代入y=mxy=mx和y=中即可求出m,n;(2)根据待定系数法即可得到直线AC的解析式.解:(1)∵直线y=mx与双曲线y=相交于A(﹣2,a)、B两点,∴点A与点B关于原点中心对称,∴B(2,﹣a),∴C(2,0);∵S△AOC=2,∴×2×a=2,解得a=2,∴A(﹣2,2),把A(﹣2,2)代入y=mx和y=得﹣2m=2,2=,解得m=﹣1,n=﹣4;(2)设直线AC的解析式为y=kx+b,∵直线AC经过A、C,∴,解得∴直线AC的解析式为y=﹣x+1.23.某区教育系统为了更好地宣传扫黑除恶专项斗争,印制了应知应会手册,该区教育局想了解教师对扫黑除恶专项斗争应知应会知识掌握程度,抽取了部分教师进行了测试,并将测试成绩绘制成下面两幅统计图,请根据统计图中提供的信息,回答下面问题:(1)计算样本中,成绩为98分的教师有14人,并补全两个统计图;(2)样本中,测试成绩的众数是98,中位数是100;(3)若该区共有教师6880名,根据此次成绩估计该区大约有多少名教师已全部掌握扫黑除恶专项斗争应知应会知识?【分析】(1)先根据96分人数及其百分比求得总人数,再根据各组人数之和等于总数可得98分的人数;(2)根据中位数和众数的定义可得;(3)利用样本中100分人数所占比例乘以总人数可得.解:(1)本次调查的人数共有10÷20%=50人,则成绩为98分的人数为50﹣(20+10+4+2)=14(人),补全统计图如下:故答案为:14;(2)本次测试成绩的中位数为=98分,众数100分,故答案为:98,100;(3)∵6880×=2752,∴估计该区大约有2752名教师已全部掌握扫黑除恶专项斗争应知应会知识.24.如图,AB是⊙O的直径,点D是AB延长线上的一点,点C在⊙O上,且AC=CD,∠ACD=120°.(1)求证:CD是⊙O的切线;(2)若⊙O的半径为3,求图中阴影部分的面积.【分析】(1)连接OC.只需证明∠OCD=90°.根据等腰三角形的性质即可证明;(2)阴影部分的面积即为直角三角形OCD的面积减去扇形COB的面积.【解答】(1)证明:连接OC.∵AC=CD,∠ACD=120°,∴∠A=∠D=30°.∵OA=OC,∴∠ACO=∠A=30°.∴∠OCD=∠ACD﹣∠ACO=90°.即OC⊥CD,∴CD是⊙O的切线.(2)解:∵∠A=30°,∴∠COB=2∠A=60°.∴S扇形BOC=,在Rt△OCD中,CD=OC,∴,∴,∴图中阴影部分的面积为.25.已知直线y=kx+b经过点A(0,2),B(﹣4,0)和抛物线y=x2.(1)求直线的解析式;(2)将抛物线y=x2沿着x轴向右平移,平移后的抛物线对称轴左侧部分与y轴交于点C,对称轴右侧部分抛物线与直线y=kx+b交于点D,连接CD,当CD∥x轴时,求平移后得到的抛物线的解析式;(3)在(2)的条件下,平移后得到的抛物线的对称轴与x轴交于点E,P为该抛物线上一动点,过点P作抛物线对称轴的垂线,垂足为Q,是否存在这样的点P,使以点E,P,Q为顶点的三角形与△AOB相似?若存在,请求出点P的坐标;若不存在,请说明理由.【分析】(1)根据点A,B的坐标,利用待定系数法即可求出直线AB的解析式;(2)设平移后抛物线的解析式为y=(x﹣m)2(m>0),则平移后抛物线的对称轴为直线x=m,点C的坐标为(0,m2),由CD∥x轴,可得出点C,D关于直线x=m对称,进而可得出点D的坐标,再利用一次函数图象上点的坐标特征即可得出关于m的一元二次方程,解之取其正值即可得出结论;(3)设点P的坐标为(a,a2﹣4a+4),则PQ=|a﹣2|,EQ=a2﹣4a+4,由∠PQE=90°可得出△EQP∽△AOB或△PQE∽△AOB,①当△EQP∽△AOB时,利用相似三角形的性质可得出关于a的方程,解之即可得出a值,将其代入点P的坐标即可得出结论;②当△PQE∽△AOB时,利用相似三角形的性质可得出关于a的方程,解之即可得出a 值,将其代入点P的坐标即可得出结论.综上,此题得解.解:(1)将A(0,2),B(﹣4,0)代入y=kx+b,得:,解得:,∴直线AB的解析式为y=x+2.(2)如图1,设平移后抛物线的解析式为y=(x﹣m)2(m>0),则平移后抛物线的对称轴为直线x=m,点C的坐标为(0,m2).∵CD∥x轴,∴点C,D关于直线x=m对称,∴点D的坐标为(2m,m2).∵点D在直线y=x+2上,∴m2=×2m+2,解得:m1=﹣1(舍去),m2=2,∴平移后抛物线的解析式为y=(x﹣2)2,即y=x2﹣4x+4.(3)存在这样的点P,使以点E,P,Q为顶点的三角形与△AOB相似.设点P的坐标为(a,a2﹣4a+4),则PQ=|a﹣2|,EQ=a2﹣4a+4.∵∠PQE=90°,∴分两种情况考虑,如图2所示.①当△EQP∽△AOB时,=,即=,化简,得:|a﹣2|=,解得:a1=,a2=,∴点P的坐标为(,)或(,);②当△PQE∽△AOB时,=,即=,化简,得:|a﹣2|=2,解得:a1=0,a2=4,∴点P的坐标为(0,4)或(4,4).综上所述:存在这样的点P,使以点E,P,Q为顶点的三角形与△AOB相似,点P的坐标为(,),(,),(0,4)或(4,4).26.如图1,在Rt△ABC中,∠B=90°,AB=4,BC=2,点D、E分别是边BC、AC的中点,连接DE.将△CDE绕点C逆时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决△CDE绕点C逆时针旋转至A、B、E三点在同一条直线上时,求线段BD的长.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据=,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据==,判断出△ECA∽△DCB,然后由相似三角形的对应边成比例,求得答案.(3)分两种情形:①如图3﹣1中,当点E在AV的延长线上时,②如图3﹣2中,当点E在线段AB上时,分别求解即可.解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC===2,∵点D、E分别是边BC、AC的中点,∴AE=AC=,BD=BC=1,∴=.②如图1﹣1中,当α=180°时,可得AB∥DE,∵=,∴==.故答案为:①,②.(2)如图2,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵==,∴△ECA∽△DCB,∴==..(3)①如图3﹣1中,当点E在AB的延长线上时,在Rt△BCE中,CE=,BC=2,∴BE===1,∴AE=AB+BE=5,∵=,∴BD==.②如图3﹣2中,当点E在线段AB上时,易知BE=1,AE=4﹣1=3,∵=,∴BD=,综上所述,满足条件的BD的长为或.。

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)

2020年数学中考模拟试题(及答案)一、选择题1.已知一个正多边形的内角是140°,则这个正多边形的边数是()A .9B .8C .7D .6 2.下列计算正确的是( ) A . 2a +3b = 5ab B . (a —b )2=a 2—b 2 C . (2x 2)3=6x 6D . x 8;x 3=x 5 3.若一个凸多边形的内角和为720°,则这个多边形的边数为() A .4 B .5 C .6 D .74.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89 分,则该同学这6次成绩的中位数是( )A . 94B . 95 分C . 95.5 分D . 96 分5.下列图形是轴对称图形的有( )6 .函数y =。

2 % -1中的自变量%的取值范围是()A . % 丰—B . % 之1C . % >—D . % 之一 ^2 ^2 ^27 .如图,矩形纸片ABCD 中,AB = 4 , BC = 6,将VABC 沿AC 折叠,使点B 落在点 E 处,CE 交AD 于点F ,则DF 的长等于()9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价 10%;乙超市连续两次降价15%;丙超市一次性降价30%.则顾客到哪家超市购买这种商品更 合算( )A .甲B .乙C .丙D . 一样 10.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种 蔬菜放在一起同时保鲜,适宜的温度是() B . C . D .A .40°B .50°C .60°D .70°A . 2个B . 3个C . 4个D . 5个A . 8.将一个矩形纸片按如图所示折叠,若21=40°,则N2的度数是()A.1℃~3℃B.3℃~5℃C.5℃~8℃D.1℃~8℃413.如图,在四边形 ABCD 中,NB=ND = 90°, AB = 3, BC=2, tanA= 3,则 CD =14.如图:已知八3=10,点C、D在线段AB上且AC=DB=2;P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作等边4AEP和等边△PFB,连结EF,设EF的中点为G;当点P从点C运动到点D时,则点G移动路径的长是.15.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是cm2.16.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次2。

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考数学模拟试卷(含解析)

江苏省扬州市广陵区2020届中考模拟试卷数学一.选择题(共8小题)1.﹣的倒数是()A. B.﹣ C.﹣ D.2.给出一列数,在这列数中,第50个值等于1的项的序号是()A.4900 B.4901 C.5000 D.50013.(3分)若二次根式有意义,则a的取值范围是()A.a≥2 B.a≤2 C.a>2 D.a≠24.(3分)下列图形中,属于中心对称图形的是()A. B. C. D.5.(3分)如图是由10把相同的折扇组成的“蝶恋花”(图1)和梅花图案(图2)(图中的折扇无重叠),则梅花图案中的五角星的五个锐角均为()A.36° B.42° C.45° D.48°6.(3分)某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是()捐款(元)10 15 20 50人数 1 5 4 2A.15,15 B.17.5,15 C.20,20 D.15,207.(3分)如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A.12cm2 B.(12+π)cm2 C.6πcm2 D.8πcm28.(3分)如图,有一住宅小区呈三角形ABC形状,且周长为2 000m,现规划沿小区周围铺上宽为3m的草坪,则草坪的面积(精确到1)是()A.6000m2 B.6016m2 C.6028m2 D.6036m2二.填空题(共10小题,满分30分,每小题3分)9.(3分)科学家发现,距离地球2540000光年之遥的仙女星系正在向银河系靠近.其中2540000用科学记数法表示为.10.(3分)分解因式:a2﹣a+2= .11.(3分)反比例函数和一次函数y=k2x+b的图象交于点M(3,﹣)和点N(﹣1,2),则k1= ,k2= ,一次函数的图象交x轴于点.12.(3分)某电信局现有300部已申请装机的电话等待装机.假设每天新申请装机的电话部数相同,该电信局每个电话装机小组每天装的电话部数也相同,那么安排3个装机小组,恰好30天可将需要装机的电话全部装完;如果安排5个装机小组,则恰好10天可将需要装机的电话全部装完.试求每个电话装机小组每天装机多少部?每天有多少部新申请装机的电话?13.(3分)抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),顶点为M点.在抛物线上是找一点P使∠POM=90°,则P点的坐标.14.(3分)某市对九年级学生进行“综合素质”评价,评价结果分为A,B,C,D,E五个等级.现随机抽取了500名学生的评价结果作为样本进行分析,绘制了如图所示的统计图.已知图中从左到右的五个长方形的高之比为2:3:3:1:1,据此估算该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为人.15.(3分)如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于度16.(3分)如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于.17.(3分)如图,AB是⊙O的直径,AB=15,AC=9,则tan∠ADC= .18.(3分)如图,直线y1=kx+b与直线y2=mx交于点P(1,m),则不等式mx>kx+b的解集是.三.解答题(共10小题,满分96分)19.(8分)(1)(﹣2)﹣1﹣|﹣|+(3.14﹣π)0+4cos45°(2)已知x2﹣2x﹣7=0,求(x﹣2)2+(x+3)(x﹣3)的值.20.(8分)当x满足条件时,求出方程x2﹣2x﹣4=0的根.21.(8分)某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求共抽取了多少名学生的征文;(2)将上面的条形统计图补充完整;(3)在扇形统计图中,选择“爱国”主题所对应的圆心角是多少;(4)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名.22.(8分)小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图如图1(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图如图2(四个开关按键都处于打开状态)如图所示,求同时时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法)23.(10分)列方程解应用题:某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?24.(10分)如图,在△ABC中,AD是BC边上的中线,E是AD的中点,延长BE到F,使BE=EF,连接AF、CF、DF.(1)求证:AF=BD;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.25.(10分)有一个二次函数满足以下条件:①函数图象与x轴的交点坐标分别为A(1,0),B(x2,y2)(点B在点A的右侧);②对称轴是x=3;③该函数有最小值是﹣2.(1)请根据以上信息求出二次函数表达式;(2)将该函数图象x>x2的部分图象向下翻折与原图象未翻折的部分组成图象“G”,平行于x轴的直线与图象“G”相交于点C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),结合画出的函数图象求x3+x4+x5的取值范围.26.(10分)如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB于点E,OE:EA=1:2,PA=6,∠POC=∠PCE.(1)求证:PC是⊙O的切线;(2)求⊙O的半径;(3)求sin∠PCA的值.27.(12分)在△ABC中,AB=AC,∠BAC=α,点P是△ABC内一点,且∠PAC+∠PCA=,连接PB,试探究PA、PB、PC满足的等量关系.(1)当α=60°时,将△ABP绕点A逆时针旋转60°得到△ACP′,连接PP′,如图1所示.由△ABP≌△ACP′可以证得△APP′是等边三角形,再由∠PAC+∠PCA=30°可得∠APC的大小为度,进而得到△CPP′是直角三角形,这样可以得到PA、PB、PC满足的等量关系为;(2)如图2,当α=120°时,参考(1)中的方法,探究PA、PB、PC满足的等量关系,并给出证明;(3)PA、PB、PC满足的等量关系为.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC 全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.2020年江苏省扬州市广陵区中考数学模拟试卷参考答案与试题解析一.选择题(共8小题,满分18分)1.【解答】解:﹣的倒数是﹣,故选:B.2.【解答】解:第50个值等于1的项的分子分母的和为2×50=100,由于从分子分母的和为2到分子分母的和为99的分数的个数为:1+2+…+98=4851.第50个值等于1的项为.故4851+50=4901.故选:B.3.【解答】解:∵二次根式有意义,∴a﹣2≥0,即a≥2,则a的范围是a≥2,故选:A.4.【解答】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确,故选:D.5.【解答】解:如图,梅花扇的内角的度数是:360°÷3=120°,180°﹣120°=60°,正五边形的每一个内角=(5﹣2)•180°÷5=108°,∴梅花图案中的五角星的五个锐角均为:108°﹣60°=48°.故选:D.6.(15+20)【解答】解:共有数据12个,第6个数和第7个数分别是15元,20元,所以中位数是:÷2=17.5(元);捐款金额的众数是15元.故选:B.7.【解答】解:先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm,高是3cm.所以该几何体的侧面积为2π×1×3=6π(cm2).故选:C.8.【解答】解:∵如图:草坪是由长分别为AB、BC、AC,宽为3m的3个矩形与三个半径为3m 的扇形组成的,又∵AB+AC+BC=2000m,三个扇形正好组成一个圆,∴草坪的面积为:S=2000×3+9π=6000+9π=6028m2.故选:C.二.填空题(共10小题,满分30分,每小题3分)9.【解答】解:2540000用科学记数法表示为2.54×106.故答案为:2.54×106.10.【解答】解:a2﹣a+2=(a2﹣6a+9)=(a﹣3)2.故答案为:(a﹣3)2.11.【解答】解:∵M(3,﹣)和点N(﹣1,2)为两函数的交点,∴x=﹣1,y=2代入反比例函数y=中得:2=,即k1=﹣2;将两点坐标代入y=k2x+b得:,解得:k1=﹣,b=,∴一次函数解析式为y=﹣x+,令y=0,解得:x=2,∴一次函数与x轴交点为(2,0).故答案为:﹣2;﹣;(2,0)12.【解答】解:设每个电话装机小组每天装机x部,每天有y部新申请装机的电话,根据题意得:,解得:,答:每个装机小组每天装机10部,每天有20部新申请装机的电话.13.【解答】解:抛物线y=ax2+bx+c(a≠0)过点A(1,﹣3)、B(3,﹣3)、C(﹣1,5),所以,解得:,所以抛物线的解析式为:y=x2﹣4x=(x﹣2)2﹣4,顶点M坐标是(2,﹣4),因此直线OM的解析式为y=﹣2x,由于直线PO与直线OM垂直,因此直线PO的解析式为y=x,联立抛物线的解析式有:,解得,,因此P点坐标为(,).14.【解答】解:该市80000名九年级学生中“综合素质”评价结果为“A”的学生约为,故答案为:1600015.【解答】解:如图①,过E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠B=∠1,∠C=∠2,∵∠BEC=∠1+∠2,∴∠BEC=∠ABE+∠DCE;如图②,∵∠ABE和∠DCE的平分线交点为E1,∴∠CE1B=∠ABE1+∠DCE1=∠ABE+∠DCE=∠BE C.∵∠ABE1和∠DCE1的平分线交点为E2,∴∠BE2C=∠ABE2+∠DCE2=∠ABE1+∠DCE1=∠CE1B=∠BEC;如图②,∵∠ABE2和∠DCE2的平分线,交点为E3,∴∠BE3C=∠ABE3+∠DCE3=∠ABE2+∠DCE2=∠CE2B=∠BEC;…以此类推,∠E n=∠BE C.∴当∠E n=1度时,∠BEC等于2n度.故答案为:2n.16.【解答】解:将线段AP绕点A顺时针旋转60°得到线段AM,连接PM,作AH⊥BP于H.∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∵AM=AP,∠MAP=60°,∴△AMP是等边三角形,∵∠MAP=∠BAC,∴∠MAB=∠PAC,∴△MAB≌△PAC,∴BM=PC=10,∵PM2+PB2=100,BM2=100,∴PM2+PB2=BM2,∴∠MPB=90°,∵∠APM=60°,∴∠APB=150°,∠APH=30°,∴AH=PA=3,PH=3,BH=8+3,∴AB2=AH2+BH2=100+48,∴菱形ABCD的面积=2•△ABC的面积=2××AB2=50+72,故答案为50+72.17.【解答】解:∵AB为⊙O直径,∴∠ACB=90°,∴BC==12,∴tan∠ADC=tanB===,故答案为.18.【解答】解:∵直线y1=kx+b与直线y2=mx交于点P(1,m),∴不等式mx>kx+b的解集是x>1,故答案为:x>1.三.解答题(共10小题,满分96分)19.【解答】解:(1)原式=﹣﹣2+1+2=;(2)原式=x2﹣4x+4+x2﹣9=2x2﹣4x﹣5=2(x2﹣2x)﹣5,∵x2﹣2x﹣7=0,即x2﹣2x=7,∴原式=14﹣5=9.20.【解答】解:解不等式x+1<3x﹣3,得:x>2,解不等式3(x﹣4)<2(x﹣4),得:x<4,则不等式组的解集为2<x<4,∵x2﹣2x=4,∴x2﹣2x+1=4+1,即(x﹣1)2=5,则x﹣1=±,∴x=1或x=1﹣,∵2<x<4,∴x=1.21.【解答】解:(1)本次调查共抽取的学生有3÷6%=50(名).(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),条形统计图如图所示:(3)∵选择“爱国”主题所对应的百分比为20÷50=40%,∴选择“爱国”主题所对应的圆心角是40%×360°=144°;(4)该校九年级共有1200名学生,估计选择以“友善”为主题的九年级学生有1200×30%=360名.22.【解答】解:(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=(2)用树状图分析如下:一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)=.23.【解答】解:设原计划每天铺设多长管道设原计划每天铺设x米管道,根据题意得.解得x=60,经检验x=60是原分式方程的解.答:原计划每天铺设60米长的管道.24.【解答】(1)证明:∵AE=ED,BE=EF,∴四边形ABDF是平行四边形,∴AF=B D.(2)结论:四边形ADCF是菱形.理由:∵AB⊥AC,∴∠CAB=90°,∵CD=DB,∴AD=BC=DC,∵四边形ABDF是平行四边形,∴AF∥CD,AF=BD,∴AF=CD,∴四边形AFCD是平行四边形,∵DA=DC,∴四边形AFCD是菱形.25.【解答】解:(1)有上述信息可知该函数图象的顶点坐标为:(3,﹣2)设二次函数表达式为:y=a(x﹣3)2﹣2.∵该图象过A(1,0)∴0=a(1﹣3)2﹣2,解得a=.∴表达式为y=(x﹣3)2﹣2(2)如图所示:由已知条件可知直线与图形“G”要有三个交点1当直线与x轴重合时,有2个交点,由二次函数的轴对称性可求x3+x4=6,∴x3+x4+x5>11.当直线过y=(x﹣3)2﹣2的图象顶点时,有2个交点,由翻折可以得到翻折后的函数图象为y=﹣(x﹣3)2+2∴令(x﹣3)2+2=﹣2时,解得x=3+2或x=3﹣2(舍去)∴x3+x4+x5<9+2.综上所述11<x3+x4+x5<9+2.26.【解答】解:(1)证明:∵弦CD⊥AB于点E,∴在Rt△COE中∠COE+∠OCE=90°,∵∠POC=∠PCE,∴∠PCE+∠OCE=90°,即PC⊥OC,∴PC是⊙O的切线;(2)∵OE:EA=1:2,PA=6,∴可设OE=k,EA=2k,则半径r=3k,在Rt△COP中,∵CE⊥PO垂足为E,∴△COE∽△POC,∴CO2=OE•OP即(3k)2=k•(3k+6),解得k=0(舍去)或k=1,∴半径r=3;(3)过A作AH⊥PC,垂足为H,∵PC⊥OC∴AH∥OC,∴,即,解得AH=2,在Rt△COE中,由OC=3,OE=1,解得CE=,在Rt△ACE中,由CE=,AE=2,解得AC=,在Rt△ACH中,由AC=,AH=2,∴sin∠PCA===.27.【解答】解:(1)∵△ABP≌△ACP′,∴AP=AP′,由旋转变换的性质可知,∠PAP′=60°,P′C=PB,∴△PAP′为等边三角形,∴∠APP′=60°,∵∠PAC+∠PCA==30°,∴∠APC=150°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∴PA2+PC2=PB2,故答案为:150,PA2+PC2=PB2;(2)如图2,作将△ABP绕点A逆时针旋转120°得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=120°,P′C=PB,∴∠APP′=30°,∵∵∠PAC+∠PCA==60°,∴∠APC=120°,∴∠P′PC=90°,∴PP′2+PC2=P′C2,∵∠APP′=30°,∴PD=PA,∴PP′=PA,∴3PA2+PC2=PB2;(3)如图2,与(2)的方法类似,作将△ABP绕点A逆时针旋转α得到△ACP′,连接PP′,作AD⊥PP′于D,由旋转变换的性质可知,∠PAP′=α,P′C=PB,∴∠APP′=90°﹣,∵∵∠PAC+∠PCA=,∴∠APC=180°﹣,∴∠P′PC=(180°﹣)﹣(90°﹣)=90°,∴PP′2+PC2=P′C2,∵∠APP′=90°﹣,∴PD=PA•cos(90°﹣)=PA•sin,∴PP′=2PA•sin,∴4PA2sin2+PC2=PB2,故答案为:4PA2sin2+PC2=PB2.28.【解答】解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2或8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴,∴,∴AN=,过点N作NH⊥OA,∴NH∥OA,∴△ANH∽△ACO,∴,∴,∴NH=,AH=,∴OH=,∴N(,),而点P2与点O关于AC对称,∴P2(,),同理:点B关于AC的对称点P1,同上的方法得,P1(﹣,),即:满足条件的点P的坐标为:(0,0),(,),(﹣,).。

江苏省无锡市宜兴市2020届中考数学模拟试卷(含解析)

江苏省无锡市宜兴市2020届中考数学模拟试卷(含解析)

江苏省无锡市宜兴市2020届中考模拟试卷数学一、选择题(本题共10小题,每小题3分,共30分)1.﹣8的相反数是()A.8 B.﹣8 C.D.﹣2.下列数中不属于有理数的是()A.1 B.C.D.0.1133.若等腰三角形的顶角为80°,则它的一个底角度数为()A.20°B.50°C.80°D.100°4.下列运算正确的是()A.x﹣2x=x B.(xy)2=xy2C.×=D.(﹣)2=4 5.已知实数a、b,若a>b,则下列结论正确的是()A.a﹣5<b﹣5 B.2+a<2+b C.﹣>﹣D.3a>3b6.一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A.平均数是91 B.极差是20 C.中位数是91 D.众数是987.将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A.43°B.47°C.30°D.60°8.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.9.如图,Rt△ABC中,∠CAB=90°,在斜边CB上取点M,N(不包含C、B两点),且tanB=tanC=tan∠MAN=1,设MN=x,BM=n,CN=m,则以下结论能成立的是()A.m=n B.x=m+n C.x>m+n D.x2=m2+n210.一张矩形纸片ABCD,其中AD=8cm,AB=6cm,先沿对角线BD对折,使点C落在点C′的位置,BC′交AD于点G(图1);再折叠一次,使点D与点A重合,得折痕EN,EN交AD 于点M(图2),则EM的长为()A.2 B.C.D.二、填空题(本题共8小题,每2分,共16分)11.(2分)函数y=中自变量x的取值范围是.12.(2分)因式分解:a3﹣4a= .13.(2分)反比例函数y=的图象经过点(1,6)和(m,﹣3),则m= .14.(2分)某外贸企业为参加2016年中国江阴外贸洽谈会,印制了105 000张宣传彩页.105 000这个数字用科学记数法表示为.15.(2分)如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为.16.(2分)如图,矩形ABCD中,AB=4,BC=6,点E为BC的中点,连接AE,将△ABE沿AE 折叠,点B落在点B′处,则sin∠B′EC的值为.17.(2分)如图,OC是∠AOB的平分线,点P在OC上且OP=4,∠AOB=60°,过点P的动直线DE交OA于D,交OB于E,那么= .18.(2分)如图,⊙O的直径AB=8,C为的中点,P为⊙O上一动点,连接AP、CP,过C 作CD⊥CP交AP于点D,点P从B运动到C时,则点D运动的路径长为.三、解答题(本题共10小题,共84分)19.(8分)计算或化简:(1)+()﹣1﹣4cos45°+(﹣π)0.(2)(x﹣2)2﹣x(x﹣3).20.(8分)(1)解方程:﹣=﹣3.(2)解不等式组:21.(8分)如图:在菱形ABCD中,E、F为BC上两点,且BE=CF,AF=DE.求证:(1)△ABF≌△DCE;(2)四边形ABCD是正方形.22.(8分)设中学生体质健康综合评定成绩为x分,满分为100分.规定:85≤x≤100为A级,75≤x<85为B级,60≤x<75为C级,x<60为D级.现随机抽取某中学部分学生的综合评定成绩,整理绘制成如下两幅不完整的统计图.请根据图中的信息,解答下列问题:(1)在这次调查中,一共抽取了名学生,图2中等级为A的扇形的圆心角等于°;(2)补全条形统计图;(3)若该校共有3000名学生,请你估计该校等级为D的学生有多少名?23.(6分)抛掷红、蓝两枚四面编号分别为1﹣4(整数)的质地均匀、大小相同的正四面体,将红色和蓝色四面体一面朝下的编号分别作为二次函数y=x2+mx+n的一次项系数m 和常数项n的值.(1)一共可以得到个不同形式的二次函数;(直接写出结果)(2)抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是多少?并说明理由.24.(8分)在边长为1的正方形网格图中,点B的坐标为(2,0),点A的坐标为(0,﹣3).(1)在图1中,将线段AB关于原点作位似变换,使得变换后的线段DE与线段AB的相似比是1:2(其中A与D是对应点),请建立合适的坐标系,仅使用无刻度的直尺作出变换后的线段DE,并求直线DE的函数表达式;(2)在图2中,仅使用无刻度的直尺,作出以AB为边的矩形ABFG,使其面积为11.(保留作图痕迹,不写作法)25.(8分)市区某中学九年级学生步行到郊外春游.一班的学生组成前队,速度为4km/h,二班的学生组成后队,速度为6km/h.前队出发1h后,后队才出发,同时,后队派一名联络员骑自行车在两队之间不间断地来回进行联络,他骑车的速度为12km/h.若不计队伍的长度,联络员在行进过程中,离前队的路程y(km)与后队行进时间x(h)之间存在着某种函数关系.(1)求后队追到前队所用的时间的值;(2)联络员从出发到他折返后第一次与后队相遇的过程中,求此函数关系表达式,并在直角坐标系中画出此函数的图象;(3)联络员从出发到他折返后第一次与后队相遇的过程中,当x为何值时,他离前队的路程与他离后队的路程相等?26.(10分)如图,在平面直角坐标系中,直线AB与x轴,y轴分别交于A(12,0),B(0,16),点C从B点出发向y轴负方向以每秒2个单位的速度运动,过点C作CE⊥AB于点E,点D为x轴上动点,连结CD,DE,以CD,DE为边作▱CDEF.设运动时间为t秒.(1)求点C运动了多少秒时,点E恰好是AB的中点?(2)当t=4时,若▱CDEF的顶点F恰好落在y轴上,请求出此时点D的坐标;(3)点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,请直接求出满足条件的t的取值范围.27.(10分)如图:已知二次函数y=x2+(1﹣m)x﹣m(其中0<m<1)的图象与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,对称轴为直线L设P为对称轴l上的点,连接PA、PC,PA=P C.(1)∠ABC的度数为°;(2)求点P坐标(用含m的代数式表示);(3)在x轴上是否存在点Q(与原点O不重合),使得以Q、B、C为顶点的三角形与△PAC 相似,且线段PQ的长度最小,如果存在,求满足条件的Q的坐标及对应的二次函数解析式,并求出PQ的最小值;如果不存在,请说明理由.28.(10分)如图,在直角坐标系中,⊙O的圆心O在坐标原点,直径AB=6,点P是直径AB 上的一个动点(点P不与A、B两点重合),过点P的直线PQ的解析式为y=x+m,当直线PQ交y轴于Q,交⊙O于C、D两点时,过点C作CE垂直于x轴交⊙O于点E,过点E作EG垂直于y轴,垂足为G,过点C作CF垂直于y轴,垂足为F,连接DE.(1)点P在运动过程中,∠CPB= °;(2)当m=2时,试求矩形CEGF的面积;(3)当P在运动过程中,探索PD2+PC2的值是否会发生变化?如果发生变化,请你说明理由;如果不发生变化,请你求出这个不变的值;(4)如果点P在射线AB上运动,当△PDE的面积为3时,请你求出CD的长度.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.【解答】解:根据概念可知﹣8+(﹣8的相反数)=0,所以﹣8的相反数是8.故选:A.2.【解答】解:A、1是整数,属于有理数;B、是分数,属于有理数;C、既不是分数、也不是整数,不属于有理数;D、0.113是有限小数,即分数,属于有理数;故选:C.3.【解答】解:∵等腰三角形的顶角为80°,∴它的一个底角为(180°﹣80°)÷2=50°.故选:B.4.【解答】解:A、x﹣2x=﹣x,此选项错误;B、(xy)2=x2y2,此选项错误;C、×=,此选项正确;D、(﹣)2=2,此选项错误;故选:C.5.【解答】解:A、若a>b,则a﹣5>b﹣5,故原题计算错误;B、若a>b,则2+a>2+b,故原题计算错误;C、若a>b,则﹣<﹣,故原题计算错误;D、若a>b,则3a>3b,故原题计算正确;故选:D.6.【解答】解:根据定义可得,极差是20,众数是98,中位数是91,平均数是90.故A 错误.故选:A. 7.【解答】解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选:B.8.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.9.【解答】解:∵tanB=tanC=tan∠MAN=1,∴∠B=∠C=∠MAN=45°,∵∠CAB=90°,∴AC=AB,将△BAM绕点A顺时针旋转90°至△ACN′,点B与点C重合,点M落在N′处,连接NN′,则有AN′=AM,CN′=BM,∠1=∠3,∵∠MCN=45°,∴∠1+∠2=45°,∴∠2+∠3=45°,∴∠NAN′=∠MAN.在△MAN与△NAN′中,,∴△MAN≌△NCN′(SAS),∴MN=NN′.由旋转性质可知,∠ACN′=∠B=45°,∴∠NCN′=∠ACN′+∠ACB=90°,∴NN'2=NC2+N'C2,即x2=n2+m2,故选:D.10.【解答】解:∵点D与点A重合,得折痕EN,∴DM=4cm,∵AD=8cm,AB=6cm,在Rt△ABD中,BD==10cm,∵EN⊥AD,AB⊥AD,∴EN∥AB,∴MN是△ABD的中位线,∴DN=BD=5cm,在Rt△MND中,∴MN==3(cm),由折叠的性质可知∠NDE=∠NDC,∵EN∥CD,∴∠END=∠NDC,∴∠END=∠NDE,∴EN=ED,设EM=x,则ED=EN=x+3,由勾股定理得ED2=EM2+DM2,即(x+3)2=x2+42,解得x=,即EM=cm.故选:D.二、填空题(本题共8小题,每2分,共16分)11.【解答】解:根据题意得3x﹣2≥0,解得:x≥.故答案是:x≥.12.【解答】解:a3﹣4a=a(a2﹣4)=a(a+2)(a﹣2).故答案为:a(a+2)(a﹣2).13.【解答】解:∵反比例函数y=的图象经过点(1,6),∴6=,解得k=6,∴反比例函数的解析式为y=.∵点(m,﹣3)在此函数图象上上,∴﹣3=,解得m=﹣2.故答案为:﹣2.14.【解答】解:105 000=1.05×105.故答案为:1.05×105.15.【解答】解:由图可知,OA=OB=,而AB=4,∴OA2+OB2=AB2,∴∠O=90°,OB==2;则弧AB的长为==π,设底面半径为r,则2πr=π,r=(cm).这个圆锥的底面半径为cm.故答案为:cm16.【解答】解:如图所示,过B'作BC的垂线,交BC于F,交AD于G,则∠AGB'=∠B'FE=90°,由折叠可得,∠AB'E=∠B=90°,∴∠GAB'=∠FB'E,∴△AGB'∽△B'FE,∴=,由折叠可得AB'=AB=4,∵BC=6,点E为BC的中点,∴B'E=BE=3,设B'F=x,则B'G=4﹣x,∴=,即EF=(4﹣x)=3﹣x,∵Rt△EFB'中,EF2+B'F2=B'E2,∴(3﹣x)2+x2=32,解得x=,∴Rt△B'EF中,sin∠B′EC===.故答案为:.17.【解答】解:过点P作PM⊥OD于M,PN⊥OE于N,作EH⊥OD于H,在Rt△EOH中,EH=OE×sin∠AOB=OE,∴S△DOE=×OD×EH=•OD•OE,∵OC是∠AOB的平分线,OP=4,∠AOB=60°,∴∠MOP=∠NOP=30°,PM=PN=OP=2,∴S△DOE=S△DOP+S△POE=×OD•PM+×OE•PN=OD+OE,∴•OD•OE=OD+OE,∴=,故答案为:.18.【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴AC=4,∴△ACQ中,AQ=4,∴点D运动的路径长为=2π.故答案为:2π.三、解答题(本题共10小题,共84分)19.【解答】解:(1)原式=2+2﹣4×+1=2+2﹣2+1=3;(2)原式=x2﹣4x+4﹣x2+3x=﹣x+4.20.【解答】解:(1)去分母得:1﹣x+1=﹣3x+6,解得:x=2,经检验x=2是增根,分式方程无解;(2),由①得:x>﹣1,由②得:x≤2,则不等式组的解集为﹣1<x≤2.21.【解答】证明:(1)∵BE=CF,∴BF=CE,又∵AF=DE,AB=DC,∴△ABF≌△DCE.(2)由△ABF≌△DCE得∠B=∠C,由AB∥CD得∠B+∠C=180°,得∠B=∠C=90°,四边形ABCD是正方形.22.【解答】解:(1)在这次调查中,一共抽取的学生数是: =50(人),∵a=×100%=24%;∴扇形统计图中A级对应的圆心角为24%×360°=86.4°;故答案为:50、86.4;(2)C等级人数为50﹣(12+24+4)=10,补全条形图如下:(3)3000×=240(人),答:估计该校等级为D的学生有240名.23.【解答】解:(1)根据题意知,m的值有4个,n的值有4个,所以可以得到4×4=16个不同形式的二次函数.故答案为16;(2)∵y=x2+mx+n,∴△=m2﹣4n.∵二次函数图象顶点在x轴上方,∴△=m2﹣4n<0,通过计算可知,m=1,n=1,2,3,4;或m=2,n=2,3,4;或m=3,n=3,4时满足△=m2﹣4n <0,由此可知,抛掷红、蓝四面体各一次,所得的二次函数的图象顶点在x轴上方的概率是.24.【解答】解:(1)如图所示,连接CE,交y轴于D,则DE即为所求,由E(1,0),D(0,﹣1.5),可得DE的解析式为y=x﹣,连接C'E',交y轴于D',则D'E'即为所求,由E'(﹣1,0),D'(0,1.5),可得D'E'的解析式为y=x+,∴直线DE的函数表达式为y=x﹣或y=x+;(2)如图所示,连接AD,EH,交于点G,由DE:AH=2:11,可得DG:AG=2:11,∴AG=AD=,同理可得,BF=,此时,矩形ABFG的面积为×=11.故矩形ABFG即为所求.25.【解答】解:(1)设线段AB对应的函数关系式为y1=kx+b.根据题意,得,解得.∴y1=﹣2x+4,当y=0时,﹣2x+4=0,解得x=2,故后队追到前队所用的时间的值是2h;(2)根据题意,得线段DE对应的函数关系式为y2=(12+4)(x﹣)=16x﹣8.如图所示:(3)根据题意,得线段AD对应的函数关系式为y3=k3x+b3,由题意,得,解得:.∴y3=﹣8x+4.分两种情况:①y1=2y3,即﹣2x+4=2(﹣8x+4),解得x=.②y1=2y2,即﹣2x+4=2(16x﹣8),解得x=.综上,联络员从出发到他折返后第一次与后队相遇的过程中,当x为或时,他离前队的路程与他离后队的路程相等.26.【解答】解:(1)根据题意知BC=2t、BO=16、OA=12,则OC=16﹣2t,∵CE⊥AB且E为AB中点,∴CB=CA=2t,在Rt△AOC中,由OC2+OA2=AC2可得(16﹣2t)2+122=(2t)2,解得:t=6.25,即点C运动了6.25秒时,点E恰好是AB的中点;(2)如图1中,当t=4时,BC=OC=8,∵A(12,0),B(0,16),∴直线AB的解析式为y=﹣x+16,∵CE⊥AB,C(0,8),∴直线CE的解析式为y=x+8,,解得,∴E(,),∵点F在y轴上,∴DE∥y轴,∴D(,0).(3)如图2中,①当点C在y轴的正半轴上时,设以EC为直径的⊙P与x轴相切于点D,作ER⊥OA与R.根据PD=(OC+ER),可得:t= [16﹣2t+(20﹣t)×],解得t=.②当点C′在y轴的负半轴上时,设以E′C′为直径的⊙P′与x轴相切于点D′,作ER′⊥OA与K.根据P′D′=(OC′+E′K),可得:t= [2t﹣16+(t﹣20)×],解得t=,综上所述,点C在运动过程中,若在x轴上存在两个不同的点D使▱CDEF成为矩形,满足条件的t的取值范围为<t<.27.【解答】解:(1)令x=0,则y=﹣m,C点坐标为:(0,﹣m),令y=0,则x2+(1﹣m)x﹣m=0,解得:x1=﹣1,x2=m,∵0<m<1,点A在点B的左侧,∴B点坐标为:(m,0),∴OB=OC=m,∵∠BOC=90°,∴△BOC是等腰直角三角形,∠ABC=45°;故答案为:45°;(2)如图1,作PD⊥y轴,垂足为D,设l与x轴交于点E,由题意得,抛物线的对称轴为:x=,设点P坐标为:(,n),∵PA=PC,∴PA2=PC2,即AE2+PE2=CD2+PD2,∴(+1)2+n2=(n+m)2+()2,解得:n=,∴P点的坐标为:(,);(3)存在点Q满足题意,∵P点的坐标为:(,),∴PA2+PC2=AE2+PE2+CD2+PD2,=(+1)2+()2+(+m)2+()2=1+m2,∵AC2=1+m2,∴PA2+PC2=AC2,∴∠APC=90°,∴△PAC是等腰直角三角形,∵以Q、B、C为顶点的三角形与△PAC相似,∴△QBC是等腰直角三角形,∴由题意可得满足条件的点Q的坐标为:(﹣m,0)若PQ与x轴垂直,则=﹣m,解得:m=,PQ=,若PQ与x轴不垂直,则PQ2=PE2+EQ2=()2+(+m)2=m2﹣2m+=(m﹣)2+,∵0<m<1,∴当m=时,PQ2取得最小值,PQ取得最小值,∵,∴当m=,即Q点的坐标为:(﹣,0)时,PQ的长度最小.28.【解答】解:(1)∵过点P的直线PQ的解析式为y=x+m,∴图象与x轴交点坐标的为:(﹣m,0),图象与y轴交点坐标的为:(0,m),∴QO=PO,∠POQ=90°,∴∠CPB=45°,故答案为:45°;(2)作OM⊥CD于M点,则CM=MD,∵∠CPB=45°,CE⊥AB,∴∠OQP=∠HCP=45°,PH=CH,由题意得:QO=2,∴OP=OQ=2,∴PM=MQ=OM=,连接OC,则CM==,∴PC=+,PH=CH=PC=,∴CE=2CH=+2,OH=PH﹣OP=﹣2=,∴S矩形CEGH=CE×OH=(+2)×=5;(3)不变,当P点在线段OA上时,由(2)得:PC2+PD2=(CM+PM)2+(DM﹣PM)2,=(CM+OM)2+(CM﹣OM)2,=2(CM2+OM2),=2OC2,=2×32,=18,当P点在线段OB上时,同理可得:PC2+PD2=18,当P点与点O重合时,显然有:PC2+PD2=18;(4)①当点P在直径AB上时如图所示,由圆的对称性可知,∠CPE=2∠CPB=90°,PE=PC,∴S△PDE=PD×PE=PD×PC=3,∴PD×PC=6,即(CM﹣PM)(CM+PM)=6,(CM﹣OM)(CM+OM)=6,∴CM2﹣OM2=6,∴CM2﹣(32﹣CM2)=6,∴CM2=,∴CD=2CM=;②当点P在线段AB的延长线上时,如图,同理有:PD×PC=6,即:(PM+DM)(PM﹣CM)=6,(OM+CM)(OM﹣CM)=6,∴OM2﹣CM2=6,∴(32﹣CM2)﹣CM2=6,∴CM2=,∴CD=2CM=,综上所述:CD为或.。

苏教版2020年中考数学模拟卷(含答案解析)

苏教版2020年中考数学模拟卷(含答案解析)

2020年中考数学模拟试卷一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.12.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x73.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×1064.下图几何体的主视图是()A.B.C.D.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.56.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=3007.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα二.填空题(共8小题)9.=.10.分解因式:x3﹣x=.11.已知一个多边形的内角和为540°,则这个多边形是边形.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是cm2.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为.三.解答题(共10小题)17.计算或化简:(1)(2)18.解方程:+=1.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有万人次到图书馆阅读,其中商人占百分比为%.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为;②∠AMB的度数为.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.参考答案与试题解析一.选择题(共8小题)1.下列各数中最小的数为()A.﹣3 B.﹣1 C.0 D.1【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<1,∴各数中最小的数是﹣3.故选:A.2.下列运算正确的是()A.3x2•4x2=12x2B.x3+x5=x8C.x4÷x=x3D.(x5)2=x7【分析】A、利用单项式乘单项式法则计算得到结果,即可做出判断;B、原式不能合并,本选项错误;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.【解答】解:A、3x2•4x2=12x4,本选项错误;B、原式不能合并,错误;C、x4÷x=x3,本选项正确;D、(x5)2=x10,本选项错误,故选:C.3.据报道,某小区居民李先生改进用水设备,在十年内帮助他居住小区的居民累计节水300 000吨.将300 000用科学记数法表示为()A.0.3×105B.3×105C.0.3×106D.3×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将300 000用科学记数法表示为:3×105.故选:B.4.下图几何体的主视图是()A.B.C.D.【分析】找到从正面看所得到的图形即可.【解答】解:从正面可看到的几何体的左边有3个正方形,中间只有2个正方形,右边有1个正方形.故选:C.5.某小组7名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是()劳动时间(小时) 3 3.5 4 4.5人数 1 1 3 2A.中位数是4,众数是4 B.中位数是3.5,众数是4C.平均数是3.5,众数是4 D.平均数是4,众数是3.5【分析】根据众数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有7个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450 B.300(1+2x)=450C.300(1+x)2=450 D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.7.某商店在节日期间开展优惠促销活动:购买原价超过500元的商品,超过500元的部分可以享受打折优惠.若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)的函数关系的图象如图所示,则超过500元的部分可以享受的优惠是()A.打六折B.打七折C.打八折D.打九折【分析】根据题意和函数图象中的数据可以列出相应的方程,从而可以求得超过500元的部分可以享受的优惠,本题得以解决.【解答】解:设超过500元的部分可以享受的优惠是x折,(1000﹣500)×+500=900,解得,x=8,故选:C.8.如图,▱ABCO的顶点B、C在第二象限,点A(﹣3,0),反比例函数y=(k<0)图象经过点C和AB边的中点D,若∠B=α,则k的值为()A.﹣4tanαB.﹣2sinαC.﹣4cosαD.﹣2tanα【分析】过点C作CE⊥OA于E,过点D作DF⊥x轴于F,根据平行四边形的对边相等可得OC=AB,然后求出OC=2AD,再求出OE=2AF,设AF=a,表示出点C、D的坐标,然后根据CE、DF的关系列方程求出a的值,再求出OE、CE,然后利用∠COA的正切值列式整理即可得解.【解答】解:如图,过点C作CE⊥OA于E,过点D作DF⊥x轴于F,在▱OABC中,OC=AB,∵D为边AB的中点,∴OC=AB=2AD,CE=2DF,∴OE=2AF,设AF=a,∵点C、D都在反比例函数上,∴点C(﹣2a,﹣),∵A(3,0),∴D(﹣a﹣3,),∴=2×,解得a=1,∴OE=2,CE=﹣,∵∠COA=∠α,∴tan∠COA=tan∠α=,即tanα=﹣,k=﹣4tanα.故选:A.二.填空题(共8小题)9.= 2 .【分析】如果一个数x的平方等于a,那么x是a的算术平方根,由此即可求解.【解答】解:∵22=4,∴=2.故答案为:210.分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).11.已知一个多边形的内角和为540°,则这个多边形是五边形.【分析】利用n边形的内角和可以表示成(n﹣2)•180°,结合方程即可求出答案.【解答】解:根据多边形的内角和可得:(n﹣2)180°=540°,解得:n=5.则这个多边形是五边形.故答案为:五.12.从长度分别是3,4,5的三条线段中随机抽出一条,与长为2,3的两条线段首尾顺次相接,能构成三角形的概率是.【分析】先写出3种等可能的结果数,然后根据三角形三边的关系确定三条线段能构成三角形的结果数,再根据概率公式求解.【解答】解:共有3种等可能的结果数,它们是:2、3、3,2、3、4,2、3、5,其中三条线段能构成三角形的结果数为2种,所以能构成三角形的概率=.故答案为:.13.小亮测得一圆锥模型的底面直径为10cm,母线长为7cm,那么它的侧面展开图的面积是35πcm2.【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【解答】解:底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.14.如图,直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图所示放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为.【分析】分别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,先根据全等三角形的判定定理得出△BCE≌△ACF,故可得出CF及CE的长,在Rt△ACF中根据勾股定理求出AC的长,再由相似三角形的判定得出△CDG∽△CAF,故可得出CD的长,在Rt△BCD中根据勾股定理即可求出BD的长.【解答】解:别过点A、B、D作AF⊥l3,BE⊥l3,DG⊥l3,∵△ABC是等腰直角三角形,∴AC=BC,∵∠EBC+∠BCE=90°,∠BCE+∠ACF=90°,∠ACF+∠CAF=90°,∴∠EBC=∠ACF,∠BCE=∠CAF,在△BCE与△ACF中,∴△BCE≌△ACF(ASA)∴CF=BE,CE=AF,∵l1与l2的距离为1,l2与l3的距离为3,∴CF=BE=3,CE=AF=3+1=4,在Rt△ACF中,∵AF=4,CF=3,∴AC=5,∵AF⊥l3,DG⊥l3,∴△CDG∽△CAF,∴,∴∴在Rt△BCD中,∵CD=,BC=5,所以BD==.故答案为:.15.抛物线y=﹣x2+2x+8与x轴交于B、C两点,点D平分BC,且点A为抛物线上的点,且∠BAC为锐角,则AD的值范围为3<x≤9 .【分析】由“∠BAC为锐角”可知点A在以定线段BC为直径的圆外,又点A在x轴上侧,从而可确定动点A的范围.【解答】解:如图,∵抛物线y=﹣x2+2x+8,∴抛物线的顶点为A0(1,9),对称轴为x=1,与x轴交于两点B(﹣2,0)、C(4,0),分别以BC、DA为直径作⊙D、⊙E,则两圆与抛物线均交于两点P(1﹣2,1)、Q(1+2,1).可知,点A在不含端点的抛物线内时,∠BAC<90°,且有3=DP=DQ<AD≤DA0=9,即AD的取值范围是3<AD≤9.则A的横坐标取值范围是3<x≤9.故答案为:3<x≤9.16.如图,在△ABC中,∠BAC=45°,AD⊥BC于点D,若BD=3,CD=2.则△ABC的面积为15 .【分析】将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:如图,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.且AB=AQ,AC=AC∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积为=×BC×AD=15故答案为:15三.解答题(共10小题)17.计算或化简:(1)(2)【分析】(1)直接利用特殊角的三角函数值以及零指数幂的性质、二次根式的性质分别化简得出答案;(2)首先利用分式的混合运算法则进而化简得出答案.【解答】解:(1)原式=﹣2+2×+1=﹣2++1=1;(2)原式=1﹣×=1﹣=﹣.18.解方程:+=1.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:(x+1)(x+1)﹣4=x2﹣1,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.19.图书馆是一个很好的学习平台,某市有关部门统计了最近6个月到图书馆的读者的职业分布情况,并做了下列两个不完整的统计图.(1)在统计的这段时间内,共有16 万人次到图书馆阅读,其中商人占百分比为12.5 %.(2)将条形统计图补充完整.(3)5月份到图书馆的读者共有24000人次,根据以上调查结果,估计24000人次中是职工的人次.【分析】(1)利用到图书馆阅读的人数=学生的人数÷学生的百分比求解,商人占百分比=商人数÷总人数求解即可,(2)求出职工到图书馆阅读的人数,作图即可,(3)利用总人数乘读者是职工的人数所占的百分比求解即可.【解答】解:(1)在统计的这段时间内,到图书馆阅读的人数为4÷25%=16(万人),其中商人占百分比为×100%=12.5%;故答案为:16;12.5;(2)职工:16﹣4﹣2﹣4=6(万人),如图所示:(3)估计24000人次中是职工的人次为24000×=9000(人次).20.如图,E是AC上一点,AB=CE,AB∥CD,AC=CD.求证:BC=ED.【分析】要证明BC=ED,只要证明△ABC≌△CED即可,根据题意目中的条件和平行线的性质可以得到证明两个三角形全等的条件,本题得以解决.【解答】证明:∵AB∥CD,∴∠A=∠ECD,在△ABC和△CED中,,∴△ABC≌△CED(SAS),∴BC=ED.21.有四张仅一面分别标有1,2,3,4的不透明纸片,除所标数字不同外,其余都完全相同.(1)将四张纸片分成两组,标有1、3的为第一组,标有2、4的为第二组,背面向上,放在桌上,从两组中各随机抽取一张,求两次抽取数字和为5的概率;(2)将四张纸片洗匀后背面向上,放在桌上,一次性从中随机抽取两张,用树形图法或列表法,求所抽取数字和为5的概率.【分析】(1)应用列表法,求出两次抽取数字和为5的概率是多少即可.(2)应用列表法,求出所抽取数字和为5的概率是多少即可.【解答】解:(1)1 32 (1,2)(3,2)4 (1,4)(3,4)∵共有4种可能性,且每种可能性都相同,数字和为5有两种可能性,∴两次抽取数字和为5的概率为:=.(2)1 2 3 41 ﹣﹣(2,1)(3,1)(4,1)2 (1,2)﹣﹣(3,2)(4,2)3 (1,3)(2,3)﹣﹣(4,3)4 (1,4)(2,4)(3,4)﹣﹣∵共有12种可能性,且每种可能性都相同,数字和为5的有4种可能性,∴抽取数字和为5概率为:=.22.如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC、AB分别相交于点D、F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sin A=时,求AF的长.【分析】(1)连接OE,BE,因为DE=EF,所以=,从而易证∠OEB=∠DBE,所以OE∥BC,从可证明BC⊥AC;(2)设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,从而可求出r的值.【解答】解:(1)连接OE,BE,∵DE=EF,∴=,∴∠OBE=∠DBE,∵OE=OB,∴∠OEB=∠OBE,∴∠OEB=∠DBE,∴OE∥BC,∵⊙O与边AC相切于点E,∴OE⊥AC,∴BC⊥AC,∴∠C=90°;(2)在△ABC,∠C=90°,BC=3,sin A=,∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sin A===,∴r=,∴AF=5﹣2×=.23.如图(1)是一种简易台灯,在其结构图(2)中灯座为△ABC(BC伸出部分不计),A、C、D在同一直线上.量得∠ACB=90°,∠A=60°,AB=16cm,∠ADE=135°,灯杆CD长为40cm,灯管DE长为15cm.(1)求DE与水平桌面(AB所在直线)所成的角;(2)求台灯的高(点E到桌面的距离,结果精确到0.1cm).(参考数据:sin15°=0.26,cos15°=0.97,tan15°=0.27,sin30°=0.5,cos30°=0.87,tan30°=0.58.)【分析】(1)直接作出平行线和垂线进而得出∠EDF的值;(2)利用锐角三角函数关系得出DN以及EF的值,进而得出答案.【解答】解:(1)如图所示:过点D作DF∥AB,过点D作DN⊥AB于点N,EF⊥AB于点M,由题意可得,四边形DNMF是矩形,则∠NDF=90°,∵∠A=60°,∠AND=90°,∴∠ADN=30°,∴∠EDF=135°﹣90°﹣30°=15°,即DE与水平桌面(AB所在直线)所成的角为15°;(2)如图所示:∵∠ACB=90°,∠A=60°,AB=16cm,∴∠ABC=30°,则AC=AB=8cm,∵灯杆CD长为40cm,∴AD=48cm,∴DN=AD•cos30°≈41.76cm,则FM=41.76cm,∵灯管DE长为15cm,∴sin15°===0.26,解得:EF=3.9,故台灯的高为:3.9+41.76≈45.7(cm).24.近期猪肉价格不断走高,引起了民众与政府的高度关注.当市场猪肉的平均价格每千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.(1)从今年年初至5月20日,猪肉价格不断走高,5月20日比年初价格上涨了60%.某市民在今年5月20日购买2.5千克猪肉至少要花100元钱,那么今年年初猪肉的最低价格为每千克多少元?(2)5月20日,猪肉价格为每千克40元.5月21日,某市决定投入储备猪肉并规定其销售价在每千克40元的基础上下调a%出售.某超市按规定价出售一批储备猪肉,该超市在非储备猪肉的价格仍为每千克40元的情况下,该天的两种猪肉总销量比5月20日增加了a%,且储备猪肉的销量占总销量的,两种猪肉销售的总金额比5月20日提高了a%,求a的值.【分析】(1)设今年年初猪肉价格为每千克x元;根据题意列出一元一次不等式,解不等式即可;(2)设5月20日两种猪肉总销量为1;根据题意列出方程,解方程即可.【解答】解:(1)设今年年初猪肉价格为每千克x元;根据题意得:2.5×(1+60%)x≥100,解得:x≥25.答:今年年初猪肉的最低价格为每千克25元;(2)设5月20日两种猪肉总销量为1;根据题意得:40(1﹣a%)×(1+a%)+40×(1+a%)=40(1+a%),令a%=y,原方程化为:40(1﹣y)×(1+y)+40×(1+y)=40(1+y),整理得:5y2﹣y=0,解得:y=0.2,或y=0(舍去),则a%=0.2,∴a=20;答:a的值为20.25.如图1,二次函数y=ax2+bx+c的图象与x轴分别交于A、B两点,与y轴交于点C.若tan∠ABC=3,一元二次方程ax2+bx+c=0的两根为﹣8、2.(1)求二次函数的解析式;(2)直线l绕点A以AB为起始位置顺时针旋转到AC位置停止,l与线段BC交于点D,P是AD的中点.①求点P的运动路程;②如图2,过点D作DE垂直x轴于点E,作DF⊥AC所在直线于点F,连结PE、PF,在l运动过程中,∠EPF的大小是否改变?请说明理由;(3)在(2)的条件下,连结EF,求△PEF周长的最小值.【分析】(1)利用tan∠ABC=3,得出C点坐标,再利用待定系数法求出二次函数解析式;(2)①当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,则P的运动路程为△ABC的中位线HK,再利用勾股定理得出答案;②首先利用等腰三角形的性质得出∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,进而求出∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即可得出答案;(3)首先得出C△PEF=AD+EF,进而得出EG=PE,EF=PE=AD,利用C△PEF=AD+EF =(1+)AD=AD,得出最小值即可.【解答】解:(1)∵函数y=ax2+bx+c与x轴交于A、B两点,且一元二次方程ax2+bx+c =0两根为:﹣8,2,∴A(﹣8,0)、B(2,0),即OB=2,又∵tan∠ABC=3,∴OC=6,即C(0,﹣6),将A(﹣8,0)、B(2,0)代入y=ax2+bx﹣6中,得:,解得:,∴二次函数的解析式为:y=x2+x﹣6;(2)①如图1,当l在AB位置时,P即为AB的中点H,当l运动到AC位置时,P即为AC中点K,∴P的运动路程为△ABC的中位线HK,∴HK=BC,在Rt△BOC中,OB=2,OC=6,∴BC=2,∴HK=,即P的运动路程为:;②∠EPF的大小不会改变,理由如下:如图2,∵DE⊥AB,∴在Rt△AED中,P为斜边AD的中点,∴PE=AD=PA,∴∠PAE=∠PEA=∠EPD,同理可得:∠PAF=∠PFA=∠DPF,∴∠EPF=∠EPD+∠FPD=2(∠PAE+∠PAF),即∠EPF=2∠EAF,又∵∠EAF大小不变,∴∠EPF的大小不会改变;(3)设△PEF的周长为C,则C△PEF=PE+PF+EF,∵PE=AD,PF=AD,∴C△PEF=AD+EF,在等腰三角形PEF中,如图2,过点P作PG⊥EF于点G,∴∠EPG=∠EPF=∠BAC,∵tan∠BAC==,∴tan∠EPG==,∴EG=PE,EF=PE=AD,∴C△PEF=AD+EF=(1+)AD=AD,又当AD⊥BC时,AD最小,此时C△PEF最小,又S△ABC=30,∴BC×AD=30,∴AD=3,∴C△PEF最小值为:AD=.26.(1)问题发现如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:①的值为 1 ;②∠AMB的度数为40°.(2)类比探究如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;(3)拓展延伸在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.【分析】(1)①证明△COA≌△DOB(SAS),得AC=BD,比值为1;②由△COA≌△DOB,得∠CAO=∠DBO,根据三角形的内角和定理得:∠AMB=180°﹣(∠DBO+∠OAB+∠ABD)=40°;(2)根据两边的比相等且夹角相等可得△AOC∽△BOD,则=,由全等三角形的性质得∠AMB的度数;(3)正确画图形,当点C与点M重合时,有两种情况:如图3和4,同理可得:△AOC ∽△BOD,则∠AMB=90°,,可得AC的长.【解答】解:(1)问题发现①如图1,∵∠AOB=∠COD=40°,∴∠COA=∠DOB,∵OC=OD,OA=OB,∴△COA≌△DOB(SAS),∴AC=BD,∴=1,②∵△COA≌△DOB,∴∠CAO=∠DBO,∵∠AOB=40°,∴∠OAB+∠ABO=140°,在△AMB中,∠AMB=180°﹣(∠CAO+∠OAB+∠ABD)=180°﹣(∠DBO+∠OAB+∠ABD)=180°﹣140°=40°,故答案为:①1;②40°;(2)类比探究如图2,=,∠AMB=90°,理由是:Rt△COD中,∠DCO=30°,∠DOC=90°,∴,同理得:,∴,∵∠AOB=∠COD=90°,∴∠AOC=∠BOD,∴△AOC∽△BOD,∴=,∠CAO=∠DBO,在△AMB中,∠AMB=180°﹣(∠MAB+∠ABM)=180°﹣(∠OAB+∠ABM+∠DBO)=90°;(3)拓展延伸①点C与点M重合时,如图3,同理得:△AOC∽△BOD,∴∠AMB=90°,,设BD=x,则AC=x,Rt△COD中,∠OCD=30°,OD=1,∴CD=2,BC=x﹣2,Rt△AOB中,∠OAB=30°,OB=,∴AB=2OB=2,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,,x2﹣x﹣6=0,(x﹣3)(x+2)=0,x1=3,x2=﹣2,∴AC=3;②点C与点M重合时,如图4,同理得:∠AMB=90°,,设BD=x,则AC=x,在Rt△AMB中,由勾股定理得:AC2+BC2=AB2,+(x+2)2=x2+x﹣6=0,(x+3)(x﹣2)=0,x1=﹣3,x2=2,∴AC=2;综上所述,AC的长为3或2.。

2020年江西省中等学校中考数学模拟试卷(三)---附答案解析

2020年江西省中等学校中考数学模拟试卷(三)---附答案解析

. ÷ = B a8 a4 a2
.( ) = D
a3 2
a9
3.(3 分)如图所示的几何体是由一个圆锥和一个长方体组成的,则它的俯视图是( )
A.
B.
C.
D.
4.(3 分)若关于 x 的不等式组
的解集是 x>a,则 a 的取值范围是( )
A.a<2
B.a≤2
C.a>2
D.a≥2
5.(3 分)如图,点 E 是正方形 ABCD 的边 DC 上一点,把△ADE 绕点 A 顺时针旋转 °90
19.(8 分)如图,点 、A B 是双曲线 y= (k 为正整数)与直线 AB 的交点,且 、A B 两
点的横坐标是关于 x 的方程:x2+kx﹣k﹣1=0 的两根
(1)填表:
K
1
2

3 … (n n 为正
整数)
A 点的横坐 标
B 点的横坐 标
(2)当 k=n(n 为正整数)时,试求直线 AB 的解析式(用含 n 的式子表示); (3)当 k=1、2、3、…n 时,△ABO 的面积,依次记为 、 、 … ,当 S1 S2 S3 Sn =Sn 40 时, 求双曲线 y= 的解析式.
第 2 页(共 23 页)
12.(3 分)矩形 ABCD 中,AB=20,BC=6,E 为 AB 边的中点,P 为 CD 边上的点,且△ AEP 是腰长为 10 的等腰三角形,则线段 BP 的长为
三、(本大题共 5 小题,每小题 6 分,共 30 分) 13.(6 分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中 x=3. 14.(6 分)如图,∠ABD=∠BCD=90°,DB 平分∠ADC,过点 B 作 ∥ BM CD 交 AD 于 M.连

2020届陕西省中考数学模拟试卷(有答案)(Word版)(已审阅)

2020届陕西省中考数学模拟试卷(有答案)(Word版)(已审阅)

陕西省中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.计算:21()12--==( ) A .54-B .14-C .34- D .0 【答案】C . 【解析】 试题分析:原式=14﹣1=34-,故选C . 考点:有理数的混合运算.2.如图所示的几何体是由一个长方体和一个圆柱体组成的,则它的主视图是( )A .B .C .D .【答案】B . 【解析】试题分析:从正面看下边是一个较大的矩形,上便是一个角的矩形,故选B . 考点:简单组合体的三视图.3.若一个正比例函数的图象经过A (3,﹣6),B (m ,﹣4)两点,则m 的值为( ) A .2 B .8 C .﹣2 D .﹣8 【答案】A . 【解析】考点:一次函数图象上点的坐标特征.4.如图,直线a ∥b ,Rt △ABC 的直角顶点B 落在直线a 上,若∠1=25°,则∠2的大小为( )A .55°B .75°C .65°D .85°【答案】C . 【解析】试题分析:∵∠1=25°,∴∠3=90°﹣∠1=90°﹣25°=65°.∵a ∥b ,∴∠2=∠3=65°.故选C .考点:平行线的性质. 5.化简:x xx y x y--+,结果正确的是( ) A .1 B .2222x y x y +- C . x y x y-+ D .22x y + 【答案】B . 【解析】试题分析:原式=2222x xy xy y x y +-+- =2222x y x y +-.故选B .考点:分式的加减法.6.如图,将两个大小、形状完全相同的△ABC 和△A ′B ′C ′拼在一起,其中点A ′与点A 重合,点C ′落在边AB 上,连接B ′C .若∠ACB =∠AC ′B ′=90°,AC =BC =3,则B ′C 的长为( )A .33B .6C . 32D 21 【答案】A . 【解析】试题分析:∵∠ACB =∠AC ′B ′=90°,AC =BC =3,∴AB 22AB BC +=32CAB =45°,∵△ABC和△A ′B ′C ′大小、形状完全相同,∴∠C ′AB ′=∠CAB =45°,AB ′=AB =32,∴∠CAB ′=90°,∴B ′C 22'CA B A +33A . 考点:勾股定理.7.如图,已知直线l 1:y =﹣2x +4与直线l 2:y =kx +b (k ≠0)在第一象限交于点M .若直线l 2与x 轴的交点为A (﹣2,0),则k 的取值范围是( )A.﹣2<k<2B.﹣2<k<0C.0<k<4D.0<k<2【答案】D.【解析】考点:两条直线相交或平行问题;一次函数图象上点的坐标特征.8.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.355【答案】B.【解析】考点:相似三角形的判定与性质;矩形的性质.9.如图,△ABC 是⊙O 的内接三角形,∠C =30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB =AB ,则P A 的长为( )A .5B .532C . 52D .53 【答案】D . 【解析】试题分析:连接OA 、OB 、OP ,∵∠C =30°,∴∠APB =∠C =30°,∵PB =AB ,∴∠P AB =∠APB =30° ∴∠ABP =120°,∵PB =AB ,∴OB ⊥AP ,AD =PD ,∴∠OBP =∠OBA =60°,∵OB =OA ,∴△AOB 是等边三角形,∴AB =OA =5,则Rt △PBD 中,PD =cos30°•PB =32×5=532,∴AP =2PD =53,故选D .考点:三角形的外接圆与外心;等腰三角形的性质.10.已知抛物线224y x mx =--(m >0)的顶点M 关于坐标原点O 的对称点为M ′,若点M ′在这条抛物线上,则点M 的坐标为( )A .(1,﹣5)B .(3,﹣13)C .(2,﹣8)D .(4,﹣20) 【答案】C . 【解析】试题分析:224y x mx =--=22()4x m m ---,∴点M (m ,﹣m 2﹣4),∴点M ′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m =±2.∵m >0,∴m =2,∴M (2,﹣8).故选C . 考点:二次函数的性质.二、填空题(本大题共4小题,每小题3分,共12分)11.在实数﹣5,﹣3,0,π,6中,最大的一个数是 . 【答案】π. 【解析】考点:实数大小比较.12.请从以下两个小题中任选一个作答,若多选,则按第一题计分.A.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为.B.317tan38°15′≈.(结果精确到0.01)【答案】A.64°;B.2.03.【解析】考点:计算器—三角函数;计算器—数的开方;三角形内角和定理.13.已知A,B两点分别在反比例函数3myx=(m≠0)和25myx-=(m≠52)的图象上,若点A与点B 关于x轴对称,则m的值为.【答案】1.【解析】试题分析:设A(a,b),则B(a,﹣b),依题意得:325mbamba⎧=⎪⎪⎨-⎪-=⎪⎩,所以325m ma+-=0,即5m﹣5=0,解得m=1.故答案为:1.考点:反比例函数图象上点的坐标特征;关于x轴、y轴对称的点的坐标.14.如图,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°,连接AC.若AC=6,则四边形ABCD的面积为.【答案】18. 【解析】∴四边形ABCD 的面积=正方形AMCN 的面积; 由勾股定理得:AC 2=AM 2+MC 2,而AC =6; ∴2λ2=36,λ2=18,故答案为:18.考点:全等三角形的判定与性质.三、解答题(本大题共11小题,共78分)15.计算:11(2)6|32|()2---. 【答案】33- 【解析】试题分析:根据二次根式的性质以及负整数指数幂的意义即可求出答案. 试题解析:原式=12232+=233-=33- 考点:二次根式的混合运算;负整数指数幂. 16.解方程:32133x x x +-=-+. 【答案】x =﹣6.【解析】试题分析:利用解分式方程的步骤和完全平方公式,平方差公式即可得出结论.试题解析:去分母得,(x+3)2﹣2(x﹣3)=(x﹣3)(x+3),去括号得,x2+6x+9﹣2x+6=x2﹣9,移项,系数化为1,得x=﹣6,经检验,x=﹣6是原方程的解.考点:解分式方程.17.如图,在钝角△ABC中,过钝角顶点B作BD⊥BC交AC于点D.请用尺规作图法在BC边上求作一点P,使得点P到AC的距离等于BP的长.(保留作图痕迹,不写作法)【答案】作图见解析.【解析】考点:作图—基本作图.18.养成良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查.现把调查结果分成A、B、C、D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图.请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟.(早锻炼:指学生在早晨7:00~7:40之间的锻炼)【答案】(1)作图见解析;(2)C;(3)1020.【解析】百分比为1﹣(5%+10%+65%)=20%,补全图形如下:(2)由于共有200个数据,其中位数是第100、101个数据的平均数,则其中位数位于C区间内,故答案为:C;(3)1200×(65%+20%)=1020(人).答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟.考点:频数(率)分布直方图;用样本估计总体;扇形统计图;中位数.19.如图,在正方形ABCD中,E、F分别为边AD和CD上的点,且AE=CF,连接AF、CE交于点G.求证:AG=CG.【答案】证明见解析.【解析】试题分析:根据正方向的性质,可得∠ADF=CDE=90°,AD=CD,根据全等三角形的判定与性质,可得答案.考点:正方形的性质;全等三角形的判定与性质.20.某市一湖的湖心岛有一颗百年古树,当地人称它为“乡思柳”,不乘船不易到达,每年初春时节,人们喜欢在“聚贤亭”观湖赏柳.小红和小军很想知道“聚贤亭”与“乡思柳”之间的大致距离,于是,有一天,他们俩带着侧倾器和皮尺来测量这个距离.测量方法如下:如图,首先,小军站在“聚贤亭”的A 处,用侧倾器测得“乡思柳”顶端M点的仰角为23°,此时测得小军的眼睛距地面的高度AB为1.7米,然后,小军在A处蹲下,用侧倾器测得“乡思柳”顶端M点的仰角为24°,这时测得小军的眼睛距地面的高度AC为1米.请你利用以上测得的数据,计算“聚贤亭”与“乡思柳”之间的距离AN的长(结果精确到1米).(参考数据:sin23°≈0.3907,cos23°≈0.9205,tan23°≈0.4245,sin24°≈0.4067,cos24°≈0.9135,tan24°≈0.4452.)【答案】34米.【解析】试题分析:作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,再由锐角三角函数的定义即可得出结论.试题解析:如图,作BD⊥MN,CE⊥MN,垂足分别为点D、E,设AN=x米,则BD=CE=x米,在Rt△MBD 中,MD=x•tan23°,在Rt△MCE中,ME=x•tan24°,∵ME﹣MD=DE=BC,∴x•tan24°﹣x•tan23°=1.7﹣1,∴x=0.7tan24tan23o o,解得x≈34(米).答:“聚贤亭”与“乡思柳”之间的距离AN的长约为34米.考点:解直角三角形的应用﹣仰角俯角问题.21.在精准扶贫中,某村的李师傅在县政府的扶持下,去年下半年,他对家里的3个温室大棚进行修整改造,然后,1个大棚种植香瓜,另外2个大棚种植甜瓜,今年上半年喜获丰收,现在他家的甜瓜和香瓜已全部售完,他高兴地说:“我的日子终于好了”.最近,李师傅在扶贫工作者的指导下,计划在农业合作社承包5个大棚,以后就用8个大棚继续种植香瓜和甜瓜,他根据种植经验及今年上半年的市场情况,打算下半年种植时,两个品种同时种,一个大棚只种一个品种的瓜,并预测明年两种瓜的产量、销售价格及成本如下:现假设李师傅今年下半年香瓜种植的大棚数为x个,明年上半年8个大棚中所产的瓜全部售完后,获得的利润为y元.根据以上提供的信息,请你解答下列问题:(1)求出y与x之间的函数关系式;(2)求出李师傅种植的8个大棚中,香瓜至少种植几个大棚?才能使获得的利润不低于10万元.【答案】(1)y=7500x+68000;(2)5.【解析】试题分析:(1)利用总利润=种植香瓜的利润+种植甜瓜的利润即可得出结论;(2)利用(1)得出的结论大于等于100000建立不等式,即可确定出结论.试题解析:(1)由题意得,y=(2000×12﹣8000)x+(4500×3﹣5000)(8﹣x)=7500x+68000;(2)由题意得,7500x+6800≥100000,∴x≥4415,∵x为整数,∴李师傅种植的8个大棚中,香瓜至少种植5个大棚.考点:一次函数的应用;最值问题.22.端午节“赛龙舟,吃粽子”是中华民族的传统习俗.节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同.粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子.根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率.【答案】(1)12;(2)316.【解析】(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),∴小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是:3 16.考点:列表法与树状图法;概率公式.23.如图,已知⊙O的半径为5,P A是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A作AC⊥PB交⊙O于点C、交PB于点D,连接BC,当∠P=30°时.(1)求弦AC的长;(2)求证:BC∥P A.【答案】(1)53;(2)证明见解析.【解析】在Rt△ODA中,AD=OA•sin6053,∴AC=2AD=53;(2)∵AC⊥PB,∠P=30°,∴∠P AC=60°,∵∠AOP=60°,∴∠BOA=120°,∴∠BCA=60°,∴∠P AC=∠BCA,∴BC∥P A.考点:切线的性质.24.在同一直角坐标系中,抛物线y=ax2﹣2x﹣3与抛物线y=x2+mx+n关于y轴对称,C2与x轴交于A、B两点,其中点A在点B的左侧.(1)求抛物线C1,C2的函数表达式;(2)求A、B两点的坐标;(3)在抛物线C1上是否存在一点P,在抛物线C2上是否存在一点Q,使得以AB为边,且以A、B、P、Q 四点为顶点的四边形是平行四边形?若存在,求出P、Q两点的坐标;若不存在,请说明理由.【答案】(1)C1的函数表示式为y=x2﹣2x﹣3,C2的函数表达式为y=x2+2x﹣3;(2)A(﹣3,0),B(1,0);(3)存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).【解析】试题分析:(1)由对称可求得a、n的值,则可求得两函数的对称轴,可求得m的值,则可求得两抛物线的函数表达式;(2)由C2的函数表达式可求得A、B的坐标;(3)由题意可知AB只能为平行四边形的边,利用平行四边形的性质,可设出P点坐标,表示出Q点坐标,代入C2的函数表达式可求得P、Q的坐标.试题解析:(t+4,t2﹣2t﹣3)或(t﹣4,t2﹣2t﹣3),①当Q(t+4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t+4)2+2(t+4)﹣3,解得t=﹣2,∴t2﹣2t﹣3=4+4﹣3=5,∴P(﹣2,5),Q(2,5);②当Q(t﹣4,t2﹣2t﹣3)时,则t2﹣2t﹣3=(t﹣4)2+2(t﹣4)﹣3,解得t=2,∴t2﹣2t﹣3=4﹣4﹣3=﹣3,∴P(﹣2,﹣3),Q(2,﹣3),综上可知存在满足条件的点P、Q,其坐标为P(﹣2,5),Q(2,5)或P(﹣2,﹣3),Q(2,﹣3).考点:二次函数综合题;存在型;分类讨论;轴对称的性质.25.问题提出(1)如图①,△ABC是等边三角形,AB=12,若点O是△ABC的内心,则OA的长为;问题探究(2)如图②,在矩形ABCD中,AB=12,AD=18,如果点P是AD边上一点,且AP=3,那么BC边上是否存在一点Q,使得线段PQ将矩形ABCD的面积平分?若存在,求出PQ的长;若不存在,请说明理由.问题解决(3)某城市街角有一草坪,草坪是由△ABM草地和弦AB与其所对的劣弧围成的草地组成,如图③所示.管理员王师傅在M处的水管上安装了一喷灌龙头,以后,他想只用喷灌龙头来给这块草坪浇水,并且在用喷灌龙头浇水时,既要能确保草坪的每个角落都能浇上水,又能节约用水,于是,他让喷灌龙头的转角正好等于∠AMB(即每次喷灌时喷灌龙头由MA转到MB,然后再转回,这样往复喷灌.)同时,再合理设计好喷灌龙头喷水的射程就可以了.»AB于点E,如图③,已测出AB=24m,MB=10m,△AMB的面积为96m2;过弦AB的中点D作DE⊥AB交又测得DE=8m.请你根据以上信息,帮助王师傅计算喷灌龙头的射程至少多少米时,才能实现他的想法?为什么?(结果保留根号或精确到0.01米)【答案】(1)43;(2)PQ =122;(3)喷灌龙头的射程至少为19.71米.【解析】试题分析:(1)构建Rt △AOD 中,利用cos ∠OAD =cos30°=AD OA,可得OA 的长; (2)经过矩形对角线交点的直线将矩形面积平分,根据此结论作出PQ ,利用勾股定理进行计算即可;(3)如图3,作辅助线,先确定圆心和半径,根据勾股定理计算半径:在Rt △AOD 中,由勾股定理解得:r =13根据三角形面积计算高MN 的长,证明△ADC ∽△ANM ,列比例式求DC 的长,确定点O 在△AMB 内部,利用勾股定理计算OM ,则最大距离FM 的长可利用相加得出结论. 试题解析:(1)如图1,过O 作OD ⊥AC 于D ,则AD =12AC =12×12=6,∵O 是内心,△ABC 是等边三角形,∴∠OAD =12∠BAC =12×60°=30°,在Rt △AOD 中,cos ∠OAD =cos30°=AD OA,∴OA =6÷32=43,故答案为:43;(r ﹣8)2,解得:r =13,∴OD =5,过点M 作MN ⊥AB ,垂足为N ,∵S △ABM =96,AB =24,∴12AB •MN =96,12×24×MN =96,∴MN =8,NB =6,AN =18,∵CD ∥MN ,∴△ADC ∽△ANM ,∴DC AD MN AN =,∴12818DC ,∴DC =163,∴OD <CD ,∴点O 在△AMB 内部,∴连接MO 并延长交»AB 于点F ,则MF 为草坪上的点到M 点的最大距离,∵在»AB 上任取一点异于点F 的点G ,连接GO ,GM ,∴MF =OM +OF =OM +OG >MG ,即MF >MG ,过O 作OH ⊥MN ,垂足为H ,则OH =DN =6,MH =3,∴OM 22MH OH +2236+=35,∴MF=OM+r=35+13≈19.71(米).答:喷灌龙头的射程至少为19.71米.考点:圆的综合题;最值问题;存在型;阅读型;压轴题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学模拟试卷及答案一、选择题(本大题共12小题,每小题3分,共36分)1.三角形的内角和等于()A.90° B.180° C.300° D.360°2.计算:23=()A.5 B.6 C.8 D.93.如图,直线a、b被直线c所截,下列条件能使a∥b的是()A.∥1=∥6 B.∥2=∥6 C.∥1=∥3 D.∥5=∥74.在不透明口袋内有形状、大小、质地完全一样的5个小球,其中红球3个,白球2个,随机抽取一个小球是红球的概率是()A.B.C.D.5.今年百色市九年级参加中考人数约有38900人,数据38900用科学记数法表示为()A.3.89×102B.389×102C.3.89×104D.3.89×1056.如图,∥ABC中,∥C=90°,∥A=30°,AB=12,则BC=()A.6 B.6C.6D.127.分解因式:16﹣x2=()A.(4﹣x)(4+x)B.(x﹣4)(x+4)C.(8+x)(8﹣x)D.(4﹣x)28.下列关系式正确的是()A.35.5°=35°5′ B.35.5°=35°50′ C.35.5°<35°5′ D.35.5°>35°5′9.为了了解某班同学一周的课外阅读量,任选班上15名同学进行调查,统计如表,则下列说法错误的是()阅读量(单位:本/周)01234人数(单位:人)14622A.中位数是2 B.平均数是2 C.众数是2 D.极差是210.直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是()A.x≤3 B.x≥3 C.x≥﹣3 D.x≤011.A、B两地相距160千米,甲车和乙车的平均速度之比为4:5,两车同时从A地出发到B地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x千米/小时,则所列方程是()A.﹣=30 B.﹣=C.﹣=D.+=3012.如图,正∥ABC的边长为2,过点B的直线l∥AB,且∥ABC与∥A′BC′关于直线l对称,D为线段BC′上一动点,则AD+CD的最小值是()A.4 B.3C.2D.2+二、填空题(本大题共6小题,每小题3分,共18分)13.的倒数是.14.若点A(x,2)在第二象限,则x的取值范围是.15.如图,∥O的直径AB过弦CD的中点E,若∥C=25°,则∥D=.16.某几何体的三视图如图所示,则组成该几何体的小正方体的个数是.17.一组数据2,4,a,7,7的平均数=5,则方差S2=.18.观察下列各式的规律:(a﹣b)(a+b)=a2﹣b2(a﹣b)(a2+ab+b2)=a3﹣b3(a﹣b)(a3+a2b+ab2+b3)=a4﹣b4…可得到(a﹣b)(a2016+a2015b+…+ab2015+b2016)=.三、解答题(本大题共8小题,共66分)19.计算:+2sin60°+|3﹣|﹣(﹣π)0.20.解方程组:.21.∥ABC的顶点坐标为A(﹣2,3)、B(﹣3,1)、C(﹣1,2),以坐标原点O为旋转中心,顺时针旋转90°,得到∥A′B′C′,点B′、C′分别是点B、C的对应点.(1)求过点B′的反比例函数解析式;(2)求线段CC′的长.22.已知平行四边形ABCD中,CE平分∥BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:∥ABF∥∥CDE;(2)如图,若∥1=65°,求∥B的大小.23.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:组号分组频数一6≤m<72二7≤m<87三8≤m<9a四9≤m≤102(1)求a的值;(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).24.在直角墙角AOB(OA∥OB,且OA、OB长度不限)中,要砌20m长的墙,与直角墙角AOB围成地面为矩形的储仓,且地面矩形AOBC的面积为96m2.(1)求这地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖单价分别为55元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),用哪一种规格的地板砖费用较少?25.如图,已知AB为∥O的直径,AC为∥O的切线,OC交∥O于点D,BD的延长线交AC 于点E.(1)求证:∥1=∥CAD;(2)若AE=EC=2,求∥O的半径.26.正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求∥OAE与∥OCE面积之和的最大值.2020年中考数学模拟试卷参考答案一、选择题1.B2.C3.B4.C5.C6.A7.A8.D9.D10.A11.B12.C二、填空题13.314.x<015.65°16.517.3.618.a2017﹣b2017三、解答题19.解:+2sin60°+|3﹣|﹣(﹣π)0=3+2×+3﹣﹣1=3++3﹣﹣1=5.20.解:,①×8+②得:33x=33,即x=1,把x=1代入①得:y=1,则方程组的解为.21.解:(1)如图所示:由图知B点的坐标为(﹣3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,点B的对应点B′的坐标为(1,3),设过点B′的反比例函数解析式为y=,∥k=3×1=3,∥过点B′的反比例函数解析式为y=.(2)∥C(﹣1,2),∥OC==,∥∥ABC以坐标原点O为旋转中心,顺时针旋转90°,∥OC′=OC=,∥CC′==.22.(1)证明:∥四边形ABCD是平行四边形,∥AB=CD,AD∥BC,∥B=∥D,∥∥1=∥DCE,∥AF∥CE,∥∥AFB=∥ECB,∥CE平分∥BCD,∥∥DCE=∥ECB,∥∥AFB=∥1,在∥ABF和∥CDE中,,∥∥ABF∥∥CDE(AAS);(2)解:由(1)得:∥1=∥ECB,∥DCE=∥ECB,∥∥1=∥DCE=65°,∥∥B=∥D=180°﹣2×65°=50°.23.解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=36°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是:=,即第一组至少有1名选手被选中的概率是.24.(1)设这地面矩形的长是xm,则依题意得:x(20﹣x)=96,解得x1=12,x2=8(舍去),答:这地面矩形的长是12米;(2)规格为0.80×0.80所需的费用:96×(0.80×0.80)×55=8250(元).规格为1.00×1.00所需的费用:96×(1.00×1.00)×80=7680(元).因为8250<7680,所以采用规格为1.00×1.00所需的费用较少.25.(1)证明:∥AB为∥O的直径,∥∥ADB=90°,∥∥ADO+∥BDO=90°,∥AC为∥O的切线,∥OA∥AC,∥∥OAD+∥CAD=90°,∥OA=OD,∥∥OAD=∥ODA,∥∥1=∥BDO,∥∥1=∥CAD;(2)解:∥∥1=∥CAD,∥C=∥C,∥∥CAD∥∥CDE,∥CD:CA=CE:CD,∥CD2=CA•CE,∥AE=EC=2,∥AC=AE+EC=4,∥CD=2,设∥O的半径为x,则OA=OD=x,则Rt∥AOC中,OA2+AC2=OC2,∥x2+42=(2+x)2,解得:x=.∥∥O的半径为.26.解:(1)以O点为原点,线段OA所在的直线为x轴,线段OC所在的直线为y轴建立直角坐标系,如图所示.①∥正方形OABC的边长为4,对角线相交于点P,∥点O的坐标为(0,0),点A的坐标为(4,0),点P的坐标为(2,2).②设抛物线L的解析式为y=ax2+bx+c,∥抛物线L经过O、P、A三点,∥有,解得:,∥抛物线L的解析式为y=﹣+2x.(2)∥点E是正方形内的抛物线上的动点,∥设点E的坐标为(m,﹣+2m)(0<m<4),∥S∥OAE+S OCE=OA•y E+OC•x E=﹣m2+4m+2m=﹣(m﹣3)2+9,∥当m=3时,∥OAE与∥OCE面积之和最大,最大值为9.。

相关文档
最新文档