【真题】2019年重庆市长寿区中考数学模拟试卷(有答案)

合集下载

2019年重庆市长寿区中考数学模拟试卷(含答案解析)

2019年重庆市长寿区中考数学模拟试卷(含答案解析)

2019年重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1 B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A.6 B.9 C.21 D.258.已知m=,则以下对m的值估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E 点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360 B.90 C.60 D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算:+(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y (米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG交AB于N点,交AE于M点,则S=.△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B 、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C :对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D :对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误; 故选:C .【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a +b =0,cd =1,m =±2,由此可得出代数式的值.【解答】解:由题意得:a +b =0,cd =1,m =±2代数式可化为:m 2﹣cd =4﹣1=3故选:B .【点评】本题考查代数式的求值,根据题意得出a +b =0,cd =1,m =±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x +1≥0且2x ﹣1≠0,解得x ≥﹣1且x ≠.故选:C .【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE ∽△ABC ,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE ∥BC ,∴△ADE ∽△ABC ,∴=,∵AD =2,DB =3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD=60°,然后求出阴影部分的面积=S△ABD,计算即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴∠ABD=60°,又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形BDC﹣(S扇形ABD﹣S△ABD),=S△ABD,=×4×=4cm2.故选:B.【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CDJ中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C到B的速度为a米/秒,,解得,a=1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t秒,4t=1.5t+(800﹣500),解得,t=120,∴牛牛和峰峰第一次相遇时他们距A点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B作BP⊥AE于P,根据勾股定理计算BE=BC=2,AE==10,得B,F,G共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ=,BQ=,分别计算FS、GS、DG、DH、AH、AN的长,利用面积差S△MNF=S△ANF﹣S△AMN求值【解答】解:过B作BP⊥AE于P,∵正方形ABCD中,AB=4,E为BC中点,∴BE=BC=2,∴AE==10,∴BP===4,∴PE===2,∴EF=EP,∴F与P重合,∴B,F,G共线,过F作OS⊥DC,交AB于O,DC于S,则OS⊥AB,过F作FQ⊥BC于Q,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF=S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2).∴BE =5.设直线y =x +3与y 轴交于点C .∴C 点坐标为(0,3).∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =. 【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x ,根据题意得:10(1+x )2=14.4,解得x =﹣2.2(不合题意舍去)x =0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y 万辆,根据题意得:2009年底汽车数量为14.4×90%+y ,2010年底汽车数量为(14.4×90%+y )×90%+y ,∴(14.4×90%+y )×90%+y ≤15.464,∴y ≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z ﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ 解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2019.3重庆市长寿区中考数学模拟试卷附答案解析

2019.3重庆市长寿区中考数学模拟试卷附答案解析

重庆市长寿区2019年中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1B.0C.2D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3B.3C.﹣5D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A.6B.9C.21D.258.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD 是以点B为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD 的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360B.90C.60D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算:+(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D 等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE 交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG=.交AB于N点,交AE于M点,则S△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再,计算即可得解.求出∠CBD=60°,然后求出阴影部分的面积=S△ABD【解答】解:如图,连接BD,∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∴∠ABD =60°,又∵菱形的对边AD ∥BC ,∴∠ABC =180°﹣60°=120°,∴∠CBD =120°﹣60°=60°,∴S 阴影=S 扇形BDC ﹣(S 扇形ABD ﹣S △ABD ),=S △ABD ,=×4×=4cm 2. 故选:B .【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB 交ED 的延长线于M ,作CJ ⊥DM 于J .则四边形BMJC 是矩形.在Rt △CDJ 中求出CJ 、DJ ,再根据,tan ∠AEM =构建方程即可解决问题;【解答】解:如图延长AB 交ED 的延长线于M ,作CJ ⊥DM 于J .则四边形BMJC 是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C到B的速度为a米/秒,,解得,a=1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t秒,4t=1.5t+(800﹣500),解得,t=120,∴牛牛和峰峰第一次相遇时他们距A点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B作BP⊥AE于P,根据勾股定理计算BE=BC=2,AE==10,得B,F,G共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ=,BQ=,分别计算FS、GS、DG、DH、AH、AN的长,利用面积差S△MNF =S△ANF﹣S△AMN求值【解答】解:过B作BP⊥AE于P,∵正方形ABCD中,AB=4,E为BC中点,∴BE=BC=2,∴AE==10,∴BP===4,∴PE===2,∴EF=EP,∴F与P重合,∴B,F,G共线,过F作OS⊥DC,交AB于O,DC于S,则OS⊥AB,过F作FQ⊥BC于Q,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF =S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC=3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5),∴5=2+b,5=.解得:b=3,k=10.(2)如图,过A作AD⊥y轴于D,过B作BE⊥y轴于E,∴AD=2.∵b=3,k=10,∴y=x+3,y=.由得:或,∴B点坐标为(﹣5,﹣2).∴BE=5.设直线y=x+3与y轴交于点C.∴C点坐标为(0,3).∴OC=3.∴S△AOC=OC•AD=×3×2=3,S△BOC=OC•BE=×3×5=.∴S△AOB =S△AOC+S△BOC=.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K 的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z ﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2019年重庆市长寿区中考数学模拟试卷((有答案))

2019年重庆市长寿区中考数学模拟试卷((有答案))

2019年重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1B.0C.2D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3B.3C.﹣5D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE 的面积是()A.6B.9C.21D.258.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360B.90C.60D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算:+(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG交AB于N点,交AE 于M点,则S=.△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n个图案需火柴棒8+7(n﹣1)=7n+1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n需火柴棒:8+7(n﹣1)=7n+1根;故选:D.【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD,判断出△ABD是等边三角形,根据等边三角形的性质可得∠ABD=60°,再求出∠CBD =60°,然后求出阴影部分的面积=S△ABD,计算即可得解.【解答】解:如图,连接BD,∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴∠ABD=60°,又∵菱形的对边AD∥BC,∴∠ABC=180°﹣60°=120°,∴∠CBD=120°﹣60°=60°,∴S阴影=S扇形BDC﹣(S扇形ABD﹣S△ABD),=S△ABD,=×4×=4cm2.故选:B.【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CDJ中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C到B的速度为a米/秒,,解得,a =1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t 秒, 4t =1.5t +(800﹣500), 解得,t =120,∴牛牛和峰峰第一次相遇时他们距A 点的距离是:4×120=480米, 故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B 作BP ⊥AE 于P ,根据勾股定理计算BE =BC =2,AE ==10,得B ,F ,G 共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ =,BQ =,分别计算FS 、GS 、DG 、DH 、AH 、AN 的长,利用面积差S △MNF =S △ANF ﹣S △AMN 求值【解答】解:过B 作BP ⊥AE 于P ,∵正方形ABCD 中,AB =4,E 为BC 中点,∴BE =BC =2,∴AE ==10,∴BP ===4,∴PE ===2,∴EF =EP , ∴F 与P 重合, ∴B ,F ,G 共线,过F 作OS ⊥DC ,交AB 于O ,DC 于S ,则OS ⊥AB , 过F 作FQ ⊥BC 于Q ,sin ∠FBE ==,=,∴FQ =,∴BQ =,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR =6﹣2,∴S △MNF =S △ANF ﹣S △AMN =AN •FO ﹣AN •MR =AN (FO ﹣MR )=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度. 三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论. 【解答】证明:∵∠2=60°∠ABC =45°, ∴∠3=75°, ∵∠1=75°, ∴∠3=∠1, ∴l 1∥l 2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键. 20.【分析】(1)用D 类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C 类所占的百分比得到扇形C 所对的圆心角的度数,再用200乘以C 类所占的百分比得到C 类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解. 【解答】解:(1)120÷60%=200(人), 所以调查的家长数为200人;(2)扇形C 所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°, C 类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人), 补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y=x+b与双曲线y=相交于A,B两点,A(2,5),即可得到结论;(2)过A作AD⊥y轴于D,BE⊥y轴于E根据y=x+3,y=,得到B(﹣5,﹣2),C(﹣3,0),求出OC =3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y =x +b 与双曲线y =相交于A ,B 两点,已知A (2,5),∴5=2+b ,5=. 解得:b =3,k =10.(2)如图,过A 作AD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,∴AD =2. ∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2). ∴BE =5.设直线y =x +3与y 轴交于点C . ∴C 点坐标为(0,3). ∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键. 23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题; (2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x ,根据题意得: 10(1+x )2=14.4,解得x =﹣2.2(不合题意舍去)x =0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z+600+10y+x)﹣(1000z+100y+60+x)=540﹣90y=90(6﹣y),∴任意三位正整数K的“顺数”与“逆数”之差一定能被30整除,设四位正整数K的个位数字为x,十位数字为y,百位数字为z,千位数字为a,∴(10000a+6000+100z+10y+x)﹣(10000a+1000z+100y+60+x)=5940﹣900z﹣90y=90(66﹣10z﹣y),∴任意四位正整数K的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标. 【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3; (2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴F (1,4),∵C (0,3),D (2,3), ∴CD =2,且CD ∥x 轴, ∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4; ②∵点P 在线段AB 上, ∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°, i .当∠ADQ =90°时,则DQ ⊥AD , ∵A (﹣1,0),D (2,3), ∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′, 把D (2,3)代入可求得b ′=5, ∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4);ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3), 设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t , ∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =,当t =时,﹣t 2+2t +3=,当t =时,﹣t 2+2t +3=,∴Q 点坐标为(,)或(,);综上可知Q 点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

重庆市长寿区2019-2020学年中考数学模拟试题(4)含解析

重庆市长寿区2019-2020学年中考数学模拟试题(4)含解析

重庆市长寿区2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.下列图形中是轴对称图形但不是中心对称图形的是( )A .B .C .D .2.如图,过点A (4,5)分别作x 轴、y 轴的平行线,交直线y=﹣x+6于B 、C 两点,若函数y=kx(x >0)的图象△ABC 的边有公共点,则k 的取值范围是( )A .5≤k≤20B .8≤k≤20C .5≤k≤8D .9≤k≤203.计算36÷(﹣6)的结果等于( ) A .﹣6B .﹣9C .﹣30D .64.若一个三角形的两边长分别为5和7,则该三角形的周长可能是( ) A .12B .14C .15D .255.某射击选手10次射击成绩统计结果如下表,这10次成绩的众数、中位数分别是( ) 成绩(环) 7 8 9 10 次数 1 4 32A .8、8B .8、8.5C .8、9D .8、106.已知关于x 的一元二次方程()2220x x m +--=有实数根,则m 的取值范围是( ) A .1m >B .1m <C .m 1≥D .1m £7.下列运算中,正确的是( )A .(ab 2)2=a 2b 4B .a 2+a 2=2a 4C .a 2•a 3=a 6D .a 6÷a 3=a 2 8.若抛物线y =kx 2﹣2x ﹣1与x 轴有两个不同的交点,则k 的取值范围为( ) A .k >﹣1 B .k≥﹣1C .k >﹣1且k≠0D .k≥﹣1且k≠09.将抛物线向右平移1个单位长度,再向上平移1个单位长度所得的抛物线解析式为( )A .B .C .D .10.下列运算正确的是( )A .a 3+a 3=a 6B .a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 711.如图,电线杆CD 的高度为h ,两根拉线AC 与BC 互相垂直(A 、D 、B 在同一条直线上),设∠CAB =α,那么拉线BC 的长度为( )A .sin hαB .cos hαC .tan hαD .cot hα12.某城市几条道路的位置关系如图所示,已知AB ∥CD ,AE 与AB 的夹角为48°,若CF 与EF 的长度相等,则∠C 的度数为( )A .48°B .40°C .30°D .24°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图,sin ∠C 35=,长度为2的线段ED 在射线CF 上滑动,点B 在射线CA 上,且BC=5,则△BDE 周长的最小值为______.14.若分式15x -有意义,则实数x 的取值范围是_______. 15.如图1,在平面直角坐标系中,将▱ABCD 放置在第一象限,且AB ∥x 轴,直线y =﹣x 从原点出发沿x 轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD 面积为_____.16.如图,已知直线y=x+4与双曲线y=kx(x <0)相交于A 、B 两点,与x 轴、y 轴分别相交于D 、C 两点,若AB=22,则k=_____.17.如图,在△ABC 中,AB=5cm ,AC=3cm ,BC 的垂直平分线分别交AB 、BC 于D 、E ,则△ACD 的周长为 cm .18.如图,在△ABC 中,∠ACB=90°,∠A=45°,CD ⊥AB 于点D ,点P 在线段DB 上,若AP 2-PB 2=48,则△PCD 的面积为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D ,与的另一个交点为点,连接、,求证:.20.(6分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.21.(6分)咸宁市某中学为了解本校学生对新闻、体育、动画、娱乐四类电视节目的喜爱情况,随机抽取了部分学生进行问卷调查,根据调查结果绘制了如下图所示的两幅不完整统计图,请你根据图中信息解答下列问题:⑴补全条形统计图,“体育”对应扇形的圆心角是 度;⑵根据以上统计分析,估计该校2000名学生中喜爱“娱乐”的有 人;⑶在此次问卷调查中,甲、乙两班分别有2人喜爱新闻节目,若从这4人中随机抽取2人去参加“新闻小记者”培训,请用列表法或者画树状图的方法求所抽取的2人来自不同班级的概率22.(8分)(1)如图1,在矩形ABCD 中,AB =2,BC =5,∠MPN =90°,且∠MPN 的直角顶点在BC 边上,BP =1.①特殊情形:若MP 过点A ,NP 过点D ,则PAPD= . ②类比探究:如图2,将∠MPN 绕点P 按逆时针方向旋转,使PM 交AB 边于点E ,PN 交AD 边于点F ,当点E 与点B 重合时,停止旋转.在旋转过程中,PEPF的值是否为定值?若是,请求出该定值;若不是,请说明理由.(2)拓展探究:在Rt △ABC 中,∠ABC =90°,AB =BC =2,AD ⊥AB ,⊙A 的半径为1,点E 是⊙A 上一动点,CF ⊥CE 交AD 于点F .请直接写出当△AEB 为直角三角形时ECFC的值. 23.(8分)计算:(﹣2)3+(﹣3)×[(﹣4)2+2]﹣(﹣3)2÷(﹣2)24.(10分)已知:如图所示,在ABC ∆中,AB AD DC ==,26BAD ∠=︒,求B Ð和C ∠的度数.25.(10分)如图是小强洗漱时的侧面示意图,洗漱台(矩形ABCD )靠墙摆放,高AD =80cm ,宽AB =48cm ,小强身高166cm ,下半身FG =100cm ,洗漱时下半身与地面成80°(∠FGK =80°),身体前倾成125°(∠EFG=125°),脚与洗漱台距离GC=15cm(点D,C,G,K在同一直线上).(cos80°≈0.17,sin80°≈0.98,2≈1.414)(1)此时小强头部E点与地面DK相距多少?(2)小强希望他的头部E恰好在洗漱盆AB的中点O的正上方,他应向前或后退多少?26.(12分)某校为了了解九年级学生体育测试成绩情况,以九年(1)班学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如下两幅统计图,请你结合图中所给信息解答下列问题:(说明:A级:90分﹣100分;B级:75分﹣89分;C级:60分﹣74分;D级:60分以下)(1)写出D级学生的人数占全班总人数的百分比为,C级学生所在的扇形圆心角的度数为;(2)该班学生体育测试成绩的中位数落在等级内;(3)若该校九年级学生共有500人,请你估计这次考试中A级和B级的学生共有多少人?27.(12分)如图,一次函数y=kx+b的图象分别与反比例函数y=ax的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=ax的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】分析:根据轴对称图形与中心对称图形的概念求解.详解:A 、不是轴对称图形,也不是中心对称图形,故此选项错误; B 、是轴对称图形,也是中心对称图形,故此选项错误; C 、是轴对称图形,不是中心对称图形,故此选项正确; D 、不是轴对称图形,也不是中心对称图形,故此选项错误. 故选:C .点睛:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合. 2.A 【解析】若反比例函数与三角形交于A(4,5),则k=20;若反比例函数与三角形交于C(4,2),则k=8;若反比例函数与三角形交于B(1,5),则k=5.故520k ≤≤. 故选A.3.A 【解析】分析:根据有理数的除法法则计算可得.详解:31÷(﹣1)=﹣(31÷1)=﹣1. 故选A .点睛:本题主要考查了有理数的除法,解题的关键是掌握有理数的除法法则:两数相除,同号得正,异号得负,并把绝对值相除.2除以任何一个不等于2的数,都得2.4.C 【解析】 【分析】先根据三角形三条边的关系求出第三条边的取值范围,进而求出周长的取值范围,从而可的求出符合题意的选项. 【详解】∴三角形的两边长分别为5和7, ∴2<第三条边<12,∴5+7+2<三角形的周长<5+7+12, 即14<三角形的周长<24, 故选C. 【点睛】本题考查了三角形三条边的关系:三角形任意两边之和大于第三边,任意两边之差小于第三边,据此解答即可. 5.B 【解析】 【分析】根据众数和中位数的概念求解. 【详解】由表可知,8环出现次数最多,有4次,所以众数为8环; 这10个数据的中位数为第5、6个数据的平均数,即中位数为892+=8.5(环), 故选:B . 【点睛】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数. 6.C 【解析】 【详解】解:∵关于x 的一元二次方程()2220x x m +--=有实数根,∴△=24b ac -=2241[(2)]m -⨯⨯--, 解得m≥1,故选C.【点睛】本题考查一元二次方程根的判别式.7.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.8.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.9.C【解析】试题分析:∵抛物线向右平移1个单位长度,∴平移后解析式为:,∴再向上平移1个单位长度所得的抛物线解析式为:.故选C.考点:二次函数图象与几何变换.10.B【解析】【分析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键. 11.B【解析】根据垂直的定义和同角的余角相等,可由∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,可求得∠CAD=∠BCD,然后在Rt△BCD中cos∠BCD=CDBC,可得BC=cos cosCD hBCDα=∠.故选B.点睛:本题主要考查解直角三角形的应用,熟练掌握同角的余角相等和三角函数的定义是解题的关键.12.D【解析】解:∵AB∥CD,∴∠1=∠BAE=48°.∵CF=EF,∴∠C=∠E.∵∠1=∠C+∠E,∴∠C=12∠1=12×48°=24°.故选D.点睛:本题考查了等腰三角形的性质,平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2210+. 【解析】 【分析】作BK ∥CF ,使得BK=DE=2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F ,可知四边形''BKD E 为平行四边形及四边形BKMH 为矩形,在Rt BCH V 中,解直角三角形可知BH 长,易得GK 长,在Rt △BGK 中,可得BG 长,表示出△BD'E'的周长等量代换可得其值. 【详解】解:如图,作BK ∥CF ,使得BK=DE=2,作K 关于直线CF 的对称点G 交CF 于点M ,连接BG 交CF 于D',则''2D E DE ==,此时△BD'E'的周长最小,作BH CF ⊥交CF 于点F.由作图知''''//D ,D BK E BK E =,∴四边形''BKD E 为平行四边形,''BE KD ∴=由对称可知'',2,KG CF GK KM KD GD ⊥==BH CF ⊥Q //BH KG ∴//CF BK Q ,即//BK HM∴四边形BKMH 为矩形,90KM BH BKM ︒∴=∠=在Rt BCH V 中, 3sin 55BH BH C BC ∠=== 3BH ∴=3KM∴=26GK KM∴==在Rt△BGK中,BK=2,GK=6,∴BG2226=+=210,∴△BDE周长的最小值为BE'+D'E'+BD'=KD'+D'E'+BD'=D'E'+BD'+GD'=D'E'+BG=2+210.故答案为:2+210.【点睛】本题考查了最短距离问题,涉及了轴对称、矩形及平行四边形的性质、解直角三角形、勾股定理,难度系数较大,利用两点之间线段最短及轴对称添加辅助线是解题的关键.14.【解析】由于分式的分母不能为2,x-1在分母上,因此x-1≠2,解得x.解:∵分式15x-有意义,∴x-1≠2,即x≠1.故答案为x≠1.本题主要考查分式有意义的条件:分式有意义,分母不能为2.15.1【解析】【分析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是1时经过B,则AB=1-4=4,当直线经过D点,设其交AB与E,则2,作DF⊥AB于点F.利用三角函数即可求得DF即平行四边形的高,然后利用平行四边形的面积公式即可求解【详解】解:由图象可知,当移动距离为4时,直线经过点A,当移动距离为7时,直线经过点D,移动距离为1时,直线经过点B,则AB=1﹣4=4,当直线经过点D,设其交AB于点E,则DE=2,作DF⊥AB于点F,∵y=﹣x于x轴负方向成45°角,且AB∥x轴,∴∠DEF=45°,∴DF=EF,∴在直角三角形DFE中,DF2+EF2=DE2,∴2DF2=1∴DF=2,那么ABCD面积为:AB•DF=4×2=1,故答案为1.【点睛】此题主要考查平行四边形的性质和一次函数图象与几何变换,解题关键在于利用好辅助线16.-3【解析】设A(a,a+4),B(c,c+4),则4 y xkyx=+⎧⎪⎨=⎪⎩解得:x+4=kx,即x2+4x−k=0,∵直线y=x+4与双曲线y=kx相交于A、B两点,∴a+c=−4,ac=-k,∴(c−a)2=(c+a)2−4ac=16+4k,∵AB=22∴由勾股定理得:(c−a)2+[c+4−(a+4)]2=(22,2 (c−a)2=8,(c−a)2=4,∴16+4k =4,解得:k=−3,故答案为−3.点睛:本题考查了一次函数与反比例函数的交点问题、根与系数的关系、勾股定理、图象上点的坐标特征等,题目具有一定的代表性,综合性强,有一定难度.17.8【解析】试题分析:根据线段垂直平分线的性质得,BD=CD,则AB=AD+CD,所以,△ACD的周长=AD+CD+AC=AB+AC,解答出即可解:∵DE是BC的垂直平分线,∴BD=CD,∴AB=AD+BD=AD+CD,∴△ACD的周长=AD+CD+AC=AB+AC=8cm;故答案为8考点:线段垂直平分线的性质点评:本题主要考查了线段垂直平分线的性质和三角形的周长,掌握线段的垂直平分线上的点到线段两端点的距离相等18.6【解析】【分析】根据等角对等边,可得AC=BC,由等腰三角形的“三线合一”可得AD=BD=12AB,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB,由AP2-PB2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD的面积=12CD·PD可得.【详解】解:∵在△ABC中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC,∵CD⊥AB ,∴AD=BD=CD=12 AB,∵AP2-PB2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)详见解析;(2)详见解析.【解析】【分析】(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.【详解】解:(1)如图,及为所求.(2)连接.∵是的切线,∴,∴,即,∵是直径, ∴, ∴, ∵, ∴, ∴, 又∴∽ ∴ ∴.【点睛】 本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.20.(1)2x 2x 3y -++=;(2)1x 3-<<.【解析】【分析】(1)将(-1,0)和(0,3)两点代入二次函数y=-x 2+bx+c ,求得b 和c ;从而得出抛物线的解析式; (2)令y=0,解得x 1,x 2,得出此二次函数的图象与x 轴的另一个交点的坐标,进而求出当函数值y>0时,自变量x 的取值范围.【详解】解:(1)由二次函数2y x bx c =-++的图象经过()1,0-和()0,3两点, 得103b c c --+=⎧⎨=⎩, 解这个方程组,得23b c =⎧⎨=⎩, 抛物线的解析式为2x 2x 3y -++=,(2)令y 0=,得2x 2x 30-++=.解这个方程,得1x 3=,2x 1=-.∴此二次函数的图象与x 轴的另一个交点的坐标为()3,0.当1x 3-<<时,y 0>.【点睛】本题考查的知识点是二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点,解题的关键是熟练的掌握二次函数的三种形式及待定系数法求二次函数解析式及抛物线与坐标轴的交点.21.(1)72;(2)700;(3)23. 【解析】试题分析:(1)根据动画类人数及其百分比求得总人数,总人数减去其他类型人数可得体育类人数,用360度乘以体育类人数所占比例即可得;(2)用样本估计总体的思想解决问题;(3)根据题意先画出树状图,得出所有情况数,再根据概率公式即可得出答案.试题解析:(1)调查的学生总数为60÷30%=200(人),则体育类人数为200﹣(30+60+70)=40,补全条形图如下:“体育”对应扇形的圆心角是360°×40200=72°; (2)估计该校2000名学生中喜爱“娱乐”的有:2000×70200=700(人), (3)将两班报名的学生分别记为甲1、甲2、乙1、乙2,树状图如图所示:所以P (2名学生来自不同班)=82123=. 考点:扇形统计图;条形统计图;列表法与树状图法;用样本估计总体.22. (1) ①特殊情形:12;②类比探究: 12PE PF = 是定值,理由见解析;(2) EC 4FC =或1 【解析】【分析】(1)证明Rt ABP Rt CDP V V ∽,即可求解;(2)点E 与点B 重合时,四边形EBFA 为矩形,即可求解;(3)分AEB 90∠︒=时、EAB 90∠︒=时,两种情况分别求解即可.【详解】解:(1)APB DPC 90DPC PDC 90Q =,=∠∠∠∠+︒+︒,APB PDC ∠∠∴=,Rt ABP Rt CDP ∴V V ∽, 21512PA AB PD CP ∴===-, 故答案为12; (2)点E 与点B 重合时,四边形EBFA 为矩形, 则PE 1PF 2=为定值; (3)①当AEB 90∠︒=时,如图3,过点E 、F 分别作直线BC 的垂线交于点G ,H ,由(1)知:ECB CFH α==∠∠,AB 2AE 1ABE 30∠︒=,=,则=, EB ABcos303︒则==,3cos 602GB EB ︒==,同理32EG =, 322cos cos 2GC EC FH AB αα+==== . 则FH 2cos cos FC αα==, 则314EC FC =+ ; ②当EAB 90∠︒=时,如图4,GB EA 1EG FH AB 2==,===,则BE 5GC 3=,=,22EG G 13EC C =+=,EG 2tan tan GC 3EGC α∠===,则cos 13α= FH 13cos FC α==,则4EC FC= ,故EC 4FC =或14+ . 【点睛】本题考查的圆知识的综合运用,涉及到解直角三角形的基本知识,其中(3),要注意分类求解,避免遗漏.23.-17.1【解析】【分析】按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.【详解】解:原式=﹣8+(﹣3)×18﹣9÷(﹣2),=﹣8﹣14﹣9÷(﹣2),=﹣62+4.1,=﹣17.1.【点睛】此题要注意正确掌握运算顺序以及符号的处理.24.77B ∠=︒,38.5C ∠=︒.【解析】【分析】根据等腰三角形的性质即可求出∠B ,再根据三角形外角定理即可求出∠C.【详解】在ABC ∆中,AB AD DC ==,∵AB AD =,在三角形ABD 中,()118026772B ADB ∠=∠=︒-︒⨯=︒, 又∵AD DC =,在三角形ADC 中, ∴117738.522C ADB ∠=∠=︒⨯=︒. 【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.25. (1) 小强的头部点E 与地面DK 的距离约为144.5 cm.(2) 他应向前9.5 cm.【解析】试题分析:(1)过点F 作FN ⊥DK 于N ,过点E 作EM ⊥FN 于M .求出MF 、FN 的值即可解决问题; (2)求出OH 、PH 的值即可判断;试题解析:解:(1)过点F作FN⊥DK于N,过点E作EM⊥FN于M.∵EF+FG=166,FG=100,∴EF=66,∵∠FGK=80°,∴FN=100sin80°≈98,∵∠EFG=125°,∴∠EFM=180°﹣125°﹣10°=45°,∴FM=66cos45°=332≈46.53,∴MN=FN+FM≈144.5,∴此时小强头部E点与地面DK相距约为144.5cm.(2)过点E作EP⊥AB于点P,延长OB交MN于H.∵AB=48,O为AB中点,∴AO=BO=24,∵EM=66sin45°≈46.53,∴PH≈46.53,∵GN=100c os80°≈17,CG=15,∴OH=24+15+17=56,OP=OH﹣PH=56﹣46.53=9.47≈9.5,∴他应向前9.5cm.26.(1)4%;(2)72°;(3)380人【解析】【分析】(1)根据A级人数及百分数计算九年级(1)班学生人数,用总人数减A、B、D级人数,得C级人数,再用C级人数÷总人数×360°,得C等级所在的扇形圆心角的度数;(2)将人数按级排列,可得该班学生体育测试成绩的中位数;(3)用(A级百分数+B级百分数)×1900,得这次考试中获得A级和B级的九年级学生共有的人数;(4)根据各等级人数多少,设计合格的等级,使大多数人能合格.【详解】解:(1)九年级(1)班学生人数为13÷26%=50人,C级人数为50-13-25-2=10人,C等级所在的扇形圆心角的度数为10÷50×360°=72°,故答案为72°;(2)共50人,其中A级人数13人,B级人数25人,故该班学生体育测试成绩的中位数落在B等级内,故答案为B;(3)估计这次考试中获得A级和B级的九年级学生共有(26%+25÷50)×1900=1444人;(4)建议:把到达A级和B级的学生定为合格,(答案不唯一).27.(1)12yx=,y=2x﹣1;(2)133,42M⎛⎫⎪⎝⎭.【解析】【分析】(1)利用待定系数法即可解答;(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数a=yx得:a=3×4=12,∴12yx =.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=13 4∴2x﹣1=32,∴点M的坐标为133,42⎛⎫ ⎪⎝⎭.【点睛】本题考查了一次函数与反比例函数的交点,解决本题的关键是利用待定系数法求解析式.。

重庆市长寿区2019-2020学年中考数学模拟试题含解析

重庆市长寿区2019-2020学年中考数学模拟试题含解析

重庆市长寿区2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.-4的相反数是( ) A .14B .14-C .4D .-42.如图,在,//ABC DE BC ∆中,,D E 分别在边,AB AC 边上,已知13AD DB =,则DEBC 的值为( )A .13B .14C .15D .253.下列计算结果是x 5的为( )A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯5.如图,某厂生产一种扇形折扇,OB=10cm ,AB=20cm ,其中裱花的部分是用纸糊的,若扇子完全打开摊平时纸面面积为10003π cm 2,则扇形圆心角的度数为( )A .120°B .140°C .150°D .160°6.如图,AB ∥CD ,E 为CD 上一点,射线EF 经过点A ,EC=EA .若∠CAE=30°,则∠BAF=( )A .30°B .40°C .50°D .60° 7.2016的相反数是( ) A .12016-B .12016C .2016-D .20168.图1和图2中所有的正方形都全等,将图1的正方形放在图2中的①②③④某一位置,所组成的图形不能围成正方体的位置是()A.①B.②C.③D.④9.如图,AB∥CD,点E在线段BC上,若∠1=40°,∠2=30°,则∠3的度数是()A.70°B.60°C.55°D.50°10.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°11.如图,正方形ABCD的对角线AC与BD相交于点O,∠ACB的角平分线分别交AB,BD于M,N 两点.若AM=2,则线段ON的长为( )A.22B.32C.1 D.6212.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的体积为______.14.如图,⊙O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_____ cm.15.已知一个多边形的每一个内角都等于108°,则这个多边形的边数是 .16.阅读材料:设a r =(x 1,y 1),b r =(x 2,y 2),如果a r ∥b r ,则x 1•y 2=x 2•y 1.根据该材料填空:已知a r=(2,3),b r =(4,m ),且a r ∥b r,则m=_____.17.Rt △ABC 中,∠ABC=90°,AB=3,BC=4,过点B 的直线把△ABC 分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是_____.18.廊桥是我国古老的文化遗产如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E ,F 处要安装两盏警示灯,则这两盏灯的水平距离EF 是______米精确到1米三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,一次函数y =-x +5的图象与反比例函数y =kx(k≠0)在第一象限的图象交于A(1,n)和B 两点.求反比例函数的解析式;在第一象限内,当一次函数y =-x +5的值大于反比例函数y =kx(k≠0)的值时,写出自变量x 的取值范围.20.(6分)如图所示,在△ABC 中,AB=CB ,以BC 为直径的⊙O 交AC 于点E ,过点E 作⊙O 的切线交AB 于点F . (1)求证:EF ⊥AB ;(2)若AC=16,⊙O 的半径是5,求EF 的长.21.(6分)如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣14<a<0)上,AB∥x轴,∠ABC=135°,且AB=1.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.22.(8分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)如果AB=4,AE=2,求⊙O的半径.23.(8分)某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据:从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 10 9.5 9.5 10篮球9.5 9 8.5 8.5 10 9.5 10 86 9.5 10 9.5 9 8.5 9.5 6整理、描述数据:按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格)分析数据:两组样本数据的平均数、中位数、众数如下表所示:项目平均数中位数众数排球8.75 9.5 10篮球8.81 9.25 9.5得出结论:(1)如果全校有160人选择篮球项目,达到优秀的人数约为_________人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意_______的看法,理由为____________________________.(至少从两个不同的角度说明推断的合理性)24.(10分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?25.(10分)如图,已知AB是⊙O的直径,点C、D在⊙O上,点E在⊙O外,∠EAC=∠D=60°.求∠ABC的度数;求证:AE是⊙O的切线;当BC=4时,求劣弧AC的长.26.(12分)某街道需要铺设管线的总长为9000m,计划由甲队施工,每天完成150m.工作一段时间后,因为天气原因,想要40天完工,所以增加了乙队.如图表示剩余管线的长度()y m与甲队工作时间x(天)之间的函数关系图象.(1)直接写出点B的坐标;(2)求线段BC所对应的函数解析式,并写出自变量x的取值范围;(3)直接写出乙队工作25天后剩余管线的长度.27.(12分)如图,在平面直角坐标系中,一次函数y=kx+b与反比例函数y=mx(m≠0)的图象交于点A(3,1),且过点B(0,﹣2).(1)求反比例函数和一次函数的表达式;(2)如果点P是x轴上一点,且△ABP的面积是3,求点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.2.B【解析】【分析】根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.【详解】解:∵13 ADDB=,∴14 ADAB=,∵DE∥BC,∴△ADE∽△ABC,∴14 DE ADBC AB==,故选:B.【点睛】本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.3.C【解析】解:A.x10÷x2=x8,不符合题意;B.x6﹣x不能进一步计算,不符合题意;C.x2x3=x5,符合题意;D.(x3)2=x6,不符合题意.故选C.4.C【解析】试题分析:大于0而小于1的数用科学计数法表示,10的指数是负整数,其绝对值等于第一个不是0的数字前所有0的个数.考点:用科学计数法计数根据扇形的面积公式列方程即可得到结论.【详解】∵OB=10cm,AB=20cm,∴OA=OB+AB=30cm,设扇形圆心角的度数为α,∵纸面面积为10003π cm2,∴22301010003603603a aπππ⋅⨯⋅⨯-=,∴α=150°,故选:C.【点睛】本题考了扇形面积的计算的应用,解题的关键是熟练掌握扇形面积计算公式:扇形的面积=2 360n Rπ.6.D【解析】解:∵EC=EA.∠CAE=30°,∴∠C=30°,∴∠AED=30°+30°=60°.∵AB∥CD,∴∠BAF=∠AED=60°.故选D.点睛:本题考查的是平行线的性质,熟知两直线平行,同位角相等是解答此题的关键.7.C【解析】根据相反数的定义“只有符号不同的两个数互为相反数”可知:2016的相反数是-2016.故选C.8.A【解析】【分析】由平面图形的折叠及正方体的表面展开图的特点解题.【详解】将图1的正方形放在图2中的①的位置出现重叠的面,所以不能围成正方体,故选A.【点睛】本题考查了展开图折叠成几何体,解题时勿忘记四棱柱的特征及正方体展开图的各种情形.注意:只要有“田”字格的展开图都不是正方体的表面展开图.9.A【解析】试题分析:∵AB∥CD,∠1=40°,∠1=30°,∴∠C=40°.∵∠3是△CDE的外角,∴∠3=∠C+∠2=40°+30°=70°.故选A.考点:平行线的性质.10.C【解析】试题分析:根据勾股定理即可得到AB,BC,AC的长度,进行判断即可.试题解析:连接AC,如图:根据勾股定理可以得到:510.51+51=10)1.∴AC1+BC1=AB1.∴△ABC是等腰直角三角形.∴∠ABC=45°.故选C.考点:勾股定理.11.C【解析】【分析】作MH⊥AC于H,如图,根据正方形的性质得∠MAH=45°,则△AMH为等腰直角三角形,所以AH=MH=222,再根据角平分线性质得2,则2,于是利用正方形的性质得到22+2,OC=122+1,所以2△CON∽△CHM,再利用相似比可计算出ON的长.【详解】试题分析:作MH⊥AC于H,如图,∵四边形ABCD为正方形,∴∠MAH=45°,∴△AMH为等腰直角三角形,∴AH=MH=22AM=22×2,∵CM平分∠ACB,∴2,∴2,∴22(2)2,∴OC=122+1,CH=AC﹣2+222,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴ON OCMH CH=21222+=+∴ON=1.故选C.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和正方形的性质.12.A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于1,则正六边形的边长是1.故选A.考点:正多边形和圆.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1.【解析】试题解析:设俯视图的正方形的边长为a . ∵其俯视图为正方形,从主视图可以看出,正方形的对角线长为22,∴()22222a a +=, 解得24a =,∴这个长方体的体积为4×3=1.14.1cm【解析】【分析】首先根据题意画出图形,然后连接OA ,根据垂径定理得到OC 平分AB ,即AC=BC ,而在Rt △OAC 中,根据勾股数得到AC=4,这样即可得到AB 的长.【详解】解:如图,连接OA ,则OA=5,OC=3,OC ⊥AB ,∴AC=BC ,∴在Rt △OAC 中,AC=22OA OC -=4,∴AB=2AC=1.故答案为1.【点睛】本题考查垂径定理;勾股定理.15.1【解析】试题分析:∵多边形的每一个内角都等于108°,∴每一个外角为72°.∵多边形的外角和为360°,∴这个多边形的边数是:360÷÷72=1. 16.6【解析】根据题意得,2m=3×4,解得m=6,故答案为6. 17.3.1或4.32或4.2【解析】【分析】在Rt △ABC 中,通过解直角三角形可得出AC=5、S △ABC =1,找出所有可能的分割方法,并求出∴AB=22AB BC+=5,S△ABC=12AB•BC=1.沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=APAC•S△ABC=35×1=3.1;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD=·342.45AB BCAC⨯==,∴AD=DP=223 2.4-=1.2,∴AP=2AD=3.1,∴S等腰△ABP=APAC•S△ABC=3.65×1=4.32;③当CB=CP=4时,如图3所示,S等腰△BCP=CPAC•S△ABC=45×1=4.2;综上所述:等腰三角形的面积可能为3.1或4.32或4.2,故答案为:3.1或4.32或4.2.【点睛】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的分割方法,并求出剪出的等腰三角形的面积是解题的关键.18.【解析】由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有,即,,.所以两盏警示灯之间的水平距离为:三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)4yx=;(2)1<x<1.【分析】(1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;(2)一次函数y=-x+5的值大于反比例函数y=kx,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.【详解】解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),∴n=﹣1+5,解得:n=1,∴点A的坐标为(1,1).∵反比例函数y=kx(k≠0)过点A(1,1),∴k=1×1=1,∴反比例函数的解析式为y=4x.联立54y xyx=-+⎧⎪⎨=⎪⎩,解得:14xy=⎧⎨=⎩或41xy=⎧⎨=⎩,∴点B的坐标为(1,1).(2)观察函数图象,发现:当1<x<1.时,反比例函数图象在一次函数图象下方,∴当一次函数y=﹣x+5的值大于反比例函数y=kx(k≠0)的值时,x的取值范围为1<x<1.【点睛】本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.20.(1)证明见解析;(2) 4.8.【解析】【分析】(1)连结OE,根据等腰三角形的性质可得∠OEC=∠OCA、∠A=∠OCA,即可得∠A=∠OEC,由同位角相等,两直线平行即可判定OE∥AB,又因EF是⊙O的切线,根据切线的性质可得EF⊥OE,由此即可证得EF⊥AB;(2)连结BE,根据直径所对的圆周角为直角可得,∠BEC=90°,再由等腰三角形三线合一的性质求得AE=EC =8,在Rt△BEC中,根据勾股定理求的BE=6,再由△ABE的面积=△BEC的面积,根据直角三角形面积的两种表示法可得8×6=10×EF,由此即可求得EF=4.8.(1)证明:连结OE.∵OE=OC,∴∠OEC=∠OCA,∵AB=CB,∴∠A=∠OCA,∴∠A=∠OEC,∴OE∥AB,∵EF是⊙O的切线,∴EF⊥OE,∴EF⊥AB.(2)连结BE.∵BC是⊙O的直径,∴∠BEC=90°,又AB=CB,AC=16,∴AE=EC=AC=8,∵AB=CB=2BO=10,∴BE=,又△ABE的面积=△BEC的面积,即8×6=10×EF,∴EF=4.8.【点睛】本题考查了切线的性质定理、圆周角定理、等腰三角形的性质与判定、勾股定理及直角三角形的两种面积求法等知识点,熟练运算这些知识是解决问题的关键.21.(1)(m,2m﹣2);(2)S△ABC =﹣82aa;(3)m的值为72或10.【解析】分析:(1)利用配方法将二次函数解析式由一般式变形为顶点式,此题得解;(2)过点C作直线AB的垂线,交线段AB的延长线于点D,由AB∥x轴且AB=1,可得出点B的坐标的坐标特征可得出关于t的一元二次方程,解之取其正值即可得出t值,再利用三角形的面积公式即可得出S△ABC的值;(3)由(2)的结论结合S△ABC=2可求出a值,分三种情况考虑:①当m>2m−2,即m<2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元二次方程,解之可求出m的值;②当2m−2≤m≤2m−2,即2≤m≤2时,x=m时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值;③当m<2m−2,即m>2时,x=2m−2时y取最大值,利用二次函数图象上点的坐标特征可得出关于m的一元一次方程,解之可求出m的值.综上即可得出结论.详解:(1)∵y=ax2﹣2amx+am2+2m﹣2=a(x﹣m)2+2m﹣2,∴抛物线的顶点坐标为(m,2m﹣2),故答案为(m,2m﹣2);(2)过点C作直线AB的垂线,交线段AB的延长线于点D,如图所示,∵AB∥x轴,且AB=1,∴点B的坐标为(m+2,1a+2m﹣2),∵∠ABC=132°,∴设BD=t,则CD=t,∴点C的坐标为(m+2+t,1a+2m﹣2﹣t),∵点C在抛物线y=a(x﹣m)2+2m﹣2上,∴1a+2m﹣2﹣t=a(2+t)2+2m﹣2,整理,得:at2+(1a+1)t=0,解得:t1=0(舍去),t2=﹣41aa+,∴S△ABC=12AB•CD=﹣82aa+;(3)∵△ABC的面积为2,∴﹣82aa+=2,解得:a=﹣15,分三种情况考虑:①当m>2m﹣2,即m<2时,有﹣15(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣11m+39=0,解得:m1=7﹣10(舍去),m2=7+10(舍去);②当2m﹣2≤m≤2m﹣2,即2≤m≤2时,有2m﹣2=2,解得:m=72;③当m<2m﹣2,即m>2时,有﹣15(2m﹣2﹣m)2+2m﹣2=2,整理,得:m2﹣20m+60=0,解得:m3=10﹣210(舍去),m1=10+210.综上所述:m的值为72或10+210.点睛:本题考查了二次函数解析式的三种形式、二次函数图象上点的坐标特征、等腰直角三角形、解一元二次方程以及二次函数的最值,解题的关键是:(1)利用配方法将二次函数解析式变形为顶点式;(2)利用等腰直角三角形的性质找出点C的坐标;(3)分m<2、2≤m≤2及m>2三种情况考虑.22.(1)见解析;(1)⊙O半径为43 3【解析】【分析】(1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;(1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.【详解】解:(1)连接OA,∵OA=OD,∴∠1=∠1.∵DA平分∠BDE,∴∠1=∠2.∴∠1=∠2.∴OA∥DE.∴∠OAE=∠4,∴∠OAE=90°,即OA⊥AE.又∵点A在⊙O上,∴AE是⊙O的切线.(1)∵BD是⊙O的直径,∴∠BAD=90°.∵∠3=90°,∴∠BAD=∠3.又∵∠1=∠2,∴△BAD∽△AED.∴BD BA AD AE=,∵BA=4,AE=1,∴BD=1AD.在Rt△BAD中,根据勾股定理,得.∴⊙O.23.130 小明平均数接近,而排球成绩的中位数和众数都较高.【解析】【分析】()1根据抽取的16人中成绩达到优秀的百分比,即可得到全校达到优秀的人数;()2根据平均数接近,而排球成绩的中位数和众数都较高,即可得到结论.【详解】解:补全表格成绩:()1达到优秀的人数约为16013016⨯=(人);故答案为130;()2同意小明的看法,理由为:平均数接近,而排球成绩的中位数和众数都较高.(答案不唯一,理由需支持判断结论)故答案为小明,平均数接近,而排球成绩的中位数和众数都较高.本题考查众数、中位数,平均数的应用,解题的关键是掌握众数、中位数、平均数的定义以及用样本估计总体.24.(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.25.(1)60°;(2)证明略;(3)8 3【解析】【分析】(1)根据∠ABC与∠D都是劣弧AC所对的圆周角,利用圆周角定理可证出∠ABC=∠D=60°;(2)根据AB是⊙O的直径,利用直径所对的圆周角是直角得到∠ACB=90°,结合∠ABC=60°求得∠BAC=30°,从而推出∠BAE=90°,即OA⊥AE,可得AE是⊙O的切线;(3)连结OC,证出△OBC是等边三角形,算出∠BOC=60°且⊙O的半径等于4,可得劣弧AC所对的圆心角∠AOC=120°,再由弧长公式加以计算,可得劣弧AC的长.【详解】(1)∵∠ABC与∠D都是弧AC所对的圆周角,∴∠ABC=∠D=60°;(2)∵AB是⊙O的直径,∴∠ACB=90°.∴∠BAE=∠BAC+∠EAC=30°+60°=90°,即BA⊥AE,∴AE是⊙O的切线;(3)如图,连接OC,∵OB=OC,∠ABC=60°,∴△OBC是等边三角形,∴OB=BC=4,∠BOC=60°,∴∠AOC=120°,∴劣弧AC的长为120180Rπ=1204180πg=83π.【点睛】本题考查了切线长定理及弧长公式,熟练掌握定理及公式是解题的关键.26.(1)(10,7500)(2)直线BC的解析式为y=-250x+10000,自变量x的取值范围为10≤x≤40.(3)1250米.【解析】【分析】(1)由于前面10天由甲单独完成,用总的长度减去已完成的长度即为剩余的长度,从而求出点B的坐标;(2)利用待定系数法求解即可;(3)已队工作25天后,即甲队工作了35天,故当x=35时,函数值即为所求.【详解】(1)9000-150×10=7500.∴点B的坐标为(10,7500)(2)设直线BC的解析式为y=kx+b,依题意,得:解得:∴直线BC的解析式为y=-250x+10000,∵乙队是10天之后加入,40天完成,∴自变量x的取值范围为10≤x≤40.(3)依题意,当x=35时,y=-250×35+10000=1250.∴乙队工作25天后剩余管线的长度是1250米.本题考查了一次函数的应用,理解题意观察图象得到有用信息是解题的关键.27.(1)y=3x;y=x-2;(2)(0,0)或(4,0)【解析】试题分析:(1)利用待定系数法即可求得函数的解析式;(2)首先求得AB与x轴的交点,设交点是C,然后根据S△ABP=S△ACP+S△BCP即可列方程求得P的横坐标.试题解析:(1)∵反比例函数y=mx(m≠0)的图象过点A(1,1),∴1=1m ∴m=1.∴反比例函数的表达式为y=3x.∵一次函数y=kx+b的图象过点A(1,1)和B(0,-2).∴31 {2k bb==+-,解得:1{2kb-==,∴一次函数的表达式为y=x-2;(2)令y=0,∴x-2=0,x=2,∴一次函数y=x-2的图象与x轴的交点C的坐标为(2,0).∵S△ABP=1,1 2PC×1+12PC×2=1.∴PC=2,∴点P的坐标为(0,0)、(4,0).【点睛】本题考查了待定系数法求函数的解析式以及三角形的面积的计算,正确根据S△ABP=S△ACP+S△BCP 列方程是关键.。

重庆市长寿区2019-2020学年中考第二次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第二次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-2.估算18的值是在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间3.若关于x 的一元一次不等式组312(1)x xx a-+⎧⎨-⎩pf无解,则a 的取值范围是()A.a≥3B.a>3 C.a≤3D.a<34.如图,平行四边形ABCD中,点A在反比例函数y=kx(k≠0)的图象上,点D在y轴上,点B、点C 在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.105.如图,在矩形ABCD中,O为AC中点,EF过O点且EF⊥AC分别交DC于F,交AB于点E,点G是AE中点且∠AOG=30°,则下列结论正确的个数为()DC=3OG;(2)OG=12BC;(3)△OGE 是等边三角形;(4)16AOE ABCDS S∆=矩形.A.1 B.2 C.3 D.46.若2m﹣n=6,则代数式m-12n+1的值为()A.1 B.2 C.3 D.47.﹣2018的绝对值是()A .±2018B .﹣2018C .﹣12018D .20188.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =k x在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤169.如果(x -2)(x +3)=x 2+px +q ,那么p 、q 的值是( )A .p=5,q=6B .p=1,q=-6C .p=1,q=6D .p=5,q=-610.下列说法正确的是( )A .某工厂质检员检测某批灯泡的使用寿命采用普查法B .已知一组数据1,a ,4,4,9,它的平均数是4,则这组数据的方差是7.6C .12名同学中有两人的出生月份相同是必然事件D .在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”中,任取其中一个图形,恰好既是中心对称图形,又是轴对称图形的概率是1311.1cm 2的电子屏上约有细菌135000个,135000用科学记数法表示为( ) A .0.135×106 B .1.35×105C .13.5×104D .135×103 12.春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min 的集中药物喷洒,再封闭宿舍10min ,然后打开门窗进行通风,室内每立方米空气中含药量3(/)y mg m 与药物在空气中的持续时间(min)x 之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是( )A .经过5min 集中喷洒药物,室内空气中的含药量最高达到310/mg mB .室内空气中的含药量不低于38/mg m 的持续时间达到了11minC .当室内空气中的含药量不低于35/mg m 且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D .当室内空气中的含药量低于32/mg m 时,对人体才是安全的,所以从室内空气中的含药量达到32/mg m 开始,需经过59min 后,学生才能进入室内二、填空题:(本大题共6个小题,每小题4分,共24分.)13.某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.14.计算:18-2=________.15.如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得10AD cm =,点D 在量角器上的读数为60o ,则该直尺的宽度为____________cm .16.计算:(2018﹣π)0=_____.17.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用_____秒钟.18.如图,矩形OABC 的边OA ,OC 分别在轴、轴上,点B 在第一象限,点D 在边BC 上,且∠AOD=30°,四边形OA′B′D 与四边形OABD 关于直线OD 对称(点A′和A ,B′和B 分别对应),若AB=1,反比例函数(0)k y k x=≠的图象恰好经过点A′,B ,则的值为_________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,直线y 1=2x ﹣2与双曲线y 2=k x交于A 、C 两点,AB ⊥OA 交x 轴于点B ,且OA=AB .(2)求点C的坐标,并直接写出y1<y2时x的取值范围.20.(6分)如图,在Rt△ABC中,∠ABC=90°,AB=CB,以AB为直径的⊙O交AC于点D,点E是AB边上一点(点E不与点A、B重合),DE的延长线交⊙O于点G,DF⊥DG,且交BC于点F.(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.21.(6分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.22.(8分)直线y1=kx+b与反比例函数28 (0)y xx=>的图象分别交于点A(m,4)和点B(n,2),与坐标轴分别交于点C和点D.(2)根据图象写出不等式kx+b ﹣8x≤0的解集; (3)若点P 是x 轴上一动点,当△COD 与△ADP 相似时,求点P 的坐标.23.(8分)已知边长为2a 的正方形ABCD ,对角线AC 、BD 交于点Q ,对于平面内的点P 与正方形ABCD ,给出如下定义:如果2a PQ a <<,则称点P 为正方形ABCD 的“关联点”.在平面直角坐标系xOy 中,若A (﹣1,1),B (﹣1,﹣1),C (1,﹣1),D (1,1).(1)在11,02P ⎛⎫- ⎪⎝⎭,2132P ⎛ ⎝⎭,(32P 中,正方形ABCD 的“关联点”有_____; (2)已知点E 的横坐标是m ,若点E 在直线3y x =上,并且E 是正方形ABCD 的“关联点”,求m 的取值范围;(3)若将正方形ABCD 沿x 轴平移,设该正方形对角线交点Q 的横坐标是n ,直线31y x =+与x 轴、y 轴分别相交于M 、N 两点.如果线段MN 上的每一个点都是正方形ABCD 的“关联点”,求n 的取值范围. 24.(10分)(2016湖南省株洲市)某市对初二综合素质测评中的审美与艺术进行考核,规定如下:考核综合评价得分由测试成绩(满分100分)和平时成绩(满分100分)两部分组成,其中测试成绩占80%,平时成绩占20%,并且当综合评价得分大于或等于80分时,该生综合评价为A 等.(1)孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,则孔明同学测试成绩和平时成绩各得多少分?(2)某同学测试成绩为70分,他的综合评价得分有可能达到A 等吗?为什么?(3)如果一个同学综合评价要达到A 等,他的测试成绩至少要多少分?25.(10分)如图,直线y=kx+b(k≠0)与双曲线y=mx(m≠0)交于点A(﹣12,2),B(n,﹣1).求直线与双曲线的解析式.点P在x轴上,如果S△ABP=3,求点P的坐标.26.(12分)如图,一次函数的图象与反比例函数的图象交于C,D两点,与x,y轴交于B,A两点,且,,,作轴于E点.求一次函数的解析式和反比例函数的解析式;求的面积;根据图象直接写出一次函数的值大于反比例函数的值时,自变量x的取值范围.27.(12分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE 于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.C【解析】【分析】,推出45,即可得出答案.【详解】,∴45,4和5之间.故选:C.【点睛】本题考查了估算无理数的大小和二次根式的性质,,题目比较好,难度不大.3.A【解析】【分析】先求出各不等式的解集,再与已知解集相比较求出a 的取值范围.【详解】由x﹣a>0 得,x>a;由1x﹣1<2(x+1)得,x<1,∵此不等式组的解集是空集,∴a≥1.故选:A.【点睛】考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.4.A【解析】【分析】作AE⊥BC于E,由四边形ABCD为平行四边形得AD∥x轴,则可判断四边形ADOE为矩形,所以S平行四边形ABCD=S矩形ADOE,根据反比例函数k的几何意义得到S矩形ADOE=|−k|,利用反比例函数图象得到.【详解】作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|−k|,∴|−k|=1,∵k<0,∴k=−1.故选A.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.5.C【解析】∵EF ⊥AC ,点G 是AE 中点,∴OG=AG=GE=12AE , ∵∠AOG=30°,∴∠OAG=∠AOG=30°,∠GOE=90°-∠AOG=90°-30°=60°,∴△OGE 是等边三角形,故(3)正确;设AE=2a ,则OE=OG=a ,由勾股定理得,, ∵O 为AC 中点,∴,∴BC=12,在Rt △ABC 中,由勾股定理得,, ∵四边形ABCD 是矩形,∴CD=AB=3a ,∴DC=3OG ,故(1)正确;∵OG=a ,12BC=2a , ∴OG≠12BC ,故(2)错误;∵S △AOE =12=22,S ABCD 2,∴S △AOE =16S ABCD ,故(4)正确; 综上所述,结论正确是(1)(3)(4)共3个,故选C .【点睛】本题考查了矩形的性质,等边三角形的判定、勾股定理的应用等,正确地识图,结合已知找到有用的条件是解答本题的关键. 6.D【解析】【分析】先对m-12n+1变形得到12(2m ﹣n )+1,再将2m ﹣n =6整体代入进行计算,即可得到答案.【详解】m12-n+1=12(2m﹣n)+1当2m﹣n=6时,原式=12×6+1=3+1=4,故选:D.【点睛】本题考查代数式,解题的关键是掌握整体代入法.7.D【解析】分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.详解:﹣2018的绝对值是2018,即20182018-=.故选D.点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.8.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.9.B【解析】【分析】先根据多项式乘以多项式的法则,将(x-2)(x+3)展开,再根据两个多项式相等的条件即可确定p、q的值.【详解】解:∵(x-2)(x+3)=x2+x-1,又∵(x-2)(x+3)=x2+px+q,∴x2+px+q=x2+x-1,∴p=1,q=-1.故选:B.【点睛】本题主要考查多项式乘以多项式的法则及两个多项式相等的条件.多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.两个多项式相等时,它们同类项的系数对应相等.10.B【解析】【分析】分别用方差、全面调查与抽样调查、随机事件及概率的知识逐一进行判断即可得到答案.【详解】A. 某工厂质检员检测某批灯泡的使用寿命时,检测范围比较大,因此适宜采用抽样调查的方法,故本选项错误;B. 根据平均数是4求得a的值为2,则方差为15[(1−4)2+(2−4)2+(4−4)2+(4−4)2+(9−4)2]=7.6,故本选项正确;C. 12个同学的生日月份可能互不相同,故本事件是随机事件,故错误;D. 在“等边三角形、正方形、等腰梯形、矩形、正六边形、正五边形”六个图形中有3个既是轴对称图形,又是中心对称图形,所以,恰好既是中心对称图形,又是轴对称图形的概率是12,故本选项错误.故答案选B.【点睛】本题考查的知识点是概率公式、全面调查与抽样调查、方差及随机事件,解题的关键是熟练的掌握概率公式、全面调查与抽样调查、方差及随机事件.11.B【解析】【分析】根据科学记数法的表示形式(a×10n的形式,其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同;当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数).【详解】解:135000用科学记数法表示为:1.35×1.故选B.【点睛】科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.C【解析】【分析】利用图中信息一一判断即可.【详解】解: A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24-2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选C.【点睛】本题考查反比例函数的应用、一次函数的应用等知识,解题的关键是读懂图象信息,属于中考常考题型.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.10%【解析】【分析】本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)1=1+44%,解这个方程即可求出答案.【详解】解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)1=1+44%,解得x1=-1.1(舍去),x1=0.1.答:这两年平均每年绿地面积的增长率为10%.故答案为10%【点睛】此题考查增长率的问题,一般公式为:原来的量×(1±x)1=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.14.【解析】试题解析:原式==故答案为15.533【解析】【分析】连接OC,OD,OC 与AD 交于点E ,根据圆周角定理有130,2BAD BOD ∠=∠=︒根据垂径定理有:15,2AE AD == 解直角OAE △即可. 【详解】连接OC,OD,OC 与AD 交于点E ,130,2BAD BOD ∠=∠=︒ 10 3.cos303AE OA ==︒ 5tan 303,3OE AE =⋅︒= 直尺的宽度:105533 3.333CE OC OE =-== 533【点睛】考查垂径定理,熟记垂径定理是解题的关键.16.1.【解析】【分析】根据零指数幂:a 0=1(a≠0)可得答案.【详解】原式=1,故答案为:1.【点睛】此题主要考查了零次幂,关键是掌握计算公式.17.2.5秒.【解析】【分析】把此正方体的点A 所在的面展开,然后在平面内,利用勾股定理求点A 和B 点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于5,另一条直角边长等于2,利用勾股定理可求得.【详解】解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB =cm ;(2)展开底面右面由勾股定理得AB 5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒. 【点睛】本题考查了勾股定理的拓展应用.“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.18【解析】【详解】解:∵四边形ABCO 是矩形,AB=1,∴设B (m ,1),∴OA=BC=m ,∵四边形OA′B′D 与四边形OABD 关于直线OD 对称,∴OA′=OA=m ,∠A′OD=∠AOD=30°,∴∠A′OA=60°,过A′作A′E ⊥OA 于E ,∴OE=12m ,A′E ,∴A′(12m ,2m ), ∵反比例函数y=k x (k≠0)的图象恰好经过点A′,B ,∴12m•2m=m ,∴m=3,∴k=3.【点睛】本题考查反比例函数图象上点的坐标特征;矩形的性质,利用数形结合思想解题是关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)24yx=;(1)C(﹣1,﹣4),x的取值范围是x<﹣1或0<x<1.【解析】【分析】(1)作高线AC,根据等腰直角三角形的性质和点A的坐标的特点得:x=1x﹣1,可得A的坐标,从而得双曲线的解析式;(1)联立一次函数和反比例函数解析式得方程组,解方程组可得点C的坐标,根据图象可得结论.【详解】(1)∵点A在直线y1=1x﹣1上,∴设A(x,1x﹣1),过A作AC⊥OB于C,∵AB⊥OA,且OA=AB,∴OC=BC,∴AC=12OB=OC,∴x=1x﹣1,x=1,∴A(1,1),∴k=1×1=4,∴24yx =;(1)∵224y xyx=-⎧⎪⎨=⎪⎩,解得:1122xy=⎧⎨=⎩,2214xy=-⎧⎨=-⎩,∴C(﹣1,﹣4),由图象得:y1<y1时x的取值范围是x<﹣1或0<x<1.【点睛】本题考查了反比例函数和一次函数的综合;熟练掌握通过求点的坐标进一步求函数解析式的方法;通过观察图象,从交点看起,函数图象在上方的函数值大.20.(1)详见解析;(2)详见解析;(3).【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.21.(1)120,54;(2)补图见解析;(3)660名;(4)1 3 .【解析】【分析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.【详解】解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×18120=54°,故答案为120、54;(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),条形统计图为:(3)1200×66120=660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3, 所以甲乙两名同学恰好选中同一种沟通方式的概率13. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式求事件A 或B 的概率.也考查了统计图和用样本估计总体. 22. (1) y =﹣x+6;(2) 0<x <2或x >4;(3) 点P 的坐标为(2,0)或(﹣3,0).【解析】【分析】(1)将点A B ,坐标代入双曲线中即可求出m n ,,最后将点A B ,坐标代入直线解析式中即可得出结论;(2)根据点A B ,坐标和图象即可得出结论;(3)先求出点C D ,坐标,进而求出CD AD ,,设出点P 坐标,最后分两种情况利用相似三角形得出比例式建立方程求解即可得出结论.【详解】解:(1)∵点A m 4(,)和点B n 2(,)在反比例函数28(0)y x x=>的图象上, 884,2nm ∴==, 解得m 2n 4=,=,即A 24B 42(,),(,)把A 24B 42(,),(,)两点代入y1kx b +=中得2442k b k b +=⎧⎨+=⎩ , 解得:k 1b 6=-⎧⎨=⎩, 所以直线AB 的解析式为:y x 6+=﹣;(2)由图象可得,当x 0>时,80kx b x+-≤的解集为0x 2<<或x 4>. (3)由(1)得直线AB 的解析式为y x 6+=﹣,当x 0=时,y =6,C 06∴(,), OC 6∴=,当y 0=时,x 6=,∴D 点坐标为60(,)OD 6∴=,(2,4)CD A AD ∴==∴==Q .设P 点坐标为a 0(,),由题可以,点P 在点D 左侧,则PD 6a =﹣由CDO ADP ∠∠=可得①当COD APD V V ∽时,AD PD CD OD=,6a 6-=,解得a 2=, 故点P 坐标为20(,)②当COD PAD V V ∽时,AD CD OD PD=,=a 3=﹣, 即点P 的坐标为30(﹣,)因此,点P 的坐标为20(,)或30(﹣,)时,COD V 与ADP V 相似.【点睛】此题是反比例函数综合题,主要考查了待定系数法,相似三角形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.23.(1)正方形ABCD 的“关联点”为P 2,P 3;(2)12m ≤≤12m ≤≤-;(3n ≤≤【解析】【分析】(1)正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),由此画出图形即可判断;(2)因为E 是正方形ABCD 的“关联点”,所以E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),因为E在直线y =上,推出点E 在线段FG 上,求出点F 、G 的横坐标,再根据对称性即可解决问题;(3)因为线段MN 上的每一个点都是正方形ABCD 的“关联点”,分两种情形:①如图3中,MN 与小⊙Q 相切于点F ,求出此时点Q 的横坐标;②M 如图4中,落在大⊙Q 上,求出点Q 的横坐标即可解决问题;【详解】(1)由题意正方形ABCD 的“关联点”中正方形的内切圆和外切圆之间(包括两个圆上的点),观察图象可知:正方形ABCD 的“关联点”为P 2,P 3;(2)作正方形ABCD 的内切圆和外接圆,∴OF =1,2OG =.∵E 是正方形ABCD 的“关联点”,∴E 在正方形ABCD 的内切圆和外接圆之间(包括两个圆上的点),∵点E 在直线3y x =上,∴点E 在线段FG 上.分别作FF’⊥x 轴,GG’⊥x 轴,∵OF =1,2OG =∴12OF '=,22OG '=. ∴122m ≤≤. 根据对称性,可以得出2122m -≤≤-. ∴1222m ≤≤或2122m -≤≤-. (3)∵3M ⎛⎫ ⎪ ⎪⎝⎭、N (0,1),∴33OM =,ON =1. ∴∠OMN =60°.∵线段MN 上的每一个点都是正方形ABCD的“关联点”,①MN 与小⊙Q 相切于点F ,如图3中,∵QF =1,∠OMN =60°,∴233QM =. ∵3OM =, ∴33OQ =. ∴13,03Q ⎛⎫ ⎪ ⎪⎝⎭. ②M 落在大⊙Q 上,如图4中,∵2QM =3OM = ∴32OQ =.∴2Q ⎫⎪⎪⎭.n ≤≤【点睛】本题考查一次函数综合题、正方形的性质、直线与圆的位置关系等知识,解题的关键是理解题意,学会寻找特殊位置解决数学问题,属于中考压轴题.24.(1)孔明同学测试成绩位90分,平时成绩为95分;(2)不可能;(3)他的测试成绩应该至少为1分.【解析】试题分析:(1)分别利用孔明同学的测试成绩和平时成绩两项得分之和为185分,而综合评价得分为91分,分别得出等式求出答案;(2)利用测试成绩占80%,平时成绩占20%,进而得出答案;(3)首先假设平时成绩为满分,进而得出不等式,求出测试成绩的最小值.试题解析:(1)设孔明同学测试成绩为x 分,平时成绩为y 分,依题意得:185{80%20%91x y x y +=+=,解之得:90{95x y ==.答:孔明同学测试成绩位90分,平时成绩为95分;(2)由题意可得:80﹣70×80%=24,24÷20%=120>100,故不可能. (3)设平时成绩为满分,即100分,综合成绩为100×20%=20,设测试成绩为a 分,根据题意可得:20+80%a≥80,解得:a≥1.答:他的测试成绩应该至少为1分.考点:一元一次不等式的应用;二元一次方程组的应用.25.(1)y=﹣2x+1;(2)点P 的坐标为(﹣32,0)或(52,0). 【解析】【分析】(1)把A 的坐标代入可求出m ,即可求出反比例函数解析式,把B 点的坐标代入反比例函数解析式,即可求出n ,把A ,B 的坐标代入一次函数解析式即可求出一次函数解析式;(2)利用一次函数图象上点的坐标特征可求出点C 的坐标,设点P 的坐标为(x,0),根据三角形的面积公式结合S △ABP =3,即可得出122x -=,解之即可得出结论. 【详解】(1)∵双曲线y=mx(m≠0)经过点A(﹣12,2),∴m=﹣1.∴双曲线的表达式为y=﹣1x.∵点B (n,﹣1)在双曲线y=﹣1x上,∴点B的坐标为(1,﹣1).∵直线y=kx+b经过点A(﹣12,2),B(1,﹣1),∴1k b=22k b=1⎧-+⎪⎨⎪+-⎩,解得k=2b=1-⎧⎨⎩∴直线的表达式为y=﹣2x+1;(2)当y=﹣2x+1=0时,x=12,∴点C(12,0).设点P的坐标为(x,0),∵S△ABP=3,A(﹣12,2),B(1,﹣1),∴12×3|x﹣12|=3,即|x﹣12|=2,解得:x1=﹣32,x2=52.∴点P的坐标为(﹣32,0)或(52,0).【点睛】本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数、反比例函数的解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出函数的解析式;(2)根据三角形的面积公式以及S△ABP=3,得出122x-=.26.(1),;(2)8;(3)或.【解析】试题分析:(1)根据已知条件求出A、B、C点坐标,用待定系数法求出直线AB和反比例函数的解析式;(2)联立一次函数的解析式和反比例的函数解析式可得交点D的坐标,从而根据三角形面积公式求解;(3)根据函数的图象和交点坐标即可求解.试题解析:解:(1)∵OB=4,OE=2,∴BE=2+4=1.∵CE⊥x轴于点E,tan∠ABO==,∴OA=2,CE=3,∴点A的坐标为(0,2)、点B的坐标为C(4,0)、点C的坐标为(﹣2,3).∵一次函数y=ax+b的图象与x,y轴交于B,A两点,∴,解得:.故直线AB的解析式为.∵反比例函数的图象过C,∴3=,∴k=﹣1,∴该反比例函数的解析式为;(2)联立反比例函数的解析式和直线AB的解析式可得:,可得交点D的坐标为(1,﹣1),则△BOD的面积=4×1÷2=2,△BOC的面积=4×3÷2=1,故△OCD的面积为2+1=8;(3)由图象得,一次函数的值大于反比例函数的值时x的取值范围:x<﹣2或0<x<1.点睛:本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.27.(1)证明见解析;(2)35.【解析】【分析】(1)由于AG⊥BC,AF⊥DE,所以∠AFE=∠AGC=90°,从而可证明∠AED=∠ACB,进而可证明△ADE∽△ABC;(2)△ADE∽△ABC,AD AEAB AC=,又易证△EAF∽△CAG,所以AF AEAG AC=,从而可求解.【详解】(1)∵AG⊥BC,AF⊥DE,∴∠AFE=∠AGC=90°,∵∠EAF=∠GAC,∴∠AED=∠ACB,∵∠EAD=∠BAC,∴△ADE∽△ABC,(2)由(1)可知:△ADE∽△ABC,∴35 AD AE AB AC==由(1)可知:∠AFE=∠AGC=90°,∴∠EAF=∠GAC,∴△EAF∽△CAG,∴AF AE AG AC=,∴AF AG=35考点:相似三角形的判定。

2019-2020学年重庆市长寿区中考数学模拟试卷((有标准答案))

2019-2020学年重庆市长寿区中考数学模拟试卷((有标准答案))

重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1 B.0 C.2 D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3 B.3 C.﹣5 D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1 B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE的面积是()A.6 B.9 C.21 D.258.已知m=,则以下对m的值估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B 为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i=1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360 B.90 C.60 D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算: +(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG交AB于N点,交AE于M 点,则S=.△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B 1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568 (填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B .【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n 个图案需火柴棒8+7(n ﹣1)=7n +1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n +1根;故选:D .【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD ,判断出△ABD 是等边三角形,根据等边三角形的性质可得∠ABD =60°,再求出∠CBD=60°,然后求出阴影部分的面积=S △ABD ,计算即可得解.【解答】解:如图,连接BD ,∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∴∠ABD =60°,又∵菱形的对边AD ∥BC ,∴∠ABC =180°﹣60°=120°,∴∠CBD =120°﹣60°=60°,∴S 阴影=S 扇形BDC ﹣(S 扇形ABD ﹣S △ABD ),=S △ABD ,=×4×=4cm 2.故选:B .【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB 交ED 的延长线于M ,作CJ ⊥DM 于J .则四边形BMJC 是矩形.在Rt △CDJ 中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A 点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C 到B 的速度为a 米/秒,,解得,a =1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t 秒,4t =1.5t +(800﹣500),解得,t =120,∴牛牛和峰峰第一次相遇时他们距A 点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B 作BP ⊥AE 于P ,根据勾股定理计算BE =BC =2,AE ==10,得B ,F ,G 共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ =,BQ =,分别计算FS 、GS 、DG 、DH 、AH 、AN 的长,利用面积差S △MNF =S △ANF ﹣S △AMN 求值【解答】解:过B 作BP ⊥AE 于P ,∵正方形ABCD 中,AB =4,E 为BC 中点, ∴BE =BC =2, ∴AE ==10, ∴BP ===4, ∴PE ===2,∴EF =EP ,∴F 与P 重合,∴B ,F ,G 共线, 过F 作OS ⊥DC ,交AB 于O ,DC 于S ,则OS ⊥AB ,过F 作FQ ⊥BC 于Q ,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF =S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y =x +b 与双曲线y =相交于A ,B 两点,A (2,5),即可得到结论;(2)过A 作AD ⊥y 轴于D ,BE ⊥y 轴于E 根据y =x +3,y =,得到B (﹣5,﹣2),C (﹣3,0),求出OC =3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y =x +b 与双曲线y =相交于A ,B 两点,已知A (2,5),∴5=2+b ,5=.解得:b =3,k =10.(2)如图,过A 作AD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,∴AD =2.∵b =3,k =10,∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2).∴BE =5.设直线y =x +3与y 轴交于点C .∴C 点坐标为(0,3).∴OC =3.∴S △AOC =OC •AD =×3×2=3,S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =. 【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键.23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ),∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ), ∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键.26.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3;(2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD =2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°,i .当∠ADQ =90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′,把D (2,3)代入可求得b ′=5,∴直线DQ 解析式为y =﹣x +5,联立直线DQ 和抛物线解析式可得,解得或,∴Q (1,4); ii .当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,把A 、Q 坐标代入可得,解得k 1=﹣(t ﹣3),设直线DQ 解析式为y =k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t =, 当t =时,﹣t 2+2t +3=, 当t =时,﹣t 2+2t +3=, ∴Q 点坐标为(,)或(,); 综上可知Q 点坐标为(1,4)或(,)或(,). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

重庆市长寿区2019-2020学年中考第四次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第四次模拟数学试题含解析

重庆市长寿区2019-2020学年中考第四次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列等式正确的是( )A .x 3﹣x 2=xB .a 3÷a 3=aC .231(2)(2)2-÷-=- D .(﹣7)4÷(﹣7)2=﹣72 2.计算﹣2+3的结果是( )A .1B .﹣1C .﹣5D .﹣63.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1254.已知:如图,在扇形OAB 中,110AOB ∠=︒,半径18OA =,将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上的点D 处,折痕交OA 于点C ,则弧AD 的长为( )A .2πB .3πC .4πD .5π5.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的度数为( )A .90°B .60°C .45°D .30°6.矩形具有而平行四边形不具有的性质是( )A .对角相等B .对角线互相平分C .对角线相等D .对边相等7.下列运算结果正确的是( )A .(x 3﹣x 2+x )÷x=x 2﹣xB .(﹣a 2)•a 3=a 6C .(﹣2x 2)3=﹣8x 6D .4a 2﹣(2a )2=2a 2 8.如图,A 、B 、C 、D 四个点均在⊙O 上,∠AOD=50°,AO ∥DC ,则∠B 的度数为( )A.50°B.55°C.60°D.65°9.如图,在△ABC中,∠C=90°,AC=BC=3cm.动点P从点A出发,以2cm/s的速度沿AB方向运动到点B.动点Q同时从点A出发,以1cm/s的速度沿折线AC CB方向运动到点B.设△APQ的面积为y(cm2).运动时间为x(s),则下列图象能反映y与x之间关系的是()A.B.C.D.10.下列运算结果正确的是()A.3a2-a2 = 2 B.a2·a3= a6C.(-a2)3 = -a6D.a2÷a2 = a11.-5的倒数是A.15B.5 C.-15D.-512.观察下列图形,其中既是轴对称图形,又是中心对称图形的是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2018年3月2日,大型记录电影《厉害了,我的国》登陆全国各大院线.某影院针对这一影片推出了特惠活动:票价每人30元,团体购票超过10人,票价可享受八折优惠,学校计划组织全体教师观看此影片.若观影人数为a(a>10),则应付票价总额为_____元.(用含a的式子表示)14.将多项式xy 2﹣4xy+4y 因式分解:_____.15.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__.16.有五张分别印有等边三角形、正方形、正五边形、矩形、正六边形图案的卡片(这些卡片除图案不同外,其余均相同).现将有图案的一面朝下任意摆放,从中任意抽取一张,抽到卡片的图案既是中心对称图形,又是轴对称图形的概率为_____.17.如图,在△ABC 中,∠B =40°,∠C =45°,AB 的垂直平分线交BC 于点D ,AC 的垂直平分线交BC 于点E ,则∠DAE =______.18.如果分式4x x +的值是0,那么x 的值是______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:()求本次调查的学生人数;1()求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;2≤<的人数.()若该校共有学生1200人,试估计每周课外阅读时间满足3t4320.(6分)学校决定在学生中开设:A、实心球;B、立定跳远;C、跳绳;D、跑步四种活动项目.为了了解学生对四种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图①②的统计图,请结合图中的信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)请计算本项调查中喜欢“立定跳远”的学生人数和所占百分比,并将两个统计图补充完整.(3)若调查到喜欢“跳绳”的5名学生中有2名男生,3名女生,现从这5名学生中任意抽取2名学生,请用画树状图或列表法求出刚好抽到不同性别学生的概率.21.(6分)如图,在直角坐标系中,矩形的顶点与坐标原点重合,顶点分别在坐标轴的正半轴上, ,点在直线上,直线与折线有公共点.点的坐标是;若直线经过点,求直线的解析式;对于一次函数,当随的增大而减小时,直接写出的取值范围.22.(8分)计算:(3﹣2)0+11()3-+4cos30°﹣|﹣12|.23.(8分)已知:如图,在Rt △ABO 中,∠B=90°,∠OAB=10°,OA=1.以点O 为原点,斜边OA 所在直线为x 轴,建立平面直角坐标系,以点P (4,0)为圆心,PA 长为半径画圆,⊙P 与x 轴的另一交点为N ,点M 在⊙P 上,且满足∠MPN=60°.⊙P 以每秒1个单位长度的速度沿x 轴向左运动,设运动时间为ts ,解答下列问题:(发现)(1)MN n 的长度为多少;(2)当t=2s 时,求扇形MPN (阴影部分)与Rt △ABO 重叠部分的面积.(探究)当⊙P 和△ABO 的边所在的直线相切时,求点P 的坐标.(拓展)当MN n 与Rt △ABO 的边有两个交点时,请你直接写出t 的取值范围.24.(10分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价.25.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.26.(12分)如图,已知O e 是ABC ∆的外接圆,圆心O 在ABC ∆的外部,4AB AC ==,43BC =。

2019年重庆市长寿区中考数学模拟试卷(5月份)

2019年重庆市长寿区中考数学模拟试卷(5月份)

2019年重庆市长寿区中考数学模拟试卷(5月份)一、选择题(共12小题,每小题4分,满分48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确的答案的代号填涂在答题卡的相应位置上1.(4分)计算|﹣5+2|的结果是()A.3B.2C.﹣3D.﹣22.(4分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.3.(4分)计算2a3+3a3结果正确的是()A.5a6B.5a3C.6a6D.6a34.(4分)据工信部统计,截止到2019年2月,中国移动、中国电信、中国联通移动互联网4G用户总数约为11.9亿.把这个数用科学记数法表示为()A.0.119×1010B.1.19×109C.1.19×1010D.11.9×1085.(4分)如图,直线AB、CD相交于点O,EO⊥CD.下列说法错误的是()A.∠AOD=∠BOC B.∠AOE+∠BOD=90°C.∠AOC=∠AOE D.∠AOD+∠BOD=180°6.(4分)下列调查中,最适合采用普查方式的是()A.调查某品牌灯泡的使用寿命B.调查重庆市国庆节期间进出主城区的车流量C.调查重庆八中九年级一班学生的睡眠时间D.调查某批次烟花爆竹的燃放效果7.(4分)若a=2,b=﹣,则代数式2a+8b﹣1的值为()A.5B.3C.1D.﹣18.(4分)估计(2﹣)×的值应在()A.1和1.5之间B.1.5和2之间C.2和2.5之间D.2.5和3之间9.(4分)下列图形都是由●按照一定规律组成的,其中第①个图共有四个●,第②个图中共有8个●,第③个图中共有13个●,第④个图中共有19个●,…,照此规律排列下去,则第10个图形中●的个数为()A.50B.53C.64D.7610.(4分)如图,在Rt△ABO中,∠AOB=90°,AO=BO=2,以O为圆心,AO为半径作半圆,以A为圆心,AB为半径作弧BD,则图中阴影部分的面积为()A.2B.C.D.11.(4分)如图,菩提山上灯一盏”是我区老八景之一.某人为了测量菩提山上的“塔式佛教圣灯”ED的高,他在山下某点A处测得塔尖D的仰角为45°,在沿AC方向前进24.40m到达山脚点B,测得塔尖点D的仰角为60°,塔底点E的仰角为30°.那么塔式佛教圣灯ED的高度约为()(计算中≈1.7,≈1.4,结果保留两位小数)A.35.78m B.38.23m C.39.53m D.40.52m12.(4分)如图,在正方形ABCD中,连接AC,以点A为圆心,适当长为半径画弧,交AB、AC于点M,N,分别以M,N为圆心,大于MN长的一半为半径画弧,两弧交于点H,连结AH并延长交BC于点E,再分别以A、E为圆心,以大于AE长的一半为半径画弧,两弧交于点P,Q,作直线PQ,分别交CD,AC,AB于点F,G,L,交CB的延长线于点K,连接GE,下列结论:①∠LKB=22.5°,②GE∥AB,③tan∠CGF=,④S△CGE:S△CAB=1:4.其中正确的是()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题6小题,每小题4分,满分24分;请将正确答案填在答题卡相应位置)13.(4分)﹣8的绝对值是.14.(4分)4月18日,初2018级的同学们迎来了中考第一科体育考试,某班体育委员记录了小组七位同学一分钟跳绳的情况,跳绳个数为206,210,205,203,204,208,204,这组数据的中位数是.15.(4分)计算:(tan30°)﹣1+|=.16.(4分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,若⊙O的半径为,AC=2,求sin B的值.17.(4分)中国古代数字著作《算法统宗》中有这样一段记载:“三百七十八里关,初健步不为难,次日脚痛减一半,六朝才得到其关.”其大意是,有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,则此人第六天走的路程为里.18.(4分)若关于x的方程有非负实数解,关于x的一次不等式组有解,则满足这两个条件的所有整数k的值的和是.三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.(10分)(1)2(m+1)2﹣(m﹣2)(2m+1)(2)先化简,再求值:,其中x=.20.(10分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅不完整的统计图,请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?21.(10分)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.22.(10分)如图,在平面直角坐标系中有三点(1,2),(3,1),(﹣2,﹣1),其中有两点同时在反比例函数y=的图象上,将这两点分别记为A,B,另一点记为C.(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C关于直线AB的对称点为D,P是x轴上的一个动点,直接写出PC+PD的最小值(不必说明理由).23.(10分)某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A 种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?24.(10分)对x,y定义一种新运算T,规定:T(x,y)=(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)==b.(1)已知T(1,﹣1)=﹣2,T(4,2)=1.①求a,b的值;②若关于m的不等式组恰好有3个整数解,求实数p的取值范围;(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?25.(10分)如图1,△ABC中,AC=BC,∠A=30°,点D在AB边上且∠ADC=45°.(1)求∠BCD的度数;(2)将图1中的△BCD绕点B顺时针旋转α(0°<α≤360°)得到△BC′D′.①当点D′恰好落在BC边上时,如图2所示,连接C′C并延长交AB于点E.求证:AE=BD′;②连接DD′,如图3所示,当△DBD′与△ACB相似时,直接写出α的度数.四、解答题(本大题1个小题,满分8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.(8分)如图,已知二次函数y=x2+bx+c的图象与x轴相交于点A(1,0)和点B,与y轴相交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)在y轴上是否存在一点P,使得△PBC为等腰三角形,若存在请求出点的坐标.(2)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动.另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB的面积最大,试求出最大面积.2019年重庆市长寿区中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分)在每个小题的下面,都给出了A、B、C、D的四个答案,其中只有一个是正确的,请将正确的答案的代号填涂在答题卡的相应位置上1.【解答】解:|﹣5+2|=|﹣3|=3,故选:A.2.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.3.【解答】解:原式=5a3,故选:B.4.【解答】解:将11.9亿用科学记数法表示为:1.19×109.故选:B.5.【解答】解:A、∠AOD与∠BOC是对顶角,所以∠AOD=∠BOC,此选项正确;B、由EO⊥CD知∠DOE=90°,所以∠AOE+∠BOD=90°,此选项正确;C、∠AOC与∠BOD是对顶角,所以∠AOC=∠BOD,此选项错误;D、∠AOD与∠BOD是邻补角,所以∠AOD+∠BOD=180°,此选项正确;故选:C.6.【解答】解:A、调查某品牌灯泡的使用寿命适合采用抽样调查方式,故本选项错误;B、调查重庆市国庆节期间进出主城区的车流量适合采用抽样调查方式,故本选项错误;C、调查重庆八中九年级一班学生的睡眠时间适合采用普查方式,故本选项正确;D、调查某批次烟花爆竹的燃放效果适合采用抽样调查方式,故本选项错误.故选:C.7.【解答】解:当a=2、b=﹣时,原式=2×2+8×(﹣)﹣1=4﹣2﹣1=1,故选:C.8.【解答】解:原式=2﹣2=﹣2,∵4<<4.5∴2<﹣2<2.5.故选:C.9.【解答】解:因为图①中点的个数为4=22﹣0,图②中点的个数为8=32﹣1,图③中点的个数为13=42﹣(1+2),图④中点的个数为19=52﹣(1+2+3),……所以图⑨中点的个数为102﹣(1+2+3+…+8)=100﹣36=64,故选:C.10.【解答】解:∵在Rt△ABO中,∠AOB=90°,AO=BO=2,∴AB=2,∴图中阴影部分的面积为:=2,故选:A.11.【解答】解:由题知,∠DBC=60°,∠EBC=30°,∴∠DBE=∠DBC﹣∠EBC=60°﹣30°=30°.又∵∠BCD=90°,∴∠BDC=90°﹣∠DBC=90°﹣60°=30°.∴∠DBE=∠BDE.∴BE=DE.设EC=xm,则DE=BE=2EC=2xm,DC=EC+DE=x+2x=3xm,BC===x,由题知,∠DAC=45°,∠DCA=90°,AB=60,∴△ACD为等腰直角三角形,∴AC=DC,∴x+24.4=3x,解得:x=,2x=≈38.23m.答:塔高约为38.23m.故选:B.12.【解答】解:①∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,由作图可知:AE平分∠BAC,∴∠BAE=∠CAE=22.5°,∵PQ是AE的中垂线,∴AE⊥PQ,∴∠AOL=90°,∵∠AOL=∠LBK=90°,∠ALO=∠KLB,∴∠LKB=∠BAE=22.5°;故①正确;②∵OG是AE的中垂线,∴AG=EG,∴∠AEG=∠EAG=22.5°=∠BAE,∴EG∥AB,故②正确;③∵∠LAO=∠GAO,∠AOL=∠AOG=90°,∴∠ALO=∠AGO,∵∠CGF=∠AGO,∠BLK=∠ALO,∴∠CGF=∠BLK,在Rt△BKL中,tan∠CGF=tan∠BLK=,故③正确;④连接EL,∵AL=AG=EG,EG∥AB,∴四边形ALEG是菱形,∴AL=EL=EG>BL,∴,∵EG∥AB,∴△CEG∽△CBA,∴=,故④不正确;本题正确的是:①②③,故选:A.二、填空题(本大题6小题,每小题4分,满分24分;请将正确答案填在答题卡相应位置)13.【解答】解:﹣8的绝对值是8.14.【解答】解:从小到大排列此数据为:203,204,204,205,206,208,210,205处在第4位为中位数.所以本题这组数据的中位数是205.故答案为205.15.【解答】解:原式=()﹣1+2﹣﹣1=+1﹣=1.故答案为:1.16.【解答】解:连接CD,∵AD是⊙O的直径,∴∠ACD=90°,∴sin D==,由圆周角定理得,∠B=∠D,∴sin B=sin D=.17.【解答】解:设第一天走了x里,依题意得:x+x+x+x+x+x=378,解得x=192.则()5x=()5×192=6(里).故答案为:618.【解答】解:分式方程去分母得:﹣k=3﹣2x+2,解得:x=,由分式方程有非负实数解,得到≥0,且≠1,解得:k≥﹣5且k≠﹣3,不等式组整理得:,由不等式组有解,得到2﹣k≥﹣1,即k≤3,综上,k的范围为﹣5≤k≤3,且k≠﹣3,即整数k=﹣5,﹣4,﹣2,﹣1,0,1,2,3,则所有满足题意整数k的值的和为﹣6,故答案为:﹣6三、解答题(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.19.【解答】解:(1)原式=2(m2+2m+1)﹣(2m2+m﹣4m﹣2)=2m2+4m+2﹣2m2﹣m+4m+2=7m+4;(2)原式=[﹣]•=•=•=,当x=时,原式==+1.20.【解答】解:(1)48÷40%=120(人),120×15%=18(人),120﹣48﹣18﹣12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×=525(人).答:该校学生对政策内容了解程度达到A等的学生有525人.21.【解答】(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.22.【解答】解:(1)∵反比例函数y=的图象上的点横坐标与纵坐标的积相同,∴A(1,2),B(﹣2,﹣1),C(3,1)∴k=2.(2)设直线AB的解析式为y=mx+n,则,解得,∴直线AB的解析式为y=x+1(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,﹣4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′==23.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.24.【解答】解:(1)①根据题意得:T(1,﹣1)==﹣2,即a﹣b=﹣2;T=(4,2)==1,即2a+b=5,解得:a=1,b=3;②根据题意得:,由①得:m≥﹣;由②得:m<,∴不等式组的解集为﹣≤m<,∵不等式组恰好有3个整数解,即m=0,1,2,∴2<≤3,解得:﹣2≤p<﹣;(2)由T(x,y)=T(y,x),得到=,整理得:(x2﹣y2)(2b﹣a)=0,∵T(x,y)=T(y,x)对任意实数x,y都成立,∴2b﹣a=0,即a=2b.25.【解答】解:(1)∵AC=BC,∠A=30°∴∠CBA=∠CAB=30°,∵∠ADC=45°,∴∠BCD=∠ADC﹣∠CBA=15°,(2)①由旋转可知CB=C′B=AC,∠C′BD′=∠CBD=∠A ∴∠CC′B==75°,∴∠CEB=∠CC′B﹣∠CBA=45°,∴∠ACE=∠CEB﹣∠A=15°,∴∠BC′D=∠ACE,在△AEC与△BD′C中∴△C′BD′≌△CAE∴AE=BD′.(3)∵△DBD′与△ACB相似∴∠BDD′=∠DD′B=∠A=30°,∴∠DBD′=120°,∴∠α=∠DBD′=120°(如图一)或∠α=360°﹣∠DBD′=360°﹣120°=240°.(如图二)故α的度数为120°或240°.四、解答题(本大题1个小题,满分8分)解答时必须给出必要的演算过程或推理步骤,画出必要的图形,请将解答过程书写在答题卡中对应的位置上.26.【解答】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,∴,解得:,∴二次函数的表达式为:y=x2﹣4x+3;(2)令y=0,则x2﹣4x+3=0,解得:x=1或x=3,∴B(3,0),∵C(0,3),∴OC=3,CP=|3﹣m|,BC=3,点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,①当PC=PB时,|3﹣m|=,∴m=0,即当P(0,0)时,△PBC为等腰三角形.②当PC=CB时,|3﹣m|=3,∴m,,即当P(0,3+3)或(0,3﹣3)时,△PBC为等腰三角形.③当PB=CB时,=3,m3=3(舍去),m4=﹣3,即当P(0,﹣3)时,△PBC为等腰三角形.综合以上可得:点P的坐标为(0,0)或(0,3+3)或(0,3﹣3)或(0,﹣3)时,△PBC为等腰三角形.(3)如图2,设A运动时间为t,由AB=2,得BM=2﹣t,则DN=2t,∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,∴当t=1时,S△MNB有最大值1,即当M(2,0)、N(2,2)或(2,﹣2)时△MNB面积最大,最大面积是1.。

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是( )A .正方体B .球C .圆锥D .圆柱体2.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为( )A .B .C .D .3.如图所示,若将△ABO 绕点O 顺时针旋转180°后得到△A 1B 1O ,则A 点的对应点A 1点的坐标是( )A .(3,﹣2)B .(3,2)C .(2,3)D .(2,﹣3)4.计算6m 6÷(-2m 2)3的结果为( )A .m -B .1-C .34D .34- 5.观察下列图形,其中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图①是半径为2的半圆,点C 是弧AB 的中点,现将半圆如图②方式翻折,使得点C 与圆心O 重合,则图中阴影部分的面积是( )A.43πB.43π﹣3C.23+3πD.23﹣23π7.如图,小刚从山脚A出发,沿坡角为α的山坡向上走了300米到达B点,则小刚上升了()A.300sinα米B.300cosα米C.300tanα米D.300 tanα米8.在△ABC中,点D、E分别在AB、AC上,如果AD=2,BD=3,那么由下列条件能够判定DE∥BC 的是( )A.DEBC=23B.DEBC=25C.AEAC=23D.AEAC=259.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )A.B.C.D.10.计算(1-1x)÷221x xx-+的结果是( )A.x-1 B.11x-C.1xx-D.1xx-11.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧分别交AB、AC于点M 和N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连结AP并延长交BC于点D,则下列说法中正确的个数是①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:1.A.1 B.2 C.1 D.412.若31x与4x互为相反数,则x的值是()A.1 B.2 C.3 D.4二、填空题:(本大题共6个小题,每小题4分,共24分.)13.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.14.和平中学自行车停车棚顶部的剖面如图所示,已知AB=16m,半径OA=10m,高度CD为____m.15.小红沿坡比为1:3的斜坡上走了100米,则她实际上升了_____米.17.化简11-(1)1mm⎛⎫⋅-=⎪-⎝⎭__________.18.如图所示,一只蚂蚁从A点出发到D,E,F处寻觅食物.假定蚂蚁在每个岔路口都等可能的随机选择一条向左下或右下的路径(比如A岔路口可以向左下到达B处,也可以向右下到达C处,其中A,B,C都是岔路口).那么,蚂蚁从A出发到达E处的概率是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知一次函数y=12x+m的图象与x轴交于点A(﹣4,0),与二次函数y=ax1+bx+c的图象交于y轴上一点B,该二次函数的顶点C在x轴上,且OC=1.(1)求点B坐标;(1)求二次函数y=ax1+bx+c的解析式;(3)设一次函数y=12x+m的图象与二次函数y=ax1+bx+c的图象的另一交点为D,已知P为x轴上的一个动点,且△PBD是以BD为直角边的直角三角形,求点P的坐标.20.(6分)如图1,点P是平面直角坐标系中第二象限内的一点,过点P作PA⊥y轴于点A,点P绕点A顺时针旋转60°得到点P',我们称点P'是点P的“旋转对应点”.(1)若点P(﹣4,2),则点P的“旋转对应点”P'的坐标为;若点P的“旋转对应点”P'的坐标为(﹣5,16)则点P的坐标为;若点P(a,b),则点P的“旋转对应点”P'的坐标为;(2)如图2,点Q是线段AP'上的一点(不与A、P'重合),点Q的“旋转对应点”是点Q',连接PP'、QQ',求证:PP'∥QQ';(3)点P与它的“旋转对应点”P'的连线所在的直线经过点(3,6),求直线PP'与x轴的交点坐标.21.(6分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?22.(8分)如图山坡上有一根旗杆AB,旗杆底部B点到山脚C点的距离BC为63米,斜坡BC的坡度i=1:3.小明在山脚的平地F处测量旗杆的高,点C到测角仪EF的水平距离CF=1米,从E处测得旗杆顶部A的仰角为45°,旗杆底部B的仰角为20°.(1)求坡角∠BCD;(2)求旗杆AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.(8分)如图,建筑物AB的高为6cm,在其正东方向有个通信塔CD,在它们之间的地面点M(B,M,D三点在一条直线上)处测得建筑物顶端A、塔项C的仰角分别为37°和60°,在A处测得塔顶C的仰角为30°,则通信塔CD的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,3=1.73,精确到0.1m)工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.(1)求甲组加工零件的数量y与时间之间的函数关系式.(2)求乙组加工零件总量a的值.(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?25.(10分)如图,AC=DC,BC=EC,∠ACD=∠BCE.求证:∠A=∠D.26.(12分)如图,在△ABC中,AB=AC=1,BC=,在AC边上截取AD=BC,连接BD.(1)通过计算,判断AD2与AC•CD的大小关系;(2)求∠ABD的度数.27.(12分)在“弘扬传统文化,打造书香校园”活动中,学校计划开展四项活动:“A-国学诵读”、“B-演讲”、“C-课本剧”、“D-书法”,要求每位同学必须且只能参加其中一项活动,学校为了了解学生的意思,随机调查了部分学生,结果统计如下:(1)根据题中信息补全条形统计图.(2)所抽取的学生参加其中一项活动的众数是.(3)学校现有800名学生,请根据图中信息,估算全校学生希望参加活动A有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】本题中,圆柱的俯视图是个圆,可以堵住圆形空洞,它的正视图和左视图是个矩形,可以堵住方形空洞.【详解】根据三视图的知识来解答.圆柱的俯视图是一个圆,可以堵住圆形空洞,而它的正视图以及侧视图都为一个矩形,可以堵住方形的空洞,故圆柱是最佳选项.故选D.【点睛】此题考查立体图形,本题将立体图形的三视图运用到了实际中,只要弄清楚了立体图形的三视图,解决这类问题其实并不难.2.A【解析】【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为:P(奇数)= = .故此题选A.此题主要考查了几何概率,正确应用概率公式是解题关键.3.A【解析】【分析】由题意可知, 点A 与点A 1关于原点成中心对称,根据图象确定点A 的坐标,即可求得点A 1的坐标.【详解】由题意可知, 点A 与点A 1关于原点成中心对称,∵点A 的坐标是(﹣3,2),∴点A 关于点O 的对称点A'点的坐标是(3,﹣2).故选A .【点睛】本题考查了中心对称的性质及关于原点对称点的坐标的特征,熟知中心对称的性质及关于原点对称点的坐标的特征是解决问题的关键.4.D【解析】分析:根据幂的乘方计算法则求出除数,然后根据同底数幂的除法法则得出答案.详解:原式=()663684m m ÷-=-, 故选D . 点睛:本题主要考查的是幂的计算法则,属于基础题型.明白幂的计算法则是解决这个问题的关键. 5.C【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、既不是轴对称图形,也不是中心对称图形.故本选项错误;B 、是轴对称图形,不是中心对称图形.故本选项错误;C 、是轴对称图形,也是中心对称图形.故本选项正确;D 、既不是轴对称图形,也不是中心对称图形.故本选项错误.故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.D【分析】连接OC交MN于点P,连接OM、ON,根据折叠的性质得到OP=12OM,得到∠POM=60°,根据勾股定理求出MN,结合图形计算即可.【详解】解:连接OC交MN于点P,连接OM、ON,由题意知,OC⊥MN,且OP=PC=1,在Rt△MOP中,∵OM=2,OP=1,∴cos∠POM=OPOM=12,22OM OP-3∴∠POM=60°,3∴∠AOB=2∠AOC=120°,则图中阴影部分的面积=S半圆-2S弓形MCN=12×π×22-2×(21202360π⨯-12×3×1)323π,故选D.【点睛】本题考查了轴对称的性质的运用、勾股定理的运用、三角函数值的运用、扇形的面积公式的运用、三角形的面积公式的运用,解答时运用轴对称的性质求解是关键.7.A【解析】【分析】利用锐角三角函数关系即可求出小刚上升了的高度.【详解】在Rt△AOB中,∠AOB=90°,AB=300米,BO=AB•sinα=300sinα米.故选A.【点睛】的关系是解题关键.8.D【解析】【分析】根据平行线分线段成比例定理的逆定理,当AD AEDB EC=或AD AEAB AC=时,DE BDP,然后可对各选项进行判断.【详解】解:当AD AEDB EC=或AD AEAB AC=时,DE BDP,即23AEEC=或25AEAC=.所以D选项是正确的.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了平行线分线段成比例定理的逆定理.9.A【解析】【分析】根据左视图的概念得出各选项几何体的左视图即可判断.【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A.【点睛】本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.10.B【解析】【分析】先计算括号内分式的加法、将除式分子因式分解,再将除法转化为乘法,约分即可得.【详解】解:原式=(xx-1x)÷()2x1x-=x1x-•()2xx1-=1x1-,故选B.【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式混合运算顺序和运算法则.11.D【解析】【分析】【详解】①根据作图的过程可知,AD是∠BAC的平分线.故①正确.②如图,∵在△ABC中,∠C=90°,∠B=10°,∴∠CAB=60°.又∵AD是∠BAC的平分线,∴∠1=∠2=∠CAB=10°,∴∠1=90°﹣∠2=60°,即∠ADC=60°.故②正确.③∵∠1=∠B=10°,∴AD=BD.∴点D在AB的中垂线上.故③正确.④∵如图,在直角△ACD中,∠2=10°,∴CD=12 AD.∴BC=CD+BD=12AD+AD=32AD,S△DAC=12AC•CD=14AC•AD.∴S△ABC=12AC•BC=12AC•A32D=34AC•AD.∴S△DAC:S△ABC13AC AD?AC AD1344::⎛⎫⎛⎫=⋅⋅=⎪ ⎪⎝⎭⎝⎭.故④正确.综上所述,正确的结论是:①②③④,,共有4个.故选D. 12.D【解析】由题意得31x-+4x=0,去分母3x+4(1-x)=0,解得x=4.故选D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.相等的圆心角所对的弦相等,直径所对的圆周角是直角.【解析】【分析】根据圆内接正四边形的定义即可得到答案.【详解】到线段两端距离相等的点在这条线段的中垂线上;两点确定一条直线;互相垂直的直径将圆四等分,从而得到答案.【点睛】本题主要考查了圆内接正四边形的定义以及基本性质,解本题的要点在于熟知相关基本知识点. 14.1.【解析】【分析】由CD⊥AB,根据垂径定理得到AD=DB=8,再在Rt△OAD中,利用勾股定理计算出OD,则通过CD =OC−OD求出CD.【详解】解:∵CD⊥AB,AB=16,∴AD=DB=8,在Rt△OAD中,AB=16m,半径OA=10m,∴OD2222OA AD108-=-=6,∴CD=OC﹣OD=10﹣6=1(m).故答案为1.【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧.也考查了切线的性质定理以及勾股定理.15.50【解析】根据题意设铅直距离为x ,根据勾股定理求出x 的值,即可得到结果.【详解】解:设铅直距离为x ,根据题意得:222)100x +=,解得:50x =(负值舍去),则她实际上升了50米,故答案为:50【点睛】本题考查了解直角三角形的应用,此题关键是用同一未知数表示出下降高度和水平前进距离.16.a 1【解析】【分析】根据同底数幂的除法法则和同底数幂乘法法则进行计算即可.【详解】解:原式=a 3﹣1+1=a 1.故答案为a 1.【点睛】本题考查了同底数幂的乘除法,关键是掌握计算法则.17.2-m【解析】【分析】根据分式的运算法则先算括号里面,再作乘法亦可利用乘法对加法的分配律求解.【详解】 解:法一、()11-11m m ⎛⎫⋅- ⎪-⎝⎭ =(11m m --- 11m -) ()1m ⋅- =21m m -- ()1m ⋅- = 2-m .故答案为:2-m .法二、原式=()1111m m ⎛⎫+⋅- ⎪-⎝⎭=2-m.故答案为:2-m.【点睛】本题考查分式的加减和乘法,解决本题的关键是熟练运用运算法则或运算律.18.1 2【解析】试题分析:如图所示,一只蚂蚁从点出发后有ABD、ABE、ACE、ACF四条路,所以蚂蚁从出发到达处的概率是.考点:概率.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)B(0,1);(1)y=0.5x1﹣1x+1;(3)P1(1,0)和P1(7.15,0);【解析】【分析】(1)根据y=0.5x+m交x轴于点A,进而得出m的值,再利用与y轴交于点B,即可得出B点坐标;(1)二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1.得出可设二次函数y=ax1+bx+c=a(x ﹣1)1,进而求出即可;(3)根据当B为直角顶点,当D为直角顶点时,分别利用三角形相似对应边成比例求出即可.【详解】(1)∵y=12x+1交x轴于点A(﹣4,0),∴0=12×(﹣4)+m,∴m=1,与y轴交于点B,∵x=0,∴y=1∴B点坐标为:(0,1),(1)∵二次函数y=ax1+bx+c的图象与x轴只有唯一的交点C,且OC=1 ∴可设二次函数y=a(x﹣1)1把B(0,1)代入得:a=0.5∴二次函数的解析式:y=0.5x1﹣1x+1;(3)(Ⅰ)当B为直角顶点时,过B作BP1⊥AD交x轴于P1点由Rt△AOB∽Rt△BOP1∴1AO BO BO OP =,∴1422OP =, 得:OP 1=1,∴P 1(1,0),(Ⅱ)作P 1D ⊥BD ,连接BP 1,将y=0.5x+1与y=0.5x 1﹣1x+1联立求出两函数交点坐标: D 点坐标为:(5,4.5),则AD=952, 当D 为直角顶点时∵∠DAP 1=∠BAO ,∠BOA=∠ADP 1,∴△ABO ∽△AP 1D ,∴2AB AO AP AD =,22595AP = , 解得:AP 1=11.15,则OP 1=11.15﹣4=7.15,故P 1点坐标为(7.15,0);∴点P 的坐标为:P 1(1,0)和P 1(7.15,0).【点睛】此题主要考查了二次函数综合应用以及求函数与坐标轴交点和相似三角形的与性质等知识,根据已知进行分类讨论得出所有结果,注意不要漏解.20.(1)(﹣2,3,(﹣10,16﹣3,(2a ,b ﹣32a );(2)见解析;(3)直线PP'与x 轴的交3,0)【解析】【分析】(1)①当P(-4,2)时,OA=2,PA=4,由旋转知,∠P'AH=30°,进而P'H=12P'A=2,AH=3P'H=23,即可得出结论;②当P'(-5,16)时,确定出P'A=10,AH=53,由旋转知,PA=PA'=10,OA=OH-AH=16-53,即可得出结论;③当P(a,b)时,同①的方法得,即可得出结论;(2)先判断出∠BQQ'=60°,进而得出∠PAP'=∠PP'A=60°,即可得出∠P'QQ'=∠PAP'=60°,即可得出结论;(3)先确定出y PP'=3x+3,即可得出结论.【详解】解:(1)如图1,①当P(﹣4,2)时,∵PA⊥y轴,∴∠PAH=90°,OA=2,PA=4,由旋转知,P'A=4,∠PAP'=60°,∴∠P'AH=30°,在Rt△P'AH中,P'H=12P'A=2,∴33∴3,∴P'(﹣2,3,②当P'(﹣5,16)时,在Rt△P'AH中,∠P'AH=30°,P'H=5,∴P'A=10,3,由旋转知,PA=PA'=10,OA=OH﹣AH=16﹣3∴P(﹣10,16﹣3,③当P (a ,b )时,同①的方法得,P'(a 2,b ﹣32a ), 故答案为:(﹣2,2+23),(﹣10,16﹣53),(2a ,b ﹣32a ); (2)如图2,过点Q 作QB ⊥y 轴于B ,∴∠BQQ'=60°,由题意知,△PAP'是等边三角形,∴∠PAP'=∠PP'A=60°,∵QB ⊥y 轴,PA ⊥y 轴,∴QB ∥PA ,∴∠P'QQ'=∠PAP'=60°,∴∠P'QQ'=60°=∠PP'A ,∴PP'∥QQ';(3)设y PP '=kx+b',由题意知,k=3,∵直线经过点(3,6),∴b'=3,∴y PP '=3x+3,令y=0,∴x=3∴直线PP'与x 30).【点睛】此题是几何变换综合题,主要考查了含30度角的直角三角形的性质,旋转的性质,等边三角形的判定和性质,待定系数法,解本题的关键是理解新定义.21.(1)当4≤x≤6时,w 1=﹣x 2+12x ﹣35,当6≤x≤8时,w 2=﹣12x 2+7x ﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:44 62 k bk b+=⎧⎨+=⎩,解得:18kb=-⎧⎨=⎩,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣12x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣12x+5)﹣3=﹣12x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣12x2+7x﹣23=﹣12(x﹣7)2+32,当x=7时,w2取最大值是1.5,∴101.5=203=623,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.22.旗杆AB的高度为6.4米.【解析】分析:(1)根据坡度i与坡角α之间的关系为:i=tanα进行计算;(2)根据余弦的概念求出CD,根据正切的概念求出AG、BG,计算即可.本题解析:(1)∵斜坡BC 的坡度i=1:3,∴tan ∠BCD=33BD DC =, ∴∠BCD=30°;(2)在Rt △BCD 中,CD=BC×cos ∠BCD=63×3=9, 则DF=DC+CF=10(米),∵四边形GDFE 为矩形,∴GE=DF=10(米), ∵∠AEG=45°,∴AG=DE=10(米),在Rt △BEG 中,BG=GE×tan ∠BEG=10×0.36=3.6(米), 则AB=AG−BG=10−3.6=6.4(米).答:旗杆AB 的高度为6.4米。

重庆市长寿区2019-2020学年第三次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第三次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,线段AB 是直线y=4x+2的一部分,点A 是直线与y 轴的交点,点B 的纵坐标为6,曲线BC 是双曲线y=kx的一部分,点C 的横坐标为6,由点C 开始不断重复“A ﹣B ﹣C”的过程,形成一组波浪线.点P (2017,m )与Q (2020,n )均在该波浪线上,分别过P 、Q 两点向x 轴作垂线段,垂足为点D 和E ,则四边形PDEQ 的面积是( )A .10B .212C .454D .152.二次函数y =ax 2+c 的图象如图所示,正比例函数y =ax 与反比例函数y =cx在同一坐标系中的图象可能是( )A .B .C .D .3.已知正比例函数(0)y kx k =≠的图象经过点(1,3)-,则此正比例函数的关系式为( ). A .3y x =-B .3y x =C .13y x =D .13y x =-4.如图,△ABC 的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y =kx在第一象限内的图象与△ABC 有交点,则k 的取值范围是( )A .1≤k≤4B .2≤k≤8C .2≤k≤16D .8≤k≤165.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120o ∠=,AB 8=,则点A 到BC 的距离是()A .4B .43C .5D .66.下列各式属于最简二次根式的有( ) A .8B .21x +C .3yD .127.下列运算正确的是( ) A .3a 2﹣2a 2=1B .a 2•a 3=a 6C .(a ﹣b )2=a 2﹣b 2D .(a+b )2=a 2+2ab+b 28.下面四个立体图形,从正面、左面、上面对空都不可能看到长方形的是( )A .B .C .D .9.如图,AB ∥CD ,FH 平分∠BFG ,∠EFB =58°,则下列说法错误的是( )A .∠EGD =58°B .GF =GHC .∠FHG =61°D .FG =FH10.如图图形中,可以看作中心对称图形的是( )A .B .C .D .11.如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是( )A .该班总人数为50B .步行人数为30C .乘车人数是骑车人数的2.5倍D .骑车人数占20%12.在平面直角坐标系xOy 中,二次函数y=ax 2+bx+c (a≠0)的大致图象如图所示,则下列结论正确的是( )A .a <0,b <0,c >0B .﹣2b a=1 C .a+b+c <0D .关于x 的方程ax 2+bx+c=﹣1有两个不相等的实数根 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在Rt △ABC 中,∠C=90°,∠A=30°,BC=2,⊙C 的半径为1,点P 是斜边AB 上的点,过点P 作⊙C 的一条切线PQ (点Q 是切点),则线段PQ 的最小值为_____.14.口袋中装有4个小球,其中红球3个,黄球1个,从中随机摸出两球,都是红球的概率为_________. 15.如果m ,n 互为相反数,那么|m+n ﹣2016|=___________.16.如图,小红作出了边长为1的第1个正△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2,B 2,C 2,作出了第2个正△A 2B 2C 2,算出了正△A 2B 2C 2的面积,用同样的方法,作出了第3个正△A 3B 3C 3,算出了正△A 3B 3C 3的面积…,由此可得,第8个正△A 8B 8C 8的面积是_____.17.如图,已知⊙O 1与⊙O 2相交于A 、B 两点,延长连心线O 1O 2交⊙O 2于点P ,联结PA 、PB ,若∠APB=60°,AP=6,那么⊙O2的半径等于________.18.股市规定:股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后两天时间又涨回到原价,若这两天此股票股价的平均增长率为x,则x满足的方程是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,Rt△ABC中,∠C=90°,AB=14,AC=7,D是BC上一点,BD=8,DE⊥AB,垂足为E,求线段DE的长.20.(6分)某校学生会准备调查六年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到六年级(1)班去调查全体同学”;乙同学说:“放学时我到校门口随机调查部分同学”;丙同学说:“我到六年级每个班随机调查一定数量的同学”.请指出哪位同学的调查方式最合理.类别频数(人数)频率武术类0.25书画类20 0.20棋牌类15 b器乐类合计 a 1.00(2)他们采用了最为合理的调查方法收集数据,并绘制了如图所示的统计表和扇形统计图.请你根据以上图表提供的信息解答下列问题:①a=_____,b=_____;②在扇形统计图中,器乐类所对应扇形的圆心角的度数是_____;③若该校六年级有学生560人,请你估计大约有多少学生参加武术类校本课程.21.(6分)已知关于x ,y 的二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩的解为11x y =⎧⎨=-⎩,求a 、b 的值. 22.(8分)如图,点A 的坐标为(﹣4,0),点B 的坐标为(0,﹣2),把点A 绕点B 顺时针旋转90°得到的点C 恰好在抛物线y=ax 2上,点P 是抛物线y=ax 2上的一个动点(不与点O 重合),把点P 向下平移2个单位得到动点Q ,则:(1)直接写出AB 所在直线的解析式、点C 的坐标、a 的值;(2)连接OP 、AQ ,当OP+AQ 获得最小值时,求这个最小值及此时点P 的坐标;(3)是否存在这样的点P ,使得∠QPO=∠OBC ,若不存在,请说明理由;若存在,请你直接写出此时P 点的坐标.23.(8分)如图,已知在Rt △ABC 中,∠ACB=90°,AC >BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .求证:DF 是BF 和CF 的比例中项;在AB 上取一点G ,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .24.(10分)如图所示,直线y=12x+2与双曲线y=kx相交于点A(2,n),与x 轴交于点C . (1)求双曲线解析式;(2)点P 在x 轴上,如果△ACP 的面积为5,求点P 的坐标.25.(10分)某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.1()求甲、乙两种商品的每件进价;2()该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变.要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?26.(12分)如图,四边形ABCD ,AD ∥BC ,DC ⊥BC 于C 点,AE ⊥BD 于E ,且DB =DA .求证:AE =CD .27.(12分)如图,矩形ABCD 的两边AD 、AB 的长分别为3、8,E 是DC 的中点,反比例函数my x=的图象经过点E ,与AB 交于点F .若点B 坐标为(6,0)-,求m 的值及图象经过A 、E 两点的一次函数的表达式;若2AF AE -=,求反比例函数的表达式.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.C 【解析】 【分析】A ,C 之间的距离为6,点Q 与点P 的水平距离为3,进而得到A ,B 之间的水平距离为1,且k=6,根据四边形PDEQ 的面积为()6 1.534524+⨯=,即可得到四边形PDEQ 的面积.【详解】A ,C 之间的距离为6,2017÷6=336…1,故点P 离x 轴的距离与点B 离x 轴的距离相同, 在y=4x+2中,当y=6时,x=1,即点P 离x 轴的距离为6, ∴m=6,2020﹣2017=3,故点Q 与点P 的水平距离为3, ∵6,1k=解得k=6, 双曲线6,y x= 1+3=4,63,42y == 即点Q 离x 轴的距离为32, ∴32n =,∵四边形PDEQ 的面积是()6 1.534524+⨯=.故选:C . 【点睛】考查了反比例函数的图象与性质,平行四边形的面积,综合性比较强,难度较大. 2.C 【解析】 【分析】根据二次函数图像位置确定a <0,c >0,即可确定正比例函数和反比例函数图像位置. 【详解】解:由二次函数的图像可知a <0,c >0,∴正比例函数过二四象限,反比例函数过一三象限. 故选C.【点睛】本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.3.A【解析】【分析】根据待定系数法即可求得.【详解】解:∵正比例函数y=kx的图象经过点(1,﹣3),∴﹣3=k,即k=﹣3,∴该正比例函数的解析式为:y=﹣3x.故选A.【点睛】此类题目需灵活运用待定系数法建立函数解析式,然后将点的坐标代入解析式,利用方程解决问题.4.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.5.A【解析】【分析】作AH BC⊥于H.利用直角三角形30度角的性质即可解决问题.【详解】解:作AH BC⊥于H.DEQ垂直平分线段AB,EA EB∴=,EAB EBA ∠∠∴=,AEB 120∠=o Q , EAB ABE 30∠∠∴==o ,AE //BC Q ,EAB ABH 30o ∠∠∴==, AHB 90∠=o Q ,AB 8=,1AH AB 42∴==, 故选A . 【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 6.B 【解析】 【分析】先根据二次根式的性质化简,再根据最简二次根式的定义判断即可. 【详解】A =A 选项错误;B 是最简二次根式,故B 选项正确;C =D =D 选项错误; 故选:B . 【点睛】考查了对最简二次根式的定义的理解,能理解最简二次根式的定义是解此题的关键. 7.D 【解析】 【分析】根据合并同类项法则,可知3a 2﹣2a 2= a 2,故不正确; 根据同底数幂相乘,可知a 2•a 3=a 5,故不正确;根据完全平方公式,可知(a ﹣b )2=a 2﹣2ab+b 2,故不正确; 根据完全平方公式,可知(a+b )2=a 2+2ab+b 2,正确.故选D. 【详解】 请在此输入详解! 8.B 【解析】 【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形依此找到从正面、左面、上面观察都不可能看到长方形的图形. 【详解】解:A 、主视图为三角形,左视图为三角形,俯视图为有对角线的矩形,故本选项错误;B 、主视图为等腰三角形,左视图为等腰三角形,俯视图为圆,从正面、左面、上面观察都不可能看到长方形,故本选项正确;C 、主视图为长方形,左视图为长方形,俯视图为圆,故本选项错误;D 、主视图为长方形,左视图为长方形,俯视图为长方形,故本选项错误. 故选:B . 【点睛】本题重点考查三视图的定义以及考查学生的空间想象能力. 9.D 【解析】 【分析】根据平行线的性质以及角平分线的定义,即可得到正确的结论. 【详解】解:AB CD EFB 58∠︒Q P ,=,EGD 58=∠∴︒,故A 选项正确;FH BFG ∠Q 平分, BFH GFH ∠∠∴=, 又AB CD Q P BFH GHF ∠∠∴=, GFH GHF ∠∠∴=,GF GH =,∴故B 选项正确; BFE 58FH ∠︒Q =,平分BFG ∠, ()118058612BFH ︒︒︒∴∠=-=, AB CD Q PBFH GHF 61∠∠∴︒==,故C 选项正确;FGH FHG ∠∠≠Q ,FG FH ∴≠,故D 选项错误;故选D .【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等;两直线平行,内错角相等. 10.D【解析】【分析】根据 把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A 、不是中心对称图形,故此选项不合题意;B 、不是中心对称图形,故此选项不合题意;C 、不是中心对称图形,故此选项不合题意;D 、是中心对称图形,故此选项符合题意;故选D .【点睛】此题主要考查了中心对称图形,关键掌握中心对称图形定义.11.B【解析】【分析】根据乘车人数是25人,而乘车人数所占的比例是50%,即可求得总人数,然后根据百分比的含义即可求得步行的人数,以及骑车人数所占的比例.【详解】A 、总人数是:25÷50%=50(人),故A 正确;B 、步行的人数是:50×30%=15(人),故B 错误;C 、乘车人数是骑车人数倍数是:50%÷20%=2.5,故C 正确;D 、骑车人数所占的比例是:1-50%-30%=20%,故D 正确.由于该题选择错误的,故选B .【点睛】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.12.D【解析】试题分析:根据图像可得:a <0,b >0,c <0,则A 错误;12b a ->,则B 错误;当x=1时,y=0,即a+b+c=0,则C 错误;当y=-1时有两个交点,即2ax bx c 1++=-有两个不相等的实数根,则正确,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2 .【解析】【分析】当PC ⊥AB 时,线段PQ 最短;连接CP 、CQ ,根据勾股定理知PQ 2=CP 2﹣CQ 2,先求出CP 的长,然后由勾股定理即可求得答案.【详解】连接CP 、CQ ;如图所示:∵PQ 是⊙C 的切线,∴CQ ⊥PQ ,∠CQP=90°,根据勾股定理得:PQ 2=CP 2﹣CQ 2,∴当PC ⊥AB 时,线段PQ 最短.∵在Rt △ACB 中,∠A=30°,BC=2,∴AB=2BC=4,AC=23,∴CP=AC BC AB ⋅=232⨯=3,∴PQ=22CP CQ -=312-=,∴PQ 的最小值是2.故答案为:2.【点睛】本题考查了切线的性质以及勾股定理的运用;注意掌握辅助线的作法,注意当PC ⊥AB 时,线段PQ 最短是关键.14.12 【解析】【分析】先画出树状图,用随意摸出两个球是红球的结果个数除以所有可能的结果个数即可.【详解】∵从中随意摸出两个球的所有可能的结果个数是12,随意摸出两个球是红球的结果个数是6,∴从中随意摸出两个球的概率=61=122; 故答案为:12.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.15.1.【解析】试题分析:先用相反数的意义确定出m+n=0,从而求出|m+n ﹣1|,∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣1|=|﹣1|=1;故答案为1.考点:1.绝对值的意义;2.相反数的性质.16.834【解析】【分析】根据相似三角形的性质,先求出正△A 2B 2C 2,正△A 3B 3C 3的面积,依此类推△A n B n C n 的面积是,从而求出第8个正△A 8B 8C 8的面积.【详解】正△A 1B 1C 1的面积是4, 而△A 2B 2C 2与△A 1B 1C 1相似,并且相似比是1:2,则面积的比是,则正△A 2B 2C 2×14;因而正△A 3B 3C 3与正△A 2B 2C 2的面积的比也是14,面积是(14)2;依此类推△A n B n C n 与△A n-1B n-1C n-1的面积的比是14,第n 个三角形的面积是4(14)n-1.所以第8个正△A 8B 8C 8的面积是4×(14)7=84.【点睛】 本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.17.【解析】【分析】由题意得出△ABP 为等边三角形,在Rt △ACO 2中,AO 2=AC sin 60︒即可. 【详解】由题意易知:PO 1⊥AB ,∵∠APB=60°∴△ABP 为等边三角形,AC=BC=3∴圆心角∠AO 2O 1=60° ∴在Rt △ACO 2中,AO 2=AC sin 60︒.故答案为.【点睛】本题考查的知识点是圆的性质,解题的关键是熟练的掌握圆的性质.18.2(110%)(1)1x -+=.【解析】【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,设这两天此股票股价的平均增长率为x ,每天相对于前一天就上涨到1+x ,由此列出方程解答即可.【详解】设这两天此股票股价的平均增长率为x ,由题意得(1﹣10%)(1+x )2=1.故答案为:(1﹣10%)(1+x )2=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1.【解析】试题分析:根据相似三角形的判定与性质,可得答案.试题解析:∵DE ⊥AB ,∴∠BED=90°,又∠C=90°,∴∠BED=∠C .又∠B=∠B ,∴△BED ∽△BCA ,∴,∴DE===1. 考点:相似三角形的判定与性质.20.(1)见解析; (2)① a=100,b=0.15; ②144°;③140人. 【解析】【分析】(1)采用随机调查的方式比较合理,随机调查的关键是调查的随机性,这样才合理;(2)①用喜欢书画类的频数除以喜欢书画类的频率即可求得a 值,用喜欢棋牌类的人数除以总人数即可求得b 值.②求得器乐类的频率乘以360°即可.③用总人数乘以喜欢武术类的频率即可求喜欢武术的总人数.【详解】(1)∵调查的人数较多,范围较大,∴应当采用随机抽样调查,∵到六年级每个班随机调查一定数量的同学相对比较全面,∴丙同学的说法最合理.(2)①∵喜欢书画类的有20人,频率为0.20,∴a=20÷0.20=100,b=15÷100=0.15;②∵喜欢器乐类的频率为:1﹣0.25﹣0.20﹣0.15=0.4,∴喜欢器乐类所对应的扇形的圆心角的度数为:360×0.4=144°;③喜欢武术类的人数为:560×0.25=140人.【点睛】本题考查了用样本估计总体和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.21.12a b =-⎧⎨=-⎩或21a b =⎧⎨=⎩【解析】【分析】把11x y =⎧⎨=-⎩代入二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩得到关于a ,b 的方程组,经过整理,得到关于b 的一元二次方程,解之即可得到b 的值,把b 的值代入一个关于a ,b 的二元一次方程,求出a 的值,即可得到答案.【详解】把11x y =⎧⎨=-⎩代入二元一次方程组2213ax by a x b y ab +=⎧⎨-=+⎩得: 2213a b a b ab ①②-=⎧⎨+=+⎩, 由①得:a=1+b ,把a=1+b 代入②,整理得:b 2+b-2=0,解得:b= -2或b=1,把b= -2代入①得:a+2=1,解得:a= -1,把b=1代入①得:a-1=1,解得:a=2,即12a b =-⎧⎨=-⎩或21a b =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解,正确掌握代入法是解题的关键.22.(1)a=12;(2)OP+AQ 的最小值为P 的坐标为(﹣1,12);(3)P (﹣4,8)或(4,8),【解析】【分析】(1)利用待定系数法求出直线AB 解析式,根据旋转性质确定出C 的坐标,代入二次函数解析式求出a 的值即可;(2)连接BQ,可得PQ与OB平行,而PQ=OB,得到四边形PQBO为平行四边形,当Q在线段AB上时,求出OP+AQ的最小值,并求出此时P的坐标即可;(3)存在这样的点P,使得∠QPO=∠OBC,如备用图所示,延长PQ交x轴于点H,设此时点P的坐标为(m,1 2 m2),根据正切函数定义确定出m的值,即可确定出P的坐标.【详解】解:(1)设直线AB解析式为y=kx+b,把A(﹣4,0),B(0,﹣2)代入得:402k bb-+=⎧⎨=-⎩,解得:122kb⎧=-⎪⎨⎪=-⎩,∴直线AB的解析式为y=﹣12x﹣2,根据题意得:点C的坐标为(2,2),把C(2,2)代入二次函数解析式得:a=12;(2)连接BQ,则易得PQ∥OB,且PQ=OB,∴四边形PQBO是平行四边形,∴OP=BQ,∴5(等号成立的条件是点Q在线段AB上),∵直线AB的解析式为y=﹣12x﹣2,∴可设此时点Q的坐标为(t,﹣12t﹣2),于是,此时点P的坐标为(t,﹣12t),∵点P在抛物线y=12x2上,∴﹣12t=12t2,解得:t=0或t=﹣1,∴当t=0,点P 与点O 重合,不合题意,应舍去,∴OP+AQ 的最小值为25,此时点P 的坐标为(﹣1,12); (3)P (﹣4,8)或(4,8), 如备用图所示,延长PQ 交x 轴于点H ,设此时点P 的坐标为(m ,12m 2), 则tan ∠HPO=2212m OH PH m m ==, 又,易得tan ∠OBC=12, 当tan ∠HPO=tan ∠OBC 时,可使得∠QPO=∠OBC ,于是,得212m =, 解得:m=±4, 所以P (﹣4,8)或(4,8).【点睛】此题属于二次函数综合题,涉及的知识有:二次函数的图象与性质,待定系数法求一次函数解析式,旋转的性质,以及锐角三角函数定义,熟练掌握各自的性质是解本题的关键.23.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD ,再根据∠BFD=∠DFC ,证明△BFD ∽△DFC ,从而得BF :DF=DF :FC ,进行变形即得;(2)由已知证明△AEG ∽△ADC ,得到∠AEG=∠ADC=90°,从而得EG ∥BC ,继而得EG BF ED DF = , 由(1)可得BF DF DF CF = ,从而得EG DF ED CF= ,问题得证. 试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD 是Rt △ABC 的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD ,∵E 是AC 的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.24.(1)6yx=;(2)(23-,0)或22,03⎛⎫- ⎪⎝⎭【解析】【分析】(1)把A点坐标代入直线解析式可求得n的值,则可求得A点坐标,再把A点坐标代入双曲线解析式可求得k的值,可求得双曲线解析式;(2)设P(x,0),则可表示出PC的长,进一步表示出△ACP的面积,可得到关于x的方程,解方程可求得P点的坐标.【详解】解:(1)把A(2,n)代入直线解析式得:n=3,∴A(2,3),把A坐标代入y=kx,得k=6,则双曲线解析式为y=6x.(2)对于直线y=12x+2,令y=0,得到x=-4,即C (-4,0).设P (x ,0),可得PC=|x+4|.∵△ACP 面积为5, ∴12|x+4|•3=5,即|x+4|=2, 解得:x=-23或x=-223, 则P 坐标为203⎛⎫- ⎪⎝⎭,或2203⎛⎫- ⎪⎝⎭,. 25.()1 甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲种商品按原销售单价至少销售20件.【解析】【分析】()1设甲种商品的每件进价为x 元,乙种商品的每件进价为(x+8))元.根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元.购进的甲、乙两种商品件数相同”列出方程进行求解即可;()2设甲种商品按原销售单价销售a 件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.【详解】()1设甲种商品的每件进价为x 元,则乙种商品的每件进价为()x 8+元, 根据题意得,20002400x x 8=+, 解得x 40=,经检验,x 40=是原方程的解,答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;()2甲乙两种商品的销售量为20005040=, 设甲种商品按原销售单价销售a 件,则()()()()6040a 600.74050a 8848502460-+⨯--+-⨯≥,解得a 20≥,答:甲种商品按原销售单价至少销售20件.【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.26.证明见解析.【解析】【分析】由AD ∥BC 得∠ADB =∠DBC,根据已知证明△AED ≌△DCB (AAS ),即可解题.【详解】解:∵AD ∥BC∴∠ADB =∠DBC∵DC ⊥BC 于点C ,AE ⊥BD 于点E∴∠C =∠AED =90°又∵DB =DA∴△AED ≌△DCB (AAS )∴AE =CD【点睛】本题考查了三角形全等的判定和性质,属于简单题,证明三角形全等是解题关键.27.(1)12=-m ,43y x =-;(2)4y x =-. 【解析】分析:(1)由已知求出A 、E 的坐标,即可得出m 的值和一次函数函数的解析式;(2)由34AD DE ==,,得到5AE =,由2AF AE -=,得到71AF BF ,==.设E 点坐标为()4a ,,则点F 坐标为()31a -,,代入反比例函数解析式即可得到结论.详解:(1)∵()6038B AD AB E -==,,,,为CD 的中点, ∴()()3468E A --,,,. ∵反比例函数图象过点()34E ,-, ∴3412m =-⨯=-.设图象经过A 、E 两点的一次函数表达式为:y kx b =+,∴6834k b k b -+=⎧⎨-+=⎩, 解得430k b ⎧=-⎪⎨⎪=⎩:, ∴43y x =-. (2)∵34AD DE ==,,∴5AE =.∵2AF AE -=,∴7AF =,∴1BF =.设E 点坐标为()4a ,,则点F 坐标为()31a -,.∵E F ,两点在m y x=图象上, ∴43a a =-,解得:1a =-, ∴()14E -,, ∴4m =-,∴4y x=-.点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A 、E 、F 的坐标.。

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷含解析

重庆市长寿区2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.小红上学要经过三个十字路口,每个路口遇到红、绿灯的机会都相同,小红希望小学时经过每个路口都是绿灯,但实际这样的机会是()A.12B.18C.38D.111222++2.如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是()A.B.C.D.3.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:x …–2 –1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的4.在以下四个图案中,是轴对称图形的是()A.B.C.D.5.从标号分别为1,2,3,4,5的5张卡片中随机抽取1张,下列事件中不可能事件是()A.标号是2 B.标号小于6 C.标号为6 D.标号为偶数6.制作一块3m×2m长方形广告牌的成本是120元,在每平方米制作成本相同的情况下,若将此广告牌的四边都扩大为原来的3倍,那么扩大后长方形广告牌的成本是()A.360元B.720元C.1080元D.2160元7.如图,P为⊙O外一点,PA、PB分别切⊙O于点A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=6,则△PCD的周长为()A.8 B.6 C.12 D.108.已知二次函数y=(x+a)(x﹣a﹣1),点P(x0,m),点Q(1,n)都在该函数图象上,若m<n,则x0的取值范围是()A.0≤x0≤1B.0<x0<1且x0≠1 2C.x0<0或x0>1 D.0<x0<19.下列图形是几家通讯公司的标志,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.10.如图,PA、PB切⊙O于A、B两点,AC是⊙O的直径,∠P=40°,则∠ACB度数是()A.50°B.60°C.70°D.80°11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.已知圆心在原点O,半径为5的⊙O,则点P(-3,4)与⊙O的位置关系是()A.在⊙O内B.在⊙O上C.在⊙O外D.不能确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2(a-b)+3b=___________.14.将直线y=x+b沿y轴向下平移3个单位长度,点A(-1,2)关于y轴的对称点落在平移后的直线上,则b的值为____.15.分解因式:a2b+4ab+4b=______.16.如图,点A1,B1,C1,D1,E1,F1分别是正六边形ABCDEF六条边的中点,连接AB1,BC1,CD1,DE1,EF1,FA1后得到六边形GHIJKL,则S六边形GHIJKI:S六边形ABCDEF的值为____.17.如图,A 、B 是双曲线y=kx上的两点,过A 点作AC ⊥x 轴,交OB 于D 点,垂足为C .若D 为OB 的中点,△ADO 的面积为3,则k 的值为_____.18.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,点E 是线段BO 上的一个动点,点F 为射线DC 上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF 可能的整数值是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简:224424242x x x x x x -+-⎛⎫÷-+ ⎪-+⎝⎭,然后从67x -<<的范围内选取一个合适的整数作为x 的值代入求值.20.(6分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.21.(6分)如图,在△ABC 中,BC =12,tanA =34,∠B =30°;求AC 和AB 的长.22.(8分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的中点,O e 的半径为2,求AB 的长.23.(8分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC 与支架AC 所成的角∠ACB=75°,支架AF 的长为2.50米米,篮板顶端F 点到篮框D 的距离FD=1.35米,篮板底部支架HF 与支架AF 所成的角∠FHE=60°,求篮框D 到地面的距离(精确到0.01米). (参考数据:cos75°≈0.2588, sin75°≈0.9659,tan75°≈3.732,3 1.732≈,2 1.414≈)24.(10分)如图,⊙O 的直径AD 长为6,AB 是弦,CD ∥AB ,∠A=30°,且CD=3. (1)求∠C 的度数;(2)求证:BC 是⊙O 的切线.25.(10分)在平面直角坐标系xOy 中,已知两点A (0,3),B (1,0),现将线段AB 绕点B 按顺时针方向旋转90°得到线段BC ,抛物线y=ax 2+bx+c 经过点C . (1)如图1,若抛物线经过点A 和D (﹣2,0). ①求点C 的坐标及该抛物线解析式;②在抛物线上是否存在点P ,使得∠POB=∠BAO ,若存在,请求出所有满足条件的点P 的坐标,若不存在,请说明理由;(2)如图2,若该抛物线y=ax 2+bx+c (a <0)经过点E (2,1),点Q 在抛物线上,且满足∠QOB=∠BAO ,若符合条件的Q 点恰好有2个,请直接写出a 的取值范围.26.(12分)如图,已知BD是△ABC的角平分线,点E、F分别在边AB、BC上,ED∥BC,EF∥AC.求证:BE=CF.27.(12分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A型和B型两行环保节能公交车共10辆,若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元,求购买A型和B型公交车每辆各需多少万元?预计在该条线路上A 型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:列举出所有情况,看各路口都是绿灯的情况占总情况的多少即可.详解:画树状图,得∴共有8种情况,经过每个路口都是绿灯的有一种,∴实际这样的机会是1 8 .故选B.点睛:此题考查了树状图法求概率,树状图法适用于三步或三步以上完成的事件,解题时要注意列出所有的情形.用到的知识点为:概率=所求情况数与总情况数之比.2.A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图.详解:该几何体的左视图是:故选A.点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力.3.C【解析】当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.4.A【解析】【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【详解】A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.【点睛】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.C【解析】【分析】利用随机事件以及必然事件和不可能事件的定义依次分析即可解答.【详解】选项A、标号是2是随机事件;选项B、该卡标号小于6是必然事件;选项C、标号为6是不可能事件;选项D、该卡标号是偶数是随机事件;故选C.【点睛】本题考查了随机事件以及必然事件和不可能事件的定义,正确把握相关定义是解题关键.6.C【解析】【分析】根据题意求出长方形广告牌每平方米的成本,根据相似多边形的性质求出扩大后长方形广告牌的面积,计算即可.【详解】3m×2m=6m2,∴长方形广告牌的成本是120÷6=20元/m2,将此广告牌的四边都扩大为原来的3倍,则面积扩大为原来的9倍,∴扩大后长方形广告牌的面积=9×6=54m 2, ∴扩大后长方形广告牌的成本是54×20=1080元, 故选C . 【点睛】本题考查的是相似多边形的性质,掌握相似多边形的面积比等于相似比的平方是解题的关键. 7.C 【解析】 【分析】由切线长定理可求得PA =PB ,AC =CE ,BD =ED ,则可求得答案. 【详解】∵PA 、PB 分别切⊙O 于点A 、B ,CD 切⊙O 于点E , ∴PA =PB =6,AC =EC ,BD =ED ,∴PC+CD+PD =PC+CE+DE+PD =PA+AC+PD+BD =PA+PB =6+6=12, 即△PCD 的周长为12, 故选:C . 【点睛】本题主要考查切线的性质,利用切线长定理求得PA =PB 、AC =CE 和BD =ED 是解题的关键. 8.D 【解析】分析:先求出二次函数的对称轴,然后再分两种情况讨论,即可解答.详解:二次函数y=(x+a )(x ﹣a ﹣1),当y=0时,x 1=﹣a ,x 2=a+1,∴对称轴为:x=122x x =12 当P 在对称轴的左侧(含顶点)时,y 随x 的增大而减小,由m <n ,得:0<x 0≤12;当P 在对称轴的右侧时,y 随x 的增大而增大,由m <n ,得:12<x 0<1.综上所述:m <n ,所求x 0的取值范围0<x 0<1. 故选D .点睛:本题考查了二次函数图象上点的坐标特征,解决本题的关键是利用二次函数的性质,要分类讨论,以防遗漏. 9.C 【解析】 【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .不是轴对称图形,也不是中心对称图形.故错误;B .不是轴对称图形,也不是中心对称图形.故错误;C .是轴对称图形,也是中心对称图形.故正确;D .不是轴对称图形,是中心对称图形.故错误. 故选C . 【点睛】掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合; 中心对称图形是要寻找对称中心,旋转180°后与原图重合. 10.C 【解析】 【分析】连接BC ,根据题意PA ,PB 是圆的切线以及P 40∠=︒可得AOB ∠的度数,然后根据OA OB =,可得CAB ∠的度数,因为AC 是圆的直径,所以ABC 90∠=︒,根据三角形内角和即可求出ACB ∠的度数。

【精选3份合集】重庆市长寿区2019年中考一模数学试卷有答案含解析

【精选3份合集】重庆市长寿区2019年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=13CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.10 解析:C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=12AB=1.又CE=13 CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.2.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB=25°,延长AC 至点M ,则∠BCM 的度数为( )A .40°B .50°C .60°D .70°解析:B【解析】【详解】 解:∵由作法可知直线l 是线段AB 的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B .3.如图,在△ABC 中,DE∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AE DB EC = B .AB AC AD AE = C .AC EC AB DB = D .AD DE DB BC= 解析:D【解析】 【分析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论.【详解】由DE∥BC,可得△ADE∽△ABC,并可得:AD AE DB EC =,AB AC AD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D .【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质.4.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )A.B.C.D.解析:B【解析】试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.考点:三视图.5.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A.B.C.D.解析:B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.6.如图所示是小孔成像原理的示意图,根据图中所标注的尺寸,求出这支蜡烛在暗盒中所成像CD的长()A.16cm B.13cm C.12cm D.1cm解析:D【解析】【分析】过O作直线OE⊥AB,交CD于F,由CD//AB可得△OAB∽△OCD,根据相似三角形对应边的比等于对应高的比列方程求出CD的值即可.【详解】过O作直线OE⊥AB,交CD于F,∵AB//CD,∴OF⊥CD,OE=12,OF=2,∴△OAB∽△OCD,∵OE、OF分别是△OAB和△OCD的高,∴OF CDOE AB=,即2126CD=,解得:CD=1.故选D.【点睛】本题考查相似三角形的应用,解题的关键在于理解小孔成像原理给我们带来的已知条件,熟记相似三角形对应边的比等于对应高的比是解题关键.7.如图,钓鱼竿AC长6m,露在水面上的鱼线BC长32m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B′C′为33m,则鱼竿转过的角度是()A.60°B.45°C.15°D.90°解析:C【解析】试题解析:∵sin∠CAB=322 BCAC==∴∠CAB=45°.∵33362B C sin C AB AC '''∠===', ∴∠C′AB′=60°.∴∠CAC′=60°-45°=15°,鱼竿转过的角度是15°.故选C .考点:解直角三角形的应用.8.如图,⊙O 的直径AB 垂直于弦CD ,垂足为E.若60B ∠=︒,AC=3,则CD 的长为A .6B .23C .3D .3解析:D【解析】【详解】 解:因为AB 是⊙O 的直径,所以∠ACB=90°,又⊙O 的直径AB 垂直于弦CD ,60B ∠=︒,所以在Rt△AEC 中,∠A=30°,又AC=3,所以CE=12AB=32,所以CD=2CE=3, 故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .B .C .D . 解析:A【解析】若设走路线一时的平均速度为x 千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可。

重庆市长寿区2019-2020学年中考数学仿真第一次备考试题含解析

重庆市长寿区2019-2020学年中考数学仿真第一次备考试题含解析

重庆市长寿区2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.2.对于一组统计数据1,1,6,5,1.下列说法错误的是()A.众数是1 B.平均数是4 C.方差是1.6 D.中位数是63.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)4.一次函数y=ax+b与反比例函数a byx-=,其中ab<0,a、b为常数,它们在同一坐标系中的图象可以是()A.B.C.D.5.若分式242xx-+的值为0,则x的值为()A.-2 B.0 C.2 D.±26.如图,AB是⊙O的直径,D,E是半圆上任意两点,连接AD,DE,AE与BD相交于点C,要使△ADC 与△BDA相似,可以添加一个条件.下列添加的条件中错误的是( )A.∠ACD=∠DAB B.AD=DE C.AD·AB=CD·BD D.AD2=BD·CD7.A,B两地相距48千米,一艘轮船从A地顺流航行至B地,又立即从B地逆流返回A地,共用去9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x千米/时,则可列方程()A.4848944x x+=+-B.4848944+=+-x xC.48x+4=9 D.9696944+=+-x x8.设x1,x2是方程x2-2x-1=0的两个实数根,则2112x xx x+的值是( )A.-6 B.-5 C.-6或-5 D.6或59.如图,在△ABC中,cosB=22,sinC=35,AC=5,则△ABC的面积是()A.212B.12 C.14 D.2110.欧几里得的《原本》记载,形如22x ax b+=的方程的图解法是:画Rt ABC∆,使90ACB∠=o,2aBC=,AC b=,再在斜边AB上截取2aBD=.则该方程的一个正根是()A.AC的长B.AD的长C.BC的长D.CD的长11.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2019年重庆市长寿区中考数学模拟试卷一.选择题(共12小题,满分48分,每小题4分)1.在﹣1,0,2,四个数中,最大的数是()A.﹣1B.0C.2D.2.下列航空公司的标志中,是中心对称图形的是()A.B.C.D.3.计算(﹣ab2)3的结果是()A.﹣a3b5B.﹣a3b6C.﹣ab6D.﹣3ab24.下列调查中,适合采用全面调查(普查)方式的是()A.对长江水质情况的调查B.对端午节期间市场上粽子质量情况的调查C.对某班40名同学体重情况的调查D.对某类烟花爆竹燃放安全情况的调查5.若a、b互为相反数,c、d互为倒数,m的绝对值为2,则m2﹣cd+值为()A.﹣3B.3C.﹣5D.3或﹣56.在函数中,自变量x的取值范围是()A.x≥﹣1B.x>﹣1且x≠C.x≥﹣1且x≠D.x>﹣17.已知△ABC,D,E分别在AB,AC边上,且DE∥BC,AD=2,DB=3,△ADE面积是4,则四边形DBCE 的面积是()A.6B.9C.21D.258.已知m=,则以下对m的值估算正确的()A.2<m<3B.3<m<4C.4<m<5D.5<m<69.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案n需几根火柴棒()A.2+7n B.8+7n C.4+7n D.7n+110.如图,菱形ABCD的边长为4cm,∠A=60°,弧BD是以点A为圆心,AB长为半径的弧,弧CD是以点B为圆心,BC长为半径的弧,则阴影部分的面积为()A.2cm2B.4cm2C.4cm2D.πcm211.如图,旗杆及升旗台的剖面和教学楼的剖面在同一平面上,旗杆与地面垂直,在教学楼底部E点处测得旗杆顶端的仰角∠AED=58°,升旗台底部到教学楼底部的距离DE=7米,升旗台坡面CD的坡度i =1:0.75,坡长CD=2米,若旗杆底部到坡面CD的水平距离BC=1米,则旗杆AB的高度约为()(参考数据:sin58°≈0.85,cos58°≈0.53,tan58°≈1.6)A.12.6米B.13.1米C.14.7米D.16.3米12.若数a使关于x的分式方程+=的解为正数,使关于y的不等式组无解,则所有满足条件的整数a的值之积是()A.360B.90C.60D.15二.填空题(共6小题,满分24分,每小题4分)13.可燃冰是一种新型能源,它的密度很小,1cm3可燃冰的质量仅为0.00092kg.数字0.00092用科学记数法表示是.14.计算:+(π﹣3)0﹣(﹣)﹣2=.15.如图,BD是⊙O的直径,点A、C在圆周上,∠CBD=20°,则∠A的度数为.16.中秋节是我国四大传统文化节日之一,为每年的农历八月十五,自古以来都有赏月吃月饼的习俗,重庆某大型超市为了了解市民对“云腿”月饼的喜好程度,特意在三峡广场做了试吃及问卷调查活动,将市民对“云腿”月饼的喜好程度分为“A非常喜欢”、“B比较喜欢”、“C感觉一般”、“D不太喜欢”四个等级,并将四个等级分别计分为:A等级10分,B等级8分,C等级5分,D等级2分,根据调查结果绘制出如图所示的条形统计图,请问喜好“云腿”程度的平均分是分.17.牛牛和峰峰在同一直线跑道AB上进行往返跑,牛牛从起点A出发,峰峰在牛牛前方C处与牛牛同时出发,当牛牛超越峰峰到达终点B处时,休息了100秒才又以原速返回A地,而峰峰到达终点B处后马上以原来速度的3.2倍往回跑,最后两人同时到达A地,两人距B地的路程记为y(米),峰峰跑步时间记为x(秒),y和x的函数关系如图所示,则牛牛和峰峰第一次相遇时他们距A点米.18.在正方形ABCD中,AB=4,E为BC中点,连接AE,点F为AE上一点,FE=2,FG⊥AE交DC 于G,将GF绕着G点逆时针旋转使得F点正好落在AD上的点H处,过点H作HN⊥HG交AB于N 点,交AE于M点,则S=.△MNF三.解答题(共6小题,满分16分)19.如图,等腰Rt△ABC的顶点B落在直线l2上,若∠=75°,∠2=60°.求证:l1∥l2.20.目前“校园手机”现象越来越受到社会关注,针对这种现象,某校九年级数学兴趣小组的同学随机调查了若干名家长对“中学生带手机的”的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了多少名名中学生家长;(2)求出图2中扇形C所对的圆心角的度数,并将图1补充完整;(3)在此次调查活动中,初三(1)班有A1、A2两位家长对中学生带手机持反对态度,初三(2)班有B1、B2两位学生家长对中学生带手机也持反对态度,现从这4位家长中选2位家长参加学校组织的家校活动,用列表法或画树状图的方法求出选出的2人来自不同班级的概率.21.化简:(1)(x﹣2y)2﹣(x+4y)(y﹣x);(2)().22.如图,在平面直角坐标系xOy中,直线y=x+b与双曲线y=相交于A,B两点,已知A(2,5).求:(1)b和k的值;(2)△OAB的面积.23.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)24.如图,AB∥DE,点F、C在AD上,AB=DE,且AF=FC=CD.(1)求证:△ABC≌△DEF;(2)延长EF与AB相交于点G,G为AB的中点,FG=4,求EG的长.四.解答题(共2小题,满分22分)25.在任意n(n>1且为整数)位正整数K的首位后添加6得到的新数叫做K的“顺数”,在K的末位前添加6得到的新数叫做K的“逆数”.若K的“顺数”与“逆数”之差能被17整除,称K是“最佳拍档数”.比如1324的“顺数”为16324,1324的“逆数”为13264,1324的“顺数”与“逆数”之差为16324﹣13264=3060,3060÷17=180,所以1324是“最佳拍档数”.(1)请根据以上方法判断31568(填“是”或“不是”)“最佳拍档数”;若一个首位是5的四位“最佳拍档数”N,其个位数字与十位数字之和为8,且百位数字不小于十位数字,求所有符合条件的N的值.(2)证明:任意三位或三位以上的正整数K的“顺数”与“逆数”之差一定能被30整除.26.如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2019年重庆市长寿区中考数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分48分,每小题4分)1.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得﹣1<0<<2,故在﹣1,0,2,四个数中,最大的数是2.故选:C.【点评】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.2.【分析】根据中心对称图形的概念求解.【解答】解:A、不是中心对称图形,故此选项错误;B、是中心对称图形,故此选项正确;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.【分析】根据积的乘方与幂的乘方计算可得.【解答】解:(﹣ab2)3=(﹣a)3•(b2)3=﹣a3b6,故选:B.【点评】本题主要考查幂的乘方与积的乘方,解题的关键是熟练掌握幂的乘方与积的乘方的计算公式.4.【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:A:长江水污染的情况,由于范围较大,适合用抽样调查;故此选项错误;B、对端午节期间市场上粽子质量情况的调查,数量较大;不容易掌控,适合抽样调查,故此选项错误;C:对某班40名同学体重情况的调查,数量少,范围小,采用全面调查;故此选项正确;D:对某类烟花爆竹燃放安全情况的调查,具有破坏性,应选择抽样调查;故此选项错误;故选:C.【点评】此题主要考查了适合普查的方式,一般有以下几种:①范围较小;②容易掌控;③不具有破坏性;④可操作性较强.基于以上各点,“了解全班同学本周末参加社区活动的时间”适合普查,其它几项都不符合以上特点,不适合普查.5.【分析】由题意得a+b=0,cd=1,m=±2,由此可得出代数式的值.【解答】解:由题意得:a+b=0,cd=1,m=±2代数式可化为:m2﹣cd=4﹣1=3故选:B.【点评】本题考查代数式的求值,根据题意得出a+b=0,cd=1,m=±2的信息是关键.6.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:由题意得,x+1≥0且2x﹣1≠0,解得x≥﹣1且x≠.故选:C.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.7.【分析】先判断△ADE∽△ABC,再根据相似三角形的面积之比=相似比的平方即可得到结论.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴=,∵AD=2,DB=3,∴==,∴=()2=,∵△ADE的面积是4,∴△ABC的面积是25,∴四边形DBCE的面积是25﹣4=21,故选:C.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的面积的比等于相似比的平方是解题的关键.8.【分析】估算确定出m的范围即可.【解答】解:m=+=2+,∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B .【点评】此题考查了估算无理数的大小,弄清估算的方法是解本题的关键.9.【分析】根据图案①、②、③中火柴棒的数量可知,第1个图形中火柴棒有8根,每多一个多边形就多7根火柴棒,由此可知第n 个图案需火柴棒8+7(n ﹣1)=7n +1根.【解答】解:∵图案①需火柴棒:8根;图案②需火柴棒:8+7=15根;图案③需火柴棒:8+7+7=22根;…∴图案n 需火柴棒:8+7(n ﹣1)=7n +1根;故选:D .【点评】此题主要考查了图形的变化类,解决此类题目的关键在于图形在变化过程中准确抓住不变的部分和变化的部分,变化部分是以何种规律变化.10.【分析】连接BD ,判断出△ABD 是等边三角形,根据等边三角形的性质可得∠ABD =60°,再求出∠CBD =60°,然后求出阴影部分的面积=S △ABD ,计算即可得解.【解答】解:如图,连接BD ,∵四边形ABCD 是菱形,∴AB =AD ,∵∠A =60°,∴△ABD 是等边三角形,∴∠ABD =60°,又∵菱形的对边AD ∥BC ,∴∠ABC =180°﹣60°=120°,∴∠CBD =120°﹣60°=60°,∴S 阴影=S 扇形BDC ﹣(S 扇形ABD ﹣S △ABD ),=S △ABD ,=×4×=4cm 2.故选:B .【点评】本题考查了菱形的性质,扇形的面积的计算,熟记性质并作辅助线构造出等边三角形是解题的关键.11.【分析】如图延长AB 交ED 的延长线于M ,作CJ ⊥DM 于J .则四边形BMJC 是矩形.在Rt △CDJ中求出CJ、DJ,再根据,tan∠AEM=构建方程即可解决问题;【解答】解:如图延长AB交ED的延长线于M,作CJ⊥DM于J.则四边形BMJC是矩形.在Rt△CJD中,==,设CJ=4k,DJ=3k,则有9k2+16k2=4,∴k=,∴BM=CJ=,BC=MJ=1,DJ=,EM=MJ+DJ+DE=,在Rt△AEM中,tan∠AEM=,∴1.6=,解得AB≈13.1(米),故选:B.【点评】本题考查的是解直角三角形的应用﹣仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.12.【分析】表示出分式方程的解,由分式方程解为正数,得到a的取值范围;不等式组变形后,根据不等式组无解,确定出a的范围,进而求出a的值,得到所有满足条件的整数a的值之积.【解答】解:分式方程去分母得:2a﹣8=x﹣3,解得:x=2a﹣5,由分式方程的解为正数,得到2a﹣5>0且2a﹣5≠3,解得:a>且a≠4;不等式组整理得:,由不等式组无解,得到5﹣2a≥﹣7,即a≤6,∴a的取值范围是:<a≤6且a≠4,∴满足条件的整数a的值为3,5,6,∴整数a的值之积是90.故选:B.【点评】此题考查了分式方程的解以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.解题时注意:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.二.填空题(共6小题,满分24分,每小题4分)13.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00092=9.2×10﹣4,故答案为:9.2×10﹣4.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】原式利用算术平方根定义,零指数幂、负整数指数幂法则计算即可得到结果.【解答】解:原式=4+1﹣9=﹣4,故答案为:﹣4【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.15.【分析】根据直径所对的圆周角是直角,得∠BCD=90°,然后由直角三角形的两个锐角互余、同弧所对的圆周角相等求得∠A=∠D=70°.【解答】解:∵BD是⊙O的直径,∴∠BCD=90°(直径所对的圆周角是直角),∵∠CBD=20°,∴∠D=70°(直角三角形的两个锐角互余),∴∠A=∠D=70°(同弧所对的圆周角相等);故答案是:70°.【点评】本题考查了圆周角定理.在同圆或等圆中,同弧或等弧所对的圆周角相等.16.【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案.【解答】解:根据题意知喜好“云腿”程度的平均分是=7.4(分),故答案为:7.4.【点评】此题考查了加权平均数,掌握加权平均数的计算公式和从统计图中得到必要的信息是解决问题的关键.17.【分析】根据题意和函数图象中的数据可以分别求得峰峰和牛牛的速度,进而求得他们第一次相遇的时刻,从而可以求得牛牛和峰峰第一次相遇时他们距A点的距离.【解答】解:由图象可得,牛牛的速度为:800÷(300﹣100)=4米/秒,设峰峰从C到B的速度为a米/秒,,解得,a=1.5米/秒,设牛牛和峰峰第一相遇的时刻为第t秒,4t=1.5t+(800﹣500),解得,t=120,∴牛牛和峰峰第一次相遇时他们距A点的距离是:4×120=480米,故答案为:480【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】作过B作BP⊥AE于P,根据勾股定理计算BE=BC=2,AE==10,得B,F,G共线,作辅助线,构建直角三角形,利用同角的三角函数得:FQ=,BQ=,分别计算FS、GS、DG、DH、AH、AN的长,利用面积差S△MNF =S△ANF﹣S△AMN求值【解答】解:过B作BP⊥AE于P,∵正方形ABCD中,AB=4,E为BC中点,∴BE=BC=2,∴AE==10,∴BP===4,∴PE===2,∴EF=EP,∴F与P重合,∴B,F,G共线,过F作OS⊥DC,交AB于O,DC于S,则OS⊥AB,过F作FQ⊥BC于Q,sin∠FBE==,=,∴FQ=,∴BQ=,易得矩形OFQB,∴FO=BQ=,∴FS=4﹣=,AO=AB﹣OB=4﹣=,∵GF⊥AE,∴∠AFG=90°,∴∠GFS+∠AFH=∠AFH+∠FAH,∴∠GFS=∠FAB,∴tan∠FAB=tan∠GFS==,∴=,∴GS=,∴DG=DS﹣GS=AO﹣GS=﹣=2,∵GH=GF,∴DH2+DG2=GS2+FS2,∴DH2+(2)2=()2+()2,∴DH=4,∴AH=4﹣4,tan∠ANH=tan∠DHG==,=,AN=,过M作MR⊥AB于R,设MR=x,则AR=2x,tan∠ANH=tan∠DHG==,∴=,∴RN=,由AR+RN=AN得:2x+=,x=6﹣2,∴MR=6﹣2,∴S△MNF =S△ANF﹣S△AMN=AN•FO﹣AN•MR=AN(FO﹣MR)=××(﹣6+2)=.故答案为:.【点评】本题考查了正方形的性质、旋转的性质、三角函数、勾股定理等知识,在四边形的计算中,常运用同角的三角函数或勾股定理列式求线段的长,也可以利用证明两三角形相似求线段的长,相比较而言,利用同角的三角函数比较简单,本题计算量大,有难度.三.解答题(共6小题,满分16分)19.【分析】根据平角的定义得到∠3=75°,根据平行线的判定定理即可得到结论.【解答】证明:∵∠2=60°∠ABC=45°,∴∠3=75°,∵∠1=75°,∴∠3=∠1,∴l1∥l2.【点评】本题考查了平行线的判定,等腰直角三角形的性质,熟练掌握等腰三角形的性质是解题的关键.20.【分析】(1)用D类的人数除以它所占的百分比即可得到调查的总人数;(2)用360°乘以C类所占的百分比得到扇形C所对的圆心角的度数,再用200乘以C类所占的百分比得到C类人数,然后补全图1;(3)画树状图展示所有12种等可能结果,再找出2人来自不同班级的结果数,然后根据概率公式求解.【解答】解:(1)120÷60%=200(人),所以调查的家长数为200人;(2)扇形C所对的圆心角的度数=360°×(1﹣20%﹣15%﹣60%)=18°,C类的家长数=200×(1﹣20%﹣15%﹣60%)=10(人),补充图为:(3)设初三(1)班两名家长为A1、A2,初三(2)班两名家长为B1,B2,画树状图为共有12种等可能结果,其中2人来自不同班级共有8种,所以2人来自不同班级的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了扇形统计图.21.【分析】(1)先利用完全平方公式和多项式乘多项式法则计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2﹣4xy+4y2﹣(xy﹣x2+4y2﹣4xy)=x2﹣4xy+4y2﹣xy+x2﹣4y2+4xy=2x2﹣xy;(2)原式=[﹣]÷(﹣)=÷=•=﹣=﹣【点评】本题主要考查整式和分式的混合运算,解题的关键是掌握整式和分式混合运算顺序和运算法则.22.【分析】(1)由直线y =x +b 与双曲线y =相交于A ,B 两点,A (2,5),即可得到结论; (2)过A 作AD ⊥y 轴于D ,BE ⊥y 轴于E 根据y =x +3,y =,得到B (﹣5,﹣2),C (﹣3,0),求出OC =3,然后根据三角形的面积公式即可得到结论.【解答】解:(1)∵直线y =x +b 与双曲线y =相交于A ,B 两点,已知A (2,5), ∴5=2+b ,5=. 解得:b =3,k =10.(2)如图,过A 作AD ⊥y 轴于D ,过B 作BE ⊥y 轴于E ,∴AD =2. ∵b =3,k =10, ∴y =x +3,y =.由得:或,∴B 点坐标为(﹣5,﹣2). ∴BE =5.设直线y =x +3与y 轴交于点C . ∴C 点坐标为(0,3). ∴OC =3.∴S △AOC =OC •AD =×3×2=3, S △BOC =OC •BE =×3×5=.∴S △AOB =S △AOC +S △BOC =.【点评】本题考查了反比例函数与一次函数的交点,三角形面积的计算,正确的识别图形是解题的关键. 23.【分析】(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题; (2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.【解答】解:(1)设年平均增长率为x,根据题意得:10(1+x)2=14.4,解得x=﹣2.2(不合题意舍去)x=0.2,答:年平均增长率为20%;(2)设每年新增汽车数量为y万辆,根据题意得:2009年底汽车数量为14.4×90%+y,2010年底汽车数量为(14.4×90%+y)×90%+y,∴(14.4×90%+y)×90%+y≤15.464,∴y≤2.答:每年新增汽车数量最多不超过2万辆.【点评】本题是增长率的问题,要记牢增长率计算的一般规律,然后读清题意找准关键语.24.【分析】(1)要证△ABC≌△DEF,只要证易证AC=DF,∠A=∠D即可;(2)由(1)可得EF=BC,根据三角形中位线性质可知BC=2FG=8,由EG=EF+FG计算即可.【解答】(1)证明:∵AB∥DE,∴∠A=∠D,∵AF=FC=CD∴AC=DF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),(2)解:∵AF=FC,∴F为AC中点,又∵G为AB中点,∴GF为△ABC的中位线,∴BC=2GF=8,又∵△ABC≌△DEF,∴EF=BC=8,∴EG=EF+FG=BC+FG=8+4=12,【点评】本题考查了平行线的性质、三角形全等的判定与性质以及三角形的中位线的性质,题目比较简单.利用全等三角形的性质解答是此题的关键.四.解答题(共2小题,满分22分)25.【分析】(1)根据定义表示31568的“顺数”与“逆数”,计算它们的差能否被17整除,可判断31568是“最佳拍档数”;根据定义设这个首位是5的四位“最佳拍档数”N,并表示出来,计算的它的“顺数”与“逆数”之差,根据“最佳拍档数”的定义,分情况讨论可得结论;(2)先证明三位的正整数K的“顺数”与“逆数”之差一定能被30整除,再证明四位的正整数K的“顺数”与“逆数”之差一定能被30整除,同理可得结论.【解答】(1)解:31568的“顺数”为361568,31568的“逆数”为315668,31568的“顺数”与“逆数”之差为361568﹣315668=45900,45900÷17=2700,所以31568是“最佳拍档数”;设“最佳拍档数”N的十位数字为x,百位数字为y,则个位数字为8﹣x,y≥x,N=5000+100y+10x+8﹣x=100y+9x+5008,∵N是四位“最佳拍档数”,∴50000+6000+100y+10x+8﹣x﹣[50000+1000y+100x+60+8﹣x],=6000+100y+9x+8﹣1000y﹣100x﹣68+x,=5940﹣90x﹣900y,=90(66﹣x﹣10y),∴66﹣x﹣10y能被17整除,①x=2,y=3时,66﹣x﹣10y=34,能被17整除,此时N为5326;②x=3,y=8时,66﹣x﹣10y=﹣17,能被17整除,此时N为5835;③x=5,y=1时,66﹣x﹣10y=51,能被17整除,但x>y,不符合题意;④x=6,y=6时,66﹣x﹣10y=0,能被17整除,此时N为5662;⑤x=8,y=3时,66﹣x﹣10y=28,不能被17整除,但x>y,不符合题意;⑥当x=9,y=4时,66﹣x﹣10y=17,能被17整除,但x>y,不符合题意;综上,所有符合条件的N的值为5326,5835,5662;故答案为:是;(2)证明:设三位正整数K的个位数字为x,十位数字为y,百位数字为z,它的“顺数”:1000z+600+10y+x,它的“逆数”:1000z+100y+60+x,∴(1000z +600+10y +x )﹣(1000z +100y +60+x )=540﹣90y =90(6﹣y ), ∴任意三位正整数K 的“顺数”与“逆数”之差一定能被30整除,设四位正整数K 的个位数字为x ,十位数字为y ,百位数字为z ,千位数字为a ,∴(10000a +6000+100z +10y +x )﹣(10000a +1000z +100y +60+x )=5940﹣900z ﹣90y =90(66﹣10z ﹣y ), ∴任意四位正整数K 的“顺数”与“逆数”之差一定能被30整除,同理得:任意三位或三位以上的正整数K 的“顺数”与“逆数”之差一定能被30整除.【点评】本题主要考查了“顺数”、“逆数”、“最佳拍档数”的定义及应用,熟练掌握几位数的表示方法,理解新定义,计算“顺数”与“逆数”之差,分解因式是解题的关键. 26.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ =90°或∠AQD =90°,当∠ADQ =90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD =90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y =k 1x +b 1,则可用t 表示出k ′,设直线DQ 解析式为y =k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标. 【解答】解: (1)由题意可得,解得,∴抛物线解析式为y =﹣x 2+2x +3; (2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴F (1,4),∵C (0,3),D (2,3), ∴CD =2,且CD ∥x 轴, ∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =×2×3+×2×(4﹣3)=4; ②∵点P 在线段AB 上, ∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ =90°或∠AQD =90°, i .当∠ADQ =90°时,则DQ ⊥AD , ∵A (﹣1,0),D (2,3), ∴直线AD 解析式为y =x +1,∴可设直线DQ 解析式为y =﹣x +b ′, 把D (2,3)代入可求得b ′=5, ∴直线DQ 解析式为y =﹣x +5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

相关文档
最新文档