遵义市2019年中考数学模拟试卷及答案

合集下载

2019-2020学年贵州省遵义市中考数学模拟试卷(有标准答案)(Word版)

2019-2020学年贵州省遵义市中考数学模拟试卷(有标准答案)(Word版)

贵州省遵义市中考数学试卷一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣52.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×10104.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=15.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤28.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣310.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.1811.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为度.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金两.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.18.(4.00分)如图,在菱形ABCD中,∠ABC=120°,将菱形折叠,使点A恰好落在对角线BD 上的点G处(不与B、D重合),折痕为EF,若DG=2,BG=6,则BE的长为.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水(计算结果精确到0.1m,参考数据sin64°≈0.90,平线的夹角为64°,吊臂底部A距地面1.5m.cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为人,扇形统计图中A部分的圆心角是度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?26.(12.00分)如图,AB是半圆O的直径,C是AB延长线上的点,AC的垂直平分线交半圆于点D,交AC于点E,连接DA,DC.已知半圆O的半径为3,BC=2.(1)求AD的长.(2)点P是线段AC上一动点,连接DP,作∠DPF=∠DAC,PF交线段CD于点F.当△DPF为等腰三角形时,求AP的长.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.贵州省遵义市中考数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分在每小题给出的四个选项中,只有一项符合题目要求请用2b铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.(3.00分)如果电梯上升5层记为+5.那么电梯下降2层应记为()A.+2 B.﹣2 C.+5 D.﹣5【分析】直接利用电梯上升5层记为+5,则电梯下降记为负数,进而得出答案.【解答】解:∵电梯上升5层记为+5,∴电梯下降2层应记为:﹣2.故选:B.2.(3.00分)观察下列几何图形,既是轴对称图形又是中心对称图形的是()A. B.C.D.【分析】根据等腰三角形,平行四边形、矩形、圆的性质即可判断;【解答】解:∵等腰三角形是轴对称图形,平行四边形是中心对称图形,半圆是轴对称图形,矩形既是轴对称图形又是中心对称图形;故选:C.3.(3.00分)2018年第二季度,遵义市全市生产总值约为532亿元,将数532亿用科学记数法表示为()A.532×108B.5.32×102C.5.32×106D.5.32×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将数532亿用科学记数法表示为5.32×1010.故选:D.4.(3.00分)下列运算正确的是()A.(﹣a2)3=﹣a5B.a3•a5=a15C.(﹣a2b3)2=a4b6D.3a2﹣2a2=1【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、(﹣a2)3=﹣a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(﹣a2b3)2=a4b6,正确;D、3a2﹣2a2=a2,故此选项错误;故选:C.5.(3.00分)已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【解答】解:∵a∥b,∴∠3=∠4,∵∠3=∠1,∴∠1=∠4,∵∠5+∠4=90°,且∠5=∠2,∴∠1+∠2=90°,∵∠1=35°,∴∠2=55°,故选:B.6.(3.00分)贵州省第十届运动会将于2018年8月8日在遵义市奥体中心开幕,某校有2名射击队员在比赛中的平均成绩均为9环,如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的()A.方差B.中位数C.众数D.最高环数【分析】根据方差的意义得出即可.【解答】解:如果教练要从中选1名成绩稳定的队员参加比赛,那么还应考虑这2名队员选拔成绩的方差,故选:A.7.(3.00分)如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是()A.x>2 B.x<2 C.x≥2 D.x≤2【分析】先根据一次函数图象上点的坐标特征得到2k+3=0,解得k=﹣1.5,然后解不等式﹣1.5x+3>0即可.【解答】解:∵直线y=kx+3经过点P(2,0)∴2k+3=0,解得k=﹣1.5,∴直线解析式为y=﹣1.5x+3,解不等式﹣1.5x+3>0,得x<2,即关于x的不等式kx+3>0的解集为x<2,故选:B.8.(3.00分)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60πB.65πC.78πD.120π【分析】直接得出圆锥的母线长,再利用圆锥侧面及求法得出答案.【解答】解:由题意可得:圆锥的底面半径为5,母线长为:=13,该圆锥的侧面积为:π×5×13=65π.故选:B.9.(3.00分)已知x1,x2是关于x的方程x2+bx﹣3=0的两根,且满足x1+x2﹣3x1x2=5,那么b的值为()A.4 B.﹣4 C.3 D.﹣3【分析】直接利用根与系数的关系得出x1+x2=﹣b,x1x2=﹣3,进而求出答案.【解答】解:∵x1,x2是关于x的方程x2+bx﹣3=0的两根,∴x1+x2=﹣b,x 1x2=﹣3,则x1+x2﹣3x1x2=5,﹣b﹣3×(﹣3)=5,解得:b=4.故选:A.10.(3.00分)如图,点P是矩形ABCD的对角线AC上一点,过点P作EF∥BC,分别交AB,CD于E、F,连接PB、PD.若AE=2,PF=8.则图中阴影部分的面积为()A.10 B.12 C.16 D.18【分析】想办法证明S△PEB =S△PFD解答即可.【解答】解:作PM⊥AD于M,交BC于N.则有四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴S△ADC =S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△DFP =S△PBE=×2×8=8,∴S阴=8+8=16,故选:C.11.(3.00分)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【分析】直接利用相似三角形的判定与性质得出=,进而得出S△AOD=2,即可得出答案.【解答】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO =×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.12.(3.00分)如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,连接AC、BD,以BD为直径的圆交AC于点E.若DE=3,则AD的长为()A.5 B.4 C.3D.2【分析】先求出AC,进而判断出△ADF∽△CAB,即可设DF=x,AD=x,利用勾股定理求出BD,再判断出△DEF∽△DBA,得出比例式建立方程即可得出结论.【解答】解:如图,在Rt△ABC中,AB=5,BC=10,∴AC=5过点D作DF⊥AC于F,∴∠AFD=∠CBA,∵AD∥BC,∴∠DAF=∠ACB,∴△ADF∽△CAB,∴,∴,设DF=x,则AD=x,在Rt△ABD中,BD==,∵∠DEF=∠DBA,∠DFE=∠DAB=90°,∴△DEF∽△DBA,∴,∴,∴x=2,∴AD=x=2,故选:D.二、填空题(本大题共6小题,每小题4分,共24分.答题请用黑色曼水笔或黑色签字笔直接谷在答题卡的相应位量上)13.(4.00分)计算﹣1的结果是 2 .【分析】首先计算9的算术平方根,再算减法即可.【解答】解:原式=3﹣1=2,故答案为:2.14.(4.00分)如图,△ABC中.点D在BC边上,BD=AD=AC,E为CD的中点.若∠CAE=16°,则∠B为37 度.【分析】先判断出∠AEC=90°,进而求出∠ADC=∠C=74°,最后用等腰三角形的外角等于底角的2倍即可得出结论.【解答】解:∵AD=AC,点E是CD中点,∴AE⊥CD,∴∠AEC=90°,∴∠C=90°﹣∠CAE=74°,∵AD=AC,∴∠ADC=∠C=74°,∵AD=BD,∴2∠B=∠ADC=74°,∴∠B=37°,故答案为37°.15.(4.00分)现有古代数学问题:“今有牛五羊二值金八两;牛二羊五值金六两,则一牛一羊值金二两.【分析】设一牛值金x两,一羊值金y两,根据“牛五羊二值金八两;牛二羊五值金六两”,即可得出关于x、y的二元一次方程组,两方程相加除以7,即可求出一牛一羊的价值.【解答】解:设一牛值金x两,一羊值金y两,根据题意得:,(①+②)÷7,得:x+y=2.故答案为:二.16.(4.00分)每一层三角形的个数与层数的关系如图所示,则第2018层的三角形个数为4035 .【分析】根据题意和图形可以发现随着层数的变化三角形个数的变化规律,从而可以解答本题.【解答】解:由图可得,第1层三角形的个数为:1,第2层三角形的个数为:3,第3层三角形的个数为:5,第4层三角形的个数为:7,第5层三角形的个数为:9,……第n层的三角形的个数为:2n﹣1,∴当n=2018时,三角形的个数为:2×2018﹣1=4035,故答案为:4035.17.(4.00分)如图抛物线y=x2+2x﹣3与x轴交于A,B两点,与y轴交于点C,点P是抛物线对称轴上任意一点,若点D、E、F分别是BC、BP、PC的中点,连接DE,DF,则DE+DF的最小值为.【分析】直接利用轴对称求最短路线的方法得出P 点位置,再求出AO ,CO 的长,进而利用勾股定理得出答案.【解答】解:连接AC ,交对称轴于点P ,则此时PC+PB 最小,∵点D 、E 、F 分别是BC 、BP 、PC 的中点,∴DE=PC ,DF=PB ,∵抛物线y=x 2+2x ﹣3与x 轴交于A ,B 两点,与y 轴交于点C ,∴0=x 2+2x ﹣3解得:x 1=﹣3,x 2=1,x=0时,y=3,故CO=3,则AO=3,可得:AC=PB+PC=3, 故DE+DF 的最小值为:. 故答案为:.18.(4.00分)如图,在菱形ABCD 中,∠ABC=120°,将菱形折叠,使点A 恰好落在对角线BD 上的点G 处(不与B 、D 重合),折痕为EF ,若DG=2,BG=6,则BE 的长为 2.8 .【分析】作EH⊥BD于H,根据折叠的性质得到EG=EA,根据菱形的性质、等边三角形的判定定理得到△ABD为等边三角形,得到AB=BD,根据勾股定理列出方程,解方程即可.【解答】解:作EH⊥BD于H,由折叠的性质可知,EG=EA,由题意得,BD=DG+BG=8,∵四边形ABCD是菱形,∴AD=AB,∠ABD=∠CBD=∠ABC=60°,∴△ABD为等边三角形,∴AB=BD=8,设BE=x,则EG=AE=8﹣x,在Rt△EHB中,BH=x,EH=x,在Rt△EHG中,EG2=EH2+GH2,即(8﹣x)2=(x)2+(6﹣x)2,解得,x=2.8,即BE=2.8,故答案为:2.8.三、解答题(本题共9小题,共90分,答题时请用黑色签字笔成者水笔书写在答题卡相应的位置上,解答时应写出必要的文字说明,证明过程与演算步骤)19.(6.00分)2﹣1+|1﹣|+(﹣2)0﹣cos60°【分析】直接利用负指数幂的性质以及零指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【解答】解:原式=+2﹣1+1﹣=2.20.(8.00分)化简分式(+)÷,并在2,3,4,5这四个数中取一个合适的数作为a的值代入求值.【分析】先根据分式混合运算顺序和运算法则化简原式,再选取是分式有意义的a的值代入计算可得.【解答】解:原式=[﹣]÷=(﹣)•=•=a+3,∵a≠﹣3、2、3,∴a=4或a=5,则a=4时,原式=7.21.(8.00分)如图,吊车在水平地面上吊起货物时,吊绳BC与地面保持垂直,吊臂AB与水(计算结果精确到0.1m,参考数据sin64°≈0.90,平线的夹角为64°,吊臂底部A距地面1.5m.cos64°≈0.44,tan64°≈2.05)(1)当吊臂底部A与货物的水平距离AC为5m时,吊臂AB的长为11.4 m.(2)如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是多少?(吊钩的长度与货物的高度忽略不计)【分析】(1)根据直角三角形的性质和三角函数解答即可;(2)过点D作DH⊥地面于H,利用直角三角形的性质和三角函数解答即可.【解答】解:(1)在Rt△ABC中,∵∠BAC=64°,AC=5m,∴AB=(m);故答案为:11.4;(2)过点D作DH⊥地面于H,交水平线于点E,在Rt△ADE中,∵AD=20m,∠DAE=64°,EH=1.5m,∴DE=sin64°×AD≈20×0.9≈18(m),即DH=DE+EH=18+1.5=19.5(m),答:如果该吊车吊臂的最大长度AD为20m,那么从地面上吊起货物的最大高度是19.5m.22.(10.00分)为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中最受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学签赏,B:科学探究,C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数为160 人,扇形统计图中A部分的圆心角是54 度.(2)请补全条形统计图.(3)根据本次调查,该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为多少?【分析】(1)根据:该项所占的百分比=,圆心角=该项的百分比×360°.两图给出了D的数据,代入即可算出调查的总人数,然后再算出A的圆心角;(2)根据条形图中数据和调查总人数,先计算出喜欢“科学探究”的人数,再补全条形图;(3)根据:喜欢某项人数=总人数×该项所占的百分比,计算即得.【解答】解:(1)由条形图、扇形图知:喜欢趣味数学的有48人,占调查总人数的30%.所以调查总人数:48÷30%=160(人)图中A部分的圆心角为:=54°故答案为:160,54(2)喜欢“科学探究”的人数:160﹣24﹣32﹣48=56(人)补全如图所示(3)840×=294(名)答:该校七年级840名学生中,估计最喜欢“科学探究”的学生人数为294名.23.(10.00分)某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【分析】(1)由转动转盘甲共有四种等可能结果,其中指针指向A区域只有1种情况,利用概率公式计算可得;(2)画树状图得出所有等可能结果,从中确定指针指向每个区域的字母相同的结果数,利用概率公式计算可得.【解答】解:(1)若选择方式一,转动转盘甲一次共有四种等可能结果,其中指针指向A区域只有1种情况,∴享受9折优惠的概率为,故答案为:;(2)画树状图如下:由树状图可知共有12种等可能结果,其中指针指向每个区域的字母相同的有2种结果,所以指针指向每个区域的字母相同的概率,即顾客享受8折优惠的概率为=.24.(10.00分)如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2、HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM.【解答】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点H,∵正方形的边长为4,∴OH=HA=2,∵E为OM的中点,∴HM=4,则OM==2,∴MN=OM=2.25.(12.00分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?【分析】(1)根据表格内的数据,利用待定系数法可求出y与x之间的函数关系式,再代入x=23.5即可求出结论;(2)根据总利润=每千克利润×销售数量,即可得出关于x的一元二次方程,解之取其较小值即可得出结论.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,将(22.6,34.8)、(24,32)代入y=kx+b,,解得:,∴y与x之间的函数关系式为y=﹣2x+80.当x=23.5时,y=﹣2x+80=33.答:当天该水果的销售量为33千克.(2)根据题意得:(x ﹣20)(﹣2x+80)=150,解得:x 1=35,x 2=25.∵20≤x ≤32,∴x=25.答:如果某天销售这种水果获利150元,那么该天水果的售价为25元.26.(12.00分)如图,AB 是半圆O 的直径,C 是AB 延长线上的点,AC 的垂直平分线交半圆于点D ,交AC 于点E ,连接DA ,DC .已知半圆O 的半径为3,BC=2.(1)求AD 的长.(2)点P 是线段AC 上一动点,连接DP ,作∠DPF=∠DAC ,PF 交线段CD 于点F .当△DPF 为等腰三角形时,求AP 的长.【分析】(1)先求出AC ,进而求出AE=4,再用勾股定理求出DE 即可得出结论;(2)分三种情况,利用相似三角形得出比例式,即可得出结论.【解答】解:(1)如图1,连接OD ,∵OA=OD=3,BC=2,∴AC=8,∵DE 是AC 的垂直平分线,∴AE=AC=4,∴OE=AE ﹣OA=1,在Rt △ODE 中,DE==2; 在Rt △ADE 中,AD==2;(2)当DP=DF 时,如图2,点P 与A 重合,F 与C 重合,则AP=0;当DP=PF 时,如图4,∴∠CDP=∠PFD ,∵DE 是AC 的垂直平分线,∠DPF=∠DAC ,∴∠DPF=∠C ,∵∠PDF=∠CDP ,∴△PDF∽△CDP,∴∠DFP=∠DPC,∴∠CDP=∠CPD,∴CP=CD,∴AP=AC﹣CP=AC﹣CD=AC﹣AD=8﹣2;当PF=DF时,如图3,∴∠FDP=∠FPD,∵∠DPF=∠DAC=∠C,∴△DAC∽△PDC,∴,∴,∴AP=5,即:当△DPF是等腰三角形时,AP的长为0或5或8﹣2.27.(14.00分)在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D(4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.【分析】(1)把C与D坐标代入二次函数解析式求出a与c的值,确定出二次函数解析式,与一次函数解析式联立求出E坐标即可;(2)过M作MH垂直于x轴,与直线CE交于点H,四边形COEM面积最大即为三角形CME面积最大,构造出二次函数求出最大值,并求出此时M坐标即可;(3)令y=0,求出x的值,得出A与B坐标,由圆周角定理及相似的性质得到三角形AOC与三角形BOF相似,由相似得比例求出OF的长,即可确定出F坐标.【解答】解:(1)把C(0,2),D(4,﹣2)代入二次函数解析式得:,解得:,即二次函数解析式为y=﹣x2+x+2,联立一次函数解析式得:,消去y得:﹣x+2=﹣x2+x+2,解得:x=0或x=3,则E(3,1);(2)如图①,过M作MH∥y轴,交CE于点H,设M(m,﹣m2+m+2),则H(m,﹣m+2),∴MH=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,S四边形COEM =S△OCE+S△CME=×2×3+MH•3=﹣m2+3m+3,当m=﹣=时,S最大=,此时M坐标为(,3);(3)连接BF,如图②所示,当﹣x2+x+20=0时,x1=,x2=,∴OA=,OB=,∵∠ACO=∠ABF,∠AOC=∠FOB,∴△AOC∽△FOB,∴=,即=,解得:OF=,则F坐标为(0,﹣).。

最新2019年贵州省遵义市中考数学试题及参考答案(word解析版)

最新2019年贵州省遵义市中考数学试题及参考答案(word解析版)

【知识考点】同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法;完全平方公式.
【思路分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂
相除,底数不变指数相减,对各选项分析判断后利用排除法求解.
【解题过程】解: A 选项,完全平方公式, (a+b) 2= a2+2ab+b 2,错误; B 选基,积的乘方,﹣( 2a2)2=﹣ 4a4,错误; C 选项,同底数幂相乘, a2?a3= a5,错误; D 选项,同底数幂相除, a6÷a3=a3,正确.
C . 10℃
D .﹣ 10℃
【思路分析】所求的数值就是最高气温与最低气温的差,利用有理数的减法法则即可求解. 【解题过程】解: 25﹣ 15= 10℃. 故选: C. 【总结归纳】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数.这是需要 熟记的内容.
5
2.如图是由 7 个相同的小正方体组合而成的几何体.这个几何体的左视图是(
AC = 154 米,步行道 BD =168 米,∠ DBC = 30°,在 D 处测得山顶 A 的仰角为 45°.求电动扶 梯 DA 的长(结果保留根号) .
20.( 12 分)电子政务、数字经济、智慧社会…一场数字革命正在神州大地激荡.在第二届数字中 国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该
遵义市 2019 年初中毕业生学业 (升学 )统一考试
数学试题卷
(全卷总分 150 分,考试时间 120 分钟)
一、选择题(本题共 12 小题、每小题 4 分,共 48 分。在每小题给出的四个选项中,只有一项符合
题目要求)
1.遵义市 2019 年 6 月 1 日的最高气温是 25℃,最低气温是 15℃,遵义市这一天的最高气温比最低

遵义市2019年中考数学试卷及答案(解析word版)

遵义市2019年中考数学试卷及答案(解析word版)

贵州省遵义市2019年中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.(3分)(2019•遵义)﹣3+(﹣5)的结果是()A.﹣2 B.﹣8 C.8D.2考点:有理数的加法.分析:根据同号两数相加,取相同的符号,并把绝对值相加,可得答案.解答:解:原式=﹣(3+5)=﹣8.故选:B.点评:本题考查了有理数的加法,先确定和的符号,再进行绝对值得运算.2.(3分)(2019•遵义)观察下列图形,是中心对称图形的是()A.B.C.D.考点:中心对称图形分析:根据中心对称图形的概念对各选项分析判断后利用排除法求解.解答:解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选:C.点评:本题考查了中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2019•遵义)“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2019年全社会固定资产投资达1762亿元,把1762亿元这个数字用科学记数法表示为()A.1762×108B.1.762×1010C.1.762×1011D.1.762×1012考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1762亿用科学记数法表示为:1.762×1011.故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2019•遵义)如图,直线l1∥l2,∠A=125°,∠B=85°,则∠1+∠2=()A.30°B.35°C.36°D.40°考点:平行线的性质.分析:过点A作l1的平行线,过点B作l2的平行线,根据两直线平行,内错角相等可得∠3=∠1,∠4=∠2,再根据两直线平行,同旁内角互补求出∠CAB+∠ABD=180°,然后计算即可得解.解答:解:如图,过点A作l1的平行线,过点B作l2的平行线,∴∠3=∠1,∠4=∠2,∵l1∥l2,∴AC∥BD,∴∠CAB+∠ABD=180°,∴∠3+∠4=125°+85°﹣180°=30°,∴∠1+∠2=30°.故选A.点评:本题考查了平行线的性质,熟记性质并作辅助线是解题的关键.5.(3分)(2019•遵义)计算3x3•2x2的结果是()A.5x5B.6x5C.6x6D.6x9考点:单项式乘单项式.分析:根据单项式与单项式相乘,把他们的系数分别相乘,相同字母的幂分别相加,其余字母连同他的指数不变,作为积的因式,计算即可.解答:解:3x3•2x2=6x5,故选B.点评:本题考查了单项式与单项式相乘,熟练掌握运算法则是解题的关键.6.(3分)(2019•遵义)已知抛物线y=ax2+bx和直线y=ax+b在同一坐标系内的图象如图,其中正确的是()A .B.C.D.考点:二次函数的图象;一次函数的图象.分析:本题可先由二次函数图象得到字母系数的正负,再与一次函数和反比例函数的图象相比较看是否一致.逐一排除.解答:解:A、由二次函数的图象可知a<0,此时直线y=ax+b经过二、四象限,故A可排除;B、二次函数的图象可知a<0,对称轴在y轴的右侧,可知a、b异号,b>0,此时直线y=ax+b经过一、二、四象限,故B可排除;C、二次函数的图象可知a>0,此时直线y=ax+b经过一、三,故C可排除;正确的只有D.故选:D.点评:此题主要考查了一次函数图象与二次函数图象,应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.(3分)(2019•遵义)有一组数据7、11、12、7、7、8、11.下列说法错误的是()A.中位数是7 B.平均数是9 C.众数是7 D.极差是5考点:极差;加权平均数;中位数;众数.分析:根据中位数、平均数、极差、众数的概念求解.解答:解:这组数据按照从小到大的顺序排列为:7、7、7、8、11、11、12,则中位数为:8,平均数为:=9,众数为:7,极差为:12﹣7=5.故选A.点评:本题考查了中位数、平均数、极差、众数的知识,掌握各知识点的概念是解答本题的关键.8.(3分)(2019•遵义)若a+b=2,ab=2,则a2+b2的值为()A.6B.4C .3D.2考点:完全平方公式.分析:利用a2+b2=(a+b)2﹣2ab代入数值求解.解答:解:a2+b2=(a+b)2﹣2ab=8﹣4=4,故选:B.点评:本题主要考查了完全平方公式的应用,解题的关键是牢记完全平方公式,灵活运用它的变化式.9.(3分)(2019•遵义)如图,边长为2的正方形ABCD中,P是CD的中点,连接AP并延长交BC的延长线于点F,作△CPF的外接圆⊙O,连接BP并延长交⊙O于点E,连接EF,则EF的长为()A.B.C.D.考点:相似三角形的判定与性质;正方形的性质;圆周角定理.分析:先求出CP、BF长,根据勾股定理求出BP,根据相似得出比例式,即可求出答案.解答:解:∵四边形ABCD是正方形,∴∠ABC=∠PCF=90°,CD∥AB,∵F为CD的中点,CD=AB=BC=2,∴CP=1,∵PC∥AB,∴△FCP∽△FBA,∴==,∴BF=4,∴CF=4﹣2=2,由勾股定理得:BP==,∵四边形ABCD是正方形,∴∠BCP=∠PCF=90°,∴PF是直径,∴∠E=90°=∠BCP,∵∠PBC=∠EBF,∴△BCP∽△BEF,∴=,∴=,∴EF=,故选D.点评:本题考查了正方形的性质,圆周角定理,相似三角形的性质和判定的应用,主要考查学生的推理能力和计算能力,题目比较好,难度适中.10.(3分)(2019•遵义)如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.二、填空题(本题共8小题,每小题4分,共32分)11.(4分)(2019•遵义)+=4.考点:二次根式的加减法.分析:先化简,然后合并同类二次根式.解答:解:原式=3+=4.故答案为;4.点评:本题考查了二次根式的加减法,掌握二次根式的化简是解答本题的关键.12.(4分)(2019•遵义)正多边形的一个外角等于20°,则这个正多边形的边数是18.考点:多边形内角与外角.分析:根据任何多边形的外角和都是360度,利用360除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.解答:解:因为外角是20度,360÷20=18,则这个多边形是18边形.点评:根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.13.(4分)(2019•遵义)计算:+的结果是﹣1.考点:分式的加减法.专题:计算题.分析:原式变形后利用同分母分式的减法法则计算即可得到结果.解答:解:原式=﹣==﹣1.故答案为:﹣1.点评:此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.14.(4分)(2019•遵义)关于x的一元二次方程x2﹣3x+b=0有两个不相等的实数根,则b 的取值范围是b<.考点:根的判别式.专题:计算题.分析:根据判别式的意义得到△=(﹣3)2﹣4b>0,然后解不等式即可.解答:解:根据题意得△=(﹣3)2﹣4b>0,解得b<.故答案为b<.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.15.(4分)(2019•遵义)有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)考点:圆锥的计算.分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.解答:解:圆锥的母线==10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积=lR=×12π×10=60πcm2.故答案为60π.点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为lR.16.(4分)(2019•遵义)有一个正六面体骰子,放在桌面上,将骰子沿如图所示的顺时针方向滚动,每滚动90°算一次,则滚动第2019次后,骰子朝下一面的点数是3.考点:专题:正方体相对两个面上的文字;规律型:图形的变化类.分析:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,从而确定答案.解答:解:观察图象知道点数三和点数四相对,点数二和点数五相对且四次一循环,∵2019÷4=503…2,∴滚动第2019次后与第二次相同,∴朝下的点数为3,故答案为:3.点评:本题考查了正方体相对两个面上的文字及图形的变化类问题,解题的关键是发现规律.17.(4分)(2019•遵义)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E、南门点F分别是AB,AD的中点,EG ⊥AB,FE⊥AD,EG=15里,HG经过A点,则FH= 1.05里.考点:相似三角形的应用.分析:首先根据题意得到△GEA∽△AFH,然后利用相似三角形的对应边的比相等列出比例式求得答案即可.解答:解:EG⊥AB,FE⊥AD,HG经过A点,∴FA∥EG,EA∥FH,∴∠HFA=∠AEG=90°,∠FHA=∠EAG,∴△GEA∽△AFH,∴.∵AB=9里,DA=7里,EG=15里,∴FA=3.5里,EA=4.5里,∴,解得:FH=1.05里.故答案为:1.05.点评:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形,难度不大.18.(4分)(2019•遵义)如图,反比例函数y=(k>0)的图象与矩形ABCO的两边相交于E,F两点,若E是AB的中点,S△BEF=2,则k的值为8.考点:反比例函数系数k的几何意义.分析:设E(a,),则B纵坐标也为,代入反比例函数的y=,即可求得F的横坐标,则根据三角形的面积公式即可求得k的值.解答:解:设E(a,),则B纵坐标也为,E是AB中点,所以F点横坐标为2a,代入解析式得到纵坐标:,BF=﹣=,所以F也为中点,S△BEF=2=,k=8.故答案是:8.点评:本题考查了反比例函数的性质,正确表示出BF的长度是关键.三、解答题(本题共9小题,共88分)19.(6分)(2019•遵义)计算:﹣|﹣4|﹣2cos45°﹣(3﹣π)0.考点:实数的运算;零指数幂;特殊角的三角函数值.分析:本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=3﹣4﹣﹣1=2﹣5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.20.(8分)(2019•遵义)解不等式组:,并把不等式组的解集在数轴上表示出来.考点:解一元一次不等式组;在数轴上表示不等式的解集.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:由①得,x≥﹣1,由②得,x<4,故此不等式组的解集为:﹣1≤x<4.在数轴上表示为:.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.(8分)(2019•遵义)如图,一楼房AB后有一假山,其坡度为i=1:,山坡坡面上E 点处有一休息亭,测得假山坡脚C与楼房水平距离BC=25米,与亭子距离CE=20米,小丽从楼房顶测得E点的俯角为45°,求楼房AB的高.(注:坡度i是指坡面的铅直高度与水平宽度的比)考点:解直角三角形的应用-仰角俯角问题;解直角三角形的应用-坡度坡角问题.专题:应用题.分析:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,根据CE=20米,坡度为i=1:,分别求出EF、CF的长度,在Rt△AEH中求出AH,继而可得楼房AB的高.解答:解:过点E作EF⊥BC的延长线于F,EH⊥AB于点H,在Rt△CEF中,∵i===tan∠ECF,∴∠ECF=30°,∴EF=CE=10米,CF=10米,∴BH=EF=10米,HE=BF=BC+CF=(25+10)米,在Rt△AHE中,∵∠HAE=45°,∴AH=HE=(25+10)米,∴AB=AH+HB=(35+10)米.答:楼房AB的高为(35+10)米.点评:本题考查了解直角三角形的应用,涉及仰角俯角及坡度坡角的知识,构造直角三角形是解题关键.22.(10分)(2019•遵义)小明、小军两同学做游戏,游戏规则是:一个不透明的文具袋中,装有型号完全相同的3支红笔和2支黑笔,两人先后从袋中取出一支笔(不放回),若两人所取笔的颜色相同,则小明胜,否则,小军胜.(1)请用树形图或列表法列出摸笔游戏所有可能的结果;(2)请计算小明获胜的概率,并指出本游戏规则是否公平,若不公平,你认为对谁有利.考点:游戏公平性;列表法与树状图法.分析:(1)列表将所有等可能的结果一一列举出来即可;(2)根据列表里有概率公式求得小明获胜的概率即可判断是否公平.解答:解:(1)列表得:红1 红2 红3 黑1 黑2红1 红1红2 红1红3 红1黑1 红1黑2红2 红2红1 红2红3 红2黑1 红2黑2红3 红3红1 红3红2 红3黑1 红3黑2黑1 黑1红1 黑1红2 黑1红3 黑1黑2黑2 黑2红1 黑2红2 黑2红3 黑2黑1(2)共20种等可能的情况,其中颜色相同的有8种,则小明获胜的概率为=,小军获胜的概率为1﹣=,∵<,∴不公平,对小军有利.点评:本题考查了列表法与列树状图的知识,解题的关键是正确的列出表格或树状图.23.(10分)(2019•遵义)今年5月,从全国旅游景区质量等级评审会上传来喜讯,我市“风冈茶海之心”、“赤水佛光岩”、“仁怀中国酒文化城”三个景区加入国家“4A”级景区.至此,全市“4A”级景区已达13个.某旅游公司为了了解我市“4A”级景区的知名度情况,特对部分市民进行现场采访,根据市民对13个景区名字的回答情况,按答数多少分为熟悉(A),基本了解(B)、略有知晓(C)、知之甚少(D)四类进行统计,绘制了一下两幅统计图(不完整),请根据图中信息解答以下各题:(1)本次调查活动的样本容量是1500;(2)调查中属于“基本了解”的市民有450人;(3)补全条形统计图;(4)“略有知晓”类占扇形统计图的圆心角是多少度?“知之甚少”类市民占被调查人数的百分比是多少?考点:条形统计图;扇形统计图.专题:图表型.分析:(1)用熟悉(A)的人数除以所占的百分比,计算即可得解;(2)先求出略有知晓(C)的人数,然后列式计算即可得解;(3)根据(2)的计算补全图形统计图即可;(4)用“略有知晓”C所占的百分比乘以360°计算即可,再根据知之甚少(D)的人数列式计算即可求出所占的百分比.解答:解:(1)120÷8%=1500;(2)略有知晓(C)的人数为:1500×40%=600人,“基本了解”(B)的人数为:1500﹣120﹣600﹣330=1500﹣1050=450人;(3)补全统计图如图所示;(4)“略有知晓”类:360°×40%=144°,“知之甚少”类:×100%=22%.故答案为:(1)1500;(2)450.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(10分)(2019•遵义)如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD 上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.考点:平行四边形的性质;全等三角形的判定与性质;等腰直角三角形.分析:(1)通过证明△ODF与△OBE全等即可求得.(2)由△ADB是等腰直角三角形,得出∠A=45°,因为EF⊥AB,得出∠G=45°,所以△ODG与△DFG都是等腰直角三角形,从而求得DG的长和EF=2,然后平行线分线段成比例定理即可求得.解答:(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==,∵AB∥CD,∴=,∴AD=2,点评:本题考查了全等三角形的判定和性质,等腰直角三角形的判定和性质,平行线的性质以及平行线分行段定理.25.(10分)(2019•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的2.5倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是24km/h;(2)邮政车出发多少小时与自行车队首次相遇?(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远?考点:一次函数的应用.分析:(1)由速度=路程÷时间就可以求出结论;(2)由自行车的速度就可以求出邮政车的速度,再由追击问题设邮政车出发a小时两车相遇建立方程求出其解即可;(3)由邮政车的速度可以求出B的坐标和C的坐标,由自行车的速度就可以D的坐标,由待定系数法就可以求出BC,ED的解析式就可以求出结论.解答:解:(1)由题意得自行车队行驶的速度是:72÷3=24km/h.故答案为:24;(2)由题意得邮政车的速度为:24×2.5=60km/h.设邮政车出发a小时两车相遇,由题意得24(a+1)=60a,答:邮政车出发小时与自行车队首次相遇;(3)由题意,得邮政车到达丙地的时间为:135÷60=,∴邮政车从丙地出发的时间为:135=,∴B(,135),C(7.5,0).自行车队到达丙地的时间为:135÷24+0.5=+0.5=,∴D(,135).设BC的解析式为y1=k1+b1,由题意得,∴,∴y1=﹣60x+450,设ED的解析式为y2=k2x+b2,由题意得,解得:,∴y2=24x﹣12.当y1=y2时,﹣60x+450=24x﹣12,解得:x=5.5.y1=﹣60×5.5+450=120.答:邮政车在返程途中与自行车队再次相遇时的地点距离甲地120km.点评:本题考查了行程问题的数量关系的运用,待定系数法求一次函数的解析式的运用,一次函数与一元一次方程的运用,解答时求出函数的解析式是关键.26.(12分)(2019•遵义)如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.(1)求证:CF=DB;(2)当AD=时,试求E点到CF的距离.考点:圆的综合题.专题:综合题.分析:(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt △ADC中,根据含30度的直角三角形三边的关系得DC=AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=,DF=2,所以CF=BD=,EF=DF=,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=DC=,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.解答:(1)证明:连结AE,如图,∵∠ABC=60°,AB=BC,∴△ABC为等边三角形,∵AB∥CD,∠DAB=90°,∴∠ADC=∠DAB=90°,∴AC为⊙O的直径,∴∠AEC=90°,即AE⊥BC,∴BE=CE,CD∥BF,∴∠DCE=∠FBF,在△DCE和△FBE中,,∴△DCE≌△FBE(ASA),∴DE=FE,∴四边形BDCF为平行四边形,∴CF=DB;(2)解:作EH⊥CF于H,如图,∵△ABC为等边三角形,∴∠BAC=60°,∴∠DAC=30°,在Rt△ADC中,AD=,∴DC=AD=1,AC=2CD=2,∴AB=AC=2,BF=CD=1,∴AF=3,在Rt△ABD中,BD==,在Rt△ADF中,DF==2,∴CF=BD=,EF=DF=,∵AE⊥BC,∴∠CAE=∠BAE=30°,∴∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,∴∠DPC=90°,在Rt△DPC中,DC=1,∠CDP=30°,∴PC=DC=,∵∠HFE=∠PFC,∴Rt△FHE∽Rt△FPC,∴=,即=,∴EH=,即E点到CF的距离为.点评:本题考查了圆的综合题:熟练掌握圆周角定理、等边三角形的性质和平行四边形的判定与性质;会运用三角形全等的知识解决线段相等的问题;会运用勾股定理和相似比进行几何计算.27.(14分)(2019•遵义)如图,二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.(1)求该二次函数的解析式及点C的坐标;(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.考点:二次函数综合题.分析:(1)将A,B点坐标代入函数y=x2+bx+c中,求得b、c,进而可求解析式及C坐标.(2)等腰三角形有三种情况,AE=EQ,AQ=EQ,AE=AQ.借助垂直平分线,画圆易得E大致位置,设边长为x,表示其他边后利用勾股定理易得E坐标.(3)注意到P,Q运动速度相同,则△APQ运动时都为等腰三角形,又由A、D对称,则AP=DP,AQ=DQ,易得四边形四边都相等,即菱形.利用菱形对边平行且相等等性质可用t表示D点坐标,又D在E函数上,所以代入即可求t,进而D可表示.解答:解:(1)∵二次函数y=x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),∴,解得,∴y=x2﹣x﹣4.∴C(0,﹣4).(2)存在.如图1,过点Q作QD⊥OA于D,此时QD∥OC,∵A(3,0),B(﹣1,0),C(0,﹣4),O(0,0)∴AB=4,OA=3,OC=4,∴AC==5,AQ=4.∵QD∥OC,∴,∴,∴QD=,AD=.①作AQ的垂直平分线,交AO于E,此时AE=EQ,即△AEQ为等腰三角形,设AE=x,则EQ=x,DE=AD﹣AE=﹣x,∴在Rt△EDQ中,(﹣x)2+()2=x2,解得x=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).②以Q为圆心,AQ长半径画圆,交x轴于E,此时QE=QA=4,∵ED=AD=,∴AE=,∴OA﹣AE=3﹣=﹣,∴E(﹣,0).③当AE=AQ=4时,∵OA﹣AE=3﹣4=﹣1,∴E(﹣1,0).综上所述,存在满足条件的点E,点E的坐标为(﹣,0)或(﹣,0)或(﹣1,0).(3)四边形APDQ为菱形,D点坐标为(﹣,﹣).理由如下:如图2,D点关于PQ与A点对称,过点Q作,FQ⊥AP于F,∵AP=AQ=t,AP=DP,AQ=DQ,∴AP=AQ=QD=DP,∴四边形AQDP为菱形,∵FQ∥OC,∴,∴,∴AF=,FQ=,∴Q(3﹣,﹣),∵DQ=AP=t,∴D(3﹣﹣t,﹣),数学试卷∵D在二次函数y=x2﹣x﹣4上,∴﹣=(3﹣t)2﹣(3﹣t)﹣4,∴t=,或t=0(与A重合,舍去),∴D(﹣,﹣).点评:本题考查了二次函数性质、利用勾股定理解直角三角形及菱形等知识,总体来说题意复杂但解答内容都很基础,是一道值得练习的题目.。

贵州省遵义市2019-2020学年中考数学一模考试卷含解析

贵州省遵义市2019-2020学年中考数学一模考试卷含解析

贵州省遵义市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )A.EA EGBE EF=B.EG AGGH GD=C.AB BCAE CF=D.FH CFEH AD=2.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.90°B.135°C.270°D.315°3.一次函数y=2x+1的图像不经过( )A.第一象限B.第二象限C.第三象限D.第四象限4.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.下列命题是假命题的是()A.有一个外角是120°的等腰三角形是等边三角形B.等边三角形有3条对称轴C.有两边和一角对应相等的两个三角形全等D.有一边对应相等的两个等边三角形全等6.如图,电线杆CD的高度为h,两根拉线AC与BC互相垂直(A、D、B在同一条直线上),设∠CAB=α,那么拉线BC 的长度为( )A .sin h αB .cos h αC .tan h αD .cot h α7.如图所示,二次函数y=ax 2+bx+c (a≠0)的图象经过点(﹣1,2),且与x 轴交点的横坐标分别为x 1、x 2,其中﹣2<x 1<﹣1,0<x 2<1.下列结论:①4a ﹣2b+c <0;②2a ﹣b <0;③abc <0;④b 2+8a <4ac .其中正确的结论有( )A .1个B .2个C .3个D .4个8.已知数a 、b 、c 在数轴上的位置如图所示,化简|a+b|﹣|c ﹣b|的结果是( )A .a+bB .﹣a ﹣cC .a+cD .a+2b ﹣c9.如图,钓鱼竿AC 长6m ,露在水面上的鱼线BC 长32m ,某钓者想看看鱼钓上的情况,把鱼竿AC 转动到AC'的位置,此时露在水面上的鱼线B′C′为33m ,则鱼竿转过的角度是( )A .60°B .45°C .15°D .90°10.如图,反比例函数y =-的图象与直线y =-x 的交点为A 、B ,过点A 作y 轴的平行线与过点B 作的x 轴的平行线相交于点C ,则△ABC 的面积为( )A.8 B.6 C.4 D.211.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同12.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分二、填空题:(本大题共6个小题,每小题4分,共24分.)13.一个圆锥的高为33,侧面展开图是半圆,则圆锥的侧面积是_________14.如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为_____.15.如图,△ABC中,CD⊥AB于D,E是AC的中点.若AD=6,DE=5,则CD的长等于.16.如图是由两个长方体组合而成的一个立体图形的三视图,根据图中所示尺寸(单位:mm),计算出这个立体图形的表面积.17.阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:已知:ABC.V 求作:ABC V 的内切圆.小明的作法如下:如图2,()1作ABC ∠,ACB ∠的平分线BE 和CF ,两线相交于点O ;()2过点O 作OD BC ⊥,垂足为点D ;()3点O 为圆心,OD 长为半径作O.e 所以,O e 即为所求作的圆.请回答:该尺规作图的依据是______.18.甲、乙两人5次射击命中的环数分别为,甲:7,9,8,6,10;乙:7,8,9,8,8;x x =甲乙 =8,则这两人5次射击命中的环数的方差S 甲2_____S 乙2(填“>”“<”或“=”).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知在梯形ABCD 中,AD ∥BC ,AB=BC ,DC ⊥BC ,且AD=1,DC=3,点P 为边AB 上一动点,以P 为圆心,BP 为半径的圆交边BC 于点Q .(1)求AB 的长;(2)当BQ 的长为409时,请通过计算说明圆P 与直线DC 的位置关系.20.(6分)如图,矩形ABCD 中,点P 是线段AD 上一动点,O 为BD 的中点,PO 的延长线交BC 于Q .(1)求证:OP=OQ ;(2)若AD=8厘米,AB=6厘米,P 从点A 出发,以1厘米/秒的速度向D 运动(不与D 重合).设点P 运动时间为t 秒,请用t 表示PD 的长;并求t 为何值时,四边形PBQD 是菱形.21.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+1.设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?22.(8分)我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2﹣n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.23.(8分)如图,已知D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.24.(10分)我市在党中央实施“精准扶贫”政策的号召下,大力开展科技扶贫工作,帮助农民组建农副产品销售公司,某农副产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点为原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x (万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡,所获毛利润为W万元.(毛利润=销售额﹣生产费用)(1)请直接写出y与x以及z与x之间的函数关系式;(写出自变量x的取值范围)(2)求W与x之间的函数关系式;(写出自变量x的取值范围);并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(3)由于受资金的影响,今年投入生产的费用不会超过360万元,今年最多可获得多少万元的毛利润?25.(10分)计算:﹣16+(﹣12)﹣2﹣|3﹣2|+2tan60° 26.(12分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A 、B ,A 公司有铵肥3吨,每吨售价750元;B 公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b (单位:元/千米)与运输重量a (单位:吨)的关系如图所示.(1)根据图象求出b 关于a 的函数解析式(包括自变量的取值范围);(2)若农场到B 公司的路程是农场到A 公司路程的2倍,农场到A 公司的路程为m 千米,设农场从A 公司购买x 吨铵肥,购买8吨铵肥的总费用为y 元(总费用=购买铵肥费用+运输费用),求出y 关于x 的函数解析式(m 为常数),并向农场建议总费用最低的购买方案.27.(12分)绵阳某公司销售统计了每个销售员在某月的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为x (单位:万元)。

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第四次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.计算232332x y x y xy ⋅÷的结果是( ). A .55xB .46xC .56xD .46x y2.如图1,一个扇形纸片的圆心角为90°,半径为1.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π- B .8433π- C .8233π- D .843π- 3.如图,甲、乙、丙图形都是由大小相同的小正方体搭成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数.其中主视图相同的是( )A .仅有甲和乙相同B .仅有甲和丙相同C .仅有乙和丙相同D .甲、乙、丙都相同4.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是( )A .13;13B .14;10C .14;13D .13;145.如图,已知l 1∥l 2,∠A=40°,∠1=60°,则∠2的度数为( )A .40°B .60°C .80°D .100°6.已知线段AB=8cm ,点C 是直线AB 上一点,BC=2cm ,若M 是AB 的中点,N 是BC 的中点,则线段MN 的长度为( ) A .5cmB .5cm 或3cmC .7cm 或3cmD .7cm7.如果菱形的一边长是8,那么它的周长是( ) A .16B .32C .16D .328.如图,点P 是菱形ABCD 边上的一动点,它从点A 出发沿在A→B→C→D 路径匀速运动到点D ,设△PAD 的面积为y ,P 点的运动时间为x ,则y 关于x 的函数图象大致为( )A .B .C .D .9.如图,AB 是⊙O 的弦,半径OC ⊥AB 于D ,若CD=2,⊙O 的半径为5,那么AB 的长为( )A .3B .4C .6D .810.为了解某班学生每周做家务劳动的时间,某综合实践活动小组对该班9名学生进行了调查,有关数据如下表.则这9名学生每周做家务劳动的时间的众数及中位数分别是( ) 每周做家务的时间(小时) 0 1 2 3 4 人数(人) 22 311A .3,2.5B .1,2C .3,3D .2,211.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+12.纳米是一种长度单位,1纳米=10-9米,已知某种植物花粉的直径约为35000纳米,那么用科学记数法表示该种花粉的直径为( )A .43.510⨯米B .43.510-⨯米C .53.510-⨯米D .93.510-⨯米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____. 14.计算:31-22的结果是_____. 15.如图,点1A 、2A 、3A ⋯在直线y x =上,点1C ,2C ,3C ⋯在直线y 2x =上,以它们为顶点依次构造第一个正方形1121A C A B ,第二个正方形2232A C A B ⋯,若2A 的横坐标是1,则3B 的坐标是______,第n 个正方形的面积是______.16.如图,在平面直角坐标系中,正方形ABOC 和正方形DOFE 的顶点B ,F 在x 轴上,顶点C ,D 在y 轴上,且S △ADC =4,反比例函数y=kx(x >0)的图像经过点E , 则k=_______ 。

2019-2020学年遵义市中考数学模拟试卷(有标准答案)(Word版)

2019-2020学年遵义市中考数学模拟试卷(有标准答案)(Word版)

贵州省遵义市中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.﹣3的相反数是()A.﹣3 B.3 C.D.【考点】14:相反数.【分析】依据相反数的定义解答即可.【解答】解:﹣3的相反数是3.故选:B.2.2017年遵义市固定资产总投资计划为2580亿元,将2580亿元用科学记数法表示为()A.2.58×1011B.2.58×1012C.2.58×1013D.2.58×1014【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2580亿用科学记数法表示为:2.58×1011.故选:A.3.把一张长方形纸片按如图①,图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A.B.C.D.【考点】P9:剪纸问题.【分析】解答该类剪纸问题,通过自己动手操作即可得出答案.【解答】解:重新展开后得到的图形是C,故选C.4.下列运算正确的是()A.2a5﹣3a5=a5B.a2•a3=a6 C.a7÷a5=a2D.(a2b)3=a5b3【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及幂的乘方与积的乘方的计算法则进行解答.【解答】解:A、原式=﹣a5,故本选项错误;B、原式=a5,故本选项错误;C、原式=a2,故本选项正确;D、原式=a6b3,故本选项错误;故选:C.5.我市连续7天的最高气温为:28°,27°,30°,33°,30°,30°,32°,这组数据的平均数和众数分别是()A.28°,30° B.30°,28° C.31°,30° D.30°,30°【考点】W5:众数;W1:算术平均数.【分析】根据平均数和众数的定义及计算公式分别进行解答,即可求出答案.【解答】解:数据28°,27°,30°,33°,30°,30°,32°的平均数是(28+27+30+33+30+30+32)÷7=30,30出现了3次,出现的次数最多,则众数是30;故选D.6.把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为()A.45°B.30°C.20°D.15°【考点】JA:平行线的性质.【分析】先根据平行线的性质,可得∠4的度数,再根据三角形外角性质,即可得到∠2的度数.【解答】解:∵∠1=30°,∴∠3=90°﹣30°=60°,∵直尺的对边平行,∴∠4=∠3=60°,又∵∠4=∠2+∠5,∠5=45°,∴∠2=60°﹣45°=15°,故选:D.7.不等式6﹣4x≥3x﹣8的非负整数解为()A.2个B.3个C.4个D.5个【考点】C7:一元一次不等式的整数解.【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的非负整数即可.【解答】解:移项得,﹣4x﹣3x≥﹣8﹣6,合并同类项得,﹣7x≥﹣14,系数化为1得,x≤2.故其非负整数解为:0,1,2,共3个.故选B.8.已知圆锥的底面积为9πcm2,母线长为6cm,则圆锥的侧面积是()A.18πcm2 B.27πcm2 C.18cm2D.27cm2【考点】MP:圆锥的计算.【分析】首先根据圆锥的底面积求得圆锥的底面半径,然后代入公式求得圆锥的侧面积即可.【解答】解:∵圆锥的底面积为9πcm2,∴圆锥的底面半径为3,∵母线长为6cm,∴侧面积为3×6π=18πcm2,故选A;9.关于x的一元二次方程x2+3x+m=0有两个不相等的实数根,则m的取值范围为()A.m≤B.m C.m≤D.m【考点】AA:根的判别式.【分析】利用判别式的意义得到△=32﹣4m>0,然后解不等式即可.【解答】解:根据题意得△=32﹣4m>0,解得m<.故选B.10.如图,△ABC的面积是12,点D,E,F,G分别是BC,AD,BE,CE的中点,则△AFG的面积是()A.4.5 B.5 C.5.5 D.6【考点】KX:三角形中位线定理;K3:三角形的面积.【分析】根据中线的性质,可得△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC 的面积=,△AEG的面积=,根据三角形中位线的性质可得△EFG的面积=×△BCE的面积=,进而得到△AFG的面积.【解答】解:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选:A.11.如图,抛物线y=ax2+bx+c经过点(﹣1,0),对称轴l如图所示,则下列结论:①abc>0;②a﹣b+c=0;③2a+c<0;④a+b<0,其中所有正确的结论是()A.①③B.②③C.②④D.②③④【考点】H4:二次函数图象与系数的关系.【分析】①根据开口向下得出a<0,根据对称轴在y轴右侧,得出b>0,根据图象与y轴的交点在y轴的正半轴上,得出c>0,从而得出abc<0,进而判断①错误;②由抛物线y=ax2+bx+c经过点(﹣1,0),即可判断②正确;③由图可知,x=2时,y<0,即4a+2b+c<0,把b=a+c代入即可判断③正确;④由图可知,x=2时,y<0,即4a+2b+c<0,把c=b﹣a代入即可判断④正确.【解答】解:①∵二次函数图象的开口向下,∴a<0,∵二次函数图象的对称轴在y轴右侧,∴﹣>0,∴b>0,∵二次函数的图象与y轴的交点在y轴的正半轴上,∴c>0,∴abc<0,故①错误;②∵抛物线y=ax2+bx+c经过点(﹣1,0),∴a﹣b+c=0,故②正确;③∵a﹣b+c=0,∴b=a+c.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2(a+c)+c<0,∴6a+3c<0,∴2a+c<0,故③正确;④∵a﹣b+c=0,∴c=b﹣a.由图可知,x=2时,y<0,即4a+2b+c<0,∴4a+2b+b﹣a<0,∴3a+3b<0,∴a+b<0,故④正确.故选D.12.如图,△ABC中,E是BC中点,AD是∠BAC的平分线,EF∥AD交AC于F.若AB=11,AC=15,则FC的长为()A.11 B.12 C.13 D.14【考点】JA:平行线的性质;KF:角平分线的性质.【分析】根据角平分线的性质即可得出==,结合E是BC中点,即可得出=,由EF∥AD即可得出==,进而可得出CF=CA=13,此题得解.【解答】解:∵AD是∠BAC的平分线,AB=11,AC=15,∴==.∵E是BC中点,∴==.∵EF∥AD,∴==,∴CF=CA=13.故选C.二、填空题(本大题共6小题,每小题4分,共24分)13.计算: = 3.【考点】78:二次根式的加减法.【分析】先进行二次根式的化简,然后合并.【解答】解: =2+=3.故答案为:3.14.一个正多边形的一个外角为30°,则它的内角和为1800°.【考点】L3:多边形内角与外角.【分析】先利用多边形的外角和等于360度计算出多边形的边数,然后根据多边形的内角和公式计算.【解答】解:这个正多边形的边数为=12,所以这个正多边形的内角和为(12﹣2)×180°=1800°.故答案为1800°.15.按一定规律排列的一列数依次为:,1,,,,,…,按此规律,这列数中的第100个数是.【考点】37:规律型:数字的变化类.【分析】根据按一定规律排列的一列数依次为:,,,,,,…,可得第n个数为,据此可得第100个数.【解答】解:按一定规律排列的一列数依次为:,,,,,,…,按此规律,第n个数为,∴当n=100时, =,即这列数中的第100个数是,故答案为:.16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有46 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)【考点】8A:一元一次方程的应用.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.17.如图,AB是⊙O的直径,AB=4,点M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为.【考点】M2:垂径定理;KQ:勾股定理;KW:等腰直角三角形.【分析】连接OD,作OE⊥CD于E,由垂径定理得出CE=DE,证明△OEM是等腰直角三角形,由勾股定理得出OE=OM=,在Rt△ODE中,由勾股定理求出DE=,得出CD=2DE=即可.【解答】解:连接OD,作OE⊥CD于E,如图所示:则CE=DE,∵AB是⊙O的直径,AB=4,点M是OA的中点,∴OD=OA=2,OM=1,∵∠OME=∠CMA=45°,∴△OEM是等腰直角三角形,∴OE=OM=,在Rt △ODE 中,由勾股定理得:DE==,∴CD=2DE=; 故答案为:.18.如图,点E ,F 在函数y=的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且BE :BF=1:3,则△EOF 的面积是.【考点】G5:反比例函数系数k 的几何意义.【分析】证明△BPE ∽△BHF ,利用相似比可得HF=4PE ,根据反比例函数图象上点的坐标特征,设E 点坐标为(t ,),则F 点的坐标为(3t ,),由于S △OEF +S △OFD =S △OEC +S 梯形ECDF ,S △OFD =S △OEC =1,所以S △OEF =S 梯形ECDF ,然后根据梯形面积公式计算即可.【解答】解:作EP ⊥y 轴于P ,EC ⊥x 轴于C ,FD ⊥x 轴于D ,FH ⊥y 轴于H ,如图所示: ∵EP ⊥y 轴,FH ⊥y 轴, ∴EP ∥FH , ∴△BPE ∽△BHF , ∴=,即HF=3PE ,设E 点坐标为(t ,),则F 点的坐标为(3t ,),∵S △OEF +S △OFD =S △OEC +S 梯形ECDF ,而S△OFD =S△OEC=×2=1,∴S△OEF =S梯形ECDF=(+)(3t﹣t)=;故答案为:.三、解答题(本大题共9小题,共90分)19.计算:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【分析】首先计算乘方、开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:|﹣2|+(4﹣π)0﹣+(﹣1)﹣2017=2+1﹣2﹣1=020.化简分式:(﹣)÷,并从1,2,3,4这四个数中取一个合适的数作为x的值代入求值.【考点】6D:分式的化简求值.【分析】利用分式的运算,先对分式化简单,再选择使分式有意义的数代入求值即可.【解答】解:(﹣)÷=[﹣)÷=(﹣)÷=×=x+2,∵x2﹣4≠0,x﹣3≠0,∴x≠2且x≠﹣2且x≠3,∴可取x=1代入,原式=3.21.学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白粽2个,豆沙粽1个,肉粽1个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是;(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白粽子的概率.【考点】X6:列表法与树状图法;X4:概率公式.【分析】(1)由甲盘中一共有4个粽子,其中豆沙粽子只有1个,根据概率公式求解可得;(2)根据题意画出树状图,由树状图得出一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,根据概率公式求解可得.【解答】解:(1)∵甲盘中一共有4个粽子,其中豆沙粽子只有1个,∴小明从甲盘中任取一个粽子,取到豆沙粽的概率是,故答案为:;(2)画树状图如下:由树状图可知,一共有16种等可能结果,其中恰好取到两个白粽子有4种结果,∴小明恰好取到两个白粽子的概率为=.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB和引桥BC两部分组成(如图所示),建造前工程师用以下方式做了测量;无人机在A处正上方97m处的P点,测得B处的俯角为30°(当时C处被小山体阻挡无法观测),无人机飞行到B处正上方的D处时能看到C处,此时测得C处俯角为80°36′.(1)求主桥AB的长度;(2)若两观察点P、D的连线与水平方向的夹角为30°,求引桥BC的长.(长度均精确到1m,参考数据:≈1.73,sin80°36′≈0.987,cos80°36′≈0.163,tan80°36′≈6.06)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】(1)在Rt△ABP中,由AB=可得答案;(2)由∠ABP=30°、AP=97知PB=2PA=194,再证△PBD是等边三角形得DB=PB=194m,根据BC=可得答案.【解答】解:(1)由题意知∠ABP=30°、AP=97,∴AB====97≈168m,答:主桥AB的长度约为168m;(2)∵∠ABP=30°、AP=97,∴PB=2PA=194,又∵∠DBC=∠DBA=90°、∠PBA=30°,∴∠DBP=∠DPB=60°,∴△PBD是等边三角形,∴DB=PB=194,在Rt△BCD中,∵∠C=80°36′,∴BC==≈32,答:引桥BC的长约为32m.23.贵州省是我国首个大数据综合试验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值,为创建大数据应用示范城市,我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有1000 人;(2)关注城市医疗信息的有150 人,并补全条形统计图;(3)扇形统计图中,D部分的圆心角是144 度;(4)说一条你从统计图中获取的信息.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)由C类别人数占总人数的20%即可得出答案;(2)根据各类别人数之和等于总人数可得B类别的人数;(3)用360°乘以D类别人数占总人数的比例可得答案;(4)根据条形图或扇形图得出合理信息即可.【解答】解:(1)本次参与调查的人数有200÷20%=1000(人),故答案为:1000;(2)关注城市医疗信息的有1000﹣=150人,补全条形统计图如下:故答案为:150;(3)扇形统计图中,D部分的圆心角是360°×=144°,故答案为:144;(4)由条形统计图可知,市民关注交通信息的人数最多.24.如图,PA、PB是⊙O的切线,A、B为切点,∠APB=60°,连接PO并延长与⊙O交于C点,连接AC,BC.(1)求证:四边形ACBP是菱形;(2)若⊙O半径为1,求菱形ACBP的面积.【考点】MC:切线的性质;LA:菱形的判定与性质.【分析】(1)连接AO,BO,根据PA、PB是⊙O的切线,得到∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,由三角形的内角和得到∠AOP=60°,根据三角形外角的性质得到∠ACO=30°,得到AC=AP,同理BC=PB,于是得到结论;(2)连接AB交PC于D,根据菱形的性质得到AD⊥PC,解直角三角形即可得到结论.【解答】解:(1)连接AO,BO,∵PA、PB是⊙O的切线,∴∠OAP=∠OBP=90°,PA=PB,∠APO=∠BPO=∠APB=30°,∴∠AOP=60°,∵OA=OC,∴∠OAC=∠OCA,∴∠AOP=∠CAO+∠ACO,∴∠ACO=30°,∴∠ACO=∠APO,∴AC=AP,同理BC=PB,∴AC=BC=BP=AP,∴四边形ACBP是菱形;(2)连接AB交PC于D,∴AD⊥PC,∴OA=1,∠AOP=60°,∴AD=OA=,∴PD=,∴PC=3,AB=,∴菱形ACBP的面积=A B•PC=.25.为厉行节能减排,倡导绿色出行,今年3月以来.“共享单车”(俗称“小黄车”)公益活动登陆我市中心城区,某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A、B两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放,共投放A、B两型自行车各50辆,投放成本共计7500元,其中B型车的成本单价比A型车高10元,A、B两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a辆“小黄车”,乙街区每1000人投放辆“小黄车”,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有15万人,试求a的值.【考点】B7:分式方程的应用;9A:二元一次方程组的应用.【分析】问题1:设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;问题2:根据两个街区共有15万人,列出分式方程进行求解并检验即可.【解答】解:问题1设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,依题意得50x+50(x+10)=7500,解得x=70,∴x+10=80,答:A、B两型自行车的单价分别是70元和80元;问题2由题可得,×1000+×1000=150000,解得a=15,经检验:a=15是所列方程的解,故a的值为15.26.边长为2的正方形ABCD中,P是对角线AC上的一个动点(点P与A、C不重合),连接BP,将BP绕点B顺时针旋转90°到BQ,连接QP,QP与BC交于点E,QP延长线与AD(或AD 延长线)交于点F.(1)连接CQ,证明:CQ=AP;(2)设AP=x,CE=y,试写出y关于x的函数关系式,并求当x为何值时,CE=BC;(3)猜想PF与EQ的数量关系,并证明你的结论.【考点】LO:四边形综合题.【分析】(1)证出∠ABP=∠CBQ,由SAS证明△BAP≌△BCQ可得结论;(2)如图1证明△APB∽△CEP,列比例式可得y与x的关系式,根据CE=BC计算CE的长,即y的长,代入关系式解方程可得x的值;(3)如图3,作辅助线,构建全等三角形,证明△PGB≌△QEB,得EQ=PG,由F、A、G、P四点共圆,得∠FGP=∠FAP=45°,所以△FPG是等腰直角三角形,可得结论.如图4,当F在AD的延长线上时,同理可得结论.【解答】(1)证明:如图1,∵线段BP绕点B顺时针旋转90°得到线段BQ,∴BP=BQ,∠PBQ=90°.∵四边形ABCD是正方形,∴BA=BC,∠ABC=90°.∴∠ABC=∠PBQ.∴∠ABC﹣∠PBC=∠PBQ﹣∠PBC,即∠ABP=∠CBQ.在△BAP和△BCQ中,∵,∴△BAP≌△BCQ(SAS).∴CQ=AP;(2)解:如图1,∵四边形ABCD是正方形,∴∠BAC=∠BAD=45°,∠BCA=∠B CD=45°,∴∠APB+∠ABP=180°﹣45°=135°,∵DC=AD=2,由勾股定理得:AC==4,∵AP=x,∴PC=4﹣x,∵△PBQ是等腰直角三角形,∴∠BPQ=45°,∴∠APB+∠CPQ=180°﹣45°=135°,∴∠CPQ=∠ABP,∵∠BAC=∠ACB=45°,∴△APB∽△CEP,∴,∴,∴y=x(4﹣x)=﹣x(0<x<4),由CE=BC==,∴y=﹣x=,x2﹣4x=3=0,(x﹣3)(x﹣1)=0,x=3或1,∴当x=3或1时,CE=BC;(3)解:结论:PF=EQ,理由是:如图3,当F在边AD上时,过P作PG⊥FQ,交AB于G,则∠GPF=90°,∵∠BPQ=45°,∴∠GPB=45°,∴∠GPB=∠PQB=45°,∵PB=BQ,∠ABP=∠CBQ,∴△PGB≌△QEB,∴EQ=PG,∵∠BAD=90°,∴F、A、G、P四点共圆,连接FG,∴∠FGP=∠FAP=45°,∴△FPG是等腰直角三角形,∴PF=PG,∴PF=EQ.当F在AD的延长线上时,如图4,同理可得:PF=PG=EQ.27.如图,抛物线y=ax2+bx﹣a﹣b(a<0,a、b为常数)与x轴交于A、C两点,与y轴交于B点,直线AB的函数关系式为y=x+.(1)求该抛物线的函数关系式与C点坐标;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰好是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标;若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【考点】HF:二次函数综合题.【分析】(1)根据已知条件得到B(0,),A(﹣6,0),解方程组得到抛物线的函数关系式为:y=﹣x 2﹣x+,于是得到C (1,0);(2)由点M (m ,0),过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点,得到D (m , m+),当DE 为底时,作BG ⊥DE 于G ,根据等腰三角形的性质得到EG=GD=ED ,GM=OB=,列方程即可得到结论;(3)i :根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON ,特殊的当△NOP ∽△BON 时,根据相似三角形的性质得到=,于是得到结论;ii :根据题意得到N 在以O 为圆心,4为半径的半圆上,由(i )知,=,得到NP=NB ,于是得到(NA+NB )的最小值=NA+NP ,此时N ,A ,P 三点共线,根据勾股定理得到结论.【解答】解:(1)在y=x+中,令x=0,则y=,令y=0,则x=﹣6,∴B (0,),A (﹣6,0), 把B (0,),A (﹣6,0)代入y=ax 2+bx ﹣a ﹣b 得, ∴,∴抛物线的函数关系式为:y=﹣x 2﹣x+,令y=0,则=﹣x 2﹣x+=0, ∴x 1=﹣6,x 2=1,∴C (1,0); (2)∵点M (m ,0),过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点, ∴D (m , m+),当DE 为底时,作BG ⊥DE 于G ,则EG=GD=ED ,GM=OB=,∴m+(﹣m 2﹣m++m+)=, 解得:m 1=﹣4,m 2=9(不合题意,舍去),∴当m=﹣4时,△BDE 恰好是以DE 为底边的等腰三角形;...(3)i:存在,∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时, =,∴不变,即OP==3,∴P(0,3)ii:∵N在以O为圆心,4为半径的半圆上,由(i)知, =,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3....。

【2019年中考数学】贵州省遵义市2019年中考数学模拟试题(1)及答案

【2019年中考数学】贵州省遵义市2019年中考数学模拟试题(1)及答案

2019年遵义中考模拟试卷数学(一)(全卷总分:150分考试时间:120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用黑色墨水笔或黑色签字笔将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,将试题卷和答题卡一并交回。

一、选择题(本题共12小题,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满.) 1.在-4,0,-1,3这四个数中,既不是正数又不是负数的数是A.-4B.0C.-1D.32.由5个完全相同的正方体组成的立体图形如图所示,则它的俯视图是3.如图,直线AB∥CD,直线EF分别与直线AB,CD相交于点G,H.若∠1=135°,则∠2的度数为A.35°B.45°C.55°D.65°4.计算(a2b)3的结果是A.a6b3B.a2b3C.a5b3D.a6b5.2016年我市参加中考的学生的为95000人.将数据95000用科学记数法表示为A.95×103B.9.5×103C.0.95×105D.9.5×1046.正六边形的内角和为A .1090°B .900°C .920°D .540°9.不等式2x -4≤0的解集在数轴上表示为9.下列调查中,最适合用普查方式的是 A .调查某中学九年级一班学生视力情况 B .调查一批电视机的使用寿命情况 C .调查遵义市初中学生锻炼所用的时间情况D .调查遵义市初中学生利用网络媒体自主学习的情况9.今年“五一”节,小明外出爬爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t (分钟),所走的路程为s (米),s 与t 之间的函数关系如图所示,下列说法错误的是A .小明中途休息用了20分钟B .小明休息前爬上的速度为每分钟90米C .小明在上述过程中所走的路程为6600米D .小明休息前爬山的平均速度大于休息后爬山的平均速度10.如图,在⊙O 中,弦AC ∥半径OB ,∠BOC =50°,则∠OAB 的度数为 A .25°B .50°C .60°D .30°11.如图,已知双曲线y =kx (直角三角形OAB 斜边OA 的中点D ,且与直角边AB 相交于点C .若点A 的坐标为(-6,4),则△AOC 的面积为A .4B .6C .9D .1212.如图,都的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有9个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为A .121B .113C .105D .92二、填空题(本题共6小题,每小题4分,共24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.)13.分解因式:4a 2-b 2=______▲______.14.某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是______▲______.15.菱形的两条对角线的长分别是6cm 和9cm ,则菱形的周长是______▲______cm. 16.通信市场竞争日益激烈的手机本地话费标准按原标准每分钟降低a 元后,再次下调了20%,现在收费标准是每分钟b 元,则原收费标准每分钟是______▲______元.19.若1a +a =3,则(1a-a )2的值是______▲______.19.如图,两条抛物线2+1、y 2=-12x 2-1与分别经过点(-2,0),(2,0)且平行于y 轴的两条平行线圈成的阴影部分的面积为______▲______.三、解答题(本题共9小.答题请用黑色墨水笔或黑色签字笔书写在答题卡的相应位置上.解答时应写出必要的文字说明,证明过程或演算步骤.)19.(6分)计算:18-|-4|-2cos45°-(3-π)0.20.(9分))解方程:1-x x -2=x 2x -4-1.21.(9分)已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.22.(10分)某班在一次班会课老人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别 A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m 30n 5 请根据表图所提供的信息回答下列问题:(1)统计表中的m=____▲____,n=____▲____;(2)补全频数分布直方图;(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?23.(10分组想利用所学的知识了解某广告牌的高度,已知CD=2m,经测量,得到其它数据如图所示.其中∠CAH=30°,∠DBH=60°,AB=10m.请你根据以上数据计算广告牌的高度GH的长.(3≈1.93,要求结果精确到0.1m)24.(10状、大小和质地都相同的卡片,正面分别写有字母:A,B,C,D,E和一个等式,背面完全一致.现将5张卡片分成两堆,第一堆:A,B,C;第二堆:D,E,并从第一堆中抽出第一张卡片,再从第二堆中抽出第二张卡片,背面向上洗匀.(1)请用画树形图或列表法表示出所有可能结果;(卡片可用A,B,C,D,E表示)(2)将“第一张卡片上x的值是第二张卡片中方程的解”记作事件M,求事件M的概率.25.(12分)某商场第一0元购进甲、乙两种商品,销售完成后共获利2200元,其中甲种商品每件进价60元,售价90元;乙种商品每件进价50元,售价65元.(1)求该商场购进甲、乙两种商品各多少件?(2) 商场第二次以原进价种商品,且购进甲、乙商品的数量分别与第一次相同,甲种商品按原售价出售,而乙种商品降价销售,要使第二次购进的两种商品全部售出后,获利不少于1900元,乙种商品最多可以降价多少元?26.(12分)如图,已知在△ABP 中,C 是BP 边上一点,∠P AC =∠PBA ,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,且交BP 于点E .(1)求证:P A 是⊙O 的切线;(2)过点C 作CF ⊥AD ,垂足为点F ,延长CF 交AB 于点G ,若AG ·AB =12,求AC 的长.29.(14分)如图, x 2-13x -2与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,M 是直线BC 下方的抛物线上一动点.(1)求A 、B 、C 三点的坐标.(2)连接MO 、MC ,并把△翻折,得到四边形MOM ′C ,那么是否存在点M ,使四边形MOM ′C 为菱形?若存在,求出此时点M 的坐标;若不存在,说明理由.(3)当点M 运动到什么位置时,四边形ABMC 的面积最大,并求出此时M 点的坐标和四边形ABMC 的最大面积.答题卡(第1—12题请用2B 铅笔填涂)(第13—29题答题请用黑色签字笔书写)13. (2a +b )(2a -b ) 14. 1415. 20 16. a +54b19. 5 19. 9三、解答题 19.(6分)解:原式=32-4-2-14分 =22-5.6分 20.(9分)解:化为整式方程得:2-2x =x -2x +4,2分 解得:x =-2,4分把x =-2代入原分式方程中,等式两边相等,6分 经检验x =-2是分式方程的解.9分 21.(9分)证明:∵∠1=∠2,∴∠1+∠BAD =∠2+∠BAD , 即:∠EAD =∠BAC .2分在△EAD 和△BAC 中, ⎩⎪⎨⎪⎧∠B =∠E ,AB =AE ,∠BAC =∠EAD ,6分∴△ABC ≌△AED (ASA), 9分 ∴BC =ED .9分22.(10分)解:(1)根据条形图可以得到: m =5,n =50-5-30-5=10. 故答案是:5,10.3分(2)如图:6分 (3)2000×3050=1200(人).10分23.(10分)解:根据已知画图,过点D 作DE ⊥AH 于点E . 设DE =x ,则CE =x +2.1分在Rt △AEC 和Rt △BED 中,有tan30°=CE AE ,tan60°=DEBE ,∴AE =3(x +2),BE =33x ,3分∴3(x +2)-33x =10, ∴x =53-3,6分 ∴GH =CD +DE =2+53-3=53-1≈9.9(m) 9分 答:GH 的长为9.9m.10分24.(10分)解:(1)画树状图得:共有6种等可能情况,(A ,D ),(A ,E ),(B ,D ), (B ,E ),(C ,D ),(C ,E ).6分(2)由(1)中的树状图可知符合条件的有3种, P (事件M )=36=12.10分25.(12分)解:(1)设商场购进甲x 件,购进乙y 件.则⎩⎪⎨⎪⎧60x +50y =10000,10x +15y =2200. 2分解得⎩⎪⎨⎪⎧x =100,y =80.5分 答:该商场购进甲、乙两种商品分别是100件、90件. 6分(2)设乙种商品降价z 元,则 10×100+(15-z )×90≥1900,9分解得z ≤5.11分答:乙种商品最多可以降价5元. 12分26.(12分)证明:(1)连接CD . ∵AD 是⊙O 的直径, ∴∠ACD =90°, ∴∠CAD +∠ADC =90°.1分 又∵∠P AC =∠PBA ,∠ADC =∠PBA ,∴∠P AC =∠ADC , ∴∠CAD +∠P AC =90°.3分 ∴P A ⊥OA ,而AD 是⊙O 的直径, ∴P A 是⊙O 的切线.5分(2)解:由(1)知,P A ⊥AD ,又∵CF ⊥AD , ∴CF ∥P A , ∴∠GCA =∠P AC . 9分又∵∠P AC =∠PBA ,∴∠GCA =∠PBA ,而∠CAG =∠BAC , ∴△CAG ∽△BAC . 9分 ∴AC AB =AG AC,即AC 2=AG ·AB . 10分 ∵AG ·AB =12, ∴AC 2=12, 11分∴AC =2 3. 12分29.(14分)解:(1)令y =0,则12x 2-32x -2=0,解得:x 1=4,x 2=-1, 2分∵点A 在点B 的左侧, ∴A (-1,0),B (4,0). 3分令x =0,则y =-2, ∴C (0,-2).4分(2)存在点M ,使四边形MOM ′C 是菱形,如答图1所示: 设M 点坐标为(x ,12x 2-32x -2).若四边形MOM ′C 是菱形, 则MM ′垂直平分OC .5分∵OC =2,∴M 点的纵坐标为-1, 6分 ∴12x 2-32x -2=-1,9分 解得:x 1=3+172,x 2=3-172(不合题意,舍去),9分 ∴M 点的坐标为(3+172,-1).9分(3)过点M 作y 轴的平行线与BC 交于点Q ,与OB 交于点H ,连接CM 、BM ,如答图2所示.设直线BC 的解析式为y =kx +b ,将B (4,0),C (0,-2)代入得:k =12,b =-2,∴直线BC 的解析式为y =12x -2.10分∴可设M (x ,12x 2-32x -2),Q (x ,12x -2),∴MQ =12x -2-(12x 2-32x -2)=-12x 2+2x ,11分∴S 四边形ABMC =S △ABC +S △CMQ +S △BQM=12AB ·OC +12QM ·OH +12QM ·HB=12×5×2+12QM ·(OH +HB )=5+12QM ·OB=5+12(-12x 2+2x )·4=-x 2+4x +5=-(x -2)2+912分∴当x =2时,四边形ABMC 的面积最大,且最大面积为9.13分当x =2时,y =-3,∴当M 点的坐标为(2,-3)时,四边形ABMC 的面积最大,且最大面积为9. 14分。

遵义市2019年中考数学试卷及答案(解析word版)

遵义市2019年中考数学试卷及答案(解析word版)

遵义市2019年中考数学试卷及答案(解析word版)1=∠B=85°,∠2=∠A=125°,因此∠1+∠2=360°-∠A-∠B=150°.解答:解:∠1+∠2=150°.故选:A.点评:本题考查了平行线的性质,要求考生能够正确运用平行线内错角和同旁内角相等的性质进行计算.五、应用题(本题共2小题,共30分)1.(15分)(2019•遵义)某公司新购进了一批机器,每台机器的重量为750千克.运输公司根据机器数量,计划用5辆载重相同的卡车运输,每辆卡车的载重量为多少千克?考点:整数的除法.分析:运输公司需要将750千克的机器分别装上卡车运输,要求每辆卡车的载重量相等,因此需要进行整数的除法计算.解答:解:每辆卡车需要装载的重量为750×5÷5=750千克.故选:750.点评:本题考查了整数的除法,要求考生能够正确运用除法计算每辆卡车需要装载的机器重量.2.(15分)(2019•遵义)如图,在平面直角坐标系中,点A(2,3)和点B(5,y)在直线y=x上方,且点B在直线y=3x上方.求y的取值范围.考点:坐标系中的点、直线及其性质.分析:题目中给出了点A和点B的坐标,要求点B在直线y=x和y=3x上方,因此需要利用坐标系中点和直线的性质进行计算.解答:解:由题意可得,点B在直线y=x上方,因此y>5-3x;点B在直线y=3x上方,因此y>3x.综合两个不等式可得y>max{5-3x,3x}.当5-3x>3x时,即x3x.当5-3x5/6时,max{5-3x,3x}=5-3x,此时y>5-3x.因此,y的取值范围为y>max{3x,5-3x},当x3x,当x>5/6时,y>5-3x.故选:y>max{3x,5-3x}.点评:本题考查了坐标系中点和直线的性质,要求考生能够正确运用不等式计算出点B的纵坐标y的取值范围.解答:给定数据为7、11、12、7、7、8、11.按照从小到大的顺序排列为7、7、7、8、11、11、12.因此,中位数为8,平均数为(7+11+12+7+7+8+11)/7=9,众数为7,极差为12-7=5.因此,说法错误的是B选项,平均数应为9而不是8.点评:本题考查了统计学中的几个概念,包括中位数、平均数、众数、极差,需要掌握计算方法和概念的理解。

贵州省遵义市2019-2020学年中考数学模拟试题含解析

贵州省遵义市2019-2020学年中考数学模拟试题含解析

贵州省遵义市2019-2020学年中考数学模拟试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,一个几何体由5个大小相同、棱长为1的正方体搭成,则这个几何体的左视图的面积为()A.5 B.4 C.3 D.22.如图是由若干个相同的小正方体搭成的一个几何体的主视图和俯视图,则所需的小正方体的个数最少是()A.6B.5C.4D.33.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm24.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为()A.6 B.8 C.10 D.125.如图,在矩形纸片ABCD中,已知AB3BC=1,点E在边CD上移动,连接AE,将多边形ABCE沿直线AE折叠,得到多边形AFGE,点B、C的对应点分别为点F、G.在点E从点C移动到点D 的过程中,则点F运动的路径长为()A.πB.3πC.3πD.23π6.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.237.下列汽车标志中,不是轴对称图形的是()A.B.C.D.8.“嫦娥一号”卫星顺利进入绕月工作轨道,行程约有1800000千米,1800000这个数用科学记数法可以表示为()A.70.1810⨯B.51.810⨯C.61.810⨯D.51810⨯9.如图是一次数学活动课制作的一个转盘,盘面被等分成四个扇形区域,并分别标有数字6、7、8、1.若转动转盘一次,转盘停止后(当指针恰好指在分界线上时,不记,重转),指针所指区域的数字是奇数的概率为()A.B.C.D.10.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为acm宽为bcm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是()A .4acmB .4()a b cm -C .2()a b cm +D .4bcm11.如图,l 1、l 2、l 3两两相交于A 、B 、C 三点,它们与y 轴正半轴分别交于点D 、E 、F ,若A 、B 、C 三点的横坐标分别为1、2、3,且OD=DE=1,则下列结论正确的个数是( ) ①13EA EC =,②S △ABC =1,③OF=5,④点B 的坐标为(2,2.5)A .1个B .2个C .3个D .4个12.如图,已知线段AB ,分别以A ,B 为圆心,大于12AB 为半径作弧,连接弧的交点得到直线l ,在直线l 上取一点C ,使得∠CAB =25°,延长AC 至点M ,则∠BCM 的度数为( )A .40°B .50°C .60°D .70°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知一组数据:3,3,4,5,5,则它的方差为____________14.关于x 的方程kx 2﹣(2k+1)x+k+2=0有实数根,则k 的取值范围是_____. 15.已知(x-ay)(x+ay)22x 16y =-,那么a=_______16.如图,在四边形ABCD 中,点E 、F 分别是边AB 、AD 的中点,BC=15,CD=9,EF=6,∠AFE=50°,则∠ADC 的度数为_____.17.规定一种新运算“*”:a*b =13a -14b ,则方程x*2=1*x 的解为________. 18.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于点A (-3,m +8),B (n ,-6)两点.求一次函数与反比例函数的解析式;求△AOB 的面积.20.(6分)如图,在平面直角坐标系xOy 中,直线16y k x =+与函数()20k y x x=>的图象的两个交点分别为A (1,5),B . (1)求1k ,2k 的值;(2)过点P (n ,0)作x 轴的垂线,与直线16y k x =+和函数()20k y x x=>的图象的交点分别为点M ,N ,当点M 在点N 下方时,写出n 的取值范围.21.(6分)如图,A ,B ,C 三个粮仓的位置如图所示,A 粮仓在 B 粮仓北偏东26°,180 千米处;C 粮仓在 B 粮仓的正东方,A 粮仓的正南方.已知 A ,B 两个粮仓原有存粮共 450 吨,根据灾情需要,现从 A 粮仓运出该粮仓存粮的35支援 C 粮仓,从 B 粮仓运出该粮仓存粮的25支援 C 粮仓,这时 A ,B 两处粮仓的存粮吨数相等.(tan26°=0.44,cos26°=0.90,tan26°=0.49) (1)A ,B 两处粮仓原有存粮各多少吨?(2)C 粮仓至少需要支援 200 吨粮食,问此调拨计划能满足 C 粮仓的需求吗?(3)由于气象条件恶劣,从 B 处出发到 C 处的车队来回都限速以每小时35 公里的速度匀速行驶,而司机小王的汽车油箱的油量最多可行驶 4 小时,那么小王在途中是否需要加油才能安全的回到B 地?请你说明理由.22.(8分)我市304国道通辽至霍林郭勒段在修建过程中经过一座山峰,如图所示,其中山脚A、C两地海拔高度约为1000米,山顶B处的海拔高度约为1400米,由B处望山脚A处的俯角为30°,由B处望山脚C处的俯角为45°,若在A、C两地间打通一隧道,求隧道最短为多少米(结果取整数,参考数据3≈1.732)23.(8分)在“传箴言”活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行了统计,并制成了如图所示的两幅不完整的统计图:求该班团员在这一个月内所发箴言的平均条数是多少?并将该条形统计图补充完整;如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学.现要从发了3条箴言和4条箴言的同学中分别选出一位参加该校团委组织的“箴言”活动总结会,请你用列表法或树状图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.24.(10分)计算:4cos30°12+20180+|1325.(10分)在抗洪抢险救灾中,某地粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到没有受洪水威胁的A,B两仓库,已知甲库有粮食100吨,乙库有粮食80吨,而A库的容量为60吨,B库的容量为120吨,从甲、乙两库到A、B两库的路程和运费如表(表中“元/吨•千米”表示每吨粮食运送1千米所需人民币)路程(千米)运费(元/吨•千米)甲库乙库甲库乙库A库20 15 12 12B库25 20 10 8若从甲库运往A库粮食x吨,(1)填空(用含x的代数式表示):①从甲库运往B库粮食吨;②从乙库运往A库粮食吨;③从乙库运往B库粮食吨;(2)写出将甲、乙两库粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式,并求出当从甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?26.(12分)一艘货轮往返于上下游两个码头之间,逆流而上需要6小时,顺流而下需要4小时,若船在静水中的速度为20千米/时,则水流的速度是多少千米/时?27.(12分)2018年湖南省进入高中学习的学生三年后将面对新高考,高考方案与高校招生政策都将有重大变化.某部门为了了解政策的宣传情况,对某初级中学学生进行了随机抽样调查,根据学生对政策的了解程度由高到低分为A,B,C,D四个等级,并对调查结果分析后绘制了如下两幅图不完整的统计图.请你根据图中提供的信息完成下列问题:(1)求被调查学生的人数,并将条形统计图补充完整;(2)求扇形统计图中的A等对应的扇形圆心角的度数;(3)已知该校有1500名学生,估计该校学生对政策内容了解程度达到A等的学生有多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据左视图是从左面看到的图形求解即可.【详解】从左面看,可以看到3个正方形,面积为3,故选:C.【点睛】本题考查三视图的知识,解决此类图的关键是由三视图得到相应的平面图形.从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图.2.B【解析】【分析】主视图、俯视图是分别从物体正面、上面看,所得到的图形.【详解】综合主视图和俯视图,底层最少有4个小立方体,第二层最少有1个小立方体,因此搭成这个几何体的小正方体的个数最少是5个.故选:B.【点睛】此题考查由三视图判断几何体,解题关键在于识别图形3.C【解析】试题分析:∵底面圆的直径为8cm,高为3cm,∴母线长为5cm,∴其表面积=π×4×5+42π+8π×6=84πcm2,故选C.考点:圆锥的计算;几何体的表面积.4.B【解析】【分析】根据勾股定理得到,根据菱形的性质得到AB=OA=5,AB∥x轴,求得B(-8,-4),得到E(-4,-2),于是得到结论.【详解】∵点A的坐标为(﹣3,﹣4),∴OA=2234+=5,∵四边形AOCB是菱形,∴AB=OA=5,AB∥x轴,∴B(﹣8,﹣4),∵点E是菱形AOCB的中心,∴E(﹣4,﹣2),∴k=﹣4×(﹣2)=8,故选B.【点睛】本题考查了反比例函数图象上点的坐标特征,菱形的性质,勾股定理,正确的识别图形是解题的关键.5.D【解析】【分析】点F的运动路径的长为弧FF'的长,求出圆心角、半径即可解决问题.【详解】如图,点F的运动路径的长为弧FF'的长,在Rt△ABC中,∵tan∠BAC=333BCAB==,∴∠BAC=30°,∵∠CAF=∠BAC=30°,∴∠BAF=60°,∴∠FAF′=120°,∴弧FF'的长=1203231803π=.故选D.本题考查了矩形的性质、特殊角的三角函数值、含30°角的直角三角形的性质、弧长公式等知识,解题的关键是判断出点F运动的路径.6.C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.7.C【解析】【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形,故错误;B、是轴对称图形,故错误;C、不是轴对称图形,故正确;D、是轴对称图形,故错误.故选C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.8.C分析:一个绝对值大于10的数可以表示为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,整数位数减去1即可.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:1800000这个数用科学记数法可以表示为61.810⨯, 故选C .点睛:考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键. 9.A 【解析】 【分析】转盘中4个数,每转动一次就要4种可能,而其中是奇数的有2种可能.然后根据概率公式直接计算即可 【详解】奇数有两种,共有四种情况,将转盘转动一次,求得到奇数的概率为: P (奇数)= = .故此题选A .【点睛】此题主要考查了几何概率,正确应用概率公式是解题关键. 10.D 【解析】 【分析】根据题意列出关系式,去括号合并即可得到结果. 【详解】解:设小长方形卡片的长为x ,宽为y , 根据题意得:x+2y=a ,则图②中两块阴影部分周长和是: 2a+2(b-2y )+2(b-x ) =2a+4b-4y-2x =2a+4b-2(x+2y ) =2a+4b-2a =4b . 故选择:D. 【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键. 11.C【解析】【分析】①如图,由平行线等分线段定理(或分线段成比例定理)易得:13 EA OAEC OC'='=;②设过点B且与y轴平行的直线交AC于点G,则S△ABC=S△AGB+S△BCG,易得:S△AED=12,△AED∽△AGB且相似比=1,所以,△AED≌△AGB,所以,S△AGB=12,又易得G为AC中点,所以,S△AGB=S△BGC=12,从而得结论;③易知,BG=DE=1,又△BGC∽△FEC,列比例式可得结论;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,所以④错误.【详解】解:①如图,∵OE∥AA'∥CC',且OA'=1,OC'=1,∴13 EA OAEC OC'='=,故①正确;②设过点B且与y轴平行的直线交AC于点G(如图),则S△ABC=S△AGB+S△BCG,∵DE=1,OA'=1,∴S△AED=12×1×1=12,∵OE∥AA'∥GB',OA'=A'B',∴AE=AG,∴△AED∽△AGB且相似比=1,∴△AED≌△AGB,∴S△ABG=12,同理得:G为AC中点,∴S△ABG=S△BCG=12,∴S△ABC=1,故②正确;③由②知:△AED≌△AGB,∴BG=DE=1,∵BG∥EF,∴△BGC∽△FEC,∴13 BG CGEF CE==,∴EF=1.即OF=5,故③正确;④易知,点B的位置会随着点A在直线x=1上的位置变化而相应的发生变化,故④错误;故选C.【点睛】本题考查了图形与坐标的性质、三角形的面积求法、相似三角形的性质和判定、平行线等分线段定理、函数图象交点等知识及综合应用知识、解决问题的能力.考查学生数形结合的数学思想方法.12.B【解析】【详解】解:∵由作法可知直线l是线段AB的垂直平分线,∴AC=BC,∴∠CAB=∠CBA=25°,∴∠BCM=∠CAB+∠CBA=25°+25°=50°.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 5【解析】根据题意先求出这组数据的平均数是:(3+3+4+5+5)÷5=4,再根据方差公式求出这组数据的方差为:1 5×[(3–4)2+(3–4)2+(4–4)2+(5–4)2+(5–4)2]=45.故答案为45.14.k≤14.【解析】【分析】分k=1及k≠1两种情况考虑:当k=1时,通过解一元一次方程可得出原方程有解,即k=1符合题意;等k≠1时,由△≥1即可得出关于k的一元一次不等式,解之即可得出k的取值范围.综上此题得解.【详解】当k=1时,原方程为-x+2=1,解得:x=2,∴k=1符合题意;当k≠1时,有△=[-(2k+1)]2-4k (k+2)≥1,解得:k≤14且k≠1. 综上:k 的取值范围是k≤14. 故答案为:k≤14. 【点睛】 本题考查了根的判别式以及一元二次方程的定义,分k=1及k≠1两种情况考虑是解题的关键. 15.±4【解析】【分析】根据平方差公式展开左边即可得出答案.【详解】∵(x-ay)(x+ay)=()22222x ay x a y -=-又(x-ay)(x+ay)22x 16y =- ∴216a =解得:a=±4 故答案为:±4. 【点睛】本题考查的平方差公式:22()()a b a b a b -=+-.16.140°【解析】【分析】【详解】如图,连接BD ,∵点E 、F 分别是边AB 、AD 的中点,∴EF 是△ABD 的中位线,∴EF ∥BD ,BD=2EF=12,∴∠ADB=∠AFE=50°,∵BC=15,CD=9,BD=12,∴BC2=225,CD2=81,BD2=144,∴CD2+BD2=BC2,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=50°+90°=140°. 故答案为:140°.17.10 7【解析】【分析】根据题中的新定义化简所求方程,求出方程的解即可.【详解】根据题意得:13x-14×2=13×1-1x4,7 12x=56,解得:x=10 7,故答案为x=10 7.【点睛】此题的关键是掌握新运算规则,转化成一元一元一次方程,再解这个一元一次方程即可.18.2.9【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB 与x 轴相交于点C ,根据一次函数解析式求出点C 的坐标,从而得到点OC 的长度,再根据S △AOB =S △AOC +S △BOC 列式计算即可得解.试题解析:(1)将A (﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A 的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B (n ,﹣6)代入y=﹣得,﹣=﹣6,解得n=1, 所以,点B 的坐标为(1,﹣6),将点A (﹣3,2),B (1,﹣6)代入y=kx+b 得,, 解得,所以,一次函数解析式为y=﹣2x ﹣1;(2)设AB 与x 轴相交于点C ,令﹣2x ﹣1=0解得x=﹣2,所以,点C 的坐标为(﹣2,0),所以,OC=2,S △AOB =S △AOC +S △BOC , =×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.20.(1)11k =-,25k =;(2)0<n <1或者n >1.【解析】【分析】(1)利用待定系数法即可解决问题;(2)利用图象法即可解决问题;【详解】解:(1)∵A (1,1)在直线16y k x =+上,∴11k =-,∵A (1,1)在()20k y x x=>的图象上, ∴25k =.(2)观察图象可知,满足条件的n 的值为:0<n <1或者n >1.【点睛】此题考查待定系数法求反比例函数与一次函数的解析式,解题关键在于利用数形结合的思想求解. 21.(1)A 、B 两处粮仓原有存粮分别是 270,1 吨;(2)此次调拨能满足 C 粮仓需求;(3)小王途中须加油才能安全回到 B 地.【解析】【分析】(1)由题意可知要求A ,B 两处粮仓原有存粮各多少吨需找等量关系,即A 处存粮+B 处存粮=450吨,A 处存粮的五分之二=B 处存粮的五分之三,据等量关系列方程组求解即可;(2)分别求出A 处和B 处支援C 处的粮食,将其加起来与200吨比较即可;(3)由题意可知由已知可得△ABC 中∠A=26°∠ACB=90°且AB=1Km ,sin ∠BAC=BC AB,要求BC 的长,可以运用三角函数解直角三角形.【详解】(1)设A ,B 两处粮仓原有存粮x ,y 吨 根据题意得:45032(1)(1)55x y x y +⎧⎪⎨--⎪⎩==解得:x=270,y=1.答:A,B两处粮仓原有存粮分别是270,1吨.(2)A粮仓支援C粮仓的粮食是35×270=162(吨),B粮仓支援C粮仓的粮食是25×1=72(吨),A,B两粮仓合计共支援C粮仓粮食为162+72=234(吨).∵234>200,∴此次调拨能满足C粮仓需求.(3)如图,根据题意知:∠A=26°,AB=1千米,∠ACB=90°.在Rt△ABC中,sin∠BAC=BC AB,∴BC=AB•sin∠BAC=1×0.44=79.2.∵此车最多可行驶4×35=140(千米)<2×79.2,∴小王途中须加油才能安全回到B地.【点睛】求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.22.隧道最短为1093米.【解析】【分析】作BD⊥AC于D,利用直角三角形的性质和三角函数解答即可.【详解】如图,作BD⊥AC于D,由题意可得:BD=1400﹣1000=400(米),∠BAC=30°,∠BCA=45°,在Rt△ABD中,∵tan30°=BDAD,即40033AD,∴3(米),在Rt△BCD中,∵tan45°=BDCD,即4001CD=,∴CD=400(米),∴AC=AD+CD=4003+400≈1092.8≈1093(米),答:隧道最短为1093米.【点睛】本题考查了解直角三角形的应用,正确添加辅助线构建直角三角形是解题的关键.23.(1)3,补图详见解析;(2)7 12【解析】【分析】(1)总人数=3÷它所占全体团员的百分比;发4条的人数=总人数-其余人数(2)列举出所有情况,看恰好是一位男同学和一位女同学占总情况的多少即可【详解】由扇形图可以看到发箴言三条的有3名学生且占25%,故该班团员人数为:325%12÷=(人),则发4条箴言的人数为:1222314----=(人),所以本月该班团员所发的箴言共212233441536⨯+⨯+⨯+⨯+⨯=(条),则平均所发箴言的条数是:36123÷=(条).(2)画树形图如下:由树形图可得,所选两位同学恰好是一位男同学和一位女同学的概率为712 P=.【点睛】此题考查扇形统计图,条形统计图,列表法与树状图法和扇形统计图,看懂图中数据是解题关键243【解析】【分析】先代入三角函数值、化简二次根式、计算零指数幂、取绝对值符号,再计算乘法,最后计算加减可得.【详解】原式=411-=11=【点睛】本题主要考查实数的混合运算,解题的关键是熟练掌握实数的混合运算顺序和运算法则及零指数幂、绝对值和二次根式的性质.25.(1)①(100﹣x);②(1﹣x);③(20+x);(2)从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.【解析】分析:(Ⅰ)根据题意解答即可;(Ⅱ)弄清调动方向,再依据路程和运费列出y(元)与x(吨)的函数关系式,最后可以利用一次函数的增减性确定“最省的总运费”.详解:(Ⅰ)设从甲库运往A库粮食x吨;①从甲库运往B库粮食(100﹣x)吨;②从乙库运往A库粮食(1﹣x)吨;③从乙库运往B库粮食(20+x)吨;故答案为(100﹣x);(1﹣x);(20+x).(Ⅱ)依题意有:若甲库运往A库粮食x吨,则甲库运到B库(100﹣x)吨,乙库运往A库(1﹣x)吨,乙库运到B库(20+x)吨.则1000600200xxxx≥⎧⎪-≥⎪⎨-≥⎪⎪+≥⎩,解得:0≤x≤1.从甲库运往A库粮食x吨时,总运费为:y=12×20x+10×25(100﹣x)+12×15(1﹣x)+8×20×[120﹣(100﹣x)]=﹣30x+39000;∵从乙库运往A库粮食(1﹣x)吨,∴0≤x≤1,此时100﹣x>0,∴y=﹣30x+39000(0≤x≤1).∵﹣30<0,∴y随x的增大而减小,∴当x=1时,y取最小值,最小值是2.答:从甲库运往A库1吨粮食,从甲库运往B库40吨粮食,从乙库运往B库80吨粮食时,总运费最省,最省的总运费是2元.点睛:本题是一次函数与不等式的综合题,先解不等式确定自变量的取值范围,然后依据一次函数的增减性来确定“最佳方案”.26.1千米/时【解析】【分析】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据由货轮往返两个码头之间,可知顺水航行的距离与逆水航行的距离相等列出方程,解方程即可求解.【详解】设水流的速度是x千米/时,则顺流的速度为(20+x)千米/时,逆流的速度为(20﹣x)千米/时,根据题意得:6(20﹣x)=1(20+x),解得:x=1.答:水流的速度是1千米/时.【点睛】本题考查了一元一次方程的应用,读懂题意,找出等量关系,设出未知数后列出方程是解决此类题目的基本思路.27.(1)图见解析;(2)126°;(3)1.【解析】【分析】(1)利用被调查学生的人数=了解程度达到B等的学生数÷所占比例,即可得出被调查学生的人数,由了解程度达到C等占到的比例可求出了解程度达到C等的学生数,再利用了解程度达到A等的学生数=被调查学生的人数-了解程度达到B等的学生数-了解程度达到C等的学生数-了解程度达到D等的学生数可求出了解程度达到A等的学生数,依此数据即可将条形统计图补充完整;(2)根据A等对应的扇形圆心角的度数=了解程度达到A等的学生数÷被调查学生的人数×360°,即可求出结论;(3)利用该校现有学生数×了解程度达到A等的学生所占比例,即可得出结论.【详解】(1)48÷40%=120(人),120×15%=18(人),120-48-18-12=42(人).将条形统计图补充完整,如图所示.(2)42÷120×100%×360°=126°.答:扇形统计图中的A等对应的扇形圆心角为126°.(3)1500×42120=1(人).答:该校学生对政策内容了解程度达到A等的学生有1人.【点睛】本题考查了条形统计图、扇形统计图以及用样本估计总体,观察条形统计图及扇形统计图,找出各数据,再利用各数量间的关系列式计算是解题的关键.。

遵义市2019年中考数学模拟试卷(三)

遵义市2019年中考数学模拟试卷(三)

遵义市2019年初中毕业生学业(升学)统一考试数学全真模拟试卷(三)(全卷总分150分,考试时间120分钟)第Ⅰ卷(选择题 共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.与-2的和为0的数是( A ) A .2 B .-2 C .0D.232.下列计算正确的是( C ) A .a 3+a 2=a 5 B .a 3·a 2=a 6 C .(a 2)3=a 6D.⎝⎛⎭⎫a 22=a 223.如图所示,该几何体的左视图是( D )第3题4.11月30日,《天渠》电影主创团队和制作单位在遵义大剧院举行全国上映·遵义首映式.影片讲述了黄大发老支书从上世纪60年代起,带领全村党员群众,几十年如一日,克服艰难困苦,靠着锄头、钢钎、铁锤和双手,在绝壁上凿出一条长9400米的“生命渠”的动人故事.将数9400用科学记数法表示为( A )A .9.4×103B .9.4×104C .0.94×105D .9.4×1055.下列图形中,是中心对称图形的是( C )6.我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的( C )A .众数B .平均数C .中位数D .方差7.不等式组⎩⎪⎨⎪⎧1-2x <3,x +12≤2的正整数解的个数是( C )A .5B .4C .3D .28.已知一元二次方程x 2-2x -1=0的两根分别为x 1、x 2,则1x 1+1x 2的值为( D )A .2B .-1C .-12D .-29.如图,直线a ∥b ,∠1=50°,∠2=30°,则∠3的度数为( A )A .20°B .30°C .40°D .50°10.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB 的长为( D )A .πB .6πC .3πD .1.5π11.如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕.若AE =3,则sin ∠BFD 的值为( A )第11题A.13 B.223C.24D.3512.如图,边长为2的等边△ABC 和边长为1的等边△A ′B ′C ′,它们的边B ′C ′、BC 位于同一条直线l 上.开始时,点C ′与点B 重合,△ABC 固定不动,然后把△A ′B ′C ′自左向右沿直线l 平移,直至移出△ABC 外(点B ′与点C 重合)停止,设△A ′B ′C ′平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( B )第12题第Ⅱ卷(非选择题 共102分)二、填空题(本大题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.函数y =x -2x +1中,自变量x 的取值范围是 x >-1 .14.如图,将△ABC 沿BC 方向平移2 cm 得到△DEF ,若△ABC 的周长为16 cm ,则四边形ABFD 的周长为 20 cm .第14题15.在我国古代数学著作《九章算术》中记载了一道有趣的数学问题:“今有池方一丈,葭生其中央,出水一尺.引葭赴岸,适与岸齐.问水深几何?”这个数学问题的意思是说:“有一个水池,水面是一个边长为1丈(1丈=10尺)的正方形,在水池正中央长有一根芦苇,芦苇露出水面1尺.如果把这根芦苇拉向岸边,它的顶端恰好到达岸边的水面,请问这个水池深多少尺?”这个水池的深度是 12 尺.16.如图,在△ABC 中,AD 和BE 是高,∠ABE =45°,F 是AB 的中点,AD 与FE 、BE 分别交于点G 、H ,∠CBE =∠BAD .有下列结论:①FD =FE ;②AH =2CD ;③BC ·AD =2AE 2;④S △ABC =4S △ADF .其中正确的有 ①②③④ .(填序号)第16题三、解答题(本题共8小题,共86分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)(1)(6分)计算:8+⎝⎛⎭⎫-12-2-4sin 45°+(π-2019)0; 解:原式=22+4-4×22+1=22+4-22+1=5. (2)(6分)先化简,再求值:⎝⎛⎭⎫x 2x -2+42-x ÷x 2+4x +4x .其中x 是0,1,2这三个数中合适的数.解:⎝⎛⎭⎫x 2x -2+42-x ÷x 2+4x +4x =x x +2.当x =1时,原式=11+2=13.18.(8分)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组成(如图1),图2是从图1引出的平面图.假设你站在A 处测得塔杆顶端C 的仰角是55°,沿HA 方向水平前进43米到达山底G 处,在山顶B 处发现正好一叶片到达最高位置,此时测得叶片的顶端D (D 、C 、H 在同一直线上)的仰角是45°.已知叶片的长度为35米(塔杆与叶片连结处的长度忽略不计),山高BG 为10米,BG ⊥HG ,CH ⊥AH ,求塔杆CH 的高.(参考数据:tan 55°≈1.4,tan 35°≈0.7,sin 55°≈0.8,sin 35°≈0.6)第18题解:过点B 作BE ⊥DH 于点E ,则GH =BE ,EH =BG =10米.设AH =x 米,则BE =GH =GA +AH =(43+x )米.在Rt △ACH 中,CH =AH ·tan ∠CAH =tan 55°·x 米,∴CE =CH -EH =(tan 55°·x -10)米.∵∠DBE =45°,∴BE =DE =CE +DC ,即43+x =tan 55°·x -10+35,解得x ≈45,∴CH =tan 55°·x ≈1.4×45=63(米).即塔杆CH 的高约为63米.19.(9分)为了了解学生在一年中的课外阅读量,九(1)班对该校九年级800名学生采用随机抽样的方式进行了问卷调查,调查的结果分为四种情况:A .10本以下;B .10~15本;C .16~20本;D .20本以上.根据调查结果统计整理并制作了如图所示的两幅不完整的统计图表:各种情况人数统计频数分布表第19题(1)在这次调查中一共抽查了 200 名学生; (2)表中x 、y 的值分别为x = 60 ,y = 80 ;(3)在扇形统计图中,C 部分所对应的扇形的圆心角是 144 度;(4)根据抽样调查结果,请估计该校九年级学生一年阅读课外书20本以上的学生人数. 解:800×40200=160(人),即估计该校九年级学生一年阅读课外书20本以上的学生人数为160人.20.(9分)A 、B 两组卡片共5张,A 中三张分别写有数字2,4,6,B 中两张分别写有数字3,5,它们除数字外没有任何区别.(1)随机地从A 中抽取一张,求抽到数字为2的概率;(2)随机地分别从A 、B 中各抽取一张,请你用画树状图或列表的方法表示所有等可能的结果.现制定这样一个游戏规则:若所选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对双方公平吗?为什么?解:(1)抽到数字为2的概率P =13. (2)画树状图如下:一共有6种等可能的情况,甲获胜的情况有4种,则P (甲获胜)=46=23;乙获胜的情况有2种,则P (乙获胜)=26=13.∵23≠12,∴这样的游戏规则对双方不公平.21.(10分)已知正方形ABCD 的对角线AC 、BD 相交于点O .(1)如图1,E 、G 分别是OB 、OC 上的点,CE 与DG 的延长线相交于点F .若DF ⊥CE ,求证:OE =OG ;(2)如图2,H 是BC 上的点,过点H 作EH ⊥BC ,交线段OB 于点E ,连结DH 交CE 于点F ,交OC 于点G ,若OE =OG .①求证:∠ODG =∠OCE ; ②当AB =1时,求HC 的长.第21题(1)证明:∵四边形ABCD 是正方形,∴AC ⊥BD ,OD =OC ,∴∠DOG =∠COE =90°,∴∠OEC +∠OCE =90°.∵DF ⊥CE ,∴∠OEC +∠ODG =90°,∴∠ODG =∠OCE ,∴△DOG ≌△COE (ASA),∴OE =OG .(2)①证明:∵OG =OE ,∠DOG =∠COE =90°,OD =OC ,∴△ODG ≌△OCE ,∴∠ODG =∠OCE .②解:设CH =x .∵四边形ABCD 是正方形,AB =1,∴BH =1-x ,∠DBC =∠BDC =∠ACB =45°.∵EH ⊥BC ,∴∠BEH =∠EBH =45°,∴EH =BH =1-x .∵∠ODG =∠OCE ,∴∠BDC -∠ODG =∠ACB -∠OCE ,∴∠HDC =∠ECH .∵EH ⊥BC ,∴∠EHC =∠HCD =90°,∴△CHE ∽△DCH ,∴EH HC =HC CD ,∴HC 2=EH ·CD ,即x 2=(1-x )·1,解得x =5-12或-5-12(舍去).∴HC =5-12. 22.(12分)某大酒店豪华间实行淡季、旺季两种价格标准,旺季每间价格比淡季上涨13.下表是去年该酒店豪华间某两天的相关记录:(1)(2)今年旺季来临,豪华间的间数不变.经市场调查发现,如果豪华间仍旧实行去年旺季价格,那么每天都客满;如果价格继续上涨,那么每增加25元,每天未入住房间数增加1间.不考虑其他因素,该酒店将豪华间的价格上涨多少元时,豪华间的日总收入最高?最高日总收入是多少元?解:(1)设淡季每间的价格为x 元,酒店豪华间有y 间.根据题意,得⎩⎪⎨⎪⎧x ()y -10=24 000,⎝⎛⎭⎫1+13xy =40 000,解得⎩⎪⎨⎪⎧x =600,y =50.∴x +13x =600+13×600=800.即该酒店豪华间有50间,旺季每间价格为800元. (2)设该酒店豪华间的价格上涨a 元,日总收入为w 元.根据题意,得w =(800+a )·⎝⎛⎭⎫50-a 25=-125(a -225)2+42 025,∴当a =225时,w 取得最大值,此时w =42 025.即该酒店将豪华间的价格上涨225元时,豪华间的日总收入最高,最高日总收入是42 025元.23.(12分)如图,点P 在以MN 为直径的⊙O 上,MN =8,PQ ⊥MN 交⊙O 于点Q ,垂足为H ,PQ ≠MN ,弦PC 、PD 分别交MN 于点E 、F ,且PE =PF .(1)比较CQ 与DQ 的大小; (2)若OH =22,求证:OP ∥CD ;(3)设直线MN 、CD 相交所成的锐角为α,试确定cos α=32时,点P 的位置.第23题(1)解:∵PE =PF ,PH ⊥EF ,∴PH 平分∠DPC ,∴∠DPQ =∠CPQ ,∴CQ =DQ . (2)证明:连结CD 、OP 、OQ ,OQ 交CD 于点B .∵MN 是⊙O 的直径,MN =8,∴OP =12MN =4.又∵OH =22,PQ ⊥MN ,∴PH =OP 2-OH 2=22,∴△OPH 为等腰直角三角形,∴∠OPQ =45°.又∵OP =OQ ,∴△OPQ 为等腰直角三角形,∴∠POQ =90°,∴OP ⊥OQ .∵CQ =DQ ,∴OQ ⊥CD ,∴OP ∥CD . (3)解:设直线CD 交直线MN 于点A .∵cos α=32,∴∠α=30°,即直线MN 、CD 相交所成的锐角为30°.∵OB ⊥CD ,∴∠AOB =60°.∵OH ⊥PQ ,∴∠POH =60°.在Rt △POH 中,PH =OP ·sin 60°=23,即此时点P 到MN 的距离为2 3.24.(14分)如图1,在平面直角坐标系中,⊙D 与y 轴相切于点C (0,4),与x 轴相交于A 、B 两点,且AB =6.(1)求点D 的坐标和⊙D 的半径;(2)求经过C 、A 、B 三点的抛物线所对应的函数关系式; (3)设抛物线的顶点为F ,试证明直线AF 与⊙D 相切;(4)在x 轴下方的抛物线上,是否存在一点N ,使△CBN 面积最大,最大面积是多少?并求出点N 的坐标.图1 备用图(1)解:如图2,连结CD ,过点D 作DE ⊥AB ,垂足为点E ,连结AD .∵DE ⊥AB ,AB =6,∴AE =12AB =3.∵⊙D 与y 轴相切,∴DC ⊥y 轴,∴∠COE =∠OED =∠OCD =90°,∴四边形OCDE 为矩形,∴OC =DE .∵C (0,4),∴DE =OC =4,∴在Rt △AED 中,AD =DE 2+AE 2=5,∴⊙D 的半径为5,∴D (5,4). (2)解:∵D (5,4),∴E (5,0),∴易得A (2,0)、B (8,0).设经过C 、A 、B 三点的抛物线所对应的函数关系式为y =a (x -2)(x -8).将点C 的坐标代入,得16a =4,解得a =14.∴经过C 、A 、B 三点的抛物线所对应的函数关系式为y =14x 2-52x +4. (3)证明:∵y =14x 2-52x +4=14(x -5)2-94,∴抛物线的顶点坐标F ⎝⎛⎭⎫5,-94,∴DF =4+94=254,AF =(5-2)2+⎝⎛⎭⎫-942=154.又∵AD =5,∴AD 2+AF 2=DF 2,∴△DAF 为直角三角形,且∴∠DAF =90°,∴AF 是⊙D 的切线. (4)解:如图3,过点N 作NP ∥y 轴,交BC 于点P .设直线BC 的解析式为y =kx +4.将点B 的坐标代入,得8k +4=0,解得k =-12.∴直线BC 的解析式为y =-12x +4.设点N 的坐标为⎝⎛⎭⎫b ,14b 2-52b +4,则点P 的坐标为⎝⎛⎭⎫b ,-12b +4,∴NP =-12b +4-⎝⎛⎭⎫14b 2-52b +4=-14b 2+2b ,∴S △CBN =S △CPN +S △PBN =12BO ·PN =12×8×⎝⎛⎭⎫-14b 2+2b =-(b -4)2+16,∴当b =4时,S △CBN 最大,最大值为16,此时,N (4,-2).图2图3。

2019年贵州省遵义市中考一模数学试题

2019年贵州省遵义市中考一模数学试题
4.中央电视台举行中国诗词大会,在某一场的比赛中,五位选手答对的题目数分别是8,6,7,8,9,则关于这组数据的说法不正确的是( )
A.众数是8B.中位数是8C.极差是3D.平均数是8
5.下面四个运算,计算正确的一个是( )
A. B.
C. D.
6.将一幅三角板如图所示摆放,若BC∥DE,那么∠1的度数为( )
7.A
【解析】
【分析】
首先根据在直角三角中AC=4,AB=2 ,可计算得到sinC,进而求得∠C,再根据扇形的面积公式,得到S扇形BCD,最后阴影部分的面积即为三角形的面积与扇形面积的差.
【详解】
∵在△ABC中,∠ABC=90°,AC=4,AB= ,
∴sinC= ,BC=2,
∴∠C=60°,
∴S阴影=S△ABC-S扇形BCD ,
3.C
【解析】
【分析】
科学记数法用于表示绝对值较大的数,一般表示成 ,其中 ,n为整数,本题中先将单位(亿)表示为 ,再进行小数点的移动即可解答本题.
【详解】
将10050亿用科学记数法表示为:1.0050×1012.故选C.
【点睛】
本题主要考查科学记数法的基本概念,熟练掌握小数点的移动规律(小数点向左移动几位就要乘上10的几次方)是解答本题的关键.
A. B. C. D.
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
11.已知x1,x2是关于x的方程x2-(2m-2)x+(m2-2m)=0的两根,且满足x1•x2+2(x1+x2)=-1,那么m的值为( )
A. 或3B. 或1C. D.1
12.如图,抛物线y=ax2+bx+c与x轴交于点(-1,0),顶点坐标为(1,m),与y轴交点在(0,3),(0,4)之(不包含端点),现有下列结论:①3a+b>0;②- <a<-1;③关于x的方程ax2+bx+c=m-2有两个不相等的实数根:④若点M(-1.5,y1),N(2.5,y2)是函数图象上的两点,则y1=y2.其中正确结论的个数为( )

遵义市2019届中考数学模拟试卷(二)含答案解析

遵义市2019届中考数学模拟试卷(二)含答案解析

2019年贵州省遵义市中考数学模拟试卷(二)一、选择题(本题共12小题,每小题3分,共36分.)1.下列数中能同时被2、3整除的是()A.1.2 B.15 C.16 D.182.将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.6183.一个几何体的三视图如图,那么这个几何体是()A.B.C.D.4.计算的结果是()A.﹣3 B.3 C.﹣9 D.95.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个6.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣1,那么p,q的值分别是()A.1,﹣2 B.﹣1,﹣2 C.﹣1.2 D.1,27.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.98.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°9.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣ C.﹣10或 D.﹣10或﹣10.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.11.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°12.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.下面结论错误的是()A.△ABM≌△CDN B.AM=AC C.DN=2NF D.△AME∽△DNC二、填空题(本题共6小题,每小题4分,共24分.)13.分解因式:n2﹣2n+1﹣m2=.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2019,且AO=2BO,则a+b的值为.15.分式方程:的解x=.16.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为cm.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.18.如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是.三、解答题(本题共9小题,共90分.)19.解方程组:.20.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.21.某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是60°,然后沿平行与AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是45°,求两海岛间的距离AB.22.在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.(1)求小明和小红都摸出2号球的概率;(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.23.王老师对本校九年级学生期中数学测试的成绩,进行统计分析:(1)王老师通过计算得出九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分.则九(1)班数学平均得分是多少?(试题共三种题型)(2)王老师对解答题第28题的得分进行了抽样调查,将所得分数x分为三级:A级:x≥8,B级:4≤x<8;C级:0≤x<4,并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:①此次抽样调查中,共调查了名学生,将图①补充完整;②求出图②中C级所占的圆心角的度数;③根据抽样调查结果,请你估计我校1200名九年级学生中大约共有多少名学生对28题的解答达到A级和B级?24.如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)25.某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?26.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.27.如图所示,已知实数m是方程x2﹣8x+16=0的一个实数根,抛物线y=x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).(1)求这个抛物线的解析式;(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC 于点F,当四边形DECF的面积最大时,求点D的坐标;(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.2019年贵州省遵义市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分.)1.下列数中能同时被2、3整除的是()A.1.2 B.15 C.16 D.18【考点】有理数的除法.【专题】计算题.【分析】用各项中的数字分别除以2和3即可得到正确的选项.【解答】解:∵18能被2、3整除,∴能同时被2、3整除的是可以是18.故选:D.【点评】此题考查了有理数的除法,熟练掌握除法法则是解本题的关键.2.将6.18×10﹣3化为小数的是()A.0.000618 B.0.00618 C.0.0618 D.0.618【考点】科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.【解答】解:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618.故选:B.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.3.一个几何体的三视图如图,那么这个几何体是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为圆形可得几何体为球、圆柱或圆锥,再根据主视图和左视图可知几何体为圆柱与圆锥的组合体.故选:D.【点评】考查学生对圆锥三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.计算的结果是()A.﹣3 B.3 C.﹣9 D.9【考点】二次根式的性质与化简.【专题】计算题.【分析】原式利用二次根式的化简公式计算即可得到结果.【解答】解:原式=|﹣3|=3.故选:B.【点评】此题考查了二次根式的性质与化简,熟练掌握二次根式的化简公式是解本题的关键.5.直尺与三角尺按如图所示的方式叠放在一起,在图中所标记的角中,与∠1互余的角有几个()A.2个B.3个C.4个D.6个【考点】余角和补角.【专题】计算题.【分析】本题要注意到∠1与∠2互余,并且直尺的两边互相平行,可以考虑平行线的性质.【解答】解:与∠1互余的角有∠2,∠3,∠4;一共3个.故选:B.【点评】正确观察图形,由图形联想到学过的定理是数学学习的一个基本要求.6.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=﹣1,那么p,q的值分别是()A.1,﹣2 B.﹣1,﹣2 C.﹣1.2 D.1,2【考点】根与系数的关系.【专题】计算题.【分析】根据根与系数的关系得2+(﹣1)=﹣p,2×(﹣1)=q,然后解方程即可.【解答】解:根据题意得2+(﹣1)=﹣p,2×(﹣1)=q,所以p=﹣1,q=﹣2.故选:B.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=,x1x2=.7.一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是()A.6 B.7 C.8 D.9【考点】中位数.【分析】根据中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:6,7,8,9,9,则中位数为:8.故选:C.【点评】本题考查了中位数的知识:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.如图,AB是⊙O的直径,∠ACD=15°,则∠BAD的度数为()A.15°B.30°C.60°D.75°【考点】圆周角定理.【专题】压轴题.【分析】由AB是圆的直径,则∠ADB=90°,由圆周角定理知,∠ABD=∠ACD=15°,即可求∠BAD=90°﹣∠B=75°.【解答】解:连接BD,∵AB是圆的直径,∴∠ADB=90°,∴∠ABD=∠ACD=15°,∴∠BAD=90°﹣∠ABD=75°.故选:D.【点评】本题考查了直径对的圆周角定理是直角和圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.9.已知关于x的方程mx+2=2(m﹣x)的解满足|x﹣|﹣1=0,则m的值是()A.10或B.10或﹣ C.﹣10或 D.﹣10或﹣【考点】含绝对值符号的一元一次方程.【专题】计算题.【分析】解此题分两步:(1)求出|x﹣|﹣1=0的解;(2)把求出的解代入方程mx+2=2(m﹣x),把未知数转化成已知数,方程也同时转化为关于未知系数的方程,解方程即可.【解答】解:先由|x﹣|﹣1=0,得出x=或﹣;再将x=和x=﹣分别代入mx+2=2(m﹣x),求出m=10或故选:A.【点评】解答本题时要格外注意,|x﹣|﹣1=0的解有两个.解出x的值后,则可把已知解代入方程的未知数中,使未知数转化为已知数,从而建立起未知系数的方程,通过未知系数的方程求出未知数系数,这种解题方法叫做待定系数法,是数学中的一个重要方法,以后在函数的学习中将大量用到这种方法.10.一个布袋里装有5个球,其中3个红球,2个白球,每个球除颜色外其他完全相同,从中任意摸出一个球,是红球的概率是()A.B.C.D.【考点】概率公式.【分析】用红球的个数除以球的总个数即可.【解答】解:∵布袋里装有5个球,其中3个红球,2个白球,∴从中任意摸出一个球,则摸出的球是红球的概率是:.故选:D.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.11.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110°B.125°C.130°D.155°【考点】全等三角形的判定与性质.【分析】易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.【解答】解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.【点评】本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.12.如图,在平行四边形ABCD中,E、F分别是边AD、BC的中点,AC分别交BE、DF于点M、N.下面结论错误的是()A.△ABM≌△CDN B.AM=AC C.DN=2NF D.△AME∽△DNC【考点】相似三角形的判定与性质;全等三角形的判定;平行四边形的性质.【专题】压轴题.【分析】由在平行四边形ABCD中,E、F分别是边AD、BC的中点,可证得四边形BFDE是平行四边形,继而可利用AAS判定△ABM≌△CDN;易证得△AME∽△CMB,△AND∽△CNF,然后由相似三角形的对应边成比例,证得AM=AC,DN=2NF.【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC,AB=CD,AD=BC,∵E、F分别是边AD、BC的中点,∴DE=BF,∴四边形BFDE是平行四边形,∴∠AMB=∠ANF=∠CND,∠EBF=∠EDF,∴∠ABM=∠CDN,在△ABM和△CDN中,,∴△ABM≌△CDN(AAS);故A正确;∵AD∥BC,∴△AME∽△CMB,∴AE:BC=AM:CM=1:2,∴AM=AC;故B正确;∵AD∥BC,∴△AND∽△CNF,∴AD:CF=DN:NF=2,∴DN=2NF;故C正确;∵AB∥CD,AD∥BC,∴△AME∽△CMB∽△CNF∽△AND,△ABM∽△CND,但△AME与△DNC不一定相似.故D错误.由于该题选择错误的,故选:D.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及平行四边形的性质.此题难度适中,注意掌握数形结合思想的应用.二、填空题(本题共6小题,每小题4分,共24分.)13.分解因式:n2﹣2n+1﹣m2=(n﹣1+m)(n﹣1﹣m).【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题中有n的二次项,n的一次项,有常数项.所以要考虑后三项n2﹣2n+1为一组.【解答】解:n2﹣2n+1﹣m2=(n2﹣2n+1)﹣m2=(n﹣1)2﹣m2=(n﹣1+m)(n﹣1﹣m).故答案为:(n﹣1+m)(n﹣1﹣m).【点评】此题主要考查了分组分解法分解因式,难点是采用两两分组还是三一分组.比如本题有n 的二次项,n的一次项,有常数项,所以首要考虑的就是三一分组.14.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2019,且AO=2BO,则a+b的值为﹣671.【考点】数轴;绝对值;两点间的距离.【分析】根据已知条件可以得到a<0<b.然后通过取绝对值,根据两点间的距离定义知b﹣a=2019,a=﹣2b,则易求b=671.所以a+b=﹣2b+b=﹣b=﹣671.【解答】解:如图,a<0<b.∵|a﹣b|=2019,且AO=2BO,∴b﹣a=2019,①a=﹣2b,②由①②,解得b=671,∴a+b=﹣2b+b=﹣b=﹣671.故答案是:﹣671.【点评】本题考查了数轴、绝对值以及两点间的距离.根据已知条件得到a<0<b是解题的关键.15.分式方程:的解x=2.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2=x2+x﹣2,解得:x=2,经检验x=2是分式方程的解.故答案为:2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.16.著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10cm.【考点】直角三角形斜边上的中线.【专题】压轴题.【分析】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【解答】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.【点评】此题主要考查了直角三角形的性质,关键是掌握直角三角形斜边上的中线等于斜边的一半.17.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,则DF的长为.【考点】三角形中位线定理;等腰三角形的判定与性质.【专题】压轴题.【分析】延长CF交AB于点G,证明△AFG≌△AFC,从而可得△ACG是等腰三角形,GF=FC,点F是CG中点,判断出DF是△CBG的中位线,继而可得出答案.【解答】解:延长CF交AB于点G,∵AE平分∠BAC,∴∠GAF=∠CAF,∵AF垂直CG,∴∠AFG=∠AFC,在△AFG和△AFC中,∵,∴△AFG≌△AFC(ASA),∴AC=AG,GF=CF,又∵点D是BC中点,∴DF是△CBG的中位线,∴DF=BG=(AB﹣AG)=(AB﹣AC)=.故答案为:.【点评】本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,同学们要注意培养自己的敏感性,一般出现即是角平分线又是高的情况,我们就需要寻找等腰三角形.18.如图,点P在双曲线y=(x>0)上,以P为圆心的⊙P与两坐标轴都相切,点E为y轴负半轴上的一点,过点P作PF⊥PE交x轴于点F,若OF﹣OE=6,则k的值是9.【考点】反比例函数综合题.【专题】计算题;压轴题.【分析】过P点作x轴、y轴的垂线,垂足为A、B,根据⊙P与两坐标轴都相切可知,PA=PB,由∠APB=∠EPF=90°可证△BPE≌△APF,得BE=AF,利用OF﹣OE=6,求圆的半径,根据k=OA×PA 求解.【解答】解:如图,过P点作x轴、y轴的垂线,垂足为A、B,∵⊙P与两坐标轴都相切,∴PA=PB,四边形OAPB为正方形,∵∠APB=∠EPF=90°,∴∠BPE=∠APF,∴Rt△BPE≌Rt△APF,∴BE=AF,∵OF﹣OE=6,∴(OA+AF)﹣(BE﹣OB)=6,即2OA=6,解得OA=3,∴k=OA×PA=3×3=9.故答案为:9.【点评】本题考查了反比例函数的综合运用.关键是根据圆与坐标轴相切的关系作辅助线,构造全等三角形,正方形,将有关线段进行转化.三、解答题(本题共9小题,共90分.)19.解方程组:.【考点】解二元一次方程组.【专题】计算题.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②×5得:52y=88,即y=,将y=代入①得:5x﹣=11,解得:x=,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20.先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.【考点】分式的化简求值.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,则原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.某海域有两个海拔均为200米的海岛A和海岛B,一勘测飞机在距离海平面垂直高度为1100米的空中飞行,飞行到点C处时测得正前方一海岛顶端A的俯角是60°,然后沿平行与AB的方向水平飞行1.99×104米到达点D处,在D处测得正前方另一海岛顶端B的俯角是45°,求两海岛间的距离AB.【考点】解直角三角形的应用-仰角俯角问题.【分析】首先过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,易得四边形ABFE为矩形,根据矩形的性质,可得AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900(米),CD=1.99×104米,然后分别在Rt△AEC与Rt△BFD中,利用三角函数即可求得CE与DF的长,继而求得两海岛间的距离AB.【解答】解:过点A作AE⊥CD于点E,过点B作BF⊥CD于点F,∵AB∥CD,∴∠AEF=∠EFB=∠ABF=90°,∴四边形ABFE为矩形.∴AB=EF,AE=BF.由题意可知:AE=BF=1100﹣200=900(米),CD=1.99×104米=19900米.在Rt△AEC中,∠C=60°,AE=900米.∴CE==300(米).在Rt△BFD中,∠BDF=60°,BF=900米.∴DF===900(米).∴AB=EF=CD+DF﹣CE=19900﹣300+900=20800﹣300(米).答:两海岛间的距离AB为(20800﹣300)米.【点评】此题考查了俯角的定义、解直角三角形与矩形的性质.注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.22.在一个不透明的盒子里,装有三个分别标有1、2、3的小球,它们的形状、大小、质地等完全相同.小明和小红做一个游戏,小明先摸出一球,记着编号后放入,小红再摸出一球,记住编号.(1)求小明和小红都摸出2号球的概率;(2)若小明摸出的球的编号与小红摸出的球的编号的乘积是质数,则小明获胜,是合数,则小红胜,既不是质数又不是合数,则重新游戏.你认为这个游戏规则合理吗?请说明理由.【考点】游戏公平性;列表法与树状图法.【分析】(1)用列表法或树形图法求出所有可能的结果,再看一下小明和小红都摸出2号球的数目,进而求出其概率;(2)游戏公平,求出是质数和是合数的概率比较大小即可,【解答】解:(1)列表得:∴一共有9种情况,两次取出小球上的数字为2的有一种,∴;(2)公平.理由如下:∵;P(乘积是合数)=;P(乘积是质数)=P(乘积是合数)∴这个游戏规则公平.【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.王老师对本校九年级学生期中数学测试的成绩,进行统计分析:(1)王老师通过计算得出九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分.则九(1)班数学平均得分是多少?(试题共三种题型)(2)王老师对解答题第28题的得分进行了抽样调查,将所得分数x分为三级:A级:x≥8,B级:4≤x<8;C级:0≤x<4,并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:①此次抽样调查中,共调查了200名学生,将图①补充完整;②求出图②中C级所占的圆心角的度数;③根据抽样调查结果,请你估计我校1200名九年级学生中大约共有多少名学生对28题的解答达到A级和B级?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据三种题型的平均分,分别相加求出总平均分即可;(2)①用A的人数除以所占的百分比,计算即可得解,用总人数减去A、B两级的人数,求出C 级的人数,然后补全图形即可;②先求出C级所占的百分比,然后乘以360°计算即可;③用总人数乘以A级和B级的总百分比,计算即可.【解答】解:(1)∵九(1)班,选择题的平均得分是23.2分,填空题的平均得分是26.2分,解答题的得分是82.6分,∴九(1)班数学平均得分是:23.2+26.2+82.6=132(分);(2)①此次抽样调查中,共调查了:50÷25%=200(人),C级人数为:200﹣50﹣120=30(人);如图所示:②图②中C级所占的圆心角的度数为:360°×(1﹣60%﹣25%)=54°,③1200×=1020(人).【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.如图,在△ABC中,∠C=60°,⊙O是△ABC的外接圆,点P在直径BD的延长线上,且AB=AP.(1)求证:PA是⊙O的切线;(2)若AB=2,求图中阴影部分的面积.(结果保留π和根号)【考点】切线的判定;扇形面积的计算.【分析】(1)如图,连接OA;证明∠OAP=90°,即可解决问题.(2)如图,作辅助线;求出OM=1,OA=2;求出△AOB、扇形AOB的面积,即可解决问题.【解答】解:(1)如图,连接OA;∵∠C=60°,∴∠AOB=120°;而OA=OB,∴∠OAB=∠OBA=30°;而AB=AP,∴∠P=∠ABO=30°;∵∠AOB=∠OAP+∠P,∴∠OAP=120°﹣30°=90°,∴PA是⊙O的切线.(2)如图,过点O作OM⊥AB,则AM=BM=,∵tan30°=,sin30°=,∴OM=1,OA=2;∴=××1=,=,∴图中阴影部分的面积=.【点评】该题主要考查了切线的判定、扇形的面积公式及其应用问题;解题的关键是作辅助线;灵活运用圆周角定理及其推论、垂径定理等几何知识点来分析、判断、解答.25.某商店购进甲、乙两种型号的滑板车,共花费13000元,所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍.现已知甲型车每辆进价200元,乙型车每辆进价400元,设商店购进乙型车x辆.(1)商店有哪几种购车方案?(2)若商店将购进的甲、乙两种型号的滑板车全部售出,并且销售甲型车每辆获得利润70元,销售乙型车每辆获得利润50元,写出此商店销售这两种滑板车所获得的总利润y(元)与购进乙型车的辆数x(辆)之间的函数关系式?并求出商店购进乙型车多少辆时所获得的利润最大?【考点】一次函数的应用;一元一次不等式组的应用.【专题】压轴题.【分析】(1)设商店购进乙型车x辆.则甲型是:辆.根据所购进甲型车的数量不少于乙型车数量的二倍,但不超过乙型车数量的三倍,即可得到关于x的不等式组,从而求得x的范围,然后根据甲、乙的辆数都是正整数,即可确定x的值,从而确定方案;(2)根据总获利=甲型的获利+乙型的获利,即可得到函数解析式,然后利用函数的性质即可确定商店购进乙型车多少辆时所获得的利润最大.【解答】解:(1)设商店购进乙型车x辆.则甲型是:辆.根据题意得:,解得:13≤x≤,∵x是正整数,是正整数.∴x=13或14或15或16.则有4种方案:方案一:乙13辆,甲39辆;方案二:乙14辆,甲37辆;方案三:乙15辆,甲35辆;方案四:乙16辆,甲33辆.(2)y=70×+50x,即y=﹣90x+4550.∵﹣90<0,则y随x的增大而减小,∴当x=13时,y最大.答:当乙型车购进13辆时所获得的利润最大.【点评】本题考查了一次函数的应用,一元一次不等式组的应用.解决本题的关键是读懂题意,找到所求量的等量关系,及符合题意的不等关系式.要会利用函数的单调性结合自变量的取值范围求得利润的最大值.26.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的位置关系,并证明你的结论;(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和GC.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.【考点】旋转的性质;直角三角形全等的判定;正方形的性质.【专题】证明题;压轴题;探究型.【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AH⊥CG.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.【解答】解:(1)答:AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG,∴∠1=∠2;∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG,∴∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.【点评】本题主要考查旋转的性质以及全等三角形的判定和性质.需要注意的是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.27.如图所示,已知实数m是方程x2﹣8x+16=0的一个实数根,抛物线y=x2+bx+c交x轴于点A(m,0)和点B,交y轴于点C(0,m).(1)求这个抛物线的解析式;(2)设点D为线段AB上的一个动点,过D作DE∥BC交AC于点E,又过D作DF∥AC交BC 于点F,当四边形DECF的面积最大时,求点D的坐标;(3)设△AOC的外接圆为⊙G,若M是⊙G的优弧ACO上的一个动点,连接AM、OM,问在这个抛物线位于y轴左侧的图象上是否存在点N,使得∠NOB=∠AMO?若存在,试求出点N的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】压轴题.【分析】(1)解方程可求得m的值,即可确定A、C的坐标,将它们代入抛物线的解析式中,即可求得待定系数的值.(2)欲求四边形CEDF的面积最大值,需将面积问题转化为二次函数的最值问题;可设出D点的横坐标,即可表示出DB、AD的长,易证得△BFD、△AED都与△ABC相似,根据相似三角形的面积比等于相似比的平方即可得到△BFD和△DEA的面积表达式,而平行四边形CEDF的面积为。

遵义市2019年中考数学全真模拟试卷1(含解析答案)

遵义市2019年中考数学全真模拟试卷1(含解析答案)

遵义市2019年初中毕业生学业(升学)统一考试数学全真模拟试卷(一)(全卷总分150分,考试时间120分钟)第I 卷(选择题 共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.在数1,0,-1,-2中,最大的数是( D ) A .-2 B .-1 C .0D .12.下列计算结果正确的是( C ) A .a 8÷a 4=a 2 B .a 2·a 3=a 6 C .(a 3)2=a 6D .(-2a 2)3=8a 6 3.2018年10月24日港珠澳大桥全线通车.港珠澳大桥东起香港国际机场附近的香港口岸人工岛,向西横跨伶仃洋海域后连接珠海和澳门人工岛,止于珠海洪湾,它是世界上最长的跨海大桥,被称为“新世界七大奇迹之一”.港珠澳大桥总长度55 000米,则数字55 000用科学记数法表示为( B )A .55×103B .5.5×104C .0.55×105D .5.5×1034.如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为( A )A .14°B .16°C .90°-αD .α-44°5.若一组数据4,1,7,x,5的平均数为4,则这组数据的中位数为( C ) A .7 B .5 C .4D .36.把不等式组⎩⎪⎨⎪⎧x -3<-1,5-x <6的解集表示在数轴上,正确的是( C )7.我国古代数学名著《九章算术》在“勾股”一章中有如下数学问题:“今有勾八步,股十五步,勾中容圆,问径几何?”意思是一个直角三角形的两条直角边的长度分别是8步和15步,则其内切圆的直径是多少步?则此问题的答案是( B )A .3步B .6步C .4步D .8步8.若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( A )A .1或-4B .-1或-4C .-1或4D .1或49.某省2017年的快递业务量为1.5亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展.若2019年的快递业务量将达到4.5亿件.设2018年与2019年这两年的平均增长率为x ,则下列方程正确的是( C )A .1.5(1+x )=4.5B .1.5(1+2x )=4.5C .1.5(1+x )2=4.5D .1.5(1+x )+1.5(1+x )2=4.510.如图,将矩形纸片ABCD 沿直线EF 折叠,使点C 落在AD 边的中点C ′处,点B 落在点B ′处,其中AB =9,BC =6,则FC ′的长为( D )A.103 B .4 C .4.5D .511.抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =1,与x 轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac <b 2;②方程ax 2+bx +c =0的两个根是x 1=-1,x 2=3;③3a +c >0;④当y >0时,x 的取值范围是-1≤x <3;⑤当x <0时,y 随x 增大而增大.其中正确结论有( B )A .4个B .3个C .2个D .1个12.如图,△ABC 、△EFG 均是边长为2的等边三角形,点D 是边BC 、EF 的中点,直线AG 、FC 相交于点M .连结BM .当△EFG 绕点D 旋转时,线段BM 长的最小值是( D )A .2-3 B.3+1 C.2D.3-1第Ⅱ卷(非选择题 共102分)二、填空题(本大题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.计算412+8 14.一个正多边形的每个外角为60°,那么这个正多边形的内角和是 720° . 15.将正整数按如图所示的规律排列下去.若用有序数对(m ,n )表示第m 排,从左到右第n 个数,如(3,2)表示整数5,则(16,4)表示的数是 124 .16.如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm.将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D = 1.5 cm.三、解答题(本题共7小题,共86分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分18分)(1)(9分)计算:⎝⎛⎭⎫-120+⎝⎛⎭⎫13-1·13-|tan 45°-3|; 解:原式=1+3×33-|1-3|=1+3-3+1=2. (2)(9分)老师让小明做这样一道题:“从不等式组⎩⎪⎨⎪⎧2-x ≤3,2x -4<1的整数解中选取一个合适的x 的值,求⎝ ⎛⎭⎪⎫x -1+3-3x x +1÷x 2-x x +1.”你能帮小明写出正确的解答过程吗?解:原式=⎝ ⎛⎭⎪⎫x 2-1x +1+3-3x x +1÷x (x -1)x +1=x 2-3x +2x +1·x +1x (x -1)=x -2x .解不等式组⎩⎪⎨⎪⎧2-x ≤3,2x -4<1,得-1≤x <52,∴不等式组的整数解有-1,0,1,2.∵分式有意义时,x ≠±1,0,∴x =2.当x =2时,原式=0.18.(10分)为了提高学生书写汉字的能力,增强保护汉字的意识,某市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如下.请结合图表完成下列各题:(1)求表中a 的值,并把频数分布直方图补充完整;(2)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男生,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,试用列表法或画树状图的方法求小宇和小强两名男同学分在同一组的概率.解:(1)表中a 的值是50-4-8-16-10=12.补全图如题图.第18题(2)本次测试的优秀率是12+1050×100%=44%.(3)用A 表示小宇,B 表示小强,C 、D 表示另外两名男同学.根据题意,画树状图如下:从上图可知,共有12种等可能情况,其中小宇和小强两名男同学分在同一组的有4种,则P (小宇和小强两名男同学分在同一组)=412=13.19.(10分)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有25米的距离(B 、F 、C 在一条直线上).(1)求办公楼AB 的高度;(2)若要在A 、E 之间挂一些彩旗,请你求出A 、E 之间的距离. ⎝⎛⎭⎫参考数据:sin 22°≈38,cos 22°≈1516,tan 22°≈25第19题解:(1)过点E 作EM ⊥AB ,垂足为M .设AB =x 米.在Rt △ABF 中,∠AFB =45°,∴BF =AB =x 米,∴BC =BF +FC =(x +25)米.在Rt △AEM 中,∠AEM =22°,AM =AB -BM =AB -CE =(x -2)米,tan 22°=AM ME ,即x -2x +25≈25,解得x ≈20.经检验,x ≈20是原方程的解,且符合实际意义.即办公楼AB 的高度约为20米. (2)由(1)可得ME =BC =20+25=45(米).在Rt △AME 中,AE =MEcos 22°≈48米,即A 、E 之间的距离约为48米.20.(10分)如图,已知在Rt △ABC 中,∠C =90°,沿过点B 的一条直线BE 折叠这个三角形,使点C 与AB 边上的一点D 重合.(1)当∠A 满足什么条件时,点D 恰为AB 的中点?写出一个你认为适当的条件,并利用此条件证明D 为AB 的中点;(2)在(1)的条件下,若DE =1,求△ABC 的面积.第20题解:(1)添加条件是∠A =30°.证明:∵∠A =30°,∠C =90°,∴∠CBA =60°.∵点C 折叠后与AB 边上的一点D 重合,∴BE 平分∠CBD ,∠BDE =90°,∴∠EBD =30°,∴∠EBD =∠EAB ,∴EB =EA .∵ED 为△EAB 的高线,∴ED 也是等腰△EAB 的中线,∴D 为AB 中点. (2)∵DE =1,ED ⊥AB ,∠A =30°,∴AE =2.在Rt △ADE 中,根据勾股定理,得AD =AE 2-DE 2=3,∴AB =2 3.∵∠A =30°,∠C =90°,∴BC =12AB = 3.在Rt △ABC 中,AC =AB 2-BC 2=3,∴S △ABC =12×AC ×BC =332.21.(12分)为了“创建文明城市,建设美丽家园”,某社区将辖区内的一块面积为1000 m 2的空地进行绿化,一部分种草,剩余部分栽花,设种草部分的面积为x (m 2),种草所需费用y 1(元)与x (m 2)的函数关系式为y 1=⎩⎪⎨⎪⎧k 1x (0≤x <600),k 2x +b (600≤x ≤1000),其图象如图所示.栽花所需费用y 2(元)与x (m 2)的函数关系式为y 2=-0.01x 2-20x +30 000(0≤x ≤1000).(1)请直接写出k 1、k 2和b 的值;(2)设这块1000 m 2空地的绿化总费用为W (元),请利用W 与x 的函数关系式,求出绿化总费用W 的最大值;(3)若种草部分的面积不少于700 m 2,栽花部分的面积不少于100 m 2,请求出绿化总费用W 的最小值.第21题解:(1)将x =600,y =18 000代入y 1=k 1x ,得18 000=600k 1,解得k 1=30.将x =600,y =18 000和x =1000,y =26 000代入y 1=k 2x +b ,得⎩⎪⎨⎪⎧ 600k 2+b =18 000,1000k 2+b =26 000,解得⎩⎪⎨⎪⎧k 2=20,b =6000.(2)当0≤x <600时,W =30x +(-0.01x 2-20x +30 000)=-0.01x 2+10x +30 000=-0.01(x -500)2+32 500,∴当x =500时,W 取得最大值为32 500元;当600≤x ≤1000时,W =20x +6000+(-0.01x 2-20x +30 000)=-0.01x 2+36 000,∴当x =600时,W 取得最大值为32 400.∵32 400<32 500,∴W 的最大值为32 500. (3)由题意,得1000-x ≥100,解得x ≤900.又x ≥700,则700≤x ≤900.∵当700≤x ≤900时,W 随x 的增大而减小,∴当x =900时,W 取得最小值W min =-0.01×9002+36 000=27 900.22.(12分)如图,在△AOB 中,∠AOB 为直角,OA =6,OB =8,半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(0<t ≤5).以P 为圆心,P A 长为半径的⊙P 与AB 、OA 的另一个交点分别为C 、D ,连结CD 、QC .(1)当t 为何值时,点Q 与点D 重合?(2)当⊙Q 经过点A 时,求⊙P 被OB 截得的弦长; (3)若⊙P 与线段QC 只有一个公共点,求t 的取值范围.第22题解:(1)∵OA =6,OB =8,∴由勾股定理可求得AB =10.由题意知OQ =AP =t ,∴AC =2t .∵AC 是⊙P 的直径,∴∠CDA =90°,∴CD ∥OB ,∴△ACD ∽△ABO ,∴AC AB =ADOA ,即2t 10=AD 6,∴AD =65t .当点Q 与点D 重合时,AD +OQ =OA ,∴65t +t =6,∴t =3011. (2)当⊙Q 经过点A 时,OQ =OA -QA =4,∴t =41=4,∴P A =4,∴BP =AB -P A =6.过点P 作PE ⊥OB 于点E ,设⊙P 与OB 相交于点F 、G ,连结PF ,则有PF =P A =4,则PE ∥OA ,∴△PEB ∽△AOB ,∴PE OA =BP AB ,即PE 6=610,∴PE =185.在Rt △PEF 中,由勾股定理,得EF =2195,则由垂径定理可得FG =2EF =4195,即⊙P 被OB 截得的弦长为4195.(3)当QC 与⊙P 相切时,此时∠QCA =90°.∵OQ =AP =t ,∴AQ =6-t ,AC =2t .∵∠A =∠A ,∠QCA =∠BOA ,∴△AQC ∽△ABO ,∴AQ AB =AC OA ,即6-t 10=2t 6,∴t =1813,∴当0<t ≤1813时,⊙P 与线段QC 只有一个交点.当QC ⊥OA 时,点Q 与D 点重合,由(1)可知t =3011,∴当3011<t ≤5时,⊙P 与线段QC 只有一个交点.综上所述,当⊙P 与线段QC 只有一个交点时,t 的取值范围为0<t ≤1813或3011<t ≤5.23.(14分)如图,抛物线y =-x 2+bx +c 经过A (-1,0)、B (3,0)两点,且与y 轴交于点C ,点D 是抛物线的顶点,抛物线的对称轴DE 交x 轴于点E ,连结BD .(1)求抛物线的函数表达式;(2)点P 是线段BD 上一点,当PE =PC 时,求点P 的坐标;(3)在(2)的条件下,过点P 作PF ⊥x 轴于点F ,G 为抛物线上一动点,M 为x 轴上一动点,N 为直线PF 上一动点,当以F 、M 、N 、G 为顶点的四边形是正方形时,请求出点M 的坐标.第23题解:(1)∵抛物线y =-x 2+bx +c 经过A (-1,0)、B (3,0)两点,∴⎩⎪⎨⎪⎧-1-b +c =0,-9+3b +c =0,解得⎩⎪⎨⎪⎧b =2,c =3.∴抛物线的函数表达式为y =-x 2+2x +3. (2)连结PC 、PE .抛物线的对称轴为直线x =-b 2a =-22×(-1)=1,当x =1时,y =4,∴点D 的坐标为(1,4).设直线BD 的解析式为y =mx +n ,则⎩⎪⎨⎪⎧ m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6.∴直线BD 的解析式为y =-2x +6.设点P 的坐标为(x ,-2x +6),则PC 2=x 2+(3+2x -6)2,PE 2=(x -1)2+(-2x +6)2.∵PC =PE ,∴x 2+(3+2x -6)2=(x -1)2+(-2x +6)2,解得x =2.则y =-2×2+6=2,∴点P 的坐标为(2,2). (3)设点M 的坐标为(a,0),则点G 的坐标为(a ,-a 2+2a +3).∵以F 、M 、N 、G 为顶点的四边形是正方形,∴FM =MG ,即|2-a |=|-a 2+2a +3|.当2-a =-a 2+2a +3时,整理,得a 2-3a -1=0,解得a =3±132;当2-a =-(-a 2+2a +3)时,整理,得a 2-a -5=0,解得a =1±212.∴当以F 、M 、N 、G 为顶点的四边形是正方形时,点M 的坐标为⎝ ⎛⎭⎪⎫3+132,0或⎝ ⎛⎭⎪⎫3-132,0或⎝ ⎛⎭⎪⎫1+212,0或⎝ ⎛⎭⎪⎫1-212,0.。

2019年遵义市中考数学模拟题

2019年遵义市中考数学模拟题

遵义市2019年初中毕业生学业(升学)综合练习题数学(一)试题卷(本试卷总分150分,考试时间120分钟)注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试卷上答题无效。

5.考试结束后,将试卷和答题卡一并交回。

一、选择题(本题共8小题,每小题4分,共32分。

在每小题给出的四个答案中,只有一项是符合题目要求的,请用2B铅笔把答题卡上对应题目的答案标号涂黑、涂满。

)1. 对任意实数a,下列式子正确的是()A.20a>B. 20a≥C. 11a+>D. 11a->2.如图,几何体的俯视图是()DCBA第2题图3. 如图,在平行四边形ABCD中,对角线AC和BD相交于点O,则正面条件能判定平行四边形ABCD为矩形的是( )A.AC=BD B.AC⊥BDC. AC=BD且AC⊥BDD. AB=CD4.如图,数轴上A、B两点表示的数分别为1B关于点A的对称点为点C,则点C所表示的数是( )AB.CD.5. 在ABC∆中,90C∠=,如果3sin5A=,那么tan B的值等于()第4题图第3题图DCBAA .35B .54C .34D .436. 以下五个图形中,是中心对称的图形共有()A .2个B .3个C .4个D . 5个 7. 要得到函数2y x =的图像,只要把函数2(2)y x =-的图像( )A .向左平移2个单位B .向右平移2个单位C .向上平移个单位D . 向下平移2个单位8.函数(1)y k x =-和(0)ky k x=≠在同一平面直角坐标系中的图像可能是( )xyxyxyxyA .B .C .D .9.给出下列四个事件:(1)打开电视,正在播广告;(2)任取一个负数,它的相反数是负数;(3)掷一枚均匀的骰子,骰子停止转动后偶数点朝上;(4)取长度分别为2、3、5的三条线段,以它们为边组成一个三角形。

遵义市2019年中考数学模拟试卷(二)

遵义市2019年中考数学模拟试卷(二)

遵义市2019年初中毕业生学业(升学)统一考试数学全真模拟试卷(二)(全卷总分150分,考试时间120分钟)第I 卷(选择题 共48分)一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满)1.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为( B ) A .+4元 B .-9元 C .-4元D .+9元2.据统计,自2012年8月28日正式通航以来,遵义机场已累计开通43条航线,通达45个国内、国际地区及城市.截至2018年8月27日,该机场6年来实现旅客吞吐量约583万人次.将583万用科学记数法表示为( C )A .583×104B .58.3×105C .5.83×106D .0.583×1073.已知l 1∥l 2,且∠1=120°,则∠2=( C )A .40°B .50°C .60°D .70°4.下列四个几何体中,主视图与其他三个不同的是( D )5.使分式x +32-x有意义的x 的取值范围在数轴上表示应为( B )6.若点(-2,y 1)、(-1,y 2)和(1,y 3)分别在反比例函数y =-k 2+1x的图象上,则下列判断中正确的是( B )A .y 1<y 2<y 3B .y 3<y 1<y 2C .y 2<y 3<y 1D .y 3<y 2<y 17.某班第一组12名同学在“爱心捐款”活动中,捐款情况统计如下表,则捐款数组成的一组数据中,中位数与众数分别是( B )A.15,15 C .20,20D .15,208.若α、β为方程2x 2-5x -1=0的两个实数根,则2α2+3αβ+5β的值为( B ) A .-13 B .12 C .14D .159.如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =23,则S 阴影=( D )A .πB .2π C.233 D.23π 10.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,下列4个结论:①abc <0;②b <a +c ;③4a +2b +c >0;④b 2-4ac >0.其中正确结论的有( B )A .①②③B .①②④C .①③④D .②③④11.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 上的点,∠EAF =45°,△ECF 的周长为4,则正方形ABCD 的周长为( C )A .2B .4C .8D .1012.如图,在△ABC 中,∠B =90°,tan C =34,AB =6 cm.动点P 从点A 开始沿边AB向点B 以1 cm/s 的速度移动,动点Q 从点B 开始沿边BC 向点C 以2 cm/s 的速度移动.若P 、Q 两点分别从A 、B 两点同时出发,在运动过程中,△PBQ 的最大面积是( C )A .18 cm 2B .12 cm 2C .9 cm 2D .3 cm 2第Ⅱ卷(非选择题 共102分)二、填空题(本大题共4小题,每小题4分,共16分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上)13.如图是反比例函数y 1=kx (x >0)和一次函数y 2=mx +n 的图象,若y 1<y 2,则相应的x 的取值范围是 1<x <6 .14.如图,△ABC 中,AB =AC ,AB 的垂直平分线交边AB 于点D ,交边AC 于点E .若△ABC 与△EBC 的周长分别是40 cm 、24 cm ,则AB = 16 cm.15.数学兴趣小组的同学在研究我国古代数学著作《算法统宗》时,发现了一道数学问题,问题大意是:如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么空出一间房.该店有客房 8 间, 有房客 63 人.16.如图所示,直线y =x +1与y 轴相交于点A 1,以OA 1为边作正方形OA 1B 1C 1,记作第1个正方形;然后延长C 1B 1与直线y =x +1相交于点A 2,再以C 1A 2为边作正方形C 1A 2B 2C 2,记作第2个正方形;同样延长C 2B 2与直线y =x +1相交于点A 3,再以C 2A 3为边作正方形C 2A 3B 3C 3,记作第3个正方形;…,以此类推,则第n 个正方形的边长为 2n -1 .第16题三、解答题(本题共8小题,共86分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答时应写出必要的文字说明、证明过程或演算步骤)17.(9分)计算:-12018+12sin 60°+⎝⎛⎭⎫12-2-(π-3.14)0. 解:原式=-1+23×32+4-1=-1+3+3=5. 18.(9分)先化简⎝⎛⎭⎫1a -1-1a +1÷a2a 2-2,然后从1、2、-1中选取一个你认为合适的数作为a 的值代入求值.解:⎝⎛⎭⎫1a -1-1a +1÷a2a 2-2=⎝⎛ 1a -1-⎭⎫1a +1×2(a +1)(a -1)a =2(a +1)a -2(a -1)a=2a +2-2a +2a =4a .∵a ≠±1,∴当a =2时,原式=42=2 2.19.(10分)某煤矿发生瓦斯爆炸,该地救援队立即赶赴现场进行救援,救援队利用生命探测仪在地面A 、B 两个探测点探测到地下C 处有生命迹象.已知A 、B 两点相距4米,探测线与地面的夹角分别是30°和45°,试确定C 处的深度.(精确到0.1米,参考数据:2≈1.41,3≈1.73)第19题解:过点C 作CD ⊥AB 于点D ,设CD =x 米.在Rt △ACD 中,∵∠CAD =30°,∴AD =CDtan 30°=3x 米.在Rt △BCD 中,∵∠CBD =45°,∴BD =CD =x 米.又AD -BD =AB ,∴3x-x=4,解得x=2(3+1)≈5.5.故C处的深度约为5.5米.20.(10分)“端午节”是我国的传统佳节,民间历来有吃粽子的习俗,某市食品企业计划在今年推出A、B、C、D四种口味的粽子.该企业为了解市民对这四种不同口味粽子的喜爱情况,在端午节前派调查组到各社区调查,第一组抽取了某社区10%的居民调查,并将调查情况绘制成如下两幅不完整的统计图.(1)这个社区的居民共有多少人?(2)补全条形统计图;(3)现甲、乙两人从四种口味的粽子中任选一种,请用列表法或树状图法求他们选到同种口味粽子的概率.某社区部分居民喜爱不同口味粽子人数的条形统计图某社区部分居民喜爱不同口味粽子人数的扇形统计图解:(1)调查这个社区的居民人数为240÷30%=800,这个社区的居民共有800÷10%=8000(人).(2)喜欢吃C种口味的粽子的人数为800-240-80-320=160.补全条形统计图如题图.某社区部分居民喜爱不同口味粽子人数的条形统计图某社区部分居民喜爱不同口味粽子人数的扇形统计图(3)根据题意,列表如下:(他们选到同种口味粽子)=416=14.21.(10分)已知∠MON =α,P 为射线OM 上的点,OP =1.(1)如图1,α=60°,A 、B 均为射线ON 上的点,OA =1,OB >OA ,△PBC 为等边三角形,且O 、C 两点位于直线PB 的异侧,连结AC .①依题意将图1补全;②判断直线AC 与OM 的位置关系并加以证明;(2)若α=45°,Q 为射线ON 上一动点(Q 与O 不重合),以PQ 为斜边作等腰直角△PQR ,使O 、R 两点位于直线PQ 的异侧,连结OR ,直接写出△POR 的面积.图1 备用图解:(1)①如图2所示. ②结论:AC ∥OM .理由:连结AP .∵OA =OP =1,∠POA =60°,∴△OAP 是等边三角形,∴OP =P A ,∠OP A =∠OAP =60°.∵△PBC 是等边三角形,∴PB =PC ,∠BPC =60°,∴∠OP A +∠APB =∠BPC +∠APB ,即∠OPB =∠APC ,∴△OBP ≌△ACP (SAS),∴∠P AC =∠POB =60°,∴∠OP A =∠P AC ,∴AC ∥OM . (2)作PH ⊥OQ 于点H ,取PQ 的中点K ,连结HK 、RK ,如图3.∵∠PHQ =∠PRQ =90°,PK =KQ ,∴HK =PK =KQ =RK ,∴P 、R 、Q 、H 四点共圆,∴∠RHQ =∠RPQ =45°,∴∠RHQ =∠POQ =45°,∴RH ∥OP ,∴S △POR =S △POH =12×22×22=14.图2图322.(12分)阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =||Ax 0+By 0+C A 2+B 2.例如:求点P 0(0,0)到直线4x +3y -3=0的距离. 解:由直线4x +3y -3=0知,A =4,B =3,C =-3, ∴点P 0(0,0)到直线4x +3y -3=0的距离为d =||4×0+3×0-342+32=35. 根据以上材料,解决下列问题:(1)点P 1(3,4)到直线y =-34x +54的距离为 4 ;(2)已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y =-34x +b 相切,求实数b 的值;(3)如图,设点P 为(2)中⊙C 上的任意一点,点A 、B 为直线3x +4y +5=0上的两点,且AB =2,请求出S △ABP 的最大值和最小值.第22题解:(2)∵⊙C 与直线y =-34x +b 相切,⊙C 的半径为1,∴C (2,1)到直线3x +4y -4b=0的距离d =1,∴||6+4-4b 32+42=1,解得b =54或154. (3)∵点C (2,1)到直线3x +4y +5=0的距离d =||6+4+532+42=3,且圆C 的半径为1,∴⊙C 上点P 到直线3x +4y +5=0的距离的最大值为4,最小值为2,∴S △ABP 的最大值为12×2×4=4,S △ABP 的最小值为12×2×2=2.23.(12分)如图,已知矩形ABCD 中,AB =4,AD =m ,动点P 从点D 出发,在边DA 上以每秒1个单位的速度向点A 运动,连结CP ,作点D 关于直线PC 的对称点E ,设点P 的运动时间为t (s).(1)若m =6,求当P 、E 、B 三点在同一直线上时对应的t 的值;(2)已知m 满足:在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,求所有这样的m 的取值范围.第23题解:(1)设PD =t ,则P A =6-t .∵P 、B 、E 共线,∴∠BPC =∠DPC .∵AD ∥BC ,∴∠DPC =∠PCB ,∴∠BPC =∠PCB ,∴BP =BC =6.在Rt △ABP 中,∵AB 2+AP 2=PB 2,∴42+(6-t )2=62,解得t =6-25或6+25(舍去).∴PD =6-25,∴当P 、E 、B 三点在同一直线上时,t =6-2 5. (2)当点P 与A 重合时,点E 在BC 的下方,点E 到BC 的距离为3.作EQ ⊥BC 于点Q ,EM ⊥DC ,交DC 的延长线于点M ,则EQ =3,CE =DC =4.易证四边形EMCQ 是矩形,∴CM =EQ =3,∠M =90°,∴DM =DC +CM =7,EM =EC 2-CM 2=42-32=7.易得∠DAC =∠EDM ,而∠ADC =∠M ,∴△ADC ∽△DME ,∴AD DM =DC EM ,即AD 7=47,∴AD =47;当点P 与A 重合时,点E 在BC 的上方,点E 到BC 的距离为3.作EQ ⊥BC ,交CB 的延长线于点Q ,延长QE 交AD 于点M ,则EQ =3,CE =DC =4,∴在Rt △ECQ 中,QC =DM =42-32=7.易得△DME ∽△CDA ,∴DM CD =EM AD ,即74=1AD ,∴AD =477.综上所述,在动点P 从点D 到点A 的整个运动过程中,有且只有一个时刻t ,使点E 到直线BC 的距离等于3,这样的m 的取值范围是477≤m <47.24.(14分)如图1,抛物线y =-(x +1)(x -3)与x 轴分别交于点A 、B (点A 在点B 的右侧),与y 轴交于点C ,⊙P 是△ABC 的外接圆.(1)直接写出点A 、B 、C 的坐标及抛物线的对称轴; (2)求⊙P 的半径;(3)点D 在抛物线的对称轴上,且∠BDC >90°,求点D 纵坐标的取值范围;(4)如图2,E 是线段CO 上的一个动点,将线段AE 绕点A 逆时针旋转45°得线段AF ,求线段OF 的最小值.图1图2第24题解:(1)当y =0时,-(x +1)(x -3)=0,解得x 1=-1,x 2=3.∴点B 的坐标为(-1,0),点A 的坐标为(3,0);当x =0时,y =-(0+1)×(0-3)=3,∴点C 的坐标为(0,3).∵抛物线与x 轴交于点(-1,0),(3,0),∴抛物线的对称轴为直线x =1. (2)连结CP 、BP ,如图3.在Rt △BOC 中,BC =OB 2+OC 2=10.∵∠AOC =90°,OA =OC =3,∴∠OAC =∠OCA =45°,∴∠BPC =2∠OAC =90°,∴CP =BP =22BC =5,∴⊙P 的半径为 5. (3)设点D 的坐标为(1,y ).当∠BDC =90°时,BD 2+CD 2=BC 2,∴[(-1-1)2+(0-y )2]+[(0-1)2+(3-y )2]=10.整理,得y 2-3y +2=0,解得y 1=1,y 2=2.∴当1<y <2时,∠BDC >90°. (4)将△ACO 绕点A 逆时针方向旋转45°,点C 落在点C ′处,点O 落在点O ′处,如图4.∵AC =OA 2+OC 2=32,∠ACO =45°,∴点C ′的坐标为(3-32,0),∠AC ′O ′=45°,∴线段C ′O ′所在直线的解析式为y =-x +3-3 2.∵点E 在线段CO 上,∴点F 在线段C ′O ′上.过点O 作OF ⊥C ′O ′于点F ,则△OC ′F 为等腰直角三角形,此时线段OF 取最小值.∵△OC ′F 为等腰直角三角形,∴OF =22OC ′=22(32-3)=3-322.图3图4。

精编2019级遵义市中考数学模拟试卷

精编2019级遵义市中考数学模拟试卷

遵义市初中毕业生学业(升学)统一考试数学试题卷一、选择题(本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的,请用2B 铅笔把答题卡上对应题目的答案标号涂黑、涂满.)1.-3的相反数是( )A .-3B .3C .13D .13- 2.2017年遵义市固定资产总投资计划为2580亿元,将250亿用科学计数法表示为( ) A .112.5810⨯ B .122.5810⨯ C .132.5810⨯ D .142.5810⨯3.把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是( )A .B .C .D .4.下列运算正确的是( )A .55523a a a -=B .236a a a ⋅= C.752a a a ÷= D .2353()a b a b = 5.我市某连续7天的最高气温为:28︒,27︒,30︒,33︒,30︒,30︒,32︒.这组数据的平均数和众数分别是( )A .28︒,30︒B .30︒,28︒ C.31︒,30︒ D .30︒,30︒6.把一块等腰直角三角尺和直角如图放置.如果130∠=︒,则2∠的度数为( )A .45︒B .30︒ C.20︒ D .15︒7.不等式6438x x -≥-的非负整数....解为( ) A .2个 B .3个 C.4个 D .5个8.已知圆锥的底面面积为9π 2cm ,母线长为6cm ,则圆锥的侧面积是( )A .18π 2cmB .27π 2cm C.18 2cm D .27 2cm9.关于x 的一元二次方程230x x m ++=有两个不相等的实数根,则m 的取值范围为( )A .94m ≤B .94m < C.49m ≤ D .49m < 10.如图,ABC ∆的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则AFG ∆的面积是( )A .4.5B .5 C.5.5 D .611.如图,抛物线2y ax bx c =++经过点(1,0)-,对称轴l 如图所示.则下列结论:①0abc >;②0a b c -+=;③20a c +<;④0a b +<,其中所有正确的结论是( )A .①③B .②③ C.②④ D .②③④12.如图,ABC ∆中,E 是BC 中点,AD 是BAC ∠的平分线,//EF AD 交AC 于F .若11AB =,15AC =,则FC 的长为( )A .11B .12 C.13 D .14二、填空题(本大题共6小题,每小题4分,满分24分.答题请用黑色墨水笔或黑色签字笔直接答在答题卡的相应位置上.) 13.82+= . 14.一个正多边形的一个外角为30︒,则它的内角和为 .15.按一定规律排列的一列数依次为:28111417,1,,,,,3791113L ,按此规律,这列数中的第100个数是 .16.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如图每人分七两,则剩余四两;如果每人分九两,则还差八两.请问:所分的银子共有 两.(注:明代时1斤=16两,故有“半斤八两”这个成语)17.如图,AB 是⊙O 的直径,4AB =,点M 是OA 的中点,过点M 的直线与⊙O 交于C 、D 两点.若45CMA ∠=︒,则弦CD 的长为 .18.如图,点E 、F 在函数2y x =的图象上,直线EF 分别与x 轴、y 轴交于点A 、B ,且:1:3BE BF =,则EOF ∆的面积是 .三、解答题(本大题共9小题,共90分.答题时请用黑色墨水笔或黑色签字笔书写在答题卡相应位置上.解答应写出必要的文字说明、证明过程或演算步骤.)19. 计算:02017|23|(4)12(1)π--+--+-.20. 化简分式:222233()4424x x x x x x x ---÷-+--,并从1,2,3,4这四个数中取一个合适的数作为x 的值代入求值.21. 学校召集留守儿童过端午节,桌上摆有甲、乙两盘粽子,每盘中盛有白棕2个,豆沙粽1个,肉粽一个(粽子外观完全一样).(1)小明从甲盘中任取一个粽子,取到豆沙粽的概率是 .(2)小明在甲盘和乙盘中先后各取了一个粽子,请用树状图或列表法求小明恰好取到两个白棕子的概率.22.乌江快铁大桥是快铁渝黔线的一项重要工程,由主桥AB 和引桥BC 两部分组成(如图所示).建造前工程师用以下方式做了测量;无人机在A 处正上方97 m 处的P 点,测得B 处的俯角为30︒(超出C 处被小山体阻挡无法观测).无人机飞行到B 处正上方的D 处时能看到C 处俯角为8036''︒.(1)求主桥AB 的长度.(2)若两观察点P 、D 的连线与水平方向的夹角为30︒,求引桥BC 的长.(长度均精确到1 m ,参考数据:3 1.73≈,sin8036''0.987︒≈,cos8036''0.163︒≈,tan8036'' 6.06︒≈.)23.贵州省是我国首个大数据综合实验区,大数据在推动经济发展、改善公共服务等方面日益显示出巨大的价值.为创建大数据应用示范城市.我市某机构针对市民最关心的四类生活信息进行了民意调查(被调查者每人限选一项),下面是部分四类生活信息关注度统计图表,请根据图中提供的信息解答下列问题:(1)本次参与调查的人数有 人.(2)关注城市医疗信息的有 人.并补全条形统计图.(3)扇形统计图中,D 部分的圆心角是 度.(4)说一条你从统计图中获取的信息.24.如图,PA 、PB 是⊙O 的切线,A ,B 为切点,60APB ∠=︒.连接PO 并延长与⊙O 交于C 点,连接AC 、BC .(1)求证:四边形ACBP 是菱形.(2)若⊙O 半径为1,求菱形ACBP 的面积.25.为厉行节能减排.倡导绿色出行,今年3月以来,“共享单车”(俗称“小黄车”)公益活动登录我市中心城区.某公司拟在甲、乙两个街道社区投放一批“小黄车”,这批自行车包括A 、B 两种不同款型,请回答下列问题:问题1:单价该公司早期在甲街区进行了试点投放.共投放A 、B 两型自行车各50辆.投放成本共计7500元,其中B 型车的成本单价比A 型车高10元.A 、B 两型自行车的单价各是多少?问题2:投放方式该公司决定采取如下投放方式:甲街区每1000人投放a 辆“小黄车”;乙街区每1000人投放8240a a+辆“小黄车”.按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆.如果两个街区共有15万人,试求a 的值.26.边长为22ABCD 中,P 是对角线AC 上的一个动点(点P 与A 、C 不重合),连接BP ,将BP 绕点B 顺时针旋转90︒到BQ .连接QP ,QP 与BC 交于点E .QP 延长线与AD (或AD 延长线)交于点F .(1)连接CQ ,证明:CQ AP =.(2)设AP x =,CE y =,试写出y 关于x 的函数关系式,并求出当x 为何值时,38CE BC =. (3)猜想PF 与EQ 的数量关系,并证明你的结论.27.如图,抛物线2y ax bx a b =+--(0a <,a 、b 为常数)与x 轴交于A 、C 两点,与y 轴交于B 点.直线AB 的函数关系式为81693y x =+.(1)求该抛物线的函数关系式与C 点坐标;(2)已知点(,0)M m 是线段OA 上的一个动点,过点M 作x 轴的垂线l 分别与直线AB 和抛物线交于D 、E 两点.当m 为何值时,BDE ∆恰好是以DE 为底边的等腰三角形?(3)在(2)问条件下,当BDE ∆恰好是以DE 为底边等腰三角形时,动点M 相应位置记为点'M ,将'OM 绕原点O 顺时针旋转得到ON (旋转角在0︒到90︒之间).i.探究:线段OB 上是否存在定点P (P 不与O 、B 重合),无论ON 如何旋转,NP NB 始终保持不变.若存在,试求出P 点坐标;若不存在,请说明理由.ii :试求出此旋转过程中,3()4NA NB +的最小值.。

贵州省遵义市2019-2020学年第三次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第三次中考模拟考试数学试卷含解析

贵州省遵义市2019-2020学年第三次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.明明和亮亮都在同一直道A 、B 两地间做匀速往返走锻炼.明明的速度小于亮亮的速度(忽略掉头等时间).明明从A 地出发,同时亮亮从B 地出发.图中的折线段表示从开始到第二次相遇止,两人之间的距离y(米)与行走时间x(分)的函数关系的图象,则( )A .明明的速度是80米/分B .第二次相遇时距离B 地800米C .出发25分时两人第一次相遇D .出发35分时两人相距2000米 2.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231?x -+=- D .()()2x 23x 1-+=- 3.已知x+1x =3,则x 2+21x =( ) A .7 B .9 C .11 D .84.计算3×(﹣5)的结果等于( )A .﹣15B .﹣8C .8D .155.如图的立体图形,从左面看可能是( )A .B .C .D .6.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( )A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)7.下列运算正确的是( )A .a 3+a 3=a 6B .a 6÷a 2=a 4C .a 3•a 5=a 15D .(a 3)4=a 7 8.二次函数y =a(x ﹣m)2﹣n 的图象如图,则一次函数y =mx+n 的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第二、三、四象限D .第一、三、四象限9.一个正多边形的内角和为900°,那么从一点引对角线的条数是( )A .3B .4C .5D .610.已知方程2520x x -+=的两个解分别为1x 、2x ,则1212x x x x +-的值为()A .7-B .3-C .7D .311.下列计算正确的是( )A .2m+3n=5mnB .m 2•m 3=m 6C .m 8÷m 6=m 2D .(﹣m )3=m 312.如图,∠AOB =45°,OC 是∠AOB 的角平分线,PM ⊥OB ,垂足为点M ,PN ∥OB ,PN 与OA 相交于点N ,那么PM PN 的值等于( )A .12B .22C .3D .3 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,△OAC 和△BAD 都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=3x在第一象限的图象经过点 B ,则△OAC 与△BAD 的面积之差 S △OAC ﹣S △BAD 为_______.14.估计无理数11在连续整数___与____之间.15.某种药品原来售价100元,连续两次降价后售价为81元,若每次下降的百分率相同,则这个百分率是 .16.抛物线y =x 2﹣4x+2m 与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是______.17.如图,P (m ,m )是反比例函数9y x=在第一象限内的图象上一点,以P 为顶点作等边△PAB ,使AB 落在x 轴上,则△POB 的面积为_____.18.一个正多边形的一个内角是它的一个外角的5倍,则这个多边形的边数是_______________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC 绕点B 按逆时针方向旋转90°后所得到的△A 1BC 1;(2)画出将△ABC 向右平移6个单位后得到的△A 2B 2C 2;(3)在(1)中,求在旋转过程中△ABC 扫过的面积.20.(6分)如图,四边形ABCD 的顶点在⊙O 上,BD 是⊙O 的直径,延长CD 、BA 交于点E ,连接AC 、BD 交于点F ,作AH ⊥CE ,垂足为点H ,已知∠ADE =∠ACB .(1)求证:AH 是⊙O 的切线;(2)若OB =4,AC =6,求sin ∠ACB 的值;(3)若23DF FO =,求证:CD =DH .21.(6分)如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合),在△ABC 的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.(1)求证:△AEF是等腰直角三角形;(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=2AE;(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=25,CE=2,求线段AE的长.22.(8分)如图,AB、CD是⊙O的直径,DF、BE是弦,且DF=BE,求证:∠D=∠B.23.(8分)某公司对用户满意度进行问卷调查,将连续6天内每天收回的问卷数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1.第3天的频数是2.请你回答:(1)收回问卷最多的一天共收到问卷_________份;(2)本次活动共收回问卷共_________份;(3)市场部对收回的问卷统一进行了编号,通过电脑程序随机抽选一个编号,抽到问卷是第4天收回的概率是多少?(4)按照(3)中的模式随机抽选若干编号,确定幸运用户发放纪念奖,第4天和第6天分别有10份和2份获奖,那么你认为这两组中哪个组获奖率较高?为什么?24.(10分)已知:如图,平行四边形ABCD 中,E 、F 分别是边BC 和AD 上的点,且BE=DF ,求证:AE=CF25.(10分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P 的坐标满足(m ,m ﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy 中就是一次函数y=x ﹣1的图象.即点P 的轨迹就是直线y=x ﹣1.(1)若m 、n 满足等式mn ﹣m=6,则(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是 ; (2)若点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等,求点P 的轨迹;(3)若抛物线y=214x 上有两动点M 、N 满足MN=a (a 为常数,且a≥4),设线段MN 的中点为Q ,求点Q 到x 轴的最短距离.26.(12分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A .减少杨树新增面积,控制杨树每年的栽种量B .调整树种结构,逐渐更换现有杨树C .选育无絮杨品种,并推广种植D .对雌性杨树注射生物干扰素,避免产生飞絮E .其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.27.(12分)某商场计划从厂家购进甲、乙、丙三种型号的电冰箱80台,其中甲种电冰箱的台数是乙种电冰箱台数的2倍.具体情况如下表:经预算,商场最多支出132000元用于购买这批电冰箱.(1)商场至少购进乙种电冰箱多少台?(2)商场要求甲种电冰箱的台数不超过丙种电冰箱的台数.为获得最大利润,应分别购进甲、乙、丙电冰箱多少台?获得的最大利润是多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】C、由二者第二次相遇的时间结合两次相遇分别走过的路程,即可得出第一次相遇的时间,进而得出C选项错误;=时,出现拐点,显然此时亮亮到达A地,利用速度=路程÷时间可求出亮亮的速度及两人的A、当x35速度和,二者做差后可得出明明的速度,进而得出A选项错误;-、B两地间的距离,即可求B、根据第二次相遇时距离B地的距离=明明的速度⨯第二次相遇的时间A出第二次相遇时距离B地800米,B选项正确;D、观察函数图象,可知:出发35分钟时亮亮到达A地,根据出发35分钟时两人间的距离=明明的速度⨯出发时间,即可求出出发35分钟时两人间的距离为2100米,D选项错误.【详解】解:Q 第一次相遇两人共走了2800米,第二次相遇两人共走了32800⨯米,且二者速度不变, c 60320∴=÷=,∴出发20分时两人第一次相遇,C 选项错误;亮亮的速度为28003580(÷=米/分),两人的速度和为280020140(÷=米/分),明明的速度为1408060(-=米/分),A 选项错误;第二次相遇时距离B 地距离为60602800800(⨯-=米),B 选项正确;出发35分钟时两人间的距离为60352100(⨯=米),D 选项错误.故选:B .【点睛】本题考查了一次函数的应用,观察函数图象,逐一分析四个选项的正误是解题的关键.2.D【解析】 试题分析:方程22311x x x++=--,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D. 考点:解分式方程的步骤.3.A【解析】【分析】根据完全平方公式即可求出答案.【详解】∵(x+1x )2=x 2+2+21x∴9=2+x 2+21x, ∴x 2+21x =7, 故选A .【点睛】本题考查完全平方公式,解题的关键是熟练运用完全平方公式.4.A【解析】【分析】按照有理数的运算规则计算即可.【详解】原式=-3×5=-15,故选择A.【点睛】本题考查了有理数的运算,注意符号不要搞错.5.A【解析】【分析】根据三视图的性质即可解题.【详解】解:根据三视图的概念可知,该立体图形是三棱柱,左视图应为三角形,且直角应该在左下角,故选A.【点睛】本题考查了三视图的识别,属于简单题,熟悉三视图的概念是解题关键.6.D【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.7.B【解析】【分析】根据同底数幂的乘法、除法、幂的乘方依次计算即可得到答案.【详解】A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.【点睛】此题考查整式的计算,正确掌握同底数幂的乘法、除法、幂的乘方的计算方法是解题的关键.8.A【解析】【分析】由抛物线的顶点坐标在第四象限可得出m>0,n>0,再利用一次函数图象与系数的关系,即可得出一次函数y=mx+n的图象经过第一、二、三象限.【详解】解:观察函数图象,可知:m>0,n>0,∴一次函数y=mx+n的图象经过第一、二、三象限.故选A.【点睛】本题考查了二次函数的图象以及一次函数图象与系数的关系,牢记“k>0,b>0⇔y=kx+b的图象在一、二、三象限”是解题的关键.9.B【解析】【分析】n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到关于边数的方程,从而求出边数,再求从一点引对角线的条数.【详解】设这个正多边形的边数是n,则(n-2)•180°=900°,解得:n=1.则这个正多边形是正七边形.所以,从一点引对角线的条数是:1-3=4.故选B【点睛】本题考核知识点:多边形的内角和.解题关键点:熟记多边形内角和公式.10.D【解析】【分析】由根与系数的关系得出x1+x2=5,x1•x2=2,将其代入x1+x2−x1•x2中即可得出结论.【详解】解:∵方程x2−5x+2=0的两个解分别为x1,x2,∴x1+x2=5,x1•x2=2,∴x1+x2−x1•x2=5−2=1.故选D.【点睛】本题考查了根与系数的关系,解题的关键是根据根与系数的关系得出x1+x2=5,x1•x2=2.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系得出两根之和与两根之积是关键.11.C【解析】【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【详解】解:A、2m与3n不是同类项,不能合并,故错误;B、m2•m3=m5,故错误;C、正确;D、(-m)3=-m3,故错误;故选:C.【点睛】本题考查同底数幂的除法,合并同类项,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.12.B【解析】【分析】过点P作PE⊥OA于点E,根据角平分线上的点到角的两边的距离相等可得PE=PM,再根据两直线平行,内错角相等可得∠POM=∠OPN,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠PNE=∠AOB,再根据直角三角形解答.【详解】如图,过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PM,∵PN∥OB,∴∠POM=∠OPN,∴∠PNE=∠PON+∠OPN=∠PON+∠POM=∠AOB=45°,∴PMPN=22.故选:B.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,以及三角形的一个外角等于与它不相邻的两个内角的和,作辅助线构造直角三角形是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3 2【解析】【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图像可得出B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义即可求解.【详解】设△OAC和△BAD的直角边长分别为a、b,则B点坐标为(a+b,a-b)∵点B在反比例函数y=3x在第一象限的图象上,∴(a+b)(a-b)=a2-b2=3∴S△OAC﹣S△BAD=12a2-12b2=32【点睛】此题主要考查等腰直角三角形的面积求法和反比例函数k值的定义,解题的关键是熟知等腰直角三角形的性质及反比例函数k值的性质.14.3 4【解析】【分析】先找到与11相邻的平方数9和16,求出算术平方根即可解题.<<,∴34<,在连续整数3与4之间.【点睛】本题考查了无理数的估值,属于简单题,熟记平方数是解题关键.15.10%.【解析】【分析】设平均每次降价的百分率为x ,那么第一次降价后的售价是原来的()1x -,那么第二次降价后的售价是原来的()21x -,根据题意列方程解答即可.【详解】设平均每次降价的百分率为x ,根据题意列方程得, ()2100181x ⨯-=,解得10.110%x ==,2 1.9x =(不符合题意,舍去),答:这个百分率是10%.故答案为10%.【点睛】本题考查一元二次方程的应用,要掌握求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为()21a x b ±=.16.(3,0)【解析】【分析】把交点坐标代入抛物线解析式求m 的值,再令y=0解一元二次方程求另一交点的横坐标.【详解】把点(1,0)代入抛物线y=x 2-4x+2m 中,得m=6, 所以,原方程为y=x 2-4x+3,令y=0,解方程x 2-4x+3=0,得x 1=1,x 2=3∴抛物线与x 轴的另一个交点的坐标是(3,0).故答案为(3,0).本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.17.933+.【解析】【详解】如图,过点P作PH⊥OB于点H,∵点P(m,m)是反比例函数y=9x在第一象限内的图象上的一个点,∴9=m2,且m>0,解得,m=3.∴PH=OH=3. ∵△PAB是等边三角形,∴∠PAH=60°.∴根据锐角三角函数,得3∴3∴S△POB=12OB•PH=9332+.18.1【解析】【分析】设这个正多边的外角为x°,则内角为5x°,根据内角和外角互补可得x+5x=180,解可得x的值,再利用外角和360°÷外角度数可得边数.【详解】设这个正多边的外角为x°,由题意得:x+5x=180,解得:x=30,360°÷30°=1.故答案为:1.【点睛】此题主要考查了多边形的内角和外角,关键是计算出外角的度数,进而得到边数.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(1)如图所示见解析;(3)4π+1.【解析】【分析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据△ABC扫过的面积等于扇形BCC1的面积与△A1BC1的面积和,列式进行计算即可.【详解】(1)如图所示,△A1BC1即为所求;(1)如图所示,△A1B1C1即为所求;(3)由题可得,△ABC扫过的面积=29041413602π⨯⨯+⨯⨯=4π+1.【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键.求扫过的面积的主要思路是将不规则图形面积转化为规则图形的面积.20.(1)证明见解析;(2)34;(3)证明见解析.【解析】【分析】(1)连接OA,证明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位线,根据三角形中位线定理、切线的判定定理证明;(2)利用正弦的定义计算;(3)证明△CDF∽△AOF,根据相似三角形的性质得到CD=14CE,根据等腰三角形的性质证明.【详解】(1)证明:连接OA,由圆周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE =∠ADB ,∵BD 是直径,∴∠DAB =∠DAE =90°,在△DAB 和△DAE 中,BAD EAD DA DABDA EDA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△DAB ≌△DAE ,∴AB =AE ,又∵OB =OD ,∴OA ∥DE ,又∵AH ⊥DE ,∴OA ⊥AH ,∴AH 是⊙O 的切线;(2)解:由(1)知,∠E =∠DBE ,∠DBE =∠ACD ,∴∠E =∠ACD ,∴AE =AC =AB =1.在Rt △ABD 中,AB =1,BD =8,∠ADE =∠ACB ,∴sin ∠ADB =68=34,即sin ∠ACB=34; (3)证明:由(2)知,OA 是△BDE 的中位线,∴OA ∥DE ,OA =12DE . ∴△CDF ∽△AOF ,∴CD DF AO OF ==23, ∴CD =23OA =13DE ,即CD =14CE , ∵AC =AE ,AH ⊥CE ,∴CH =HE =12CE , ∴CD =12CH , ∴CD =DH .本题考查的是圆的知识的综合应用,掌握圆周角定理、相似三角形的判定定理和性质定理、三角形中位线定理是解题的关键.21.(1)证明见解析;(2)证明见解析;(3)42. 【解析】 试题分析:(1)依据AE=EF ,∠DEC=∠AEF=90°,即可证明△AEF 是等腰直角三角形;(2)连接EF ,DF 交BC 于K ,先证明△EKF ≌△EDA ,再证明△AEF 是等腰直角三角形即可得出结论;(3)当AD=AC=AB 时,四边形ABFD 是菱形,先求得EH=DH=CH=2,Rt △ACH 中,AH=32,即可得到AE=AH+EH=42.试题解析:解:(1)如图1.∵四边形ABFD 是平行四边形,∴AB=DF .∵AB=AC ,∴AC=DF .∵DE=EC ,∴AE=EF .∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形;(2)如图2,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴∠EKF=180°﹣∠DKE=135°,EK=ED .∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE .∵∠DKC=∠C ,∴DK=DC .∵DF=AB=AC ,∴KF=AD .在△EKF 和△EDA 中,EK ED EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩,∴△EKF ≌△EDA (SAS ),∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AF=2AE .(3)如图3,当AD=AC=AB 时,四边形ABFD 是菱形,设AE 交CD 于H ,依据AD=AC ,ED=EC ,可得AE 垂直平分CD ,而CE=2,∴EH=DH=CH=2,Rt △ACH 中,AH=22252()()+=32,∴AE=AH+EH=42.点睛:本题属于四边形综合题,主要考查了全等三角形的判定和性质、等腰直角三角形的判定和性质、平行四边形的性质、菱形的性质以及勾股定理等知识,解题的关键是熟练掌握全等三角形的判定和性质,寻找全等的条件是解题的难点.22.证明见解析.【解析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则¼¼=,由FD=EB,得,»»CFD AEB=,FD EB 由等量减去等量仍是等量得:¼»¼»-=-,即»»CFD FD AEB EB=,由等弧对的圆周角相等,得FC AE∠D=∠B.【详解】解:方法(一)证明:∵AB、CD是⊙O的直径,∴¼¼=.CFD AEB∵FD=EB,∴»»=.FD EB∴¼»¼»CFD FD AEB EB-=-.即»»=.FC AE∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.23.18 60分【解析】分析:(1)观察图形可知,第4天收到问卷最多,用矩形的高度比=频数之比即可得出结论;(2)由于组距相同,各矩形的高度比即为频数的比,可由数据总数=某组的频数÷频率计算;(3)根据概率公式计算即可;(4)分别计算第4天,第6天的获奖率后比较即可.详解:(1)由图可知:第4天收到问卷最多,设份数为x ,则:4:6=2:x ,解得:x=18;(2)2÷[4÷(2+3+4+6+4+1)]=60份;(3)4183P 6010==∴第天,抽到第4天回收问卷的概率是310; (4)第4天收回问卷获奖率105189=,第6天收回问卷获奖率23. ∵5293<, ∴第6天收回问卷获奖率高.点睛:本题考查了对频数分布直方图的掌握情况,根据图中信息,求出频率,用来估计概率.用到的知识点为:总体数目=部分数目÷相应频率.部分的具体数目=总体数目×相应频率.概率=所求情况数与总情况数之比.24.详见解析【解析】【分析】根据平行四边形的性质和已知条件证明△ABE ≌△CDF ,再利用全等三角形的性质:即可得到AE=CF .【详解】证:∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D ,又∵BE=DF ,∴△ABE ≌△CDF ,∴AE=CF. (其他证法也可)25.(1)6y x =;(2)y=14x 2;(3)点Q 到x 轴的最短距离为1. 【解析】【分析】(1)先判断出m (n ﹣1)=6,进而得出结论;(2)先求出点P 到点A 的距离和点P 到直线y=﹣1的距离建立方程即可得出结论;(3)设出点M ,N 的坐标,进而得出点Q 的坐标,利用MN=a ,得出()()2216116k k b ++≥,即可得出结论.【详解】(1)设m=x ,n ﹣1=y ,∵mn ﹣m=6,∴m (n ﹣1)=6,∴xy=6, ∴6y x=, ∴(m ,n ﹣1)在平面直角坐标系xOy 中的轨迹是6y x =,故答案为:6y x=,; (2)∴点P (x ,y )到点A (0,1),∴点P (x ,y )到点A (0,1)的距离的平方为x 2+(y ﹣1)2,∵点P (x ,y )到直线y=﹣1的距离的平方为(y+1)2,∵点P (x ,y )到点A (0,1)的距离与到直线y=﹣1的距离相等,∴x 2+(y ﹣1)2=(y+1)2,∴214y x =; (3)设直线MN 的解析式为y=kx+b ,M (x 1,y 1),N (x 2,y 2), ∴线段MN 的中点为Q 的纵坐标为12.2y y + ∴214x kx b =+, ∴x 2﹣4kx ﹣4b=0,∴x 1+x 2=4k ,x 1x 2=﹣4b ,∴()()21212121122.222y y kx b kx b k x x b k b +⎡⎤=+++=++=+⎣⎦ ∴()()()()()()2222222121212121211[4]MN x x y y k x x k x x x x =-+-=+-=++-, ()()2216116k k b =++≥∴2211k b k +≥+, 222212221111211211y y k k b k k k k +⎛⎫=++≥+=-+-≥-= ⎪++⎝⎭∴点Q 到x 轴的最短距离为1.【点睛】此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出()()2216116k k b ++≥是解本题的关键.26.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A 选项人数除以总人数即可得;(2)用360°乘以E 选项人数所占比例可得;(3)用总人数乘以D 选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C 选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人, (2)扇形统计图中,扇形E 的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.27.(1)商场至少购进乙种电冰箱14台;(2)商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【解析】【分析】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80-3x)台,根据“商场最多支出132000元用于购买这批电冰箱”列出不等式,解之即可得;(2)根据“总利润=甲种冰箱利润+乙种冰箱利润+丙种冰箱利润”列出W关于x的函数解析式,结合x的取值范围,利用一次函数的性质求解可得.【详解】(1)设商场购进乙种电冰箱x台,则购进甲种电冰箱2x台,丙种电冰箱(80﹣3x)台.根据题意得:1200×2x+1600x+2000(80﹣3x)≤132000,解得:x≥14,∴商场至少购进乙种电冰箱14台;(2)由题意得:2x≤80﹣3x且x≥14,∴14≤x≤16,∵W=220×2x+260x+280(80﹣3x)=﹣140x+22400,∴W随x的增大而减小,∴当x=14时,W取最大值,且W最大=﹣140×14+22400=20440,此时,商场购进甲种电冰箱28台,购进乙种电冰箱14(台),购进丙种电冰箱38台.【点睛】本题主要考查一次函数的应用与一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的不等关系和相等关系,并据此列出不等式与函数解析式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

遵义市2019年中考数学模拟试卷及答案(试卷满分为150分,考试时间为120分钟)一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1.2017年按照济南市政府“拆违拆临,建绿透绿”决策部署,济南市各个部门通力协作,年内共拆除违法建设约32900000平方米,拆违拆临工作取得重大历史性突破,数字32900000用科学计数法表示为 A. 329×105B. 3.29×105C. 3.29×106D. 3.29×1072.下面的图形中,既是轴对称图形又是中心对称图形的是A. B. C. D.3.一组数据1,2,a 的平均数为2,另一组数据-l ,a ,1,2,b 的唯一众数为-l ,则数据-1,a ,b ,1,2的中位数为A .-1B .1C .2D .34. 如右图,已知AB 、CD 是⊙O 的两条直径,∠ABC=30°,那么∠BAD = A.45° B. 60° C.90° D. 30°5.若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是A.1<a ≤7B.a ≤7C.a <1或a ≥7D.a =76.如果一种变换是将抛物线向右平移2个单位或向上平移1个单位,我们把这种变换称为抛物线的简单变换.已知抛物线经过两次简单变换后的一条抛物线是y =x 2+1,则原抛物线的解析式不可能的是A .y =x 2-1B .y =x 2+6x +5C .y =x 2+4x +4D .y =x 2+8x +177.若顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是A .平行四边形B .矩形C .对角线相等的四边形D .对角线互相垂直的四边形 8.若A (x 1,y 1)、B (x 2,y 2)是一次函数2-+=x ax y 图像上的不同的两点,记()()1212m x x y y =--,则当m <0时,a 的取值范围是 A .a <0B .a >0C .a <1-D .a >1-OD CBA(第5题图)9. 完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部 分的周长是A . 6(m -n )B . 3(m +n )C . 4nD . 4m10.如图,OM =2,MN =6,A 为射线ON 上的动点,以OA 为一边作内角∠OAB =120°的菱形OABC ,则BM +BN 的最小值为 CA .26B . 6C .132D .152二、填空题(本大共6小题,每小题5分,满分30分)11.若关于x 的一元二次方程(a -2) x 2-2x +1=0有两个实数根,则a 的取值范围是 . 12.已知关于x 的分式方程2332+-=--x mx x 无解,则m 的值是 . 13.面积为40的△ABC 中,AC =BC =10,∠ACB >90°,半径为1.5的⊙O 与AC 、BC 都相切,则OC的长为 .14.(5分)九年一班甲、乙、丙、丁四名同学几次数学测试成绩的平均数(分)及方差S 2如下表:老师想从中选派一名成绩较好且状态稳定的同学参加省初中生数学竞赛,那么应选 . 15.如图,矩形ABCD 的顶点A 、C 分别在直线a 、b 上,且a ∥b ,︒=∠601则2∠的度数为________。

ABCOOM ANBC16.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是 .三、(本大题共2小题 ,满分80分) 17. (本题满分8分)解不等式组:()322,12 1.3x x x x +-≥⎧⎪⎨+>-⎪⎩18.(本题满分8分)先化简,再求值:,然后从-2≤x ≤2的范围内选取一个合适的整数作为x 的值代入求值. 19.(本题满分10分)某医院准备从甲、乙、丙三位医生和A 、B 两名护士中选取一位医生和一名护士支援地震救灾. ⑴ 若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果; ⑵ 求恰好选中医生甲和护士A 的概 20.(本题满分10分)如图,在四边形ABCD 中,AD=BC ,∠B=∠D ,AD 不平行于BC ,过点C 作CE ∥AD 交△ABC 的外接圆O 于点E ,连接AE . (1)求证:四边形AECD 为平行四边形; (2)连接CO ,求证:CO 平分∠BCE . 21.(本题满分10分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示.已知箱体长50AB =cm ,拉杆BC 的伸长距离最大时可达35cm ,点A ,B ,C 在同一条直线上.在箱体底端装有圆形的滚轮⊙A ,⊙A 与水平地面MN 相切于点D .在拉杆伸长至最大的情况下,当点B 距离水平地面38cm 时,点C 到水平地面的距离CE 为59cm .设AF ∥MN .(1)求⊙A 的半径长;(2)当人的手自然下垂拉旅行箱时,人感到较为舒服.某人将手自然下垂在C 端拉旅行箱时,CE 为80cm ,CAF ∠=64°.求此时拉杆BC 的伸长距离.(精确到1cm ,参考数据:sin640.90︒≈,cos640.39︒≈,tan64 2.1︒≈)22.(本题满分10分如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,连接AC ,过BD⌒上一点E 作 EG ∥AC 交CD 的延长线于点G ,连接AE 交CD 于点F ,且EG =FG .(1)求证:EG 是 ⊙O 的切线;(2)延长AB 交GE 的延长线于点M ,若tanG =12,AH =2,求 EM 的值.23.(本题满分12分)某块实验田里的农作物每天的需水量y (千克)与生长时间x (天)之间的关系如折线图所示.这些农作物在第10天、第30天的需水量分别为2000千克、3000千克,在第40天后每天的需水量比前一天增加100千克.(1)分别求出x ≤40和x ≥40时y 与x 之间的关系式;(2)如果这些农作物每天的需水量大于或等于4000千克时需要进行人工灌溉,那么应从第几天开始进行人工灌溉?(第21题图1)(第21题图2)ABCD EF NG M24.(本题满分12分)如图所示,在平面直角坐标系中,点B的坐标为(-3,-4),线段OB绕原点逆时针旋转后与x 轴的正半轴重合,点B的对应点为点A.(1)直接写出点A的坐标,并求出经过A、O、B三点的抛物线的解析式;(2)在抛物线的对称轴上是否存在点C,使BC+OC的值最小?若存在,求出点C的坐标;若不存在,请说明理由;(3)点P是抛物线上的一个动点,且在x轴的上方,当点P运动到什么位置时,△PAB的面积最大?求出此时点P的坐标和△PAB的最大面积.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。

1.D2.C3.B4.D5.A6.B7.C8.C9.D 10.C 二、填空题(本大共4小题,每小题5分,满分30分) 11. a ≤3且a ≠2 12. 1 13.453 14. 丁 15. 60° 16. (5,4)三、(本大题共8小题 ,满分80分)17.解:原不等式组为()3221213x x x x +-≥+>-⎧⎪⎨⎪⎩, ①. ②解不等式①得,2x ≥;…………3分 解不等式①得,得4x <;………… 6分 ∴原不等式组的解集是24x ≤<.…………8分18.解:原式=111--++x x x .)1()1(2+-x x x +)1)(1()1(2-+-x x x =1)1(2+-x x -12+x =142+-x x-2≤x ≤2的范围内的整数有-2,-1,0,1,2,要使原分式有意义,x ≠±1,且x ≠0X=2或x=-2当x=2时,原式=0 19.解:⑴所有等可能的情况数有6种; -------------------------------------------- 4分 ⑵ 恰好选中医生甲与护士A 的情况有1种,则P =61. 答:恰好选中医生甲和护士A 的概率为61 ------------------------------ 8分 20、证明:(1)由圆周角定理得,∠B=∠E ,又∠B=∠D , ∴∠E=∠D ,∵CE ∥AD ,…………2分 ∴∠D+∠ECD=180°, ∴∠E+∠ECD=180°,∴AE∥CD,…………4分∴四边形AECD为平行四边形;…………5分(2)作OM⊥BC于M,ON⊥CE于N,∵四边形AECD为平行四边形,∴AD=CE,又AD=BC,∴CE=CB,…………7分∴OM=ON,又OM⊥BC,ON⊥CE,∴CO平分∠BCE.…………10分21.(1)作BK⊥MN于点K,交AF于点H,设⊙A的半径长x;∵BK,CE都垂直于MN,∴BK∥CE,∴△ABH∽△ACG,∴BH ABCG AC=,即:38505985xx-=-,解得:8x=,即⊙A的半径等于8cm;…………5分(2)∵80CE=cm,⊙A的半径等于8 cm,∴72CG=cm,∵sinCG CAGAC∠=,∴7280sin sin64CGACCAG==≈∠︒cm,∴30BC AC AB=-≈cm.即:此时拉杆BC的伸长距离约为30 cm.…………5分22.(本题满分10分)解:(1)如图1中,连接OE,∵GF=GE,∴∠GFE=∠GEF=∠AFH,∵OA=OE,∴∠OAE=∠OEA,……………………… 1分∵AB⊥CD,∴∠AFH+∠FAH=90°,……………… 2分∴∠GEF+∠AEO=90°,∴∠GEO=90°∴GE⊥OE,∴EG是⊙O的切线.………………………………… 4分(2)如图2中,连接OC.设⊙O的半径为r,在Rt△AHC中,tan∠ACH=tan∠G=12AHHC=,………………5分∵AH=2,∴HC=4,(第21题图2)ABCD EFNGMHK在Rt △HOC 中, ∵OC =r ,OH =r -2,HC =4,∴222(2)4r r -+=,∴r =5,………… 6分 ∵GM ∥AC ,∴∠CAH =∠M ,∵∠O EM =∠AHC ,∴△AHC ∽△MEO ………………… 7分∴AH HC EM OE = ∴245EM = ,……………………………8分 ∴EM =52. ………………………………… 10分23、解:(1)当x ≤40时,设y=kx+b .根据题意,得解这个方程组,得∴当x ≤40时,y 与x 之间的关系式是y=50x+1500.∴当x=40时,y=50×40+1500=3500.当x ≥40时,根据题意,得y=100(x-40)+3500,即y=100x-500.∴当x ≥40时,y 与x 之间的关系式是y=100x-500.(2)当y ≥4000时,y 与x 之间的关系式是y=100x-500.解100x -500≥4000,得x ≥45.∴应从第45天开始进行人工灌溉. 24、解:(1) A (5,0),由抛物线经过原点O ,可设抛物线的解析式为bx ax y +=2,得 ⎩⎨⎧-=-=+4390525b a b a 解得 ⎪⎪⎩⎪⎪⎨⎧=-=6561b a ∴抛物线的解析式为x x y 65612+-=(2)如图,由(1)得抛物线的对称轴是直线25=x ,点O 、A 关于直线25=x 对称. 连接AB 交直线25=x 于点C ,则点C 使BC+OC 的值最小. 设直线AB 的解析式为y =kx +b ,得⎩⎨⎧-=+-=+4305b k b k 解得 ⎪⎪⎩⎪⎪⎨⎧-==2521b k ∴直线AB 的解析式为2521-=x y把x =25代入2521-=x y ,得45-=y ∴点C 的坐标为(25,45-).(3)如图,过P 作y 轴的平行线交AB 于点D ,设点P 的横坐标为x,得P )6561,(2x x x +- , D )2521,(-x xPAD PBD PAB S S S ∆∆∆+=∴)(21B A x x PD -∙=()()B A D P x x y y --=21 ()[]3525216561212--⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+-=x x x ()33213210343222+--=++-=x x x ∴当1=x 时,PAB S ∆有最大值为332.把1=x 代入x x y 65612+-=,得32=y∴此时点P 的坐标为⎪⎭⎫⎝⎛32,1,△PAB 的最大面积为332.。

相关文档
最新文档