2020年八年级上学期数学第一次月考试卷

合集下载

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期数学第一次月考试卷及答案

2020年八年级上学期第一次月考数学试卷4分,共40分)1.如图1,在△中,点是延长线上一点,=40°,=120°,则等于()A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =().A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图2如下,则说明∠A′O′B′=∠AOB的依据是()A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( )A.1 B.2 C.3 D.49.如图6,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于()A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图7,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图8,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理_________________.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为__________.13.小明不慎将一块三角形的玻璃摔碎成如图9所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带_____.图9 图10 图11 图1214.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=________.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=_______.16.如图12,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到______________位置时,才能使△ABC≌△QPA.年八年级上学期数学第一次月考答题卡二、填空题(本题共24分,每小题4分)11._________________ , 12._______________ , 13.________________ ,14.__________________ , 15._______________ , 16.________________ .三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF; (2)指出图中所有平行的线段,并说明理由.21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB; (2)若AC=12 cm,求BD的长.23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE. 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.2020年八年级上学期第一次月考数学试卷(答案)4分,共40分)1.如图,在△中,点是延长线上一点,=40°,=120°,则等于(C)A.60°B.70°C.80°D.90°2.如果一个三角形的两边长分别为2和4,则第三边长可能是( B )A.2 B.4 C.6 D.83.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =( D).A.7 B.8 C.10 D.114.用直尺和圆规作一个角等于已知角的示意图如下,则说明∠A′O′B′=∠AOB的依据是(A)A.SSS B.SAS C.ASA D.AAS图1 图2 图3 图45.如图3,一副分别含有30°和45°角的两个直角三角板,拼成如图,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( A )A.15° B.25° C.30° D.10°6.过一个多边形的一个顶点的所有对角线把多边形分成6个三角形,则这个多边形的边数为( D )A.5 B.6 C.7 D.87.如图4,已知点A、D、C、F在同一直线上,且AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加的一个条件是( B )A.∠A=∠EDF B.∠B=∠E C.∠BCA=∠F D.BC∥EF8.如图5,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ的最小值为( B )A.1 B.2 C.3 D.49.如图5,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分为三个三角形,则S△ABO︰S△BCO︰S△CAO等于(C)A.1︰1︰1 B.1︰2︰3 C.2︰3︰4 D.3︰4︰5图5 图6 图7 图810.如图6,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是( C )A.4cm B.6cm C.8cm D.9cm二、填空题(每小题4分,共24分)11.如图7,李叔叔家的凳子坏了,于是他给凳子加了两根木条,这样凳子就比较牢固了,他所应用的数学原理是___三角形的稳定性_______.12.如果一个等腰三角形有两边长分别为4和9,那么这个等腰三角形的周长为____22______.13.小明不慎将一块三角形的玻璃摔碎成如图8所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带__②___.图8 图9 图10 图1114.如图10为6个边长相等的正方形的组合图形,则∠1+∠2+∠3=___135°_____.15.如图11,已知∠B=46°,△ABC的外角∠DAC和∠ACF的平分线交于点E,则∠AEC=____67°___.16.如图,有一个直角三角形ABC,∠C=90°,AC=10,BC=5,一条线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AX上运动,问P点运动到__AC的中点_位置时,才能使△ABC≌△QPA.三、解答题(共86分)17.(8分)一个多边形的外角和是内角和的,求这个多边形的边数.解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.18.(8分)张峰同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语.其具体信息汇集如下.如图,AB∥OH∥CD,OB=OD,AC,BD相交于点O,OD⊥CD,垂足为D,已知AB=20米请根据上述信息求标语CD的长度.解:∵ AB∥CD,∴∠ABO=∠CDO.(1分)又∵ OD⊥CD,∴∠CDO=90°.∴∠ABO=90°,即OB⊥AB.(3分)在△ABO与△CDO中,∴△ABO≌△CDO.(6分)∴ CD=AB=20米.(8分)(也可利用“AAS”证△ABO≌△CDO,其他过程相同).解析:根据AB∥OH∥CD,利用平行线的性质可知∠ABO=∠CDO(或者∠BAO=∠DCO).由题意可证明OD,OB分别是平行线AB与OH以及OH与CD之间的距离,故OD=OB,根据“ASA”或者“AAS”证明△ABO ≌△CDO,所以CD=AB,进而求出CD的长.19.(8分)如图,点D在△ABC的AB边上,且∠ACD=∠A.(1)作∠BDC的平分线DE,交BC于点E(用尺规作图法,保留作图痕迹,不要求写作法);(2)在(1)的条件下,判断直线DE与直线AC的位置关系(不要求证明).解:(1)如图所示:(2)DE∥AC∵DE平分∠BDC,∴∠BDE=∠BDC,∵∠ACD=∠A,∠ACD+∠A=∠BDC,∴∠A=∠BDC,∴∠A=∠BDE,∴DE∥AC.20.(10分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC.(1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.(1)证明:∵ BF=EC,∴ BF+FC=EC+CF,即BC=EF.(3分)又AB=DE,AC=DF,∴△ABC≌△DEF.(5分)(2)AB∥DE,AC∥DF.(7分)理由:∵△ABC≌△DEF,∴∠ABC=∠DEF,∠ACB=∠DFE,∴ AB∥DE,AC∥DF. (10分)21.(10分)如图,CD⊥AB于点D,BE⊥AC于点E,△ABE≌△ACD,∠C=42°,AB=9,AD=6,G为AB延长线上一点.(1)求∠EBG的度数.(2)求CE的长.解:(1)∆ABE≅∆ACD∴∠EBA=∠C=42°(3分)∠EBG=0180—∠EBA=138°.(5分)(2) ∆ABE≅∆ACD∴AC=AB=9 AE=AD=6 .(8分)∴EC=AC-AE=9-6=3 . (10分)22.(10分)如图,△ABC中,∠ACB=90°,DC=AE,AE是BC边上的中线,过点C作CF⊥AE,垂足为点F,过点B作BD⊥BC交CF的延长线于点D.(1)求证:AC=CB;(2)若AC=12 cm,求BD的长.(1)证明:∵AF⊥DC,∴∠ACF+∠FAC=90°,∵∠ACF+∠FCB=90°,∴∠EAC=∠FCB,在△DBC和△ECA,⎩⎪⎨⎪⎧∠DBC=∠ACB=90°∠DCB=∠CAEDC=AE,∴△DBC≌△ECA(AAS),∴BC=AC(2)解:∵E是AC的中点,∴EC =12BC =12AC=12×12 cm=6 cm,又∵△DBC≌△ECA,∴BD=CE,∴BD=6 cm23.(10分)如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于点E,点F在AC上,BD=DF.求证:(1)CF=EB; (2)AB=AF+2EB.证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.24.(10分)两个大小不同的等腰直角三角形三角板,如图①所示放置,图②是由它抽象出的几何图像,点B,C,E在同一条直线上,连接DC.(1)请找出图②中的全等三角形,并给予证明.(说明:结论中不得含有未标识的字母)(2)证明:DC⊥BE.解:(1)△ABE≌△ACD,证明:∵AB=AC,AE=AD,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,∴△ABE≌△ACD(2)由△ABE≌△ACD得∠ACD=∠ABE=45°,又∵∠ACB=45°,∴∠BCD=∠ACB+∠ACD=90°,∴DC⊥BE 25.(12分)已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.(1)将这两个三角形按图①方式摆放,使点E落在AB上,DE的延长线交BC于点F.求证:BF+EF=DE;(2)改变△ADE的位置,使DE交BC的延长线于点F(如图②),则(1)中的结论还成立吗?若成立,加以证明;若不成立,写出此时BF、EF与DE之间的等量关系,并说明理由.证明:(1)如图①,连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠ACB=∠AEF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (4分)∴CF=EF,∴BF+EF=BF+CF=BC,∴BF+EF=DE; (6分)(2)如图②,(1)中的结论不成立,有DE=BF﹣EF,(8分)理由是:连接AF,∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE,∵∠E=∠ACF=90°,AF=AF,∴Rt△ACF≌Rt△AEF, (12分)∴CF=EF,∴DE=BC=BF﹣FC=BF﹣EF,即DE=BF﹣EF. (14分)。

2020—2021年人教版八年级数学上册第一次月考试卷及答案【完整】

2020—2021年人教版八年级数学上册第一次月考试卷及答案【完整】

2020— 2021年人教版八年级数学上册第一次月考试卷及答案【完整】班级: _________ 姓名: ______________一、选择题(本大题共10小题,每题3分,共30 分)1 .已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为() A. -2 B. 2 C. -4 D. 42. 三角形的三边长为(a b )2 c 2 2ab ,则这个三角形是( )A.等边三角形 B •钝角三角形 C •直角三角形 D.锐角三角形3. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为() A. 12 B. 15 C. 12 或 15 D. 184. 已知一个多边形的内角和等于 900o ,则这个多边形是() A.五边形 B.六边形 C.七边形 D.八边形 A. 55° B. 70° C. 110° D. 125° 7 .如图,在△ ABC 中,AB=3 AC=4 BC=5 P 为边BC 上一动点,PEL AB 于 E ,PF L AC 于 F ,M 为EF 中点,贝U AM 的最小值为( )/ APB 等于(5. 已知一次函数y = kx + b 随着x 的增大而减小,且kb v 0,则在直角坐标系 ,则A. 1B. 1.3C. 1.2D. 1.58•“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a b)2 21,大正方形的面积为13,则小正方形的面积为()1. 9的平方根是BAC 90, A. 6 二、填空题 (本大题共6小题,每小题 3分,共18分)C. 5 B. 4D. 6则10.如图,已知BD 是山B.AD 3,2 .如果.a 的平方根是3,则a3 •分解因式:2x 2- 8= 4. 如图,在△ ABC 中, AO8, BO5, AB 的垂直平分线 DE 交AB 于点D,交边 5. 如图,E 、F 分别是平行四边形ABCD 勺边AB CD 上的点,AF 与DE 相交于点 P,BF 与CE 相交于点Q,若S APD 15cm 2,6. 如图,已知点E 在正方形ABCD 勺边AB 上,以BE 为边向正方形 ABCD 外部作N 分别是DG DF的中点,连接 MN 若AB=7 BE=51. 解方程:2 (1) (x 1)3 0 x 1 2A 2 .先化简代数式1- 宁冷 1,并从-1, 0, 1, 3中选取一个合适的代 x x 2xAC 于点丘,则厶BCE 的周长为2cm .三、解答题(本大题共6小题,共72 分) 正方形BEFG 连接DF, M (2) 4(x 2) 3x( x 2)入求值.(1)若x , y 为非负数,求a 的取值范围;(2)若x y ,且2x y 0,求x 的取值范围.4•如图,在?ABCD 中,对角线AC , BD 相交于点0,过点0的一条直线分别 交AD ,BC 于点E ,F .求证:AE=CF5. 如图,△ ABC 中, AD 平分/ BAC DGLBC 且平分 BC ,DEIAB 于 E ,DF 丄AC 于F . (1) 说明BE=CF 勺理由;(2) 如果 AB=5 AC=3 求 AE BE 的长.6. 某商场一种商品的进价为每件 30元,售价为每件40元.每天可以销售48 件,3 •已知关于x , y 的方程组x y a 3 2x y 5a为尽快减少库存,商场决定降价促销.(1)若该商品连续两次下调相同的百分率后售价降至每件32.4 元,求两次下降的百分率;(2)经调查,若该商品每降价0.5 元,每天可多销售4 件,那么每天要想获得510 元的利润,每件应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30 分)1、B2、C3、B4、C5、A6、B7、C8、C9、D10、D二、填空题(本大题共6小题,每小题3分,共18 分)1、土32、813、2 (x+2)(x - 2)4、135、4013& 2三、解答题(本大题共6小题,共72分)41、(1)X1 3 1,X2 3 1;(2)X1 2, X? 3.1 12、-x 1 , - 43、(1)a> 2;(2)-5 V X V 14、略.5、(1)略;(2)AE=4 BE=1.6(1)两次下降的百分率为10%(2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.。

2019-2020年八年级数学上学期第一次月考试题参考答案

2019-2020年八年级数学上学期第一次月考试题参考答案

2019-2020年八年级数学上学期第一次月考试题参考答案1.A2.C3.B4.C5.A6.C7.A8.B9.D 10.D11.1<x<6 12.120° 13.-a+3b-c 14.八 15.416.解:由三角形三边关系得AB-AC<BC<AB+AC 即7<BC<11 ....................(2分)∵BC的长为偶数∴BC=8或BC=10......(6分)∴△ABC的周长为AB+AC+BC=9+2+8=19或AB+AC+BC=9+2+10=21 ......(8分)∴△ABC的周长为19或21......(9分)17.解:∵∠A:∠B:∠C=3:5:7 ∴设∠A=3x,∠B=5x,∠C=7x∵∠A+∠B+∠C=180°∴3x+5x+7x=180°...........(4分)解得 x=12°...........(5分)∴3x=36°,5x=60°,7x=84°.....(6分)即∠A为36°,∠B为60°,∠C为84°....(8分)18.解:∵AD=AB,AD=5cm,∴AB=8cm.......(3分)又∵△ABD的周长是18cm,∴BD=5cm.又∵D是BC的中点,∴BC=2BD=10cm........(6分)又∵△ABC的周长为24cm,∴AC=24-8-10=6cm.........(8分)19.解:设∠1=∠2=x,则∠3=∠4=2x.∵∠BAC=66°,∴∠2+∠4=114°,即x+2x=114°,...(4分)解得x=38°..........(6分)∴∠DAC=∠BAC﹣∠1=28°............(8分)20.解:∵AB∥CD,∴∠C=180°﹣∠B=80°,.........(2分)∵五边形ABCDE内角和为(5﹣2)×180°=540°,....(5分)∴在五边形ABCDE中,∠AED=540°-∠A-∠B-∠C-∠D=540°﹣130°﹣100°﹣80°﹣150°=80°.......(8分)21.解:(1)∵∠A=100°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=30°.....(3分)∵△ABC≌△DEF,AB=6,∴∠F=∠ACB=30°,DE=AB=6 .........(5分)∵EH=2.5∴DH=DE-EH=6﹣2.5=3.5 ...........(8分)(2)∵△ABC≌△DEF,∴∠DEF=∠B=50°∴∠DHC=∠DEF+∠ACB=50°+30°=80°....(10分)22.解:∵点D是BC的中点∴S△ABD=S△ABC ........(2分)又∵点E是AD中点∴S△BED=S△ABD=S△ABC S△CDE=S△ACD=S△ABC∴S△BEC=S△ABD+S△ACD=S△ABC+S△ABC=S△ABC .....(8分)∵点F为CE的中点∴S△BEF=S△BEC=S△ABC=×8=2 即阴影部分的面积为2cm²...(12分)23.解:(1)∵AE平分∠BAC ∴∠EAC=∠BAC ∵∠BAC=180°-∠B-∠C ∵AD⊥BC∴∠DAC+∠C=90°∴∠EAD=∠EAC-∠DAC =∠BAC-(90°-∠C) =(180°-∠B-∠C)-(90°-∠C)=(∠C-∠B)………………(4分)(2)∠EFD=(∠C-∠B)……(5分)理由如下:过点A作AG∥DF ∴∠EFD=∠EAG同(1)可知,∠EAG=(∠C-∠B)∴∠EFD=(∠C-∠B)……(8分)(3)∠EFD=(∠C-∠B)………(9分)理由如下:过点A作AG∥DF交BC于点G∴∠EFD=∠EAG 同(1)可知,∠EAG=(∠C-∠B)即∠EFD=(∠C-∠B)…………(12分)-----如有帮助请下载使用,万分感谢。

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季八年级上学期数学第一次月考试题含答案(人教版)

2020年秋季第一次月考八年级上学期数学试题含答案(人教版)一、精心选一选(每小题3分,共30分)1.的算术平方根是( )A .4 B. 2 C.-2 D. ±22.下面四个图形中,∠1与∠2是对顶角的是( )3.线段CD 是由线段AB 平移得到的,点A (-1,4)的对应点为C (4,7),则点B (-4,-1)的对应点D 的坐标为( )A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)4.下列调查,适合用全面调查的事件是( )A.了解一批炮弹的杀伤半径B.了解枣阳电视台《聚焦》栏目的收视率C.了解汉江中鱼的种类D.了解某班学生对“枣阳一城两花”的知晓率5.一个长方形在直角坐标系中三个顶点的坐标为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为( )A.(2,2)B.(3,2)C.(3,3)D.(2,3)6.下列四组值中不是二元一次方程12=-y x 的解的是( ) A.⎪⎩⎪⎨⎧-==21,0y x B.⎩⎨⎧==1,1y x C.⎩⎨⎧==0,1y x D.⎩⎨⎧-=-=1,1y x 7.如图,直线AB,CD 相交于点O ,OA 平分∠EOC.若∠EOC ︰∠EOD=2︰3,则∠BOD 的度数为( )A.36°B.40°C.35°D.45°8.如图是小刚画的一张脸,他对妹妹说“如果我用(1,3)表示左眼,用(3,3)表示右眼,那么嘴的位置可以表示为( )A.(1,2)B.(1,3)C.(2,1)D.(3,2)9.下列说法正确的是( )A.22是分数 B.圆周率π是无理数 C.38是无理数 D.无限小数都是无理数10. 已知点P (a ,1-a )在平面直角坐标系的第一象限内,则a 的取值范围在数轴上可表示为( )二.细心填一填(每题3分,共30分)21,358;x y x y -=⎧⎨-=⎩①②11.把命题“同角的补角相等”改写成“如果……,那么……”的形式是 。

八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷一、选择题(每题3分,共8题,总分24分)1.下列图形中,不是轴对称图形的是()A. B.C.D.2.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等3.小明不慎将一块三角形的玻璃摔碎成如图的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带()A.第1块B.第2块C.第3块D.第4块4.如图,AB=DB,BC=BE,欲证△ABE≌△DBC,则可增加的条件是()A.∠ABE=∠DBE B.∠A=∠D C.∠E=∠C D.∠1=∠25.如图所示,则下面图形中与图中△ABC一定全等的三角形是()A. B.C.D.6.根据下列条件,能判定△ABC≌△A′B′C′的是()A.AB=A′B′,BC=B′C′,∠A=∠A′B.∠A=∠A′,∠B=∠B′,AC=B′C′C.∠A=∠A′,∠B=∠B′,∠C=∠C′D.AB=A′B′,BC=B′C′,△ABC的周长等于△A′B′C′的周长7.如图,如果△ABC≌△FED,那么下列结论错误的是()A.EC=BD B.EF∥AB C.DF=BD D.AC∥FD8.如图,△ABC≌△ADE,AB=AD,AC=AE,∠B=28°,∠E=95°,∠EAB=20°,则∠BAD等于()A.75°B.57°C.55°D.77°二、填空题题(3分×10=30分)9.我国国旗上的五角星有条对称轴.10.已知△ABC≌△DEF,∠A=80°,∠C=75°,则∠E=°.11.一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x+y=.12.如图,∠ABC=∠DCB,要用SAS判断△ABC≌△DCB,需要增加一个条件:.13.把两根钢条A′B、AB′的中点连在一起,可以做成一个测量工件内槽宽工具(卡钳).如图,若测得AB=5厘米,则槽为厘米.14.已知:如图,AB=AC,AD⊥BC于D,点E在AD上,图中共有对全等三角形.15.如图:已知,∠C=90°,AD=AC,DE⊥AB交BC于点E.若∠B=40°,则∠EAC=°.16.如图:作∠AOB的角平分线OP的依据是.(填全等三角形的一种判定方法)17.如图,△ABC是不等边三角形,DE=BC,以D,E为两个顶点作位置不同的三角形,使所作的三角形与△ABC全等,这样的三角形最多可以画出个.18.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3=°.三、解答题(本大题共10个小题,共96分.)19.如图,在由边长为1的小正方形组成的10×10的网格中(我们把组成网格的小正方形的顶点称为格点),四边形ABCD在直线l的左侧,其四个顶点A,B,C,D分别在网格的格点上.(1)请你在所给的网格中画出四边形A1B1C1D1,使四边形A1B1C1D1和四边形ABCD 关于直线l对称;(2)在(1)的条件下,结合你所画的图形,直接写出四边形A1B1C1D1的面积.20.沿网格线把正方形分割成两个全等图形?用三种不同的方法试一试.21.如图,△ABC≌△DEF,∠A=25°,∠B=65°,BF=3cm,求∠DFE的度数和EC 的长.22.如图,AB、CD相交于点O,△AOB≌△DOC,且∠A=80°,∠DOC=30°,BO=23,AO=18,求∠DC0的度数和BD的长度.23.如图,AC=AD,BC=BD,求证:AB平分∠CAD.24.已知:如图,AB=DC,AB∥DC,求证:AD=BC.25.如图,已知:点B、F、C、E在一条直线上,FB=CE,AC=DF.∠A=∠D=90°;求证:AB∥DE.26.两个大小不同的等腰直角三角板如图所示放置,右图是由它抽象出的几何图形,B,C,E在同一条直线上,连结DC.(1)求证:△ABE≌△ACD;(2)指出线段DC和线段BE的位置关系,并说明理由.27.如图,小明用三角尺画∠AOB的平分线,他先在∠AOB两边OA,OB上分别取OM=ON,OD=OE,然后,连接DN和EM,相交于点C,再作射线OC,此时他认为OC就是∠AOB的平分线,你认为他的做法正确吗?请说明理由.28.在直角梯形ABCD中,AD∥BC,∠B=∠A=90°.操作:小明取直角梯形ABCD 的非直角腰CD的中点P,过点P作PE∥AB,剪下△PEC(如图1),并将△PEC 绕点P按逆时针方向旋转180°到△PFD的位置,拼成新的图形(如图2).(Ⅰ)思考与实践:(1)操作后小明发现,拼成的新图形是;(2)如图图3中,已知AB∥CD,类比图2的剪拼方法,画出图3剪拼成一个平行四边形的示意图.(Ⅱ)发现与运用:小白又发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.(1)如图4,在梯形ABCD中,AD∥BC,E是CD的中点,EF⊥AB于点F,AB=5,EF=4,求梯形ABCD的面积.(2)如图5的多边形中,AE=CD,AE∥CD,能否沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.八年级(上)第一次月考数学试卷答案1.A.2.C.3.B.4.D5.B6.D.7.C.8.D.9.5.10.25.11.11.12.AB=DC.13.5.14.3.15.10.16.SSS.17.4个18.135.19.解:(1)如图所示.=3×4﹣×2×1﹣×2×1﹣×3×1﹣×2×2(2)S四边形A1B1C1D1=12﹣1﹣1﹣﹣2=.20.解:如下图所示:21.解:△ABC中∠A=25°,∠B=65°,∴∠BCA=180°﹣∠A﹣∠B=180°﹣25°﹣65°=90°,∵△ABC≌△DEF,∴∠BCA=∠DFE,BC=EF,∴EC=BF=3cm.∴∠DFE=90°,EC=3cm.22.解:∵△AOB≌△DOC,∴∠D=∠A=80°,DO=AO=18,在△COD中,∠DCO=180°﹣∠D﹣∠DOC=180°﹣80°﹣30°=70°,BD=BO+DO=23+18=41.23.证明:在△ABC与△ABD中,,∴△ABC≌△ABD(SSS),∴∠CAB=∠DAB,∴AB平分∠CAD.24.证明:∵AB∥CD,∴∠BAC=∠ACD,在△ACB和△CAD中,,∴△ACB≌△CAD(SAS),∴AD=BC(全等三角形的对应边相等).25.证明:如图,∵FB=CE,∴FB+FC=CE+FC,即BC=EF.又∵∠A=∠D=90°,在Rt△ABC与Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL),∴∠B=∠FED,∴AB∥DE.26.证明:(1)∵△ABC和△ADE是等腰直角三角形,∴AB=AC,AD=AE,∠BAC=∠EAD=90°,∴∠BAC+∠CAE=∠EAD+∠CAE,即∠BAE=∠CAD,在△ABE和△ACD中,∵,∴△ABE≌△ACD(SAS);(2)CD⊥BE,理由是:∵△ABC是等腰直角三角形,∴∠ABC=∠ACB=45°,∵△ABE≌△ACD,∴∠ACD=∠ABC=45°,∴∠BCD=∠ACB+∠ACD=45°+45°=90°,∴CD⊥BE.27.解:他的做法正确;理由:在△MOE和△NOD中∵,∴△MOE≌△NOD(SAS),∴∠OME=∠DNO,∵OM=ON,OD=OE,∴DM=EN,∴在△MDC和△NEC中,∴△MDC≌△NEC(AAS),∴DC=EC,在△DOC和△EOC中,∴△DOC≌△EOC(SSS),∴∠DOC=∠EOC,∴OC就是∠AOB的平分线.28.解:(Ⅰ)(1)如图2所示,△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,∴EF∥AB,又∵在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,∴∠FDP+∠ADP=180°,∴AD和DF在同一条直线上,那么构成的新图形是一个四边形,又∵AD∥BC,∴四边形ABEF是一个平行四边形,∵∠A=90°,∴拼成的新图形是矩形.故答案为:矩形;(2)如图所示,取AD的中点P,过点P做PE∥BC交AB于E,交CD的延长线于F,△PEA绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上,所以EF∥BC,由于图中AB∥CD所以图中四边形BCFE是平行四边形.(Ⅱ)(1)如下图所示,过点E作AB的平行线,交BC于点G,交AD的延长线于点H,∵AH∥CG,∴∠H=∠CGE,∵E是CD的中点,∴DE=CE,又∵∠DEH=∠CEG,∴△DEH≌△CEG(AAS),=S△CEG,∴S△DEH∵AH∥BC,AB∥HC,∴四边形ABGH是平行四边形,∵EF⊥AB于点F,AB=5,EF=4,∴平行四边形ABGH的面积=AB×EF=5×4=20,∴梯形ABCD的面积=五边形ABGEDD的面积+△CEG的面积=五边形ABGEDD的面积+△DEH的面积=平行四边形ABGH的面积=20;(2)能.如图5,分别取AB、BC的中点F、H,作直线FH,分别交AE、CD于点M、N,将△AMF与△CNH一起拼接到△FBH位置即可.。

2020年重庆市九龙坡区育才中学八年级(上)第一次月考数学试卷

2020年重庆市九龙坡区育才中学八年级(上)第一次月考数学试卷

八年级(上)第一次月考数学试卷题号一二三四总分得分一、选择题(本大题共15小题,共45.0分)1.下列说法正确的是()①三角形的三条中线都在三角形内部;②三角形的三条角平分线都在三角形内部;③三角形三条高都在三角形的内部.A. ①②③B. ①②C. ②③D. ①③2.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ中,锐角的个数最多为()A. 1B. 2C. 3D. 03.如图,图中三角形的个数为()A. 3个B. 4个C. 5个D. 6个4.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是()A. γ=2α+βB. γ=α+2βC. γ=α+βD. γ=180°-α-β5.下列图形中有稳定性的是()A. 正方形B. 长方形C. 直角三角形D. 平行四边形6.如图,∠A=120°,且∠1=∠2=∠3和∠4=∠5=∠6,则∠BDC=()A. 120°B. 60°C. 140°D. 无法确定7.若方程组的解满足x+y=0,则a的值为()A. -1B. 1C. 0D. 无法确定8.从一个n边形的某个顶点出发,分别连接这个点与其他顶点可以把这个n边形分割成三角形个数是()A. 3个B. (n-1)个C. 5个D. (n-2)个9.下列命题中,错误的是()A. 三角形两边之和大于第三边B. 三角形的外角和等于360°C. 三角形的一条中线能将三角形面积分成相等的两部分D. 等边三角形既是轴对称图形,又是中心对称图形10.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是()A. EC=EFB. FE=FCC. CE=CFD. CE=CF=EF11.如图,七边形ABCDEFG中,AB、ED的延长线交于点O,着∠1、∠2、∠3、∠4对应的邻补角和等于215°,则∠BOD的度数为()A. 30°B. 35°C. 40°D. 45°12.观察下列图形,则第n个图形中三角形的个数是()A. 2n+2B. 4n+4C. 4n-4D. 4n13.如图所示,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC=4cm2,则S阴影等于()A. 2cm2B. 1cm2C. cm2D. cm214.若关于x的不等式组有且仅有2个整数解,则a的取值范围是()A. 3≤a≤4B. 3≤a<4C. 3<a≤4D. 2≤a<415.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A. 118°B. 119°C. 120°D. 121°二、填空题(本大题共8小题,共24.0分)16.AD,AE分别是等边三角形ABC的高和中线,则AD与AE的大小关系为______.17.如图,AD,BE分别是△ABC中BC,AC边上的高,BC=6cm,AC=5cm,若AD=4cm,则BE的长为______cm.18.把命题“同角的余角相等”改写成“如果…那么…”的形式___________________________19.如图有一张简易的活动小餐桌,现测得OA=OB=30cm,OC=OD=50cm,桌面离地面的高度为40cm,则两条桌腿的张角∠COD的度数为______度.20.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3,1),则点A2019的坐标为______.21.如图,若△ABE和△ADC分别是由△ABC沿AB、AC边翻折180°得到的,若∠BAC=150°,则∠1的度数为______.22.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠P=______°.23.如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=______.三、计算题(本大题共1小题,共6.0分)24.如图,点D在AB上,点E在AC上,BE、CD相交于点O.(1)若∠A=50°,∠BOD=70°,∠C=30°,求∠B的度数;(2)试猜想∠BOC与∠A+∠B+∠C之间的关系,并证明你猜想的正确性.四、解答题(本大题共7小题,共56.0分)25.如图所示,在△ABC中,AD是BC边上的高,点E是AB上一点,CE交AD于点M,且∠DCM=∠MAE,求证:△ACE 是直角三角形.26.已知在△ABC中,AB=AC,D在AC的延长线上.求证:BD-BC<AD-AB.27.如图,∠ACD是△ABC的外角,∠ABC的平分线与∠ACD的平分线交于点A1,∠A1BC的平分线与∠A1CD的平分线交于点A2,…,∠A n-1BC的平分线与∠A n-1CD的平分线交于点A n.设∠A=θ.则:(1)求∠A1的度数;(2)∠A n的度数.28.图1,线段AB、CD相交于点O,连接AD、CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N.试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:______ ;(2)仔细观察,在图2中“8字形”的个数:______ 个;(3)图2中,当∠D=50度,∠B=40度时,求∠P的度数.29.我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=______,b=______;(2)如果,其中a、b为有理数,求a+2b的值.30.探究:(1)如图1,在△ABC中,BP平分∠ABC,CP平分∠ACB.求证:∠P=90°+∠A.(2)如图2,在△ABC中,BP平分∠ABC,CP平分外角∠ACE.猜想∠P和∠A有何数量关系,并证明你的结论.(3)如图3,BP平分∠CBF,CP平分∠BCE.猜想∠P和∠A有何数量关系,请直接写出结论.31.如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC的度数;(2)若将图1中的线段AD沿MN向右平移到A1D1如图2所示位置,此时A1E平分∠AA1D1,CE平分∠ACD1,A1E与CE相交于E,∠PAC=50°,∠A1D1C=30°,求∠A1EC 的度数.(3)若将图1中的线段AD沿MN向左平移到A1D1如图3所示位置,其他条件与(2)相同,求此时∠A1EC的度数.答案和解析1.【答案】B【解析】【解答】解:①、②正确;而对于三角形三条高:锐角三角形的三条高在三角形的内部;直角三角形有两条高在边上;钝角三角形有两条高在外部,故③错误.故选B.【分析】本题考查了三角形的三条中线,三条角平分线,三条高的位置.根据三角形的三条中线都在三角形内部;三角形的三条角平分线都在三角形内部;三角形三条高可以在内部,也可以在外部,直角三角形有两条高在边上作答.2.【答案】A【解析】解:∵α,β,γ的度数不能确定,∴α,β,γ可能都是锐角也可能有两个是锐角或一个是锐角,①假设α、β、γ三个角都是锐角,即α<90°,β<90°,γ<90°,∵α=A+B,β=C+A,γ=C+B,∴A+B<90°,B+C<90°,C+A<90°.∴2(A+B+C)<270°,∴A+B+C<135°与A+B+C=180°矛盾.∴α、β、γ不可能都是锐角.②假设α、β、γ中有两个锐角,不妨设α、β是锐角,那么有A+B<90°,C+A<90°,∴A+(A+B+C)<180°,∴A+180°<180°,∵A<0°不可能,∴α、β、γ中至多只有一个锐角,如A=20°,B=30°,C=130°,α=50°,故选:A.已知△ABC的三个内角为A,B,C且α=A+B,β=C+A,γ=C+B,则α,β,γ可能都是锐角也可能有两个是锐角或一个是锐角,所以结合已知利用三角形内角和定理分情况进行分析,从而得到结论.此题主要考查三角形内角和定理:三角形的内角和为180°.3.【答案】C【解析】解:图中的三角形为:△ABD,△ACE,△DCE,△ACD和△ABC,有5个三角形,故选C.由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形,据此进行判断即可.本题主要考查了三角形的概念,解题时注意:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.4.【答案】A【解析】【分析】本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键.根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.【解答】解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.5.【答案】C【解析】解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.故选:C.稳定性是三角形的特性.稳定性是三角形的特性,这一点需要记忆.6.【答案】C【解析】【分析】此题考查三角形的内角和,角平分线的定义,解题时注意:三角形内角和是180°.以及三角形内角和定理,即可得到∠ABC+∠ACB=180°-120°=60°,再根据∠1=∠2=∠3,∠4=∠5=∠6,即可得到∠DBC+∠DCB的度数,最后利用三角形内角和定理可得∠BDC的度数.【解答】解:在△ABC中,∵∠A=120°,∴∠ABC+∠ACB=180°-120°=60°,又∵∠1=∠2=∠3,∠4=∠5=∠6,∴∠DBC+∠DCB=×60°=40°,∴∠BDC=180°-40°=140°,故选:C.7.【答案】A【解析】解:方程组两方程相加得:4(x+y)=2+2a,即x+y=(1+a),由x+y=0,得到(1+a)=0,解得:a=-1.故选:A.方程组两方程相加表示出x+y,代入x+y=0求出a的值即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.8.【答案】D【解析】解:从n边形的一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n边形分割成(n-2)个三角形.故选D.根据从n边形的一个顶点出发,连接这个点与其余各顶点,可以把一个n边形分割成(n-2)个三角形的规律作答.本题主要考查多边形的性质,解题关键是熟记多边形顶点数与分割成的三角形个数的关系.9.【答案】D【解析】解:A正确,符合三角形三边关系;B正确;三角形外角和定理;C正确;D错误,等边三角形既是轴对称图形,不是中心对称图形.故选:D.根据三角形的性质即可作出判断.本题考查的是三角形的三边关系,外角和定理,中位线的性质及命题的真假区别.10.【答案】C【解析】解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,∴∠CDB=∠ACB=90°,∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,∴∠ACD=∠B,∵AF平分∠CAB,∴∠CAE=∠BAF,∴∠ACD+∠CAE=∠B+∠BAF,∴∠CEF=∠CFE,∴CE=CF.故选:C.求出∠CAF=∠BAF,∠B=∠ACD,根据三角形外角性质得出∠CEF=∠CFE,即可得出答案;本题考查了直角三角形的性质,等腰三角形的判定,正确的识别图形是解题的关键.11.【答案】B【解析】解:∵∠1、∠2、∠3、∠4的外角的角度和为215°,∴∠1+∠2+∠3+∠4+215°=4×180°,∴∠1+∠2+∠3+∠4=505°,∵五边形OAGFE内角和=(5-2)×180°=540°,∴∠1+∠2+∠3+∠4+∠BOD=540°,∴∠BOD=540°-505°=35°,故选:B.由外角和内角的关系可求得∠1、∠2、∠3、∠4的和,由五边形内角和可求得五边形OAGFE 的内角和,则可求得∠BOD.本题主要考查多边形的内角和,利用内角和外角的关系求得∠1、∠2、∠3、∠4的和是解题的关键.12.【答案】D【解析】【分析】此题考查了学生由特殊到一般的归纳能力.解此题时要注意寻找各部分间的联系,找到一般规律.由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.【解答】解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n个图形中三角形的个数是4n.故选D.13.【答案】B【解析】解:S阴影=S△BCE=S△ABC=1cm2.故选:B.根据三角形的面积公式,知:等底等高的两个三角形的面积相等.本题考查的是三角形的面积,充分运用三角形的面积公式以及三角形的中线的性质.14.【答案】B【解析】解:解不等式6x+2>3x+5得:x>1,解不等式x-a≤0得:x≤a,∵不等式组有且仅有2个整数解,∴不等式组的解为:1<x≤a,且两个整数解为:2,3,∴3≤a<4,即a的取值范围为:3≤a<4,故选:B.分别解两个不等式,得到两个解集:x>1和x≤a,根据不等式组只有2个整数解,得到关于a的取值范围,即可得到答案.本题考查一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法是解题的关键.15.【答案】C【解析】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°-60°=120°,故选:C.由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.16.【答案】相等【解析】解:∵△ABC是等边三角形,AD⊥BC,∴BD=CD,∴AD平分BC,∴AD和AE重合,∴AD=AE.故答案为:相等.根据等边三角形的性质解答即可.本题考查了等边三角形的性质,熟记等边三角形的各种性质是解题的关键.17.【答案】4.8【解析】解:∵BC=6cm,AC=5cm,若AD=4cm,∴BC•AD=AC•BE,即×6×4=×5•BE,解得BE=4.8cm.故答案为:4.8利用三角形面积的不变性列出等式解答即可.此题考查了利用面积法求三角形的高,是解.答此类题目常用的方法,关键是找对三角形的高所在的位置18.【答案】如果两个角是同一个角的余角,那么这两个角相等【解析】【分析】本题考查命题的定义,根据命题的定义,命题有题设和结论两部分组成.命题有题设和结论两部分组成,通常写成“如果…那么…”的形式.“如果”后面接题设,“那么”后面接结论.【解答】解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”.故答案为如果两个角是同一个角的余角,那么这两个角相等.19.【答案】120【解析】解:如图,作BE⊥CD于E,根据题意得在Rt△BCE中,∴BC=30+50=80,BE=40,∴∠BCE=30°,∴∠ODC=∠BCE=30°,∴∠COD=180°-30°×2=120°.故填:120.如图,作BE⊥CD于E,根据题意,得在Rt△BCE中,BC=30+50=80,BE=40,由此可以推出∠BCE=30°,接着可以求出∠ODC=∠BCE=30°,再根据三角形的内角和即可求出∠COD.此题综合运用了直角三角形和等腰三角形的性质.20.【答案】(-3,1)【解析】解:∵A1的坐标为(3,1),∴A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(-3,1).故答案为:(-3,1).根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.此题考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.21.【答案】60°【解析】解:∵∠BAC=150°,∴∠ABC+∠ACB=30°,∵∠EBA=∠ABC,∠DCA=∠ACB,∴∠EBA+∠ABC+∠DCA+∠ACB=2(∠ABC+∠ACB)=60°,即∠EBC+∠DCB=60,∴∠1=60°.故答案为:60°.先根据三角形内角和与翻折变换的特点求得∠EBC+∠DCB=60°,再根据三角形的一个外角等于和它不相邻的两个内角的和得∠1=60°.此题主要考查了折叠的性质和三角形内角和定理的综合运用,巧妙运用三角形的外角的性质“三角形的一个外角等于和它不相邻的两个内角的和”是解决问题的关键.22.【答案】30【解析】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠BPC=20°,∴∠P=180°-∠PBC-∠BCP=30°,故答案为:30°.根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A 的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数.本题考查了三角形外角性质以及角平分线的定义,解题时注意:一个三角形的外角等于与它不相邻的两个内角的和.23.【答案】540°【解析】解:如图∵∠6+∠7=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7,=∠1+∠2+∠3+∠4+∠5+∠8+∠9,=五边形的内角和=540°,故答案为:540°.根据题意,画出图象,由图可知∠6+∠7=∠8+∠9,因为五边形内角和为540°,从而得出答案.本题考查了五边形内角和,同时需要考生认真通过图形获取信息,通过连线构造五边形从而得出结论.24.【答案】解:(1)∵∠A=50°,∠C=30°,∴∠BDO=∠A+∠C=80°;∵∠BOD=70°,∴∠B=180°-∠BDO-∠BOD=30°;(2)∠BOC=∠A+∠B+∠C.理由:∵∠BEC=∠A+∠B,∴∠BOC=∠BEC+∠C=∠A+∠B+∠C.【解析】(1)先利用三角形的外角的性质求出∠BDO=80°,最后用三角形的内角和定理即可得出结论;(2)利用三角形的外角的性质即可得出结论.此题主要考查了三角形的内角和定理和三角形外角的性质,用三角形外角的性质解决问题是解本题的关键.25.【答案】证明:∵AD是BC边上的高,∴∠ADC=90°,∵∠DCM=∠MAE,∠CMD=∠AEM,∴∠AEC=∠ADC=90°,∴△ACE是直角三角形.【解析】根据对顶角相等得到∠CMD=∠AEM,根据三角形内角和定理得到∠AEC=∠ADC=90°,证明结论.本题考查的是直角三角形的性质、三角形内角和定理,掌握三角形内角和定理是解题的关键.26.【答案】证明:∵△BCD中,BD-BC<CD,∴BD-BC<AD-AC,且AB=AC,∴BD-BC<AD-AB,【解析】由三角形的三边关系可得BD-BC<AD-AC,即可得结论.本题考查了三角形三边关系,熟练运用三角形的三边关系可求解.27.【答案】解:(1)∵A1B是∠ABC的平分线,A1C是∠ACD的平分线,∴∠A1BC=∠ABC,∠A1CD=∠ACD,又∵∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,∴(∠A+∠ABC)=∠ABC+∠A1,∴∠A1=∠A,∵∠A=β,∴∠A1=;(2)同理可得∠A n=.【解析】本题考查了三角形的内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记性质并准确识图然后求出后一个角是前一个角的是解题的关键.据角平分线的定义可得∠A1BC=∠ABC,∠A1CD=∠ACD,再根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠A+∠ABC,∠A1CD=∠A1BC+∠A1,整理即可求出∠A1的度数,同理求出∠A2,可以发现后一个角等于前一个角的,(2)根据此规律即可得解.28.【答案】(1)∠A+∠D=∠C+∠B;(2)6;(3)3)由(1)可知,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,由①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∵∠D=50°,∠B=40°,∴2∠P=50°+40°=90°,∴∠P=45°.【解析】解:(1)∵∠A+∠D+∠AOD=∠C+∠B+∠BOC=180°,∠AOD=∠BOC(对顶角相等),∴∠A+∠D=∠C+∠B.故答案为:∠A+∠D=∠C+∠B;(2)①线段AB、CD相交于点O,形成“8字形”;②线段AN、CM相交于点O,形成“8字形”;③线段AB、CP相交于点N,形成“8字形”;④线段AB、CM相交于点O,形成“8字形”;⑤线段AP、CD相交于点M,形成“8字形”;⑥线段AN、CD相交于点O,形成“8字形”;故“8字形”共有6个;(3)由(1)可知,∠DAP+∠D=∠P+∠DCP,①∠PCB+∠B=∠PAB+∠P,②∵∠DAB和∠BCD的平分线AP和CP相交于点P,∴∠DAP=∠PAB,∠DCP=∠PCB,由①+②得:∠DAP+∠D+∠PCB+∠B=∠P+∠DCP+∠PAB+∠P,即2∠P=∠D+∠B,又∵∠D=50°,∠B=40°,∴2∠P=50°+40°=90°,∴∠P=45°.(1)根据三角形内角和定理即可得出∠A+∠D=∠C+∠B;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有6个;(3)先根据“8字形”中的角的规律,可得∠DAP+∠D=∠P+∠DCP①,∠PCB+∠B=∠PAB+∠P②,再根据角平分线的定义,得出∠DAP=∠PAB,∠DCP=∠PCB,将①+②,可得2∠P=∠D+∠B,进而求出∠P的度数本题考查的是三角形内角和定理及三角形外角的性质,熟知三角形的内角和是180°是解答此题的关键.29.【答案】(1)2 ,-3 ;(2)整理,得(a+b)+(2a-b-5)=0.∵a、b为有理数,∴解得∴a+2b=-.【解析】解:(1)故答案为:2,-3;(2)见答案.【分析】(1)a,b是有理数,则a-2,b+3都是有理数,根据如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.即可确定;(2)首先把已知的式子化成ax+b=0,(其中a、b为有理数,x为无理数)的形式,根据a=0,b=0即可求解.本题考查了实数的运算,正确理解题意是关键.30.【答案】证明:(1)∵△ABC中,∠ABC+∠ACB=180°-∠A.又∵BP平分∠ABC,CP平分∠ACB,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(180°-∠A),根据三角形内角和定理可知∠BPC=180°-(180°-∠A)=90°+∠A;(2)∠A=∠P,理由如下:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠PBC=∠ABC,∠PCE=∠ACE.∵∠ACE是△ABC的外角,∠PCE是△BPC的外角,∴∠ACE=∠ABC+∠A,∠PCE=∠PBC+∠P,∴∠ACP=∠ABC+∠A,∴∠ABC+∠A=∠PBC+∠P,∴∠A=∠P.(3)∠P=90°-∠A,理由如下:∵P点是外角∠CBF和∠BCE的平分线的交点,∠P+∠PBC+∠PCB=180°∴∠P=180°-(∠PBC+∠PCB)=180°-(∠FBC+∠ECB)=180°-(∠A+∠ACB+∠A+∠ABC)=180°-(∠A+180°)=90°-∠A.【解析】(1)根据三角形内角和定理以及角平分线的性质进行解答即可;(2)根据角平分线的定义以及一个三角形的外角等于与它不相邻的两个内角和,可求出∠A的度数,根据补角的定义求出∠ACB的度数,根据三角形的内角和即可求出∠P的度数,即可求出结果.(3)根据三角形的外角性质、内角和定理、角平分线的定义探求并证明.本题考查了角平分线的定义,一个三角形的外角等于与它不相邻的两个内角和以及补角的定义以及三角形的内角和为180°,此类题解题的关键是找出角平分线平分的两个角的和的度数,从而利用三角形内角和定理求解.31.【答案】解:(1)如图1所示:∵直线PQ∥MN,∠ADC=30°,∴∠ADC=∠QAD=30°,∴∠PAD=150°,∵∠PAC=50°,AE平分∠PAD,∴∠PAE=75°,∴∠CAE=25°,可得∠PAC=∠ACN=50°,∵CE平分∠ACD,∴∠ECA=25°,∴∠AEC=180°-25°-25°=130°;(2)如图2所示:∵∠A1D1C=30°,线段AD沿MN向右平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∴∠PA1D1=150°,∵A1E平分∠AA1D1,∴∠PA1E=∠EA1D1=75°,∵∠PAC=50°,PQ∥MN,∴∠CAQ=130°,∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=25°,∴∠CEA1=360°-25°-130°-75°=130°;(3)如图3所示:过点E作FE∥PQ,∵∠A1D1C=30°,线段AD沿MN向左平移到A1D1,PQ∥MN,∴∠QA1D1=30°,∵A1E平分∠AA1D1,∴∠QA1E=∠2=15°,∵∠PAC=50°,PQ∥MN,∴∠ACN=50°,∵CE平分∠ACD1,∴∠ACE=∠ECN=∠1=25°,∴∠CEA1=∠1+∠2=15°+25°=40°.【解析】(1)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(2)直接利用角平分线的性质结合平行线的性质得出∠CAE以及∠ECA的度数,进而得出答案;(3)直接利用角平分线的性质结合平行线的性质得出∠1和∠2的度数,进而得出答案.此题主要考查了角平分线的定义以及平行线的性质等知识,正确应用平行线的性质是解题关键.。

人教版八年级数学上册第一次月考测试题(含答案)

人教版八年级数学上册第一次月考测试题(含答案)

八年级(上)第一次月考数学试卷一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.208.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= .10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= .11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= .12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为cm.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有个.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= °.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为cm.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 度.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 时,△ABC和△PQA全等.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是.②小聪的作法正确吗?请说明理由.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?八年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(本大题共有8小题,每小题3分,共24分.)1.下面图案中是轴对称图形的有()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念:关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:第1,2个图形沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,故轴对称图形一共有2个.故选:B.【点评】此题主要考查了轴对称图形,轴对称的关键是寻找对称轴,两边图象折叠后可重合.2.点P与点Q关于直线m成轴对称,则PQ与m的位置关系()A.平行 B.垂直 C.平行或垂直D.不确定【考点】轴对称的性质.【分析】点P与点Q关于直线m成轴对称,即线段PQ关于直线m成轴对称;根据轴对称的性质,有直线m垂直平分PQ.【解答】解:点P和点Q关于直线m成轴对称,则直线m和线段QP的位置关系是:直线m垂直平分PQ.故选:B.【点评】此题考查了对称轴的定义,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有()A.5个B.3个C.4个D.6个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形的概念可知:①两个点;②线段;③角;④长方形;⑤两条相交直线一定是轴对称图形;⑥三角形不一定是轴对称图形.故选A.【点评】本题考查轴对称图形的知识,要求掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.4.在下列给出的条件中,不能判定两个三角形全等的是()A.两边一角分别相等 B.两角一边分别相等C.直角边和一锐角分别相等D.三边分别相等【考点】全等三角形的判定.【分析】根据判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL分别进行分析.【解答】解:A、两边一角分别相等的两个三角形不一定全等,故此选项符合题意;B、两角一边分别相等可用AAS、ASA定理判定全等,故此选项不合题意;C、两角一边对应相等,可用SAS或AAS定理判定全等,故此选项不合题意;D、三边分别相等可用SSS定理判定全等,故此选项不合题意;故选:A.【点评】本题考查三角形全等的判定方法,注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠BCA=∠F B.∠B=∠E C.BC∥EF D.∠A=∠EDF【考点】全等三角形的判定.【分析】全等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:A、根据AB=DE,BC=EF和∠BCA=∠F不能推出△ABC≌△DEF,故本选项错误;B、∵在△ABC和△DEF中,∴△ABC≌△DEF(SAS),故本选项正确;C、∵BC∥EF,∴∠F=∠BCA,根据AB=DE,BC=EF和∠F=∠BCA不能推出△ABC≌△DEF,故本选项错误;D、根据AB=DE,BC=EF和∠A=∠EDF不能推出△ABC≌△DEF,故本选项错误.故选B.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是()A.AB=AD B.AC平分∠BCD C.AB=BD D.△BEC≌△DEC【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线上任意一点,到线段两端点的距离相等可得AB=AD,BC=CD,再根据等腰三角形三线合一的性质可得AC平分∠BCD,EB=DE,进而可证明△BEC≌△DEC.【解答】解:∵AC垂直平分BD,∴AB=AD,BC=CD,∴AC平分∠BCD,EB=DE,∴∠BCE=∠DCE,在Rt△BCE和Rt△DCE中,,∴Rt△BCE≌Rt△DCE(HL),故选:C.【点评】此题主要考查了线段垂直平分线的性质,以及等腰三角形的性质,关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.7.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=5,AD=4,则图中阴影部分的面积为()A.5 B.10 C.15 D.20【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×4×5=10,△ABC∴阴影部分面积=×10=5.故选A.【点评】考查了轴对称的性质,根据轴对称得到阴影部分面积是解题的关键.8.将一正方形纸片按图中(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的()A.B.C.D.【考点】剪纸问题.【专题】压轴题.【分析】对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.【解答】解:严格按照图中的顺序向右对折,向上对折,从正方形的上面那个边剪去一个长方形,左下角剪去一个正方形,展开后实际是从大的正方形的中心处剪去一个较小的正方形,从相对的两条边上各剪去两个小正方形得到结论.故选:B.【点评】本题主要考查学生的动手能力及空间想象能力.二、填空题(本大题共有10小题,每小题2分,共20分.)9.已知△ABC与△A′B′C′关于直线L对称,∠A=40°,∠B′=50°,则∠C= 90°.【考点】轴对称的性质.【分析】根据成轴对称的两个图形全等求得未知角即可.【解答】解:∵△ABC与△A′B′C′关于直线L对称,∴△ABC≌△A′B′C′,∴∠B=∠B′=50°,∵∠A=40°,∴∠C=180°﹣∠B﹣∠A=180°﹣50°﹣40°=90°,故答案为:90°.【点评】本题考查轴对称的性质,属于基础题,注意掌握如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.10.△ABC≌△DEF,且△ABC的周长为12,若AB=5,EF=4,AC= 3 .【考点】全等三角形的性质.【分析】根据全等三角形对应边相等可得BC=EF,再根据三角形的周长的定义列式计算即可得解.【解答】解:∵△ABC≌△DEF,∴BC=EF=4,∵△ABC的周长为12,AB=5,∴AC=12﹣5﹣4=3.故答案为:3.【点评】本题考查了全等三角形的性质,三角形的周长的定义,熟记性质是解题的关键.11.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=24°,∠2=36°,则∠3= 60°.【考点】全等三角形的判定与性质.【专题】常规题型.【分析】易证△AEC≌△ADB,可得∠ABD=∠2,根据外角等于不相邻内角和即可求解.【解答】解:∵∠BAC=∠DAE,∠BAC=∠BAD+∠DAC,∠DAE=∠DAC+∠CAE,∴∠CAE=∠1,∵在△AEC和△ADB中,,∴AEC≌△ADB,(SAS)∴∠ABD=∠2,∵∠3=∠ABD+∠1,∴∠3=∠2+∠1=60°.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角相等的性质,本题中求证AEC≌△ADB是解题的关键.12.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第 2 块.【考点】全等三角形的应用.【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.【点评】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.13.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=20cm,则△DEB 的周长为20 cm.【考点】角平分线的性质;等腰直角三角形.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为20cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E,∴∠DEC=∠A=90°在△ACD与△ECD中,∵,∴△ACD≌△ECD(ASA),∴AC=EC,AD=ED,∵∠A=90°,AB=AC,∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=20cm.故答案为:20.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.14.如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE.其中能够证明△DOF≌△EOF的条件的个数有 4 个.【考点】全等三角形的判定;角平分线的性质.【分析】根据题目所给条件可得∠ODF=∠OEF=90°,再加上添加条件结合全等三角形的判定定理分别进行分析即可.【解答】解:∵FD⊥AO于D,FE⊥BO于E,∴∠ODF=∠OEF=90°,①加上条件OF是∠AOB的平分线可利用AAS判定△DOF≌△EOF;②加上条件DF=EF可利用HL判定△DOF≌△EOF;③加上条件DO=EO可利用HL判定△DOF≌△EOF;④加上条件∠OFD=∠OFE可利用AAS判定△DOF≌△EOF;因此其中能够证明△DOF≌△EOF的条件的个数有4个,故答案为:4.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.15.如图为6个边长等的正方形的组合图形,则∠1+∠2+∠3= 135 °.【考点】全等三角形的判定与性质.【分析】观察图形可知∠1与∠3互余,∠2是直角的一半,利用这些关系可解此题.【解答】解:观察图形可知:△ABC≌△BDE,∴∠1=∠DBE,又∵∠DBE+∠3=90°,∴∠1+∠3=90°.∵∠2=45°,∴∠1+∠2+∠3=∠1+∠3+∠2=90°+45°=135°.故填135.【点评】此题综合考查角平分线,余角,要注意∠1与∠3互余,∠2是直角的一半,特别是观察图形的能力.16.如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,若AE=12cm,则DE的长为12 cm.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据已知条件,先证明△DBE≌△ABE,再根据全等三角形的性质(全等三角形的对应边相等)来求DE的长度.【解答】解:连接BE.∵D为Rt△ABC中斜边BC上的一点,且BD=AB,过D作BC的垂线,交AC于E,∴∠A=∠BDE=90°,∴在Rt△DBE和Rt△ABE中,BD=AB(已知),BE=EB(公共边),∴Rt△DBE≌Rt△ABE(HL),∴AE=ED,又∵AE=12cm,∴ED=12cm.故填12.【点评】本题主要考查了直角三角形全等的判定(HL)以及全等三角形的性质(全等三角形的对应边相等).连接BE是解决本题的关键.17.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC= 45 度.【考点】直角三角形全等的判定;全等三角形的性质.【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=45°.【解答】解:∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=45°.故答案为:45.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.18.如图,在Rt△ABC中,∠C=90°,AC=10,BC=5,线段PQ=AB,P,Q两点分别在AC和过点A且垂直于AC的射线AO上运动,当AP= 5或10 时,△ABC和△PQA全等.【考点】直角三角形全等的判定.【分析】当AP=5或10时,△ABC和△PQA全等,根据HL定理推出即可.【解答】解:当AP=5或10时,△ABC和△PQA全等,理由是:∵∠C=90°,AO⊥AC,∴∠C=∠QAP=90°,①当AP=5=BC时,在Rt△ACB和Rt△QAP中∴Rt△ACB≌Rt△QAP(HL),②当AP=10=AC时,在Rt△ACB和Rt△PAQ中∴Rt△ACB≌Rt△PAQ(HL),故答案为:5或10.【点评】本题考查了全等三角形的判定定理的应用,注意:判定两直角三角形全等的方法有ASA,AAS,SAS,SSS,HL.三、解答题(本大题共10小题,共76分.)19.作图题:画出△ABC关于直线AC对称的△A′B′C′.【考点】作图-轴对称变换.【分析】过点B作BD⊥AC于点D,延长BD至点B′,使DB′=DB,连接AB′,CB′即可.【解答】解:如图,△A′B′C′即为所求.【点评】本题考查的是作图﹣轴对称变换,熟知轴对称的性质是解答此题的关键.20.如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现要修建一个货站P,使货站P到两条公路OA、OB的距离相等,且到两工厂C、D的距离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论)【考点】作图—应用与设计作图.【分析】根据点P到∠AOB两边距离相等,到点C、D的距离也相等,点P既在∠AOB的角平分线上,又在CD垂直平分线上,即∠AOB的角平分线和CD垂直平分线的交点处即为点P.【解答】解:如图所示:作CD的垂直平分线,∠AOB的角平分线的交点P即为所求,此时货站P到两条公路OA、OB的距离相等.都是所求的点.P和P1【点评】此题主要考查了线段的垂直平分线和角平分线的作法.这些基本作图要熟练掌握,注意保留作图痕迹.21.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.【考点】全等三角形的判定与性质.【专题】证明题.【分析】求出BC=EF,根据平行线性质求出∠B=∠E,∠ACB=∠DFE,根据ASA推出△ABC≌△DEF即可.【解答】证明:∵FB=CE,∴FB+FC=CE+FC,∴BC=EF,∵AB∥ED,AC∥FD,∴∠B=∠E,∠ACB=∠DFE,∵在△ABC和△DEF中,,∴△ABC≌△DEF(ASA),∴AC=DF.【点评】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理能力.22.如图,AD是△ABC一边上的高,AD=BD,BE=AC,∠C=75°,求∠ABE的度数.【考点】全等三角形的判定与性质.【分析】根据HL推出Rt△BDE≌Rt△ADC,推出∠C=∠BED=75°,根据等腰三角形的性质和三角形的内角和定理求出∠ABD=∠BAD=45°,∠EBD=15°,即可求出答案.【解答】解:∵AD是△ABC一边上的高,∴∠BDE=∠ADC=90°,在Rt△BDE和Rt△ADC中,,∴Rt△BDE≌Rt△ADC(HL),∴∠C=∠BED=75°,∵∠BDE=90°,AD=BD,∴∠ABD=∠BAD=45°,∠EBD=15°,∴∠ABE=∠ABD﹣∠EBD=45°﹣15°=30°.【点评】本题考查了全等三角形的性质和判定,三角形内角和定理,等腰三角形的性质的应用,解此题的关键是推出△BDE≌△ADC,注意:全等三角形的对应边相等,对应角相等.23.已知:AB=AD,BC=DE,AC=AE,(1)试说明:∠EAC=∠BAD.(2)若∠BAD=42°,求∠EDC的度数.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)利用“边边边”求出△ABC和△ADE全等,根据全等三角形对应角相等可得∠BAC=∠DAE,然后都减去∠CAD即可得证;(2)根据全等三角形对应角相等可得∠B=∠ADE,再根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠EDC=∠BAD,从而得解.【解答】(1)证明:在△ABC和△ADE中,,∴△ABC≌△ADE(SSS),∴∠BAC=∠DAE,∴∠DAE﹣∠CAD=∠BAC﹣∠CAD,即:∠EAC=∠BAD;(2)解:∵△ABC≌△ADE,∴∠B=∠ADE,由三角形的外角性质得,∠ADE+∠EDC=∠BAD+∠B,∴∠EDC=∠BAD,∵∠BAD=42°,∴∠EDC=42°.【点评】本题考查了全等三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟练掌握三角形全等的判定方法并准确识图是解题的关键.24.数学课上,探讨角平分线的作法时,李老师用直尺和圆规作角平分线(如图1),方法如下:作法:①在OA和OB上分别截取OD、OE,使OD=OE.②分别以DE为圆心,以大于DE的长为半径作弧,两弧在∠AOB内交于点C③作射线OC,则OC就是∠AOB的平分线小聪只带了直角三角板,他发现利用三角板也可以做角平分线(如图2),方法如下:步骤:①用三角板上的刻度,在OA和OB上分别截取OM、ON,使OM=ON.②分别过M、N作OM、ON的垂线,交于点P.③作射线OP,则OP为∠AOB的平分线.根据以上情境,解决下列问题:①李老师用尺规作角平分线时,用到的三角形全等的判定方法是SSS .②小聪的作法正确吗?请说明理由.【考点】作图—基本作图;全等三角形的判定.【分析】①根据全等三角形的判定即可求解;②根据HL可证Rt△OMP≌Rt△ONP,再根据全等三角形的性质即可作出判断.【解答】解:①李老师用尺规作角平分线时,用到的三角形全等的判定方法SSS.故答案为SSS;②小聪的作法正确.理由:∵PM⊥OM,PN⊥ON,∴∠OMP=∠ONP=90°,在Rt△OMP和Rt△ONP中,,∴Rt△OMP≌Rt△ONP(HL),∴∠MOP=∠NOP,∴OP平分∠AOB.【点评】本题考查了用刻度尺作角平分线的方法,全等三角形的判定与性质,难度不大.25.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB 边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;(2)求出∠FHG的度数.【考点】全等三角形的判定与性质.【分析】(1)在△CBF和△DBG中,利用SAS即可证得两个三角形全等,利用全等三角形的对应边相等即可证得;(2)根据全等三角形的对应角相等,以及三角形的内角和定理,即可证得∠DHF=∠CBF=60°,从而求解.【解答】(1)证明:∵在△CBF和△DBG中,,∴△CBF≌△DBG(SAS),∴CF=DG;(2)解:∵△CBF≌△DBG,∴∠BCF=∠BDG,又∵∠CFB=∠DFH,又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,∴∠DHF=∠CBF=60°,∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.【点评】本题考查了全等三角形的判定与性质,正确证明三角形全等是关键.26.如图:在△ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连接AD、AG.(1)求证:AD=AG;(2)AD与AG的位置关系如何,请说明理由.【考点】全等三角形的判定与性质.【分析】(1)由BE垂直于AC,CF垂直于AB,利用垂直的定义得∠HFB=∠HEC,由得对顶角相等得∠BHF=∠CHE,所以∠ABD=∠ACG.再由AB=CG,BD=AC,利用SAS可得出三角形ABD与三角形ACG全等,由全等三角形的对应边相等可得出AD=AG,(2)利用全等得出∠ADB=∠GAC,再利用三角形的外角和定理得到∠ADB=∠AED+∠DAE,又∠GAC=∠GAD+∠DAE,利用等量代换可得出∠AED=∠GAD=90°,即AG与AD垂直.【解答】(1)证明:∵BE⊥AC,CF⊥AB,∴∠HFB=∠HEC=90°,又∵∠BHF=∠CHE,∴∠ABD=∠ACG,在△ABD和△GCA中,∴△ABD≌△GCA(SAS),∴AD=GA(全等三角形的对应边相等);(2)位置关系是AD⊥GA,理由为:∵△ABD≌△GCA,∴∠ADB=∠GAC,又∵∠ADB=∠AED+∠DAE,∠GAC=∠GAD+∠DAE,∴∠AED=∠GAD=90°,∴AD⊥GA.【点评】此题考查了全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.27.如图1,在△ABC中,∠BAC为直角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如图1,则∠CAF(2)若AB=AC,①当点D在线段BC上时(与点B不重合),如图2,问CF、BD有怎样的关系?并说明理由.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,直接写出结论.【考点】全等三角形的判定与性质;正方形的性质.【分析】(1)根据∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,即可解题;(2)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题;(3)易证∠BAD=∠CAF,即可证明△BAD≌△CAF,可得CF=BD,即可解题.【解答】证明:(1)∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF;(2)①∵∠BAD+∠DAC=90°,∠CAF+∠DAC=90°,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD;②∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAF=∠CAD+∠DAF=90°+∠CAD,∴∠BAD=∠CAF,∵在△BAD和△CAF中,,∴△BAD≌△CAF,(SAS)∴CF=BD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BAD ≌△CAF是解题的关键.28.如图,已知正方形ABCD中,边长为10cm,点E在AB边上,BE=6cm.(1)如果点P在线段BC上以4cm/秒的速度由B点向C点运动,同时,点Q在线段CD上以acm/秒的速度由C点向D点运动,设运动的时间为t秒,①CP的长为10﹣4t cm(用含t的代数式表示);②若以E、B、P为顶点的三角形和以P、C、Q为顶点的三角形全等,求a的值.(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿正方形ABCD四边运动.则点P与点Q会不会相遇?若不相遇,请说明理由.若相遇,求出经过多长时间点P与点Q第一次在正方形ABCD的何处相遇?【考点】四边形综合题.【分析】(1)①根据正方形边长为10cm和点P在线段BC上的速度为4cm/秒即可求出CP的长;②分△BPE≌△CPQ和△BPE≌△CQP两种情况进行解答;(2)根据题意列出方程,解方程即可得到答案.【解答】解:(1)①PC=BC﹣BP=10﹣4t;②当△BPE≌△CPQ时,BP=PC,BE=CQ,即4t=10﹣4t,at=6,解得a=4.8;当△BPE≌△CQP时,BP=CQ,BE=PC,即4t=at,10﹣4t=6,解得a=4;(2)当a=4.8时,由题意得,4.8t﹣4t=30,解得t=37.5,∴点P共运动了37.5×4=150cm,∴点P与点Q在点A相遇,当a=4时,点P与点Q的速度相等,∴点P与点Q不会相遇.∴经过37.5秒点P与点Q第一次在点A相遇.【点评】本题考查的是正方形的性质和全等三角形的判定和性质,正确运用数形结合思想和分类讨论思想是解题的关键.人教版七年级上册期末测试卷一、选择题(每题3分,共30分)1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是() A.-3℃B.8℃C.-8℃D.11℃2.下列立体图形中,从上面看能得到正方形的是()3.下列方程是一元一次方程的是()A.x-y=6 B.x-2=xC.x2+3x=1 D.1+x=34.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为()A.0.108×106B.10.8×104C.1.08×106D.1.08×1055.下列计算正确的是()A.3x2-x2=3 B.3a2+2a3=5a5C.3+x=3x D.-0.25ab+14ba=06.已知ax=ay,下列各式中一定成立的是()A.x=y B.ax+1=ay-1C.ax=-ay D.3-ax=3-ay7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为()A.100元B.105元C.110元D.120元8.如果一个角的余角是50°,那么这个角的补角的度数是()A.130°B.40°C.90°D.140°。

2020年八年级数学上册第一次月考试卷

2020年八年级数学上册第一次月考试卷

八年级数学上册第一次月考试卷一、选择题(本大题共10小题,每小题3分,共30分.) 1. 一个数的平方根与它的立方根相等,则这个数是( )A .0B .1C .0或1D .0或±1 2.下列图案中是轴对称图形的有( )A .4个B .3个C .2个D .1个3.在平面直角坐标系中,点A 的坐标为A (1,2),点A 与点A '的关系关于x 轴 对称,则点A '的坐标是( )A .(-2,1)B .(-1,2)C .(-1,-2)D .(1,-2) 4. 估算43的值应在( )A.5.0~6.0之间 B.6.0~6.5之间 C.6.5~7.0之间 D.7.0~7.5之间5.如图,已知MB =ND ,∠MBA =∠NDC ,下列条件中不能判定△ABM ≌△CDN 的 是( )A . AM =CNB . N M ∠=∠C .AB =CD D .AM ∥CN6.如图,把长方形ABCD 沿EF 折叠使两部分重合,若∠1=50°,则∠AEF=( )A .110°B .115°C .120°D .130° 7.等腰三角形两边长分别为8㎝和17㎝,则等腰三角形的周长为( )A.35㎝B.42㎝C.35㎝或42㎝ D 以上都不对8.如图,在ΔABC 中,D 、E 分别是边AC 、BC 上的点,若ΔADB ≌ΔEDB ≌ΔEDC ,则∠C的度数为( )A.15° B.20° C.25° D.30°第5题 第6题 第8题9.将一正方形纸片按下列顺序折叠,然后将最后折叠的纸片沿虚线剪去上方的小三角形.将纸片展开,得到的图形是( )10.如图是一只停泊在平静水面上的小船,它的"倒影"应是图中的( )二、填空题(本大题共8小题,每小题3分,共24分) 11.81的平方根是_____________.12.如图,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.第12题 第13题13.如图,在△ABC 中,∠C=900,AD 平分∠CAB ,BC=8cm ,BD=5cm ,那么D 点到直线AB 的距离是 cm 。

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年度第一学期八年级数学月考试卷含答案共六套

2020-2021学年八年级(上)第一次月考数学试卷一、选择题(本题共10小题,每小题4分,满分40分)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x22.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣24.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km二、填空题(共4题,每题5分)11.函数中,自变量x的取值范围是.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是.13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是.14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是.三、解答题(共8题,共90分)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a=;b=.(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?参考答案与试题解析一.选择题(共10小题)1.下列函数中是一次函数的是()A.y=B.y=C.y=ax+b D.y=x2【分析】根据一次函数的定义解答.【解答】解:A、是正比例函数,特殊的一次函数,故本选项符合题意;B、自变量次数不为1,不是一次函数,故本选项不符合题意;C、单a=0时,它不是一次函数,故本选项不符合题意;D、自变量次数不为1,不是一次函数,故本选项不符合题意.故选:A.2.下列各点中位于第二象限的是()A.(﹣2,0)B.(8,﹣2)C.(0,3)D.(﹣,4)【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论.【解答】解:∵位于第二象限的点的横坐标为负,纵坐标为正,∴位于第二象限的是(﹣,4)故选:D.3.已知过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,则a的值为()A.﹣1 B.1 C.2 D.﹣2【分析】根据两点所在直线平行于x轴,那么这两点的纵坐标相等解答即可.【解答】解:∵过A(﹣1,a),B(2,﹣2)两点的直线平行于x轴,∴a=﹣2,故选:D.4.关于函数y=﹣﹣1,下列说法错误的是()A.当x=2时,y=﹣2B.y随x的增大而减小C.若x1>x2,则y1>y2D.图象经过第二、三、四象限【分析】根据一次函数的性质判定即可.【解答】解:关于函数y=﹣﹣1,A、当x=2时,y=﹣﹣1=﹣2,说法正确,不合题意;B、∵k=﹣,∴y随x的增大而减小,说法正确,不合题意;C、∵k=﹣,∴y随x的增大而减小,∴若x1>x2,则y1<y2,说法错误,符合题意;D、图象经过第二、三、四象限,说法正确,不合题意;故选:C.5.下面四条直线,其中直线上的每一个点的坐标都是二元一次方程2x﹣3y=6的解的是()A.B.C.D.【分析】根据两点确定一条直线,当x=0,求出y的值,再利用y=0,求出x的值,即可得出一次函数图象与坐标轴交点,即可得出图象.【解答】解:∵2x﹣3y=6,∴y=x﹣2,∴当x=0,y=﹣2;当y=0,x=3,∴一次函数y=x﹣2,与y轴交于点(0,﹣2),与x轴交于点(3,0),即可得出选项D符合要求,故选:D.6.已知y﹣1与x成正比例,当x=3时,y=2.则当x=﹣1时,y的值是()A.﹣1 B.0 C.D.【分析】设y﹣1=kx(k≠0),把x=3,y=2代入求出k的值,把x=﹣1代入函数关系式即可得到相应的y的值;【解答】解:设y﹣1=kx(k≠0),则由x=3时,y=2,得到:2﹣1=3k,解得k=.则该函数关系式为:y=x+1;把x=﹣1代入y=x+1得到:y=﹣+1=;故选:D.7.实践证明1分钟跳绳测验的最佳状态是前20秒速度匀速增加,后10秒冲刺,中间速度保持不变,则跳绳速度v(个/秒)与时间t(秒)之间的函数图象大致为()A.B.C.D.【分析】根据前20秒匀加速进行,20秒至50秒保持跳绳速度不变,后10秒继续匀加速进行,得出速度y随时间x的增加的变化情况,即可求出答案.【解答】解:随着时间的变化,前20秒匀加速进行,所以此时跳绳速度y随时间x的增加而增加,再根据20秒至50秒保持跳绳速度不变,所以此时跳绳速度y随时间x的增加而不变,再根据后10秒继续匀加速进行,所以此时跳绳速度y随时间x的增加而增加,故选:C.8.一次函数y=ax+b与y=abx在同一个平面直角坐标系中的图象不可能是()A.B.C.D.【分析】根据a、b的取值,分别判断出两个函数图象所过的象限,要注意分类讨论.【解答】解:当ab>0,a,b同号,y=abx经过一、三象限,同正时,y=ax+b过一、三、二象限;同负时过二、四、三象限,当ab<0时,a,b异号,y=abx经过二、四象限a<0,b>0时,y=ax+b过一、三、四象限;a>0,b<0时,y=ax+b过一、二、四象限.故选:D.9.若点(﹣1,m)和(2,n)在直线y=﹣x+b上,则m、n、b的大小关系是()A.m>n>b B.m<n<b C.m>b>n D.b<m<n【分析】根据一次函数的解析式判断出其增减性,再根据点的横坐标的特点即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣1<0,∴y随x的增大而减小.∵﹣1<0<2,∴m>b>n.故选:C.10.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km【分析】根据已知图象分别分析甲、乙两车的速度,进而分析得出答案.【解答】解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A不合题意;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B不符合题意;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C不合题意;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D符合题意.故选:D.二.填空题(共4小题)11.函数中,自变量x的取值范围是x>﹣2 .【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.【解答】解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x+2≠0,解得x≠﹣2,故x>﹣2.故答案为x>﹣2.12.已知关于x的方程mx+n=0的解是x=﹣2,则直线y=mx+n与x轴的交点坐标是(﹣2,0).【分析】求直线与x轴的交点坐标,需使直线y=mx+n的y值为0,则mx+n=0;已知此方程的解为x=﹣2.因此可得答案.【解答】解:∵方程的解为x=﹣2,∴当x=﹣2时mx+n=0;又∵直线y=mx+n与x轴的交点的纵坐标是0,∴当y=0时,则有mx+n=0,∴x=﹣2时,y=0.∴直线y=mx+n与x轴的交点坐标是(﹣2,0).13.若点P的坐标是(2a+1,a﹣4),且P点到两坐标轴的距离相等,则P点的坐标是(﹣9,﹣9)或(3,﹣3).【分析】根据点到两坐标轴的距离相等列出绝对值方程求出a的值,然后求解即可.【解答】解:∵点P(2a+1,a﹣4)到两坐标轴的距离相等,∴|2a+1|=|a﹣4|,∴2a+1=a﹣4或2a+1=﹣(a﹣4),解得a=﹣5或a=1,当a=﹣5时,点P的坐标为(﹣9,﹣9),当a=1时,点P的坐标为(3,﹣3),综上所述,点P的坐标为(﹣9,﹣9)或(3,﹣3),故答案为:(﹣9,﹣9)或(3,﹣3).14.直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2 .【分析】根据已知条件得到直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),求得直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,得到直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,得到直线BC的解析式为y=x﹣2,于是得到结论.【解答】解:令x=0,则y=0•k﹣2=﹣2,所以直线y=kx﹣2与y轴的交点坐标为C(0,﹣2),∵当x=1时,y=x﹣1=0,当x=4时,y=x﹣1=3,∴直线y=x﹣1过A(1,0),B(4,3),设直线AC的解析式为y=mx+n,则,解得.所以直线AC的解析式为y=2x﹣2,设直线BC的解析式为y=ex+f,则,解得.所以直线BC的解析式为y=x﹣2,若直线y=kx﹣2与直线y=x﹣1(1≤x≤4)有交点,则k的取值范围是≤k≤2,故答案为≤k≤2:三.解答题(共8小题)15.已知一次函数的图象平行于y=﹣x,且截距为1.(1)求这个函数的解析式;(2)判断点P(﹣2,)是否在这个函数的图象上.【分析】(1)根据两平行直线的解析式的k值相等求出k,然后根据截距为1求出b值,即可得解;(2)把点P(﹣2,)代入解析式,检验即可.【解答】解:(1)设这个函数的解析式为y=kx+b,∵一次函数的图象平行于y=﹣x,且截距为1,∴k=﹣,b=1,∴这个函数的解析式为y=﹣x+1;(2)当x=﹣2时,y=+1=,故点P(﹣2,)不在这个函数的图象上.16.若函数y=(m+1)x+m2﹣1是正比例函数.(1)求该函数的表达式.(2)将该函数图象沿y轴向上或者向下平移,使其经过(1,﹣2),求平移的方向与距离.【分析】(1)根据正比例函数的定义列式计算即可得解;(2)设平移后的函数的解析式为y=2x+b,把(1,﹣2)代入求得b的值,即可求得结论.【解答】解:(1)根据题意得,m2﹣1=0且m+1≠0,解得m=±1且m≠﹣1,所以m=1.所以该函数的表达式为y=2x;(2)设平移后的函数的解析式为y=2x+b,∵经过(1,﹣2),∴﹣2=2+b,∴b=﹣4,∴函数图象沿y轴向下平移4个单位,使其经过(1,﹣2).17.如图,先将△ABC向上平移2个单位再向左平移5个单位得到△A1B1C1(1)画出△A1B1C1,并写出点A1、B1、C1的坐标.(2)求△A1B1C1的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用△A1B1C1所在矩形面积减去周围三角形面积得出答案.【解答】解:(1)如图所示:△A1B1C1,点A1(﹣1,5),B1(﹣2,3),C1(﹣4,4);(2)△A1B1C1的面积为:2×3﹣×1×3﹣×2×1﹣×1×2=2.5;18.画出函数y=﹣x+3的图象,并利用图象解下列问题:(1)求方程﹣x+3=0的解.(2)求不等式﹣x+3>0的解集.(3)若﹣3≤y<6,求x的取值范围.【分析】(1)先利用描点法画出一次函数图象,然后利用直线与x轴的交点坐标确定方程﹣x+3=0的解;(2)利用x轴上方所对应的自变量的范围确定不等式的解集;(3)利用图象确定y=﹣3和y=6对应的自变量的值,从而得到对应的x的取值范围.【解答】解:(1)如图,∵直线与x轴的交点坐标为(2,0),∴方程﹣x+3=0的解为x=2,(2)如图,∵x<2时,y>0,∴不等式﹣x+3>0的解集为x<2;(3)如图,﹣2<x≤4时,﹣3≤y<6.19.如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.指距d(cm)20 21 22 23身高h(cm)160 169 178 187 (1)直接写出身高h与指距d的函数关系式;(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)【分析】(1)运用待定系数法求解即可;(2)把h=226代入(1)中的结论即可.【解答】解:根据表格中数据,d每增加1,身高增加9cm,故d与h是一次函数关系,设这个一次函数的解析式是:h=kd+b,,解得,故一次函数的解析式是:h=9d﹣20;(2)当h=226时,9d﹣20=226,解得d=27.3.即姚明的身高是226厘米,可预测他的指距约为27.3厘米.20.如图,直线l1:y=2x﹣2与x轴交于点D,直线l2:y=kx+b与x轴交于点A,且经过点B,直线l1,l2交于点C(m,2).(1)求m的值;(2)求直线l2的解析式;(3)根据图象,直接写出1<kx+b<2x﹣2的解集.(4)求△ACD的面积.【分析】(1)把C(m,2)代入y=2x﹣2中可求出m的值;(2)利用待定系数法求直线l2的解析式;(3)结合图象写出y=kx+b的函数值大于2且直线l1在直线l2上方对应的自变量的范围;(4)根据两直线解析式确定A、D点的坐标,然后利用三角形面积公式计算.【解答】解:(1)把C(m,2)代入y=2x﹣2得2m﹣2=2,解得m=4;(2)把C(2,2),B(3,1)代入y=kx+b得,解得,∴直线l2的解析式为y=﹣x+4;(3)2<x<3;(3)当y=0时,2x﹣2=0,解得x=1,则C(1,0),当y=0时,﹣x+4=0,解得x=4,则A(4,0),∴S△ACD=×(4﹣1)×2=3.21.甲、乙两个工程队完成某项工程,先由甲单独做10天,乙队再加入合作.工进度满足如图所示.(1)求工作量y与工作时间x(天)之间的函数关系式;(2)这项工程全部完成需要多少天?(3)求乙队单独完成这项工程的天数.【分析】(1)分段函数,运用待定系数法解答即可;(2)根据(1)的结论解答即可;(3)根据(1)可得乙队的工作效率,从而计算出乙队单独完成这项工程要60天.【解答】解:(1)当x≤10时,设y=kx,根据题意得,解得k=,∴y=;当x>10时,设y=k1x+b,根据题意得:,解得,∴y=.(天)∴10<x≤28,∴;(2)由(1)得,当y=1时,,解得x=28.答:这项工程全部完成需要28天;(3)(1﹣)÷(28﹣10)=(天),(天),答:乙队单独完成这项工程需要60天.22.甲、乙两人分别安装同一种零件40个,其中乙在安装两小时后休息了2小时,后继续按原来进度工作,他们每人安装的零件总数y(个)与安装时间x(小时)的函数关系如图1所示,两人安装零件总数之差z(件)与时间x(小时)的函数关系如图2所示.(1)a= 4 ;b=10 .(2)求出甲工作2小时后的安装的零件数y与时间x的函数关系.(3)甲、乙两人在什么时间生产的零件总数相差8个?【分析】(1)根据题意和图象中的数据可以求得a、b的值;(2)根据函数图象中的数据可以求得甲工作2小时后的安装的零件数y与时间x的函数关系;(3)根据函数图象,利用分类讨论的方法可以求得甲、乙两人在什么时间生产的零件总数相差8个.【解答】解:(1)由图可得,a=10﹣6=4,b=4+(40﹣10)÷(10÷2)=4+30÷5=4+6=10,故答案为:4,10;(2)甲后来的速度为:=6件/小时,甲做完40个需要的时间为:2+(40﹣4)÷6=2+36÷6=2+6=8,设甲工作2小时后的安装的零件数y与时间x的函数关系是y=kx+b,∵甲工作2小时后的安装的零件数y与时间x的函数图象过点(2,4),(8,40),∴,得,即甲工作2小时后的安装的零件数y与时间x的函数关系是y=6x﹣8(2<x≤8);(3)设t小时时,甲、乙两人生产的零件总数相差8个,乙的速度为:10÷2=5件/小时,当4<t≤8时,6+(t﹣4)×(6﹣5)=8,解得,t=6,当8<t<10时,5(10﹣t)=8,解得,t=8.4,答:甲、乙两人在6小时或8.4小时时生产的零件总数相差8个.2020-2021学年度第一学期第一次月考八年级数学试题卷考试方式:闭卷考试时间:100 分钟满分:120 分一.选择题(共10小题,每题3分,共30分,请把正确答案写在答案卷上.)1.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个2.下列各条件不能作出唯一直角三角形的是()A.已知两直角边 B.已知两锐角C.已知一直角边和它们所对的锐角 D.已知斜边和一直角边3.下列语句中正确的有几个()①关于一条直线对称的两个图形一定能重合;②两个能重合的图形一定关于某条直线对称;③两个轴对称图形的对应点一定在对称轴的两侧;④一个圆有无数条对称轴.A.1 B.2 C.3 D.44.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的()A.CB=CD B.BAC=∠DAC C.BCA=DCA D.∠B=∠D=9005.如图,请仔细观察用直尺和圆规作一个角等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出'''A O B AOB ∠=∠的依据是( )A.SASB.ASAC.AASD.SSS6.如图,将三角形纸片ABC 折叠,使点C 与点A 重合,折痕为DE . 若∠B =80°,∠BAE =26°,则∠EAD 的度数为( )A.36°B. 37°C.38°D.45°7.如图,将一张正方形纸片对折两次,然后在上面打3个洞,则纸片展开后是( )8.如图,工人师傅做了一个长方形窗框ABCD,E,F,G,H 分别是四条边上的中点,为了使它稳固,需要在窗框上钉一根木条,这根木条不应钉在( )A. A,C 两点之间B. E,G 两点之间C. B,F 两点之间D. G,H 两点之间9.如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 的面积是28cm 2,AB =20cm ,AC =8cm ,则DE 的长是( )A .4cmB .3cmC .2cmD .1cm10.如图,在△ABC 中,∠A=∠B ,∠ACB=90°,点D 、E 在AB 上,将△ACD 、△B CE 分别沿CD 、CE 翻折,点A 、B 分别落在点A′、B′的位置,再将△A′CD 、△B′CE 分别沿A′C 、B′C 翻折,点D 与点E 恰好重合于点O ,则∠A′OB′的度数是( ) A .90°B .120°C .135°D .150°二.填空题(共8小题,每题2分,共16分,请把结果直接填在答案卷上.)11.下列图形:①角;②直角三角形;③等边三角形;④线段;⑤等腰三角形;⑥平行四边形.其中一定是轴对称图形的有 个.AC OB DA'C O'B'DBAE DC第3题B CDA(第4题图) (第5题图)(第6题图)(第8题图) (第9题图) (第10题图)12.小明从平面镜子中看到镜中电子钟示数的像如图所示,这时的时刻应是 .13.如图,AC=BD ,要使△ABC ≌△DCB (SAS ),只要添加一个条件 .14.如图,△ABC 的周长为32,且BD=DC ,AD ⊥BC 于D ,△ACD 的周长为24,那么AD 的长为 . 15.如图,已知AB ∥CF ,E 为DF 的中点,若AB =8 cm ,BD =3 cm ,则CF = cm .16.如图,点D 在边BC 上,DE ⊥AB ,DF ⊥BC ,垂足分别为点E ,D ,BD =CF ,BE =CD .若∠AFD =155°,则∠EDF = .17.如图,方格纸中△ABC 的3个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有 个(不含△ABC ).18.已知在△ABC 中,AB=5,BC=7,BM 是AC 边上的中线,则BM 的取值范围为 .三.解答题(共8小题,共74分. 解答需写出必要的文字说明或演算步骤.)19.(本题满分12分)如图,在3×3的正方形网格中,有一个以格点为顶点的三角形.(1)请你在图①,图②,图③中,分别画出一个与该三角形成轴对称且以格点为顶点的三角形,并将所画三角形涂上阴影.(注:所画的三幅图不能重复).(2)格纸中所有与该三角形成轴对称且以格点为顶点的三角形共有 个.20.(本题满分8分)如图,在所给正方形网格图中完成下列各题:①画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1;FEDCB A(第15题图) (第16题图)(第17题图)(第12题图)(第13题图) (第14题图)②在DE上画出点Q,使QA+QC最小.(用直尺画图,保留痕迹)21.(本题满分8分)已知△ABC,按下列要求作图:(尺规作图,保留痕迹不写作法。

八年级上数学第一次月考试题(语数英物全套)有答案

八年级上数学第一次月考试题(语数英物全套)有答案

八上第一次月考数学试卷一、选择题(本大题共10 小题,每小题3 分,共30 分,在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列图形中,和所给图形是全等的图形是()A. B. C. D.2.下列说法正确的是()A.形状完全相同的两个三角形全等B. 面积相等的两个三角形全等C. 完全重合的两个三角形全等D. 所有的等边三角形全等3.如图,在下列所给条件中,能判定△ABC 和△A'B'C'全等的是()A. AB=A'B',BC=B'C',∠A=∠A'B. ∠A=∠A',∠C=∠C',AC=B'C'C. ∠A=∠A',∠B=∠B',∠C=∠C'D. AB=A'B',BC=B'C',AC=A'C'(第3 题)(第4 题)4.用直尺和圆规作一个角等于已知角的作图痕迹如图所示,则作图的依据是()A. SSSB. SASC. ASAD. AAS5.装修工人在搬运中发现有一块三角形的的陶瓷片不慎摔成了四块(如图),他要拿哪一块回公司才能更换到相匹配的陶瓷片()A. ①B. ②C. ③D. ④(第5 题)(第7 题)(第8 题)A. 甲和乙B. 乙和丙C. 只有乙D. 只有丙10. 如图,AC =BC ,AE =CD ,AE ⊥CE 于点 E ,BD ⊥CD 于点 D , AE =7,BD =2,则 DE 的长是( ) A. 7B. 5C. 3D. 2(第 10 题)6. 已知△ABC 的三边长分别是 3、4、5,△DEF 的三边长分别是 3、3x - 2 、 2x + 1 ,若这两个三角形全等,则 x 的值为( )A. 2B. 2 或7C. 7 或3 D. 2 或 7 或 333 23 27. 如图,D 是 AB 上一点,DF 交 AC 于点 E ,FC ∥AB ,则下列结论错误的是( )A. 若 AE =CE ,则 DE =FEB. 若 DE =FE ,则 AE =CEC. 若 BC =CF ,则 AD =CFD. 若 AD =CF ,则 DE =FE8. 如图,是 5×6 的正方形网格,以点 D 、E 为顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A. 2 个B. 4 个C. 6 个D. 8 个9. 如图,已知△ABC 的 3 条边和 3 个角,则能判断和△ABC 全等的是()二、填空题(本大题共 10 小题,每小题 3 分,共 30 分,不需写出证明过程,请把答案直接填写在答题卡相应位置)11. 如图,△ABC ≌△DEF ,点 A 与 D ,B 与 E 分别是对应顶点,且测得 BC =5cm ,BF =7cm ,则 EC 长为cm.(第 11 题) (第 13 题)(第 14 题)12. 请用文字写出判定两个直角三角形全等的一种方法: .13. 如图,∠A =∠C ,只需补充一个条件:,就可得△ABD ≌△CDB .14.如图,小明与小红玩跷跷板游戏,如果跷跷板的支点O(即跷跷板的中点)至地面的距离是50cm,当小红从水平位置CD 下降40cm 时,这时小明离地面的高度是cm.15. 如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= .(第15 题)(第16 题)16.如图①、②、③中,点E、D 分别是正△ABC、正四边形ABCM,正五边形ABCMN 中以C 为顶点的相邻两边上的点,且BE=CD,DB 交AE 于P 点,图①中,∠APD 的度数为60°,图②中,∠APD 的度数为90°,则图③中,∠APD 的度数为.17.如图为6 个边长相等的正方形的组合图形,则∠1 +∠2 +∠3 = °.(第17 题)(第18 题)18.如图,四边形ABCD 中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD 的面积为.19.如图,已知点P 为∠AOB 角平分线上的一点,点D 在OA 上,爱动脑筋的小刚经过仔细观察后,进行如下操作:在边OB 上取一点E,使得PE=PD,这时他发现∠OEP 与∠ODP 之间有一定的相等关系,请你写出∠OEP 与∠ODP 所有可能的数量关系.(第19 题)(第20 题)20.如图,CA⊥AB,垂足为点A,AB=8,AC=4,射线BM⊥AB,一动点E 从A 点出发以2/秒的速度沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E运动秒时,△DEB 与△BCA 全等.三、解答题(本大题共 5 小题,共 40 分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)21.(6 分)如图,AC =AE ,∠1=∠2,AB =AD . 求证:BC =DE .(第 21 题)22.(6 分)如图,在△ABC 中,∠ABC =∠ACB ,BD 、CE 分别是∠ABC 、∠ACB 的平分线. 求证:BD =CE .(第 22 题)23.(8 分)我们知道,用直尺和圆规经过直线 AB 外一点 P 作直线 AB 的垂线的方法如下:作法图形(1) 以 P 为圆心,适当的长为半径作弧,使它与 AB 交于点 C 、D ;(2) 分别以 C 、D 为圆心,大于 1CD 长2为半径作弧,两弧交于点 Q ;(3) 作直线 PQ ,直线 PQ 就是所求的直线.若连接CP、DP、CQ、DQ,直线AB、PQ 的交点为O,你能利用“已学的数学知识”来证明PQ⊥AB 吗?若能,请写出证明过程;若不能,请说明理由.(第23 题)24.(9 分)小明遇到这样一个问题,如图1,△ABC 中,AB=7,AC=5,点D 为BC 的中点,求AD 的取值范围.(第24 题)小明发现老师讲过的“倍长中线法”可以解决这个问题,所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法,他的做法是:如图2,延长AD 到E,使DE=AD,连接BE,构造△BED≌△CAD,经过推理和计算使问题得到解决.请回答:(1)小明证明△BED≌△CAD 用到的判定定理是:(用字母表示);(2)AD 的取值范围是;小明还发现:倍长中线法最重要的一点就是延长中线一倍,完成全等三角形的构造. 参考小明思考问题的方法,解决问题:如图3,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点,若AG=2,BF=4,∠GEF=90°,求GF 的长.25.(11 分)【问题提出】学习了三角形全等的判定方法(即“ SAS ”、“ ASA ”、“ AAS ”、“ SSS ” ) 和直角三角形全等的判定方法(即“ HL ” ) 后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.【初步思考】我们不妨将问题用符号语言表示为:在∆ABC 和∆DEF 中,AC =DF ,BC =EF ,∠B =∠E ,然后,对∠B 进行分类,可分为“ ∠B 是直角、钝角、锐角”三种情况进行探究.【深入探究】第一种情况:当∠B 是直角时,∆ABC≌∆DEF .(1)如图①,在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E = 90︒,根据,可以知道∆ABC≌∆DEF .第二种情况:当∠B 是钝角时,∆ABC≌∆DEF .(2)如图②,在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是钝角,求证:∆ABC≌∆DEF .第三种情况:当∠B 是锐角时,∆ABC 和∆DEF 不一定全等.(3)在∆ABC 和∆DEF ,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,请你用尺规在图③ 中作出∆DEF ,使∆DEF 和∆ABC 不全等.(不写作法,保留作图痕迹)(4)∠B 还要满足什么条件,就可以使∆ABC≌∆DEF ?请直接写出结论:在∆ABC 和∆DEF 中,AC =DF ,BC =EF ,∠B =∠E ,且∠B 、∠E 都是锐角,若,则∆ABC≌∆DEF .⎨ ⎨ 答案一、选择题二、填空题11. 3 12. 直角三角形中斜边和直角边分别相等的两个三角形全等13. ∠ADB =∠CBD 14. 90 15. 55︒16. 108︒17. 135︒18. 12.5 19. 相等或互补20. 2s 或6s 或8s三、解答题21. 证明: ∠1 =∠2∴∠1 +∠EAB =∠2 +∠EAB即∠CAB =∠EAD在∆ABC和∆ADE 中⎧AC =AE⎪∠CAB =∠EAD⎪⎩AB=AD∴∆ABC≌∆ADE (SAS )∴BC =DE22. ∠ABC =∠ACB∴AB =ACBD、CE分别平分∠ABC、∠ACB∴∠ABD =1∠ABC , ∠ACE =1∠ACB 2 2∴∠ABD =∠ACE在∆ABD和∆ACE中⎧∠A =∠A⎪AB =AC⎪⎩∠ABD=∠ACE∴∆ABD≌∆ACE (ASA)∴BD =CE23.解:CQ =DQ∴Q在CD的垂直平分线上CP =DP∴P在CD的垂直平分线上∴Q、P是CD的垂直平分线∴PQ ⊥AB⎨ ⎨BC = EF24. (1) SAS (2)1<AD <6(3)解: 延长GE 交CB 的延长线于 M . 四边形 ABCD 是正方形, ∴ AD / /CM , ∴∠AGE = ∠M , 在∆AEG 和∆BEM 中,⎧∠AGE = ∠M ⎪∠AEG = ∠MEB , ⎪⎩AE = BE ∆AEG ≌∆BEM∴GE = EM , AG = BM = 2 , EF ⊥ MG , ∴ FG = FM , BF = 4 ,∴ MF = BF + BM = 2 + 4 = 6 , ∴GF = FM = 6 . 25. (1) 解: 如图①, ∠B = ∠E = 90︒ ,∴在Rt ∆ABC 和Rt ∆DEF 中, ⎧ AC = DF,⎩Rt ∆ABC ≌Rt ∆DEF故答案为: HL ;⎨ ⎨CG = FH ⎨ (2) 证明: 如图②, 过点C 作CG ⊥ AB 交 AB 的延长线于G ,过点 F 作 FH ⊥ DE 交 DE 的延长线于 H , ∠ABC = ∠DEF ,且∠ABC 、∠DEF 都是钝角, ∴180︒ - ∠ABC = 180︒ - ∠DEF , 即∠CBG = ∠FEH ,⎧∠CBG = ∠FEH在∆CBG 和∆FEH 中, ⎪∠G = ∠H = 90︒ ,⎪⎩BC = EF∴∆CBG ≌∆FEH (AAS ) ∴CG = FH ,在Rt ∆ACG 和Rt ∆DFH 中, ⎧ AC = DF,⎩∴ Rt ∆ACG ≌Rt ∆DFH (HL ) ∴∠A = ∠D ,⎧∠A = ∠D 在∆ABC 和∆DEF 中, ⎪∠ABC = ∠DEF ,⎪⎩ AC = DF∴∆ABC ≌∆DEF (AAS )(3) 解: 如图③中, 在∆ABC 和∆DEF , AC = DF , BC = EF , ∠B = ∠E , ∆DEF 和∆ABC 不全等;(4) 解: 由图③可知, ∠A = ∠CDA = ∠B + ∠BCD , ∴∠A > ∠B ,∴当∠B ∠A 时, ∆ABC 就唯一确定了, 则∆ABC ≌∆DEF 故答案为: ∠B ∠A .。

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷及答案

人教版八年级(上)第一次月考数学试卷一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是(A.带①去B.带②去C.带③去D.带①和②去3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C 都可以4.下面四个图形中,线段BE 是△ABC 的高的图是()A.B.C.D.5.适合条件∠A= ∠B= ∠C 的△ABC 是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形6.一个多边形的内角和比它的外角和的2 倍还大180°,这个多边形的边数是()A.5 B.6 C.7 D.87.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,E,∠B=40°,∠BAC=82°,则∠DAE=()A.7 B.8° C.9° D.10°10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=()A.67° B.46° C.23° D.不能确定11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BFC.∠A=∠DD.AB=BC12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是15.三角形的三边长分别为5,1+2x,8,则x的取值范围是16.十边形的外角和是度;如果十边形的各个内角都相等,那么它的一个内角是度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于度.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=.cm,∠C=度.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=度.17题19题18题20题三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?24.如图,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于E点.求证:∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.人教版八年级(上)第一次月考数学试卷答案一、选择题(48分每题4分)1.有下列长度的三条线段,能组成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cmD.6cm,2cm,3cm【考点】三角形三边关系.【分析】根据三角形的三边关系进行分析判断.【解答】解:根据三角形任意两边的和大于第三边,得A中,3+2>4,能组成三角形;B中,1+2<4,不能组成三角形;C中,1+2=3,不能够组成三角形;D中,2+3<6,不能组成三角形.故选A.2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.3.能把一个任意三角形分成面积相等的两部分是()A.角平分线B.中线C.高D.A、B、C都可以【考点】三角形的面积;三角形的角平分线、中线和高.【分析】根据等底等高的三角形的面积相等解答.【解答】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选B.4.下面四个图形中,线段BE是△ABC的高的图是()A.B.C.D.【考点】三角形的角平分线、中线和高.【分析】根据高的画法知,过点B作AC边上的高,垂足为E,其中线段BE是△ABC的高.【解答】解:线段BE是△ABC的高的图是D.故选D.5.适合条件∠A=∠B=∠C的△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.等边三角形【考点】三角形内角和定理.【分析】此题隐含的条件是三角形的内角和为180°,列方程,根据已知中角的关系求解,再判断三角形的形状.【解答】解:∵∠A=∠B=∠C,∴∠B=2∠A,∠C=3∠A,∵∠A+∠B+∠C=180°,即6∠A=180°,∴∠A=30°,∴∠B=60°,∠C=90°,∴△ABC为直角三角形.故选B.6.一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数是()A.5B.6C.7D.8【考点】多边形内角与外角.【分析】多边形的外角和是360度,多边形的内角和比它的外角和的2倍还大180°,则多边形的内角和是2×360+180=900度;n边形的内角和是(n﹣2)180°,则可以设这个多边形的边数是n,这样就可以列出方程(n﹣2)180°=900°,解之即可.【解答】解:多边形的内角和是2×360+180=900度,设这个多边形的边数是n,根据题意得:(n﹣2)180°=900°,解得n=7,即这个多边形的边数是7.故选C.7.下列命题正确的是()A.三角形的角平分线,中线,高均在三角形内部B.三角形中至少有一个内角不小于60°C.直角三角形仅有一条高D.直角三角形斜边上的高等于斜边的一半【考点】命题与定理.【分析】根据三角形的中线、高、角平分线的概念,知:不同形状的三角形的中线、角平分线总在三角形的内部;不同形状的三角形的高不一定总在三角形的内部;三角形的内角和是180°;直角三角形的斜边上的中线等于斜边的一半.【解答】解:A、钝角三角形的高在三角形的外部.故错误;B、根据内角和定理,可知三角形中至少有一个内角不小于60°.故正确;C、直角三角形有3 条高,其中2 条在它的直角边上.故错误;D、直角三角形斜边上的中线等于斜边的一半,故错误.故选B.8.如图,在△ABC 中,AB=AC,∠BAD=∠CAD,则下列结论:①△ABD≌△ACD,②∠B=∠C,【分析】由于AB=AC,∠BAD=∠CAD,利用等边对等角,等腰三角形三线合一定理,可知AD⊥BD,BD=CD,∠B=∠C,从而易证△ABD≌△ACD.【解答】解:∵在△ABC 中,AB=AC,∠BAD=∠CAD,∴AD⊥BD,BD=CD,∠B=∠C,∴△ABD≌△ACD(SSS).故选D.9.如图,在△ABC 中,AD 平分∠BAC 交BC 于D,AE⊥BC 于E,∠B=40°,∠BAC=82°,则∠DAE=()【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理可求得∠BAE 的度数,再根据角平分线的定义可求得∠BAD 的度数,从而不难求解.【解答】解:∵AE⊥BC 于E,∠B=40°,∴∠BAE=180°﹣90°﹣40°=50°,∵AD 平分∠BAC 交BC 于D,∠BAC=82°,∴∠BAD=41°,∴∠DAE=∠BAE﹣∠BAD=9°.故选C.10.已知,如图AB=CD,BC=AD,∠B=23°,则∠D=(A.67° B.46° C.23° D.不能确定【考点】全等三角形的判定与性质.【分析】此题可先连接AC,由已知AB=CD,BC=AD,又AC=AC 证△ABC≌△ACD,得∠D=∠B=23°.【解答】解:连接AC,∵AB=CD,BC=AD(已知),AC=AC,∴△ABC≌△ACD,∴∠D=∠B=23°.故选:C.11.如图,EA∥DF,AE=DF,要使△AEC≌△DFB,只要()A.AB=CD B.EC=BF C.∠A=∠DD.AB=BC【考点】全等三角形的判定.【分析】四项分别一试即可,要判定△AEC≌△DFB,已知AE=DF、∠A=∠D,要加线段相等,只能是AC=DB,而AB=CD即可得.【解答】解:∵AB=CD∴AC=DB又AE=DF、∠A=∠D∴△AEC≌△DFB故选A.12.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A与∠1+∠2之间有一种数量关系始终保持不变.请试着找一找这个规律,你发现的规律是()A.∠A=∠1+∠2B.2∠A=∠1+∠2C.3∠A=2∠1+∠2D.3∠A=2(∠1+∠2)【考点】三角形内角和定理;翻折变换(折叠问题).【分析】根据四边形的内角和为360°及翻折的性质,就可求出2∠A=∠1+∠2这一始终保持不变的性质.【解答】解:2∠A=∠1+∠2,理由:∵在四边形ADA′E中,∠A+∠A′+∠ADA′+∠AEA′=360°,则2∠A+180°﹣∠2+180°﹣∠1=360°,∴可得2∠A=∠1+∠2.故选:B.二、填空题(共8小题,每小题5分,满分26分)13.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是利用三角形的稳定性.【分析】三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.【解答】解:这样做的道理是利用三角形的稳定性.14.若一个等腰三角形的两边长分别是3cm和5cm,则它的周长是11cm或13cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和5cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:分两种情况:当三边是3,3,5时,能构成三角形,则周长是11;当三边是3,5,5时,能构成三角形,则周长是13.所以等腰三角形的周长为11cm或13cm.故填11cm或13cm.15.三角形的三边长分别为5,1+2x,8,则x的取值范围是1<x<6.【考点】三角形三边关系.【分析】根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.【解答】解:由题意,有8﹣5<1+2x<8+5,解得:1<x<6.16.十边形的外角和是360度;如果十边形的各个内角都相等,那么它的一个内角是144度.【考点】多边形内角与外角.【分析】任何凸多边形的外角和都是360度.因而每个外角的度数是360°÷边数,内角与外角互为邻补角,即可求得它的一个内角.【解答】解:∵任何多边形的外角和都等于360度,∴十边形的外角和是360度;∵每个外角的度数是360°÷10=36°,∴它的一个内角是180°﹣36°=144度.17.如图:∠A+∠B+∠C+∠D+∠E+∠F等于360度.【考点】三角形内角和定理.【分析】由题意知,这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可知.【解答】解:∵∠A+∠E+∠C=180°,∠D+∠B+∠F=180°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.18.如图,已知AE∥BF,∠E=∠F,要使△ADE≌△BCF,可添加的条件是AE=BF(此题答案不唯一).【考点】全等三角形的判定.【分析】要使△ADE≌△BCF,现有条件为二角分别对应相等,只要再添加一边对应相等即可,任意一边都可.【解答】解:∵AE∥BF,∴∠A=∠B,又∵∠E=∠F,AE=BF,∴△ADE≌△BCF(ASA).故填AE=BF(此题答案不唯一).19.如图:△ABE≌△ACD,AB=8cm,AD=5cm,∠A=60°,∠B=40°,则AE=5cm,∠C= 40度.【考点】全等三角形的性质.【分析】根据全等三角形的对应边相等,全等三角形的对应角相等即可解决.【解答】解:∵△ABE≌△ACD,∴AE=AD=5cm;∠C=∠B=40°.故分别填5,40.20.如图,AB=DC,AD=BC,E,F是DB上两点且BE=DF,若∠AEB=100°,∠ADB=30°,则∠BCF=70度.【考点】全等三角形的判定与性质.【分析】由SSS先证明△ABD≌△CDB,得出∠CBD=∠ADB=30°,再由SAS证明△ABE≌△CDF,得出∠DFC=∠AEB=100°,利用三角形的外角的性质得∠BCF=∠DFC﹣∠CBF=70°【解答】解:∵AB=DC,AD=BC,又BD=DB,∴△ABD≌△CDB,∴∠CBD=∠ADB=30°,∠ABD=∠CDB,又AB=CD,BE=DF,∴△ABE≌△CDF(SAS),∴∠DFC=∠AEB=100°,∴∠BCF=∠DFC﹣∠CBF=100°﹣30°=70°.故填空答案:70°.三、解答题21.如图,在△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,BE=BF,连接AE、EF和CF,求证:AE=CF.【考点】全等三角形的判定与性质.【分析】根据已知利用SAS即可判定△ABE≌△CBF,根据全等三角形的对应边相等即可得到AE=CF.【解答】证明:∵∠ABC=90°,∴∠ABE=∠CBF=90°,又∵AB=BC,BE=BF,∴△ABE≌△CBF(SAS).∴AE=CF.22.如图,已知AB∥DC,AD∥BC,求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠BAC=∠DCA,∠DAC=∠BCA,根据ASA推出△BAC≌△DCA,根据全等三角形的性质得出即可.【解答】证明:∵AB∥DC,AD∥BC,∴∠BAC=∠DCA,∠DAC=∠BCA,在△BAC和△DCA中∴△BAC≌△DCA,∴AB=CD.23.如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.(1)∠1与∠2有什么关系,为什么?(2)BE与DF有什么关系?请说明理由.【考点】平行线的判定与性质.【分析】(1)根据四边形的内角和,可得∠ABC+∠ADC=180°,然后,根据角平分线的性质,即可得出;(2)由互余可得∠1=∠DFC,根据平行线的判定,即可得出.【解答】解:(1)∠1+∠2=90°;∵BE,DF分别是∠ABC,∠ADC的平分线,∴∠1=∠ABE,∠2=∠ADF,∵∠A=∠C=90°,∴∠ABC+∠ADC=180°,∴2(∠1+∠2)=180°,∴∠1+∠2=90°;(2)BE∥DF;在△FCD中,∵∠C=90°,∴∠DFC+∠2=90°,∵∠1+∠2=90°,∴∠1=∠DFC,∴BE∥DF.【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.,∴△ADF≌△【考点】三角形的外角性质;角平分线的定义.【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠ACD=∠A+∠ABC,∠ECD=∠E+∠EBC;由角平分线的定义,得∠ECD=(∠A+∠ABC),∠EBC=∠ABC,利用等量代换,即可求得∠A与∠E的关系.【解答】证明:∵∠ACD=∠A+∠ABC,∴∠ECD=(∠A+∠ABC).又∵∠ECD=∠E+∠EBC,∴∠E+∠EBC=(∠A+∠ABC).∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ABC+∠E=(∠A+∠ABC),∴∠E=∠A.25.如图,已知E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?【考点】全等三角形的判定与性质.【分析】首先根据已知条件通过AAS证明△BCE≌△BDE推出BC=BD,再证明△BCA≌△BDA 可得证结论.【解答】解:AC=AD.理由:∵在△BCE和△BDE中,∴△BCE≌△BDE(AAS),∴BC=BD,在△BCA和△BDA中,26.如图所示,CE=DE,EA=EB,CA=DB,求证:△ABC≌△BAD.【考点】全等三角形的判定.【分析】根据等式的性质可得AD=BC,再利用SSS定理进行判定即可.【解答】证明:∵CE=DE,EA=EB,∴CE+BE=DE+AE,即AD=BC,在△ACB和△BDA中,,∴△ABC≌△BAD(SSS).27.如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【考点】全等三角形的判定与性质.【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【解答】解:如:AD=BC,BE∥AF,则DE=CF;理由是:∵BE∥AF,∴∠AFD=∠BEC,在△ADF和△BEC中,∵,∴△ADF≌△BCE,∴DF=CE,∴DF﹣EF=CE﹣EF,∴DE=CF.。

八年级(上)数学第一次月考试卷(附答案)

八年级(上)数学第一次月考试卷(附答案)

(第6小题)(第3小题)CBA2020-2021学年度(上)八年级数学第一次月考试卷一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项) 1、下列各数是无理数的是( )A 、73 B 、4 C 、5 D 、••10.2 2、下列说法错误的是( )A 、1的平方根是1B 、-1的立方根是-1C 、2是2的算术平方根D 、0是0的平方根3、如图,在Rt △ABC 中,∠B=90°,以AC 为直径的圆恰好过点B .若AB=8,BC=6,则 阴影部分的面积是( ) A 、24-100πB 、48-100πC 、24-25πD 、48-25π4、如图,一圆柱高8㎝,底面半径2㎝,一只蚂蚁从A 点爬到点B 处 吃食,要爬行的最短路程(π取3)是( ) A 、20㎝ B 、10㎝ C 、14㎝ D 、无法确定5、已知实数086=-+-y x y x 满足、,那么以y x 、的值为两边长作直角三角形, 它的第三边长为( )A 、10B 、72C 、10或72D 、以上均不对 6、如图,已知△ABC 中,∠ABC=90°,AB=BC ,三角形的顶点在相互平行的三条直线l 1、l 2、l 3上,且相邻两平行线之间的距离均为1,则AC 的长是( )A 、5B 、6C 、3D 、10二、填空题(本大题共6小题,每小题3分,共18分) 7、6的相反数是 .8、81的平方根是 .9、在Rt △ABC 中,斜边AB =2,则AB 2+BC 2+CA 2= . 10、若n 20是整数,则正整数n 的最小值为 .11、如图,数轴上有三点A 、B 、C,其中点A 表示的数是2-,点B 表示的数是1,且AB=BC,则点C表示的数是 .12、锐角等腰三角形的腰长为10㎝,一边上的高为8㎝,则这个锐角等腰三角形的底边长是㎝.三、(本大题共5小题,每小题6分,共30分)13、(1)计算: 331327+-(2)如图,已知Rt ∆ABC,∠ACB=90︒,AC=15和BC=20,求斜边上的高CD 的长.14、计算: 22832--15、计算 :()()()2323522-+--16、求等式 ()1612=-x 中x 的值.17、如下图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段.请按要求作三角形(要求三角形各顶点落在小正方形的顶点上): (1)在图1中作ABC Rt ∆,使三边长都为有理数;(第4小题)BAADCB0 B C-2 1 3 42•••2-A(2)在图2中作ABC ∆,使得三边边长分别是5、10、17.四、(本大题共3小题,每小题8分,共24分)18、若12+x 的平方根是±5,52-+y x 的立方根是3,求22y x +的平方根.19、已知10的整数部分是a,小数部分是b ,求31a ()310+b 的值.20、两张同样大小的长方形纸片,每张分成7个大小相同的小长方形,且每个小长方形的宽均为a(如图),如图放置,重合的顶点记作A ,顶点C 在另一张纸的其中一条分隔线DE 上,若 262=CD ,求AB 的长是多少?五、(本大题共2小题,每小题9分,共18分)21、如图,在长方形ABCD 中,AD =8,CD =6,将长方形ABCD 沿CE 折叠后,使点D 恰好落 在对角线AC 上的点F 处. (1)求EF 的长; (2)求梯形ABCE 的面积.22、观察下列一组式子的变形过程,然后回答问题:①()1212121212)12)(12()12(11212-=--=--=-+-⨯=+;②()()();2323232323)23)(23(23123122-=--=--=-+-⨯=+③()()()4545454545)45)(45(45145122-=--=--=-+-⨯=+.(1)561+= ;991001+= ;(2)请你用含n (n 为正整数)的关系式表示上述各式子的变形规律;(3)利用上面的结论,求下列式子的值.99100198991341231121++++++++++六、(本大题共1小题,共12分)23.已知:如图,在Rt △ABC 中,∠C=90°,AB=5cm ,AC=3cm ,动点P 从点B 出发沿射线BC 以1cm/s 的速度移动,设运动的时间为t 秒. (1)求BC 边的长;(2)当△ABP 为直角三角形时,求t 的值; (3)当△ABP 为等腰三角形时,求t 的值.图2DEa aa a a a a图12020-2021学年度(上)八年级数学第一次月考参考答案一.选择题1.C2.A3.C4.B5.C6.D 二.填空题7. 6- 8. 3± 9. 8 10. 5 11. 22+ 12. 12或 5413.(1) ………3分(2)解:,625201522222=+=+=∆BC AC AB ABC Rt 中,在25=∴AB CD CD AB BC AC SABC2521201521,2121⨯=⨯⨯⋅=⋅=∴∆即 )(12cm CD =∴ ………6分 14. 0………6分 15. 548-………6分16. 35-==x x 或 ………6分(写对1个得3分) 17.………3分………6分18. 解:由题意得32352,)5(12=+-±=+y x x4,12==∴y x………4分1044122222±=+±=+±∴y x ………8分19. 解:由题意得310,3-==b a………4分1910)310)(310(331)310(31=-=-+⨯=+∴b a………8分 20. 解:由题意得AD=6a,AC=7a26)6(7,22222=-=-∆a a CD AD AC ACD )即(中,在2=∴a 6分 277==∴a AB ………8分21. 解:设DE=x ,则AE=8-x ,由折叠性质得,EF=DE=x ,CF=CD=6,则AE=8-x 在Rt ACD ∆中,1006822222=+=+=CD AD AC 10=∴AC 4610=-=∴AF 在RT AEF ∆,222)8(4x x -=+ 533==∴=∴AE EF x ,………6分396)85(21=⨯+=∴ABCE S 梯形 ………9分22. (1)99100;56--………2分 (2)n n nn -+=++111………5分(3)99-10098-993-42-31-2+++++=解:原式1001-+= 9101-=+= ………9分23.(1)在Rt △ABC 中,BC 2=AB 2-AC 2=52-32=16,∴BC=4(cm );………3分(2)由题意知BP=tcm ,①如图①,当∠APB 为直角时,点P 与点C 重合,BP=BC=4cm ,即t=4s ; ②如图②,当∠BAP 为直角时,BP=tcm ,CP=(t-4)cm ,AC=3cm , 在Rt △ACP 、Rt △BAP 中,由勾股定理得AP 2=32+(t-4)2225-=t ,解得:t=425故当△ABP 为直角三角形时,t=4s 或t=s425………7分32图1B C A图2ABC(3)①如图③,当AB=BP时,t=5s;………8分②如图④,当AB=AP时,BP=2BC=8cm, t=8s;………9分③如图⑤,当BP=AP时,AP=BP=tcm,CP=(4-t)cm,AC=3cm,在Rt△ACP中,AP2=AC2+CP2,即t2=32+(4-t)2,25解得:t=825………12分综上所述:当△ABP为等腰三角形时,t=5s或t=8s或t=s8。

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷

山东省东营市2020年八年级上学期数学第一次月考试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020七下·江阴期中) 下列说法正确的是()A . 三角形的中线、角平分线和高都是线段;B . 若三条线段的长、、满足,则以、、为边一定能组成三角形;C . 三角形的外角大于它的任何一个内角;D . 三角形的外角和是 .2. (2分)(2017·襄城模拟) 如图,将一张矩形纸片ABCD折叠,使顶点C落在C′处,测量得AB=4,DE=8,则sin∠C′ED为()A . 2B .C .D .3. (2分) (2019八上·郑州开学考) 如图,将纸片沿折叠,使点落在四边形外点的位置,则下列结论正确的是()A .B .C .D .4. (2分) (2020八上·青田期末) 如图,≌ ,下列结论正确的是()A .B .C .D .5. (2分)两个三角形有以下三对元素相等,则不能判定全等的是()A . 一边和两个角B . 两边和它们的夹角C . 三边D . 两边和一对角6. (2分) (2019八上·鄞州期中) 某实验室有一块三角形玻璃,被摔成如图所示的四块,胡老师想去店里买一块形状、大小与原来一样的玻璃,胡老师要带的玻璃编号是()A . 1B . 2C . 3D . 47. (2分) (2019八上·新乐期中) 如图,AB=EF,AC=ED,BF=CD,∠A=95°,∠B=25°,则∠D的度数为()A . 60°B . 25°C . 70°D . 95°8. (2分) (2019八上·陕西期末) 下列命题的逆命题不是真命题的是()A . 两直线平行,内错角相等B . 直角三角形两直角边的平方之和等于斜边的平方C . 全等三角形的面积相等D . 线段垂直平分线上的点到这条线段两端点的距离相等9. (2分)在△ABC中,如果∠A:∠B:∠C=1:1:2,那么△ABC的形状是()A . 锐角三角形B . 等腰三角形C . 直角三角形D . 等腰直角三角形10. (2分) (2019八上·西城期中) 下列说法正确的是()A . 面积相等的两个三角形是全等三角形B . 全等三角形是指形状相同的两个三角形C . 全等三角形的周长和面积分别相等D . 所有的等腰直角三角形都是全等三角形二、填空题 (共8题;共9分)11. (1分) (2018八上·沙洋期中) 如图,为了使矩形相框不变形,通常可以相框背后加根木条固定.这种做法体现的数学原理是________.12. (1分)如图所示,已知△ABC的周长是20,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是________.13. (2分) (2019八上·剑河期中) 如图,已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D=________°.14. (1分) (2017八上·弥勒期末) 如图所示,∠B=∠D=90°,要证明△ABC与△ADC全等,还需要补充的条件是________。

2020年八年级上学期数学第一次月考试卷

2020年八年级上学期数学第一次月考试卷

2020年八年级上学期数学第一次月考试卷一、选择题(本题有10小题,每小题4分,共40分) (共10题;共40分)1. (4分)平行四边形一边的长是10cm,则这个平行四边形的两条对角线长可以是()A . 4cm或6cmB . 6cm或8cmC . 8cm或12cmD . 20cm或30cm2. (4分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A . 两点之间的线段最短B . 三角形具有稳定性C . 长方形是轴对称图形D . 长方形的四个角都是直角3. (4分)如图,△ABC的两条中线AD、CE交于点G,且AD⊥CE,联结BG并延长与AC交于点F,如果AD=9,CE=12,那么下列结论不正确的是()A . AC=10B . AB=15C . BG=10D . BF=154. (4分)说明“若a是实数,则a2>0”是假命题,可以举的反例是()A . a=﹣1B . a=1C . a=0D . a=25. (4分)如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD ;(2)AD⊥BC;(3)∠B=∠C ;(4)AD是△ABC的角平分线。

其中正确的有()。

A . 1个B . 2个C . 3个D . 4个6. (4分)一次函数y=﹣ x+2的图象与x轴,y轴分别交于A、B两点,以AB为腰,作等腰Rt△ABC,则直线BC的解析式为()A . y= x+2B . y=﹣ x+2C . y=﹣ x+2D . y= x+27. (4分)如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB 于点E.若PE=3,则两平行线AD与BC间的距离为()A . 3B . 4C . 5D . 68. (4分)如图,在平面直角坐标系中,四边形ABCO是正方形,已知点C的坐标为(,1),则点B的坐标为()A . (﹣1,+1)B . (﹣1,1)C . (1,+1)D . (﹣1,2)9. (4分)甲、乙、丙三人进行乒乓球比赛,规则是:两人比赛,另一人当裁判,输者将在下一局中担任裁判,每一局比赛没有平局.已知甲、乙各比赛了4局,丙当了3次裁判.问第2局的输者是()A . 甲B . 乙C . 丙D . 不能确定10. (4分)如图,在四边形纸片ABCD中,∠B=120°,∠D=50°,现将其右下角向内折出三角形PC′R,使C′P∥AB,RC′∥AD,则∠C的度数是()A . 90°B . 95°C . 100°D . 105°二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分)11. (5分)“相等的角是对顶角”的逆命题是________命题(填“真”或“假”).12. (5分)如图,AC与BD相交于点O,且AB=CD,请添加一个条件________,使得△ABO≌△CDO.13. (5分)如图,将矩形纸片沿DE折叠后,点C落到T点C’处,已知∠DEC=35 ,则∠ADC’= ________.14. (5分)如图,点E、F是平行四边形ABCD的边AB、DC上的点,F与DE相交于点P,BF与CE相交于点Q若S△APD=14cm2 ,S△BCQ=16cm2 ,四边形PEQF的面积为________.15. (5分)如图,在中,,,为的中点,,则的面积是________.16. (5.0分)如图,两直线 OM 与 ON 垂直,点 A,B 分别在射线 OM,ON 上移动,BC 平分∠DBO,BC 与∠OAB 的平分线 AC 交于点 C.(1)若∠BAO=60°,求∠C 的度数;(2)若∠BAO 的度数为 x 度,求∠C 的度数.三、解答题(17,18,19,20每题8分,21题10分,22, (共8题;共84分)17. (12分)如图已知△ABC,请你用三角尺和量角器作图,作△ABC的:①中线AD;②角平分线BE;③高CH.18. (8分)如图,,,,求证: .19. (8分)如图,∠ABC=∠ACB,∠ADE=∠AED,BE=CD,试说明:△ABD≌△ACE.20. (8分)在Rt△ABC中,∠ACB=90°,点D与点B在AC同侧,∠DAC>∠BAC,且DA=DC,过点B作BE∥DA交DC于点E,过E作EM∥AC交AB于点M,连结MD.(1)当∠ADC=80°时,求∠CBE的度数.(2)当∠ADC=α时:①求证:BE=CE.②求证:∠ADM=∠CDM.③当α为多少度时,DM= EM.21. (10分)如图,点C在线段AE上,BC∥DE,AC=DE,BC=CE.求证:AB=CD.22. (12分)如图,已知CD平分∠ACB,∠1=∠2.(1)求证:DE∥AC;(2)若∠3=30°,∠B=25°,求∠BDE的度数.23. (12分)如图,点A、D、B、E在一条直线上,AD=BE,∠C=∠F,BC∥EF.求证:(1)△ABC≌DEF(2)AC∥DF24. (14.0分)以A为顶角顶点的等腰三角形ABC和等腰三角形ADE,D在BC边上,E 在AB边上,F为线段AD上一点,连接FC,∠BDE= ∠FCA.(1)如图1,若AB= ,∠BAC=30°,求S△ABC;(2)如图1,求证:FA=FC;(3)如图2,延长CF交AB于G,延长AB到M使GM=AC,连接CM,∠BAD=∠BCG,N是GC的中点,探究AN与CM之间的数量关系并证明.参考答案一、选择题(本题有10小题,每小题4分,共40分) (共10题;共40分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题(本题有6小题,每小题5分,共30分) (共6题;共30分) 11-1、12-1、13-1、14-1、15-1、16-1、16-2、三、解答题(17,18,19,20每题8分,21题10分,22, (共8题;共84分)17-1、18-1、19-1、20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、24-3、。

2020年河南省洛阳八年级(上)第一次月考数学试卷

2020年河南省洛阳八年级(上)第一次月考数学试卷

月考数学试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.以下列各组线段为边,能组成三角形的是()A. 2cm,3cm,5cmB. 3cm,3cm,6cmC. 5cm,8cm,2cmD. 4cm,5cm,6cm2.已知等腰三角形的两边长分别为3和6,则它的周长等于()A. 12B. 12或15C. 15D. 15或183.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为()A. 40°B. 45°C. 50°D. 55°4.将一副三角板按如图所示摆放,图中∠α的度数是()A. 75°B. 90°C. 105°D. 120°5.一个多边形的内角和是外角和的2倍,则这个多边形的边数为()A. 4B. 5C. 6D. 76.如图,在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后仍不一定能保证△ABC≌△A′B′C′,则补充的这个条件是()A. BC=B′C′B. ∠A=∠A′C. AC=A′C′D. ∠C=∠C′7.如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是()A. AB=ACB. ∠BAE=∠CADC. BE=DCD. AD=DE8.如图是用直尺和圆规作角平分线的示意图,通过证明△DOP≌△EOP可以说明OC是∠AOB的角平分线,那么△DOP≌△EOP的依据是()A. SSSB. SASC. ASAD. AAS9.等腰三角形一腰上的高与另一腰的夹角为30°,它的顶角为()A. 30°B. 60°C. 120°D. 60°或120°10.下列命题中,正确的是()A. 全等三角形的高相等B. 全等三角形的中线相等C. 全等三角形的角平分线相等D. 全等三角形对应边上的高相等二、填空题(本大题共5小题,共15.0分)11.如图,为了使一扇旧木门不变形,木工师傅在木门的背后加钉了一根木条,这样做的道理是______.12.一个多边形的每个内角都等于150°,则这个多边形是______边形.13.在△ABC中,∠C=90°,BC=16cm,∠BAC的平分线交BC于D,且BD:DC=5:3,则D到AB的距离为______cm.14.如图,三角形纸片ABC,AB=10cm,BC=7cm,AC=6cm,沿过点B的直线折叠这个三角形,使顶点C落在AB边上的点E处,折痕为BD,则△AED的周长为______cm.15.如图,已知:BD是∠ABC的平分线,DE⊥BC于E,S△ABC=36cm2;,AB=12cm,BC=18cm,则DE的长为______cm.三、解答题(本大题共8小题,共75.0分)16.已知:如图,AB∥CD,求图形中的x的值.17.如图,等腰三角形ABC中,AB=AC,一腰上的中线BD将这个等腰三角形周长分成15和6两部分,求这个三角形的腰长及底边长.18.如图,AB=DE,AC=DF,BE=CF.求证:AB∥DE,AC∥DF.19.如图,已知AB=DC,AC=DB.求证:∠1=∠2.20.如图,AD为△ABC的中线,BE为三角形ABD中线,(1)在△BED中作BD边上的高EF;(2)若△ABC的面积为60,BD=5,求EF的长.21.如图,在△ABC和△DEF中,B、E、C、F在同一直线上,下面有四个条件,请你从中选三个作为题设,余下的一个作为结论,写出一个正确的命题,并加以证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF;解:我写的真命题是:在△ABC和△DEF中,已知:______.求证:______.(不能只填序号)证明如下:22.如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O(a)若∠A=60°,求∠BOC的度数;(b)若∠A=n°,则∠BOC= ______ ;(c)若∠BOC=3∠A,则∠A= ______ ;(2)如图(2),在△A′B′C′中的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1),(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?23.如图1,在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)①写出图1中的一对全等三角形;②写出图1中线段DE、AD、BE所具有的等量关系;(不必说明理由)(2)当直线MN绕点C旋转到图2的位置时,请说明DE=AD-BE的理由;(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE又具有怎样的等量关系?请直接写出这个等量关系(不必说明理由).答案和解析1.【答案】D【解析】解:根据三角形的三边关系,知A、2+3=5,不能组成三角形;B、3+3=6,不能够组成三角形;C、2+5=7<8,不能组成三角形;D、4+5>6,能组成三角形.故选:D.根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.此题考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.2.【答案】C【解析】解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选:C.由于等腰三角形的两边长分别是3和6,没有直接告诉哪一条是腰,哪一条是底边,所以有两种情况,分别利用三角形的周长的定义计算即可求解.此题主要考查了三角形的周长的计算,也利用了等腰三角形的性质,同时也利用了分类讨论的思想.3.【答案】A【解析】解:∵∠B=67°,∠C=33°,∴∠BAC=180°-∠B-∠C=180°-67°-33°=80°∵AD是△ABC的角平分线,∴∠CAD=∠BAC=×80°=40°故选A.首先利用三角形内角和定理求得∠BAC的度数,然后利用角平分线的性质求得∠CAD的度数即可.本题考查了三角形的内角和定理,属于基础题,比较简单.三角形内角和定理在小学已经接触过.4.【答案】C【解析】解:∵图中是一副直角三角板,∴∠BAE=45°,∠D=60°,∠DAE=90°,∴∠DAF=90°-∠BAE=90°-45°=45°,∴∠α=∠DAF+∠D=45°+60°=105°.故选C.先根据直角三角形的性质得出∠BAE及∠D的度数,再由三角形外角的性质即可得出结论.5.【答案】C【解析】解:设这个多边形是n边形,根据题意,得(n-2)×180°=2×360,解得:n=6.即这个多边形为六边形.故选:C.多边形的外角和是360°,则内角和是2×360=720°.设这个多边形是n边形,内角和是(n-2)•180°,这样就得到一个关于n的方程组,从而求出边数n的值.本题考查了多边形的内角与外角,熟记内角和公式和外角和定理并列出方程是解题的关键.根据多边形的内角和定理,求边数的问题就可以转化为解方程的问题来解决.6.【答案】C【解析】解:A、若添加BC=BˊCˊ,可利用SAS进行全等的判定,故本选项错误;B、若添加∠A=∠A',可利用ASA进行全等的判定,故本选项错误;C、若添加AC=A'C',不能进行全等的判定,故本选项正确;D、若添加∠C=∠Cˊ,可利用AAS进行全等的判定,故本选项错误;故选:C.全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.本题考查了全等三角形的判定,熟练掌握全等三角形的判定,要认真确定各对应关系.7.【答案】D【解析】解:∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴AB=AC,∠BAE=∠CAD,BE=DC,AD=AE,故A、B、C正确;AD的对应边是AE而非DE,所以D错误.故选:D.根据全等三角形的性质,全等三角形的对应边相等,全等三角形的对应角相等,即可进行判断.本题主要考查了全等三角形的性质,根据已知的对应角正确确定对应边是解题的关键.8.【答案】A【解析】【分析】本题考查的是全等三角形的判定,要清楚作图时作出的线段OD与OE、PD与PE是相等的.熟练掌握三角形全等的判定条件是解答此题的关键.易知:OD=OE,PD=PE,OP=OP,因此符合SSS的条件,故选择A.【分析】解:由作图知:OD=OE、PD=PE、OP是公共边,即三边分别对应相等(SSS),△DOP≌△EOP,故选A.9.【答案】D【解析】解:分两种情况:①当高在三角形内部时(如图1),∵∠ABD=30°,∴顶角∠A=90°-30°=60°;②当高在三角形外部时(如图2),∠CAB=90°+30°=120°.故选D.等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成立,因而可分两种情况进行讨论.此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.10.【答案】D【解析】解:A、全等三角对应边上的高相等,故错误;B、全等三角形的对应边的中线相等,故错误;C、全等三角形的对应角的平分线相等,故错误;D、全等三角形的对应边上的高相等,正确,故选D.利用全等三角形的性质分别判断后即可确定正确的选项.本题考查了命题与定理的知识,解题的关键是了解全等三角形的性质,难度不大.11.【答案】利用三角形的稳定性【解析】解:这样做的道理是利用三角形的稳定性.三角形具有稳定性,其它多边形不具有稳定性,把多边形分割成三角形则多边形的形状就不会改变.本题考查三角形稳定性的实际应用,三角形的稳定性在实际生活中有着广泛的应用,如钢架桥、房屋架梁等,因此要使一些图形具有稳定的结构,往往通过连接辅助线转化为三角形而获得.12.【答案】12【解析】解:由题意可得:180°•(n-2)=150°•n,解得n=12.故多边形是12边形.根据多边形的内角和定理:180°•(n-2)求解即可.主要考查了多边形的内角和定理.n边形的内角和为:180°•(n-2).此类题型直接根据内角和公式计算可得.13.【答案】6【解析】【分析】本题主要考查角的平分线上的点到角的两边的距离相等的性质.利用线段相等学会线段的转移,利用相等的线段进行线段转移是一种很重要的方法,注意掌握.利用角的平分线上的点到角的两边的距离相等可知D到AB的距离为等于CD的长度,求CD长即可.【解答】解:∵∠C=90°,BC=16cm,∠BAC的平分线交BC于D,∴CD就是D到AB的距离,∵BD:DC=5:3,BC=16cm,∴CD=6,即D到AB的距离为6cm.故答案为6.14.【答案】9【解析】解:DE=CD,BE=BC=7cm,∴AE=AB-BE=3cm,∴△AED的周长=AE+AD+DE=AC+AE=6+3=9cm.由折叠中对应边相等可知,DE=CD,BE=BC,可求AE=AB-BE=AB-BC,则△AED的周长为AD+DE+AE=AC+AE.本题利用了折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.15.【答案】2.4【解析】解:如图,过点D作DF⊥AB于F,∵BD是∠ABC的平分线,DE⊥BC,∴DE=DF,S△ABC=S△ABD+S△BCD,=AB•DF+BC•DE,=×12•DE+×18•DE,=15DE,∵△ABC=36cm2,∴15DE=36,解得DE=2.4cm.故答案为:2.4.过点D作DF⊥AB于F,根据角平分线上的点到角的两边距离相等可得DE=DF,再根据S△ABC=S△ABD+S△BCD列出方程求解即可.本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质并作辅助线是解题的关键.16.【答案】解:∵AB∥CD,∠C=60°,∴∠B=180°-60°=120°,∴(5-2)×180°=x+150°+125°+60°+120°,∴x=85°.【解析】本题主要考查了平行线的性质和多边形的内角和,属于基础题.根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.17.【答案】解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:①当3X=15,且X+Y=6,解得X=5,Y=1,∴三边长分别为10,10,1;②当X+Y=15且3X=6时,解得X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长是10,底边长是1.【解析】设AB=AC=2X,BC=Y,则AD=CD=X,则有两种情况,根据等腰三角形的性质以及三角形三边关系解答.本题考查了等腰三角形和三角形三边关系求解,注意要分两种情况讨论是正确解答本题的关键.18.【答案】证明:∵BE=CF,∴BE+EC=CF+EC,即CB =FE,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴∠B=∠DEF,∠ACB=∠F,∴AB∥DE,AC∥DF.【解析】首先证明CB=FE,再加上条件AB=DE,AC=DF,可利用SSS判定△ABC≌△DEF,根据全等三角形的性质可得∠B=∠DEF,∠ACB=∠F,再根据同位角相等,两直线平行可得结论.此题主要考查了全等三角形的判定与性质,关键是熟练掌握三角形的判定定理:SSS、SAS、ASA、AAS.证明三角形全等必须有边相等的条件.19.【答案】证明:在△ABC和△DCB中∵,∴△ABC≌△DCB.∴∠A=∠D.又∵∠AOB=∠DOC,∴∠1=∠2.【解析】探究思路:因为△ABO与△DCO有一对对顶角,要证∠1=∠2,只要证明∠A=∠D,把问题转化为证明△ABC≌△DCB,再围绕全等找条件.本题是全等三角形的判定,性质的综合运用,可以由探究题目的结论出发,找全等三角形,再寻找判定全等的条件.20.【答案】解;(1)如图所示;(2)∵AD为△ABC的中线,BE为三角形ABD中线,∴S△ABD=S△ABC,S△BDE=S△ABD,∴S△BDE=S△ABC,∵△ABC的面积为60,BD=5,∴×5×EF=15,∴EF=6.【解析】(1)直接利用直角三角尺最值三角形的高;(2)利用三角形中线的性质得出S△BDE=S△ABC,进而借助三角形面积公式求出即可.是解题关键.21.【答案】如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF∠ABC=∠DEF【解析】解:将①②④作为题设,③作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF.求证:∠ABC=∠DEF.证明:在△ABC和△DEF中∵BE=CF∴BC=EF又∵AB=DE,AC=DF∴△ABC≌△DEF(SSS)∴∠ABC=∠DEF.将①③④作为题设,②作为结论,可写出一个正确的命题,如下:已知:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,∠ABC=∠DEF,BE=CF.求证:AC=DF.证明:在△ABC和△DEF中∵BE=CF∴BC=EF又∵AB=DE,∠ABC=∠DEF∴△ABC≌△DEF(SAS)∴AC=DF;故答案为:如图,在△ABC和△DEF中,B、E、C、F在同一直线上,AB=DE,AC=DF,BE=CF;∠ABC=∠DEF.由BE=CF⇒BC=EF,所以,由1,2,4,可用SSS⇒△ABC≌△DEF⇒∠ABC=∠DEF;由1,3,4,可用SAS⇒△ABC≌△DEF⇒AC=DF;由于不存在ASS的证明全等三角形的方法,故由其它三个条件不能得到1或4.这是一道开放题.四个条件可组合成四个命题,其中有真有假,考生既要会证明真命题,还要会对假命题举反例加以否定,本题既考查了学生的基础知识,又考查了学生的创新能力.给学生提供了充分展示才能的空间,不同层次不同能力的学生可以给出不同的结果.22.【答案】解:(1).(a)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=(180°-∠A)=×(180°-60°)=60°,∴∠BOC=180°-60°=120°;(b)90°+n°;(c)36°;(2)∵∠A'=40°,∴∠A'的外角等于180°-40°=140°,∵△A′B′C′另外的两外角平分线相交于点O′,三角形的外角和等于360°,∴∠1+∠2=×(360°-140°)=110°,∴∠B′O′C′=180°-110°=70°;(3)∵由(1)知,∠BOC=,由(2)知,∠B′O′C′=180°-,∴∠B′O′C′=180°-∠BOC.【解析】解:(1)(a)见答案;(b)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=(180°-∠A)=×(180°-n°)=90°-n°,∴∠BOC=180°-(90°-n°)=90°+n°.故答案为:90°+n°;(c)∵∠ABC、∠ACB的平分线相交于点O,∠BOC=3∠A,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=(180°-∠A)=90°-∠A,∴90°-∠A+3∠A=180°,解得∠A=36°故答案为:36°;(2)见答案;(3)见答案.(1)(a)根据角平分线的定义可得∠1=∠ABC,∠2=∠ACB,然后求出∠1+∠2的值,再根据三角形的内角和等于180°可得出结论;(b)同(a)的证明过程;(c)根据角平分线的定义用∠A表示出∠1+∠2的值,再由∠BOC=3∠A即可得出结论;(2)先求出∠A的外角的度数,由三角形的外角和等于360°及角平分线的定义得出∠1+∠2的度数,再由三角形内角和定理即可得出结论;(3)根据(1)(2)中∠BOC与∠B′O′C′的关系可得出结论.本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.23.【答案】解:(1)①△ADC≌△CEB.理由如下::∵∠ACB=90°,∠ADC=90°,∠BEC=90°∴∠ACD+∠DAC=90°,∠ACD+∠BCE=90°,∴∠DAC=∠BCE,在△ADC与△BEC中,,∴△ADC≌△BEC(AAS);②DE=CE+CD=AD+BE.理由如下:由①知,△ADC≌△BEC,∴AD=CE,BE=CD,∵DE=CE+CD,∴DE=AD+BE;(2)∵AD⊥MN于D,BE⊥MN于E.∴∠ADC=∠BEC=∠ACB=90°,∴∠CAD+∠ACD=90°,∠ACD+∠BCE=90°.∴∠CAD=∠BCE.在△ADC和△CEB中,∴△ADC≌△CEB.∴CE=AD,CD=BE.∴DE=CE-CD=AD-BE.(3)同(2),易证△ADC≌△CEB.∴AD=CE,BE=CD∵CE=CD-ED∴AD=BE-ED,即ED=BE-AD;当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE-AD(或AD=BE-DE,BE=AD+DE等).【解析】(1)证明△ADC≌△BEC(AAS)即可:已知已有两直角相等和AC=BC,再由同角的余角相等证明∠DAC=∠BCE即可;(2)根据垂直定义求出∠BEC=∠ACB=∠ADC,根据等式性质求出∠ACD=∠CBE,根据AAS证出△ADC和△CEB全等即可;(3)同样由三角形全等寻找边的关系,根据位置寻找和差的关系.本题考查了全等三角形的性质和判定,垂线的定义等知识点的应用,解此题的关键是推出证明△ADC和△CEB全等的三个条件.题型较好.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年八年级上学期数学第一次月考试卷
姓名:________ 班级:________ 成绩:________
一、单选题 (共8题;共16分)
1. (2分) (2018八上·阿城期末) 下列运算正确的是()
A . m6÷m2=m3
B . 3m3﹣2m2=m
C . (3m2)3=27m6
D . m•2m2=m2
2. (2分) (2017七下·丰台期中) 已知、满足等式,,则、的大小关系是().
A .
B .
C .
D .
3. (2分)下列各式计算正确的是()
A . (a7)2=a9
B . a7·a2=a14
C . 2a2+3a3=5a5
D . (ab)3=a3b3
4. (2分)下列运算正确的是()
A . a2+a3=a5
B . (﹣a3)2=a6
C . ab2•3a2b=3a2b2
D . ﹣2a6÷a2=﹣2a3
5. (2分)若(x﹣2)(x+3)=x2﹣ax+b,则a、b的值是()
A . a=5,b=6
B . a=1,b=﹣6
C . a=﹣1,b=﹣6
D . a=5,b=﹣6
6. (2分)下列的运算中,其结果正确的是()
A . x+2=5
B . 16x2﹣7x2=9x2
C . x8÷x2=x4
D . x(﹣xy)2=x2y2
7. (2分) (2016八上·东宝期中) 下列因式分解中,正确的是()
A . x2﹣4=(x+4)(x﹣4)
B . 2x2﹣8=2(x2﹣4)
C . a2﹣3=(a+ )(a﹣)
D . 4x2+16=(2x+4)(2x﹣4)
8. (2分) (2017七下·威远期中) 若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()
A . 2
B . 4
C .
D . 12
二、填空题 (共6题;共6分)
9. (1分)已知:x=3m+1,y=9m﹣2,用含x的代数式表示y=________
10. (1分) (2017八上·海勃湾期末) 若a+b=4,且ab=2,则a2+b2=________.
11. (1分)若多项式x2+ax+b分解因式的结果为(x﹣2)(x+3),则a+b的值为________.
12. (1分) (2017七下·江阴期中) 若(x﹣2)(x+3)=x2+mx+n,则mn=________.
13. (1分) (2019七下·江苏月考) 若am=2,an=3,则=________
14. (1分) (2017七上·孝南期中) 如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则这个长方形的周长是________.
三、解答题 (共9题;共79分)
15. (15分) (2019七下·南县期中) 分解因式:.
16. (20分) (2017七下·揭西期末) 化简:
17. (5分)(2016·南平模拟) 化简:a(2﹣a)﹣(3+a)•(3﹣a)
18. (10分)因式分解:.
19. (5分) (2018八上·南召期末) 先化简,再求值:当|x﹣2|+(y+1)2=0时,求[(3x+2y)(3x﹣2y)+(2y+x)(2y﹣3x)]÷4x的值.
20. (10分) (2014·宁波) 计算下列各题.
(1)化简:(a+b)2+(a﹣b)(a+b)﹣2ab;
(2)解不等式:5(x﹣2)﹣2(x+1)>3.
21. (2分) (2019八上·洪山期末) 对于多项式x3﹣5x2+x+10,我们把x=2代入此多项式,发现x=2能使多项式x3﹣5x2+x+10的值为0,由此可以断定多项式x3﹣5x2+x+10中有因式(x﹣2),(注:把x=a代入多项式,能使多项式的值为0,则多项式一定含有因式(x﹣a)),于是我们可以把多项式写成:x3﹣5x2+x+10=(x﹣2)(x2+mx+n),分别求出m、n后再代入x3﹣5x2+x+10=(x﹣2)(x2+mx+n),就可以把多项式x3﹣5x2+x+10因式分解.
(1)求式子中m、n的值;
(2)以上这种因式分解的方法叫“试根法”,用“试根法”分解多项式x3+5x2+8x+4.
22. (6分) (2015七下·萧山期中) 把一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后拼成一个正方形(如图1)
(1)请用两种不同的方法求图2中阴影部分的面积(直接用含m,n的代数式表示)
方法1:________;方法2:________.
(2)根据(1)中结论,请你写出下列三个代数式(m+n)2,(m﹣n)2,mn间的等量关系;________.(3)根据(2)题中的等量关系,解决如下问题:已知实数a,b满足:a+b=3,ab=1,求a﹣b的值.
23. (6分) (2018七下·明光期中)
(1)填空:
________;;
________;;
________;;
(2)猜想:
(a-b)(an-1+an-2b+an-3b2+…+abn-2+bn-1)= ________(其中n为正整数,且n≥2);
(3)利用(2)猜想的结论计算:
①29+28+27+…+22+2+1
②210-29+28-…-23+22-2.
参考答案一、单选题 (共8题;共16分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
二、填空题 (共6题;共6分)
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题 (共9题;共79分)
15-1、
16-1、
17-1、
18-1、
19-1、20-1、20-2、21-1、
21-2、
22-1、
22-2、
22-3、
23-1、
23-2、
23-3、。

相关文档
最新文档