CWDM4-MSA-Technical-Spec-1p1-1
光芯片cwdm中心波长
光芯片cwdm中心波长光芯片CWDM(Coarse Wavelength Division Multiplexing)是一种多波长光传输技术,其中心波长是该技术的核心之一。
CWDM 技术通过在光纤中传输多个不同波长的光信号,实现光纤的高效利用和大容量传输。
本文将围绕CWDM中心波长展开,探讨其原理、应用和未来发展前景。
一、原理CWDM技术是一种基于波分复用(WDM)的传输技术,它利用不同波长的光信号在光纤中传输,实现多路复用。
CWDM系统通常采用光纤光栅(FBG)等器件将不同波长的光信号分离和合并,使它们能够在同一根光纤中传输。
而CWDM中心波长则是指在CWDM系统中使用的主导波长。
二、应用1. 电信传输:CWDM技术可以在光纤中同时传输多个光信号,提高光纤的利用率。
它被广泛应用于光纤通信网络中,用于长距离传输、城域网和数据中心互连等场景。
CWDM中心波长通常包括1270nm、1290nm、1310nm、1330nm、1350nm、1370nm、1390nm、1410nm、1430nm、1450nm、1470nm、1490nm、1510nm、1530nm、1550nm、1570nm、1590nm、1610nm等。
2. 数据中心:随着大数据、云计算和人工智能等应用的快速发展,数据中心的需求不断增加。
CWDM技术可以满足数据中心对高带宽、低延迟的要求。
通过使用不同波长的光信号,可以实现多个数据通道的传输,提高数据中心的传输能力。
3. 无线通信:CWDM技术还可以应用于无线通信领域。
在无线基站的传输网络中,CWDM技术可以提供高容量、高可靠性的数据传输。
同时,CWDM中心波长的选择也可以根据具体的应用场景进行优化,以满足不同频段的传输需求。
三、未来发展随着通信技术的不断进步,CWDM技术也在不断发展和演进。
未来,CWDM中心波长的选择将更加灵活多样,以适应不同应用场景的需求。
同时,随着光纤通信的发展,高速率、长距离的传输需求也将不断增加,CWDM技术将会在这些领域发挥更大的作用。
AquaMaster 4 软件 FEW410 430 和 FET410 430 软件版本 3KXF2
—A B B M E A SU R EM ENT & A N A LY TI C S | R ELE A S E NOTE | R N/FE W410/FE W430/FE T410/FE T430/001-EN R E V BAquaMaster4 softwareFEW410/430 and FET410/4301 Software change detailsNew features:• Diagnosis for detecting default sensor setting due to NV memory issues.Bug fixes:• Totalizer reset option enabled with “Advance Access Level” for Non - Metrology approved devices.• Excessive power consumption in sensor.• Sensor firmware update.2 RecommendationsThis upgrade is advised for:• Devices with the above-mentioned issues • Devices that have software/firmware part code as mentioned in the release note.3 Product supportEmail: **********************.com—AquaMaster 4software FEW410/430 and FET410/430Software version:3KXF208402U0113/03.04.00 Release date: 15th June 2023Measurement made easyR N /F E W 410/F E W 430/F E T 410/F E T 430/001-E N R e v . B 06.2023—We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction,disclosure to third parties or utilization of its contents – in whole or in parts – isforbidden without prior written consent of ABB. ©ABB 2023—ABB LimitedMeasurement & Analytics Oldends Lane,Stonehouse, GL10 3TA United KingdomTel: +44 (0) 1453 826661 Fax: +44 (0) 1453 829671email: **********************.com/measurement。
CWDM解决方案
CWDM解决方案一、背景介绍CWDM(Coarse Wavelength Division Multiplexing)是一种基于波分复用技术的传输方案,通过将不同波长的光信号进行复用,实现在单根光纤上同时传输多个独立的信号。
CWDM解决方案被广泛应用于光纤传输、数据中心互联、无线通信等领域,以提高网络容量和灵便性。
二、CWDM解决方案的组成部份1. CWDM Mux/Demux器:CWDM Mux/Demux器是CWDM解决方案的核心组件,用于将多个不同波长的光信号进行复用或者解复用。
它可以将多个输入端口的信号合并到单根光纤上,或者将单根光纤上的信号分离到不同的输出端口上。
CWDM Mux/Demux器通常支持8个或者16个波长,每一个波长之间的间隔为20nm。
2. CWDM光模块:CWDM光模块是用于发送和接收CWDM信号的设备。
它通常包括CWDM激光器、光接收器和光电转换器。
CWDM光模块的波长与CWDM Mux/Demux器的波长相对应,确保信号的正确传输。
3. CWDM OADM(Optical Add-Drop Multiplexer):CWDM OADM用于在CWDM网络中实现信号的添加和删除。
它可以在光纤链路上添加或者删除特定波长的信号,而不影响其他波长的传输。
CWDM OADM可以提高网络的灵便性和可扩展性。
4. 光纤电缆:CWDM解决方案需要使用光纤电缆进行信号传输。
光纤电缆具有低损耗、高带宽和抗干扰等特点,适合于长距离传输和高速数据传输。
5. 光纤连接器和配件:CWDM解决方案需要使用光纤连接器和配件进行光纤的连接和固定。
光纤连接器和配件的质量和稳定性直接影响到信号的传输质量和网络的可靠性。
三、CWDM解决方案的优势1. 高带宽:CWDM解决方案可以在单根光纤上同时传输多个信号,提供高带宽的传输能力。
通过合理配置波长,可以满足不同应用场景对带宽的需求。
2. 灵便性:CWDM解决方案支持信号的添加和删除,可以根据实际需求对网络进行扩展和调整。
MPI TITAN RF Probe Selection Guide
MPI Probe Selection GuideWith a critical understanding of the numerous measurement challenges associated with today’s RF ap-plications, MPI Corporation has developed TITAN™ RF Probes, a product series specifically optimized for these complex applications centered upon the requirements of advanced RF customers.TITAN™ Probes provide the latest in technology and manufacturing advancements within the field of RF testing. They are derived from the technology transfer that accompanied the acquisition of Allstron, then significantly enhanced by MPI’s highly experienced RF testing team and subsequently produced utilizing MPI’s world class MEMS technology. Precisely manufactured, the TITAN™ Probes include matched 50 Ohm MEMS contact tips with improved probe electrical characteristics which allow the realization of unmat -ched calibration results over a wide frequency range. The patented protrusion tip design enables small passivation window bond pad probing, while significantly reducing probe skate thus providing the out -standing contact repeatability required in today’s extreme measurement environments. TITAN TM Probes with all their features are accompanied by a truly affordable price.The TITAN™ Probe series are available in single-ended and dual tip configurations, with pitch range from 50 micron to 1250 micron and frequencies from 26 GHz to 110 GHz. TITAN™ RF Probes are the ideal choice for on-wafer S-parameter measurements of RF, mm-wave devices and circuits up to 110 GHz as well as for the characterization of RF power devices requiring up to 10 Watts of continuous power. Finally, customers can benefit from both long product life and unbeatable cost of ownership which they have desired foryears.Unique design of the MEMS coplanar contacttip of the TITAN™ probe series.DC-needle-alike visibility of the contact point and the minimal paddamage due to the unique design of the tipAC2-2 Thru S11 Repeatability. Semi-Automated System.-100-80-60-40-200 S 11 E r r o r M a g n i t u d e (d B )Frequency (GHz)Another advantage of the TITAN™ probe is its superior contact repeatability, which is comparable with the entire system trace noise when measured on the semi-automated system and on gold contact pads.CROSSTALKCrosstalk of TITAN™ probes on the short and the bare ceramic open standard of 150 micron spacing compared to conventional 110 GHz probe technologies. Results are corrected by the multiline TRL calibration. All probes are of GSG configuration and 100 micron pitch.-80-60-40-200Crosstalk on Open. Multiline TRL Calibration.M a g (S21) (d B )Frequency (GHz)-80-60-40-200Crosstalk on Short. Multiline TRL Calibration.M a g (S21) (d B )Frequency (GHz)The maximal probe c ontac t repeatability error of the c alibrate S11-parameter of the AC2-2 thru standard by T110 probes. Semi-automated system. Ten contact circles.Cantilever needle material Ni alloy Body materialAl alloy Contact pressure @2 mils overtravel 20 g Lifetime, touchdowns> 1,000,000Ground and signal alignment error [1]± 3 µm [1]Planarity error [1] ± 3 µm [1]Contact footprint width < 30 µm Contact resistance on Au < 3 mΩThermal range-60 to 175 °CMechanical CharacteristicsAC2-2 Thru S21 Repeatability. Manual TS50 System.-100-80-60-40-200S 21 E r r o r M a g n i t u d e (d B )Frequency (GHz)MECHANICAL CHARACTERISTICSThe maximal probe c ontac t repeatability error of the c alibrate S21-parameter of the AC2-2 thru standard by T50 probes. Manual probe system TS50.26 GHZ PROBES FOR WIRELESS APPLICATIONSUnderstanding customer needs to reduce the cost of development and product testing for the high competitive wireless application market, MPI offers low-cost yet high-performance RF probes. The specifically developed SMA connector and its outstanding transmission of electro-magnetic waves through the probe design make these probes suitable for applications frequencies up to 26 GHz. The available pitch range is from 50 micron to 1250 micron with GS/SG and GSG probe tip configurations. TITAN™ 26 GHz probes are the ideal choice for measurement needs when developing components for WiFi, Bluetooth, and 3G/4G commercial wireless applications as well as for student education.Characteristic Impedance 50 ΩFrequency rangeDC to 26 GHz Insertion loss (GSG configuration)1< 0.4 dB Return loss (GSG configuration)1> 16 dB DC current ≤ 1 A DC voltage ≤ 100 V RF power, @10 GHz≤ 5 WTypical Electrical Characteristics26 GHz Probe Model: T26Connector SMAPitch range50 µm to 1250 µm Standard pitch step from 50 µm to 450 µm from 500 µm to 1250 µm25 µm step 50 µm stepAvailable for 90 µm pitch Tip configurations GSG, GS, SG Connector angleV-Style: 90-degree A-Style: 45-degreeMechanical CharacteristicsT26 probe, A-Style of the connectorTypical Electrical Characteristics: 26 GHz GSG probe, 250 micron pitchPROBES FOR DEVICE AND IC CHARACTERIZATION UP TO 110 GHZTITAN™ probes realize a unique combination of the micro-coaxial cable based probe technology and MEMS fabricated probe tip. A perfectly matched characteristic impedance of the coplanar probe tips and optimized signal transmission across the entire probe down to the pads of the device under test (DUT) result in excellent probe electrical characteristics. At the same time, the unique design of the probe tip provides minimal probe forward skate on any type of pad metallization material, therefo -re achieving accurate and repeatable measurement up to 110 GHz. TITAN™ probes are suitable for probing on small pads with long probe lifetime and low cost of ownership.The TITAN™ probe family contains dual probes for engineering and design debug of RF and mm-wave IC’s as well as high-end mm-wave range probes for S-parameter characterization up to 110 GHz for modeling of high-performance microwave devices.Characteristic Impedance 50 ΩFrequency rangeDC to 40 GHz Insertion loss (GSG configuration)1< 0.6 dB Return loss (GSG configuration)1> 18 dB DC current ≤ 1 A DC voltage ≤ 100 V RF power, @10 GHz≤ 5 WTypical Electrical Characteristics40 GHz Probe Model: T40Connector K (2.92 mm)Pitch range50 µm to 500 µmStandard pitch step For GSG configuration:from 50 µm to 450 µm from 500 µm to 800 µmFor GS/SG configuration:from 50 µm to 450 µm 25 µm step 50 µm stepAvailable for 90 µm pitch25 µm stepAvailable for 90/500 µm pitch Tip configurations GSG, GS, SG Connector angleV-Style: 90-degree A-Style: 45-degreeMechanical CharacteristicsTypical Electrical Characteristics: 40 GHz GSG probe, 150 micron pitchT40 probe, A-Style of the connectorCharacteristic Impedance50 ΩFrequency range DC to 50 GHz Insertion loss (GSG configuration)1< 0.6 dB Return loss (GSG configuration)1> 17 dBDC current≤ 1 ADC voltage≤ 100 VRF power, @10 GHz≤ 5 W Typical Electrical Characteristics Connector Q (2.4 mm)Pitch range50 µm to 250 µm Standard pitch stepFor GSG configuration: from 50 µm to 450 µm For GS/SG configuration: from 50 µm to 450 µm 25 µm stepAvailable for 90/500/550 µm pitch 25 µm stepAvailable for 90/500 µm pitchTip configurations GSG, GS, SG Connector angle V-Style: 90-degreeA-Style: 45-degreeMechanical CharacteristicsT50 probe, A-Style of the connectorTypical Electrical Characteristics: 50 GHz GSG probe, 150 micron pitchCharacteristic Impedance50 ΩFrequency range DC to 67 GHz Insertion loss (GSG configuration)1< 0.8 dB Return loss (GSG configuration)1> 16 dBDC current≤ 1 ADC voltage≤ 100 VRF power, @10 GHz≤ 5 W Typical Electrical Characteristics Connector V (1.85 mm)Pitch range50 µm to 250 µm Standard pitch stepFor GSG configuration: from 50 µm to 400 µm For GS/SG configuration: from 50 µm to 250 µm 25 µm step Available for 90 µm pitch25 µm step Available for 90 µm pitchTip configurations GSG Connector angle V-Style: 90-degreeA-Style: 45-degreeMechanical CharacteristicsT67 probe, A-Style of the connectorTypical Electrical Characteristics: 67 GHz GSG probe, 100 micron pitchCharacteristic Impedance 50 ΩFrequency rangeDC to 110 GHz Insertion loss (GSG configuration)1< 1.2 dB Return loss (GSG configuration)1> 14 dB DC current ≤ 1 A DC voltage ≤ 100 V RF power, @10 GHz≤ 5 WTypical Electrical CharacteristicsMechanical CharacteristicsTypical Electrical Characteristics: 110 GHz GSG probe, 100 micron pitchT110 probe, A-Style of the connectorCharacteristic impedance50 ΩFrequency range DC to 220 GHz Insertion loss (GSG configuration)1< 5 dB Connector end return loss(GSG configuration)1> 9 dBTip end return loss(GSG configuration)1> 13 dBDC current≤ 1.5 ADC voltage≤ 50 V Typical Electrical CharacteristicsConnector Broadband interface Pitch range50/75/90/100/125 µm Temperature range -40 ~ 150 ºC Contact width15 µmquadrant compatible(allowing corner pads)Yes recommended pad size20 µm x 20 µm recommended OT (overtravel)15 µmcontact resistance(on Al at 20 ºC using 15 µm OT)< 45 mΩlifetime touchdowns(on Al at 20 ºC using 15 µm OT)> 200,000Mechanical CharacteristicsT220 probe, broadband interface Typical Performance (at 20 ºC for 100 µm pitch)BODY DIMENSIONS PROBES Single-Ended V-StyleT220 GHz Probe1.161.1628.328437.455.6512.5527.73Single-Ended A-StyleCALIBRATION SUBSTRATESAC-series of calibration standard substrates offers up to 26 standard sets for wafer-level SOL T, LRM probe-tip cali -bration for GS/SG and GSG probes. Five coplanar lines provide the broadband reference multiline TRL calibration as well as accurate verification of conventional methods. Right-angled reciprocal elements are added to support the SOLR calibration of the system with the right-angled configuration of RF probes. A calibration substrate for wide-pitch probes is also available.Material Alumina Elements designCoplanarSupported calibration methods SOLT, LRM, SOLR, TRL and multiline TRL Thickness 635 µmSizeAC2-2 : 16.5 x 12.5 mm AC3 : 16.5 x 12.5 mm AC5 : 22.5 x 15 mm Effective velocity factor @20 GHz0.45Nominal line characteristic impedance @20 GHz 50 ΩNominal resistance of the load 50 ΩTypical load trimming accuracy error ± 0.3 %Open standardAu pads on substrate Calibration verification elements Yes Ruler scale 0 to 3 mm Ruler step size100 µmCalibration substrate AC2-2Probe Configuration GSGSupported probe pitch100 to 250 µm Number of SOL T standard groups 26Number of verification and calibration lines5Calibration substrate AC-3Probe Configuration GS/SG Supported probe pitch50 to 250 µm Number of SOL T standard groups 26Number of verification and calibration lines5Calibration substrate AC-5Probe Configuration GSG, GS/SG Supported probe pitch250 to 1250 µm Number of SOL T standard groups GSG : 7GS : 7SG : 7Open standardOn bare ceramic Number of verification and calibration linesGSG : 2GS : 1Typical characteristics of the coplanar line standard of AC2-2 calibration substrate measured using T110-GSG100 probes, and methods recommended by the National Institute of Standard and Technologies [2, 3].2468(d B /c m )F requency (G Hz)α-6-4-202I m a g (Z 0) ()F requency (G Hz)AC2-2 W#006 and T110A-GSG100Ω2.202.222.242.262.282.30 (u n i t l e s s )F requency (G Hz)β/βо4045505560R e a l (Z 0) ()F requency (G Hz)ΩTypical Electrical CharacteristicsMPI QAlibria® RF CALIBRATION SOFTWAREMPI QAlibria® RF calibration software has been designed to simplify complex and tedious RF system calibration tasks. By implementing a progressive disclosure methodology and realizing intuitive touch operation, QAlibria® provides crisp and clear guidance to the RF calibration process, minimizing con-figuration mistakes and helping to obtain accurate calibration results in fastest time. In addition, its concept of multiple GUI’s offers full access to all configuration settings and tweaks for advanced users. QAlibria® offers industry standard and advanced calibration methods. Furthermore, QAlibria® is integrated with the NIST StatistiCal™ calibration packages, ensuring easy access to the NIST mul-tiline TRL metrology-level calibration and uncertainty analysis.MPI Qalibria® supports a multi-language GUI, eliminating any evitable operation risks and inconvenience.SpecificationsRF AND MICROWAVE CABLESMPI offers an excellent selection of flexible cables and acces-sories for RF and mm-wave measurement applications forcomplete RF probe system integration.CablesHigh-quality cable assemblies with SMA and 3.5 mm connectorsprovide the best value for money, completing the entry-level RFsystems for measurement applications up to 26 GHz. Phase stab-le high-end flexible cable assemblies with high-precision 2.92, 2.4, 1.85 and 1 mm connectors guarantee high stability, accuracy and repeatability of the calibration and measurement for DC applications up to 110 GHz.MPI offers these cable assemblies in two standard lengths of 120 and 80 cm, matching the probe system’s footprint and the location of the VNA.Cables Ordering InformationMRC-18SMA-MF-80018 GHz SMA flex cable SMA (male) - SMA (female), 80 cmMRC-18SMA-MF-120018 GHz SMA flex cable SMA (male) - SMA (female), 120 cmMRC-26SMA-MF-80026 GHz SMA flex cable SMA (male) - SMA (female), 80 cmMRC-26SMA-MF-120026 GHz SMA flex cable SMA (male) - SMA (female), 120 cmMRC-40K-MF-80040 GHz flex cable 2.92 mm (K) connector, male-female, 80 cm longMRC-40K-MF-120040 GHz flex cable 2.92 mm (K) connector, male-female, 120 cm longMRC-50Q-MF-80050 GHz flex cable 2.4 mm (Q) connector, male-female , 80 cm longMRC-50Q-MF-120050 GHz flex cable 2.4 mm (Q) connector, male-female , 120 cm longMRC-67V-MF-80067 GHz flex cable 1.85 mm (V) connector, male-female, 80 cm longMRC-67V-MF-120067 GHz flex cable 1.85 mm (V) connector, male-female, 120 cm longMMC-40K-MF-80040 GHz precision flex cable 2.92 mm (K) connector, male-female, 80 cm long MMC-40K-MF-120040 GHz precision flex cable 2.92 mm (K) connector, male-female, 120 cm long MMC-50Q-MF-80050 GHz precision flex cable 2.4 mm (Q) connector, male-female , 80 cm long MMC-50Q-MF-120050 GHz precision flex cable 2.4 mm (Q) connector, male-female , 120 cm long MMC-67V-MF-80067 GHz precision flex cable 1.85 mm (V) connector, male-female, 80 cm long MMC-67V-MF-120067 GHz precision flex cable 1.85 mm (V) connector, male-female, 120 cm long MMC-110A-MF-250110 GHz precision flex cable 1 mm (A) connector, male-female, 25 cm longMPI Global PresenceDirect contact:Asia region: ****************************EMEA region: ******************************America region: ********************************MPI global presence: for your local support, please find the right contact here:/ast/support/local-support-worldwide© 2023 Copyright MPI Corporation. All rights reserved.[1] [2][3] REFERENCESParameter may vary depending upon tip configuration and pitch.R. B. Marks and D. F. Williams, "Characteristic impedance determination using propagation constant measu -rement," IEEE Microwave and Guided Wave Letters, vol. 1, pp. 141-143, June 1991.D. F. Williams and R. B. Marks, "Transmission line capacitance measurement," Microwave and Guided WaveLetters, IEEE, vol. 1, pp. 243-245, 1991.AdaptersHigh-In addition, high-quality RF and high-end mm-wave range adapters are offered to address challenges ofregular system reconfiguration and integration with different type of test instrumentation. MRA-NM-350F RF 11 GHz adapter N(male) - 3.5 (male), straight MRA-NM-350M RF 11 GHz adapter N(male) - 3.5 (female), straightMPA-350M-350F Precision 26 GHz adapter 3.5 mm (male) - 3.5 mm (female), straight MPA-350F-350F Precision 26 GHz adapter 3.5 mm (female) - 3.5 mm (female), straight MPA-350M-350M Precision 26 GHz adapter 3.5 mm (male) - 3.5 mm (male), straight MPA-292M-240F Precision 40 GHz adapter 2.92 mm (male) - 2.4 mm (female), straight MPA-292F-240M Precision 40 GHz adapter 2.92 mm (female) - 2.4 mm (male), straight MPA-292M-292F Precision 40 GHz adapter 2.92 mm (male) - 2.92 mm (female), straight MPA-292F-292F Precision 40 GHz adapter 2.92 mm (female) - 2.92 mm (female), straight MPA-292M-292M Precision 40 GHz adapter 2.92 mm (male) - 2.92 mm (male), straight MPA-240M-240F Precision 50 GHz adapter 2.4 mm (male) - 2.4 mm (female), straight MPA-240F-240F Precision 50 GHz adapter 2.4 mm (female) - 2.4 mm (female), straight MPA-240M-240M Precision 50 GHz adapter 2.4 mm (male) - 2.4 mm (male), straight MPA-185M-185F Precision 67 GHz adapter 1.85 mm (male) -1.85 mm (female), straight MPA-185F-185F Precision 67 GHz adapter 1.85 mm (female) -1.85 mm (female), straight MPA-185M-185M Precision 67 GHz adapter 1.85 mm (male) -1.85 mm (male), straight MPA-185M-100FPrecision 67 GHz adapter 1.85 mm (male) -1.00 mm (female), straightDisclaimer: TITAN Probe, QAlibria are trademarks of MPI Corporation, Taiwan. StatistiCal is a trademark of National Institute of Standards and Technology (NIST), USA. All other trademarks are the property of their respective owners. Data subject to change without notice.。
ODA Technologies co.,ltd Limited MX-Series User's
MX-Series User's Guide forREV 211216ACopyright ⓒ 2018 ODA Technologies co.,ltd Limited法律通告© ODA Technologies Co., Ltd.2008此文件获得大韩民国政府的批准,获得国际著作权批准,未经(株)ODA Technologies的提前同意,以法律禁止内容的复制、再生产、或翻译成其它国家的语言进行销售。
产品的保证包括在上述指南的所有内容会因以后产品版本的变更未经提前通知进行修改或提供。
并且在有关法律允许的最大范围内,(株)ODA Technologies包括指南在本文件中包含的所有信息相关内容都属于此范围。
请参考这一点,在购买产品或使用前请咨询本公司,对于指南里包括的所有信息,尤其对于性能或外观等的变更,需要用户确认,和用户之间因此发生问题时,本公司没有责任,特此公告。
并且(株)ODA Technologies没有另行合同的情况下,通过本指南发生的问题点在没有根据另行合同的保证或书面合同时,只能用为指南,特此公告。
支持本产品提供标准产品保证。
还可以进行保证选项,扩张支持联系方式,产品维护合同及顾客支持合同。
对支持程序的ODA Technologies的全体系列的仔细内容请咨询就近的ODA技术营业及客服办公室。
请参考下列信息。
******************+82-32-1800-8644电气, 电子设备的 处理附着的产品标签(参考右侧)表示不可在国内家用垃圾废弃电气/电子产品。
国内请勿废弃为家用垃圾。
若要退还不想要的产品时请咨询当地ODA流通,或仔细内容请参考联系方式。
指南版本信息Manual Part Number: 018PT-2.0Edition 2, February, 2018 Printed in ROK 包括部分修改和最新更新的重印指南印刷日会相同。
修订版本可以通过新的印刷日期知道。
汇信特CWDM方案配置表
电源根据机房环境可以交 直流任意选配
备注
把3路波长复用到一芯光纤 上传输
把一芯光缆解复用成3路波 长,下载B、c间传输的1490
业务 开通与D点的业务
中继A至E业务 中继A至F业务
电源根据机房环境可以交 直流任意选配
电源根据机房环境可以交 直流任意选配
备注
把3路波长复用到一芯光纤 上传输
把一芯光缆解复用成3路波 长,下载c、d间传输的1490
汇信特粗波分方案配置表:
A节点
序号 1 2
3
型号 HCWA_1000 HCW_ODM
HCW_OM4
名称 机箱(有源区机箱,2U,标准19寸) 机箱(无源区机箱,1U,标准19寸)
光复用盘(3波)
4
HCW_OD4
光解复用盘(3波)
5 HCWA_OTU14S2R_1470
光收发接口变换盘(1.25G)
6 HCWA_OTU14S2R_1490
块
1
块
1
1+1冗余保护
块
2
规格 89(高)X350(深)X440(宽) 44(高)X350(深)X440(宽) 1470nm波长到E点,1530到F点,1490到d点
公共端FC/PC、升级端FC/PC
1470、1490、1530 公共端FC/PC、升级端 FC/PC
波长:1490、1510、速率:1.25G、距离: 100KM、传输模式:2R
44(高)X350(深)X440(宽)
1470nm波长到E点,1530到F点,1490到d点 公共端FC/PC、升级端FC/PC
1470、1490、1530 公共端FC/PC、升级端 FC/PC
波长:1490、速率:1.25G、距离:80KM、 传输模式:2R
Agilent 8890 5977C Series gas chromatograph mass s
Agilent 5977C GC/MSD SystemThe Agilent 8890/5977C Series gas chromatograph/mass selective detector (GC/MSD) builds on a tradition of leadership in GC and MS technology, with the world’s most competitive performance and productivity features.Agilent GC/MSD system featuresAgilent 5977C GC/MSD — the most sensitive and robust MSD provides:–Four EI source options including the revolutionary high-efficiency source (HES), which offers the industry’s lowest instrument detection limit (IDL) and bestcarrier gas applications.signal-to-noise ratio (S/N) and a HydroInert source for H2– A heated monolithic quartz gold quadrupole (heatable up to 200 °C) for rapid elimination of contamination to keep the analyzer clean.– A second-generation triple-axis detector (TAD) for eliminating neutral noise.–Scan speeds up to 20,000 u/sec (extractor ion source and HES).–An optional oil-free IDP-3 roughing pump: a cleaner, quieter, and greener alternative (for use with turbo molecular pump systems).10-Year value promiseSupport is guaranteed for 10 years from the date of purchase, or Agilent will provide credit for the residual value of the system toward a model upgrade.Installation checkout specifications Agilent verifies GC/MSD system performance at the customer site.IDL is a statistically based metricthat more accurately confirms system performance than an S/N measurement. Test specificationsare based on splitless injection intoan Agilent J&W HP-5ms Ultra Inert30 m × 0.25 mm, 0.25 μm column for helium and a 20 m × 0.18 mm, 0.18 μm column for HydroInert with hydrogen. IDL analyses use lab helium (hydrogen for HydroInert) with GC gas filters installed. See more about the IDL test at /Library/ technicaloverviews/Public/5990-8341EN.pdf* IDL was statistically derived at 99% confidence level from the area precision of eight sequential splitless injections of OFN (octafluoronaphthalene). Demonstration of IDL specifications require a compatible system configuration, including a liquid autosampler with a 5 μL syringe.–HES IDL was measured using 10 fg injection, 1 µL injection.–Other IDLs were measured using 100 fg, 1 µL injection.–A 30 m column was used for helium IDL checkout; a 20 m column was used for hydrogenIDL checkout.–Helium carrier gas for Installation Specifications of the HES, Extractor, and Stainless steel sources; hydrogen carrier gas for Installation Specification of the HydroInert source only.–Reference IDL specifications from the above table will be confirmed only when purchased as an additional service with a compatible new system (GC and MS) installation.Signal-to-noise (S/N) specificationsa S/N checkout is performed only if there is no compatible autosampler (which is required for IDL checkout). Helium carrier gas, manual injection using a 30 m × 0.25 mm,0.25 µm column and in scan mode. Hydrogen carrier gas, manual injection using 20 m × 0.18 mm, 0.18 µm column and in scan mode. When the autosampler (ALS) is present, these specifications are a reference of the performance. Reference S/N specifications from the above table will not be confirmed at installation or introduction for ALS equipped systems.b Standard scanning from 50 to 300 u at nominal 272.0 u ion.c 1 μL injection of 100 pg/μL benzophenone (BZP) standard, 80 to 230 u scan at nominal 183 u ion, using methane reagent gas.d 2 μL injection of 100 fg/μL OFN standard scanning from 50 to 300 u at nominal 272 u ion, using methane reagent gas.2a Only applicable with optional Accurate Mass software package. Scan mode only. Not verified during installation.b As scan rate increases, sensitivity will decrease, and resolution may degrade.c A high flow rate into a fixed ion source will cause a loss in sensitivity.d The heated quadrupole mass filter should not require maintenance, but if maintenance is required, it should be performed by an Agilent service engineer.34aInlet temperature should be cool enough to touch when performing maintenance.bA micro ion gauge is shipped standard for the CI system, and is available optionally for EI systems.DE67854286This information is subject to change without notice.© Agilent Technologies, Inc. 2022Printed in the USA, May 26, 20225994-4846EN。
ROHM Solution Simulator 用户指南.pdf_1705892277.949866
User’s Guide ROHM Solution SimulatorAutomotive High Precision & Input/Output Rail-to-Rail CMOS Operational Amplifiers (Quad Op-Amps) TLR4377YFV-C – Voltage Follower– DC Sweep simulationThis circuit simulates DC sweep response with Op-Amp as a voltage follower. You can observe the output voltage when the input voltage is changed. You can customize the parameters of the components shown in blue, such as VSOURCE, or peripheral components, and simulate the voltage follower with the desired operating condition.You can simulate the circuit in the published application note: Operational amplifier, Comparator (Tutorial). [JP] [EN] [CN] [KR] General CautionsCaution 1: The values from the simulation results are not guaranteed. Please use these results as a guide for your design.Caution 2: These model characteristics are specifically at Ta=25°C. Thus, the simulation result with temperature variances may significantly differ from the result with the one done at actual application board (actual measurement).Caution 3: Please refer to the Application note of Op-Amps for details of the technical information.Caution 4: The characteristics may change depending on the actual board design and ROHM strongly recommend to double check those characteristics with actual board where the chips will be mounted on.1 Simulation SchematicFigure 1. Simulation Schematic2 How to simulateThe simulation settings, such as parameter sweep or convergence options,are configurable from the ‘Simulation Settings’ shown in Figure 2, and Table1 shows the default setup of the simulation.In case of simulation convergence issue, you can change advancedoptions to solve. The temperature is set to 27 °C in the default statement in‘Manual Options’. You can modify it.Figure 2. Simulation Settings and execution Table 1.Simulation settings default setupParameters Default NoteSimulation Type DC Do not change Simulation TypeParameter Sweep VSOURCE VOLTAGE_LEVEL from 0 V to 5 V by 0.1 VAdvanced options Balanced - Convergence Assist -Manual Options .temp 27 - SimulationSettingsSimulate3 Simulation Conditions4 Op-Amp modelTable 3 shows the model pin function implemented. Note that the Op-Amp model is the behavior model for its input/output characteristics, and no protection circuits or the functions not related to the purpose are not implemented.5 Peripheral Components5.1 Bill of MaterialTable 4 shows the list of components used in the simulation schematic. Each of the capacitors has the parameters of equivalent circuit shown below. The default values of equivalent components are set to zero except for the ESR ofC. You can modify the values of each component.Table 4. List of capacitors used in the simulation circuitType Instance Name Default Value Variable RangeUnits Min MaxResistor R1_1 0 0 10 kΩRL1 10k 1k 1M, NC ΩCapacitor C1_1 0.1 0.1 22 pF CL1 10 free, NC pF5.2 Capacitor Equivalent Circuits(a) Property editor (b) Equivalent circuitFigure 3. Capacitor property editor and equivalent circuitThe default value of ESR is 0.01 Ω.(Note 2) These parameters can take any positive value or zero in simulation but it does not guarantee the operation of the IC in any condition. Refer to the datasheet to determine adequate value of parameters.6 Recommended Products6.1 Op-AmpTLR4377YFV-C : Automotive High Precision & Input/Output Rail-to-Rail CMOS Operational Amplifier (QuadOp-Amp). [JP] [EN] [CN] [KR] [TW] [DE]TLR2377YFVM-C : Automotive High Precision & Input/Output Rail-to-Rail CMOS Operational Amplifier (DualOp-Amp). [JP] [EN] [CN] [KR] [TW] [DE]TLR377YG-C : Automotive High Precision & Input/Output Rail-to-Rail CMOS Operational Amplifier. [JP] [EN] [CN] [KR] [TW] [DE]LMR1802G-LB : Low Noise, Low Input Offset Voltage CMOS Operational Amplifier. [JP] [EN] [CN] [KR] [TW] [DE] Technical Articles and Tools can be found in the Design Resources on the product web page.NoticeROHM Customer Support System/contact/Thank you for your accessing to ROHM product informations.More detail product informations and catalogs are available, please contact us.N o t e sThe information contained herein is subject to change without notice.Before you use our Products, please contact our sales representative and verify the latest specifica-tions :Although ROHM is continuously working to improve product reliability and quality, semicon-ductors can break down and malfunction due to various factors.Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM.Examples of application circuits, circuit constants and any other information contained herein areprovided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.The technical information specified herein is intended only to show the typical functions of andexamples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.The Products specified in this document are not designed to be radiation tolerant.For use of our Products in applications requiring a high degree of reliability (as exemplifiedbelow), please contact and consult with a ROHM representative : transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.Do not use our Products in applications requiring extremely high reliability, such as aerospaceequipment, nuclear power control systems, and submarine repeaters.ROHM shall have no responsibility for any damages or injury arising from non-compliance withthe recommended usage conditions and specifications contained herein.ROHM has used reasonable care to ensur e the accuracy of the information contained in thisdocument. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.Please use the Products in accordance with any applicable environmental laws and regulations,such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.W hen providing our Products and technologies contained in this document to other countries,you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.This document, in part or in whole, may not be reprinted or reproduced without prior consent ofROHM.1) 2)3)4)5)6)7)8)9)10)11)12)13)。
EX260-SMJ1 -SMJ2 -SMJ3 -SMJ4 系列产品说明书
<EX260-SMJ1/-SMJ2/-SMJ3/-SMJ4>InstallationGeneral instructions on installation and maintenanceConnect valve manifold to the SI unit.Connectable valve manifolds are the same as for EX250 series SI unit.Refer to the EX250 series valve manifold section in the valve catalogue for valve manifold dimensions.145323412Power supply connector layout34512Ground terminalConnect the ground terminal to ground.Resistance to ground should be 100 ohms or less.SettingValve manifoldReplacement of the SI unit•Remove the M3 hexagon screws from the SI unit and release the SI unit from the valve manifold.•Replace the SI unit.•Tighten the screws with the specified tightening torque. (0.6 Nm)Precautions for maintenance •Be sure to switch off the power.•Check there is no foreign matter inside the SI unit.•Check there is no damage and no foreign matter being stuck to the gasket.•Be sure to tighten the screws with the specified torque.If the SI unit is not assembled properly, inside PCBs may be damaged or liquid and/or dust may enter into the unit.Connecting cablesSelect the appropriate cables to mate with the connectors mounted on the SI unit.TroubleshootingTechnical documentation giving detailed troubleshooting information can be found on the SMC website (URL ).SpecificationsConnected load: 24VDC Solenoid valve with surge voltage suppressor of 1.5 W or less(manufactured by SMC)Current consumption of power supply for SI unit operation: 0.1 A max.Ambient temperature for operation: -10 to 50 C Ambient temperature for storage: -20 to 60 C Pollution degree 3: (UL508)Technical documentation giving detailed specification information can be found on the SMC website (URL ).Outline DimensionsTechnical documentation giving detailed outline dimensions information can be found on the SMC website (URL ).AccessoriesTechnical documentation giving detailed accessories information can be found onthe SMC website (URL ).Assembly and disassembly of the SI unitNOTEThe direct current power supply to combine should be UL1310 Class2 power supply when conformity to UL is necessary.Fieldbus deviceOperation ManualEX260 Series for CC-LinkThank you for purchasing an SMC EX260 Series Fieldbus device (Hereinafter referred to as "SI unit" ).Please read this manual carefully before operating the product and make sure you understand its capabilities and limitations.Please keep this manual handy for future reference.To obtain more detailed information about operating this product, please refer to the SMC website (URL ) or contact SMC directly.These safety instructions are intended to prevent hazardous situations and/orequipment damage.These instructions indicate the level of potential hazard with the labels of"Caution", "Warning" or "Danger". They are all important notes for safety and must be followed in addition to International standards (ISO/IEC) and other safety regulations.Output number assignmentOutput numbering starts at zero and refers to the solenoid position on the manifold.Note: Specifications are subject to change without prior notice and any obligation on the part of the manufacturer.© 2011 SMC Corporation All Rights ReservedAkihabara UDX 15F, 4-14-1, Sotokanda, Chiyoda-ku, Tokyo 101-0021, JAPAN Phone: +81 3-5207-8249 Fax: +81 3-5298-5362URL LED indicationFieldbus interface connector layoutTerminating resistorThe terminating resistor to be connected to the CC-Link network depends on the type Note•Use the internal terminating resistor only when the SI unit is placed at the end of the CC-Link main line.An external terminating resistor should not be used when the internal resistor is used.The terminating resistor value will be outside the specified range. A network communication error may occur.Note•When the CC-Link Ver.1.00 dedicated High-performance cable is used, disable the internal terminating resistor switch and connect a 130 Ω terminating resistor to the BUS OUT connector.Switch settingThe switches should only be set with the power supply turned off.Open the cover and set the rotary switches and DIP switch with a small flat blade screwdriver.STATION NO.ON OFFOperator。
卓越400 450全自动产品维修手册V11
3. 数据采集电源和线缆检查.............................................................................................10 4. 数据采集和前置运放线路板更换.................................................................................10
204中文说明书
GSW型光栅数显系统(中文液晶提示)使用说明书成都远山机电产品有限公司尊敬的用户:欢迎您使用远山机电最新开发液晶中文提示的GSW 光栅数显系统,远山机电光栅系统广泛用于铣床、磨床、镗床、线切割、车床、电火花加工设备,它的应用有助于提高生产效率、显示直观、操作方便、精度准确、重复性稳定,是模具制造业、机械加工业、精密测量仪器必不可少的装置。
本系统设置多种智能化功能,如SDM300点记忆、等分圆和椭圆、斜面加工、R的加工8个面选择、分中功能的用法,还配置了计算器,等等功能,使用起来十分方便。
应用远山机电的光栅数显系统,不须经过培训,按照中文使用说明书每步提示一看就懂。
最适合刚使用操作的新手,对于熟练的操作者更是得心应手。
要想了解有关的细节请阅读使用说明书。
安全注意事项:打开产品包装,取出箱内数显表与电子尺相接,然后插上电源检查显示是否正常。
①开箱后检查外观是否完好,若有故障应立即联系本公司销售部,切勿自行拆卸维修。
②本装置使用110V~220V,50Hz~60Hz的交流电源,电源插头是带有接地脚的三芯电源插头。
三芯电源插座地线一定要接地牢靠。
③用户不可以自行打开机壳修理,表内有高压电源以免造成人员伤害。
④本机壳是采用ABS工程塑料,不具防爆高温的环境中使用。
⑤平时不用时请关闭电源,可延长本产品使用时间。
⑥在雷雨天气时应关闭或拔掉电源线以免高压雷击电网引起表的电源电压突然猛增高而烧毁表内电源,给用户带来不必要的损失。
日常维护:①每天下班时,清洁时请关闭电源。
②用干布或毛刷擦拭数显表或电子尺防护外壳。
③不能用甲苯或乙醇清洗外壳。
④数显表外壳或显示窗的污迹可用洗衣粉和水搅匀用毛巾扭干水擦拭。
承诺:本公司产品如因用户使用操作不当造成电子尺和数显表的损坏,特别是因碰撞造成产品外观或内部损坏,或自行拆下电子尺限位,造成因超行程把尺撞坏,需本公司维修服务的,本公司要收取适当的材料费和维修费。
面板按键说明GSW-204GSW-304目录功能项目 (7)清零 (8)输入坐标 (8)公/英制显示 (8)ABS/INC坐标 (9)自动分中 (10)RI(寻找师傅零位) (11)半径/直径 (11)计算器 (11)SDM300组记忆 (12)圆周分孔 (18)椭圆分孔 (21)斜线分孔 (25)圆弧加工 (27)平滑圆弧加工 (35)斜面加工 (39)电火花加工 (42)基本参数 (45)高级用户 (46)光栅线位移传感器 (48)光栅线位移动传感器行程和安装尺寸 (51)安装示图 (52)故障分析与处理 (53)GSW-中文提示光栅数显表,中文辅助显示智能表,采用高科技软件电子技术,功能多、易操作、可靠耐用,使机械加工的必备产品。
CUTMASTER TRUE Series 电子喷灌系统与配件说明书
W H EN Y O UN E E D I T .A L WA Y S DE L I V E R I NGW H E N Y O U N E E D I T.A L W A Y S D E L I V E R I N Gpage 3Truly MORE...The CUTMASTER®TRUE™ Series microprocessor controlled front panel LED’s assureextreme operator confidence and error free use from setup to clean up.Truth #2True StrengthTruth #3 True Protection As if a 4 yEAR unlimited power supply warranty wasn’t enough, the CUTMASTER TRUE Series is the only line of plasma cutting machines that features TRUE G UARD™– a rugged roll bar for added durability on our larger plasma systems.*The CUTMASTER TRUE Series allows you to work all day at our recommended cut capacity. But when you need that extra punch, you can be confident that it’s there.Truth #1 True ConfidenceTruth #5 True FlexibilityTruth #6 True Portability The CUTMASTER TRUE Series offers lighter, more portable machines without compromising performance.* Not available on the CUTMASTER 42 The new MULTI-VOLTAG E CUTMASTER TRUE Series features the versatile and patented 1Torch® with SureLok® technology. Consumable parts; lead extensions provide cutting up to 100' (30.5 m) from power supply; and the flexibility to move quickly from hand to mechanized cutting all with the change of a torch.(Add PCB for CNC interface.)Truth #4 True Tip™The Thermal Dynamics CUTMASTER TRUE Series plasma system offers the only 60 Amp drag cutting tip on the market today.*International Customer Care: 940-381-1212 / FAX940-483-8178 The POWER Of Two Machines Built Into One (120V and 230V)42page 5V ConstructionV Maintenance / Repair V FabricationInternational Customer Care: 940-381-1212 / FAX page 7V ManufacturingInternational Customer Care: 940-381-1212 / FAX applications include:Lightweight design improves portability (Reduced nearly 50%).Color Coded LED’sindicate pressure status and setup errors.All user controls are conveniently located on the front panel.Universal selectable input power from 208 to 460 VAC ± 10%, single or three phase, 50 or 60 Hz.TRUE G UARD™ roll bar provides easy transportation and protects the front and rear of the power supply for unmatched durability.Note: Features apply to 52, 82, 102 and 152 models onlyCUTMASTER TRUE SERIES: Superior Performance FeaturesThe Industry's only 60 Amp Drag TipMultiple Torch Capability (Hand, Mechanized, Automation)Convenient storage compartment for spare and consumable partsTrigger latch feature prevents hand fatigue during long cuts. Auto Pilot Restart feature instantly reignites the pilot arc while cutting expanded metals.page 9International Customer Care: 940-381-1212 / FAX page 111Torch ® Consumables Selection GuideInternational Customer Care: 940-381-1212 / FAX 940-483-8178(using magnetic attachment) when cutting or beveling is required. For use with most Thermaluide shown with optional This easy-to-use guide cuts circles fromwill see noticeable improvement in quality,torches. Cutting Bushing cuts. Its consistent standoff improves cut qualityand maximizes overall performance. Produces more Lightweight, minimum set up time, and no power required. Magnetic mounts ensure placement and ease of use. Optional suction plates available for non-magnetic applications (i.e. aluminum anduide Kit includes: 4 ft. (1.2 m) standard rail Torch Holder and Bushing Heavy Duty Magnets (2 ea.) Slide Assembly Wheels and Fasteners. Optional 4 ft. (1.2 m) extensions These lead covers are suitable for bothleads. Snaps makeit easy to install. For wider torches, considersnapping two covers together width wise.Cat. No. 9-8420 - Short Trigger GuardCat. No. 9-8421 - Long Trigger GuardThese guards offer additional protection from accidental activation or The CUTMASTER TRUE Standoff Cutting™ANDWelding Gloves Cat. No. 9-1250Automation Interface KitCat. No. 9-8311 - For CUTMASTER TRUE™ Series (52, 82, 102, and 152)CNC Interface Cable 25 ft. (7.6 m) 9-8312 50 ft. (15.2 m) 9-8313 75 ft. (22.8 m) 9-8315 100 ft. (30.5 m) 9-8316125 ft. (38.0 m)9-8317Pinion AssemblyCat. No. 7-2827 - 13/8" (35 mm) DiameterAUTOMATION ACCESSORIESMISCELLANEOUS ACCESSORIES Multi-Purpose Cart Cat. No. 7-8888Designed for most portable manual cutting systems such as the PakMaster ® or CUTMASTER ®, or any similar sized systems.This rugged steel cart has easy rolling 8" (203 mm) diameter wheels along with 3" (76 mm) front mounted casters. This cart also serves as an excellent showroom display stand.PORTABLE GEAR For improved consumable parts life and overall performance, Thermal Dynamics recommends Air Filter Kits be used on all plasma cutting systems.Single Stage Air Filter KitCat. No. 7-7507 (Filter Body 9-7740, Hose 9-7742, Filter Element 9-7741)For use with shop compressed air systems, this in-line filter will not allow moisture or water to pass through the filter element evenif it becomes completely saturated. This hi-tech filter element actually blocks the absorption of water to increase performance and improve consumable parts life.AIR FILTER / AIR FILTER KITSATC ® Lead Extensions 15 ft. (4.6 m) 7-754425 ft. (7.6 m) 7-754550 ft. (15.2 m) 7-7552Available for any system using 1Torch ® with ATC Quick Disconnect. Leads Extensions enable you to customize your lead length tosuit the cutting job.W H E N Y O U N E E D I T.Plasma Cutting Techniques DVDCat. No. 9-1253Two Stage Air Filter Cat. No. 9-9387First Stage Element Cat. No. 9-1021Second Stage ElementCat. No. 9-1022page 13International Customer Care: 940-381-1212 / FAX page 15International Customer Care: 940-381-1212 / FAX * Use 7-5260 with 7-7545 for a SL60, 45 ft. (13.7 m)** Use 7-5263 with 7-7545 for a SL100, 45 ft. (13.7 m)1Torch, a trademark of Thermal Dynamics Corporation, is registered with the U.S. Patent and Trademark Office, and is the subject of trademark registrations and pending applications in numerous other countries. For information on trademark registrations of Thermal Dynamics Corporation, contact the local trademarkoffices in the countries of interest.。
SAEJ2044 SEP 2002
汽车工程师学会技术标准委员会的规定:搣本报告由汽车工程师学会发表,旨在推动技术与工程科学的发展。
本报告的应用是完全自愿的,使用者应对本报告任何特定用途的适用性及适合性(包括因本报告产生的任何侵犯专利权的行为)承担全部责任。
汽车工程师学会至少每五年对所有技术报告实施一次审查,并有可能在此时重新确认、修订或撤销技术报告。
汽车工程师学会欢迎您提出书面的意见及建议。
版权所有© 2002 SAE (汽车工程师学会)国际版权所有。
未经汽车工程师学会的书面许可,不得复制、在检索系统中保存或以任何形式或通过任何方式(包括电子、机械、影印、录制或其它方式)传输本出版物的任何内容。
如需订购资料,请联系:电话:877-606-7323(美国与加拿大境内)电话:724-776-4970(美国境外)传真:724-776-0790电邮:custsvc@汽车工程师学会网址:水陆交通工具车辆 建议 惯例 J2044 修订标号 2002年9月 发布日期:1992-06 修订日期:2002-09 代替 J2044 1997年12月液体燃料和蒸汽/排放物系统快连接头规范目 录1.范围 ............................................................................................................................................................... 4 2.参考文献 ....................................................................................................................................................... 4 2.1 适用出版物 (4)2.1.1 SAE (汽车工程师学会)出版物 (4)2.1.2 ASTM 出版物 (4)2.2 相关出版物 (4)2.2.1 SAE (汽车工程师学会)的出版物 ............................................................................................................ 53.定义 ............................................................................................................................................................... 5 4.尺寸的名称 ................................................................................................................................................... 5 5.试验温度 ....................................................................................................................................................... 5 6.功能要求 ....................................................................................................................................................... 6 6.1 泄漏测试 . (6)6.1.1 测试程序(低压) (6)6.1.2 验收标准(低压) (6)6.1.3 测试程序(高压) (6)6.1.4 验收标准(高压) (8)6.1.5 测试程序(真空) (8)6.1.6 验收标准(真空) (8)6.2 组装施力 (8)6.2.1 测试程序(新部件) (8)6.2.2 测试程序 (9)6.2.3 验收标准 (9)6.3 拉离的施力 (9)6.3.1 测试程序 (10)6.3.2 验收标准 (10)6.4 侧向载荷能力 (10)6.4.1 测试程序 (11)6.4.2 验收标准(侧向负载泄漏试验) (11)6.4.3 试验要求(侧向负载断裂试验) (11)6.4.4 验收标准 (11)6.5 防蒸发排放 (12)6.5.1 测试程序 (12)6.5.2 验收标准 (12)6.6 电阻 (12)6.6.1 测试程序 (12)6.6.2 验收标准 (13)7. 设计验证/验证测试 (13)7.1 腐蚀 (13)7.1.1 测试程序 (13)7.1.2 验收标准 (13)7.2 氯化锌耐受性 (13)7.2.1 测试程序 (13)7.2.2 验收标准 (13)7.3 外部化学和环境耐受性 (14)7.3.1 测试程序 (14)7.3.2 流体或介质 (14)7.3.3 验收标准 (14)7.4 燃料的兼容性 (14)7.4.1 测试程序 (14)7.4.2 测试燃料 (15)7.4.3 试验要求 (15)7.4.4 验收标准 (15)7.5 寿命周期 (15)7.5.1 测试程序 (15)7.5.2 振动频率 (15)7.5.3 加速度 (15)7.5.4 振动的持续时间 (16)7.5.5 流体压力 (16)7.5.6 流体流量(只对液体燃料的快速连接接头) (16)7.5.7 试验持续时间 (16)7.5.8 试验周期 (16)7.5.9 验收标准 (17)7.6 流量限制 (19)7.6.1 测试程序 (19)7.6.2 验收标准 (19)7.7 高温爆裂 (19)7.7.1 测试程序 (19)7.7.2 验收标准 (19)8. 设计检查/验证和进程内测试矩阵 (19)9. 注 (20)9.1 边栏符号 (20)附录A 匹配管端模板举例 (21)1. 范围本SAE(汽车工程师学会)推荐惯例定义标准的插入式管端尺寸,以保证所有相同尺寸和标准管端连接器设计之间的互换性。
CBM-20A(简易)
1.4.1 CBM-20A.................................................................................................... 1-4 1.4.2 外部接口规格 ............................................................................................. 1-5 1.4.3 控制规范..................................................................................................... 1-7
! 应用的预防措施 .................................................................................................... VI ! 安装位置注意事项 ................................................................................................ VII ! 安装注意事项 ...................................................................................................... VIII ! 操作注意事项 ........................................................................................................ IX ! 仪器检查、维护、调节以及保养注意事项 .............................................................. X
CWDM设备基本原理与维护
ALM FCTRL
O
O
P W R
M D C U
2TR
MU连接器 MU连接器
MU连接器
发送第一路光信号到传输线路
2TR、2IR
接收来自线路的第一路光信号。
2TR、2IR
发送第二路光信号到客户端设备。 2TR
HSIR
LR2
MU连接器 接收来自线路2的光信号。 HSIR
多速率透传盘
• 多速率透传盘属于CiTRANS 830C设备光转发盘的一种,主要实现客户端业务信号与特定波长光信 号之间的转换透传功能。可以透传STM-1、STM-4、STM-16、GE、FC、FICON、ESCON等多种业 务。
• 多速率透传盘按照功能不同又可分为两类,一类是带保护功能的,一类是不带保护功能的。带保护 功能的多速率透传盘带有1路保护功能,即不需要OCP2盘也可自行实现并发选收的保护功能,并且 倒换时间控制在50ms内。每类多速率透传盘根据传输距离不同又分为如下表所示的5种。
O T U
T
U
O
/
T
O
U
C
T U / O C
F A N
P
P
SVB
DBG
PWR
PWR:电源盘 MDCU:多功能控制盘(包括EMU、OSC、合波分波或OADM) OTU:光转发单元 OCP:光通道保护单元 FAN:风扇单元
图1 设备总体框图
1) 电源盘(PWR1/PWR2):电源盘为设备上的其它单盘提供一路或两路-48V电源。 • 设备支持-48V直流供电和220V交流供电两种方式。 • 采用直流供电时,电源盘名称缩写为PWR2,采用双电源,1+1备份,通过外接具有对间接雷电或
岛津三重四极杆液质联用仪教材-V1 [兼容模式]
100
100
100
97.5
65.0 32.5 10.6 M M+2 Cl M M+2 M+4 Cl2 M 31.7 3.4 M+2 M+4 M+6 Cl3
9
9/11/2013
质谱常用概念-同位素
含氯化合物的典型质谱图
正离子模式
p-Chlorophenol C6H5ClO Exact Mass: 128.0029 Nominal Mass: 128
分子式 C3H6O C2H2O2 C4H10
名义质量 36+6+16 = 58 24+2+32 = 58 48+10 = 58
平均质量 58.1791 58.0361 58.1222
准确质量 58.0417 58.0054 58.0780
相关术语解释
色谱图: TIC:Total Ion Chromatogram 总离子流色谱图 EIC:Extracted Ion Chromatogram 提取离子流色谱图 MC: Mass Chromatogram 质量色谱图(同EIC) MIC:Mixed Ion Chromatogram 混合离子流色谱图 采集模式: SIM:Selected Ion Monitoring 选择性离子监测模式 Scan:扫描模式 SRM: Selective Reaction Monitor 选择反应监测 MRM: Multiple Reaction Monitoring 多反应监测 子离子扫描 ( Product Ion Scan);母离子扫描 (Precursor Ion Scan); 中性丢失扫描 (Neutral Loss Scan)
intensity [M+H]+
小尺寸CWDM模块(MSCM)-16
小尺寸 CWDM 模块 (MSCM)-16规格参数单位16 通道中心波长(λC ) nm - “0” Series: 1270,1290,1310,1330,1350,1370,1390,14101470,1490,1510,1530,1550,1570,1590,1610“1” Series: 1271,1291,1311,1331,1351,1371,1391,1411 1471,1491,1511,1531,1551,1571,1591,1611通道间隔 nm - 20 透射带宽 nm Min λC 6.5 插入损耗@ 室温 dBMax 2.0 隔离度 相邻 dB Min 30 非相邻45 透射通道平坦度 dB Max 0.3 偏振相关损耗(PDL ) dB Max 0.2 偏振模色散(PMD ) Ps Max 0.1 回波损耗(RL ) dB Min 45 方向性(DIR ) dB Min 50 工作功率 mW Max 300 负荷拉力 NMax 5 工作温度 o C - -5 ~ 65 储存温度 oC- -40 ~ 85 封装尺寸 mm-60*56*11(1) 相关参数不含连接器损耗,已考虑工作温度及所有偏振状态的影响。
(2) 可按客户要求的尺寸制作特点● 20nm 通道间隔 ● 低插入损耗 ● 紧凑式设计 ● 无胶光路 ● 高稳定性、高可靠性应用● 城域光网络 ● 有线电视系统 ● 波分复用系统A 型- 标准编码规则例. MSCM-AG0270-1913CWDM –A 型模块, 1x16, 第一通道波长1270nm ,康宁 SMF- 28E 光纤, 900um 松套管,尾纤长度 1米, SC/UPC 连接器.MSCM 封装尺寸 通道数 隔离度类型 第一通道波长A– A 型 X – C 客户定义G – 1x16 模块X – 客户定义0 – 标准第一通道波长(最短波长:3位数) X –客户定义光纤类型 光缆类型 光纤长度 连接器类型1 – Corning SMF-28E1 – 250 μm 9 – 900 μm1 ≥ 1mX – 客户定义0 – None 1 – FC/UPC 2 – FC/APC 3 – SC/UPC 4 – SC/APC 5 – LC 6 – MUX – 客户定义封装尺寸。
CWDM系统的安装教程
CWDM系统的安装教程使用粗分波复用(CWDM,coarse wavelength division multiplexing)技术可以在不增加光纤数量的情况下扩大光纤网络的容量。
在CWDM系统中,CWDM复用&解复用器是最重要的部件,其功能是将多个(最高达18个)不同波长的光信号组合在一根光纤中进行传输,从而增加了现有光纤光缆的传输容量。
本教程将对CWDM复用&解复用器以及CWDM系统的安装步骤进行详细介绍,希望能对初次接触CWDM系统的读者有所启发。
CWDM复用&解复用器概览CWDM复用&解复用器是一种无源设备,性能可靠、使用方便。
它可以复用多个不同波长的光信号,这些波长都在1270 nm—1610 nm(波长间隔为20 nm)之间。
根据不同的应用,CWDM复用&解复用器的通道数量也不尽相同,目前比较常用的是4通道的CWDM复用&解复用器,可以将4个通道的数据同时在一根光纤上传输(如下图)。
需要注意的是,CWDM复用&解复用器必须成对使用,也就是说,当CWDM复用器在发射端将不同波长的光信号复用到一根光纤上后,接收端必须使用CWDM解复用器将光纤中混合的光信号解复用为不同波长的光信号。
现在市场上的CWDM复用&解复用器大多为复用&解复用一体化的设备。
CWDM系统的组成部分CWDM系统主要由近端组件、CWDM复用&解复用模块和远端组件构成,其中,近端组件和远端组件是指在不同位置的交换机。
除此之外,还有用于固定支承CWDM复用&解复用模块的机架式机箱、用来连接交换机和CWDM复用&解复用模块的CWDM SFP光模块和单模光纤跳线(如下表)。
产品名称产品图片产品详情机架式机箱可固定支承2/3/4/12块LGX盒式CWDM复用&解复用模块CWDM复用&解复用模块2/4/5/8/9/16/18通道工作波长1270nm-1610nm监控端口CWDM SFP光模块传输速率1.25Gbps工作波长1270nm-1610nm传输距离20/40/80/100/120 km单模光纤跳线LC-LC连接器纤芯直径9/125 um有单工、双工可选CWDM系统组装步骤CWDM系统的组装可以分为以下4步:安装机架式机箱CWDM机架式机箱应安装在标准的1RU机柜或机架中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
100G CWDM4 MSATechnical Specifications2km Optical SpecificationsParticipantsEditor– David Lewis, LUMENTUMComment Resolution Administrator– Chris Cole, FinisarThe following companies were members of the CWDM4 MSA at the release of this specification:Contacts: RevisionsCONTENTSCONTENTS (2)TABLES (3)FIGURES (3)1GENERAL (4)1.1SCOPE (4)1.2CWDM4 MODULE BLOCK DIAGRAM (4)1.3FUNCTIONAL DESCRIPTION (5)1.4HARDWARE SIGNALING PINS (5)1.5MODULE MANAGEMENT INTERFACE (5)1.6HIGH SPEED ELECTRICAL CHARACTERISTICS (5)1.7FEC Requirements (5)1.8MECHANICAL DIMENSIONS (5)1.9OPERATING ENVIRONMENT (5)1.10POWER SUPPLIES AND POWER DISSIPATION (5)2CWDM4 OPTICAL SPECIFICATIONS (6)2.1WAVELENGTH-DIVISION-MULTIPLEXED LANE ASSIGNMENTS (6)2.2OPTICAL SPECIFICATIONS (6)2.2.1CWDM4 transmitter optical specifications (7)2.2.2CWDM4 receive optical specifications (8)2.2.3CWDM4 illustrative link power budget (9)3DEFINITION OF OPTICAL PARAMETERS AND MEASUREMENT METHODS (10)3.1Test patterns for optical parameters (10)3.1.1Square wave pattern definition (10)3.2Skew and Skew Variation (10)3.3Wavelength (10)3.4Average optical power (10)3.5Optical Modulation Amplitude (OMA) (11)3.6Transmitter and dispersion penalty (TDP) (11)3.6.1Reference transmitter requirements (11)3.6.2Channel requirements (11)3.6.3Reference receiver requirements (12)3.6.4Test procedure (12)3.7Extinction ratio (12)3.8Transmitter optical waveform (transmit eye) (12)3.9Receiver sensitivity (12)3.10Stressed receiver sensitivity (13)4FIBER OPTIC CABLING MODEL (14)5CHARACTERISTICS OF THE FIBER OPTIC CABLING (CHANNEL) (15)5.1Optical fiber cable (15)5.2Optical fiber connection (15)5.2.1Connection insertion loss (15)5.2.2Maximum discrete reflectance (15)5.3Medium Dependent Interface (MDI) requirements (15)6CWDM4 Module Color Coding (16)TABLESTable 2-1: Wavelength-division-multiplexed lane assignments (6)Table 2-2: CWDM4 operating range (6)Table 2-3: CWDM4 transmit characteristics (7)Table 2-4: CWDM4 receive characteristics (8)Table 2-5: CWDM4 illustrative power budget (9)Table 3-1: Patterns for optical parameter testing (10)Table 3-2: Transmitter compliance channel specifications (11)Table 4-1: Fiber optic cabling (channel) characteristics (14)Table 5-1: Optical fiber and cable characteristics (15)Table 6-1: CWDM4 Module Color Coding (16)FIGURESFigure 1-1: Block diagram for CWDM4 transmit/receive paths (4)Figure 3-1 Test setup for measurement of receiver sensitivity (13)Figure 4-1: Fiber optic cabling model (14)1 GENERAL1.1 SCOPEThis Multi-Source Agreement (MSA) defines 4 x 25 Gbps Coarse Wavelength Division Multiplex (CWDM) optical interfaces for 100 Gbit/s optical transceivers for Ethernet applications including 100 GbE. Forward error correction (FEC) is required to be implemented by the host in order to ensure reliable system operation. Two transceivers communicate over single mode fibers (SMF) of length from 2 meters to at least 2 kilometers. The transceiver electrical interface is not specified by this MSA but can have, for example, four lanes in each direction with a nominal signaling rate of 25.78125 Gbps per lane.Different form factors for the transceivers are possible. Initial implementations are expected to use either the CFP4 or the QSFP28 module form factors. Other form factors are possible and are not precluded by this MSA.1.2 CWDM4 MODULE BLOCK DIAGRAMRX3RX2RX1RX0TX0TX1TX2TX3WD = Wavelength divisionNOTE – Specification of the retime function is beyond the scope of this MSA.Figure 1-1: Block diagram for CWDM4 transmit/receive paths1.3FUNCTIONAL DESCRIPTIONCWDM4 modules comply with the requirements of this document and have the following common features: four optical transmitters; four optical receivers with signal detect; wavelength division multiplexer and demultiplexer; and a duplex optical connector for single-mode fiber. The optical connector type is vendor specific but can include SC or LC types.1.4HARDWARE SIGNALING PINSHardware signaling pins are specified in the respective module form factor MSAs.1.5MODULE MANAGEMENT INTERFACEThe contents of the various ID registers shall comply with the requirements of the module MSA and the respective standards. In the case of QSFP28 modules, the management interface complies with SFF-8636. For CFP4 modules, the management interface complies with the CFP MSA Management Interface Specification.1.6HIGH SPEED ELECTRICAL CHARACTERISTICSThe detailed high speed electrical characteristics are not defined by this MSA. 100GE modules could be implemented in compliance with IEEE 802.3bm Annex 83E, CAUI-4 chip-to-module, or OIF CEI-28G-VSR or other interfaces to be defined.1.7FEC REQUIREMENTSThe optical link is specified to operate at a bit error ratio (BER) of 5 x 10-5. The host system is required to enable RS(528,514) FEC in accordance with clause 91 of IEEE-Std TM 802.3bj in order to comply with the IEEE 100G Mean Time to False Packet Acceptance (MTTFPA) requirements. The option to bypass the Clause 91 RS-FEC correction function is not supported.1.8MECHANICAL DIMENSIONSMechanical dimensions are defined in the module form factor MSA specifications. QSFP28 is defined in SFF-8661. CFP4 is defined in the CFP4 Hardware Specification.1.9OPERATING ENVIRONMENTAll specified minimum and maximum parameter values shall be met when the host system maintains the operating case temperature and supply voltages within the module vendor specified operating ranges. All minimum and maximum limits apply over the operating life of the system.1.10 POWER SUPPLIES AND POWER DISSIPATIONModule vendors shall specify the module power supply requirements in accordance with the module MSA.2CWDM4 OPTICAL SPECIFICATIONS2.1WAVELENGTH-DIVISION-MULTIPLEXED LANE ASSIGNMENTSThe wavelength range for each lane of the CWDM PMD is defined in Table 2-1. The center wavelengths are spaced at 20 nm.Table 2-1: Wavelength-division-multiplexed lane assignments2.2OPTICAL SPECIFICATIONSThe operating range for a CWDM4 PMD is defined in Table 2-2. A CWDM4 compliant PMD operates on single-mode fibers according to the specifications defined in Table 4-1 and characteristics in 5.1. A PMD that exceeds the required operating range while meeting all other optical specifications is considered compliant (e.g., operating at 2.5 km meets the operating range requirement of 2 m to 2 km).Table 2-2: CWDM4 operating range2.2.1CWDM4 transmitter optical specificationsThe CWDM4 transmitter shall meet the specifications defined in Table 2-3.strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.b Even if the TDP < 1.0dB, the OMA (min) must exceed this value.c Transmitter reflectance is defined looking into the transmitter.d TDP does not include a penalty for multi-path interference (MPI).2.2.2CWDM4 receive optical specificationsThe CWDM4 receiver shall meet the specifications defined in Table 2-4.The receiver shall be able to tolerate, without damage, continuous exposure to an optical signal having this average power levelb Average receive power, each lane (min) is informative and not the principal indicator of signal strength. A received power below this value cannot be compliant; however, a value above this does not ensure compliance.c Receiver sensitivity (OMA), each lane (max) at 5 x 10-5 BER is a normative specification.d Measured with conformance test signal at TP3 (see 3.10) for BER = 5x10-5.e Vertical eye closure penalty, stressed eye J2 Jitter, stressed eye J4 Jitter, and SRS eye mask definition are test conditions for measuring stressed receiver sensitivity. They are not characteristics of the receiver.2.2.3CWDM4 illustrative link power budgetAn illustrative power budget and penalties for CWDM4 are shown in Table 2-5.and worst case connector MPI.3DEFINITION OF OPTICAL PARAMETERS AND MEASUREMENT METHODSAll optical measurements shall be made through a short patch cable, between 2 m and 5 m in length, unless otherwise specified.3.1TEST PATTERNS FOR OPTICAL PARAMETERSNote that the PRBS pattern generator and pattern checker are defined in IEEE Std 802.3™-2012 clauses 49.2.9 and 49.2.12 respectively.3.1.1Square wave pattern definitionA pattern consisting of eight ones followed by an equal run of zeroes may be used as a square wave.3.2SKEW AND SKEW VARIATIONRefer to IEEE Std 802.3™-2012 Clause 87.8.2. CWDM4 MSA transceivers shall comply with the skew and skew variation limits of clause 88.3.2.3.3WAVELENGTHMeasure per TIA/EIA-455-127-A or IEC 61280-1-3.3.4AVERAGE OPTICAL POWERMeasure using the methods given in IEC 61280-1-1 with all channels not being measured turned off.3.5OPTICAL MODULATION AMPLITUDE (OMA)Refer to IEEE Std 802.3-2012 Clause 52.9.5. OMA is measured with a square wave (8 ones, 8 zeros) test pattern. Each lane may be tested individually with all other lanes turned off, or by using an optical filter as defined in 3.6 if the other lanes are active.3.6TRANSMITTER AND DISPERSION PENALTY (TDP)TDP shall be as defined in IEEE Std 802.3-2012 Clause 52.9.10 with the exception that each optical lane is tested individually using an optical filter to separate the lane under test from the others.The optical filter pass band ripple shall be limited to 0.5 dB peak-to-peak and the isolation is chosen such that the ratio of the power in the lane being measured to the sum of the powers of all the other lanes is greater than 20 dB (see ITU-T G.959.1 Annex B). The lanes not under test shall be operating with PRBS31 bit streams.3.6.1Reference transmitter requirementsRefer to IEEE Std 802.3-2012 Cl. 88.8.5.1.3.6.2Channel requirementsThe transmitter is tested using an optical channel that meets the requirements listed in Table 3-2.coefficient assumes 2 km for CWDM4.b There is no intent to stress the sensitivity of the BERT’s optical receiver.c The optical return loss is applied at TP2, i.e. after a 2 meter patch cord.A transmitter is to be compliant with a total dispersion at least as negative as the “minimum dispersion” and at least as positive as the “maximum dispersion” columns specified in Table 3-2 for the wavelength of the device under test. This may be achieved with channels consisting of fibers with lengths chosen to meet the dispersion requirements.To verify that the fiber has the correct amount of dispersion, the measurement method defined in IEC 60793-1-42 may be used. The measurement is made in the linear power regime of the fiber.The channel provides an optical return loss specified in Table 3-2. The state of polarization of the back reflection is adjusted to create the greatest RIN.3.6.3Reference receiver requirementsRefer to IEEE Std 802.3-2012 Cl. 88.8.5.3.3.6.4Test procedureThe test procedure is as defined in IEEE Std 802.3-2012 Cl. 52.9.10.4 with the exception that all lanes are operational in both directions (transmit and receive), each lane is tested individually using an optical filter to separate the lane under test from the others, and the BER of 5 x 10-5 is for the lane under test on its own.3.7EXTINCTION RATIOExtinction ratio is measured using the methods specified in IEC 61280-2-2, with the lanes not under test turned off.3.8TRANSMITTER OPTICAL WAVEFORM (TRANSMIT EYE)Refer to IEEE Std 802.3-2012 Cl. 88.8.8.3.9RECEIVER SENSITIVITYThe nominal sensitivity of each receiver lane, is measured in OMA using the setup of Figure 3-1. The sensitivity must be corrected for any significant reference transmitter impairments including any vertical eye closure. It should be measured at the eye center or corrected for off-center sampling. The reference transmitter wavelength(s) shall comply with the ranges in Table 2-4.The reference transmitter is a high-quality instrument grade device, which can be implemented by a CW laser modulated by a high-performance modulator. It should have the following basic requirements:a)The rise/fall times should be less than 12 ps at 20% to 80%.b)The output optical eye is symmetric and passes the transmitter optical waveformtest of 3.8.c)In the center 20% region of the eye, the worst-case vertical eye closure penalty asdefined in 802.3-2012 87.8.11.2 is less than 0.5 dB.d)Total jitter less than 0.2 UI peak-to-peake)RIN of less than -138 dB/Hz.Center of the eye is defined as the time halfway between the left and right sampling points within the eye where the measured BER is greater than or equal to 1 x 10-3.The clock recovery unit (CRU) used in the sensitivity measurement has a corner frequency of less than or equal to 10 MHz and a slope of 20 dB/decade. When using a clock recovery unit asa clock for BER measurement, passing of low frequency jitter from the data to the clock removes this low-frequency jitter from the measurement.Figure 3-1 Test setup for measurement of receiver sensitivity3.10STRESSED RECEIVER SENSITIVITYRefer to IEEE Std 802.3-2012 Cl. 88.8.10. Note that for CWDM4 transceivers J9 is replaced by J4 and also that the test BER is 5x10-5 instead of 1x10-12. J4 jitter is defined in IEEE 802.3bm Cl.95.8.8.4. Each lane is tested individually with all other Rx and Tx channels turned ON and receiving or transmitting PRBS31 signals. The maximum OMA difference between the Rx lane under test and the other Rx lanes not under test is 4.5 dB.The Gaussian noise generator, the amplitude of the sinusoidal interferers, and the low-pass filter are adjusted so that the VECP, stressed eye J2 Jitter, and stressed eye J4 Jitter specifications given in Table 2-4 are met simultaneously while also passing the stressed receiver eye mask in Table 2-4 according to the methods in 802.3-2012 clause 88.8.8 (the random noise effects such as RIN, or random clock jitter, do not need to be minimized).4FIBER OPTIC CABLING MODELThe fiber optic cabling model is shown in Figure 4-1.Figure 4-1: Fiber optic cabling modelThe channel insertion loss is given in Table 4-1. A channel may contain additional connectors as long as the optical characteristics of the channel, such as attenuation, dispersion, reflections and polarization mode dispersion meet the specifications. Insertion loss measurements of installed fiber cables are made in accordance with IEC 61280-4-2 using the one-cord reference method. The fiber optic cabling model (channel) defined here is the same as a simplex fiber optic link segment. The term channel is used here for consistency with generic cabling standards.b)Over the wavelength range 1264.5 to 1337.5 nm.c)Differential Group Delay (DGD) is the time difference at reception between the fractions of a pulse that were transmitted in the two principal states of polarization of an optical signal. DGD_max is the maximum differential group delay that the system must tolerate.5CHARACTERISTICS OF THE FIBER OPTIC CABLING (CHANNEL)The CWDM4 fiber optic cabling shall meet the specifications defined in Table 4-1. The fiber optic cabling consists of one or more sections of fiber optic cable and any intermediate connections required to connect sections together.5.1OPTICAL FIBER CABLEThe fiber optic cable requirements are satisfied by cables containing IEC 60793-2-50 type B1.1 (dispersion un-shifted single-mode), type B1.3 (low water peak single-mode), or type B6_a (bend insensitive) fibers and the requirements in Table 5-1 where they differ.5.2OPTICAL FIBER CONNECTIONAn optical fiber connection, as shown in Figure 4-1, consists of a mated pair of optical connectors.5.2.1Connection insertion lossThe maximum link distances for single-mode fiber are calculated based on an allocation of 3.89 dB total connection and splice loss. For example, this allocation supports seven connections with an average insertion loss per connection of 0.5 dB. Connections with different loss characteristics may be used provided the requirements of Table 4-1 are met.5.2.2Maximum discrete reflectanceThe maximum discrete reflectance shall be less than -26 dB.5.3MEDIUM DEPENDENT INTERFACE (MDI) REQUIREMENTSThe PMD is coupled to the fiber optic cabling at the MDI. The MDI is the interface between the PMD and the “fiber optic cabling” (as shown in Figure 4-1). Examples of an MDI include the following:a)Connectorized fiber pigtailb)PMD receptacleWhen the MDI is a connector plug and receptacle connection, it shall meet the interface performance specifications of IEC 61753-1-1 and IEC 61753-021-2.NOTE---Transmitter compliance testing is performed at TP2 i.e. after a 2 meter patch cord, not at the MDI.6CWDM4 Module Color CodingTransceiver modules compliant to the CWDM4 MSA Specifications use a color code to indicate the application. This color code can be on a module bail latch, pull tab, or other visible feature of the module when installed in a system. The color code scheme is specified in Table 6-1.Table 6-1: CWDM4 Module Color Coding。