Ag_ZnO Heterostructure Nanocatalyst_
211171490_甲烷催化部分氧化制合成气催化剂的研究进展
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 4 期甲烷催化部分氧化制合成气催化剂的研究进展阮鹏1,杨润农1,2,林梓荣1,孙永明2(1 广东佛燃科技有限公司,广东 佛山 528000;2 中国科学院广州能源研究所,广东 广州 510640)摘要:天然气是一种前景广阔的清洁燃料,甲烷作为天然气的主要成分,其高效利用具有重要的现实意义。
在众多甲烷转化途径中,甲烷催化部分氧化(CPOM )具有能耗低、合成气组分适宜、反应迅速等优势。
本文简要介绍了CPOM 反应机理,即直接氧化机理和燃烧-重整机理;重点综述了过渡金属、贵金属、双金属和钙钛矿这四类CPOM 催化剂的研究现状;分析了反应温度、反应气体碳氧比和反应空速对CPOM 反应特性的影响;阐述了积炭和烧结这两种催化剂失活的主要原因及应对措施。
根据研究结果可知,通过选取合适的催化剂组分、采用优化的制备方法、精确控制催化剂活性组分分布和微观结构等措施,可以保证更多的有效活性位更稳定地暴露在催化剂表面,以此提高催化性能(包括甲烷转化率、合成气选择性、合成气生成率、反应稳定性等)。
最后指出了对CPOM 催化剂微观结构的合理设计与可控制备以及对CPOM 反应机理的深入研究仍将是今后关注的重点。
关键词:甲烷;部分氧化;催化剂;合成气;多相反应中图分类号:TE644 文献标志码:A 文章编号:1000-6613(2023)04-1832-15Advances in catalysts for catalytic partial oxidation of methane to syngasRUAN Peng 1,YANG Runnong 1,2,LIN Zirong 1,SUN Yongming 2(1 Guangdong Foran Technology Company Limited, Foshan 528000, Guangdong, China; 2 Guangzhou Institute of EnergyConversion, Chinese Academy of Science, Guangzhou 510640, Guangdong, China)Abstract: Natural gas is a promising clean fuel. The efficient use of methane, the major component of natural gas, is of great practical importance. Among many methane conversion routes, catalytic partial oxidation of methane (CPOM) has the advantages of low energy consumption, suitable syngas fraction and rapid reaction. This paper briefly introduced the CPOM reaction mechanisms (i.e. direct oxidation mechanism and combustion-reforming mechanism), reviewed the current research on four types of CPOM catalysts (i.e. transition metal, noble metal, bimetal and perovskite catalysts), analysed the effects of reaction temperature, carbon to oxygen molar ratio of reactant gas and reaction space velocity on CPOM reaction characteristics, and explained the two main causes of catalyst deactivation (i.e. carbon deposition and sintering) together with their countermeasures. According to the results of the research, the catalytic performance (including methane conversion, syngas selectivity, syngas yield, reaction stability) could be improved by selecting suitable catalyst components, adopting an optimized preparation method and precisely controlling the distribution of active components and microstructure of the catalyst. These method could ensure that more active sites are consistently exposed to the surface of catalyst. Finally, it综述与专论DOI :10.16085/j.issn.1000-6613.2022-1109收稿日期:2022-06-13;修改稿日期:2022-08-22。
Ag修饰纳米氧化锌的制备及光催化活性分析
Ag修饰纳米氧化锌的制备及光催化活性分析孙悦;王超越;王宏浩;耿忠兴;任铁强;王绍猛;薛丽【期刊名称】《人工晶体学报》【年(卷),期】2018(47)12【摘要】以二水合醋酸锌和一缩二乙二醇为原料,在非水体系中超声辅助获得纳米氧化锌光催化剂。
采用亚甲基蓝水溶液为模拟研究对象,结合羟基自由基(·OH)清除剂叔丁醇、超氧自由基抑制剂(O_2(·-))对苯醌以及光催化助剂H_2O_2,分析了纳米氧化锌光催化降解亚甲基蓝体系中活性氧物种主要有·OH和O_2(·-)。
同时,对氧化锌进行了银修饰研究,结果表明:金属Ag单质均匀分散于ZnO基底表面,修饰后的样品光响应范围拓宽至可见光区,Ag修饰提高了光生空穴和电子的分离效率,改善了催化剂的光催化性能。
【总页数】6页(P2509-2514)【关键词】纳米氧化锌;光催化;超声波辅助处理;银修饰【作者】孙悦;王超越;王宏浩;耿忠兴;任铁强;王绍猛;薛丽【作者单位】辽宁石油化工大学化学化工与环境学部;中海石油华鹤煤化有限公司分析化验中心【正文语种】中文【中图分类】TQ016.1【相关文献】1.不同体系光催化制备纳米Ag/TiO2光催化剂活性比较 [J], 林立;周继承;谢放华;廖立明2.等离子共振效应的Ag纳米颗粒修饰生物炭点/Bi4Ti3O12纳米片复合材料的制备及其光催化性能 [J], 汪涛;闫永胜;刘锡清;门秋月;马长畅;刘洋;马威;刘志;魏茂彬;李春香3.退火温度对基于嵌段共聚物稳定的双金属纳米粒子制备的(中空Au—Ag纳米粒子)/TiO2复合纳米材料光催化活性的影响 [J], 张晓玉[1,2];李娜[1];李文婷[1];袁树龙[1];张晓凯[3];袁玉珍[2];李学[1]4.纳米Ag-TiO_2/ITO光催化膜的制备、表征及光催化活性的研究 [J], 舒东;何春;郭海福5.一种新型Ag3PO4/Ag/Ag2Mo2O7纳米线光催化剂:三元纳米复合物的光催化活性(英文) [J], 李春雪;李秀颖;刘博;王秀艳;车广波;林雪因版权原因,仅展示原文概要,查看原文内容请购买。
甘草次酸修饰多西紫杉醇磁性纳米粒的制备与表征
甘草次酸修饰多西紫杉醇磁性纳米粒的制备与表征作者:王莎莎陈家琦王华华黄胜楠贾永艳祝侠丽来源:《中国药房》2020年第19期摘要目的:制备甘草次酸修饰多西紫杉醇磁性纳米粒(GA-DTX-NGO/IONP-NPs),并对其理化性质进行评价。
方法:以磁性纳米氧化石墨烯(NGO/IONP)作为抗肿瘤药物载体,多西紫杉醇(DTX)为模型药物,甘草次酸(GA)為靶头分子。
采用水热法合成NGO/IONP、酰胺化反应合成GA修饰的壳聚糖(GA-CS)后,采用傅里叶红外光谱法、差示扫描量热法及振动样品磁测量法等对两者进行表征。
采用离子凝胶化法制备GA-DTX-NGO/IONP-NPs;采用透射电镜、纳米粒度分析仪等对其微观形态、粒径及Zeta电位进行观察和测定;采用超滤离心法测定其包封率和载药量;通过观察有无外加磁场时的状态考察其磁性;结合808 nm激光对其进行光热转换试验。
结果:成功合成了NGO/IONP和GA-CS,且NGO/IONP呈现超顺磁性。
GA-DTX-NGO/IONP-NPs在透射电镜下呈圆球状,粒径为(262.8±4.23) nm,Zeta电位为(13.6±1.51) mV,包封率为(94.29±0.50)%,载药量为(17.12±0.12)%。
GA-DTX-NGO/IONP-NPs的外观呈黑色,分散均匀;其在外加磁场下磁性纳米粒可定向移动,显示出良好的磁定向性。
在808 nm激光照射下,GA-DTX-NGO/IONP-NPs 具有良好的光热转换效应,且呈浓度和时间依赖趋势。
结论:本研究成功制备了一种磁性纳米载药系统GA-DTX-NGO/IONP-NPs,可为肿瘤的磁热-化疗联合治疗提供一定的理论依据。
关键词磁性纳米氧化石墨烯;甘草次酸;多西紫杉醇;磁性纳米粒ABSTRACT OBJECTIVE: To prepare Glycyrrhetinic acid-modified docetaxel magnetic nanoparticles (GA-DTX-NGO/IONP- NPs), and to evaluate its physicochemical properties. METHODS: Magnetic nano graphene oxide (NGO/IONP) was chosen as the anti-tumor drug carrier, docetaxel (DTX) as the model drug and glycyrrhetinic acid (GA) as the target molecule. Firstly, NGO/IONP was synthesized by hydrothermal method and GA-CS was synthesized by amidation reaction. Fourier IR spectrometer, DSC and vibration sample magnetic measuring instrument were used to characterize NGO/IONP and GA-CS. GA-DTX-NGO/IONP-NPs were prepared by the ion gelation method. TEM and particle size analyzer were used to observe and determine the morphology, particle size and Zeta potential of GA-DTX-NGO/IONP-NPs; the ultrafiltration-centrifugation method was used to determine encapsulation efficiency and drug loading amount; the magnetic properties were investigated by investigating the state with or without external magnetic field; the photothermal conversion test was carried out with laser irradiation of 808 nm. RESULTS: NGO/IONP and GA-CS were successfully synthesized, and NGO/IONP exhibited superparamagnetism characteristics. GA-DTX-NGO/IONP-NPs were spherical under TEM, the particle size was (262.8±4.23) nm and the Zeta potential was (13.6±1.51) mV. The encapsulation rate and drug loading amount were (94.29±0.50)% and (17.12±0.12)%,respectively. GA-DTX-NGO/IONP-NPs were black in appearance and evenly dispersed. Under the external magnetic field, the magnetic nanoparticles could move directionally, showing good magnetic properties. GA-DTX-NGO/IONP-NPs showed a good concentration- and time-dependent photothermal conversion effect under 808 nm laser irradiation. CONCLUSIONS: GA-DTX-NGO/IONP-NPs are successfully prepared. This study could provide some theoretical basis for the combined treatment of magnetic heating-chemotherapy for liver tumors.KEYWORDS Magnetic nano graphene oxide; Glycyrrhetinic acid; Docetaxel; Magnetic nanoparticles肝癌是危害人类健康的重大疾病之一 [1-2]。
一种新颖的杀真菌药物绿原酸拟肽的发现 外文翻译
一种新颖的杀真菌药物绿原酸拟肽的发现Mohsen Daneshtalab加拿大,圣约翰,纽芬兰纪念大学,药学院。
摘要在最近几十年中威胁免疫功能低下患者生命的真菌感染有了极大的增加。
据估计,由医院获得感染的所有死亡的40%由于侵入真菌所造成的感染。
目前的治疗方案或者造成严重毒性,或成为无效的抗真菌菌株药物。
因此,发现和开发新的抗真菌药物在经济上可行,具有良好的治疗价值,并解决毒性和抗菌品种的问题是非常重要的。
我们已最近设计并合成了一系列绿原酸的拟肽以使用结构为基础的方法循环多肽的candin抗真菌类。
这些新颖的完全合成的化合物显示出有可能有抗真菌活性反抗致病性真菌的毒性非常低的对盐水虾。
这种可能存在的新颖的作用机制和经济上的可行性是合成这类化合物有吸引力的特点,使这一类化合物不同于已经利用的抗真菌药物。
导言在最近几十年中免疫功能低下患者威胁生命的真菌感染急剧增加,如接受癌症化疗,器官移植,和艾滋病患者(1-4)。
念珠菌。
脂多糖,如papulacandins ,(包括白色念珠菌和非白色)已侵入的主要病原体(2,5,6)。
曲霉菌(致病病原侵袭肺形成曲霉病)。
死亡率最高的是接受骨髓移植手术的人(7),而感染艾滋病毒的患者对粘膜念珠菌敏感,隐球菌性脑膜炎,散发组织胞浆菌病,球孢子菌病,和间质性浆细胞(8-10)。
对于不配合治疗的患者治疗系统性和侵入性真菌感染是一个重大挑战。
两性霉素B仍然是最佳治疗最严重侵入性真菌感染。
然而,它产生急性和慢性的副作用,这可能降低新配方的脂质体(11),脂质复合物(12),和胶体分散系(13,14)。
唑类抗真菌药物包括氟康唑,伊曲康唑,和最近提出的posaconazole ,完全是人工合成的化合物,广泛的抑菌活性对大多数酵母菌和丝状真菌。
尽管免于严重毒性,他们可能会产生内分泌副作用,如睾丸素和糖皮质激素,造成乳房和肾上腺皮质功能低下(15,16)。
应用唑类另一个重大局限性,特别是氟康唑,是出现了有抵抗力的抗真菌株包括念珠菌。
微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展
生态毒理学报Asian Journal of Ecotoxicology第18卷第4期2023年8月V ol.18,No.4Aug.2023㊀㊀基金项目:国家自然科学基金青年项目(82202069)㊀㊀第一作者:孙凡晰(1997 ),女,硕士研究生,研究方向为环境材料与技术,E -mail:*********************㊀㊀*通信作者(Corresponding author ),E -mail:*********************.cn ㊀㊀共同通信作者(Co -corresponding author ),E -mail:****************DOI:10.7524/AJE.1673-5897.20221025001孙凡晰,齐鑫,王靖,等.微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展[J].生态毒理学报,2023,18(4):131-147Sun F X,Qi X,Wang J,et al.Mechanism of toxic effects of microplastics and nano -plastics on gastrointestinal tract and liver:A review [J].Asian Journal of Ecotoxicology,2023,18(4):131-147(in Chinese)微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展孙凡晰,齐鑫,王靖*,纪丽莲#苏州科技大学化学与生命科学学院,苏州215000收稿日期:2022-10-25㊀㊀录用日期:2023-01-20摘要:由于塑料制品的大量生产和使用,其废弃物降解产生的微塑料(microplastics,MPs)作为一种新型的环境污染物近年来逐渐引起全世界的关注㊂持续的老化会使微塑料降解为纳米塑料(nano -plastics,NPs),在进入人体后增加对细胞的危害,因此微塑料和纳米塑料对人体产生的毒性效应及健康危害也日益成为环境领域的研究热点㊂本文基于已有研究,重点阐述了人体内微塑料和纳米塑料沉积对胃肠道产生氧化应激㊁炎症及细胞凋亡相关毒性效应的机制,以及造成肝脏糖脂代谢紊乱的潜在机制,为进一步开展微塑料和纳米塑料的毒性效应机制研究和人体健康风险评估提供理论依据㊂关键词:微塑料;胃肠道;肝脏代谢;肝脏;氧化应激;纳米塑料文章编号:1673-5897(2023)4-131-17㊀㊀中图分类号:X171.5㊀㊀文献标识码:AMechanism of Toxic Effects of Microplastics and Nano-plastics on Gastro-intestinal Tract and Liver :A ReviewSun Fanxi,Qi Xin,Wang Jing *,Ji Lilian #School of Chemistry and Life Sciences,Suzhou University of Science and Technology,Suzhou 215000,ChinaReceived 25October 2022㊀㊀accepted 20January 2023Abstract :In recent years,due to the mass production and use of plastic products,microplastics (MPs)produced by the degradation of their wastes have gradually attracted the world s attention as a new type of environmental pollu -tant.Continuous aging degrades MPs into nano -plastics (NPs),which can increase their damage to cells when they enter the human body.Therefore,the toxic effects and health hazards of MPs and NPs on the human body have in -creasingly become a research hotspot in the environmental field.Based on existing studies,this article focuses on the mechanism related to the toxic effects of MPs and NPs deposition on the gastrointestinal tract (e.g.,oxidative stress,inflammation and apoptosis),and the potential mechanism of glucose and lipid metabolism disorders in the liver.This study provides a theoretical basis for further research on the mechanism of toxic effects of MPs and NPs and human health risk assessment.132㊀生态毒理学报第18卷Keywords:microplastics;gastrointestinal tract;glucolipid metabolism;liver;oxidative stress;nano-plastics㊀㊀随着塑料制品在生产和生活中的广泛使用,中国已经成为全球最大的塑料生产国㊂由于使用的需要,这些塑料制品通常耐高温,耐酸碱,耐腐蚀,目前还没有正确的方式处理塑料垃圾,这些塑料垃圾在自然环境下几乎不会被完全降解,而是通过生物以及非生物途径逐渐降解为微米或纳米级的碎片[1-3],更容易发生转移和扩散,导致微塑料和纳米塑料对环境的污染㊂根据塑料颗粒的粒径不同,可以将其划分为微塑料(microplastics,MPs)(直径纺5mm)[4]和纳米塑料(nano-plastics,NPs),目前有关NPs的粒径划分标准尚存争议,大部分学者将粒径<1μm的塑料颗粒定义为NPs[5-6]㊂随着对人体中MPs和NPs研究的不断深入,研究者们已经在人类血液㊁胎盘和粪便中发现了MPs和NPs[7-9]㊂MPs和NPs主要通过食物㊁水以及空气进入人体[10-11]㊂小鼠暴露实验发现, MPs和NPs进入体内后在胃㊁肠㊁肝脏等器官积累[12-13]㊂从消化道进入的MPs和NPs由于耐腐蚀性高,消化液会改变MPs和NPs颗粒的表面粗糙度和粒径[12],使它们更稳定地停留在消化道内壁,也更易吸附其他有毒物质从而增加毒性[14]㊂实际上,组织内的屏障并不能阻止MPs和NPs的入侵,MPs和NPs进入人体后,小粒径的塑料颗粒可以跨越消化系统的上皮屏障[15-17],从而进入淋巴和血液循环,粒径范围在0.1~10μm的纳米级塑料颗粒甚至可以穿过血脑屏障和胎盘[18-20]㊂饮食饮水摄入的MPs 和NPs颗粒,若其粒径>150μm,通常很难穿过肠道上皮细胞,导致几乎90%的MPs通过粪便排出体外[5],剩下的只能在肠道上皮细胞膜外产生局部影响,而<150μm的纳米级塑料颗粒接触到小肠绒毛时,这些小粒径的塑料颗粒则会穿过小肠上皮细胞[21],进入淋巴系统[22]和血液[18,23],通过毛细血管最终到达门静脉,扩散至全身[24-26]㊂对于<150μm的纳米级塑料颗粒物,其中>10μm的部分塑料颗粒(0.1%)可到达其他器官和细胞膜表面[19],而<5μm 的纳米级颗粒物则会被淋巴细胞吸收[21]㊂随着有关纳米级塑料颗粒进入哺乳动物细胞机制研究的逐渐深入,可以归纳出以下3种纳米级颗粒进入淋巴和血液循环的机制:(1)小粒径的纳米粒子通过细胞间紧密连接旁路,扩散进入血液[27],肠道上皮杯状细胞分泌的黏液是促进其旁路扩散的因素[21];(2)较大一些的纳米粒子(50~200nm)更倾向于通过内吞作用穿过肠道上皮细胞[21],并且可能存在黄金摄入尺寸,例如40nm可能是非吞噬细胞摄取的最佳尺寸[28],而200nm可能是穿过血脑屏障的最佳尺寸[29]㊂体内研究发现,肠道细胞可利用不同的内吞机制,甚至多种内吞机制联合使用,内化纳米级颗粒物,例如吞噬细胞可通过吞噬作用将其内化[30],而非吞噬细胞可以借助网格蛋白或细胞膜内陷介导的内吞作用内化较小的纳米颗粒[27],在这一过程中肌动蛋白发挥重要作用[31]㊂另外,能量依赖性途径也是肠道上皮细胞内吞作用的机制之一[31]㊂最近的研究发现,<3μm的纳米级颗粒可通过非特异性内吞机制内化到非吞噬细胞[31],且可利用内吞作用的微粒粒径上限增加到了5μm[19,21],肠道Peyer斑中丰富的M细胞的内吞作用是粒径上限增加的主要原因[23],此外肠道黏膜的协助也是可能的影响因素之一[32-33];(3)带正电的粒子与质膜的高度结合会增加表面张力并导致膜穿孔或变形[34],从而使纳米级塑料颗粒进入细胞,进而进入血液循环㊂除了被消化道吸收的纳米级塑料颗粒,经呼吸系统进入肺部的MPs和NPs通常会滞留在肺部或者通过毛细血管进入体内循环系统,<2.5μm的塑料颗粒会进入肺部深处或渗透肺泡进入血液循环[35]㊂这些进入血液循环的纳米级塑料颗粒,其中粒径在100nm左右的会被血清白蛋白包围[36],形成多层血清白蛋白冠,可能有助于纳米塑料逃避免疫监视,增加其在血液循环系统的时间,并帮助颗粒到达次级器官并在肝脏㊁肾脏和肠道中积累[36]㊂血清白蛋白与纳米级塑料颗粒的结合导致蛋白质的二级结构发生改变[37],从而增加了塑料颗粒的细胞毒性[27,36]㊂尽管只有小部分纳米级塑料颗粒能够穿透肺泡和胃肠道的上皮屏障,转移到次级组织器官内,但考虑到人类对塑料颗粒的长期接触以及塑料颗粒可能产生积累,这种低比例的内化仍不容忽视,因为它们能够进一步引起一系列毒性效应(图1),包括氧化应激㊁局部炎症㊁细胞凋亡以及肠道菌群的改变[38-41]㊂流行病学调查发现,吸入MPs和NPs会增加对呼吸道刺激的几率,一部分职业性接触MPs和NPs的工人患有间质性肺病,肺组织病理学检查发现,该病是MPs和NPs作为半抗原刺激呼吸道,引发肺泡炎症产生的[42-43]㊂体内研究表明,小鼠摄入MPs后,胃中的幽门螺旋杆菌与MPs相互作用,促进了幽门螺第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展133㊀旋杆菌在胃黏膜上皮细胞的快速定植[12],这种致病菌的大量繁殖导致小鼠胃部炎症的发生㊂肠道菌群的失调也是MPs 产生的毒性效应之一,在多项体外研究中均发现MPs 导致小鼠肠道菌群紊乱,条件致病菌数量增多,同时伴随肠道炎症[44-46]㊂NPs 对肝脏的毒性效应主要表现为糖脂代谢紊乱,NPs 暴露后的小鼠,体内葡萄糖含量升高并伴随糖尿病发生[47],脂肪质量减少,肝脏中甘油三酯和总胆固醇水平下降[48]㊂进入人体的NPs 最终进入并积累在组织内的各种细胞中构成潜在威胁㊂体外研究发现纳米级塑料颗粒可进入细胞,产生毒性效应[10,49]㊂人胃黏膜上皮细胞与NPs 共培养后,发现细胞增殖速率降低,细胞凋亡增加[50]㊂在人肠道细胞中也发现NPs 会导致细胞产生氧化应激[51]㊂尽管目前没有研究证明MPs 和NPs 会通过食物链传递至人体内,但现有的体内外研究已经展现出MPs 和NPs 进入体内产生的不良后果㊂目前MPs 和NPs 积累对人体的毒性效应研究还不深入,因此聚焦于MPs 和NPs 对人体产生的毒性效应机制,对了解MPs 和NPs 对人体健康的影响有重要意义,同时也为今后预防和治疗MPs 和NPs 导致的人体疾病提供科学依据㊂本篇综述将归纳总结MPs 和NPs 对人体胃肠道及肝脏的毒性效应机制,提出目前研究存在的问题和不足以及未来可能的发展方向,为今后研究MPs 和NPs 对人体的毒性效应及机制提供科学依据㊂1㊀引发胃肠道(gastrointestinal tract ,GIT )氧化应激㊁炎症及细胞凋亡的毒性效应机制(Toxic mechanism of oxidative stress ,inflammation andapoptosis in GIT )人体中的MPs 和NPs 经不同的内吞机制进入细胞或吸附聚集在胃肠道组织表面,引起氧化应激和炎症,甚至细胞凋亡,该现象已经在多项体外研究及小鼠的体内研究中得到证实(表1)㊂MPs 和NPs 对人体胃肠道健康的危害日益显现,因此探究MPs 和NPs 对胃肠道的毒性效应机制,为防治MPs 和NPs 引起的胃肠道疾病提供科学依据㊂1.1㊀细胞中的活性氧(reactive oxygen species,ROS)诱导氧化应激的产生(ROS in cells induce the genera -tion of oxidative stress)细胞内拥有一套抗氧化防御系统,可以维持细胞内ROS 的水平,保护重要的生物分子免受自由基的伤害[52-53]㊂细胞中活性氧和氧化应激的增加与抗氧化系统失衡和疾病有关[54]㊂体内外研究表明,MPs 和NPs 暴露后,细胞内ROS 水平升高,一方面是外源颗粒的直接刺激作用诱导细胞内ROS 的产生增加[55];另一方面,MPs 和NPs抑制抗氧化酶转录图1㊀人体中微塑料和纳米塑料的来源㊁分布及影响Fig.1㊀Source,distribution and impact of microplastics and nano -plastics in human body134㊀生态毒理学报第18卷因子的产生或降低抗氧化酶的活性,进而抑制ROS 代谢,使线粒体膜电位增加,导致线粒体通透性和ROS 产生增加,进而加速线粒体中产生的ROS 向胞质转移[17,56]㊂超氧化物歧化酶(SOD)㊁过氧化氢酶(CAT)和谷胱甘肽(GSH)是衡量机体氧化应激程度重要而不可或缺的生物标志物[57]㊂研究发现,聚苯乙烯纳米塑料可导致小鼠十二指肠内过氧化生物标志物水平升高,SOD ㊁CAT 活性和GSH 含量明显降低[58-59];人正常结肠黏膜上皮细胞的体外实验也发现,经NPs 处理的细胞中ROS 水平比未经处理细胞的ROS 水平高[58]㊂因此,MPs 和NPs 可直接促进ROS 产生或通过抑制抗氧化酶活性和谷胱甘肽的产生进而抑制ROS 代谢,间接导致ROS 增加㊂随着MPs 和NPs 与细胞微环境的相互作用,增加的ROS 在MPs 和NPs 颗粒表面沉降,导致细胞产生氧化应激,如果它们不能穿过细胞膜,则会诱导肠道局部炎症[60],如果颗粒足够小,可以穿过肠道上皮细胞,此时位于颗粒表面的ROS 毒性就会增强,介导细胞产生应激反应[61](图2)㊂1.2㊀炎症产生的潜在机制(The underlying mecha -nism of inflammation)胃肠道是MPs 和NPs 经摄入途径进入人体后发生积累的组织器官,MPs 和NPs 带来的机械损伤或刺激很容易造成胃肠道的炎症反应[12,44],炎症反应的产生机制可以分为2个方面:(1)促炎细胞因子释放产生的炎症反应[12];(2)肠道菌群失调,条件致病菌增多,导致免疫失衡以及脂多糖含量增加刺激炎症产生[46,62]㊂MPs 和NPs 可通过2种机制诱导促炎细胞因子释放(图2),一种机制是MPs 和NPs直接刺激产图2㊀引起胃肠道(GIT )氧化应激㊁炎症及细胞凋亡的潜在机制注:微塑料和纳米塑料一方面直接刺激细胞产生ROS ,另一方面调控细胞抗氧化系统抑制ROS 代谢从而导致ROS 激增,诱导氧化应激的产生;微塑料和纳米塑料可直接刺激细胞产生炎症细胞因子或通过氧化应激诱导炎症反应,产生的炎症反应和氧化应激最终导致细胞凋亡㊂Fig.2㊀Potential mechanisms causing oxidative stress,inflammation and apoptosis in the gastrointestinal tract (GIT)Note:On the one hand,microplastics and nano -plastics directly stimulate cells to produce ROS,on the other hand,they regulate cellular antioxidant system to inhibit ROS metabolism and lead to ROS surge,resulting in a surge of ROS and inducing oxidative stress;microplastics and nano -plastics can directly stimulate cells to produce inflammatory cytokines or induce inflammatory response through oxidative stress;the resulting inflammatory response and oxidative stress eventually lead to cell apoptosis.第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展135㊀表1㊀微塑料和纳米塑料对胃肠道及肝脏产生的毒性效应及机制T a b l e 1㊀T o x i c e f f e c t s a n d m e c h a n i s m o f m i c r o p l a s t i c s a n d n a n o -p l a s t i c s o n h u m a n b o d y器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m体内研究(小鼠)I n v i v o s t u d i e s (m i c e )肝脏㊁结肠㊁回肠和盲肠内容物[13]L i v e r ,c o l o n ,i l e u m a n dc e c u m c o n t e n t s[13]P S100,1000μg ㊃L -1脂质代谢紊乱D i s o r d e r o f l i p i d m e t a b o l i s m肠道屏蔽功能障碍I n t e s t i n a l s h i e l d i n g d y s f u n c t i o n肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a胃[12]S t o m a c h [12]P E100μg ㊃m L -1促进幽门螺旋杆菌在胃黏膜上皮细胞快速定植P r o m o t e t h e r a p i d c o l o n i z a t i o n o f H e l i c o b a c t e rp y l o r i i n g a s t r i c m u c o s a l e p i t h e l i a l c e l l s胃部损伤及炎症G a s t r i c i n j u r y a n d i n f l a m m a t i o n髓过氧化物酶表达增加I n c r e a s e d e x p r e s s i o n o fm y e l o p e r o x i d a s eI L -6和T N F -α表达上调U p -r e g u l a t i o n o f I L -6a n d T N F -α结肠和十二指肠[44]C o l o n a n d d u o d e n u m [44]P E6,60,600μg ㊃d -1肠道炎症I n t e s t i n a l i n f l a m m a t i o n I L -1α表达上调U p -r e g u l a t i o n o f I L -1α肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a免疫失衡I m m u n e i m b a l a n c eT L R 4㊁A P -1和I R F 5表达上调U p -r e g u l a t i o n o f T L R 4,A P -1a n d I R F 5结肠[45]C o l o n [45]P S500μg ㊃L -1肠道屏障受损和肠道炎症I m p a i r e d i n t e s t i n a l b a r r i e r a n d i n t e s t i n a l i n f l a m m a t i o n肠道致病菌增加I n c r e a s e d i n t e s t i n a l p a t h o g e n i c b a c t e r i a干扰肠道微生物代谢I n t e r f e r e n c e w i t h i n t e s t i n a l m i c r o b i a l m e t a b o l i s m免疫失衡I m m u n e i m b a l a n c e肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a炎症因子(T N F -α㊁I L -1β和I F N -γ)表达上调U p -r e g u l a t i o n o f i n f l a m m a t o r y f a c t o r s(T N F -α,I L -1βa n d I F N -γ)136㊀生态毒理学报第18卷续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t产生机制G e n e r a t i o n m e c h a n i s m 小肠和盲肠[46]S m a l l i n t e s t i n e s a n d c e c u m[46]P E5.25ˑ104p a r t i c l e s ㊃d -1肠道通透性增加I n c r e a s e d i n t e s t i n a l p e r m e a b i l i t y肠道炎症I n t e s t i n a l i n f l a m m a t i o n代谢紊乱M e t a b o l i c d i s o r d e r s改变肠道菌群组成C h a n g e s i n t h e c o m p o s i t i o n o f i n t e s t i n a l f l o r a能量代谢和免疫功能相关细菌相对丰度减少R e d u c i n g t h e r e l a t i v e a b u n d a n c e o f b a c t e r i a r e l a t e d t oe n e r g y m e t a b o l i s m a n d i m m u n ef u n c t i o n氧化应激㊁免疫应答和脂质代谢相关基因表达下调D o w n -r e g u l a t i o n o f g e n e s r e l a t e d t oo x i d a t i v e s t r e s s ,i m m u n e r e s p o n s e a n d l i p i d m e t a b o l i s m肝㊁结肠㊁盲肠内容物㊁回肠[48]L i v e r ,c o l o n ,c e c u m c o n t e n t s a n d i l e u m[48]P S100,1000μg ㊃L -1减少肠道黏液分泌D e c r e a s e d s e c r e t i o n o f i n t e s t i n a l m u c u s损害肠道屏障功能D a m a g e t o i n t e s t i n a l b a r r i e r f u n c t i o n肠道微生物群失调和代谢紊乱D y s b i o s i s o f t h e g u t m i c r o b i o m e a n d m e t a b o l i c d i s o r d e r s/小肠和结肠[68]S m a l l i n t e s t i n e s a n d c o l o n[68]P S0.2m g ㊃k g -1肠道屏障功能损伤I n t e s t i n a l b a r r i e r d y s f u n c t i o n条件致病菌增多,紧密连接促进功能微生物减少I n c r e a s e d o p p o r t u n i s t i c p a t h o g e n s a n d d e c r e a s e dt i g h t j u n c t i o n p r o m o t i n g f u n c t i o n a l m i c r o o r g a n i s m s紧密连接蛋白表达下调D o w n -r e g u l a t i o n o f t i g h t j u n c t i o n p r o t e i n e x p r e s s i o n肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a肝脏和小肠[47]L i v e r a n d s m a l l i n t e s t i n e s [47]P S55μg ㊃d -1胰岛素抵抗I n s u l i n r e s i s t a n c e糖尿病D i a b e t e s m e l l i t u s肠-肝轴代谢串扰M e t a b o l i c c r o s s t a l k o f g u t -l i v e r a x i s肝脏和盲肠[69]L i v e r a n d c e c u m [69]P S100,1000μg ㊃L -1肝脏质量减少R e d u c e d l i v e r w e i g h t肠道黏液分泌减少D e c r e a s e d s e c r e t i o n o f i n t e s t i n a l m u c u s肝脏中甘油三酯和总胆固醇水平下降,脂质紊乱D e c r e a s e d t r i g l y c e r i d e a n d t o t a l c h o l e s t e r o l l e v e l s a n dl i p i d d i s o r d e r s i n t h e l i v e r肠道菌群改变C h a n g e s i n i n t e s t i n a l f l o r a肝脏中合成脂肪和甘油三酯的相关基因的相对m R N A 水平下降D e c r e a s e d r e l a t i v e m R N A l e v e l s o fg e n e s i n v o l v e d i n t h e s y n t h e s i s o f f a t s a n d t r i g l y c e r i d e s i n t h e l i v e r第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展137㊀续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e 毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m肝脏[70]L i v e r [70]P S 0.5m g ㊃d-1影响肝脏免疫微环境A f f e c t t h e l i v e r i m m u n e m i c r o e n v i r o n m e n t肝脏局部组织炎症L o c a l t i s s u e i n f l a m m a t i o n i n t h e l i v e r增加N K 细胞和巨噬细胞的免疫浸润,减少B 细胞的免疫浸润I n c r e a s e d i m m u n e i n f i l t r a t i o n o f N K c e l l s a n d m a c r o p h a g e sa n d d e c r e a s e d i m m u n e i n f i l t r a t i o n o f B c e l l s谷丙转氨酶和谷草转氨酶表达增加I n c r e a s e d e x p r e s s i o n o f a l a n i n e a m i n o t r a n s f e r a s ea n d a s p a r t a t e a m i n o t r a n s f e r a s e激活N F -κB 信号通路A c t i v a t i o n o f t h e N F -κB s i g n a l i n g p a t h w a y体外研究I n v i t r o s t u d i e s人胃腺癌细胞[64]H u m a n g a s t r i c a d e n o c a r c i n o m a c e l l s [64]P S2~30μg ㊃m L -1影响细胞活力和形态D e c r e a s e d c e l l v i a b i l i t y a n d m o r p h o l o g y炎症I n f l a m m a t i o nI L -6和I L -8表达上调U p r e g u l a t i o n o f I L -6a n d I L -8人胃黏膜上皮细胞[50]H u m a n g a s t r i c m u c o s a l e p i t h e l i a l c e l l s[50]P S50μg ㊃m L -1细胞增殖速率降低D e c r e a s e d c e l l p r o l i f e r a t i o n r a t e细胞凋亡增加I n c r e a s e d c e l l a p o p t o s i s/人结肠腺癌细胞[17,56]H u m a n c o l o n a d e n o c a r c i n o m a c e l l s [17,56]P S0~200μg ㊃m L -1,0.01~100μg ㊃m L -1降低细胞活力氧化应激和炎症D e c r e a s e d c e l l v i a b i l i t y ;o x i d a t i v e s t r e s s a n d i n f l a m m a t i o n线粒体凋亡M i t o c h o n d r i a l a p o p t o s i sH S P 70㊁H O 1表达上调,I L -1β表达上调T h e e x p r e s s i o n o f H S P 70a n d H O 1w a s u p -r e g u l a t e d ,a n d t h e e x p r e s s i o n o f I L -1βw a s u p -r e g u l a t e d线粒体膜电位增加T h e m i t o c h o n d r i a l m e m b r a n e p o t e n t i a l i n c r e a s e d138㊀生态毒理学报第18卷续表1器官/细胞O r g a n s /C e l l s 聚合物P o l y m e r 剂量D o s e毒性效应T o x i c i t y e f f e c t 产生机制G e n e r a t i o n m e c h a n i s m 人胃癌细胞株[66]H u m a n g a s t r i c c a r c i n o m a c e l l l i n e [66]P S0.1~100μg ㊃m L -1降低细胞活力D e c r e a s e d c e l l v i a b i l i t y诱导细胞凋亡或坏死A p o p t o s i s o r n e c r o s i s w a s i n d u c e d破坏细胞膜完整性D i s r u p t i o n o f c e l l m e m b r a n e i n t e g r i t y ;b a x 表达上调U p -r e g u l a t i o n o f b a x e x p r e s s i o nC a s p a s e -3和C a s p a s e -8蛋白酶表达增加T h e e x p r e s s i o n o f C a s p a s e -3a n dC a s p a s e -8p r o t e a s e w a s i n c r e a s e d人结肠腺癌细胞[51]H u m a n c o l o n a d e n o c a r c i n o m a c e l l s [51]P S100μg ㊃m L -1氧化应激O x i d a t i v e s t r e s s改变氧化应激相关基因表达A l t e r e d e x p r e s s i o n o f o x i d a t i v e s t r e s s -r e l a t e d g e n e sH O 1和S O D 2转录水平显著增加H O 1a n d S O D 2t r a n s c r i p t l e v e l s w e r e s i g n i f i c a n t l y i n c r e a s e d人多能干细胞产生的肝脏类器官[40]L i v e r o r g a n o i d s [40]P S0.25~25μg ㊃m L -1破坏代谢酶的功能,增加脂质积累D i s r u p t t h e f u n c t i o n o f m e t a b o l i ce n z y m e s ;i n c r e a s e d l i p i d a c c u m u l a t i o nR O S 生成㊁氧化应激和炎症反应R O S p r o d u c t i o n ;o x i d a t i v e s t r e s sa n d i n f l a m m a t o r y r e s p o n s e肝细胞毒性H e p a t o t o x i c i t yA S L 和A L T 释放增加T h e r e l e a s e o f A S L a n d A L T i n c r e a s e d破坏肝功能相关基因表达D i s r u p t i o n o f g e n e e x p r e s s i o n r e l a t e d t o l i v e r f u n c t i o nH N F 4A 和C Y P 2E 1表达上调T h e e x p r e s s i o n o f H N F 4A a n d C Y P 2E 1w a s u p -r e g u l a t e dI L -6和C O L 1A 1表达上调U p -r e g u l a t e d e x p r e s s i o n o f I L -6a n d C O L 1A 1注:P S 表示聚苯乙烯;P E 表示聚乙烯;R O S 表示活性氧自由基;A S L 表示精氨琥珀酸裂解酶;A L T 表示谷丙转氨酶;I L -6表示白细胞介素6;I L -8表示白细胞介素8;I L -1β表示白细胞介素1β;I L -1α表示白细胞介素1α;T N F -α表示肿瘤坏死因子α;I F N -γ表示γ干扰素㊂N o t e :P S m e a n s p o l y s t y r e n e ;P E m e a n s p o l y e t h y l e n e ;R O S m e a n s r e a c t i v e o x i d e s p e c i e s ;A S L m e a n s a r g i n i n o s u c c i n a t e l y a s e ;A L T m e a n s a l a n i n e t r a n s a m i n a s e ;I L -6m e a n s i n t e r l e u k i n -6;I L -8m e a n s i n t e r l e u k i n -8;I L -1βm e a n s i n t e r l e u k i n -1β;I L -1αm e a n s i n t e r l e u k i n -1α;T N F -αm e a n s t u m o r n e c r o s i s f a c t o r α;I F N -γm e a n s i n t e r f e r o n -γ.第4期孙凡晰等:微塑料和纳米塑料对胃肠道及肝脏的毒性效应机制研究进展139㊀生促炎细胞因子㊂在小鼠体内实验中,IL-6和TNF-α升高促进小鼠胃部损伤及炎症[12]㊂在体外研究中,MPs和NPs处理后的胃上皮细胞和小肠上皮细胞均发现促炎反应相关基因(如IL-1β㊁IL-6㊁IL-8)发生不同程度的基因表达上调[63-64],导致促炎细胞因子释放增多㊂另一种机制是氧化应激促进炎症发生,通过氧化应激激活NF-κB㊁p53㊁PPAR-γ和Nrf2等多种转录因子,而这些转录因子可以调控炎症细胞因子的表达[65],从而增加促炎细胞因子的释放㊂体内研究表明,MPs和NPs会导致小鼠胃肠道菌群紊乱㊂MPs和NPs通过与幽门螺旋杆菌相互作用促进其在胃黏膜上皮细胞表面快速定植[12],提高NPs进入组织的效率,促进炎症发生[12]㊂MPs和NPs引起肠道菌群失调,特别是免疫功能相关的细菌相对丰度显著减少[46],致病菌的菌群数量增加,降低CD4+细胞的Th17/Treg细胞百分比,导致免疫失衡,同时血浆脂多糖含量增加[62],刺激肠道炎症产生[45],还有研究发现,肠道菌群失调后,小鼠体内TLR4㊁AP-1和IRF5基因表达上调,以此介导肠道炎症反应[44]㊂1.3㊀细胞凋亡产生的潜在机制(Potential mecha-nisms of apoptosis)内源性和外源性因子均可导致DNA损伤,已有研究发现粒径足够小的NPs可穿过核膜直接造成DNA损伤㊂另外MPs和NPs导致细胞内ROS 水平激增引起的氧化应激也是导致DNA损伤的原因,若DNA损伤修复不及时则诱导细胞凋亡的发生㊂在体外实验中经常可以观察到由氧化应激引起的细胞凋亡[63,66],氧化应激引起细胞凋亡的同时还伴随线粒体膜电位的升高㊂一项以HaCaT细胞为模型的研究发现,在体外模拟氧化应激的条件下,细胞内INF2表达增加,导致线粒体中的ROS超负荷,打破细胞氧化还原平衡,改变线粒体膜电位,引起线粒体应激,同时抑制HIF-1信号通路介导细胞凋亡[67]㊂Bcl-2相关X蛋白(Bcl2-associated X,Bax)是Bcl-2蛋白家族的成员,它可以调节凋亡诱导因子的释放,bax的过表达可能是细胞凋亡发生的另一个原因[66]㊂此外,Bax还可调节线粒体外膜的透化作用,其表达的增加使线粒体膜通透性增加,从而促使凋亡因子从线粒体释放到细胞质中,激活半胱天冬酶,导致细胞凋亡㊂事实上,Bax的N端乙酰化参与了其线粒体靶向作用,因此bax基因表达的上调导致线粒体膜通透性增加,使线粒体内ROS外溢,导致细胞中ROS激增进而引发凋亡㊂另外,MPs和NPs导致的炎症反应最终也会引发细胞凋亡㊂综上所述,MPs和NPs引起氧化应激㊁炎症及细胞凋亡的机制为:ROS产生增加或ROS代谢减少造成细胞内ROS激增,引起DNA损伤和氧化应激;胃肠道菌群失调引起的免疫失衡以及炎症相关细胞因子表达上调导致炎症反应发生;氧化应激和炎症反应最终会导致细胞凋亡,此外MPs和NPs还可使促凋亡相关基因过表达直接导致细胞凋亡(图2)㊂2㊀引发肝脏糖脂代谢紊乱的毒性效应机制(Toxic effect mechanism of liver glucose and lipid metabo-lism disorder)肝脏是人体重要的排毒解毒器官,MPs和NPs 经食物进入人体后聚集在胃肠道上皮细胞表面,纳米级塑料颗粒则被上皮细胞吸收进入淋巴和血液循环,最终经门静脉到达肝脏[11],相关研究还发现NPs 富集后,会扰乱肝脏组织的糖脂代谢[47,69],在人类肝脏类器官的体外研究中也发现了类似的毒性效应(表1)㊂目前,越来越多的研究聚焦于NPs造成肝脏组织糖脂代谢紊乱的毒性机制[13,47,62],主要是从生化和转录组学方面展开分析,发现NPs会从生化和转录水平影响糖脂代谢,其机制大致可以总结为以下2点:(1)在生化水平上影响糖代谢中间代谢物的产生(图3);(2)在转录水平上影响糖脂代谢中关键/限速酶的产生(图4)㊂2.1㊀在生化水平上影响糖脂代谢中间代谢物的产生(Affecting the production of intermediate metabolites for glycolipid metabolism at the biochemical level) NPs会通过影响中间代谢物的产量继而对糖脂代谢造成影响㊂丙酮酸是糖酵解途径的重要中间代谢物,也是连接糖脂代谢的重要枢纽,其产量的增加可能是丙酮酸激酶(PK)和磷酸烯醇丙酮酸羧激酶(PEPckc)的水平升高所致[69,71-72],可促进糖代谢向脂质代谢的转化,导致脂肪酸产生增加;肝脏内葡萄糖和胆固醇水平的升高,则可能增加人体罹患Ⅱ型糖尿病㊁高血脂和脂肪肝的风险[71]㊂研究发现,摄入NPs后,肝脏组织内参与糖代谢调控的重要因子和催化酶的生化水平会发生改变,小鼠在摄入NPs后其肝脏细胞中碳水化合物调节元件结合蛋白(ChREBP)的表达量显著降低[69],该蛋白通过抑制PK 和A TP-柠檬酸裂解酶(ACL)的产生,阻碍葡萄糖转化为乙酰辅酶A,使肝脏中的糖原不断积累,增加人体罹患Ⅱ型糖尿病的风险[73]㊂此外ChREBP合成的减少140㊀生态毒理学报第18卷还会导致棕榈酸-5-羟基硬脂酸的合成量减少,研究表明棕榈酸-5-羟基硬脂酸可以增加脂肪组织中胰岛素的敏感性[74],还可以通过激活G 蛋白偶联受体40(GPR40)增加胰岛素的分泌[75],因此NPs 直接导致ChREBP 表达降低后,间接抑制了胰岛素的敏感性和分泌量,进而阻碍糖酵解途径,导致糖代谢紊乱[76],还有研究发现,NPs 可增加组织中乳酸脱氢酶(LDH)和柠檬酸合酶(CS)的活性,这2种酶是参与糖酵解和糖异生的关键酶,其活性增加导致糖代谢紊乱,但目前关于NPs 影响酶活性的具体机制尚不明确[77]㊂在影响脂质代谢方面,NPs 造成ChREBP 表达量的降低导致肝细胞中成纤维细胞生长因子21(FGF21)的合成量下降,从而抑制了FGF21通过加速脂肪组织中脂蛋白分解降低血浆甘油三酯的功能,因此血浆中甘油三酯堆积,导致人体患高血脂的风险增加[78-79]㊂血液中的游离脂肪酸进入肝细胞后帮助肝脏组织内脂肪酸的合成,但有研究发现,NPs处理肝细胞后,脂肪酸转运蛋白2(FATP2)和脂肪酸转运体(FAT)合成量降低[69],因此阻碍了血液中的脂肪酸向肝脏运输,间接阻碍了肝脏脂肪酸的合成;同时还有研究发现,NPs 处理肝细胞后,载脂蛋白和脂肪酸结合蛋白6(FABP6)的合成量显著升高,这2个蛋白参与脂肪酸的转运出胞过程,因此肝脏脂肪酸的水平降低使得甘油三酯的合成不足,间接影响脂图3㊀在生化水平影响糖脂代谢的潜在机制注:在生化水平,纳米塑料通过抑制ChREBP 的合成进而抑制丙酮酸激酶㊁ATP 柠檬酸裂解酶㊁棕榈酸-5-羟基硬脂酸产生,阻碍了乙酰辅酶A 的合成,发生胰岛素抵抗,导致葡萄糖含量升高,最终导致Ⅱ型糖尿病风险增加;ChREBP 的合成减少还会抑制成纤维细胞因子21的合成,减少脂蛋白分解,从而增加血浆中甘油三酯的含量,最终导致高血脂;纳米塑料还通过抑制脂肪酸转运体和脂肪酸转运蛋白2的合成,激活载脂蛋白和脂肪酸结合蛋白6的合成,使肝细胞中脂肪酸合成减少㊁转出增多,导致脂肪储存减少,最终增加脂肪营养不良综合征的风险;ChREBP 表示碳水化合物调节元件结合蛋白㊂Fig.3㊀Potential mechanisms affecting glucose and lipid metabolism at the biochemical levelNote:At the biochemical level,nano -plastics inhibit the synthesis of ChREBP and then inhibit the production of pyruvate kinase,ATP citrate lyase,and palmitic acid -5-hydroxystearic acid,which hinder the synthesis of acetyl -CoA and lead to insulin resistance,leading to the increase of glucose content,and ultimately leading to the increased risk of type 2diabetes;the decreased synthesis of ChREBP can also inhibit the synthesis of fibroblastfactor 21and reduce the decomposition of lipoproteins,thereby increasing the content of triglyceride in plasma and eventually leading to hyperlipidemia;nano -plastics also inhibit the synthesis of fatty acid transporter and fatty acid transporter 2,activate the synthesis of apolipoprotein and fatty acid binding protein 6,reduce the synthesis of fatty acid and increase the export of fatty acid in hepatocytes,resulting in the reduction of fatstorage and ultimately increasing the risk of lipodystrophy syndrome;ChREBP means carbohydrate regulatory element -binding proteins.。
达那唑-酪蛋白酸钠复合纳米粒的制备及其形成机制研究
达那唑-酪蛋白酸钠复合纳米粒的制备及其形成机制研究作者:李佳雯曹文峰徐浩冯予涵冷钰婷景秋芳任福正来源:《中国药房》2022年第10期中图分类号 R944 文献标志码 A 文章编号 1001-0408(2022)10-1213-08DOI 10.6039/j.issn.1001-0408.2022.10.10摘要目的制备并表征达那唑(DAZ)-酪蛋白酸钠(SC)复合纳米粒,探讨“自下而上(bottom-up)”工艺中纳米粒形成的机制。
方法以SC作为调控纳米粒的稳定剂,通过反溶剂沉淀法制备DAZ-SC复合纳米粒,对其粒径、Zeta电位、微观形态、稳定性、包封率、载药量、体外溶出度等进行表征,进一步利用荧光光谱、红外光谱和在线粒子监测等方法分析DAZ与SC的相互作用机制。
结果 DAZ-SC复合纳米粒的粒径为(223.7±12.5) nm,多分散性指数为0.274±0.012,Zeta电位为-(17.81±1.63) mV(n=3);纳米混悬液的稳定性良好,DAZ 的固态性质明显改善,溶出度显著提高。
SC在DAZ的作用下发生静态淬灭,二级结构有所改变;在SC的作用下,DAZ的结晶过程得到控制;DAZ与SC之间的相互作用主要为氢键和范德华力。
结论本研究成功制备了DAZ-SC复合纳米粒;在“bottom-up”工艺中,因SC与DAZ之间氢键和范德华力引起的相互作用抑制了药物晶体的生长与团聚。
关键词达那唑;酪蛋白酸钠;稳定剂;形成机制;纳米粒Study on preparation and formation mechanism of danazol-sodium caseinate composite nanoparticlesLI Jiawen,CAO Wenfeng,XU Hao,FENG Yuhan,LENG Yuting,JING Qiufang,REN Fuzheng(Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China)ABSTRACT OBJECTIVE To prepare and characterize danazol (DAZ)-sodium caseinate (SC) composite nanoparticles, and to study the mechanism of preparing nanoparticles in “bottom-up” technology. METHODS SC was used as a stabilizer for re gulating nanoparticles, so that DAZ-SC composite nanoparticles were prepared by anti-solvent precipitation method. The particle size, Zeta-potential, micro-morphology, stability, encapsulation efficiency, drug loading and in vitro dissolution rate were characterized. Fluorescence spectra, IR spectra, FBRM and other methods were used to analyze the interaction mechanism between DAZ and SC. RESULTS The particle size of DAZ-SC composite nanoparticles was (223.7±12.5) nm, and the polydispersity index was 0.274±0.012. Zeta-potential was -(17.81±1.63) mV (n=3). The stability of nano-suspension was good, the solid properties of DAZ were greatly improved,and the dissolution rate was significantly increased. SC was statically quenched under the action of DAZ and the secondary structures of SC were changed. The crystallization process of DAZ was controlled under the action of SC,and the interaction between DAZ and SC was mainly hydrogen bond and van der Waals force. CONCLUSIONS In this study, DAZ-SC composite nanoparticles are successfully prepared. In the “bottom-up” technology, the interaction between SC and DAZ caused by hydrogen bond and van der Waals force inhibits the growth and agglomeration of drug crystals.KEYWORDS danazol; sodium caseinate; stabilizer; formation mechanism; nanoparticles根據Noyes-Whitney方程可知,难溶性药物颗粒尺寸的减小可提高其溶出度[1],因此减小粒径的方法被广泛应用于难溶性药物的制剂领域[2]。
ZnO合成方法
存档日期:存档编号:北京化工大学研究生课程论文课程名称:纳米材料化学课程代号:ACh530任课教师:左胜利完成日期:2011 年12 月8 日专业:化学学号:2011200989姓名:李浩成绩:ZnO纳米材料的制备与应用摘要本篇综述从制备方法和应用领域出发,论述了制备ZnO纳米材料的一些常用方法如直接沉淀法、微乳液法、溶胶-凝胶法、模板法、水热合成法等,并简单介绍了氧化锌纳米材料在环境、食品、油漆涂料、橡胶、塑料、树脂、纺织品、化妆品等领域的应用。
关键词:ZnO纳米材料制备应用目录前言 (1)第1章氧化锌纳米材料的结构与性质 (2)1.1节氧化锌纳米材料的结构 (2)1.2节氧化锌纳米材料的主要性质 (2)第2章氧化锌纳米材料的制备方法及应用领域 (4)2.1节氧化锌纳米材料的制备方法 (4)2.2节氧化锌纳米材料的主要应用领域 (6)结论 (8)参考文献 (9)前言19世纪末到20世纪初,人类对微观世界的认识已经延伸到一定层次,时间上已经达到了纳秒、皮秒和微妙的数量级。
随着研究的深入,20世纪70年代,人类开启了规模生产纳米材料的历史。
纳米微粒狭义上是指有关原子团簇、纳米颗粒、纳米线、纳米薄膜、纳米碳管、纳米固体材料的总称,而广义上则指晶粒或晶界等显微构造能达到纳米尺寸材料。
该新型材料必将以其独特的量子尺寸效应、小尺寸效应、表面效应及宏观量子隧道效应等性质在各个领域崭露头角。
例如复合材料、大规模集成电路、超导线材料多相催化等方面的开发及应用。
近年来,纳米材料的合成方法及应用领域受到了研究者的广泛关注,TiO2、ZnO、CaF2、Al2O3纳米材料的研究成果及学术报告日益增多。
尤其是与人们日益提高的生活质量戚戚相关的纳米氧化锌材料制备及应用。
纳米氧化锌具有许多优良性能如压电性能、近紫外发射性、透明导电性、生物安全及适应性等,使其在非标柴油有害物质吸收、抑制食品污染菌、抗紫外线、压电材料、紫外光探测器、场效应管、表面声波、胎压、太阳能电池、气体传感器、生物传感器等领域有着广阔的发展前景而氧化锌复合材料的制备及研究也有着对人类生活不可估量的巨大作用。
纳米ZnO基葡萄糖生物传感器
纳米ZnO基葡萄糖生物传感器作者:丁一康卓张跃来源:《新材料产业》2015年第03期近年来,随着纳米材料的合成工艺与表征技术的飞速发展,研究者们将目光更多地集中在利用功能纳米材料提升生物传感器的性能。
在众多纳米材料中,氧化锌(ZnO)被视为是极具潜力的候选者之一。
这是由于ZnO丰富的纳米结构与形貌(例如:颗粒、线、棒、针、管、带、四针状、花状等)、极大的传感表面积、高化学稳定性、直接带隙宽禁带(3.37eV)、高激子束缚能(60meV)、高电子迁移率(210cm2/Vs)、优异的压电及紫外防护性能以及良好的生物相容性。
此外,ZnO具有较高的等电点(IEP=9.5),有利于通过静电作用吸附等电点较低的蛋白质分子。
因此,ZnO纳米材料在构建酶生物传感器方面有着得天独厚的优势。
生物传感器作为一种分析器件,通常包含生物基质(酶、抗体、核酸、微生物等)以及换能器(电化学型、光学型、声学型/机械型、压电型等)2部分,可以将生物信息转换成可探测的信号[1,2]。
其中,酶分子作为传感基元具有特异性以及较高催化性能,通过物理吸附、化学交联等固定技术集成在不同的换能器上,成功构建了酶生物传感器,并被应用在疾病诊断、医疗健康、食品工业、农业、国防军事以及环境监控等重要领域。
葡萄糖在大量生物化学途径中均扮演着重要角色,例如糖酵解等。
人体血液中较高的葡萄糖浓度预示着糖尿病的潜在危险。
因此,为了探测葡萄糖浓度的重要性以及酶氧化葡萄糖分子的典型性,研究者们开发出了多种多样的葡萄糖生物传感器。
葡萄糖传感器的主要工作原理是:葡萄糖+O2→葡萄糖酸+H2O2;H2O2→O2+2H++2e-。
本文将基于不同的器件类型,系统地介绍ZnO基葡萄糖生物传感器的发展历史以及最新进展;同时,针对纳米技术的改进对传感器性能的提升进行了着重讨论。
通过显著突出ZnO纳米材料基生物传感器的独特优势,帮助广大研究者们在ZnO纳米材料的研究领域以及高性能生物传感器件的研发道路上走的更远。
Ag修饰的纳米ZnO的合成_表征及光催化特性
Abstract: T he nanopow ders of Z nO and silv er m odif ied Ag/ Z nO are prepared r espect ively by hydrot her mal method and phot osy nt hesis m et hod. T he cry st al st ruct ure and surface m orpho logy of t he samples are charact er ized by X ray diff ract ion ( XRD) and scanning elect ron micr oscopy ( SEM ) . T he phot ocat aly tic act ivity o f t he ZnO and Ag / ZnO nanopow ders is tested by using methy lene blue as t he pollut ant mo del and under the irradiat ion w ith ult raviolet light . T he r esul ts indicat e t hat A g can ef fectively load on ZnO surf ace, and t he pho to cat aly t ic perf orm ance is great ly enhanced by mo dif ication w it h a suit abl e Ag loading. T he pho to cat aly t ic activit y of t he A g/ ZnO w it h Ag loading o f 1 0% is higher than t hat o f ZnO nanopo w der. Wit h 5 0% Ag loading, phot ocat alyt ic activit y is t he highest . H ow ev er, t he phot ocat aly tic act ivity decreases w hen Ag loading is 8 0% . Key words: nano zinc o xide; silver; hy drot hermal m et hod; pho to synt hesis; phot ocat alysis
超分子测试方法总结
SAED pattern obtained at the surface of a nanowire. The rectangular pattern is due to the 210 direction in ZnO. The rings are due to different orientations of Er2O3 nanocryst
Figure 4. (a) UV-vis diffuse-reflectance and (b) PL spectra of the as-synthesized Ag/ZnO heterostructure nanocrystals.
The appearance of two kinds of characteristic absorption bands also confirms that the as-synthesized samples are composed of zerovalent Ag and ZnO.
HRTEM image of an Al2O3deposited ZnO nanorod.
Structural characterization of ZnO/Er2O3 core/shell nanowires
HRTEM image of a nanowire. The left part presents interplanar separation of 0.52 nm and consists of a single ZnO crystal. The crystal growth direction 001 is perpendicular to the planes. The small inclusions on the right consist of Er2O3 nanocrystals. The interplanar separation of 0.30 nm corresponds to the 222 direction.
碳质材料载体对微生物的固定化作用及其在环境污染控制中的应用
韩杰,蔡元奇,李欣,等.碳质材料载体对微生物的固定化作用及其在环境污染控制中的应用[J].沈阳农业大学学报,2023,54(1):121-128.沈阳农业大学学报,2023,54(1):121-128Journal ofShenyang Agricultural University http :// DOI:10.3969/j.issn.1000-1700.2023.01.014收稿日期:2022-10-10基金项目:现代农业产业技术体系建设专项项目(CARS-01-51)第一作者:韩杰(1978-),女,博士,副教授,从事生物炭在霉菌毒素脱除中的应用研究,E-mail:***************.cn通信作者:孟军(1977-),男,博士,教授,博士生导师,从事生物炭应用研究,E-mail:********************.cn 碳质材料载体对微生物的固定化作用及其在环境污染控制中的应用韩杰a ,蔡元奇a ,李欣a ,翟旻a ,黄明华a ,孟军b(沈阳农业大学a.动物科学与医学学院,b.农学院/水稻研究所/国家生物炭研究院/农业农村部生物炭与土壤改良重点实验室,沈阳110161)摘要:微生物的生物吸附和生物降解作用因具有高效低毒、特异性强、环境友好、价格低廉、易于工业化生产等特点而成为治理环境污染物的重要发展方向。
然而,在实际生产中直接应用游离微生物常常受限于环境因素导致的微生物活性下降以及由此造成的生物修复效率降低的难题。
微生物固定化技术通过吸附、包埋和交联等方式将微生物限定在适宜的载体空间内,可以有效提高微生物的环境抵抗力和代谢活性。
载体作为影响固定化微生物活性和生物量,进而制约微生物固定化技术成功实施的关键因素,加强碳质材料包括生物炭、活性炭、碳纳米管和石墨烯及其衍生物等的微生物固定化载体的开发成为具有广阔前景的研究方向。
相比于其他载体材料,碳质材料载体具有高稳定性、不溶性、高机械强度、良好的孔隙度、较大的比表面积和可以修饰调节的表面功能,有利于微生物在材料表面附着和生长以及在其内部繁殖和发育,为承载微生物奠定了良好的基础,已被广泛应用于环境保护、生物制药、农业生产、食品工程等领域的环境污染物去除和以促进生产为目的的实践应用中。
TW 46化学化工
焙粉 焙用碱 巴巴斯可 {毒鱼藤} 巴比妥 钡熔剂 障壁层光电池 重子 介子 碱式碳酸铅 罗勒[精]油 篮烯 [刺]梧桐[树]胶;黄蓍胶 电池;电池组;电瓶 蜂蜡 苯甲醛 吲哚 苯胺;胺苯 苯 六氯化苯 苯甲酸;苄酸;安息[香]酸 苯甲酰磺酰亚胺;糖精 苯 苯 苯并芘 苯并吡啶 苯甲酰磺酰亚胺;糖精 盆苯 小蘗碱 香柑素 香柠檬素;佛手柑素 内盐;甜菜碱 黏结材料 生物沼气 铋华;砷铋矿 铋华 苦土 苦盐;泻盐 苦卤 井盐苦卤 黑琥珀 焦糖;闪锌矿;马列兰栎树 黑液 黑液 爆破药 漂白粉 漂白粉浓缩物 胆矾 胆蓝 蓝石;胆矾 熟[炼]油 骨泥 骨粉;细骨粉 骨胶 骨粉 骨油
borane borax Bordeaux mixture boric acid borneol bornyl alcohol boron carbide boron mud boson bouillie bordelaise brasque brick bridged hydrocarbon brine brucine burnt sugar bus-bar bus-barwire butadiene butanedioic acid buthotoxin by-product caffeine caffeine cage compound calamine calcitriol calcium acetylide calcium carbide calcium hydroxide calcium pantothenate calomel calp calxchlorinate camouflage material camphene camphor camptothecin capsaicin capsaicine capsanthin capsicine caramel carane carbamamidine carbamide carbazole carbene carbide carbinol carbofos carbohydrate(s) carbohydrate(s) carboline carbon dioxide
Electrochemically grown ZnO nanorods for hybrid solar cell applications
Electrochemically grown ZnO nanorods for hybrid solarcell applicationsYakup Hames a ,Zu ¨hal Alpaslan b ,Arif Ko¨semen b ,Sait Eren San b,*,Yusuf Yerli b aDepartment of Electrical-Electronics Engineering,Mustafa Kemal University,31040Hatay,TurkeybDepartment of Physics,Gebze Institute of Technology,41400Gebze,Turkey Received 29July 2009;received in revised form 21October 2009;accepted 27December 2009Available online 10February 2010Communicated by:Associate Editor Dr.Takhir RazykovAbstractA hybrid solar cell is designed and proposed as a feasible and reasonable alternative,according to acquired efficiency with the employ-ment of zinc oxide (ZnO)nanorods and ZnO thin films at the same time.Both of these ZnO structures were grown electrochemically and poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester;(P3HT:PCBM)was used as an active polymer blend,which was found to be compatible to prepared indium-tin-oxide (ITO)substrate base.This ITO base was introduced with mentioned ZnO structure in such a way that,the most efficient configuration was optimized to be ITO/ZnO film/ZnO nanorod/P3HT:PCBM/Ag.Efficiency of this opti-mized device is found to be 2.44%.All ZnO works were carried out electrochemically,that is indeed for the first time and at relatively lower temperatures.Ó2009Elsevier Ltd.All rights reserved.Keywords:Solar cells;ZnO;Nanorods;Electrochemistry1.IntroductionOrganic materials are promising candidates for photovol-taic technology due to their low cost production and flexible application opportunities,despite the relatively low energy conversion efficiency factor,there are various attempts for enhancing the efficiency and some of these enhancements were a noteworthy advance such as incorporation of fuller-ene C60as an n-type component into the active polymer (Sariciftci et al.,1992).A promising efficiency g =4.8%was acquired in one of these basic organic solar cell struc-tures,ITO/PEDOT:PSS (poly(3,4-ethylenedioxythio-phene)–polystyrenesulfonic acid)/P3HT:PCBM/Al,with surface modification of ITO (Yoon and Berger,2008),how-ever instability of PEDOT:PSS is decreasing the device life and it ultimately spoils (Jorgensen et al.,2008).In the scope of this work,conjugate polymers and inor-ganic materials are used altogether in the structure of a hybrid solar cell.ZnO nanorods are employed to raise the durability of the cell and more importantly to construct tidy rods for regulating the movement of charge carriers (Gunes and Sariciftci,2008).Actually ZnO (Beek et al.,2005),CdTe (Kang et al.,2005),TiO 2(Gunes et al.,2006)are some common materials in solar cells.ZnO is of special importance among these alter-natives due to its large band gap semiconductor peculiarity (Ozgur et al.,2005).There are several concrete applications of ZnO such as solar cells (Beek et al.,2006),transistors (HeO et al.,2004),sensors (Liu et al.,2009)and so on.ZnO nanostructures can be grown via different techniques.Vapor liquid solid (VLS)(Huang et al.,2001),chemical vapor deposition (CVD)(Wu and Liu,2002),electron beam evaporation (Nakanishi et al.,1999),hydro thermal deposi-tion (Unalan et al.,2008)and electro chemical deposition (ECD)(Gao et al.,2006)and thermal evaporation (Umar0038-092X/$-see front matter Ó2009Elsevier Ltd.All rights reserved.doi:10.1016/j.solener.2009.12.013*Corresponding author.Tel.:+902626051304;fax:+902626538497.E-mail address:erens@.tr (S.E.San)./locate/solenerAvailable online at Solar Energy 84(2010)426–431et al.,2006)are among the famous deposition methods,which were successfully applied for ZnO.Most of these tech-niques are relatively expensive and generally requires high temperature,high sensitivity and application of complicated procedures,except for ECD,which is promising for real life from large scale applicability and feasibility points.Kazuko et al.have already reached 2.7%efficiency with polymer:fullerene/ZnO nanorod structure (Takanezawa et al.,2007),however the ZnO nanorods were obtained via Sol-Gel method and annealing was also required at quite high temperatures in their procedure.On the other hand,electrochemical deposition,which we have success-fully applied for ZnO nanorods in our work,enables the control of the dimensions of the nanorods (Guo et al.,2008)and it does not require high temperature annealing,which is also an extra cost factor.The fiction of our experimental work contains the pro-posal of a solar cell.The design is simply based on electro-chemically grown ZnO nanorods and these nanorods are actually grown on a ZnO seed layer,which was also elec-trochemically grown on ITO substrates.So,all ZnO prep-arations can be guided in a single process bench.The solar cell efficiency was optimized according to the composition of active polymer layer effusing the channels between the nanorods and according to the ZnO thin film interlayer.Details of the proposed structure,which was originated throughout a couple of experimental optimization trials,will be given in Experimental Section.2.ExperimentalThe ultimate form of the proposed device is constructed after a couple of attempts and then the most efficient and promising alternative is examined via characterization and optimization procedures.Fig.1reveals the schematic representation of our device.Some of important steps in this design procedure are discussed in this section.2.1.Preparation of ZnO thin filmFirstly ITO substrates were cleaned with a sequence of chemicals as acetone,isopropinal alcohol,methanol and pure water under the ultrasonic treatment and ITO is set as working electrode in a three electrode system,where ref-erence electrode is Ag/AgCl and graphite is the counter electrode.Solution is distilled water containing 0.1M KCl and 5mM ZnCl 2which was purchased from Aldrich Inc.A constant cathodic current (J =0.012mA/cm 2)is applied for 2500s at room temperature and the result is simply the ZnO thin film.Grown thin films are annealed at 100°C for 10min.2.2.Preparation of ZnO nanorodsZnO Nanorods’production is subject to a serious optimi-zation of critical conditions,which were determined after a relatively long term and dense trial durations.Our optimized ZnO nanorod production procedure is frankly described in detail as followings;7mM KCl and 6mM ZnCl 2are employed in ultra pure water in three electrode system,sim-ilar to that of the ZnO thin film grown,which was already described above.This time,the procedure is applied in a water bath,which is stabilized at 80±1°C.The temperature control is actually a critical parameter in nanorod growing.Also another optimized parameter is the 0.9V cathodic volt-age,with respect to the reference electrode.We were able to grow our ZnO nanorods both on naked ITO and on ZnO thin film coated ITO under the same circumstances.200°C annealing is applied for an hour for the produced nanorods.2.3.Device preparationPolymer and PCBM were bought from Aldrich Inc.Chem-ical formulas of the used polymer P3HT and PCBM are given in Fig.2(a)and Fig.2(b)respectively.Polymer blend of P3HT:PCBM was prepared in 1:0.8wt/wt ratio in the chloro-benzene solution and drop-casting method is applied in the coating process.Having coated the active polymer layer,it is subject to 10min annealing at 50°C.The uppermost electrode Ag is deposited via thermal evaporation at 8.16Â10À6mb pressure.Thickness of this Ag layer is $100nm.At last,the device as a whole is annealed at 150°C for 5min.In this point it seems good to state that the prepara-tion and the characterization of the device are performed in ambient conditions.Electrochemical processes were executed with CHI 760C.Current density–voltage (J –V )curves were measured with a Keithley4200semiconductor characterization system,under the illumination of 100mW/cm 2from a 150W Oriel Solar Simulator with AM1.5filter.Solar Simulator was calibrated by a reference solar cell during the measurements.3.Results and discussion3.1.Preparation of ZnO seed layer and ZnO nanorods based substratesFirstly ZnO nanorods were grown on naked ITO sub-strate as described in Section 2.2.Fig.3(a)depicts thecur-Fig.1.Schematic representation of proposed solarcell.Fig.2.Chemical formulas of the (a)used polymer P3HT and (b)PCBM.Y.Hames et al./Solar Energy 84(2010)426–431427rent versus time of this deposition.If this plot is investi-gated;a sharp decrease is observed in the first 1min.Actu-ally this trend implies the increase of the resistance during the nucleation of ZnO on ITO,while the current is rising till 5th min the ZnO grains were formed as previously investigated by Guo et al.(2008).The radius of our rods are around 250–300nm on the ITO surface most probably because there is no guiding ZnO grains,which would con-stitute a preparation seed before the grown of nanorods.The length of these rods are at the order of a micrometers,Fig.4(a).The solar cell based on this infrastructure consti-tutes our first solar cell sample.Later on ZnO seed layer was grown on ITO substrate by employing the conditions described in Section 2.1.Fig.3(b)shows the voltage versus time plot of ZnO thin film depo-sition and Fig.4(b)depicts the SEM view of the film,which is exposed to a 1h annealing at 200°C,once produced.The solar cell based on this infrastructure constitutes our sec-ond design as a solar cell.Lastly as a fruitful combination of these two forms of ZnO,its nanorods are this time grown on the ZnO seed layer thin film.The same process was applied for nanorod growth disregarding the ITO morphology of ITO sub-strate.Fig.3(c)demonstrates the current versus time plot.The current value this time drops from 0.1mA to 0.05mA instead of 0.35mA to 0.05mA.One can claim thesmoother grown of the rods when a ZnO seed layer is employed in the substrate.SEM picture Fig.4(c)reveals that the radiuses of the rods as 100–150nm this time,this value is almost half of that of the rods grown without ZnO thin film base.The solar cell based on this infrastruc-ture would be our third and last design as a solar cell.3.2.Preparation and characterization of the devices Firstly P3HT:PCBM is prepared as 1:0.8(wt/wt)in a low molarities chlorobenzene solution and this solution is mixed at 70°C for a day.Prepared solution is coated on the sub-strate,which is made up of from ZnO seed layer and ZnO nanorods by drop-casting (DC)method.At this state the prepared item is annealed at 50°C for 10min before the deposition of top electrode in regard to recognized procedure of Takanezawa et al.(2007).Lastly the Ag top electrode is coated by thermal evaporation and a further annealing is applied at 150°C for 5min.In fact,there are some disadvan-tages of DC such as the relatively bad morphology and thicker coating restrictions of the films,whereas we have cho-sen this method in regard to its tailored advantage of drain-ing into the prepared nanorod structure.Fig.5demonstrates the cross-section panorama of the prepared device.Actually fully filled ZnO nanorods,by the polymer blend,are explic-itly shown in thisfigure.Fig.3.Current versus time plot of electrochemical deposition for (a)the ZnO nanorods on naked ITO (b)the ZnO thin film seed layer (c)the ZnO nanorods grown on ZnO seed layer modified ITO.428Y.Hames et al./Solar Energy 84(2010)426–431If we look for these three solar cell configurations,there are important differences in their responses.Fig.6shows the I –V plots of these cells.Sequentially increasing power conversion efficiency was obtained as 1.49%,1.64%and lastly 2.44%from the cells depicted in Table 1.If we consider the first cell;prepared without a seed layer but with nanorods (NRs);one can face with a high I sc value around 11.26mA/cm 2while V oc is 0.38V that is a relatively low value.High current value is supposed to be caused from the larger active surface area.Actually this was a part of our fiction about why we construct nanorods.Also electrochemical growing is a more controlled technique yielding a better crystalline structure.On the other hand,low V oc value was a handicap and a ZnO thin film is introduced in-between nanorods and ITO,in order to cope with this problem.In fact,this idea was previously proposed by Takanezawa et al.(2007).This time we have electrochemically introduced this interlayer thin film,which is at the order of 50nm,and low V oc value wasincreased to 0.49V via this interlayer while the I sc is getting a slight decrease to 9.59mA/cm 2.So,the employment of both of these layers,namely the seed layer and Nanorods at the same time is a fruitful design and ITO/ZnO(Seed layer)/ZnO(NRs)/P3HT:PCBM/Ag configuration tried and it yielded an optimized situation with V oc =0.48V and I sc =14.99mA/cm 2with g =2.44%efficiency.All measurements are taken under the room conditions just after the cells are produced.“Thermo Oriel Solar Sim-ulator ”is used with AM 1.5conditions and 100mW/cm 2power is attained with standard reference lamp.The used reference standard Si based reference photocell is pur-chased from “Rare System ”and there is no spectral mis-match correction in our ments on the obtained resultsOur device has the inverted geometry,whose top contact is made up of by Ag contact.When the device is illumi-nated by light,excitons are formed in the P3HT.It is then separated as electrons and holes in-between P3HT and PCBM.Electrons are moving firstly towards ZnO layer and then towards ITO contact,while the holes are going to Ag contact as schematically described in Fig.7.Princi-pally Ag is less reactive with respect to Al,so the stability is better.The thickness of the device is around 1.3l ,and the relatively bigger thickness is simply due to the long ZnO nanorods.One can expect a higher associated serial resistance and consequently lower I sc ,but precise filling of the regions between ZnO nanorods by P3HT:PCBM blend provided a long surface area between ZnO and the mentioned polymer blend.Therefore,the number of elec-trons to be formed and reaching to ITO gets more,which is causing a relatively higher I sc.Fig.4.SEM picture of the (a)ZnO nanorods grown on naked ITO (b)the ZnO thin film seed layer (c)the ZnO nanorods grown on ZnO seed layer modifiedITO.Fig.5.Cross-section view of the prepared device.Y.Hames et al./Solar Energy 84(2010)426–431429As we have already stated firstly,ZNO Nanorods (NR)is grown on naked ITO substrates and the solar cell was constructed and tried with this design,when the V oc value is found to be rather small as 0.38V,and then ZnO thin film was deposited between NRs and ITO,so V oc is raisedto 0.48V.In order to be honest,this rise is less than our expectations.One can propose some scenarios for possible reasons of low V oc .We have interpreted our outputs with the recent literature.The introduced seed layer,namely the thin film between NRs and ITO is prohibiting the leak-age of polymer blend to ITO,which would cause hole leak-age.Actually this barrier is contributing the increase of current,however these accumulated holes may cause recombination with the electrons from ITO,whereby the V oc could be affected negatively (Unalan et al.,2008).Another possible reason of V oc can be due to the follow-ing explanation.LUMO level of acceptor and HOMO level of donor determines the V oc .There may be some incom-plete splitting of quasi Fermi levels on ZnO,and this may be change HOMO–LUMO levels by mid-gap behav-iors.Actually ZnO surface is quite long in our design and this possibility seems rather realist.Different metals could be doped for ZnO for coping with the low V oc value,if this is the real cause.Of course such a doping would take a seri-ous optimization process (Olson et al.,2007).Actually ZnO surface is relatively long in our design and there may be some additional destructive surface effects,this time arising from ZnO–P3HT interface instead of P3HT–PCBM interface,whose constructive contribution is already discussed.This destructive surface effect may be another scenario for low V oc.Fig.6.I –V plots of solar cells based on (a)ZnO nanorods grown on naked ITO (b)the ZnO thin film seed layer (c)the ZnO nanorods grown on ZnO seed layer modified ITO.Table 1Power conversion efficiencies of the designed solar cells.Designed solar cellPower conversion efficiency g (%)ITO/ZnO(NRs)/P3HT:PCBM/Ag1.49ITO/ZnO(Buffer layer)/P3HT:PCBM/Ag1.64ITO/ZnO(Buffer layer)/ZnO(NRs)/P3HT:PCBM/Ag2.44Fig.7.Schematic representation of the energy levels in our design.430Y.Hames et al./Solar Energy 84(2010)426–4314.Conclusion and remarks for future studiesA fruitful ZnO based substrate is proposed and optimized throughout the work.The goal of this work is to produce this ZnO staffvia merely electrochemical methods and this is promising for low cost production possibilities,which is crit-ical for the realization of organic technology.Channels based structure of ZnO nanorods is shown to be of func-tional characters and we havefilled these channels by P3HT:PCBM blend.Alternative tailored materials could be tried tofill the same nanorod structure such as phthalocy-anins or quantum dots.May be better conversion efficiencies could be attained via other materials.Also,we have per-formed all preparations and measurements in air conditions, which is apparently a strong disadvantage.One can try the same story in a glove box system.The proposed ZnO concept infrastructure is claimed to be an efficient base for solar cell applications and all ZnO work are carried out electrochem-ically for thefirst time in the context of this work. AcknowledgementThis work is partially supported by The Scientific and Technical Research Council of Turkey;with project refer-ence Number107M270.ReferencesBeek,W.J.E.,Wienk,M.M.,Janssen,R.A.J.,2005.Hybrid polymer solar cells based on zinc oxide.J.Mater.Chem.15,2985–2988.Beek,W.J.E.,Wienk,M.M.,Janssen,R.A.J.,2006.Hybrid solar cells from regioregular polythiophene and ZnO nanoparticles.Adv.Func.Mat.16,1112–1116.Gao,F.,Naik,S.P.,Sasaki,Y.,Okubo,T.,2006.Preparation and optical property of nanosized ZnO electrochemically deposited in mesoporous silicafilms.Thin Solid Films495,68–72.Gunes,S.,Sariciftci,N.S.,2008.Hybrid solar cells.Inorg.Chim.Acta361, 581–588.Gunes,S.,Neugeber,H.,Sariciftci,N.S.,Roither,J.,Kovalenko,M., Pillwein,G.,Heiss,W.,2006.Hybrid solar cells using HgTe nanocrystals and nanoporous TiO2electrodes.Adv.Func.Mat.16, 1095–1099.Guo,M.,Yang,C.Y.,Zhang,M.,Zhang,Y.J.,Ma,T.,Wang,X.D., Wang,X.D.,2008.Effects of preparing conditions on the electrode-position of well-aligned ZnO nanorod arrays.Electrochim.Acta53, 4633–4641.HeO,Y.W.,Tien,L.C.,Kwon,Y.,Norton,D.P.,Pearton,S.J.,Kang,B.S.,Ren, F.,2004.Depletion-mode ZnO nanowirefield-effecttransistor.Appl.Phys.Lett.85,2274.Huang,M.H.,Wu,Y.,Feick,H.,Tran,N.,Weber,E.,Yang,P.,2001.Catalytic growth of zinc oxide nanowires by vapor transport.Adv.Mater.13,113–116.Jorgensen,M.,Norrman,K.,Krebs,F.C.,2008.Stability/degradation of polymer solar cells.Sol.Energy Mater.Sol.Cells92,687–714. Kang,Y.,Park,N.G.,Kim,D.,2005.Hybrid solar cells with vertically aligned CdTe nanorods and a conjugated polymer.Appl.Phys.Lett.86,113101.Liu, C.Y.,Chen, C.F.,Lev,J.P.,2009.Fabrication and CO sensing properties of mesostructured ZnO gas sensors.J.Electrochem.Soc.156,J16–J19.Nakanishi,Y.,Miyake,A.,Kominami,H.,Aouki,T.,Hatanaka,Y., Shimaoka,G.,1999.Preparation of ZnO thinfilms for high-resolution field emission display by electron beam evaporation.Appl.Surface Sci.142,233–236.Olson, D.C.,Shaheen,S.E.,White,M.S.,Mitchell,W.J.,van Hest, M.F.A.M.,Collins,R.T.,Ginley,D.S.,2007.Band-offset engineering for enhanced open-circuit voltage in polymer-oxide hybrid solar cells.Adv.Func.Mat.17,264–269.Ozgur,U.,Aliov,Y.I.,Liu,C.,Tekke,A.,Reshchikov,M.A.,Cho,S.J., Morkoc,H.,2005.A comprehensive review of ZnO materials and devices.J.Appl.Phys.98,041301.Sariciftci,N.S.,Smilowitz,L.,Heeger,A.J.,Wudl,F.,1992.Photoinduced electron transfer from a conducting polymer to buckminsterfullerene.Science258,1474–1476.Takanezawa,K.,Hirota,K.,Wei,Q.S.,Tajima,K.,Hashimoto,K.,2007.Efficient charge collection with ZnO nanorod array in hybrid photo-voltaic devices.J.Phys.Chem.C111,7218–7223.Umar,A.,Karunagaran,B.,Suh,E.K.,Hahn,Y.B.,2006.Structural optical properties of single-crystalline ZnO nanorods grown on silicon by thermal evaporation.Nanotechnology17,4072–4077.Unalan,H.,Hiralal,P.,Rupesinghe,N.,Dalal,S.,Milne,W.I.,Amara-tunga,G.A.J.,2008.Rapid synthesis of aligned zinc oxide nanowires.Nanotechnology19,255608.Unalan,H.E.,Hiralal,P.,Kuo, D.,Parekh, B.,Amaratunga,G., Chhowalla,M.,2008.Flexible organic photovoltaics from zinc oxide nanowires grown on transparent and conducting single walled carbon nanotube thinfilms.J.Matter Chem.18,5909–5912.Wu,J.J.,Liu,S.C.,2002.Low-temperature growth of well-aligned ZnO nanorods by chemical vapor deposition.Adv.Mater.14,215–218. Yoon,W.J.,Berger,P.R.,2008.4.8%Efficient poly(3-hexylthiophene)-fullerene derivative(1:0.8)bulk heterojunction photovoltaic devices with plasma treated AgO x/indium tin oxide anode modification.Appl.Phys.Lett.92,013306.Y.Hames et al./Solar Energy84(2010)426–431431。
一种靶向动脉粥样硬化斑块纳米材料的制备方法[发明专利]
(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201811085379.5(22)申请日 2018.09.18(71)申请人 烟台大学地址 264003 山东省烟台市莱山区清泉路30号(72)发明人 陈大全 范辛辛 郭春静 王炳杰 侯晓雅 (74)专利代理机构 北京中济纬天专利代理有限公司 11429代理人 马国冉(51)Int.Cl.A61K 9/107(2006.01)A61K 47/36(2006.01)A61K 47/61(2017.01)A61K 31/56(2006.01)A61K 31/12(2006.01)A61P 9/10(2006.01)(54)发明名称一种靶向动脉粥样硬化斑块纳米材料的制备方法(57)摘要本发明提供一种靶向动脉粥样硬化斑块纳米材料的制备方法。
该方法步骤包括:首先将二硫代二丙酸与熊果酸酯化反应生成酰氯,再与透明质酸反应制备成纳米空白聚合物胶束,然后通过透析法将姜黄素包裹其中,得到姜黄素胶束。
有益效果:本申请二硫代二丙酸有氧化还原敏感,其二硫键在高活性ROS条件下可发生断裂,熊果酸有抗动脉粥样硬化的药理作用,有疏水性;透明质酸具有亲水性,对动脉粥样硬化具有靶向性。
所制备的纳米材料具有AS靶向性,效果显著。
权利要求书1页 说明书9页 附图2页CN 108969484 A 2018.12.11C N 108969484A1.一种靶向动脉粥样硬化斑块纳米材料的制备方法,其特征在于,步骤包括:(1)冰浴下,将草酰氯溶液缓慢滴加到二硫代二丙酸溶液中,活化10min,再放入恒温油浴锅中,35℃下反应2-3h;再进行旋蒸后加入无水THF溶解,得到溶液A;草酰氯与二硫代二丙酸的摩尔比为1:1-2:1;溶液A浓度6.34×10-5mol/ml;(2)将溶液A缓慢滴加到含三乙胺的熊果酸溶液中,混匀,35℃油浴锅中反应3-4h,旋蒸,得到熊果酸二硫代二丙酸衍生物;熊果酸与三乙胺的摩尔比为1:1-1:2;溶液A与熊果酸的摩尔比为1:1-2:1;(3)在熊果酸二硫代二丙酸衍生物中依次加入甲酰胺、EDC、DMAP,置于恒温油浴锅中,0℃-55℃下活化2h,得到溶液B;熊果酸二硫代二丙酸衍生物:EDC:DMAP的摩尔比为1:1.2:1;1mol熊果酸二硫代二丙酸衍生物对应甲酰胺为3.8×104ml;(4)将透明质酸与甲酰胺混合溶解后,滴加至溶液B中,置于恒温油浴锅中,55℃反应24h,得到溶液C;1mol透明质酸对应20-30ml甲酰胺;熊果酸二硫代二丙酸衍生物:透明质酸的摩尔比为1:1-1:2;(5)将溶液C转移到截留分子量为2000Da的透析袋中,进行透析反应,透析完成后,吸出保留液进行离心,取上清液冻干,得到聚合物胶束载体材料;(6)将聚合物胶束载体材料、甲酰胺和DMSO混合溶解,得到溶液D;将姜黄素、甲酰胺溶解,得到溶液E;将溶液D和溶液E混合后,转移到截留分子量为3000Da的透析袋中,进行透析反应6h -24h,透析完成后,吸出保留液进行离心;取上清液,过0.8μm和0.45μm的微孔滤膜,冻干后得到载药姜黄素胶束;10mg聚合物胶束载体材料溶于3ml甲酰胺和3mlDMSO的混合溶液;1mg姜黄素对应1ml甲酰胺;溶液D中聚合物胶束材料的质量与溶液E中姜黄素的质量比为10:1。
219316056_菊芋多糖锌的制备及其抗氧化活性评价
张雅施,李文文,宗爱珍,等. 菊芋多糖锌的制备及其抗氧化活性评价[J]. 食品工业科技,2023,44(12):251−259. doi:10.13386/j.issn1002-0306.2022070113ZHANG Yashi, LI Wenwen, ZONG Aizhen, et al. Preparation and Antioxidant Activity Evaluation of Jerusalem Artichoke Polysaccharide-Zn Complex[J]. Science and Technology of Food Industry, 2023, 44(12): 251−259. (in Chinese with English abstract).doi: 10.13386/j.issn1002-0306.2022070113· 工艺技术 ·菊芋多糖锌的制备及其抗氧化活性评价张雅施1,李文文1,宗爱珍2,左兆河3,郑振佳1,张 斌1,*(1.山东农业大学食品科学与工程学院,山东省高等学校食品营养与健康重点实验室,山东泰安 271018;2.山东省农业科学院农产品加工与营养研究所,山东济南 250100;3.山东益得来生物科技有限公司,山东泰安 271024)摘 要:本文以菊芋多糖和硫酸锌为原料制备菊芋多糖锌,在单因素实验的基础上结合响应面法优化菊芋多糖锌的制备工艺,并考察了多糖和多糖锌的体外抗氧化活性。
结果表明,菊芋多糖锌最优制备工艺为:菊芋多糖与硫酸锌质量比为32:1、反应时间60 min 、反应温度50 ℃、反应pH8.50,此条件下螯合率为87.06%±0.28%。
体外抗氧化活性结果表明,在0.3~2.7 mg/mL 浓度范围内,菊芋多糖和菊芋多糖锌复合物均具有较好的体外抗氧化性能,菊芋多糖锌对DPPH 自由基、羟基自由基、超氧阴离子自由基和ABTS +自由基的最大清除能力分别为23.42%、13.47%、29.36%和18.50%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst:Correlation between Structure and PropertyYuanhui Zheng,*,†Chongqi Chen,†Yingying Zhan,†Xingyi Lin,†Qi Zheng,*,†Kemei Wei,†and Jiefang Zhu ‡National Engineering Research Center of Chemical Fertilizer Catalyst,Fuzhou Uni V ersity,Gongye Road 523,Fuzhou 350002,Fujian,China,Department of Applied Physics,Chalmers Uni V ersity of Technology,Fysikgrand 3,Goteborg SE 41296,SwedenRecei V ed:March 30,2008;Re V ised Manuscript Recei V ed:May 5,2008Ag/ZnO heterostructure nanocatalysts with Ag content of 1wt %are successfully prepared through three different simple methods,where chemical reduction and photolysis reaction are adopted to fabricate the heterostructure.The dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocatalyst is investigated by EDX mapping and XPS techniques.The experimental results show that deposition -precipitation is an efficient method to synthesize Ag/ZnO nanocatalyst with highly dispersed Ag clusters and/or nanoparticles;the photocatalytic activity of Ag/ZnO photocatalysts mainly depends on the dispersity of metallic Ag in Ag/ZnO nanocatalyst;the higher the dispersity of metallic Ag in Ag/ZnO nanocatalyst is,the higher the photocatalytic activity of Ag/ZnO photocatalyst should be.In addition,it is also found that the dispersity of Ag/ZnO photocatalyst in the dye solution is another key factor for liquid-phase photocatalysis due to the UV-light utilizing efficiency.The higher the UV-light utilizing efficiency is,the higher the photocatalytic activity of Ag/ZnO heterostructure photocatalyst should be.1.IntroductionSemiconductor-based heterostructures with desired composi-tions and/or morphologies can modulate the properties of materials and find potential applications in biomedicine,pho-tocatalysis,and nanodevices.1–12Stimulated by these applica-tions,significant advances have been made to design various kinds of semiconductor-based heterostructures,such as core/shell and anisotropic (e.g.,dimer/trimer-type and hierarchical composite materials)heterostructures 13–17in recent years.So far,metal/semiconductor is one of the most popular hetero-structures and has been extensively studied because of its excellent catalytic activity.For example,recently,Ag/ZnO heterostructure photocatalyst with high catalytic activity has attracted much research attention.18–21However,the relationship between the structure and the photocatalytic property of Ag/ZnO heterostructure photocatalyst is still not clear.Considering the relatively high price of Ag species and the promising application of Ag/ZnO photocatalyst,we expect to find an effective method to decrease its cost (i.e.,decrease the Ag content of Ag/ZnO photocatalyst)and understand the effect of the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO photocatalyst on its photocatalytic performance.It is well-known that material properties are determined by structure,such as size,morphology,pore,defect,and composi-tion.18,22–25With the photocatalytic performance of semiconduc-tor-based heterostructure photocatalyst as an example,it is mainly dependent on the concentration of heterostructure interface and defect which can increase the separation efficiency of photogenerated electron -hole pairs.As an example,in our previous study,18it is found that Ag nanoparticles and oxygenvacancy defects (V o ··)on the surface of ZnO nanocrystals benefit the separation of photogenerated electron -hole pairs,thus enhancing the photocatalytic activity.It has also been reported that there are two different pathways to transfer the photogenerated electrons from ZnO semiconductor to the dye for Ag/ZnO photocatalyst (see Scheme 1)in this literature,when the catalyst is irradiated by UV light.As shown in Scheme 1,the photogenerated electrons can be transferred to the dye through the Ag-ZnO interface (pathway I)and the oxygen vacancy defects on the surface of the ZnO semiconductor (pathway II).As to pathway I,the photogenerated electrons should reach the surface of Ag nanopaticles via the Ag-ZnO interface before they are transferred to the dye.So,it is believed that the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO nanocrystals (i.e.,the concentration of Ag-ZnO interface)*Corresponding authors.E-mails:yuanhui.zheng@ and zhengqi@,Phone:+86-591-8373-1234-8112,Fax:+86-591-8373-8808.†Fuzhou University.‡Chalmers University of Technology.SCHEME 1:Photogenerated Electron Transfer in Ag/ZnO Nanocatalyst during the Catalytic Process aaø:work function;E f :Fermi level;V o ··:oxygen vacancy;CB:conduction band;VB:valence band;vac:vacuum level;m:metal;and s:semiconductor.18J.Phys.Chem.C 2008,112,10773–107771077310.1021/jp8027275CCC:$40.75 2008American Chemical SocietyPublished on Web06/26/2008should affect the photocatalytic activity of the Ag/ZnO hetero-structure photocatalyst:the higher the dispersity of Ag clusters and/or nanoparticles on the surface of ZnO nanocrystals is,the higher the photocatalytic activity of the Ag/ZnO heterostruc-ture photocatalyst should be.Therefore,it is necessary to improve the dispersion of metallic Ag in Ag/ZnO photocatalyst and use simple techniques to characterize the dispersion of metallic Ag in the catalyst.So far,metal dispersion in the catalysts has been extensively measured by chemisorption,26–30 and only a little work has been done by energy-dispersive X-ray (EDX)mapping.30,31In this paper,three facile synthetic methods are employed to fabricate the Ag/ZnO heterostructure photo-catalyst with Ag content of1.0wt%.EDX mapping and X-ray photoelectron spectroscopy(XPS)are adopted to investigate the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO photocatalyst(i.e.,the dispersion of metallic Ag on the surface of ZnO nanocrystals).The relationship between the structure and the photocatalytic performance of these catalysts is inves-tigated in detail.The experimental results show that the photocatalytic activity of Ag/ZnO photocatalysts depends not only on the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO photocatalyst but also on Ag/ZnO photocatalyst in the dye solution.2.Experimental Section2.1.Preparation of Ag/ZnO Heterostructure Nanocata-lysts.2.1.1.Materials.Zinc acetate,silver acetate,sodium hydroxide,and alcohol are all analytical grades and used without further purification.2.1.2.Synthesis.Ag/ZnO heterostructure nanocatalysts have been synthesized through the following three methods:For the deposition-precipitation(DP)method,0.037mmol of CH3COOAg and5mmol of fresh ZnO nanocrystals(named Z5in ref25)synthesized through the solvothermal method25were dispersed in150mL of ethanol.Then,1mL of NaOH ethanol solution(0.17M)was added into the above mixture and stirred under natural light at room temperature for two days.For the coprecipitation(CP)method,150mL of NaOH ethanol solution (0.17M)was added into the mixture of5mmol of Zn (Ac)2·2H2O and0.037mmol of CH3COOAg with agitation under natural light at room temperature for two days.For the solvothermal(ST)method,150mL of NaOH ethanol solution (0.17M)was added into the mixture of5mmol of Zn(Ac)2·2H2O and0.037mmol of CH3COOAg with agitation for30min in the dark,then turned intofive Teflon-lined stainless steel autoclaves of50mL capacity equally.The sealed tanks were put into an oven and heated at160°C for one day.The precipitates were collected byfiltration,washed with deionized water and ethanol several times,andfinally dried in the air at 60°C for10h.The obtained samples with Ag content of1.0 wt%were named Ag/ZnO-DP,Ag/ZnO-CP,and Ag/ZnO-ST, respectively.2.2.Characterizations.The powder X-ray diffraction(XRD) patterns of the samples were recorded by a Panalytical X′Pert Pro diffractometer using Co K R radiation(λ)0.179nm)at a scanning rate of0.12°/min.The surface areas were measured by the Brunauer-Emmett-Teller(BET)method by using N2 adsorption at77K on a Quantachrome NOVA4200e apparatus. The dispersity of Ag element in the as-synthesized samples was characterized by afield emission scanning electron microscope (SEM,JSM-6700F)equipped with an energy-dispersive X-ray spectroscopy(EDXS)system at15kV(penetration depth of electrons:∼2.2µm).The X-ray photoelectron spectroscopy (XPS)measurements were performed on a Phi Quantum2000 spectrophotometer with Al K R radiation(1486.6eV)(penetra-tion depth of X-ray:<10nm).UV-vis diffuse-reflectance spectra of the as-synthesized samples were measured on a UV-vis-NIR spectrometer(Cary500).Room-temperature fluorescent characterization was performed on an Edinbursh F900with an excitation wavelength of365nm.For photocata-lytic measurement,30mg of each catalyst was suspended in 90mL of methyl orange(MO)aqueous solution(5.0×10-5 M),and then the mixture was put in quartz tubes and agitated overnight in the absence of light to attain equilibrium adsorption on the catalyst surface.UV irradiation was carried out by using a4×4Wfluorescent Hg-lamp(Philips TUV4W,the strongest emission at254nm).After a given irradiation time,about3.5 mL of the mixture was withdrawn and the catalysts were separated from the suspensions byfiltration through0.22µm cellulose membranes.The photocatalytic degradation process was monitored by UV-vis spectrophotometer(UV-2450) (measuring the absorption of MO at463nm).3.Results and Discussion3.1.Synthetic Principle of Ag/ZnO Heterostructure Nano-catalysts.As described in the Experimental Section,Ag/ZnO heterostructure nanocatalysts are synthesized by three different methods,where chemical reduction18and photolysis reaction are adopted to fabricate the heterostructure.When a sodium hydroxide solution is added into a mixture of acetic zinc(or fresh prepared ZnO nanocrystals25)and silver acetate drop by drop with agitation,the brown-yellow precipitation is formed gradually.The chemical reaction processes for the formation of Ag/ZnO can be formulated as2ZnO+2OH-+H2O)ZnO⁄Zn(OH)42-(1a)Zn2++4OH-)Zn(OH)42-(1b)Ag++2OH-)Ag(OH)2-(2)ZnO⁄Zn(OH)42-+2Ag(OH)2-f Ag2O⁄ZnO+H2O+OH-(3a)Zn(OH)42-+2Ag(OH)2-)Ag2O⁄ZnO+2H2O+4OH-(3b)Ag2O⁄ZnO98hνAg⁄ZnO+O2(4a)Ag2O⁄ZnO98ethanolsolvothermalAg⁄ZnOx·(1-x)V(x<1)(4b) For the deposition-precipitation method,reactions1a,2,3a, and4a should happen;for the coprecipitation method,reactions 1b,2,3b,and4a should occur;and for the solvothermal method, reactions1b,2,3b,and4b should take place.18Different reaction processes should result in different structures of Ag/ZnO nanocatalyst,such as the dispersity of metallic Ag in Ag/ZnO nanocatalysts and the type/concentration of oxygen defects in ZnO nanocrystals,as discussed later(see sections3.3and3.4, respectively).3.2.Crystal Structure and BET Surface Area of Ag/ZnO Heterostructure Nanocatalysts.The XRD patterns of the as-synthesized samples through different methods are shown in Figure1.It is found that there are two sets of diffraction peaks for each sample,indicating that the as-synthesized samples are composite materials.Those marked with“#”can be indexed to10774J.Phys.Chem.C,Vol.112,No.29,2008Zheng et al.hexagonal wurtzite ZnO (JCPDS file no.36-1451),while the others marked with “*”can be indexed to face-centered-cubic (fcc)metallic Ag (JCPDS file no.04-0783).Comparing the half-peak width of the as-synthesized samples,we can see that the grain size of ZnO nanocrystals in Ag/ZnO-CP is much smaller than those of Ag/ZnO-DP and Ag/ZnO-ST.In addition,there is no remarkable shift of all diffraction peaks,implying that no Zn 1-x Ag x O solid solution is formed in the as-synthesized samples.The BET surface areas of Ag/ZnO-DP,Ag/ZnO-CP,and Ag/ZnO-ST are 19.2,16.0,and 23.3m 2/g,respectively.3.3.Dispersity of Metallic Ag on the Surface of ZnO Nanocrystals.In order to obtain detailed information about Ag distributions in the as-synthesized samples,SEM observations and EDX mapping measurements are carried out.Figure 2shows the low-magnification SEM images and Ag distributions in the as-synthesized samples with Ag content of 1.0wt %.It is easy to find that the coverage of blue color decreases from Figure 2a to c (Ag/ZnO-DP >Ag/ZnO-CP >Ag/ZnO-ST),indicating that the uniformity of metallic Ag in the as-synthesized samples decreases from Ag/ZnO-DP to Ag/ZnO-ST.This means that the concentration of Ag-ZnO interface decreases from Ag/ZnO-DP to Ag/ZnO-ST.A typical HRTEM image of an individual Ag/ZnO heterostructure (the inset in Figure 2a,c)reveals that the metallic Ag nanoparticle attaches on the surface of ZnO nanocrystal (i.e.,the formation of a dimer-type heterostructure).The composition of the as-synthesized samples is further characterized by EDXS and the results are shown in Figure 2d.All of the peaks on the curves are ascribed to Zn,Ag,O,Cu,and C elements,and no peaks of other elements are observed.The copper and carbon signals are from the sample holder with conductive tape.Therefore,it is concluded that the as-synthesized samples are composed of Zn,Ag,and O elements,which is in good agreement with the above XRD result.In addition,EDXS analysis reveals that the Ag content of the as-synthesized samples (listed in Figure 2d)approximates the theoretical value (1.0wt %).The surface Ag content of the as-prepared samples is also investigated by XPS,and the results are shown in Figure 3.The binding energies in the XPS spectra presented in Figure 3are calibrated by C 1s (284.8eV).The peaks appearing in Figure 3are attributed to Ag 3d 5/2(367.2eV)and Ag 3d 3/2(373.2eV),respectively.It is worthwhile to mention that the peak positions of Ag 3d shift remarkably to the lower binding energy compared with that of bulk Ag (Ag 3d 5/2,368.3eV;and Ag 3d 3/2,374.3eV 32),which is ascribed to the electron transfer from metallic Ag to ZnO nanocrystals (i.e.,the formation of monovalent Ag).18The shift of the binding energy of metallic Ag indicates that there is a strong interaction between metallic Ag and ZnO nanocrystals.In addition,it is found that the intensity of Ag 3d peaks decreases from Ag/ZnO-DP to Ag/ZnO-ST and the calculated surface Ag contents of the corresponding samples are 0.89,0.68,and 0.35wt %,implying the decrease of the content of surface Ag from Ag/ZnO-DP to Ag/ZnO-ST.In combination with the EDX mapping results,it can be concluded that Ag/ZnO-DP possesses the highest dispersity of metallic Ag among the as-synthesized samples.3.4.Optical Properties of Ag/ZnO Heterostructure Nano-crystals.The UV -vis diffuse-reflectance and photolumines-cence (PL)spectra of the as-synthesized Ag/ZnO heterostructure nanocrystals are shown in Figure 4.In Figure 4a,two prominent absorption bands are observed in the range 200-800nm.The former is assigned to the absorption of the ZnO semiconductor,and the corresponding absorption edge locates at around 375nm.The absorption edge of ZnO nanocrystals for Ag/ZnO-CP is slightly smaller than that of ZnO nanocrystals for Ag/ZnO-DP and Ag/ZnO-ST,indicating that the size of ZnO nanocrystals in Ag/ZnO-CP is smaller,which is in good agreement with the above XRD result.The latter is attributed to the characteristic absorption of surface plasmon resulting from the metallic Ag clusters and/or nanoparticles in the Ag/ZnO heterostructures.18The appearance of two kinds of characteristic absorption bands also confirms that the as-synthesized samples are composed of zerovalent Ag and paring with the position and intensity of the metallic Ag absorption in Figure 4a,one can see that the position blue-shifts for Ag/ZnO-DP (highlighted by an arrow),indicating that this sample has the smallest size of Ag clusters and/or nanoparticles.It is also found that for the Ag/ZnO-ST sample the intensity is much lower,which should result from the worst Ag distributions in the sample.In Figure 4b,there is a broad emission peak in the range 400-800nm for all samples.It is obvious that the emission peak of the as-synthesized samples shifts from 527to 585nm (Ag/ZnO-ST f Ag/ZnO-DP f Ag/ZnO-CP:red shift)and the corresponding intensity also changes.On the basis of our previous study,25the green and orange emissions at about 527and 605nm should be ascribed to oxygen vacancy (V o ··)and interstitial oxygen (O i ′′)defects,respectively.The red shift of emission peak indicates that the concentration of O i ′′defects increase from Ag/ZnO-ST to Ag/ZnO-CP (the concentration of O i ′′defects:Ag/ZnO-CP >Ag/ZnO-DP >Ag/ZnO-ST).Moreover,the con-centration of surface oxygen defects (including V o ··and O i ′′defects)of Ag/ZnO-DP and Ag/ZnO-CP is lowest and highest among that of the as-synthesized samples (the concentration of surface oxygen defects:Ag/ZnO-CP >Ag/ZnO-ST >Ag/ZnO-DP).183.5.Photocatalytic Activities of Ag/ZnO Heterostructure Nanocatalysts.MO is presently adopted as a representative organic pollutant to evaluate the photocatalytic performance of the as-synthesized Ag/ZnO heterostructure nanocatalysts.In the experiments,the commercial TiO 2(Degussa P-25)is used as a photocatalytic reference to qualitatively understand the photo-catalytic activity of Ag/ZnO catalysts.The photocatalytic activities of the as-prepared samples with Ag content of 1.0wt %and Degussa P-25are shown in Figure 5.C 0and C in Figure 5are the initial concentration after the equilibrium adsorption and the reaction concentration of MO,respectively.As seen in Figure 5,the photocatalytic activity of Ag/ZnO-DP and Ag/ZnO-ST is much higher than that of P-25,for exam-ple,and the required time for an entire decolorization of MO over Ag/ZnO-DP and Ag/ZnO-ST (Figure 5a,c)is less than orFigure 1.XRD patterns of the as-synthesized samples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP,and (c)Ag/ZnO-ST.The insets are the enlarged diffraction peaks of Ag (111).Photocatalytic Activity of Ag/ZnO Nanocatalyst J.Phys.Chem.C,Vol.112,No.29,200810775equal to 40min,much shorter than the corresponding value of P-25catalyst.However,the MO degradation efficiency is about 60%for Ag/ZnO-CP at 40min (Figure 5b),which is much smaller than that of P-25(92%).Moreover,it is obvious that Ag/ZnO-DP shows the highest photocatalytic activity among all these samples.The photograph of the as-synthesized samples (the inset of Figure 5)in MO solution shows that Ag/ZnO-DP and Ag/ZnO-ST samples are much more easily dispersed than Ag/ZnO-CP sample.It has been reported that the higher the concentration of oxygen defects on the surface of ZnO nanocrystals,the higherthe photocatalytic activity should be.18However,based on the above results,despite lowest concentration of oxygen defects on the surface of ZnO nanocrystals for Ag/ZnO-DP sample,its photocatalytic activity is remarkably better than that of the other two samples (Ag/ZnO-CP and Ag/ZnO-ST).According to the EDX mapping and XPS results,this phenomenon should be attributed to the highest dispersity of metallic Ag on the surface of ZnO nanocrystals for Ag/ZnO-DP sample.It has been reported that Ag clusters and/or nanoparticles on the surface of ZnO nanocrystals act as a sink for the electrons,promote interfacial charge-transfer kinetics between the metal and the semiconductor,improve the separation of photogenerated electron -hole pairs,and thus enhance the photocatalytic activity of Ag/ZnO photocatalysts.18Therefore,the higher the dispersity of Ag clusters and/or nanoparticles on the surface of ZnO nanocrystals is,the higher the photocatalytic activity of Ag/ZnO heterostructure photocatalyst should be.However,as presented in Figure 5,the photocatalytic efficiency of Ag/ZnO-CP is much lower than that of Ag/ZnO-ST,which should be related to the dispersity of Ag/ZnO photocatalyst in the dye solution.It is found that Ag/ZnO-CP cannot be well-dispersed in the dye solution (the inset of Figure 5),so the UV-light utilizing efficiency of this sample is very low.The higher the UV-light utilizing efficiency is,the higher the photocatalytic activity of the Ag/ZnO heterostructure photocatalyst should be.33Considering all the above factors,it is reasonable that Ag/ZnO-DP and Ag/ZnO-CP exhibit the highest and lowest photocata-lytic activity,respectively.Finally,the experimental results presented in this paper should be valuable for the synthesis of other metal/semiconductor catalysts with high catalytic activity.Figure 2.Low-magnification SEM images and EDX mapping of the as-synthesized samples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP and (c)Ag/ZnO-ST;(d)EDXS spectra recorded from the corresponding rectangular region of the as-synthesized samples in a -c.The coverage of blue color in a -c reflects Ag distributions in the as-synthesized samples,and the inset in a and c is the corresponding HRTEM image of a single Ag/ZnO heterostructure nanocrystal.Figure 3.Ag 3d XPS spectra of the as-synthesized samples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP,and (c)Ag/ZnO-ST.10776J.Phys.Chem.C,Vol.112,No.29,2008Zheng etal.4.ConclusionAg/ZnO heterostructure nanocatalysts were successfully prepared through three simple methods,where chemical reduc-tion and photolysis reaction are adopted to fabricate the heterostructure.It is found that deposition-precipitation is an efficient method to synthesized Ag/ZnO nanocatalyst with highly dispersed metallic Ag on the surface of ZnO nanocrystals;the photocatalytic activity of Ag/ZnO photocatalysts depends on the dispersity of Ag clusters and/or nanoparticles in Ag/ZnO photocatalyst and Ag/ZnO photocatalyst in the dye solution. The higher the dispersities of metallic Ag in Ag/ZnO photo-catalyst and Ag/ZnO catalyst in the dye solution are,the higher the photocatalytic activity of Ag/ZnO heterostructure photo-catalyst should be.Acknowledgment.The authors acknowledge thefinancial support from the Department of Science of the People’s Republic of China(20771025),and the Department of Science &Technology of Fujian Province(2005H201-2). References and Notes(1)Alivisatos,A.P.Nat.Biotechnol.2004,22,47.(2)Wang,D.Y.;Rogach,A.L.;Caruso,F.Nano Lett.2002,2,857.(3)Marci,G.;Augugliaro,V.;Lopez-Munoz,M.J.;Martin, C.;Palmisano,L.;Rives,V.;Schiavello,M.;Tilley,R.J.D.;Venezia,A.M.J.Phys.Chem.B2001,105,1026–1033.(4)Zhang,F.;Jin,R.;Chen,J.;Shao,C.;Gao,W.;Li,L.;Guan,N.J.Catal.2005,232,424.(5)Wu,J.J.;Tseng,C.H.Appl.Catal.,B2006,66,51.(6)Lee,M.S.;Hong,S.S.;Mohseni,M.J.Mol.Catal.A:Chem.2005,242,135.(7)Iliev,V.;Tomova,D.;Todorovska,R.;Oliver,D.;Petrov,L.;Todorovsky,D.;unova-Bujnova,M.Appl.Catal.,A2006,313,115.(8)Lam,S.W.;Chiang,K.;Lim,T.M.;Amal,R.;Low,G.K.-C.Appl.Catal.,B2007,72,363.(9)Kim,H.G.;Borse,P.H.;Choi,W.;Lee,J.S.Angew.Chem.,Int.Ed.2005,44,4585.(10)Hua,J.;Zheng,Q.;Zheng,Y.;Wei,K.;Lin,X.Catal.Lett.2005,102,99.(11)Tabakova,T.;Idakiev,V.;Andreeva,D.;Mitov,I.Appl.Catal.,A2000,202,91.(12)Park,W.I.;Yi,G.C.;Kim,M.;Pennycook,S.J.Ad V.Mater.2003,15,256.(13)Kamat,P.V.;Hirakawa,T.J.Am.Chem.Soc.2005,127,3928.(14)Liu,N.;Prall,B.S.;Klimov,V.I.J.Am.Chem.Soc.2006,128,15362.(15)Choi,J.;Jun,Y.;Yeon,S.;Kim,H.C.;Shin,J.;Cheon,J.J.Am.Chem.Soc.2006,128,15982.(16)Lao,J.Y.;Wen,J.G.;Ren,Z.F.Nano Lett.2002,2,1287.(17)Jung,Y.;Ko,D.K.;Agarwal,R.Nano Lett.2007,7,264.(18)Zheng,Y.;Zheng,L.;Zhan,Y.;Lin,X.;Zheng,Q.;Wei,K.Inorg.Chem.2007,46,6980.(19)Height,M.J.;Pratsinis,S.E.;Mekasuwandumrong,O.;Praserth-dam,P.Appl.Catal.B:En V iron.2006,63,305.(20)Zhang,Y.;Mu,J.J.Colloid Interface Sci.2007,309,478.(21)Kubo,W.;Tatsuma,T.J.Mater.Chem.2005,15,3104.(22)Ye,C.;Bando,Y.;Shen,G.;Golberg,D.J.Phys.Chem.B2006,110,15146.(23)Zheng,Y.;Cheng,Y.;Wang,Y.;Bao,F.;Zhou,L.;Wei,X.;Zhang,Y.;Zheng,Q.J.Phys.Chem.B2006,110,3093.(24)Chen,C.;Zheng,Y.;Zhan,Y.;Lin,X.;Zheng,Q.;Wei,K.submitted to Cryst.Growth Des.2007.(25)Zheng,Y.;Chen,C.;Zhan,Y.;Lin,X.;Zheng,Q.;Wei,K.;Zhu,J.;Zhu,Y.Inorg.Chem.2007,46,6675.(26)Kasˇpar,J.;Leitenburg, C.de.;Fornasiero,P.;Trovarelli, A.;Graziani,M.J.Catal.1994,146,136.(27)Haneda,M.;Fujitani,T.;Hamada,H.J.Mol.Catal.A:Chem.2006,256,143.(28)Barbier,A.;Tuel,A.;Arcon,I.;Kodre,A.;Martin,G.A.J.Catal.2001,200,106.(29)Komatsu,T.;Yashima,T.J.Mol.Catal.1987,40,83.(30)Jongsomjit,B.;Kittiruangrayub,S.;Praserthdam,P.Mater.Chem.Phys.2007,105,14.(31)Lv,Z.;Xin,Q.;Guo,Z.;Song,Z.J.Dispers.Sci.Technol.2007,28,965.(32)Moudler,J.F.;Stickle,W.F.;Sobol,P.E.;Bomben,K.D.Handbook of X-ray Photoelectron Spectroscopy;Perkin-Elmer:Eden Prairie,MN,1992.(33)Mills,A.;Davis,R.H.;Worsely,D.Chem.Soc.Re V.1993,22,417.JP8027275Figure4.(a)UV-vis diffuse-reflectance and(b)PL spectra of theas-synthesized Ag/ZnO heterostructure nanocrystals.Figure5.Photodegradation of MO by the as-synthesized samples:(a)Ag/ZnO-DP,(b)Ag/ZnO-CP,and(c)Ag/ZnO-ST.The inset is thephotograph of the as-synthesized samples dispersed in MO solution(the concentration of the catalysts is1.25mg/mL).Photocatalytic Activity of Ag/ZnO Nanocatalyst J.Phys.Chem.C,Vol.112,No.29,200810777。