基于单片机的电子秤设计

合集下载

【毕业设计】毕业设计电子秤

【毕业设计】毕业设计电子秤

【关键字】毕业设计毕业设计电子秤篇一:毕业论文--基于单片机的电子秤设计基于单片机的电子秤设计摘要:本设计以51系列单片机STC89C52RC为控制核心,实现电子秤的基本控制功能。

在设计系统时,为了更好地采用模块化设计法,分步的设计各个单元功能模块,系统的硬件部分可以分为最小系统、数据采集、人机交互界面(键盘以及显示)和系统电源四大部分。

最小系统部分为STC89C52RC系统;数据采集部分由压力传感器、信号的前级处理和A/D转换部分组成,包括运算放大器OP07和A/D转换器ADC0809;人机交互界面为键盘输入和数码管显示,主要使用5X5键盘、CH423数码管控制芯片及13位数码管显示,可以方便的输入数据并直观的显示重量、单价和总价。

系统电源是以LM7805、LM7812为核心设计电路以提供系统正常工作电源。

软件部分应用单片机C51语言进行编程,实现了该设计的基本控制功能。

该电子秤可以实现基本的称重功能(称重范围为0~10Kg,重量误差不大于±0.02Kg),重量、单价、总价的计量可以精确到两位小数,键盘设置有数字键(‘0’~‘9’、‘.’)、储存键、单价1~单价8调用单价键、清除键、去皮键等;发挥部分有8种不同物品的单价记忆功能、99种消费商品价格累计功能、;待发挥部分为讲电子秤与打印机连接,能打印消费记录(小票),超量程和欠量程的报警功能。

本系统结构简单,使用方便,功能齐全,精度高,具有一定的开发价值。

关键词:单片机采样电路A/D转换器CH423数码管驱动芯片数码管显示工作电源the design of electronic scales based on Single-chipMicrocomputerABSTRACT :The design for the control of 51 computers STC89C52RC the core, to achieve the basic control functions of electronic scales. In designing the system, in order to better modular design, the design of each unit step function modules, the system can be divided into the minimum hardware system, data acquisition, man-machine interface (keypad and display) and the system power 4 most. Minimum system partly STC89C52RC system; data collection in part by the pressure sensor, signal processing and the first class A / D conversion components, including the operational amplifier OP07 and the A / D converter ADC0809; man-machine interface for the keyboard and digital display The main use of 5X5 keypad, CH423 digital control chip and 13 digital display, can easily enter data and visual display weight, unit price and total price. System power is based on LM7805, LM7812 as the core design of the circuit to provide normal power supply system. Software part of the application MCU C51 language programming, the design of the basic control functions. The electronic weighing scales can realize the basic functions (weighing range of 0 ~ 10Kg, the weight of the error is not greater than ± 0.02Kg), weight, unit price, total measurement is accurate to two decimal places, the keyboard settings are the number keys ( '0 '~ '9','.'), storage key, Unit 1 to Unit 8 Unit call key, clear key, peeled keys, etc.; play a part in 8different items priced memory, 99 kinds of consumer goods prices cumulative function; play a part to be about electronic scales and printers connected to print consumption records (small notes), over range and under-range alarm. The system is simple, easy to use, fully functional, high precision, has some value for development.Key words:microcontroller sampling circuit A/D converter CH423 digital tube driver chip digital display Power Supply目录第一章绪论11.1引言 (1)1.2 选题背景与意义 (1)第二章系统方案的设计 (2)2.1 电子秤的设计要求 (2)2.1.1 基本要求 (2)2.1.2 特色与创新 (2)2.2实验原理及设计基本思路 (2) (2)2.2.2 系统设计基本思路 (2)2.3 系统总体设计方案比较与论证 (3)2.4单片机的选型 (4)2.5 数据采集部分的方案确定 (4)2.5.1 传感器 (4)2.5.2 前级放大器部分 (7)2.5.3 A/D 转换器 (9)2.6人机交互部分 (11)2.6.1 键盘输入 (11)2.6.2 输出显示 (11)2.7系统电源 (12)2.8 具体实施方案简介 (13)第三章系统硬件设计 (15)3.1 基于STC89C52RC的主控电路 (15) (15)3.2 系统电源 (18)3.2.1 芯片介绍 (18)3.2.2 电源电路 (19)第四章软件流程 (20)4.1 主程序流程图 (20)4.2 键盘扫描流程图 (21)第五章结论 (22)5.1 论文总结 (22)5.2 感想 (22)致谢 (24)参考文献 (25)附录A:原理图 (26)附录B:源程序 (29)第一章绪论1.1引言在现代化的今天,电子产品变得越来越丰富,给人们带来了诸多方便,其中电子秤成了人们生活中不可或缺的一部分。

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计

基于单片机的实用电子秤设计一、硬件设计1、传感器选择电子秤的核心部件之一是称重传感器。

常见的称重传感器有电阻应变式、电容式等。

在本设计中,我们选用电阻应变式传感器,其原理是当物体的重量作用在传感器上时,传感器内部的电阻应变片会发生形变,从而导致电阻值的变化。

通过测量电阻值的变化,就可以计算出物体的重量。

2、信号放大与调理传感器输出的信号通常比较微弱,需要经过放大和调理才能被单片机处理。

我们使用高精度的仪表放大器对传感器输出的信号进行放大,并通过滤波电路去除噪声干扰,以提高测量的准确性。

3、单片机选型单片机是整个电子秤系统的控制核心。

考虑到性能、成本和开发难度等因素,我们选用 STM32 系列单片机。

STM32 系列单片机具有丰富的外设资源、较高的运算速度和良好的稳定性,能够满足电子秤的设计需求。

4、显示模块为了直观地显示测量结果,我们选用液晶显示屏(LCD)作为显示模块。

LCD 显示屏具有功耗低、显示清晰、视角广等优点。

通过单片机的控制,可以在 LCD 显示屏上实时显示物体的重量、单位等信息。

5、按键模块为了实现电子秤的功能设置,如单位切换、去皮、清零等,我们设计了按键模块。

按键模块通过与单片机的连接,将用户的操作指令传递给单片机进行处理。

6、电源模块电源模块为整个电子秤系统提供稳定的电源。

我们使用线性稳压器将输入的电源电压转换为适合各个模块工作的电压,以确保系统的正常运行。

二、软件算法1、重量计算算法根据传感器的特性和放大调理电路的参数,我们可以建立重量与传感器输出信号之间的数学模型。

通过对传感器输出信号的采集和处理,利用数学模型计算出物体的实际重量。

2、滤波算法为了消除测量过程中的噪声干扰,提高测量的稳定性和准确性,我们采用数字滤波算法对采集到的信号进行处理。

常见的数字滤波算法有中值滤波、均值滤波等。

在本设计中,我们选用中值滤波算法,其原理是对连续采集的若干个数据进行排序,取中间值作为滤波后的结果。

基于单片机的电子秤设计

基于单片机的电子秤设计

简易电子计量秤摘要本设计给出了以MSP430混合信号单片机为核心的低功耗电子秤的设计方案.整个系统包括电阻应变片电桥模块,差模信号放大模块,A/D转换模块,段式LCD显示模块.应变片电桥将所称物体的重量转换为电压量,仪表运放和高精度运放分别完成电桥电压的双端到单端转换和后级放大,A/D转换器将放大后的电压信号转换为数字量传送给MSP430单片机,经软件控制计算后送LCD 显示。

关键词:电子秤应变片仪表运放 MSP430 低功耗.一、系统设计1.1任务要求根据下面框图设计一简易的电子计量秤通过单片机的最小系统和软件控制,并通过显示器显示出来。

基本要求:1、称重范围:最小称量:10g 最大称量:5Kg感量(单位):Kg 解析量:10g2、测量相对误差:≤±1%3、使用750mA(3.6V)的锂电池供电,持续工作时间大于一年;且具有自动待机功能;4、4位数码显示不能使用集成一体化压力传感器;5、成本控制在100元人民币以下;发挥部分:1尽量延长工作时间(大于一年);2、提高测量精度(≤±5%);3、采用交直流两种设计, 交流优先。

1.2 方案论证与设计方案设计1.2.1称重传感器方案方案一:采用分立式电阻应变片重物使电阻应变片产生弹性形变从而改变其阻值,通过阻值的变化即可得到重量的变化.分立式应变片的优点是价格较低廉,选择范围灵活.但是现有条件下难以得到能和应变片阻抗相匹配的桥臂电阻,并且温度系数也无法匹配,而且安装十分复杂.方案二:采用集成称重传感器称重传感器实际上也是用分立应变片制成,但是厂商已经将其配成平衡电桥,作为使用者就免去了粘贴,安装,和电桥平衡的调整等极其复杂的过程.对于以上两种方案,考虑到方案一在现有条件下可实现性很低,故采用第二种方案,即集成称重传感器.1.2.2 电阻变换方案方案一:采用恒流源应变片的电阻变化并不能直接测量,必须转化为电压等可测量的量,此方案采用恒流源驱动应变片,由于电流恒定,因此电阻的变化将直接导致电阻上的压降的变化.缺点是恒流源的显著的温度漂移,成本高.方案二:采用不平衡电桥由图可知,电桥简单的将电阻的变化转化为电压的变化.并且通过匹配桥臂电阻,可以使温度漂移相互抵销.综合考虑两种方案,第二种方案更加简洁精确,容易制作成本低廉,故采用电桥变换方案.1.2.3 信号放大方案方案一:由高精度低漂移运算放大器构成差动放大器差动放大器具有高输入阻抗,增益高的特点,可以利用普通运放(如OP07)做成一个差动放大器。

基于单片机的电子秤设计

基于单片机的电子秤设计

目录摘要 (1)ABSTRACT...................................................... 错误!未定义书签。

1绪论......................................................... 错误!未定义书签。

2系统方案论证与选型 . (4)2.1 控制器部分 (5)2.2 数据采集部分 (5)2.2.1传感器的选择 (5)2.2.2放大电路选择 (8)2.2.3A/D转换器的选择 (11)2.2.4键盘处理部分方案论证 (12)2.3显示电路部分的选择 (13)2.4超量程报警部分选择 (13)3硬件电路设计 (14)3.1 AT89S52的最小系统电路 (15)3.1.1单片机芯片AT89S52介绍 (15)3.1.2.单片机管脚说明 (16)3.1.3 AT89S52的最小系统电路构成 (18)3.2 电源电路设计 (18)3.3 数据采集部分电路设计 (19)3.3.1 传感器和其外围以及放大电路设计 (19)3.3.2 A/D转换芯片与AT89S52单片机接口电路设计 (22)3.3.3 测量算法 (25)3.4显示电路与AT89S52单片机接口电路设计 (25)3.5键盘电路与AT89S52单片机接口电路设计 (27)3.6报警电路的设计 (29)4系统软件设计 (29)4.1主程序设计 (30)4.2 子程序设计 (31)4.2.1 A/D转换启动及数据读取程序设计 (31)4.2.2数制转换子程序设计 (31)4.2.3显示子程序设计 (33)4.2.4 键盘扫描子程序的设计 (33)4.2.5报警子程序的设计 (35)设计总结 (36)致谢 ........................................................ 错误!未定义书签。

参考文献. (37)附录 (38)基于单片机的电子秤设计摘要随着微电子技术的应用,市场上使用的传统称重工具已经满足不了人们的要求。

基于单片机的智能电子秤控制系统的设计

基于单片机的智能电子秤控制系统的设计

基于单片机的智能电子秤控制系统的设计智能电子秤控制系统是一种集成数字电子技术、传感技术、自动控制技术于一体的高精度、高可靠性的电子秤系统。

本文将介绍基于单片机的智能电子秤控制系统的设计原理及实现方法。

一、系统设计原理基于单片机的智能电子秤控制系统主要由称重传感器、AD转换模块、单片机、LCD显示模块和通信接口模块等组成。

其工作原理如下:1. 称重传感器智能电子秤的核心部件是称重传感器,用于将物体的重量转换为电信号。

常用的称重传感器有应变式、电阻式、电容式等。

它们能够根据物体的质量变化而改变输出电信号,作为下一步处理的输入信号。

2. AD转换模块AD转换模块用于将模拟信号转换为数字信号,通过单片机进行处理。

通过AD转换模块,可以将称重传感器输出的模拟信号转换为单片机可以理解的数据,为后续的数据处理提供基础。

3. 单片机单片机是整个智能控制系统的核心,负责接收AD转换模块的信号,并进行数据处理,并通过LCD显示模块将结果实时显示出来。

同时,单片机还可以通过通信模块与其他设备进行数据交互。

4. LCD显示模块LCD显示模块用于将称重结果以数字形式显示出来,提供直观的测量结果给用户。

5. 通信接口模块通信接口模块允许智能电子秤与其他设备进行数据交互,如与计算机进行连接,实现数据的上传和下载。

二、系统设计方法基于单片机的智能电子秤控制系统的设计可以按照以下步骤进行:1. 硬件设计根据系统的功能需求,选择适当的称重传感器和AD转换模块,并通过电路设计将其与单片机和LCD显示模块进行连接。

此外,根据实际需求选择合适的通信接口模块。

2. 软件设计编写单片机的控制程序,包括AD转换的初始化和读取、数据处理、LCD显示等功能。

根据实际需求,可以添加一些额外的功能,如单位选择、重量校准等。

3. 系统测试将硬件和软件进行组装后,进行系统测试。

通过放置不同重量的物体进行秤量,检查显示结果的准确性和稳定性。

同时,测试通信功能是否正常工作。

基于单片机的智能人体电子秤设计

基于单片机的智能人体电子秤设计

基于单片机的智能人体电子秤设计智能人体电子秤是一种智能化的体重测量设备,可以用于监测人体重量及其他相关数据。

这种电子秤通常基于单片机进行设计,其原理是通过测量人体所施加在传感器上的重力来确定人体的重量。

在智能人体电子秤的设计中,单片机起到了关键的控制和处理作用。

一、硬件设计:1.传感器:智能人体电子秤的核心部件是传感器,可以选择采用压阻式传感器。

这种传感器可以通过电阻的变化来测量物体的重量。

2.A/D转换器:传感器输出的是模拟信号,需要通过A/D转换器将其转换为数字信号以供单片机处理。

3.单片机:这是整个电子秤系统的中央处理器,负责控制和处理传感器的数据,并将结果显示在LCD显示屏上。

它还可以与其他设备进行通信,例如蓝牙模块或Wi-Fi模块。

4.LCD显示屏:用于显示人体的重量和其他相关信息,例如BMI指数。

5.按键:用于用户输入和设置,例如调整单位(公斤、斤等)或记录个人信息。

二、软件设计:1.初始化:单片机启动后,需要对各个硬件进行初始化设置,并将LCD显示屏上的初始界面清除。

2.传感器数据读取:单片机需要定时读取传感器输出的模拟信号,并通过A/D转换器将其转换为数字信号。

3.数据处理:读取到的数字信号代表了物体的重量,在该阶段,单片机可以进行一些数据处理工作,例如校正或滤波。

4.显示结果:将处理后的重量数据显示在LCD显示屏上,并可以添加一些附加信息,例如BMI指数或其他健康参数。

5.用户交互:单片机可以通过按键与用户进行交互,例如调整单位或记录个人信息。

6. 数据存储:可以将用户测量的数据存储在Flash存储器中,以便后续查看和分析。

7.通信功能:通过添加蓝牙模块或Wi-Fi模块,可以实现智能人体电子秤与其他设备的通信,例如手机或电脑。

三、优化设计:1.省电设计:可以在合理的情况下,通过开关控制部分硬件的电源,以降低功耗。

2.人体干湿重量识别:通过添加湿度传感器,可以识别人体的干湿重量,从而更好地了解健康状况。

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计在我们日常生活中,电子秤经常被用到,而它的操作系统已经不再是使用机械秤时的简单步骤了。

如今,基于单片机的电子秤已经被广泛采用,可以获得更加准确和便于使用的结果。

在本文中,我们将深入了解基于单片机的电子秤的设计方案和优点。

一、基于单片机的电子秤的定义基于单片机的电子秤是一种电子装置,它可以利用一些重要的传感器技术和基本的运算功能来精确测量物品的质量或重量。

传感器通常由称重传感器、滤波器和增益控制器等主要部件组成,以达到最高的准确度。

该电子秤的设计使用单片机作为中心部件,并通过精确的数字处理过程来测量质量或重量。

二、基于单片机的电子秤的原理基于单片机的电子秤借助了传感器技术和电路的帮助测量物品的重量。

该电子秤的传感器将物品放在秤盘上时,会受到重量的力作用而发生形变。

称重传感器通过将该形变转化为电动势,然后传递给单片机以转换成数值。

此外,还有一些辅助电路,如校准电路、信号滤波器和放大器等,可提高精度和准确度。

校准电路用于定期校准称重传感器的敏感度和灵敏度,以确保准确测量。

信号滤波器旨在消除噪声和干扰,以提高测量的稳定性。

放大器可以在称重传感器和单片机之间提供放大的电流作为信号的传输介质,以获得更高的测量准确性。

三、基于单片机的电子秤的优点1.高度可靠基于单片机的电子秤具有基本的数据收集和处理功能。

由于其数字化的设计,该秤可以与更多设备和计算机进行通信,并能实现实时数据传输和查看,因而有效地提高了测量数据的可靠性和实时性。

2.高精度电子秤可获得比机械秤更高的精度,无论从测量的准确性或稳定性上来看,它都是一个更加优越的选择。

同时,它的设计可通过传感器和数字信号处理来获得更精确的数值。

因其数字化的特性,该秤还可以记录更多的数据,以便对测量结果进行进一步研究和分析。

3.易于使用使用基于单片机的电子秤,只需将物品置于秤盘上并查看数字显示屏上的数值即可。

与传统的机械秤相比,这使得操作更加简单,不需要过多的技能或经验。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计随着人们对健康、饮食和运动的重视越来越深,计算体重的电子秤已成为现代家庭必备的健康产品之一。

电子秤的设计早已从早期的机械式缓慢演变为现代的数字化电子秤,随着科学技术的不断进步,电子秤的功能也得到了比较大的提升。

本文将介绍一种基于单片机的智能电子秤设计,使得电子秤具有更加智能化的功能。

一、设计原理单片机是一种高度集成、可编程的微型计算机,它具有多种接口和控制功能,非常适合用于小型计算机系统的控制和通讯处理。

本文采用ATmega8单片机,最大工作频率为16MHz,它是一种低功耗、高性能的单片机。

智能电子秤的基本原理是在称重传感器所测得的重量数据的基础上,使用单片机将其数据收集、处理,并输出显示。

本文的电子秤设计基于16 位高精度AD采集芯片HX711,采用负压力式力传感器作为测量重量的传感器,能够精确测量物体的重量。

由于电子秤测量出的重量数据单位是数字,因此只有通过单片机实现数据的处理,才能使得电子秤具有更加智能化的功能。

二、设计方法(一)硬件设计1、称重传感器负压力式力传感器是一种灵敏度更高、稳定性更好的传感器,比其它传感器更适合于电子秤的设计。

我们使用HX711芯片进行AD采集,能够提供24位的数据输出,可以极大地提高精度和稳定性。

2、按键开关电子秤需要设置一个方便顾客使用的开关,按下即可开启或关闭电子秤。

我们采用截止开关电阻,即编写程序时在输入中识别此开关,实现开启关闭功能。

3、数码管数码管用于显示测得的重量数据,包括整数部分和小数部分。

本文采用共阴极的 4 位7 段数码管,尺寸为0.56英寸,它需要多路并联才能通过ATmega8单片机输出控制信号。

4、外设根据需要,我们可以为电子秤添加一些外设,比如LCD显示屏,蜂鸣器等。

(二)软件设计基于单片机的智能电子秤设计必须编写针对ATmega8单片机的程序。

我们采用keil C语言编写程序。

编写程序时需要注意以下几个方面:1、定义AD采样量和检测量我们需要正确设置AD采样量和检测量的量程参数,以确保重量数据的可靠性和准确性。

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计随着科技的不断发展,电子秤在日常生活和工业生产中发挥着越来越重要的作用。

传统的电子秤往往采用复杂的电路和机械结构,使得其体积大、成本高、可靠性差。

为了解决这些问题,本文将介绍一种基于单片机的电子秤设计方案。

一、系统设计方案基于单片机的电子秤主要由传感器、信号处理电路、单片机和显示模块组成。

其中,传感器负责采集物体的重量信息,信号处理电路则对传感器输出的信号进行放大和滤波,单片机对处理后的信号进行读取和计算,并将结果传输给显示模块。

二、硬件设计1、传感器电子秤的传感器部分通常采用应变片式或电容式传感器。

其中,应变片式传感器具有精度高、稳定性好的优点,但其输出信号较小,需要经过放大处理;电容式传感器则具有响应速度快、过载能力强的优点,但其精度和稳定性相对较差。

因此,在选择传感器时需要根据实际需求进行权衡。

2、信号处理电路信号处理电路主要包括放大器和滤波器两部分。

放大器用于将传感器输出的微弱信号进行放大,以便于后续处理;滤波器则用于去除信号中的噪声和干扰。

此外,还需要设计适当的电源电路,为整个系统提供稳定的电源。

3、单片机单片机是整个系统的核心,负责对传感器输出的信号进行读取和计算。

本设计采用AT89C51单片机,该单片机具有价格低、性能稳定、易于编程等优点。

4、显示模块显示模块用于将单片机的计算结果直观地展示给用户。

本设计采用LED数码管作为显示器件,具有简单易用、成本低等优点。

三、软件设计软件部分主要包括数据采集、数据处理和数据显示三个模块。

数据采集模块负责读取传感器的输出信号;数据处理模块则对采集到的数据进行滤波、放大和计算;数据显示模块则将处理后的结果通过LED数码管展示给用户。

此外,还需要设计适当的延时和去抖动算法,以提高系统的稳定性和精度。

四、测试与结论为了验证本设计的有效性,我们对基于单片机的电子秤进行了测试。

测试结果表明,该电子秤的测量精度和稳定性均得到了较好的实现,同时具有体积小、成本低、可靠性高等优点。

基于单片机的电子称设计

基于单片机的电子称设计

基于单片机的电子称设计基于单片机的电子称设计随着现代科技的不断发展,电子称已渐渐成为我们生活中不可或缺的一部分,广泛应用于各种工业生产、实验室、餐馆和家庭中。

传统的机械式电子称已经逐渐被电子式电子称所取代,因为电子式电子称精度更高、操作更便捷、使用寿命更长。

在这一趋势下,基于单片机的电子称设计应运而生,其典型特点是功能强大、精度高、易操作和可扩展性强。

一、基本原理基于单片机的电子称是由传感器、模数转换器、单片机、人机界面板等多个模块组成的,通过模块间的协同工作实现称重过程。

其原理相对简单:物体加在传感器上后,压力作用在传感器上,传感器会产生一定的电信号,然后信号传给模数转换器,转换器将电信号转换成数字信号,并传给单片机进行计算和显示,最终显示重量值在人机界面上。

二、设计过程1.选用传感器传感器是电子称的核心部件之一,传感器的选用直接关系到称量的精度和稳定性。

一般采用弹性体弯曲方式或压电晶体振动方式。

2.选用模数转换器模数转换器是将传感器信号转换成单片机可以读取的数字信号的重要部件。

根据实际需要,一般选择12或16位的AD转换器。

3.单片机选择单片机是控制电子称称量精度和人机界面的重要部件,其型号的选择应根据要求的精度和复杂度设计,一般选择8051、Arduino等。

4.人机界面板设计人机界面板是电子称直接提供信息的部件,应根据样式、布局和使用背景等需求和设计,选择合适的LED/LCD等显示方案。

5.数据处理和算法设计对于电子称,往往需要用到模拟滤波、数字滤波、基准校正和传感器温度补偿等算法才能满足精度和稳定性等要求。

因此,针对实际需求和对应传感器选定合适的算法进行设计也是非常重要的一环。

三、技术指标基于单片机的电子称设计技术指标主要包括:计算和显示精度、可靠性、使用寿命、显示方式、扩展性等。

根据使用场景和功能需求等不同,设计的技术指标也有所不同,总体而言,越高的计算和显示精度、越长的使用寿命和更好的扩展性是我们设计的目标。

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计引言:电子称主要以单片机作为中心控制单元,通过称重传感器进行模数转换单元,在配以键盘、显示电路及强大软件来组成。

电子称不但计量准确、快速方便,更重要的自动称重、数字显示,对人们生活的影响越来越大,广受欢迎。

一、称重技术与衡器的发展近年来,电子秤已愈来愈多地参与到数据处理与过程控制中。

现代称重技术与数据系统已经成为工艺技术、储运技术、预包装技术、收货业务及商业销售领域中不可缺少的组成部分。

随着称重传感器各项性能的不断突破,为电子秤的发展奠定了其础,国外如美国、西欧等一些国家在2 0世纪6 0年代就出现了0 .1%称量准确度的电子秤,并在7 0年代中期约对75%的机械秤进行了机电结合式的电子化改造。

二、电子秤的工作原理当被称物体放置在秤体的秤台上时,其重量便通过秤体传递到称重传感器,传感器随之产生力一电效应,将物体的重量转换成与被称物体重量成一定函数关系(一般成正比关系)的电信号(电压或电流等)。

此信号由放大电路进行放大、经滤波后再由模/数(A/D)器进行转换,数字信号再送到微处器的CPU处理,CPU不断扫描键盘与各功能开关,根据键盘输入内容与各种功能开关的状态进行必要的判断、分析、由仪表的软件来控制各种运算。

运算结果送到内存贮器,需要显示时,CPU发出指令,从内存贮器中读出送到显示器显示,或送打印机打印。

一般地信号的放大、滤波、A/D转换以及信号各种运算处理都在仪表中完成。

(一)本设计思路按照本设计功能的要求,系统由5个部分组成:控制器部分、测量部分、数据显示部分、键盘部分、与电路电源部分.测量部分是利用称重传感器检测压力信号,得到微弱的电信号(本设计为电压信号),而后经处理电路(如滤波电路,差动放大电路,)处理后,送单片机中的A/D转换器,将模拟量转化为数字量输出,控制器接受来自A/D转换器输出的数字信号,经过复杂的运算,将数宁信号转换为物体的实际重量信号,并将其送到显示单元中。

电子称的设计与制作基于单片机的设计

电子称的设计与制作基于单片机的设计
测试标准
误差范围应不超过±0.5%,重复性误 差不超过±0.25%。
性能分析
稳定性
在多次测试中,电子称的读数应保持稳定,无明 显波动。
线性度
加载砝码时,读数应与实际重量呈线性关系,无 显著弯曲。
响应时间
加载或卸载砝码后,电子称的读数应在短时间内 达到稳定。
优化建议与改进措施
1 2
优化算法
调整单片机内部算法,降低误差范围,提高测量 精度。
电子称的设计
硬件设计
传感器选择
选择高精度、低漂移的称重传感器, 如应变片式传感器,以获取准确的称 重数据。
信号调理电路
设计信号调理电路,将称重传感器的 输出信号调整为适合单片机接收的电 压或电流信号。
单片机控制电路
选择合适的单片机型号,并设计单片 机控制电路,包括电源电路、时钟电 路和复位电路等。
单片机与其他组件的连接
称重传感器
通过适当的接口电路( 如差分放大器)将称重 传感器的输出信号接入 单片机的ADC输入端。
显示模块
单片机通过并行或串行 接口与显示模块连接, 控制显示模块的显示内 容。
按键和报警器
单片机通过GPIO口与按 键和报警器连接,实现 用户操作和重量超限报 警。
03
CATALOGUE
显示与按键电路
选择合适的显示屏和按键模块,设计 显示与按键电路,实现用户交互功能 。
软件设计
数据采集与处理
01
编写程序实现单片机从称重传感器读取称重数据,并进行滤波
、去噪、放大等处理。
校准与补偿
02
编写程序实现电子称的校准和补偿功能,以确保称重结果的准
确性。
人机交互
03
编写程序实现用户通过显示屏和按键进行操作,如设LCD 显示模块等,各模块协同工作实现称重功能。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计基于单片机的智能电子秤设计1.引言1.1 写作目的本文档旨在详细介绍基于单片机的智能电子秤的设计过程和实现原理,以供参考使用。

1.2 文档范围本文档涵盖了该电子秤设计的各个方面,包括硬件设计、软件开发、功能实现等内容。

1.3 读者对象本文档适用于有一定电子秤设计经验和单片机编程基础的工程师和技术人员。

2.设计需求分析2.1 功能需求2.1.1 重量测量功能2.1.2 单位切换功能2.1.3 数据存储功能2.2 性能需求2.2.1 量程2.2.2 精度2.2.3 响应时间2.3 界面需求2.3.1 显示界面2.3.2 操作界面3.系统结构设计3.1 硬件设计3.1.1 传感器选型3.1.2 模拟信号采集电路设计3.1.3 单片机选型3.2 软件设计3.2.1 系统初始化3.2.2 重量测量算法设计3.2.3 单位切换功能设计3.2.4 数据存储功能设计4.硬件设计详解4.1 传感器选型原因4.2 模拟信号采集电路设计原理4.3 单片机选型原因5.软件设计详解5.1 系统初始化流程图5.2 重量测量算法详解5.3 单位切换功能设计原理5.4 数据存储功能设计原理6.功能实现与测试6.1 功能实现步骤6.2 测试用例设计与测试结果7.结果分析与改进7.1 分析测试结果7.2 改进方案附件:1.电子秤硬件电路图2.电子秤软件源代码法律名词及注释:1.单片机:指一种实现逻辑运算和控制功能的集成电路。

2.模拟信号:指连续变化的信号,对应于实际的物理量。

3.数字信号:指以离散的数值表示的信号。

4.量程:指传感器所能测量的最大范围。

5.精度:指测量结果与真实值之间的误差大小。

6.响应时间:指系统从输入信号出现到输出结果可用的时间。

全文结束\。

基于单片机的电子秤设计

基于单片机的电子秤设计
片内部包含微处理器接口逻辑(有三态输 出缓冲器),故可直接与各种类型的8位或 者16位的微处理器连接,而无需附加逻辑 接口电路,切能与CMOS及TTL电路兼容 10V基准电压源四部分构成 。
3 硬件电路设计
根据设计要求与设计思路,此电路由一块AT89S52、按键输入电路、 时钟电路、复位电路、LCD显示段码驱动电路、LCD显示位码驱动电 路、12位LCD显示器电路、蜂鸣器电路。
额定输出(灵敏度): 加额定载荷时和无载荷时,传感器输出信号的差值。 由于称重传感器的输出信号与所加的激励电压有关,所以单位是mV/V,并 称之为灵敏度。 零点温度影响:环境温度的变化引起的零平衡变化。一般以温度每变化10K时, 引起的零平衡变化量对额定输出的百分比来表示。 零点输出:在推荐电压激励下,未加载荷时传感器的输出值对额定输出的百分比。
2.2 传感器的选择
选择时不仅要注意其量程和参数,还有考虑到与其相配置的各种电路的 设计和设计性价比等。 传感器量程的计算公式是在充分考虑到影响秤体的各个因素后,经过大 量的实验而确定的。其公式如下: C=K0×K1×K2×K3×(Wmax+W)/N (2.1) 其中,C—单个传感器的额定量程; W—秤体自重; Wmax—被称物体净重的最大值; N—秤体所采用支撑点的数量; K0—保险系数,一般取值在1.2~1.3之间; K1—冲击系数; K2—秤体的重心偏移系数; K3—风压系数。本设计要求称重范围0~5kg,重量误差不大 0.01kg,
+10V R11 12K R15 14K + R12 5K + R2 V1 2.5V R1 1.1K R16 12K R4 R2 4K 10K 20K A4 + U0 A2 LM324 R3 10K R4 20K RP1

基于单片机的电子秤设计

基于单片机的电子秤设计

基于单片机的电子秤设计一、引言二、设计要求与整体方案(一)设计要求1、测量范围:能够满足常见物品的质量测量,通常为 0 10kg 或更大。

2、精度要求:达到一定的测量精度,如 01g 或更高。

3、显示功能:清晰显示测量结果,包括质量数值和单位。

4、稳定性:在不同环境条件下保持测量结果的稳定性和可靠性。

(二)整体方案本设计采用单片机作为核心控制单元,结合称重传感器、信号调理电路、A/D 转换电路、显示模块和电源模块等组成电子秤系统。

称重传感器将物体的质量转换为电信号,经过信号调理电路进行放大、滤波等处理后,由 A/D 转换电路将模拟信号转换为数字信号,单片机对数字信号进行处理和计算,最终将测量结果通过显示模块显示出来。

三、硬件设计(一)称重传感器选择合适的称重传感器是电子秤设计的关键。

常见的称重传感器有电阻应变式、电容式等。

电阻应变式传感器具有精度高、稳定性好等优点,被广泛应用于电子秤中。

其工作原理是当物体加载在传感器上时,弹性体发生形变,粘贴在弹性体上的电阻应变片也随之产生电阻变化,通过测量电阻变化即可得到物体的质量。

(二)信号调理电路由于称重传感器输出的信号较弱且存在干扰,需要经过信号调理电路进行处理。

信号调理电路通常包括放大器、滤波器等。

放大器用于将传感器输出的微弱信号放大到适合 A/D 转换的范围;滤波器用于去除信号中的噪声和干扰,提高信号的质量。

(三)A/D 转换电路A/D 转换电路将模拟信号转换为数字信号,以便单片机进行处理。

选择 A/D 转换器时需要考虑其分辨率、转换速度、精度等参数。

常见的 A/D 转换器有 ADC0809、ADS1115 等。

(四)单片机单片机作为电子秤的控制核心,负责处理和计算测量数据,并控制整个系统的工作。

选择单片机时需要考虑其性能、资源、成本等因素。

常见的单片机有 STM32、51 单片机等。

(五)显示模块显示模块用于显示测量结果,常见的有液晶显示屏(LCD)和数码管。

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计

基于单片机的智能电子秤设计一、引言在现代社会,电子秤作为一种重要的测量工具,广泛应用于商业、工业、医疗、家庭等各个领域。

传统的电子秤功能较为单一,只能进行简单的称重操作。

随着科技的不断发展,人们对电子秤的要求越来越高,希望它能够具备更多的功能,如数据存储、数据分析、远程传输等。

基于单片机的智能电子秤应运而生,它不仅能够实现高精度的称重,还能够满足人们对智能化、多功能的需求。

二、智能电子秤的系统组成基于单片机的智能电子秤主要由以下几个部分组成:1、称重传感器称重传感器是电子秤的核心部件,它能够将物体的重量转换为电信号。

常见的称重传感器有电阻应变式、电容式、电感式等。

电阻应变式称重传感器具有精度高、稳定性好、价格低廉等优点,因此在电子秤中得到了广泛的应用。

2、信号调理电路称重传感器输出的电信号通常比较微弱,且存在噪声和干扰,需要经过信号调理电路进行放大、滤波、A/D 转换等处理,以得到可供单片机处理的数字信号。

3、单片机单片机是智能电子秤的控制核心,它负责接收和处理来自信号调理电路的数字信号,并进行数据计算、存储、显示等操作。

常见的单片机有 51 系列、STM32 系列等。

4、显示模块显示模块用于显示称重结果和其他相关信息,常见的显示模块有液晶显示屏(LCD)和发光二极管显示屏(LED)。

LCD 显示屏具有显示清晰、功耗低等优点,而 LED 显示屏则具有亮度高、可视距离远等优点。

5、按键模块按键模块用于设置电子秤的参数,如单位转换、去皮、清零等。

6、存储模块存储模块用于存储称重数据,以便后续查询和分析。

常见的存储模块有 EEPROM、FLASH 等。

7、通信模块通信模块用于实现电子秤与上位机或其他设备之间的数据传输,常见的通信模块有蓝牙、WiFi、RS232 等。

三、智能电子秤的工作原理当物体放置在电子秤的秤盘上时,称重传感器受到压力作用,产生相应的电阻变化。

信号调理电路将称重传感器输出的电阻变化转换为电压变化,并进行放大、滤波等处理。

基于单片机的电子秤硬件系统设计

基于单片机的电子秤硬件系统设计

基于单片机的电子秤硬件系统设计电子秤是一种测量物体质量的设备,其中使用了单片机作为控制核心。

在电子秤的硬件系统设计中,需要考虑到如下几个方面:传感器选择、信号调理、数据处理、显示和输出。

首先,在电子秤硬件系统中,传感器是非常重要的组成部分,它用于测量物体的质量。

常见的传感器有压力传感器和负载传感器。

在选择传感器时,需要考虑到所测量物体的质量范围和精度要求。

对于低质量范围和较高精度要求的电子秤,可以选用压力传感器;对于高质量范围和较低精度要求的电子秤,可以选用负载传感器。

其次,信号调理是将传感器采集到的模拟信号进行放大、滤波和变换等处理,以提高信号质量和满足系统要求。

在电子秤中,可以使用运放进行信号放大,使用滤波电路滤除杂散信号,并使用模数转换器将模拟信号转换为数字信号。

然后,数据处理是电子秤硬件系统中的核心部分,通过单片机对采集到的模拟信号进行处理,并计算出物体的质量。

在数据处理过程中,需要进行模数转换、滤波处理、数据校验和质量计算等操作。

单片机的计算能力和存储空间可以根据实际需求选择,以满足对数据处理的要求。

接下来,显示是电子秤硬件系统中的重要组成部分,用于显示物体的质量。

一般采用液晶显示屏或数码管进行显示,可以在显示屏上显示物体的质量数值,并可以进行单位选择和重量校准等功能。

最后,输出是电子秤硬件系统中的辅助部分,可根据需要输出物体的质量数据。

常见的输出方式有串口输出和打印输出,可以将质量数据传输给上位机进行处理或直接打印出来。

综上所述,基于单片机的电子秤硬件系统设计需要考虑传感器的选择、信号调理、数据处理、显示和输出等方面。

只有在这些方面都充分考虑和合理设计,才能实现一个可靠、精确的电子秤系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的电子秤设计上海理工大学王凯摘要电子秤集计算机、检测与转换、数字技术以及信息处理等为一体而成的现代测重仪器。

电子秤以单片机为核心控制器,通过称重传感器进行对物体重量信号的检测,检测到的信号进行A/D转换,将重量信号发送到显示电路。

添加适当的键盘,设置显示电路。

电子称不仅实现高速精测量,更能达到自动测重和数字化显示,广受人们欢迎。

本系统的设计硬件电路:通过 HX711 压力传感器采集物体产生的压力信号,传感器采集到的模拟量信号还需进行进行AD转换,得到的数字量信号传送到单片机STC89S52进行处理显示,采用的显示器是 LCD1602液晶显示器。

关键词:STC89S52单片机;电子秤;压力传感器;HX711。

AbstractElectronic scales set computer, detection and conversion, digital technology and information processing as one made of modern weighing instruments.Electronic scales microcontroller as the core controller, by weighing the weight of the object detection sensor signal, the signal detected by the A / D conversion, the weight signal is sent to the display circuit. Add the appropriate keyboard, set the display circuit. Electronics not only to achieve high-speed precision measurements, can be better achieved automatically weigh and digital display, widely welcomed by the people.The system hardware design: The HX711 pressure sensor to collect objects produce a pressure signal, sensor to the analog signal needs to be AD conversion, the digital signal is transmitted to the microcontroller for processing STC89S52 display, the display is used LCD1602 LCD monitor.Key words:STC89S52 SCMC;Electrnoic Scale;Load sensor; HX711目录摘要 (I)Abstract (II)目录 (III)绪论 (1)1.1课题研究背景 (1)1.2课题研究目的和意义 (1)1.3课题研究的主要内容 (1)第二章系统硬件方案设计 (2)2.1系统设计方案 (2)2.2系统元器件参数 (4)2.2.1单片机选型 (4)2.2.2传感器选择 (5)2.2.4 AD转换芯片选择 (7)2.2.5 时钟芯片选择 (8)3系统硬件电路设计 (9)3.1系统电源电路设计 (9)3.2系统串口电路设计 (10)3.3单片机控制电路设计 (11)3.4系统显示电路设计 (11)3.5超重报警提示电路设计 (12)3.6按键输入电路设计 (13)3.7系统硬件电路的绘制与PCB制作 (14)3.7.1 Protel99SE简介 (14)3.7.2系统原理图的绘制 (15)4 系统软件设计 (17)4.1主程序流程图 (17)4.2系统显示部分流程图 (17)4.3按键检测流程图 (18)5 系统整体调试 (19)5.1硬件调试遇到的问题 (19)5.2系统实物调试效果图 (19)5.3系统设计总结 (20)参考文献 (21)致谢 ................................................................................................... 错误!未定义书签。

附录 . (23)附录1系统整体电路图 (23)附录2系统设计PCB图 (25)附录3系统部分源程序 ............................................................. 错误!未定义书签。

绪论1.1课题研究背景三国时期便有著名的曹冲称象,可见称重技术历史悠久。

重量测量早已在各个领域里应用,如在农业生产上,科技研究上,在交通工具上等等。

可以说伴随着人们密切不分的。

电子秤作为一种电子衡器,是受到国家重视的一种国家法定计量器具。

衡器是我们日常生活帮甚至高科技领域不可缺少的计量设备。

计量器具的水平高低,将影响到我国的各个方面,影响社会的经济效益。

称重装置还推进了工业方面,如在自动化方面,工业管理方面。

有了一个精确,简便的计量仪器,我们可以减少工作时间,工作力度,改善工作方式,降低人力和物力的投入等。

在我国国民经济的各个领域都会用到称重工具,取得了非常好的经济效益。

1.2课题研究目的和意义电子秤相较于机械秤体积更小、重量更轻、结构比较简单、功能性强、维护也更方便,可以称量一些不规则的,环境限制不便于测量的物品。

对重量数字化显示方便数据记录及其处理从而实现数据传输达到自动化生产过程的目的,和计算机联网进行各个生产环节的控制从而对提高劳动生产率意义巨大。

纵观世界,衡器技术发展经历了约四个阶段,从传统的机械称到机电结合秤,再从对机电结合秤改进后而采用集成电路到现代的基于单片机系统设计的电子秤。

国内起初的机电结合型发展为目前的数字智能型,实现了计时、总价、语音报价等等多种功能的汇总。

目前电子测重技术有了新的发展:电子称重技术静动态测量的转换;计量方式由模拟到数字的转换;多参数测量得到广泛应用。

能实现多功能聚于一身的先进的智能仪器仪表取代了常规的比如根据杠杆原理或弹力系数来测量的老式器具,使得称重实现多功能、高精度自动化控制,并出现了多种多样智能仪器控制系统,从而在科研以及实际应用的自动化程度获得更大提升。

1.3课题研究的主要内容电子称重原理第一步是将压力传感器采集的物体重量信号转换为电压信号。

对其所测得的信号放大,经过放大后的模拟量通过A/D转换的方式转换成数字量,进而将其送入到单片机中,再由单片机处理后由译码显示器而显示其重量。

根据需要,系统由三大模块组成,控制器模块、数据采集模块和人机交互液晶显示界面模块。

经转换后的数字信号经过控制器完成处理,驱动显示模块实现人和机器之间信息的交换。

由于软件控制系统大部分功能,故本设计对软件部分要求相对较高。

在其他功能上,设为了使其更人性化智能化我增加了一个过载报警提示功能以及一个电子日历功能。

第二章系统硬件方案设计2.1系统设计方案在设计系统时,初步考虑具体以下三种基本方案:方案1 仅采用数码管显示方案:图2-1-1 通过数码管显示方案1中是最简单的一个把重量显示出来就行了。

故设计时,硬件十分简单,需要编程程序的部分相对较少,根据测得信号的模数转换直接得到所测物体重量是多少就显示多少。

缺点主要有两点:硬件简单,实际应用中,外围的输入以及输出之间的关系存在不确定性,很多参数要适宜选定。

所以它只能是一个转换信号后的显示功能,看不到处理过程,只能存在于实验室中的理想模型,真正用于实践时可能造成很大的测量误差。

同时系统硬件太死板,没有办法进行大容量,故不能用于本次设计。

方案2 对第一种最基本的理想思路再实际化,而且基于例如单价这些信息可以通过由外部的键盘输入,再在单片机中预先设定,从而计算显示物体价格。

结构简图如2-1-2图对应:图2-1-2外部信息通过键盘输入此方案设计的电子秤,不但可以称重,而且能够计价。

但是除了单价显示这样的功能外,数码管几乎不能实现其他什么要求。

若要用于实际测量,往往必须接许许多多的数码管才能满足测重精度,进而也必需更多I/O口,显得麻烦。

方案3 前端信号处理时,对信号放大便于信号采集但是投入也会有一定增加;采用LCD显示器。

这种更强的人机交互能力对清单、所称物品的信息等都能够准确显示,必要时,当需要显示其他信息时,我们可以把液晶显示切换到需要显示的功能上。

结构简图如下图 2-1-3 所示:图 2-1-3 键盘输入并液晶显示鉴于以上几种方案对比考量,同时考虑到设计系统时的能够实现用最低廉的成本达到设计目的的同时还要合理可行。

最终认为在2-1-4所示方案是可行的,日历功能也在该方案中得到运用,使的应用更方便而不过于简单。

图2-1-4系统最终框图2.2系统元器件参数2.2.1单片机选型主控芯片是设计的心脏,对它的要求固然也比较多:价格低廉的同时还要求具有速率高并且内存大的特点,本设计用AT89S52单片机。

AT89S52不仅性能高,同时电功率消耗比较小,它含有可以反复擦除、写入上万次的Flash存储器。

AT89S52芯片兼容性良好:图2-2-1 AT89S52的引脚)(434211R R R R R R E +-+=))((43214231R R R R R R R R E ++-∙3421R R R R =2.2.2传感器选择压电传感器由力生电的原理告诉我们它对动态量的感知更加敏感。

压电器件的弱点:高内阻、小功率。

功率小,输出的能量微弱,外接电路直接可能干扰到输出特性。

机械应变电阻应信号往往在实际应用中因为太小不被采用。

所以利用测量电桥转换应变仪R / R 是改变电压或电流的变化。

直流桥的特性是一个信号不受线的元素和分布电感和电容,能抗较强干扰能力,小机械应变输出信号,要求放大器的增益要高稳定性也要高。

下图2-2-2 电桥,E 0接直流电源:图2-2-2 内部电路输出端和无限大的电阻连接时,输出端看成开路。

不计内阻,电阻的分压作用:AD AB BD o u u u u -=== (a )R 1和R 3的乘积与R 2和R 4乘积相等时,即(b )电压E 0[][][])()()()()()(22R R R R R R R R E R R R R uo ∆-+∆+∆-+∆+∆--∆+=E RR ∙∆=U 0=0,即电桥平衡。

式(b )称平衡条件。

由于电桥平衡,故输出电压只和电阻的大小变化有关。

当在差动状态下时,即R1=R-△R,R2=R+△R,R3=R-△R ,R4=R+△R,通过(a ),可以得到输出电压E k ε= (c)应变片式相较其他的优点:(1)广泛的测量范围,可制成其他机械传感器。

相关文档
最新文档