导数大题方法总结[1]

合集下载

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数的基础知识一.导数的定义:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()limx yf x x∆→∆=∆(下面内容必记)二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式:①'0()C C =为常数;②1()'nn x nx -=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -== ③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'x x e e = ⑥()'ln (0,1)x xa a a a a =>≠且;⑦1(ln )'x x =; ⑧1(log )'(0,1)ln a x a a x a=>≠且法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和与差的导数等于导数的和与差).法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:前导后不导相乘,后导前不导相乘,中间是正号) 法则3:2()'()()()'()[]'(()0)()[()]f x f xg x f x g x g x g x g x ⋅-⋅=≠ (口诀:分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)(2)复合函数(())y f g x =的导数求法:①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x =题型一、导数定义的理解 题型二:导数运算 1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x = 3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a=()三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ',即有()00V f t '=。

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。

2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。

2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。

3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。

题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。

2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。

导数大题题型归纳解题方法

导数大题题型归纳解题方法

导数大题题型归纳解题方法
导数大题题型主要包括求函数的导数、求函数的极值、求曲线的切线方程和法线方程等。

下面给出这些题型的解题方法:
1. 求函数的导数:
- 根据导数的定义,逐项求导;
- 利用乘法法则、复合函数法则、除法法则等求导法则简化计算;
- 对于含有多项式函数、指数函数、对数函数、三角函数等函数的复合函数,可以根据相应的求导法则和运算规律进行求导。

2. 求函数的极值:
- 首先求函数的导数,得到导函数;
- 解导函数的方程,求得导函数的零点,即函数的驻点;
- 利用二阶导数判别法来判断驻点的类型(极大值点、极小值点或拐点);
- 如果导函数的零点为函数的一个极值点,则该极值点对应的函数值为极值。

3. 求曲线的切线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 然后利用一般点斜式的切线方程公式,以该点和斜率为参数,得到切线方程。

4. 求曲线的法线方程:
- 首先求曲线上一点的切线斜率,可以通过求导得到;
- 利用切线斜率与法线斜率的关系(切线斜率与法线斜率的乘积等于-1),由此得到法线的斜率;
- 然后以该点和法线斜率为参数,利用一般点斜式的法线方程公式得到法线方程。

以上是导数大题题型的一般解题方法,根据具体题目特点和要求,可能需要结合其他数学知识和技巧进行推导和计算。

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)

高考数学导数大题技巧(精选5篇)高考数学导数大题技巧【篇1】1、选择题部分,高考的选择题部分题型考试的方向基本都是固定的,当你在一轮二轮复习过程中总结出题目的出题策略时,答题就变得很简单了。

比如立体几何三视图,概率计算,圆锥曲线离心率等等试题中都有一些特征,只要掌握思考的切入方法和要点,再适当训练基本就可以全面突破,但是如果不掌握核心方法,单纯做题训练就算做很多题目,突破也非常困难,学习就会进入一个死循环,对照答案可以理解,但自己遇到新的题目任然无从下手。

2、关于大题方面,基本上三角函数或解三角形、数列、立体几何和概率统计应该是考生努力把分数拿满的题目。

对于较难的原则曲线和导数两道题目基本要拿一半的分数,考生复习时可把数学大题的每一道题作为一个独立的版块章节,先总结每道大题常考的几种题型,再专项突破里面的运算方法,图形处理方法以及解题的思考突破口,只要把这些都归纳到位,那么总结的框架套路,都是可以直接秒刷的题目的高考数学导数大题技巧【篇2】1个、多项选择部分,高考选择题的方向基本是固定的,当你在二轮复习过程中总结出题策略时,答案变得很简单。

比如三维几何三视图,概率计算,试题中存在圆锥截面偏心等特点,只要掌握了入门方法和思维要点,经过适当的训练,基本可以全面突破,但是如果不掌握核心方法,单纯做练习题也算做了很多题,也很难突破,学习会进入死循环,比对答案,但是遇到新问题还是无从下手。

2个、关于大话题,基本上是三角函数或求解三角形、顺序、三维几何和概率统计应该是考生努力拿满分的科目。

比较难的原理曲线和导数,基本要一半分,考生在复习时可以将数学大题的每一题作为一个独立的section,先总结一下每个大题经常考的几类题型,然后在计算方法上特别突破,解题的图形处理方法与思维突破,把它全部放在适当的位置,然后总结框架套路,都是可以直接秒刷的话题高考数学导数大题技巧【篇3】1、函数与导数主要考查数学集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。

导数高考大题知识点总结

导数高考大题知识点总结

导数高考大题知识点总结一、导数的定义1. 函数的导数函数f(x)在点x处的导数定义为:f'(x) = lim(h->0) [f(x+h)-f(x)]/h其中,h表示x的增量,表示x的变化量;lim表示极限。

2. 几何意义函数f(x)在点x处的导数,表示函数在该点处的切线斜率。

3. 导数的记号函数f(x)关于x的导数通常记为f'(x)或y',也读作f关于x的导数或者y的导数。

4. 导数的存在性对于给定的函数f(x),在某一点x处可能存在导数,也可能不存在。

二、导数的运算法则1. 基本导数法则常数函数的导数等于零;幂函数的导数规律:(x^n)'=nx^(n-1);指数函数的导数规律:(a^x)'=a^x * ln(a);对数函数的导数规律:(log_a(x))' = 1/(x * ln(a));三角函数的导数规律:(sinx)' = cosx,(cosx)' = -sinx。

2. 基本函数的导数导数的和、差法则:(f(x) ± g(x))' = f'(x) ± g'(x);导数的积法则:(f(x)*g(x))' = f'(x)*g(x) + f(x)*g'(x);导数的商法则:(f(x)/g(x))' = (f'(x)*g(x) - f(x)*g'(x))/g(x)^2;复合函数的导数:设y=f(u),u=g(x),则y=f(g(x)),导数为:y'=f'(g(x)) * g'(x)。

3. 链式法则如果函数y=f(u),u=g(x),则y=f(g(x)),则有:y'=f'(u) * g'(x)。

4. 隐函数的导数当函数关系式不显式的写出y=f(x),而是通过x和y的方程来确定时,求导的方法。

三、导数的应用1. 切线方程在点(x,f(x))处的切线方程为y-f(x)=f'(x)(x-a)。

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧

高中数学导数知识总结+导数七大题型答题技巧知识总结一. 导数概念的引入1. 导数的物理意义:瞬时速率。

一般的,函数y=f(x)在x=处的瞬时变化率是2. 导数的几何意义:曲线的切线,当点趋近于P时,直线 PT 与曲线相切。

容易知道,割线的斜率是当点趋近于 P 时,函数y=f(x)在x=处的导数就是切线PT的斜率k,即3. 导函数:当x变化时,便是x的一个函数,我们称它为f (x)的导函数. y=f(x)的导函数有时也记作,即。

二. 导数的计算基本初等函数的导数公式:导数的运算法则:复合函数求导:y=f(u)和u=g(x),则称y可以表示成为x的函数,即y=f(g(x))为一个复合函数。

三、导数在研究函数中的应用1. 函数的单调性与导数:一般的,函数的单调性与其导数的正负有如下关系:在某个区间(a,b)内(1) 如果>0,那么函数y=f(x)在这个区间单调递增;(2) 如果<0,那么函数y=f(x)在这个区间单调递减;2. 函数的极值与导数:极值反映的是函数在某一点附近的大小情况。

求函数y=f(x)的极值的方法有:(1)如果在附近的左侧>0 ,右侧<0,那么是极大值;(2)如果在附近的左侧<0 ,右侧>0,那么是极小值;3. 函数的最大(小)值与导数:求函数y=f(x)在[a,b]上的最大值与最小值的步骤:(1)求函数y=f(x)在[a,b]内的极值;(2)将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的是最大值,最小的是最小值。

四. 推理与证明(1)合情推理与类比推理根据一类事物的部分对象具有某种性质,推出这类事物的所有对象都具有这种性质的推理,叫做归纳推理,归纳是从特殊到一般的过程,它属于合情推理。

根据两类不同事物之间具有某些类似(或一致)性,推测其中一类事物具有与另外一类事物类似的性质的推理,叫做类比推理。

类比推理的一般步骤:(1) 找出两类事物的相似性或一致性;(2) 用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想);(3) 一般的,事物之间的各个性质并不是孤立存在的,而是相互制约的.如果两个事物在某些性质上相同或相似,那么他们在另一写性质上也可能相同或类似,类比的结论可能是真的;(4) 一般情况下,如果类比的相似性越多,相似的性质与推测的性质之间越相关,那么类比得出的命题越可靠。

高考导数题型及解题方法总结

高考导数题型及解题方法总结

高考压轴题:导数题型及解题方法一.切线问题题型1求曲线)(x f y =在0x x =处的切线方程。

方法:)(0x f '为在0x x =处的切线的斜率。

题型2过点),(b a 的直线与曲线)(x f y =的相切问题。

方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。

例已知函数f(x)=x 3﹣3x.(1)求曲线y=f(x)在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、(提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。

将问题转化为关于m x ,0的方程有三个不同实数根问题。

(答案:m 的范围是()2,3--)题型3求两个曲线)(x f y =、)(x g y =的公切线。

方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。

()(,22x f x );建立21,x x 的等式关系,12112)()(y y x f x x -='-,12212)()(y y x f x x -='-;求出21,x x ,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例求曲线2x y =与曲线x e y ln 2=的公切线方程。

(答案02=--e y x e )二.单调性问题题型1求函数的单调区间。

求含参函数的单调区间的关键是确定分类标准。

分类的方法有:(1)在求极值点的过程中,未知数的系数与0的关系不定而引起的分类;(2)在求极值点的过程中,有无极值点引起的分类(涉及到二次方程问题时,△与0的关系不定);(3)在求极值点的过程中,极值点的大小关系不定而引起的分类;(4)在求极值点的过程中,极值点与区间的关系不定而引起分类等。

导数高考大题知识点总结

导数高考大题知识点总结

导数高考大题知识点总结导数是高中数学中的重要概念,也是高考中的常见考点之一。

在解题过程中,掌握导数的相关知识点对于提高解题速度和准确性非常重要。

下面我们将对高考中常见的导数知识点进行总结和归纳,希望能给大家带来一些帮助。

一、导数的定义导数可以理解为函数在某一点的变化率。

函数f(x)在点x处的导数表示为f'(x),它的定义可以用以下极限表示:f'(x) = lim[h→0] (f(x+h) - f(x))/h二、导数的基本运算法则1. 常数法则:若C为常数,则(d/dx)C = 0。

2. 幂法则:若f(x) = x^n,则f'(x) = nx^(n-1)。

3. 和差法则:若f(x)和g(x)是可导的函数,则(f+g)'(x) = f'(x) + g'(x)。

4. 乘法法则:若f(x)和g(x)是可导的函数,则(fg)'(x) = f'(x)g(x) + f(x)g'(x)。

5. 商法则:若f(x)和g(x)是可导的函数且g(x)≠0,则(f/g)'(x) = [f'(x)g(x) - f(x)g'(x)]/g^2(x)。

三、常用导数1. 常数函数的导数为0。

2. 幂函数的导数:(x^n)' = nx^(n-1)。

3. 指数函数的导数:(e^x)' = e^x。

4. 三角函数的导数:- (sinx)' = cosx。

- (cosx)' = -sinx。

- (tanx)' = sec^2(x)。

- (cotx)' = -csc^2(x)。

- (secx)' = secx·tanx。

- (cscx)' = -cscx·cotx。

5. 反三角函数的导数:- (arcsinx)' = 1/√(1-x^2)。

- (arccosx)' = -1/√(1-x^2)。

高考导数大题题型总结

高考导数大题题型总结

高考导数大题题型总结一、导数的概念导数是微积分中非常重要的一个概念,它描述的是函数在某一点上的变化率。

在高考中,导数是一道常见的题型,考查学生对导数概念的理解和运用能力。

二、常见的高考导数题型及解题思路1. 求导数求导数是高考中最常见的一种题型。

题目会给出一个函数,要求求出它的导数。

解题的关键就是掌握各种函数的求导法则,例如幂函数、指数函数、对数函数、三角函数等。

同时,也要注意使用链式法则和导数的四则运算法则。

2. 求切线方程求切线方程也是高考中较为常见的一种题型。

题目中会给出一个函数和一点,要求求出该点处的切线方程。

解题的关键是掌握求导数和切线方程的相关知识。

首先,求出函数在给定点处的导数,然后带入切点的坐标和导数的值,即可得到切线方程。

3. 求最值求最值也是高考中常见的一种题型,通常会给出一个函数的定义域,要求求出函数在该定义域内的最大值或最小值。

解决这类问题的关键是找到函数的导函数,然后求出导函数的零点,再将这些零点和边界值代入函数,比较得出最值。

4. 优化问题优化问题是高考中较为复杂的一种题型,要求在给定条件下使一个函数达到最大或最小值。

解答这类问题需要通过构建函数模型,并使用导数的相关知识进行求解。

首先,根据问题的条件建立函数模型,然后求出函数的导数,并通过求导数的零点解出最优解。

三、解题技巧和注意事项除了掌握基本的求导法则,还有一些解题技巧和注意事项值得注意。

首先,要善于化简和分解函数,将函数转化为求导更简单的形式。

例如,对于复杂的函数,可以使用对数、指数和三角函数的换元法进行化简。

其次,要注意运用求导法则的逆运算,即积分。

在一些题型中,求导是基本的方法,但是求出导数之后还需要将它们积分得到原函数。

另外,要掌握好导数与函数图像的关系。

通过分析导数的正负、增减性,可以判断函数图像的趋势和特点,进而解答一些与函数图像有关的问题。

最后,要反复练习高考真题和模拟题。

通过不断的练习,掌握各种导数题型的解题方法和技巧,提高解题的速度和准确度。

导数大题第一、二问解题方法

导数大题第一、二问解题方法

导数大题一、二问专练-、求单调性解题步骤(1)求函数f(x)的定义域(2)求函数的导函数f (x),并化简;(注意此处是否引出讨论) (3)令f (x) =0 ,求出所有的根,并检查根是否在定义域内。

(讨论:1)讨论的对象,即讨论哪个字母参数2)讨论的引发,即为何讨论3)讨论的范围,即讨论中要做到“不重不漏” )(4)列表:注意定义域的划分、f(X)正负号的确定(5)根据列表情况作出答案二、导数难点:难点一:如何讨论:(1) 判断f (x) =0是否有根(可通过判别式的正负来确定) ,如果无法确定,引发讨论;(2) 求完根后,比较f(X)=0两根的大小,如果无法确定,引发讨论。

(3在填表时确定f (x)的正负或解不等式f(x)・0过程中,引发讨论。

难点二、f(x)正负的确定(1)当f(X)或f(X)式中未确定部分是一次或二次函数时,画函数图象草图来确定正负号;(2) f (x)为其他函数时,由f (x) 0的解集来确定f(X)的正负。

(3)若f (x) =0无根或重根,不必列表,直接判断导函数的正负即可。

题型一:讨论f(x)=0是否有根型(1)若导数是二次函数,需判断判别式的正负(2)若导数是一次函数y =kx • b,需判断k的正负1、设函数f(x) =x3-3ax b(a =0).(I)若曲线y = f(x)在点(2, f(2))处与直线y =8相切,求a,b的值;(n)求函数f (x)的单调区间与极值点3 22. (08 文)已知函数f (x) = x ax - 3bx c(b = 0),且g(x)二f (x) - 2是奇函数.(I)求a , c的值;(n)求函数f (x)的单调区间_ 2(18)(本小题共13分)已知函数f(x)二x —alnx(a・R ).(练习)(I)若a = 2,求证:f (x)在(1,r)上是增函数;(2)求f (x)的单调区间;ax18.设函数f (x) = —2 a 0。

导数大题方法总结

导数大题方法总结

导数大题方法总结导数大题方法总结总结是指对某一阶段的工作、学习或思想中的经验或情况进行分析研究,做出带有规律性结论的书面材料,它可以促使我们思考,让我们一起认真地写一份总结吧。

那么总结要注意有什么内容呢?以下是小编整理的导数大题方法总结,欢迎大家分享。

一、总论一般来说,导数的大题有两到三问。

每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二、主流题型及其方法(1)求函数中某参数的值或给定参数的值求导数或切线一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x=k时取得极值,试求所给函数中参数的值;或者是f(x)在(a,f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x=k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

(2)求函数的单调性或单调区间以及极值点和最值一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

导数压轴大题大招(精华)

导数压轴大题大招(精华)

导数压轴大题方法总结一、零点问题(隐零点压轴)【压轴1】已知函数f(x)=e x ln(x+m)(Ι)设x=0是f(x)的极值点,求m,并讨论f(x)的单调性;(Ⅱ)当m≤2时,证明f(x)>0.【压轴2】已知函数ln ()x f x x=.(Ⅰ)求函数()y f x =在点(1,0)处的切线方程;(Ⅱ)设实数k 使得()f x kx <恒成立,求k 的取值范围;(Ⅲ)设()() (R)g x f x kx k =-∈,求函数()g x 在区间21[,e ]e上的零点个数.【压轴3】已知函数1()x x f x xe ae -=-,且'(1)f e =.(Ⅰ)求a 的值及()f x 的单调区间;(Ⅱ)若关于x 的方程2()2(2)f x kx k =->存在两个不相等的正实数根12,x x ,证明:124ln x x e->.二、零点问题(放缩法压轴)【压轴1】设函数2)(--=ax e x f x.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若1=a ,k 为整数,且当x >0时,1)(')(++-x x f k x >0,求k 的最大值.【压轴2】已知函数+3()e x m f x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值;(Ⅱ)当1m ≥时,证明:()3()f x g x x >-.【压轴3】已知函数221ln )(-+-=a ax x x f ,R a ∈.(Ⅰ)求函数)(x f 的单调区间;(Ⅱ)若2)()(+=x xf x g ,求证:当a <e2ln 时,)(x g >a 2.【压轴4】已知函数121ln )(2+++=x ax x x f .(Ⅰ)当2-=a 时,求)(x f 的极值点;(Ⅱ)当0=a 时,证明:对任意的x >0,不等式x xe ≥)(x f 恒成立.【压轴5】已知对任意的x >0,不等式1ln 2---x kx xe x ≥0恒成立,求实数k 的取值范围.【压轴6】已知函数x x x x f ln +=)(,当x >1时,不等式)∈(),()1(Z k x f x k <-恒成立,则的最大值为多少?三、対数平均【压轴1】【压轴2】已知函数2ln )(-+=xa x x f .(I)讨论)(x f 的单调性;(II)若函数)(x f y =的两个零点为)(,2121x x x x <,证明:a x x 221>+.【压轴3】已知函数()()ln f x x ax b a b =-+∈R ,有两个不同的零点12x x ,.(I)求()f x 的最值;(II)证明:1221x x a < 【压轴4】已知函数()()ln ,x a f x m a m R x-=-∈在x e =(e 为自然对数的底)时取得极值且有两个零点.(I)求实数m 的取值范围;(II)记函数()f x 的两个零点为12,x x ,证明:212x x e >.四、极值点偏移【压轴1】已知函数2)1()2()(-+-=x a e x x f x 有两个零点.(I)求a 的取值范围(II)设21,x x 是)(x f 的两个零点,求证:221<+x x 【压轴2】已知函数()()21ln 12f x x ax a x =-++-.(Ⅰ)若1a >-,讨论()f x 的单调性;(Ⅱ)若01x <<,求证:()()11f x f x +<-;(Ⅲ)若0a >,设1x ,2x 为函数()f x 的两个零点,记1202x x x +=,()'f x 为函数()f x 的导函数,求证:()0'0f x >.【压轴3】已知函数(),x f x x e x R -=⋅∈.(Ⅰ)求()f x 的单调区间与极值;(Ⅱ)已知()g x 与()f x 关于1x =对称,求证:1x >时,()()f x g x >;(Ⅲ)若12x x ≠且()()12f x f x =,求证:122x x +>.【压轴4】已知函数()()2ln +2f x x ax a x =--.(Ⅰ)讨论()f x 的单调性;(Ⅱ)设0a >,求证:当10x a <<时,11f x f x a a ⎛⎫⎛⎫+>- ⎪ ⎪⎝⎭⎝⎭;(Ⅲ)若函数()y f x =的图像与x 轴交与A ,B 两点,线段AB 重点的横坐标为0x ,求证:()0'0f x <.【压轴5】已知函数()xf x e ax =+.(Ⅰ)若()f x 在0x =处切线过点()2,1-,求a 的值;(Ⅱ)讨论()f x 在()1,+∞内的单调性;(Ⅲ)令1a =,()()2F x xf x x =-,且12x x ≠求证:122x x +<-.【压轴6】已知函数()x f x e x a =-+,21()x g x x a e=++,a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若存在[]0,2x ∈,使得()()f x g x <成立,求a 的取值范围;(Ⅲ)设1x ,2x 是函数()f x 的两个不同零点,求证:121x x e +<.【压轴7】已知函数21()ln (1)2f x x ax a x =-+-)0(<a .(Ⅰ)求函数()f x 的单调区间;(Ⅱ)记函数()y F x =的图象为曲线C .设点11(,)A x y ,22(,)B x y 是曲线C 上的不同两点.如果在曲线C 上存在点00(,)M x y ,使得:①1202x x x +=;②曲线C 在点M 处的切线平行于直线AB ,则称函数()F x 存在“中值相依切线”.试问:函数()f x 是否存在“中值相依切线”,请说明理由.【压轴8】已知函数()()11ln 0f x a x x a a x ⎛⎫=++-> ⎪⎝⎭.(Ⅰ)求()f x 的极值点;(Ⅱ)若曲线()y f x =上总存在不同两点()()()()1122,,,P x f x Q x f x ,使得曲线()y f x =在,P Q 两点处的切线互相平行,证明:122x x +>五、二次求导【压轴1】设函数()a x f x xe bx -=+,曲线()y f x =在点(2,(2))f 处的切线方程为(1)4y e x =-+,(Ⅰ)求a ,b 的值;(Ⅱ)求()f x 的单调区间.【压轴2】设a 为实数,函数()22,xf x e x a x R =-+∈。

数学导数大题解题技巧

数学导数大题解题技巧

数学导数大题解题技巧
数学导数大题解题技巧
一、解题思路
1、明确问题:把题干中的文字转化成数学公式。

2、分析问题:根据提出的问题,分析对应的数学概念。

3、抓重点:弄清楚题目的要求,抓住主要的求解目标。

4、分析解决:为达到目标,采用正确的算法,根据条件分析解决问题。

5、验算结果:数值运算完成后,根据可行的方法验算一下结果。

二、应用技巧
1、彰显结果:把一个大问题分解成几个小问题,问题的解决自然会更简单。

2、减而治之:当出现复杂的问题时,可以把原问题适当简化成几个较容易解决的小问题,再将其汇总求出结果。

3、坐标变换:熟悉将椭圆的极坐标方程转换成普通坐标方程,把一个复杂的问题转换成一个稍微容易解决的问题。

4、合理假设:在某些情况下,可以根据实际情况设定合理的假设,这样可以减少计算量,大大提高解题效率。

5、列式求解:当题目要求求某个函数的值或极限时,可以采用列式的方法,逐步分析变化的趋势,并讨论出函数的具体值。

6、换元求解:当函数的参数发生变化时,可以采用换元求解法,用更简单的元求出更复杂的函数的导数值。

7、递推关系:当函数的求值问题涉及到递推关系,可以用初值确定终点,用每一步求出的结果求出下一步的结果,直至终点。

导数常见题型方法总结

导数常见题型方法总结

导数题型总结例1:设函数()y f x =在区间D 上的导数为()f x ',()f x '在区间D 上的导数为()g x ,假设在区间D上,()0g x <恒成立,则称函数()y f x =在区间D 上为“凸函数〞,实数m 是常数,4323()1262x mx x f x =-- 〔1〕假设()y f x =在区间[]0,3上为“凸函数〞,求m 的取值围;〔2〕假设对满足2m ≤的任何一个实数m ,函数()f x 在区间(),a b 上都为“凸函数〞,求b a -的最大值.解:由函数4323()1262x mx x f x =-- 得32()332x mx f x x '=--2()3g x x mx ∴=-- 〔1〕()y f x =在区间[]0,3上为“凸函数〞,则 2()30g x x mx ∴=--<在区间[0,3]上恒成立 解法一:从二次函数的区间最值入手:等价于max ()0g x < 解法二:别离变量法:∵当0x =时, 2()330g x x mx ∴=--=-<恒成立, 当03x <≤时, 2()30g x x mx =--<恒成立等价于233x m x x x ->=-的最大值〔03x <≤〕恒成立, 而3()h x x x=-〔03x <≤〕是增函数,则max ()(3)2h x h ==2m ∴>(2)∵当2m ≤时()f x 在区间(),a b 上都为“凸函数〞则等价于当2m ≤时2()30g x x mx =--< 恒成立变更主元法再等价于2()30F m mx x =-+>在2m ≤恒成立〔视为关于m 的一次函数最值问题〕30110x >⇒-<<> 例2),10(32R b a b x a ∈<<+-],2+a 不等式()f x a '≤恒成立,求a 的取值围. 解:〔Ⅰ〕()()22()433f x x ax a x a x a '=-+-=---令,0)(>'x f 得)(x f 的单调递增区间为〔a ,3a 〕令,0)(<'x f 得)(x f 的单调递减区间为〔-∞,a 〕和〔3a ,+∞〕∴当*=a 时,)(x f 极小值=;433b a +- 当*=3a 时,)(x f 极大值=b.〔Ⅱ〕由|)(x f '|≤a ,得:对任意的],2,1[++∈a a x 2243a x ax a a -≤-+≤恒成立① 则等价于()g x 这个二次函数max min ()()g x ag x a≤⎧⎨≥-⎩22()43g x x ax a =-+的对称轴2x a=01,a <<12a a a a +>+=〔放缩法〕即定义域在对称轴的右边,()g x 这个二次函数的最值问题:单调增函数的最值问题。

导数大题20种题型讲解

导数大题20种题型讲解

导数大题20种题型讲解1.多项式函数求导:题目描述:求函数f(x)=ax^n的导数。

解答步骤:使用幂函数的导数公式,对函数f(x)进行求导,得到f'(x)=nax^(n-1)。

2.常数函数求导:题目描述:求函数f(x)=c的导数。

解答步骤:常数函数的导数始终为零,即f'(x)=0。

3.指数函数求导:题目描述:求函数f(x)=e^x的导数。

解答步骤:指数函数e^x的导数仍然是e^x,即f'(x)=e^x。

4.对数函数求导:题目描述:求函数f(x)=ln(x)的导数。

解答步骤:对数函数ln(x)的导数为1/x,即f'(x)=1/x。

5.三角函数求导:题目描述:求函数f(x)=sin(x)的导数。

解答步骤:三角函数sin(x)的导数为cos(x),即f'(x)=cos(x)。

6.反三角函数求导:题目描述:求函数f(x)=arcsin(x)的导数。

解答步骤:反三角函数的导数可以通过导数公式计算,即f'(x)=1/sqrt(1-x^2)。

7.复合函数求导:题目描述:求函数f(x)=(2x+1)^3的导数。

解答步骤:使用链式法则,将复合函数拆解成内外两个函数,并分别求导。

对于本题,先对内函数u=2x+1求导,然后乘以外函数v=u^3的导数。

8.分段函数求导:题目描述:求函数f(x)={x^2,x<0;x,x≥0}的导数。

解答步骤:由于该函数在x=0处存在不连续点,需要分别对x<0和x≥0的部分进行求导。

对于x<0的部分,求导结果为2x;对于x≥0的部分,求导结果为1。

9.隐函数求导:题目描述:求函数方程x^2+y^2=25的导数dy/dx。

解答步骤:对方程两边同时求导,并利用隐函数求导法则,最后解出dy/dx的表达式。

10.参数方程求导:题目描述:已知参数方程x=t^2,y=2t+1,求曲线的切线斜率。

解答步骤:对参数方程中的x和y分别求导,然后计算dy/dx的值,即可得到切线斜率。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

高考导数大题知识点

高考导数大题知识点

高考导数大题知识点导数是高中数学中重要的概念,也是高考中常考的知识点之一。

在解决导数大题时,我们需要掌握一些关键的知识点和技巧。

本文将介绍高考导数大题的相关知识,帮助同学们更好地应对考试。

一、导数的定义和性质在开始讲解导数大题之前,我们需要先了解导数的定义和性质。

导数描述了函数在某一点的变化率,可以表示为函数的斜率。

导数的定义是极限的表达式,可以使用极限的性质进行求解。

此外,导数具有一些重要的性质,如导数与原函数的关系、导数的四则运算法则等。

二、导数的计算方法1. 基本初等函数的导数计算基本初等函数,如常数函数、幂函数、指数函数、对数函数等,都有相应的导数计算规则。

我们需要熟练掌握这些规则,以便在计算导数时能够快速准确地求解。

2. 复合函数的导数计算复合函数由两个或多个函数组成,其导数的计算需要运用链式法则。

链式法则指导数的乘法规则,它能够帮助我们将复合函数的导数计算拆分为简单函数的导数计算。

3. 隐函数的导数计算隐函数是由x和y之间的方程所定义的函数,它的导数计算需要使用隐函数求导公式,将y视为x的函数来求解。

在实际应用中,隐函数求导是非常重要的,我们需要通过熟练掌握相关的求导技巧来解决复杂的问题。

三、导数在函数图像中的应用1. 函数图像的绘制了解导数的定义和计算方法后,我们可以通过绘制函数的图像来直观地理解函数的性质。

函数图像绘制涉及到函数的定义域、值域、奇偶性、单调性等,通过计算导数可以揭示函数图像的一些重要性质。

2. 函数极值和拐点函数的极值和拐点是导数的重要应用之一。

通过对导数进行分析,我们可以找到函数的极大值和极小值点,以及函数的拐点。

这些点对于确定函数的增减性和凸凹性非常重要。

四、导数在应用题中的应用导数在应用题中的应用非常广泛,如最优化问题、曲线的切线和法线、函数的增减性和凹凸性等。

通过将实际问题转化为数学模型,并利用导数的知识进行求解,可以帮助我们解决各种实际问题。

总结:高考导数大题是考察学生对导数知识的理解和应用能力的重要环节。

做导数大题的思路

做导数大题的思路

做导数大题的思路一、确定函数在求解导数问题时,首先要确定函数。

这需要根据题目给定的条件和要求,通过变量代换、函数变形等方式,将问题转化为可求解的函数形式。

二、求导数求导数是导数题目的基本要求。

求导的方法有很多种,常用的有链式法则、乘积法则、幂函数法则等。

要求同学们熟练掌握各种求导方法,并能够灵活运用。

三、判断单调性导数大于0,函数递增;导数小于0,函数递减。

因此,在求得函数的导数后,可以通过判断导数的正负来判断函数的单调性。

如果函数在某个区间内单调递增或递减,则该区间内函数的值域可求。

四、判断极值极值是函数值在某点达到最大或最小的情况。

在判断函数的极值时,可以根据函数的一阶导数和二阶导数的正负变化来进行判断。

如果函数的一阶导数在该点左侧大于0,右侧小于0,则该点为函数的极大值点;如果函数的一阶导数在该点左侧小于0,右侧大于0,则该点为函数的极小值点。

另外,函数的二阶导数在该点的正负情况也可以帮助我们判断函数极值的类型。

五、求解最值最值是函数在某个区间内的最大值或最小值。

在求解函数的最值时,可以先确定函数的单调性,然后根据单调性确定函数的值域,最后在值域中寻找最大值或最小值。

此外,还可以利用导数和函数图象的关系,通过观察函数图象的变化规律来求解最值。

六、证明不等式证明不等式是导数问题中的一种常见题型。

在证明不等式时,可以利用导数来判断函数的单调性,从而证明不等式是否成立。

此外,还可以利用函数的极值和最值等性质来证明不等式。

七、研究几何意义导数的几何意义是函数在该点的切线的斜率。

因此,在求解导数问题时,可以通过研究函数的几何意义来帮助我们理解问题。

例如,可以利用函数的单调性和几何意义来判断函数图象的单调性;可以利用函数的极值点和几何意义来判断函数图象的极值点等。

综上所述,导数题目在解题时往往需要对各个部分的知识有较深的理解和熟练的运用。

只有在平时的学习中不断积累和练习,才能在考试中取得好的成绩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数大题方法总结
一总论
一般来说,导数的大题有两到三问。

每一个小问的具体题目虽然并不固定,但有相当的规律可循,所以在此我进行了一个答题方法的总结。

二主流题型及其方法
*(1)求函数中某参数的值或给定参数的值求导数或切线
一般来说,一到比较温和的导数题的会在第一问设置这样的问题:若f(x)在x = k时取得极值,试求所给函数中参数的值;或者是f(x)在(a , f(a))处的切线与某已知直线垂直,试求所给函数中参数的值等等很多条件。

虽然会有很多的花样,但只要明白他们的本质是考察大家求导数的能力,就会轻松解决。

这一般都是用来送分的,所以遇到这样的题,一定要淡定,方法是:
先求出所给函数的导函数,然后利用题目所给的已知条件,以上述第一种情形为例:令x = k,f(x)的导数为零,求解出函数中所含的参数的值,然后检验此时是否为函数的极值。

注意:①导函数一定不能求错,否则不只第一问会挂,整个题目会一并挂掉。

保证自己求导不会求错的最好方法就是求导时不要光图快,一定要小心谨慎,另外就是要将导数公式记牢,不能有马虎之处。

②遇到例子中的情况,一道要记得检验,尤其是在求解出来两个解的情况下,更要检验,否则有可能会多解,造成扣分,得不偿失。

所以做两个字来概括这一类型题的方法就是:淡定。

别人送分,就不要客气。

③求切线时,要看清所给的点是否在函数上,若不在,要设出切点,再进行求解。

切线要写成一般式。

*(2)求函数的单调性或单调区间以及极值点和最值
一般这一类题都是在函数的第二问,有时也有可能在第一问,依照题目的难易来定。

这一类题问法都比较的简单,一般是求f(x)的单调(增减)区间或函数的单调性,以及函数的极大(小)值或是笼统的函数极值。

一般来说,由于北京市高考不要求二阶导数的计算,所以这类题目也是送分题,所以做这类题也要淡定。

这类问题的方法是:
首先写定义域,求函数的导函数,并且进行通分,变为假分式形式。

往下一般有两类思路,一是走一步看一步型,在行进的过程中,一点点发现参数应该讨论的范围,一步步解题。

这种方法个人认为比较累,而且容易丢掉一些情况没有进行讨论,所以比较推荐第二种方法,就是所谓的一步到位型,先通过观察看出我们要讨论的参数的几个必要的临介值,然后以这些值为分界点,分别就这些临界点所分割开的区间进行讨论,这样不仅不会漏掉一些对参数必要的讨论,而且还会是自己做题更有条理,更为高效。

极值的求法比较简单,就是在上述步骤的基础上,令导函数为零,求出符合条件的根,然后进行列表,判断其是否为极值点并且判断出该极值点左右的单调性,进而确定该点为极大值还是极小值,最后进行答题。

最值问题是建立在极值的基础之上的,只是有些题要比较极值点与边界点的大小,不能忘记边界点。

注意:①要注意问题,看题干问的是单调区间还是单调性,极大值还是极小值,这决定着你最后如何答题。

还有最关键的,要注意定义域,有时题目不会给出定义域,这时就需要你自己写出来。

没有注意定义域问题很严重。

②分类要准,不要慌张。

③求极值一定要列表,不能使用二阶导数,否则只有做对但不得分的下
场。

*(3)恒成立或在一定条件下成立时求参数范围
这类问题一般都设置在导数题的第三问,也就是最后一问,属于有一定难度的问题。

这就需要我们一定的综合能力。

不仅要对导数有一定的理解,而且对于一些不等式、函数等的知识要有比较好的掌握。

这一类题目不是送分题,属于扣分题,但掌握好了方法,也可以百发百中。

方法如下:
做这类恒成立类型题目或者一定范围内成立的题目的核心的四个字就是:分离变量。

一定要将所求的参数分离出来,否则后患无穷。

有些人总是认为不分离变量也可以做。

一些简单的题目诚然可以做,但到了真正的难题,分离变量的优势立刻体现,它可以规避掉一些极为繁琐的讨论,只用一些简单的代数变形可以搞定,而不分离变量就要面临着极为麻烦的讨论,不仅浪费时间,而且还容易出差错。

所以面对这样的问题,分离变量是首选之法。

当然有的题确实不能分离变量,那么这时就需要我们的观察能力,如果还是没有简便方法,那么才会进入到讨论阶段。

分离变量后,就要开始求分离后函数的最大或者最小值,那么这里就要重新构建一个函数,接下来的步骤就和(2)中基本相同了。

注意:①分离时要注意不等式的方向,必要的时候还是要讨论。

②要看清是求分离后函数的最大值还是最小值,否则容易搞错。

③分类要结合条件看,不能抛开大前提自己胡搞一套。

最后,这类题还需要一定的不等式知识,比如均值不等式,一些高等数学的不等数等等。

这就需要我们有足够的知识储备,这样做起这样的题才能更有效率。

(4)构造新函数对新函数进行分析
这类题目题型看似复杂,但其实就是在上述问题之上多了一个步骤,就是将上述的函数转化为了另一个函数,并没有本质的区别,所以这里不再赘述。

(5)零点问题
这类题目在选择填空中更容易出现,因为这类问题虽然不难,但要求学生对与极值和最值问题有更好的了解,它需要我们结合零点,极大值极小值等方面综合考虑,所以更容易出成填空题和选择题。

如果出成大题,大致方法如下:先求出函数的导函数,然后分析求解出函数的极大值与极小值,然后结合题目中所给的信息与条件,求出在特定区间内,极大值与极小值所应满足的关系,然后求解出参数的范围。

三总结
以上就是导数大题的主要题型及方法,当然有很多题型不能完全的照顾到,有很多的创新题型没有涉及,那么如何解决这个问题呢?就是我们要明白导数题的核心是什么。

导数题的核心就是参数,就是对参数的把握,而对参数的理解与分析正是每一道题目的核心。

只要我们能够从参数入手,能够对参数进行分析,那么不论一道题有多么的繁琐,我们都能够把握这道题的主线,能有一个明确的脉络,做出题目。

所以我总结的导数题的八字大纲,不一定对,但我
认为对于解决北京市的高考题有一定的帮助,那就是“分离变量,一步到位”。

一切的一切,都应该围绕着参量来展开。

相信导数虽然是第18或者19题,但也一定会被我们大家淡定的斩于马下。

相关文档
最新文档