2018年海南省中考数学科模拟试题(一)

合集下载

海南省 2018中考模拟考试数学试题(一)含答案

海南省 2018中考模拟考试数学试题(一)含答案

海南省 2018中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明. 一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a ⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y 中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x 的解,则a 的值为A .2B .-2C .21D . 21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 18 D. 24 8. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy 6=的图象上,则x 1、x 2、x 3的大小关系是 A .x 2<x 1<x 3 B .x 1<x 2<x 3 C .x 2>x 1>x 3 D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好A .B .C .D .落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B.45° B. 50° D. 60°11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x 12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-xC. 2)1(2=-xD. 3)2(2=+x 13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .16.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .图2 ECBADAB OC图31 2 (小时) 图4 图518.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--. 20.(本题满分8分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:假设销售每件服装奖励a 元,营业员月基本工资为b 元. 求a 、b 的值; 21. (8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图8.1、8.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图8.1 图8.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.22.(8分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O 和点A ,点B (2,3)是该抛物线对称轴上一点,过点B 作BC ∥x 轴交抛物线于点C行四边形. (1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M ,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;(3)经过点M 的直线把□ OACB 的面积分为1:3两部分,求这条直线的函数关系式.图11A C DEGF M 1 2 图10图9海南省XX 中学2016中考模拟考试(一)数学科试题答题卡否则答案效。

海南省重点中学2018中考模拟考试数学试题及答案

海南省重点中学2018中考模拟考试数学试题及答案

海南省XX 中学2018年中考模拟考试(一)数学科试题(全卷满分120分,考试时间100分钟) 特别提醒:1.选择题用2B 铅笔填涂,其余答案一律用黑色笔填写在答题卡上,写在试题卷上无效. 2. 答题前请认真阅读试题及有关说明.一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1. -5的绝对值是A. 5B. 51C. -5D. 51-2. 国家游泳中心——“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约 为260000平方米,将260000用科学记数法表示为2.6×10n,则n 的值是 A .3 B .4 C .5 D .6 3.计算()3232a a⋅-的结果,正确的是A .-6a 5B .6a 5C .-2a 6D . 2a 6 4.函数4-=x y中,自变量x 的取值范围是A .x >4B .x ≥4C .x >0D .x ≠45.已知-1是关于x 的方程02=+a x的解,则a 的值为A .2B .-2C .21 D .21-6.如图1,在一个长方体上放着一个小正方体,这个组合体的左视图...是7.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同. 小张通过多次摸球试验后发现,其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是A .6 B. 16 C. 18 D. 24A .B .C .D .8. 若A (x 1,-3)、B (x 2,-2)、C (x 3,1)三点都在函数xy6=的图象上,则x 1、x 2、x 3的大小关系是A .x 2<x 1<x 3B .x 1<x 2<x 3C .x 2>x 1>x 3D .x 1>x 2>x 39. 如图2,AD 是在Rt △ABC 斜边BC 上的高,将△ADC 沿AD 所在直线折叠,点C 恰好落在BC 的中点E 处,则∠B 等于A .25°B .30°C .45°D .60°10. 如图3,在⊙O 中,OC ∥AB ,∠A =20°,则∠1等于A. 40°B. 45° B. 50° D. 60° 11.不等式组⎩⎨⎧>->-04203x x 的解集是A .3>xB .2<xC .32<<xD .2>x 或3-<x12.将一元二次方程0222=--x x 配方后所得的方程是A. 3)1(2=+xB. 3)1(2=-x C. 2)1(2=-x D. 3)2(2=+x13.甲、乙两同学从A 地出发,骑自行车在同一条路上行驶到距A 地18千米的B 地,他们离开A 地的距离s (千米)和行驶时间 t (小时)之间的函数关系图象如图4所示. 根据题目和图象提供的信息,下列说法正确的是A .乙比甲早出发半小时B .乙在行驶过程中没有追上甲C .乙比甲先到达B 地D .甲的行驶速度比乙的行驶速度快14. 如图5, CD 是一平面镜,光线从A 点射出经CD 上的E 点反射后照射到B 点,设入射角为α(入射角等于反射角),AC ⊥CD ,BD ⊥CD ,垂足分别为C 、D ,且AC=3,BD=6, CD=12,则CE 的值为A.3B. 4 C .5 D .6 二、填空题(本大题满分16分,每小题4分) 15.分解因式:92-a = .图2 ECBADAB OC图31 小时) 图4图516.如果正多边形的一个外角为72°,那么它的边数是 .17. 如图6,在菱形ABCD 中, E 、F 分别是DB 、DC 的中点,若AB =10,则EF = .18.如图7,半径为2的⊙O 与含有30°角的直角三角板ABC 的AC 边切于点A ,将直角三角板沿CA 边所在的直线向左平移,当平移到AB 与⊙O 相切时,该直角三角板平移的距离为 . 三、解答题(本大题满分62分) 19.(本题满分10分,每小题5分)(1)计算:2)2(311516--⎪⎭⎫ ⎝⎛-⨯+. (2)化简:()()211a a a +--.20.(本题满分8分)明铭同学利用寒假期间到某品牌的服装专卖店做社会调查,了解到该商场为了激励营业员的工作积极性,扩大销售量,实行“月总收入=月基本工资+计件奖金”的方法. (计件奖金=月销售量×每件所得奖金)同时获得如下信息:假设销售每件服装奖励a 元,营业员月基本工资为b元. 求a 、b 的值; 21. (8分)为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少?”,共有4个选项:A .1.5小时以上B .1~1.5小时C .0.5~1小时D .0.5小时以下图8.1、8.2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:图6 图7图8.1 图8.2(1)本次一共调查了 名学生;学生参加体育活动时间的中位数落在 时间段(填写上面所给“A ”、“B ”、“C ”、“D ”中的一个选项); (2)在图1中将选项B 的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间 在0.5小时以下.22.(8分)如图9,要测量一幢楼CD 的高度,在地面上A 点测得楼CD 的顶部C 的仰角为30°,向楼前进50m 到达B 点,又测得点C 的仰角为60°. 求这幢楼CD 的高度(结果保留根号).23. (本题满分13分)如图10,正方形ABCD 中,E 是BD 上一点,AE 的延长线交CD 于F ,交BC 的延长线于G ,M 是FG 的中点. (1)求证:① ∠1=∠2;② EC ⊥MC.(2)试问当∠1等于多少度时,△ECG 为等腰三角形? 请说明理由.24.(本题满分14分)如图11,已知抛物线经过原点O轴上一点,过点B 作BC ∥x 轴交抛物线于点C 行四边形.(1)① 直接写出A 、C 两点的坐标;② 求这条抛物线的函数关系式;(2)设该抛物线的顶点为M,试在线段AC 上找出这样的点P ,使得△PBM 是以BM 为底边的等 腰三角形,并求出此时点P 的坐标;图11A C D EGFM12图10图9。

2018年海南中考数学试题及答案

2018年海南中考数学试题及答案

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣12018D.120182.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为( )A .10°B .15°C .20°D .25°8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是( )A .{x ≥2x >−3B .{x ≤2x <−3C .{x ≥2x <−3D .{x ≤2x >−39.(3.00分)(2018•海南)分式方程x 2−1x+1=0的解是( ) A .﹣1 B .1 C .±1 D .无解10.(3.00分)(2018•海南)在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( ) A .6 B .7 C .8 D .911.(3.00分)(2018•海南)已知反比例函数y=k x的图象经过点P (﹣1,2),则这个函数的图象位于( )A .二、三象限B .一、三象限C .三、四象限D .二、四象限12.(3.00分)(2018•海南)如图,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A 逆时针旋转60°得到△AB 1C 1,连接BC 1,则BC 1的长为( )A .6B .8C .10D .1213.(3.00分)(2018•海南)如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A.15 B.18 C.21 D.2414.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH 的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3√5(填“>”、“<”或“=”).16.(4.00分)(2018•海南)五边形的内角和的度数是.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣√9﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:√2≈14,√3≈1.7)23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣12018D.12018【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A .10°B .15°C .20°D .25°【考点】JA :平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE ∥AF 得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE ∥AF ,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD ﹣∠B=40°﹣30°=10°,故选:A .【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是( )A .{x ≥2x >−3B .{x ≤2x <−3C .{x ≥2x <−3D .{x ≤2x >−3【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)及应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为{x ≤2x >−3, 故选:D .【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018•海南)分式方程x 2−1x+1=0的解是( ) A .﹣1 B .1 C .±1 D .无解 【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x +1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x +1≠0,是方程的解;当x=﹣1时,x +1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B .【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018•海南)在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( ) A .6 B .7 C .8 D .9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到2n =13,然后利用比例性质求出n 即可. 【解答】解:根据题意得2n =13,解得n=6, 所以口袋中小球共有6个.故选:A .【点评】本题考查了概率公式:随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(2018•海南)已知反比例函数y=k x的图象经过点P (﹣1,2),则这个函数的图象位于( )A .二、三象限B .一、三象限C .三、四象限D .二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P 的坐标求出反比例函数的比例系数k ,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=kx的图象经过点P(﹣1,2),∴2=k−1.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【考点】KQ:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=√82+62=10,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)(2018•海南)如图,▱ABCD 的周长为36,对角线AC 、BD 相交于点O ,点E 是CD 的中点,BD=12,则△DOE 的周长为( )A .15B .18C .21D .24【考点】KX :三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD 的周长为36,∴BC +CD=18,∵OD=OB ,DE=EC ,∴OE +DE=12(BC +CD )=9, ∵BD=12,∴OD=12BD=6, ∴△DOE 的周长为9+6=15,故选:A .【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线AC ,EG 剪开,拼成如图2所示的▱KLMN ,若中间空白部分四边形OPQR 恰好是正方形,且▱KLMN 的面积为50,则正方形EFGH 的面积为( )A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;LB:矩形的性质;LE:正方形的性质;PC:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3>√5(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=√9>√5计算.【解答】解:∵3=√9,√9>√5,∴3>√5.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(2018•海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN 是解本题的关键.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【考点】KQ:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作MF⊥CD于点F,则CF=12CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=12CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=12OA=10,∴在Rt△CMF中,由勾股定理得MF=√MC2−CF2=6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣√9﹣|﹣2|×2﹣1(2)(a +1)2+2(1﹣a )【考点】2C :实数的运算;36:去括号与添括号;4C :完全平方公式;6F :负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×12=5;(2)原式=a 2+2a +1+2﹣2a=a 2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A :一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【考点】VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=6703730×100%≈18%,即m=18,对应的圆心角为β=360°×6703730≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG 的高.(参考数据:√2≈14,√3≈1.7)【考点】TA :解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ ⊥CG 于G .则△HJG 是等腰三角形,四边形BCJH 是矩形,设HJ=GJ=BC=x .构建方程即可解决问题;(1)在Rt △DEH 中,∵∠DEH =90°,∠HDE =45°,∴HE =DE =7米.∴BH =HE +BE =7+1.5=8.5米.(2)设EF =x 米,在Rt △GEF 中,∵∠GFE =90°,∠GEF =60°,∴GF =EF ·tan60°=3x .在Rt △GDF 中,∵∠GFD =90°,∠GDF =45°,∴DF =GF .∴7+x =3x . 将713. 代入上式,解得x =10.GF =3x =17.∴GC =GF +FC =18.5米.答:古树高为8.5米,教学楼高为18.5米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018•海南)已知,如图1,在▱ABCD 中,点E 是AB 中点,连接DE 并延长,交CB 的延长线于点F .(1)求证:△ADE ≌△BFE ;(2)如图2,点G 是边BC 上任意一点(点G 不与点B 、C 重合),连接AG 交DF 于点H ,连接HC ,过点A 作AK ∥HC ,交DF 于点K .①求证:HC=2AK ;②当点G 是边BC 中点时,恰有HD=n•HK (n 为正整数),求n 的值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK ∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,{∠ADE=∠BFE ∠AED=∠BEF AE=BE,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=12 HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=14 CF,∵GM∥DF,∴△CMG ∽△CHF ,∴MG HF =CG CB =14, ∵AD ∥FC ,∴△AHD ∽△GHF ,∴DH HF =AH HG =AD FG =23, ∴GM DH =38, ∵AK ∥HC ,GM ∥DF ,∴△AHK ∽△HGM ,∴HK GM =AH HG =23, ∴HK HD =14,即HD=4HK , ∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(2018•海南)如图1,抛物线y=ax 2+bx +3交x 轴于点A (﹣1,0)和点B (3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点D (2,3)在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A 、B 重合),过点P 作PQ ⊥x 轴交该抛物线于点Q ,连接AQ 、DQ ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.【考点】HF :二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程及应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A 、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD ,则可知CD ∥x 轴,由A 、F 的坐标可知F 、A 到CD 的距离,利用三角形面积公式可求得△ACD 和△FCD 的面积,则可求得四边形ACFD 的面积;②由题意可知点A 处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD 解析式,则可求出直线DQ 解析式,联立直线DQ 和抛物线解析式则可求得Q 点坐标;当∠AQD=90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y=k 1x +b 1,则可用t 表示出k′,设直线DQ 解析式为y=k 2x +b 2,同理可表示出k 2,由AQ ⊥DQ 则可得到关于t 的方程,可求得t 的值,即可求得Q 点坐标.【解答】解:(1)由题意可得{a −b +3=09a +3b +3=0,解得{a =−1b =2, ∴抛物线解析式为y=﹣x 2+2x +3;(2)①∵y=﹣x 2+2x +3=﹣(x ﹣1)2+4,∴F (1,4),∵C (0,3),D (2,3),∴CD=2,且CD ∥x 轴,∵A (﹣1,0),∴S 四边形ACFD =S △ACD +S △FCD =12×2×3+12×2×(4﹣3)=4;②∵点P 在线段AB 上,∴∠DAQ 不可能为直角,∴当△AQD 为直角三角形时,有∠ADQ=90°或∠AQD=90°,i .当∠ADQ=90°时,则DQ ⊥AD ,∵A (﹣1,0),D (2,3),∴直线AD 解析式为y=x +1,∴可设直线DQ 解析式为y=﹣x +b′,把D (2,3)代入可求得b′=5,∴直线DQ 解析式为y=﹣x +5,联立直线DQ 和抛物线解析式可得{y =−x +5y =−x 2+2x +3,解得{x =1y =4或{x =2y =3, ∴Q (1,4);ii .当∠AQD=90°时,设Q (t ,﹣t 2+2t +3),设直线AQ 的解析式为y=k 1x +b 1,把A 、Q 坐标代入可得{−k 1+b 1=0tk 1+b 1=−t 2+2t +3,解得k 1=﹣(t ﹣3), 设直线DQ 解析式为y=k 2x +b 2,同理可求得k 2=﹣t ,∵AQ ⊥DQ ,∴k 1k 2=﹣1,即t (t ﹣3)=﹣1,解得t=3±√52, 当t=3−√52时,﹣t 2+2t +3=√5+52, 当t=3+√52时,﹣t 2+2t +3=5−√52, ∴Q 点坐标为(3−√52,5+√52)或(3+√52,5−√52); 综上可知Q 点坐标为(1,4)或(3−√52,5+√52)或(3+√52,5−√52). 【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

海南省2018年中考数学模拟试题

海南省2018年中考数学模拟试题

海南省2018年中考数学模拟试题(考试时间100分钟,本卷满分110分)一、选择题(本题满分42分,每小题3分)1.-5的相反数是 ( )A .15B .5-C .15-D .52.下列运算中,结果正确的是( )A .2a+3b=5abB .2a-(a+b)=a-bC .(a+b)2=a 2+b 2D .a 2 ·a 3=a 63.右图1所示的几何体是由一些小立方块搭成的,则这个几何体的俯视图是( )A. B. C. D. 4.海南岛首条高铁客运专线——东环高速铁路全长308110米,途经海口市、文昌市、琼海市、万宁市、陵水黎族自治县、三亚市.数据308110米用科学记数法表示应为(保留两个有效数字)( )A 、3.1×104米 B 、3.1×105米 C 、3.1×106米 D 、3.1×107米5.使分式1212-+x x 有.意义的x 的取值是( ) A .21≠x B .21-≠x C .x =21 D .x =21- 6.如图2,直线EF 分别与直线AB 、CD 相交于点G 、H ,已知∠1=∠2=50°,GM 平分∠HGB 交直线CD 于点M .则∠3的度数为( )A .60B .65C .70D .1307.在正方形网格中,△ABC 位置如图3所示,则sin ∠ABC 的值为( )B. 23C. 22D. 128.如图4,已知□ABCD 的对角线BD =4cm ,将□ABCD 绕其对称中心O 旋转180°,则点D 所转过的路径长为( ) A .4π cmB .3π cmC .2π cmD .π cm9.下列调查方式合适的是( )A EG C DM H F1 2 3 A B C图3图1A B C D O 图2 图4。

2018年海南省中考数学模拟考试题

2018年海南省中考数学模拟考试题

2018年海南省中考数学模拟试题(全卷满分 150 分.考试时间 120 分钟)一、选择题(本大题共10小题.每小题4分.共40分.在每小题给出的四个选项中.只有一个是符合题目要求的.)1.-2018 的相反数是( )A .|﹣2018|B .±2018C .20181D .2018 2.下列各式运算结果为m 5的是( )A .m 2+m 3B .m 10÷m 2C .m 2•m 3D .(m 2)33.近日.公益组织“上学路上”发布了《2017年中国留守儿童心灵状况白皮书》。

《白皮书》根据中国义务教育阶段农村中小学生4000万的总数进行估算.结果显示中国农村共有超过2300万留守儿童。

“2300万”用科学记数法表示为( ) A .2.3×103 B .2.3×105C .2.3×107D .2.3×1044. 下列几何体中.三视图有两个相同.另一个不同的是( )A. ①② B .②③ C. ②④ D. ③④5.如图.AB ∥CD.CE 于AB 交于E 点.∠1=50°.∠2=15°.则∠CEB 的度数为( )A .50°B .60°C .65°D .70°6.立定跳远是小刚同学体育中考的选考项目之一.某次体育课上.体育老师记录了小刚的一组立定跳远训练成绩如下表:则下列关于这组数据的说法中正确的是( )A .众数是2.45B .平均数是2.45C .中位数是2.5D .方差是0.487.把一元二次方程x2﹣4x+1=0.配成(x+p)2=q的形式.则p、q的值是()A.p=﹣2.q=5 B.p=﹣2.q=3 C.p=2.q=5 D.p=2.q=38. 池州某企业今年1月份产值为a万元.2月份比1月份减少了10%.预计3月份比2月份增加15%.则3月份的产值将达到( )A. (a-10%)(a+15%)万元B. (a-10%+15%)万元C. a(1-10%)(1+15%)万元D. a(1-10%+15%)万元9.如图.已知二次函数y=ax2+bx+c(a<0)的图象与x轴有两个交点O(0.0).A(k.0).且该函数图象还经过点B(1.1).则函数y=kx+k﹣1的图象可能是()A.B.C.D.10.随着互联网的发展.互联网消费逐渐深入人们的生活.如图所示的是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象.有下列说法:其中正确说法的个数有()①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分.每公里计费1.2元;③A点的坐标为(6.5.10.4);④从合肥西站到会展中心的里程是15公里.则“顺风车”要比“快车”少用3.4元.A.1个B.2个 C.3个 D.4个二、填空题(本大题共4小题.每小题5分.共20分). 11.分解因式:x ﹣4x 3= .12. (-5)2+(2-π)0- 60sin 3=______________.13.如图.一个含有30°角的直角三角板ABC 的直角边AC 与⊙O 相切于点A.∠C=90°.∠B=30°.⊙O 的直径为4.AB 与⊙O 相交于D 点.则AD 的长为 .14.如图1.一张纸条上依次写有10个数.如图2.一卡片每次可以盖住纸条上的3个数.那么随机地用卡片盖住的3个数中有且只有一个是负数的概率 .三、解答题(本大题共2小题.每小题8分.共16分.解答写出文字说明、证明过程或演算过程.)15.计算:﹣2﹣1+(1﹣)0﹣4cos45°.16.解一元二次方程:(x+2)(x ﹣2)=3x . 四、解答题(本题共2小题.每小题8分.满分16分.)17.如图.方格纸中的每个小方格都是边长为1个单位长度的正方形.△ABC 的顶点都在格点上.建立如图所示的平面直角坐标系.(1)将△ABC 向左平移7个单位后再向下平移3个单位.请画出两次平移后的△A 1B 1C 1.若M 为△ABC内的一点.其坐标为(a.b ).直接写出两次平移后点M 的对应点M 1的坐标;(2)以原点O 为位似中心.将△ABC 缩小.使变换后得到的△A 2B 2C 2与△ABC 对应边的比为1:2.请在网格内画出在第三象限内的△A 2B 2C 2.并写出点A 2的坐标.18.如图.正方形ABCD 内部有若干个点.用这些点以及正方形ABCD 的顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠):(1)填写如表:(2)如果原正方形被分割成2016个三角形.此时正方形ABCD 内部有多少个点?(3)上述条件下.正方形又能否被分割成2017个三角形?若能.此时正方形ABCD 内部有多少个点?若不能.请说明理由.(4)综上结论.你有什么发现?(写出一条即可) 五、解答题(本大题共2小题.每小题10分.满分20分)19.如图.某校数学兴趣小组为测量校园主教学楼AB 的高度.由于教学楼底部不能直接到达.故兴趣小组在平地上选择一点C.用测角器测得主教学楼顶端A 的仰角为30°.再向主教学楼的方向前进24米.到达点E 处(C.E.B 三点在同一直线上).又测得主教学楼顶端A 的仰角为60°.已知测角器CD 的高度为1.6米.请计算主教学楼AB 的高度.(≈1.73.结果精确到0.1米)20.一款关于儿童成长的图书十分畅销.某书店第一次批发1800元这种图书(批发价是按书定价4折确定).几天内销售一空.又紧急去市场再购1800元这种图书.因为第二次批发正赶上举办图书艺术节.每本批发价比第一次降低了10%.这样所购该图书数量比第一次多20本.(1)书店第二次批发了多少本图书?(2)如果书店两次均按该书定价7折出售.试问该书店这两次售书总共获利多少元?六、解答题(共1小题.满分13分)21.为加强公路的节水意识.合理利用水资源.某市对居民用水实行阶梯水价.居民家庭每月用水量划分为两个阶梯.一、二阶梯用水的单价之比等于1:2.如图折线表示实行阶梯水价后每月水费y (元)与用水量x(m3)之间的函数关系.其中射线AB表示第二级阶梯时y与x之间的函数关系.(1)写出点B的实际意义;(2)求射线AB所在直线的表达式.七、解答题(共1小题.满分13分)22.对称轴为直线x=﹣1的抛物线y=x2+bx+c.与x轴相交于A.B两点.其中点A的坐标为(﹣3.0).(1)求点B的坐标.(2)点C是抛物线与y轴的交点.点Q是线段AC上的动点.作QD⊥x轴交抛物线于点D.求线段QD长度的最大值.参考答案一、选择题(本大题共10小题.每小题4分.共40分.在每小题给出的四个选项中.只有一个是符合题目要求的.)1.D2.C3.C4.B5.C6.C7.A8.C9.A 10.D 二、填空题(本大题共4小题.每小题5分.共20分). 11. x (1+2x )(1﹣2x ) 12.4.5 13. 2 14.三、解答题 15.解:原式=2﹣+1﹣2=.16.解:方程化为x 2﹣3x ﹣4=0.(x ﹣4)(x+1)=0. x ﹣4=0或x+1=0. 所以x 1=4.x 2=﹣1.17.解:(1)所画图形如下所示.其中△A 1B 1C 1即为所求.根据平移规律:左平移7个单位.再向下平移3个单位.可知M 1的坐标(a ﹣7.b ﹣3);(2)所画图形如下所示.其中△A 2B 2C 2即为所求.点A 2的坐标为(﹣1.﹣4).18. 解:(1)如图:(2)设点数为n. 则2(n+1)=2016. 解得n=1007.答:原正方形被分割成2016个三角形时正方形ABCD 内部有1007个点. (3)设点数为n.则2(n+1)=2017.解得n=1007.5.答:原正方形不被分割成2017个三角形;(4)被分割成的三角形的个数永远是偶数个.19. 解:在Rt△AFG中.tan∠AFG=.∴FG==.在Rt△ACG中.tan∠ACG=.∴CG==AG.又∵CG﹣FG=24m.即AG﹣=24m.∴AG=12m.∴AB=12+1.6≈22.4m.20.解:(1)设第一次购书的进价为x元.可得:.解得:x=10.经检验x=10是原方程的解.所以.第二次购书的进价为10×(1﹣10%)=9元.第一次购书:本.第二次购书:180+20=200本;(2)每本书定价是:10=25元.两次获利:元.答:该书店这两次售书总共获利3050元.21.解:(1)图中B点的实际意义表示当用水25m3时.所交水费为70元;(2)设第一阶梯用水的单价为x元/m3.则第二阶梯用水单价为2x元/m3.设A(a.30).则.解得..∴A(15.30).B(25.70)设线段AB所在直线的表达式为y=kx+b.则.解得.∴线段AB所在直线的表达式为y=4x﹣30.22.解:(1)∵点A(﹣3.0)与点B关于直线x=﹣1对称.∴点B的坐标为(1.0).(2)∵a=1.∴y=x2+bx+c.∵抛物线过点(﹣3.0).且对称轴为直线x=﹣1.∴∴解得:.∴y=x2+2x﹣3.且点C的坐标为(0.﹣3).设直线AC的解析式为y=mx+n.则.解得:.∴y=﹣x﹣3如图.设点Q的坐标为(x.y).﹣3≤x≤0.则有QD=﹣x﹣3﹣(x2+2x﹣3)=﹣x2﹣3x=﹣(x+)2+∵﹣3≤﹣≤0.∴当x=﹣时.QD有最大值.∴线段QD长度的最大值为.。

【2018年中考真题模拟】海南省2018年中考数学真题试题(含解析)

【2018年中考真题模拟】海南省2018年中考数学真题试题(含解析)

海南省2018年中考数学真题试题一、选择题(本大题共14小题,每小题3分,共42分)1.2018的相反数是()A.﹣2018 B.2018 C.12017D.12017【答案】A.【解析】试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题.∵2018+(﹣2018)=0,∴2018的相反数是(﹣2018),故选 A.考点:相反数.2.已知a=﹣2,则代数式a+1的值为()A.﹣3 B.﹣2 C.﹣1 D.1【答案】C.【解析】试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,故选C.考点:代数式求值.3.下列运算正确的是()A.a3+a2=a5B.a3÷a2=a C.a3a2=a6D.(a3)2=a9【答案】B.【解析】考点:同底数幂的运算法则.4.如图是一个几何体的三视图,则这个几何体是()A.三棱柱B.圆柱 C.圆台 D.圆锥【答案】D.【解析】试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D.考点:三视图.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为()A.45° B.60° C.90° D.120°【答案】C.【解析】试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.考点:垂线的定义,平行线的性质.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是()A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.【解析】试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.考点:平移的性质,轴对称的性质.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为()A.5 B.6 C.7 D.8【答案】B.考点:科学记数法.8.若分式211xx--的值为0,则x的值为()A.﹣1 B.0 C.1 D.±1【答案】A.【解析】试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.∵分式211xx--的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A.考点:分式的意义.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:则这20名同学年龄的众数和中位数分别是()A.15,14 B.15,15 C.16,14 D.16,15【答案】D.【解析】试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.考点:中位数,众数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为()A.12B.14C.18D.116【答案】D.。

2018年海南省中考数学试卷(含答案与解析)

2018年海南省中考数学试卷(含答案与解析)

数学试卷 第1页(共16页) 数学试卷 第2页(共16页)绝密★启用前海南省2018年初中毕业生学业水平考试数 学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共42分)一、选择题(本大题共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2 018的相反数是( ) A .2018-B .2018C .12018-D .120182.计算23a a g ,结果正确的是( ) A .5aB .6aC .8aD .9a3.在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48 500 000次.数据48 500 000用科学记数法表示为( ) A .548510⨯ B .648.510⨯C .74.8510⨯D .80.48510⨯ 4.一组数据:1,2,4,2,2,5,这组数据的众数是( ) A .1B .2C .4D .5 5.下列四个几何体中,主视图为圆的是( )ABCD6.如图,在平面直角坐标系中,ABC △位于第一象限,点A 的坐标是(4,3),把ABC △向左平移6个单位长度,得到111A B C △,则点1B 的坐标是( ) A .(2,3)-B .(3,1)-C .(3,1)-D .(5,2)-7.将一把直尺和一块含30︒和60︒角的三角板ABC 按如图所示的位置放置,如果40CDE ︒∠=,那么BAF ∠的大小为( )A .10︒B .15︒C .20︒D .25︒8.下列四个不等式组中,解集在数轴上表示如图 所示的是( )A .2,3x x ≥⎧⎨>-⎩B .2,3x x ≤⎧⎨<-⎩C .2,3x x ≥⎧⎨<-⎩D .2,3x x ≤⎧⎨>-⎩9.分式方程21=01x x -+的解是( ) A .1-B .1C .1±D .无解10.在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是( ) A .6B .7C .8D .9毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共16页) 数学试卷 第4页(共16页)11.已知反比例函数ky x=的图象经过点(1,2)P -,则这个函数的图象位于( ) A .二、三象限B .一、三象限C .三、四象限D .二、四象限12.如图,在ABC △中,8AB =,6AC =,30BAC ︒∠=,将ABC △绕点A 逆时针旋转60︒得到11AB C △,连接1BC ,则1BC 的长为( )A .6B .8C .10D .1213.如图,□ABCD 的周长为36,对角线AC ,BD 相交于点O ,点E 是CD 的中点,12BD =,则DOE △的周长为( )A .15B .8C .21D .2414.如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线AC ,EG 剪开,拼成如图2所示的□KLMN ,若中间空白部分四边形OPQR 恰好是正方形,且□KLMN 的面积为50,则正方形EFGH 的面积为( )A .24B .25C .26D .27第Ⅱ卷(非选择题 共78分)二、填空题(本大题共4小题,每小题4分,共16分.把答案填写在题中的横线上) 15.比较实数的大小:填“>”“<”或“=”).16.五边形内角和的度数是 .17.如图,在平面直角坐标系中,点M 是直线y x =-上的动点,过点M 作MN x ⊥轴,交直线y x =于点N ,当8MN ≤时,设点M 的横坐标为m ,则m 的取值范围为 .18.如图,在平面直角坐标系中,点A 的坐标是(20,0),点B 的坐标是(16,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为 .三、解答题(本大题共6小题,共62分.解答应写出必要的文字说明、证明过程或演算步骤)19.(本小题满分10分,每题5分) 计算:(1)213|2|2--⨯;(2)2(1)2(1)a a ++-.20.(本小题满分8分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个,问省级和市县级自然保护区各多少个?21.(本小题满分8分)海南建省30年来,各项事业取得令人瞩目的成就.以2016年为例,全省社会固定资产总投资约3 730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1,图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图.请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;数学试卷 第5页(共16页) 数学试卷 第6页(共16页)(2)在图2中,县(市)属项目部分所占百分比为%m 、对应的圆心角为β,则m = ,β= 度(m ,β均取整数).22.(本小题满分8分)如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪测得古树顶端H 的仰角HDE ∠为45︒,此时教学楼顶端G 恰好在视线DH 上,再向前走7米到达B 处,又测得教学楼顶端G 的仰角GEF ∠为60︒,点A ,B ,C 三点在同一水平线上. (1)计算古树BH 的高; (2)计算教学楼CG 的高. (1.41.7)23.(本小题满分13分)已知,如图1,在口ABCD 中,点E 是AB 中点,连接DE 并延长,交CB 的延长线于点F .(1)求证:ADE BFE △≌△;(2)如图2,点G 是边BC 上任意一点(点G 不与点B ,C 重合),连接AG 交DF 于点H ,连接HC ,过点A 作AK HC ∥,交DF 于点K .①求证:2HC AK =;②当点G 是边BC 中点时,恰有HD n HK =g (n 为正整数),求n 的值.24.(本小题满分15分)如图1,抛物线23y ax bx =++交x 轴于点(1,0)A -和点(3,0)B . (1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y 轴交于点C ,顶点为F ,点(2,3)D 在该抛物线上. ①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点,A B 重合),过点P 作PQ x ⊥轴交该抛物线于点Q ,连接AQ ,DQ ,当AQD △是直角三角形时,求出所有满足条件的点Q 的坐标.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________数学试卷 第7页(共16页) 数学试卷 第8页(共16页)海南省2018年初中毕业生学业水平考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】2018的相反数是2018-,故选A . 【考点】相反数 2.【答案】A【解析】235a a a =g ,故选A . 【考点】同底数幂的乘法 3.【答案】C【解析】科学记数法的表示形式为10na ⨯,其中1||10a ≤<,n 为整数,所以748500000 4.8510=⨯,故选C .【考点】科学记数法. 4.【答案】B【解析】数据1,2,4,2,2,5中有3个2,出现的次数最多,∴众数是2,故选B . 【考点】众数. 5.【答案】C【解析】A 中圆柱的主视图为矩形,B 中圆锥的主视图为三角形,C 中球的主视图为圆,D 中正方体的主视图为正方形,故选C . 【考点】几何体的主视图. 6.【答案】C【解析】∵点A 的坐标为(4,3),∴点B 的坐标为(3,1),向左平移6个单位后对应的点1B 的坐标为(3,1)-,故选C . 【考点】点的坐标、图形的平移. 7.【答案】A【解析】由题可得,40CDE ︒∠=,90C ︒∠=, ∴50CED ︒∠=, 又∵DE AF ∥,∴50CAF CED ︒∠=∠=, ∵60BAC ︒∠=,∴605010BAF ︒︒︒∠=-=,故选A .【考点】平行线的性质、三角形内角和定理. 8.【答案】D【解析】由题中的数轴可得32x x >-⎧⎨≤⎩,故选D .【考点】数轴上表示不等式的解集. 9.【答案】B【解析】去分母,得210x -=,解得1x =±.当1x =-时,分母10x +=.∴1x =-是原方程的增根.∴原方程的解是1x =,故选B . 【考点】解分式方程. 10.【答案】A 【解析】由题意可得213n =,解得6n =,故选A . 【考点】概率的计算.11.【答案】D【解析】∵反比例函数ky x=的图象过点(12)P -,, ∴122k =-⨯=-,∴这个函数的图象位于第二、四象限,故选D . 【考点】反比例函数的图象. 12.【答案】C【解析】由旋转可知,16AC AC ==,160CAC ︒∠=, ∵ =30BAC ︒∠, ∴190BAC ︒∠=, ∵8AB =,16AC =,∴110BC =,故选C . 【考点】旋转的性质、勾股定理. 13.【答案】A【解析】∵四边形ABCD 为平行四边形, ∴OB OD =,∵平行四边形ABCD 的周长为36, ∴18BC DC +=,∵点E 是CD 的中点, ∴12OE BC =, ∴9OE DE +=,∴12BD =,数学试卷 第9页(共16页) 数学试卷 第10页(共16页)∴6OD =,DOE △的周长为6915+=,故选A .【考点】平行四边形的性质、三角形的中位线定理. 14.【答案】B 【解析】设PQ QR RO OP x ====,MO KO y ==,则PL PM NR RK EH x y =====+,∴2NQ OL x y ==+,∴21111502222NQ MQ OL OK PM PL NR RK PQ ++++=g g g g ,即2221111(2)(2)()()502222x y y x y y x y x y x ++++++++=, 化简得2()25x y +=,∴正方形EFGH 的面积为25,故选B .【考点】平行四边形和正方形的性质、正方形的面积.第Ⅱ卷二.填空题 15.【答案】>【解析】先求出两数的平方,转化为有理数进行比较.∵239=,25=∴3>.【考点】比较实数的大小. 16.【答案】540︒【解析】五边形的内角和为(52)180540︒︒-⨯=. 【考点】多边形的内角和. 17.【答案】44m -≤≤【解析】∵直线y x =与直线y x =-互相垂直, ∴90MON ︒∠=, ∵MN x ⊥轴,∴MON △为等腰直角三角形, ∴当8MN =时,||4m =, ∴当8MN ≤时,||4m ≤, ∴44m -≤≤.【考点】正比例函数的图象、直角三角形的性质. 18.【答案】(2,6)【解析】如图,分别过点M ,C 作MN CD ⊥,CE OA ⊥,垂足为N ,E ,连接CM .易得四边形CNME 为矩形,∵点B 的坐标为(16,0),点A 的坐标为(20,0),∴ 16OB =,20OA =,又四边形OCDB 是平行四边形, ∴16CD =,10CM =, ∴8CN DN ==,∴6MN =,6CE MN ==,8EM CN ==,∴1082OE OM EM =-=-=. ∴点C 的坐标为(2,6).【考点】垂径定理、平行四边形的性质、勾股定理. 19.【答案】(1)5 (2)23a +【解析】(1)先化简乘方、二次根式、绝对值、负指数幂,然后依据实数的运算法则求解;原式93225=--⨯=.(2)根据完全平方公式和整式的乘法法则化简即可;原式2221223a a a a =+++-=+. 【考点】实数的运算、整式的化简 20.【答案】17【解析】根据省级与市县级自然保护区的数目的关系和全省建立的保护区总数列方程组求解即可.解:设省级自然保护区为x 个,市县级自然保护区为y 个,根据题意,得5,1049.x y x y -=⎧⎨++=⎩解这个方程组,得22,17.x y =⎧⎨=⎩答:省级自然保护区为22个,市县级自然保护区为17个. 【考点】二元一次方程组的实际应用. 21.【答案】(1)830 条形图补充如图所示.数学试卷 第11页(共16页) 数学试卷 第12页(共16页)(2)18,65m β==.【解析】(1)根据条形统计图数据和全省社会固定资产总投资额可求出地(市)属项目投资额,补全条形统计图.(2)先根据条形统计图中数据求出县(市)属项目部分所占百分比,然后用百分比乘360︒即可得到β的度数.【考点】条形统计图、扇形统计图. 22.【答案】(1)8.5米 (2)18.5米【解析】(1)根据等腰直角三角形的性质直接求解; 解:在Rt DEH △中,∵ 90DEH ︒∠=,45HDE ︒∠=, ∴=7HE DE =(米).∴7 1.58.5BH HE BE =+=+=(米).(2)设出EF 的长,分别在Rt GEF △和Rt GDF △中表示出GF 和DF 的长,列出方程求解出GF ,从而可得教学楼CG 的高. 设EF x =米,在Rt GEF △中, ∵90GFE ︒∠=,60GEF ︒∠=,∴tan 60GF EF ︒==g ,在Rt GDF △中∵90GFD ︒∠=,45GDF ︒∠=, ∴DF GF =,∴7x +=,1.7代入上式,解得10x =.17GF ==,∴18.5GC GF FC =+=(米)【考点】直角三角形的应用——仰角俯角问题. 23.【答案】(1)证明:在口ABCD 中,有AD BC ∥, ∴ADE F ∠=∠, ∵E AB 是中点, ∴AE BE =,又∵AED BEF ∠=∠(对顶角相等), ∴ADE BEF △≌△ (2)①证明:如图1,在ABCD Y 中,有AB CD ∥,AB CD =, ∴AEK CDH ∠=∠,∵AK HC ∥,∴AKE CHD ∠=∠, ∴AEK CDH △∽△.∴AE AKCD CH=. 又∵E AB 是边中点, ∴2AE AB CD ==, ∴2HC AK =.②当点G 是BC 中点时,如图2,在ABCD Y 中,有AD BC ∥,AD BC =,数学试卷 第13页(共16页) 数学试卷 第14页(共16页)∴ADH GHF △∽△,∴AD HDGF HF=. 由(1)得ADE BFE △≌△, ∴AD BF =.又∵G BC 是中点,∴2BG AD BF ==, ∴23AD GF =,∴23HD HF =,Ⅰ如图3,∵AD FC ∥,∴ADK F ∠=∠. ∵AK HC ∥,∴AKH CHK ∠=∠, ∴AKD CHF ∠=∠(等角的补角相等), ∴AKD CHF △∽△,∴12AD KD CF HF ==,12KD HF = ⅡⅠ-Ⅱ:16HK HD KD HF =-= Ⅲ由Ⅰ,Ⅲ可得4HDHK=,∴4HD HK =,∴4n =.【解析】(1)根据平行四边形的性质和全等三角形的判定证明; (2)①证明AEK CDH △∽△即可证得结论;②证明AHD GHF △∽△得HD 与HF 的数量关系,再证明AKD CHF △∽△得KD 与HF 的数量关系,从而得到HD 与HK 的数量关系.【考点】平行四边形的性质、全等三角形的判定与性质、相似三角形的判定与性质. 24.【答案】(1)该抛物线的解析式为223y x x =-++解:将(1,0)A -,(3,0)B 代入23y ax bx =++得309330a b a b -+=⎧⎨++=⎩解得12a b =-⎧⎨=⎩,∴该抛物线的解析式为223y x x =-++. (2)①连接CD .∵2223(1)4y x x x =-++=--+,∴(1,4)F ,当0x =时,2233y x x =-++=, ∴(0,3)C ,又(2,3)D , ∴CD x ∥轴,且2CD =.CDF CDA ACFD S S S =+△△四边形1()2F A CD y y =⨯- 12442=⨯⨯= ②设(,0)P t ,则2(,23)Q t t t -++.Ⅰ.若90DAQ ︒∠=,如图1.此时点Q 必在第四象限,所对应的点P 在AB 的延长线上,此种情况不符合题意,故舍去.Ⅱ.若90ADQ ︒∠=,如图2.设PQ 交CD G 于点,则PQ CD ⊥,G 点坐标为(,3)t , 作DH x ⊥轴于H ,则(2,0)H , ∴在Rt DHA △中,3DH AH ==, ∴45DAH ︒∠=,又CD x ∥轴,∴45ADC DAH ︒∠=∠=,数学试卷 第15页(共16页) 数学试卷 第16页(共16页)∴45QDG ADQ ADC ︒∠=∠-∠=, ∴DGQ △为等腰直角三角形, ∴GQ GD =,2(23)32t t t -++-=-, 整理得2320t t -+=, 解得11t =,22t =,当2t =时,D Q 与重合,故舍去. 当1t =时,2234t t -++=, ∴(1,4)Q .Ⅲ.若90AQD ︒∠=,如图3.过点D DK PQ ⊥作于点K . ∴90APQ QKD ︒∠=∠=, ∵90DQK PQA ︒∠+∠=, 又90DQK KDQ ︒∠+∠=, ∴PQA KDQ ∠=∠, ∴PQA KDQ △∽△,∴PQ PAKD KQ= ∴2223123(23)t t t t t t -+++=---++. ∴(3)(1)12(2)t t t t t t --++=--.∵1,2t t ≠-≠(即Q 不与A ,D 重合) ∴1(3)t t--=. 整理得2310t t -+=,解得123322t t +==, 经验证,12,t t 均符合题意,其中:123t <<,符合图3的情况; 212t -<<,符合图4的情况.当1t =223t t -++=; 当2t =223t t -++=.∴Q 或.综上所述,当AQD △为直角三角形时,点Q 坐标为(1,4或或. 【解析】(1)将点A ,B 的坐标代入抛物线的解析式求解即可.(2)①根据抛物线的解析式求出点F 和点C 的坐标,连接CD ,利用三角形面积公式求出四边形ACFD 的面积;②设出P 点坐标,表示出点Q 的坐标,分直角顶点的三种情况讨论,利用直角三角形的性质和相似三角形的判定与性质建立方程进行求解. 【考点】二次函数的图象与性质、直角三角形的性质、相似三角形的判定与性质.。

2018届海南省海口市中考模拟考试数学试卷-含答案

2018届海南省海口市中考模拟考试数学试卷-含答案

2018届海南省海口市中考模拟考试数学试卷(含超量题全卷满分110分,考试时间100分钟)一、选择题(本大题满分20分,每小题2分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求...用2B 铅笔涂黑. 1.在2,-1,-3,0这四个数中,最小的数是A. -1B. 0C. -3D. 2 2.已知点P(3,-2)与点Q 关于x 轴对称,则Q 点的坐标为A .(-3,2) B. (-3,-2) C. (2,3) D. (3,2) 3.下列运算正确的是A .(a-b)2=a 2-b 2B .(-2a 3)2=4a 6C .a 3+a 2=2a 5D .-(a-1)=-a-1 4.如图1所示的立方体,如果把它展开,可以是下列图形中的5.如图2,在单行练习本的一组平行线上放一张对边平行的 透明胶片,如果横线与透明胶片右下方所成的∠1=58°,那么横线 与透明胶片左上方所成的∠2的度数为A .60° B. 58° C. 52° D. 42°6.一城市准备选购一千株高度大约为2米的某种 风景树来进行街道绿化,有四个苗圃基地投标(单株树 的价相同),采购小组从四个苗圃中任意抽查了20株树 苗的高度,得到右表中的数据. 你认为应选A .甲苗圃的树B .乙苗圃的树苗C .丙苗圃的树苗D .丁苗圃的树苗7.在Rt △ABC 中,∠C=90°,AB=10,BC=8,则tanB 的值是A. 43B. 34C. 54D. 538.如图3,AB 是⊙O 的直径,弦CA=CB ,D 是AmB 上一动点(与A 、B 点不重合),则∠D 的度数是A. B. C. D.图1图2⌒A. 30°B. 40°C. 45°D. 一个变量9. 如图4所示,一架投影机插入胶片后图像可投到屏幕上. 已知胶片与屏幕平行,A 点为光源,与胶片BC 的距离为0.1米,胶片的高BC 为0.038米,若需要投影后的图像DE 高1.9米,则投影机光源离屏幕大约为A. 6米B. 5米C. 4米D. 3米10.如图5,点P 是x 轴上的一个动点,过点P 作x 轴的垂线PQ 交双曲线)0(1>=x x y 于点Q ,连结OQ ,当点P 沿x 轴的正方向运动时,Rt △QOP 的面积A .逐渐增大B .逐渐减小C .保持不变D .无法确定 二、填空题(本大题满分24分,每小题3分)11.方程2x=1+4x 的解是.12. 10在两个连续整数a 和b 之间,且a <10<b , 那么a ,b 的值分别是. 13.某校课外小组的学生准备分组外出活动,若每组7人,则余下3人;若每组8人,则少5人. 求课外小组的人数和分成的组数. 若设课外小组的人数为x 应分成的组数为y ,由题意,可列方程组.14.某商场为了解本商场的服务质量,随机调查了来本商场消费的200名顾客,调查的结果绘制成如图6所示的统计图. 根据统计图所给出的信息,这200名顾客中对该商场的服务质量表示不满意的有人.15. 一个油桶靠在墙边(其俯视图如图7所示),量得AC=0.65米,并且AC ⊥BC ,这个油桶的底面半径是米.16.经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,两辆汽车经过这个十字路口,他们都继续直行的概率是.17.某一次函数的图象经过点(-1,2), 且函数y 的值随 自变量x 的增大而减小. 请你写出一个..符合上述条件的函数图4图4B 38%C 9%图6 A:很满意 B :满意 D :不满意 C :说不清图7OA CB 图3 D m关系式:.18. 某林场堆放着一堆粗细均等的木材,中间有一部分 被一块告示牌遮住(如图8所示). 通过观察这堆木材的排 列规律得出这堆木材的总根数是. 三、解答题(本大题满分66分)19.(本题满分9分)先将代数式1111222---++a a a a 进行化简,然后请你选择一个合适a 的值,并求代数式的值.20.(本题满分10分)4.某厂为扩大生产规模决定购进5台设备,现有A 、B 两种不同型号设备供选择. 其中每种不同型号设备的价格,每台日生产量如下表. 经过预算,该厂本次购买设备的资金不超过22万元.(1)按该厂要求可以有几种购买方案?(2)若该厂购进的5台设备的日生产能力不能低于17万个,那么为了节约资金应该选择哪种购买方案?21.(本题满分10分)请你用四块如图9-1所示的瓷砖图案为“基本单位”, 在图9-2、9-3中分别设计出一个正方形的地板图案,使拼铺的图案成轴对称图形.....或中心对称图形....... (要求:两种拼法各不相同,所画图案阴影部分用斜线表示.)22.(本题满分11分)近年来,某市旅游事业蓬勃发展,吸引大批海内外游客前来观光旅游、购物度假,下面两图分别反映了该市2013——2016年游客总人数和旅游业总收入情况.根据统计图提供的信息,解答下列问题:图9-1 图9-2 图9-3(1)2016年游客总人数为万人次,旅游业总收入为万元;(2)在2014年,2015年,2016年这三年中,旅游业总收入增长幅度最大的是年,这一年的旅游业总收入比上一年增长的百分率为(精确到0.1%);(3)2016年的游客中,国内游客为1200万人次,其余为海外游客,据统计,国内游客的人均消费约为700元,问海外游客的人均消费约为多少元?(注:旅游收入=游客人数×游客的人均消费)23.(本题满分12分)如图11-1,11-2,△ABC 是等边三角形,D 、E 分别是AB 、BC 边上的两个动点(与点A 、B 、C 不重合),始 终保持BD=CE.(1)当点D 、E 运动到如图11-1所示的位置时,求证:CD=AE. (2)把图11-1中的△ACE 绕着A 点顺时针旋转60°到△ABF 的位置(如图11-2),分别连结DF 、EF.① 找出图中所有的等边三角形(△ABC 除外),并对其中一个 给予证明;② 试判断四边形CDFE 的形状,并说明理由.24.(本题满分14分)一座拱桥的截面轮廓为抛物线型(如 图12-1),拱高6米,跨度20米,相邻两支柱间的距离均为5米.(1)将抛物线放在所给的直角坐标系中(如图12-2所示), 其表达式是c ax y +=2的形式. 请根据所给的数据求出c a ,的值(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间DE 是一条宽2米的隔离带),其中的一条行车道能否并排行驶宽2米、高3米的 三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.50010001500 2013—2016年游客总人数统计图 图10-1 020000040000060000080000010000002013—2016年旅游业总收入统计图图10-2 A CDE 图11-1 ABC D E 图11-2F参考答案及评分标准一、选择题(满分20分) CDBDB DACBC 二、填空题(满分24分)11.21-=x 12. 3,4 13.⎩⎨⎧+=-=5837x y x y 14. 14 15. 0.65 16. 9117. 答案不惟一(如y=-x+1,y=-3x-1,……). 18. 55三、解答题(满分66分)19. 原式=11)1)(1()1(2---++a a a a …………………………………(3分) 1111---+=a a a …………………………………(5分) 1-=a a …………………………………(7分) 当a =2时,原式2122=-=. (注意:a ≠±1) …………………………………(9分)20.(1)设购买甲种设备x 台(x ≥0),则购买乙种设备(5-x )台. …………(1分)依题意,得 5x+4(5-x)≤ 22 …………………………(4分)解得 x ≤2,即x 可取0,1,2三个值. …………………………(5分) 所以该厂要求可以有3种购买方案:方案1:不购买甲种设备,购买乙种设备5台. 方案2:购买甲种设备1台,购买乙种设备4台.方案3:购买甲种设备2台,购买乙种设备3台. ……………(7分) (2)按方案1购买.所耗资金为4×5=20万元,新购买设备日产量为3×5=15(万个); 按方案2购买.所耗资金为1×5+4×4=21万元,新购买设备日产量为5×1+3×4=17(万个); 按方案3购买.所耗资金为2×5+3×4=22万元,新购买设备日产量为5×2+3×3=19(万个).因此,选择方案二既能达到生产能力不低于17万个的要求,又比方案三节约2万元. 故选择方案2. …………………………………(10分) 21.以下图形仅供参考,每设计一个图案正确5分.22. (1) 1225,940000. ……………………………(4分)(2) 2004,41.4%. ……………………………(8分)(3) 设海外游客的人均消费约为x 元,根据题意,得1200×700 +(1225-1200)x=940000, ……………………(10分) 解这个方程,得x=4000. 答:海外游客的人均消费约为x 元. …(11分)23. (1)∵△ABC 是正三角形,∴BC=CA ,∠B=∠ECA=60°. …………………………(2分)又∵BD=CE ,∴△BCD ≌△CAE. …………………………(3分) ∴CD=AE. …………………………(4分)(2)① 图中有2个正三角形,分别是△BDF ,△AFE. ……………………(6分)由题设,有△ACE ≌△ABF , ∴CE=BF ,∠ECA=∠ABF=60° …………………………(7分) 又∵BD=CE ,∴BD=CE=BF ,∴△BDF 是正三角形, ………………………(9分)∵AF=AE ,∠FAE=60°, ∴△AFE 是正三角形.② 四边形CDFE 是平行四边形. …………………………(10分) ∵∠FDB=∠ABC =60° ∴FD ∥EC.又∵FD=FB=EC ,∴四边形CDFE 是平行四边形. …………………………(12分)24.(1) 根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0). …(2分)将B 、C 的坐标代入c ax y +=2,得 ⎩⎨⎧+==.1000,6c a c …(4分) 解得6,503=-=c a…(5分)∴抛物线的表达式是5032-=x y …(6分) (2) 可设N(5,N y ),于是5.4655032=+⨯-=N y …(9分) 从而支柱MN 的长度是10-4.5=5.5米. …(10分) (3) 设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3). …(11分) 过G 点作GH 垂直AB 交抛物线于H ,则35013675032>+=+⨯-=H y . ……(13分)根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车. ……(14分)。

海南省2018年中考数学试题含答案-精品

海南省2018年中考数学试题含答案-精品

海南省2018 年初中毕业生学业水平考试数学科试题(考试时间100 分钟,满分120 分)一、选择题(本大题满分42 分,每小题 3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按.要.求.用2B 铅笔涂黑.1.2018 的相反数是A.-2018 B.2018 C.12018D.120182.计算a2?a3,结果正确的是A.a5 B.a6 C.a8 D.a93.在海南建省办经济特区30 周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4 月份互联网信息中提及“海南”一词的次数约48 500 000 次.数据48 500 000 用科学记数法表示为A.485×105 B.48.5×106 C.4.85×107 D.0.485×1084.一组数据:1,2,4,2,2,5,这组数据的众数是A.1 B.2 C.4 D.55.下列四个几何体中,主视图为圆的是A.B.C.D.6.如图1,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是A.(-2,3)B.(3,-1)C.(-3,1)D.(-5,2)7.将一把直尺和一块含30°和60°角的三角板ABC 按如图 2 所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为A.10°B.15°C.20°D.25°8.下列四个不等式组中,解集在数轴上表示如图 3 所示的是A.23xx f1 B.23xx pC.23xx pD.23xx f9.分式方程211xx的解是A.-1 B.1 C.±1 D.无解10.在一个不透明的袋子中装有n 个小球,这些球除颜色外均相同,其中红球有 2 个,如果从袋子中随机摸出一个球,这个球是红球的概率为13,那么n 的值是A.6 B.7 C.8 D.911.已知反比例函数y =kx的图像经过点P(-1,2),则这个函数的图像位于A.二、三象限 B.一、三象限C.三、四象限D.二、四象限12.如图4,在△ABC 中,AB=8,AC=6,∠BAC=30°,将△ABC 绕点A逆时针旋转60°得到△A B1C1,连接B C1,则B C1 的长为A.6 B. 8 C. 10 D. 1213.如图5,□ABCD的周长为36,对角线AC、BD 相交于点O,点E 是CD 的中点,BD=12,则△DOE 的周长为A.15 B.18 C.21 D.2414.如图6-1,分别沿长方形纸片ABCD 和正方形纸片EFGH 的对角线AC、EG 剪开,拼成如图6-2 所示的□KLM N,若中间空白部分四边形OPQR 恰好是正方形,且□KLM N的面积为50,则正方形EFGH 的面积为A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.比较实数的大小: 3 5(填“>”、“<”或“=”).16.五边形内角和的度数是.17.如图7,在平面直角坐标系中,点M 是直线y = -x 上的动点,过点M 作MN⊥x 轴,交直线y = x 于点N,当MN≤8 时,设点M 的横坐标为m,则m 的取值范围为.18.如图8,在平面直角坐标系中,点 A 的坐标是(20,0),点B 的坐标是(16,0),点C、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为.三.解答题(本大题满分62分)3922(2)(a+1)2+2(1-a)19.(满分10分)计算(1)2120.(满分8 分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护,截至2017 年底,全省建立国家级、省级和市县级自然保护区共49 个,其中国家级10 个,省级比市县级多 5 个.问省级和市县级自然保护区各多少个?21.(满分8 分)海南建省30 年来,各项事业取得令人瞩目的成就.以2016 年为例,全省社会固定资产总投资约 3730 亿元,其中包括中央项目、省属项目、地(市)属项目、县(市) 属项目和其他项目.图 9-1、图 9-2 分别是这五个项目的投资额不完整的条形统计图和扇形统计图.请完成下列问题:(1)在图9-1 中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图9-2 中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m= ,β= 度(m、β均取整数).22.(满分8 分)如图10,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在 A 处用高 1.5 米的测角仪测得古树顶端H 的仰角∠HDE 为45°,此时教学楼顶端G 恰好在视线DH 上,再向前走7 米到达 B 处,又测得教学楼顶端G 的仰角∠GEF 为60°,点A、B、C 三点在同一水平线上.(1)计算古树BH 的高;(2)计算教学楼CG 的高.(参考数据:2≈1.4,3≈1.7)23.(满分13 分)已知,如图11-1,在□ABCD中,点 E 是AB 中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图11-2,点G 是边BC 上任意一点(点G 不与点B、C 重合),连接AG 交DF 于点H,连接HC,过点 A 作AK∥HC,交DF 于点K.①求证:HC=2AK;②当点G 是边BC 中点时,恰有HD=n·HK(n 为正整数),求n 的值.24.(满分15 分)如图12-1,抛物线y=ax2+bx+3 交x 轴于点A(-1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图12-2,该抛物线与y 轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A、B 重合),过点P 作PQ⊥x 轴交该抛物线于点Q,连接AQ、DQ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.。

2018海南省中考数学试题(含答案及解析版)

2018海南省中考数学试题(含答案及解析版)

2018 年海南省中考数学试卷一、选择题(本大题满分 42 分,每小题 3 分)在下列各题的四个备选答案中, 有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求 用 2B 铅笔涂黑1.(3.00分)(2018?海南) 2018 的相反数是( )A .﹣ 2018B .2018C .﹣D .2.(3.00 分)(2018?海南)计算 a 2?a 3,结果正确的是( )A .a 5B .a 6C .a 8D .a 93.(3.00 分)(2018?海南)在海南建省办经济特区 30 周年之际,中央决定创建 海南自贸区(港),引发全球高度关注.据统计, 4 月份互联网信息中提及 “海南 一词的次数约 48500000 次,数据 48500000科学记数法表示为( )A .485× 105B .48.5×106C . 4.85×107D .0.485×1083.00分)(2018?海南)一组数据:1,2,4,2,2,5,这组数据的众数是 ( )﹣ 3,1) D .(﹣ 5,2)7.(3.00 分)(2018?海南)将一把直尺和一块含 30°和 60°角的三角板 ABC 按如4. A . 1 B . 2 C .4 D . 5. 列四个几何体中,主视图为圆的是(A . C . D .如图,在平面直角坐标系中,△ ABC 位于第一象限, 点 A 的坐标是( 4,3),把△ ABC 向左平移 6 个单位长度,得到△ A 1B 1C 1,则点6. 2018?海南) 3.00 分) 3.00 分) B . 2018?海南) B 1 的坐标是()图所示的位置放置,如果∠ CDE=4°0,那么∠ BAF 的大小为( )8.(3.00分)(2018?海南)下列四个不等式组中,解集在数轴上表示如图所示的 是( )9.(3.00分)(2018?海南)分式方程 =0 的解是( )A .﹣1B .1C .± 1D .无解 10.(3.00分)(2018?海南)在一个不透明的袋子中装有 n 个小球,这些球除颜 色外均相同, 其中红球有 2 个,如果从袋子中随机摸出一个球, 这个球是红球的 概率为 ,那么 n 的值是( )A .6B .7C .8D .911.(3.00 分)(2018?海南)已知反比例函数 y= 的图象经过点 P (﹣ 1, 2),则 这个函数的图象位于( )A .二、三象限B .一、三象限C .三、四象限D .二、四象限12.(3.00 分)(2018?海南)如图,在△ ABC 中, AB=8,AC=6,∠BAC=30°,将△ABC 绕点 A 逆时针旋转 60°得到△ AB 1C 1,连接 BC 1,则 BC 1的长为( )C .D .A .10°B .15°C .20°D .25°A .B .A.6 B.8 C.10 D.1213.(3.00 分)(2018?海南)如图, ?ABCD的周长为 36,对角线 AC、BD 相交于点 O,点 E是 CD的中点, BD=12,则△ DOE的周长为()A.15 B.18 C.21 D.2414.(3.00 分)(2018?海南)如图 1,分别沿长方形纸片 ABCD和正方形纸片EFGH 的对角线 AC,EG剪开,拼成如图 2 所示的 ?KLMN,若中间空白部分四边形OPQR 恰好是正方形,且 ?KLMN 的面积为 50,则正方形 EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16 分,每小题4 分)15.(4.00分)(2018?海南)比较实数的大小: 3 (填“>”、“<”或“=)”.16.(4.00 分)(2018?海南)五边形的内角和的度数是.17.(4.00分)(2018?海南)如图,在平面直角坐标系中,点 M是直线 y=﹣x 上的动点,过点 M 作MN⊥x轴,交直线 y=x于点 N,当 MN≤8时,设点 M 的横坐标为 m,则 m 的取值范围为.18.( 4.00分)( 2018?海南)如图,在平面直角坐标系中,点 A的坐标是( 20,0),点 B 的坐标是( 16,0),点 C 、D 在以 OA 为直径的半圆 M 上,且四边形三、解答题(本大题满分 62 分)19.( 10.00分)(2018?海南)计算:(1)32﹣ ﹣|﹣2| ×2﹣1 (2)(a+1)2+2(1﹣a )20.(8.00 分)(2018?海南) “绿水青山就是金山银山 ”,海南省委省政府高度重 视环境生态保护,截至 2017 年底,全省建立国家级、省级和市县级自然保护区 共 49 个,其中国家级 10 个,省级比市县级多 5 个.问省级和市县级自然保护区 各多少个?21.( 8.00分)( 2018?海南)海南建省 30 年来,各项事业取得令人瞩目的成就, 以 2016年为例,全省社会固定资产总投资约 3730 亿元,其中包括中央项目、 省 属项目、地(市)属项目、县(市)属项目和其他项目.图 1、图 2 分别是这五 个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图 1 中,先计算地(市)属项目投资额为亿元,然后将条形统计 图补充完整;(2)在图 2 中,县(市)属项目部分所占百分比为 m%、对应的圆心角为 β,则 m= ,β= 度( m 、β均取整数).C 的坐标为22.(8.00 分)(2018?海南)如图,某数学兴趣小组为测量一棵古树 BH 和教学楼 CG的高,先在 A 处用高 1.5 米的测角仪测得古树顶端 H 的仰角∠ HDE 为45°,此时教学楼顶端 G恰好在视线 DH上,再向前走 7米到达 B处,又测得教学楼顶端 G 的仰角∠ GEF为 60°,点 A、B、C 三点在同一水平线上.(1)计算古树 BH 的高;( 2)计算教学楼 CG的高.(参考数据:≈14,≈ 1.7)23.(13.00分)(2018?海南)已知,如图 1,在?ABCD中,点 E是 AB中点,连接 DE 并延长,交 CB的延长线于点 F.(1)求证:△ ADE≌△ BFE;(2)如图 2,点 G 是边 BC上任意一点(点 G不与点 B、C重合),连接 AG交DF于点 H,连接 HC,过点 A作AK∥HC,交 DF于点 K.①求证: HC=2AK;24.(15.00 分)(2018?海南)如图 1,抛物线 y=ax2+bx+3 交 x 轴于点 A(﹣1,0)和点 B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图 2,该抛物线与 y 轴交于点 C,顶点为 F,点 D(2,3)在该抛物线上.①求四边形 ACFD的面积;②点 P是线段 AB上的动点(点 P不与点 A、B重合),过点 P作 PQ⊥x 轴交该抛物线于点 Q,连接 AQ、DQ,当△ AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018 年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42 分,每小题3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B 铅笔涂黑1.(3.00分)(2018?海南) 2018 的相反数是()A.﹣ 2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018 的相反数是:﹣ 2018.故选:A【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00 分)(2018?海南)计算 a2?a3,结果正确的是()A.a5 B.a6 C.a8 D.a9【考点】 46:同底数幂的乘法.【专题】 11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解: a2?a3=a5,故选: A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00 分)(2018?海南)在海南建省办经济特区 30 周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计, 4 月份互联网信息中提及“海南一词的次数约 48500000 次,数据 48500000科学记数法表示为()A.485× 105 B.48.5×106 C. 4.85×107 D.0.485×108 【考点】 1I:科学记数法—表示较大的数.【专题】 1 :常规题型.【分析】科学记数法的表示形式为 a× 10n的形式,其中 1≤| a| <10,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位, n 的绝对值与小数点移动的位数相同.当原数绝对值> 1 时,n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:48500000 用科学记数法表示为 4.85×107,故选: C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中 1≤| a| <10,n 为整数,表示时关键要正确确定 a 的值以及 n 的值.4.(3.00分)(2018?海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】 W5:众数.【专题】 1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据: 1,2,4,2,2, 5,这组数据的众数是 2,故选: B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00 分)(2018?海南)下列四个几何体中,主视图为圆的是()D.考点】 U1:简单几何体的三视图.分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.解答】解:A、圆柱的主视图是长方形,故 A 错误;B 、圆锥的主视图是三角形,故 B 错误;C 、球的主视图是圆,故 C 正确;D 、正方体的主视图是正方形,故 D 错误. 故选: C .【点评】本题考查了利用几何体判断三视图, 三种视图的空间想象能力. 6.(3.00 分)(2018?海南)如图,在平面直角坐标系中,△ ABC 位于第一象限, 点 A 的坐标是( 4,3),把△ ABC 向左平移 6 个单位长度,得到△A 1B 1C 1,则点考点】 Q3:坐标与图形变化﹣平移. 【专题】 1 :常规题型; 558:平移、旋转与对称.【分析】 根据点的平移的规律:向左平移 a 个单位,坐标 P (x ,y )? P (x ﹣a ,y ),据此求解可得.【解答】 解:∵点 B 的坐标为( 3,1),∴向左平移 6 个单位后,点 B 1 的坐标(﹣ 3,1), 故选: C .【点评】本题主要考查坐标与图形的变化﹣平移, 解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00 分)(2018?海南)将一把直尺和一块含 30°和 60°角的三角板 ABC 按如图所示的位置放置,如果∠ CDE=4°0,那么∠ BAF 的大小为( )培养了学生的观察能力和对几何体D .(﹣ 5,2)﹣3,B 1 的坐标是( )A.10°B.15°C.20°D.25°【考点】 JA:平行线的性质.【专题】 1 :常规题型; 551:线段、角、相交线与平行线.【分析】由 DE∥AF 得∠ AFD=∠CDE=4°0,再根据三角形的外角性质可得答案.【解答】解:由题意知 DE∥AF,∴∠ AFD=∠CDE=4°0,∵∠ B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选: A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018?海南)下列四个不等式组中,解集在数轴上表示如图所示的A.C.D.考点】 C4:在数轴上表示不等式的解集.专题】 1 :常规题型; 524:一元一次不等式(组)及应用.分析】根据不等式组的表示方法,可得答案.解答】解:由解集在数轴上的表示可知,该不等式组为,故选: D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018?海南)分式方程=0 的解是()A.﹣1 B.1 C.± 1 D.无解【考点】 B2:分式方程的解.【专题】 11 :计算题; 522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以 x+1,得: x2﹣1=0,解得: x=1 或 x=﹣1,当 x=1 时, x+1≠0 ,是方程的解;当 x=﹣1 时, x+1=0,是方程的增根,舍去;所以原分式方程的解为 x=1,故选: B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018?海南)在一个不透明的袋子中装有 n 个小球,这些球除颜色外均相同,其中红球有 2 个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么 n 的值是()A.6 B.7 C.8 D.9【考点】 X4:概率公式.【专题】 1 :常规题型.【分析】根据概率公式得到 = ,然后利用比例性质求出 n 即可.【解答】解:根据题意得 = ,解得 n=6,所以口袋中小球共有 6 个.故选: A.【点评】本题考查了概率公式:随机事件 A 的概率 P(A)=事件 A可能出现的结果数除以所有可能出现的结果数.11.(3.00 分)(2018?海南)已知反比例函数 y= 的图象经过点 P(﹣ 1, 2),则这个函数的图象位于()A.二、三象限 B.一、三象限 C.三、四象限 D.二、四象限【考点】 G6:反比例函数图象上点的坐标特征.【分析】先根据点 P 的坐标求出反比例函数的比例系数 k,再由反比例函数的性质即可得出结果.解答】解:反比例函数 y= 的图象经过点 P(﹣ 1,2),∴k=﹣2<0;∴函数的图象位于第二、四象限.故选: D.【点评】本题考查了反比例函数的图象和性质:①、当 k>0 时,图象分别位于第一、三象限;当 k<0时,图象分别位于第二、四象限.②、当 k>0 时,在同一个象限内, y 随 x的增大而减小;当 k<0时,在同一个象限, y 随 x 的增大而增大.12.(3.00 分)(2018?海南)如图,在△ ABC 中, AB=8,AC=6,∠BAC=30°,将△ABC绕点 A 逆时针旋转 60°得到△ AB1C1,连接 BC1,则 BC1的长为()A.6 B.8 C. 10 D. 12考点】 KQ:勾股定理; R2:旋转的性质; T7:解直角三角形.【专题】 55:几何图形.【分析】根据旋转的性质得出 AC=AC1,∠ BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ ABC绕点 A 逆时针旋转 60°得到△ AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=3°0,∴∠BAC1=90°,AB=8,AC1=6,∴在 Rt△BAC1中, BC1的长= ,故选: C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出 AC=AC1,∠BAC1=90°.13.(3.00 分)(2018?海南)如图, ?ABCD的周长为 36,对角线 AC、BD 相交于点 O,点 E是 CD的中点, BD=12,则△ DOE的周长为()A.15 B.18 C.21 D.24【考点】 KX:三角形中位线定理; L5:平行四边形的性质.【专题】 555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形 ABCD的周长为 36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE= (BC+CD) =9,∵BD=12,∴OD= BD=6,∴△ DOE的周长为 9+6=15,故选: A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00 分)(2018?海南)如图 1,分别沿长方形纸片 ABCD和正方形纸片EFGH 的对角线 AC,EG剪开,拼成如图 2 所示的 ?KLMN,若中间空白部分四边形OPQR 恰好是正方形,且 ?KLMN 的面积为 50,则正方形 EFGH的面积为()A.24 B.25 C.26 D.27【考点】 L7:平行四边形的判定与性质; LB:矩形的性质; LE:正方形的性质;PC:图形的剪拼.【专题】 556:矩形菱形正方形.【分析】如图,设 PM=PL=NR=AR=,a 正方形 ORQP的边长为 b,构建方程即可解决问题;【解答】解:如图,设 PM=PL=NR=AR=,a 正方形 ORQP的边长为 b.由题意: a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形 EFGH的面积 =a2=25,故选: B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16 分,每小题4 分)15.(4.00 分)(2018?海南)比较实数的大小: 3 > (填“>”、“<”或“=)”.【考点】 2A:实数大小比较.【专题】 11 :计算题.【分析】根据 3= > 计算.【解答】解:∵ 3= , > ,∴ 3> .故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.( 4.00分)( 2018?海南)五边形的内角和的度数是 540° .【考点】 L3:多边形内角与外角.【分析】根据 n 边形的内角和公式: 180°(n﹣2),将 n=5 代入即可求得答案.【解答】解:五边形的内角和的度数为: 180°×( 5﹣2)=180°×3=540°.故答案为: 540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018?海南)如图,在平面直角坐标系中,点 M 是直线 y=﹣x 上的动点,过点 M 作MN⊥x轴,交直线 y=x于点 N,当 MN≤8时,设点 M 的横坐标为 m,则 m 的取值范围为﹣4≤m≤ 4 .【考点】 F8:一次函数图象上点的坐标特征.【专题】 11 :计算题.【分析】先确定出 M, N的坐标,进而得出 MN=| 2m| ,即可建立不等式,解不等式即可得出结论.【解答】解:∵点 M 在直线 y=﹣x 上,∴M(m,﹣ m),∵MN⊥x轴,且点 N在直线 y=x上,∴N(m,m),∴ MN=| ﹣ m﹣ m| =| 2m| ,∵MN≤8,∴ |2m| ≤8,∴﹣ 4≤m≤4,故答案为:﹣ 4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出 MN 是解本题的关键.18.( 4.00分)( 2018?海南)如图,在平面直角坐标系中,点 A的坐标是( 20,0),点 B 的坐标是( 16,0),点 C、D 在以 OA 为直径的半圆 M 上,且四边形C 的坐标为(2,6).KQ:勾股定理; L5:平行四边形的性质; M2 :垂径考点】定理.专题】1 :常规题型.【分析】过点 M 作MF⊥CD于点 F,则CF= CD=8,过点 C作CE⊥OA于点 E,由勾股定理可求得 MF 的长,从而得出 OE的长,然后写出点 C的坐标.【解答】解:∵四边形 OCDB是平行四边形, B(16,0),∴CD∥OA,CD=OB=16,过点 M 作 MF⊥CD于点 F,则 CF= CD=8,过点 C作 CE⊥ OA于点 E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接 MC,则 MC= OA=10,∴在 Rt△ CMF中,由勾股定理得 MF= =6∴点 C 的坐标为( 2, 6)【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62 分)19.( 10.00分)(2018?海南)计算:(1)32﹣﹣|﹣2| ×2﹣1(2)(a+1)2+2(1﹣a)【考点】 2C:实数的运算; 36:去括号与添括号; 4C:完全平方公式; 6F:负整数指数幂.【专题】 1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式 =9﹣3﹣2×=5;( 2)原式 =a2+2a+1+2﹣ 2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00 分)(2018?海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至 2017 年底,全省建立国家级、省级和市县级自然保护区共49 个,其中国家级 10 个,省级比市县级多 5 个.问省级和市县级自然保护区各多少个?【考点】 8A:一元一次方程的应用.【专题】 34 :方程思想; 521:一次方程(组)及应用.【分析】设市县级自然保护区有 x 个,则省级自然保护区有( x+5)个,根据国家级、省级和市县级自然保护区共 49 个,即可得出关于 x 的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有 x 个,则省级自然保护区有( x+5)个,根据题意得: 10+x+5+x=49,解得: x=17,∴ x+5=22.答:省级自然保护区有 22个,市县级自然保护区有 17 个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.( 8.00分)( 2018?海南)海南建省 30 年来,各项事业取得令人瞩目的成就,以 2016年为例,全省社会固定资产总投资约 3730 亿元,其中包括中央项目、 省 属项目、地(市)属项目、县(市)属项目和其他项目.图 1、图 2 分别是这五 个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:先计算地(市)属项目投资额为 830 亿元,然后将条形统计 图补充完整;县(市)属项目部分所占百分比为 m%、对应的圆心角为 β,则求得地(市)属项目投资额,从而补全图象;属项目投资额所占比例可得.亿元), 补全图形如下:故答案为: 830;1)在图 1 中,2)在图 2 中, 65 度( m 、β均取整数).专题】 分析】VB :扇形统计图; VC :条形统计图.1 :常规题型; 542:统计的应用.1)用全省社会固定资产总投资约 3730 亿元减去其他项目的投资即可2)用县(市)属项目投资除以总投资求得 m 的值,再用 360 度乘以县(市)解答】 解:(1)地(市)属项目投资额为 3730﹣(200+530+670+1500)=830考点】 m= 18 ,β=(2)(市)属项目部分所占百分比为 m%= ×100%≈ 18%,即 m=18,对应的圆心角为β=360×°≈65°,故答案为: 18、 65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00 分)(2018?海南)如图,某数学兴趣小组为测量一棵古树 BH 和教学楼 CG的高,先在 A 处用高 1.5 米的测角仪测得古树顶端 H 的仰角∠ HDE 为45°,此时教学楼顶端 G恰好在视线 DH上,再向前走 7米到达 B处,又测得教学楼顶端 G 的仰角∠ GEF为 60°,点 A、B、C 三点在同一水平线上.(1)计算古树 BH 的高;( 2)计算教学楼 CG的高.(参考数据:≈14,≈ 1.7)【考点】 TA:解直角三角形的应用﹣仰角俯角问题.【专题】 552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作 HJ⊥CG 于 G.则△ HJG 是等腰三角形,四边形 BCJH是矩形,设HJ=GJ=BC=.x构建方程即可解决问题;【解答】解:(1)由题意:四边形 ABED是矩形,可得 DE=AB=7米.在 Rt△DEH 中,∵∠ EDH=4°5,∴HE=DE=7米.2)作HJ⊥CG于G.则△ HJG是等腰三角形,四边形 BCJH是矩形,设HJ=GJ=BC=.x在 Rt△BCG中, tan60 °= ,∴CG=C+FFG= ×1.7+3.5+1.5=11.3 米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018?海南)已知,如图 1,在?ABCD中,点 E是 AB中点,连接 DE 并延长,交 CB的延长线于点 F.(1)求证:△ ADE≌△ BFE;(2)如图 2,点 G 是边 BC上任意一点(点 G不与点 B、C重合),连接 AG交DF于点 H,连接 HC,过点 A作 AK∥HC,交 DF于点 K.①求证: HC=2AK;【考点】 LO:四边形综合题.【专题】 152:几何综合题.【分析】(1)根据平行四边形的性质得到 AD∥BC,得到∠ ADE=∠BFE,∠A=∠FBE,利用 AAS定理证明即可;( 2)作 BN∥HC交 EF于 N,根据全等三角形的性质、三角形中位线定理证明;(3)作 GM∥DF交 HC于 M,分别证明△ CMG∽△CHF、△AHD∽△GHF、△AHK ∽△ HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形 ABCD是平行四边形,∴AD∥BC,∴∠ ADE=∠BFE,∠ A=∠FBE,在△ ADE和△ BFE中,,∴△ ADE≌△ BFE;( 2)如图 2,作 BN∥HC交 EF于 N,∵△ ADE≌△ BFE,∴BF=AD=BC,∴ BN= HC,由( 1)的方法可知,△ AEK≌△ BFN,∴AK=BN,∴HC=2AK;(3)如图 3,作 GM ∥DF 交 HC 于 M ,∵点 G 是边 BC 中点,∴CG= CF ,∵GM ∥DF ,∴△ CMG ∽△ CHF ,∴ = = ,∵AD ∥FC ,∴△ AHD ∽△ GHF ,∴,∴ = ,∵AK ∥HC ,GM ∥DF ,∴△ AHK ∽△ HGM ,∴ = = ,∴ = ,即 HD=4HK ,点评】本题考查的是平行四边形的性质、全等三角形的判定和性相似三角∴n=4.质、形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00 分)(2018?海南)如图 1,抛物线 y=ax2+bx+3 交 x 轴于点 A(﹣1,0)和点 B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图 2,该抛物线与 y 轴交于点 C,顶点为 F,点 D(2,3)在该抛物线上.①求四边形 ACFD的面积;②点 P是线段 AB上的动点(点 P不与点 A、B重合),过点 P作 PQ⊥x 轴交该抛物线于点 Q,连接 AQ、DQ,当△ AQD是直角三角形时,求出所有满足条件的点Q的坐标.【考点】 HF:二次函数综合题.【专题】 16 :压轴题; 32 :分类讨论; 41 :待定系数法; 523:一元二次方程及应用; 537:函数的综合应用; 554:等腰三角形与直角三角形.【分析】(1)由 A、B 两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接 CD,则可知 CD∥x轴,由 A、F的坐标可知 F、A到CD的距离,利用三角形面积公式可求得△ ACD和△ FCD的面积,则可求得四边形 ACFD的面积;②由题意可知点 A 处不可能是直角,则有∠ ADQ=9°0或∠ AQD=9°0,当∠ ADQ=9°0 时,可先求得直线 AD 解析式,则可求出直线 DQ 解析式,联立直线DQ 和抛物线解析式则可求得 Q点坐标;当∠ AQD=9°0时,设Q(t,﹣t2+2t+3),设直线 AQ 的解析式为 y=k1x+b1,则可用 t 表示出 k′,设直线 DQ 解析式为 y=k2x+b2,同理可表示出 k2,由AQ⊥DQ则可得到关于 t的方程,可求得t 的值,即可求得 Q点坐标.【解答】解:1)由题意可得∴抛物线解析式为 y=﹣ x2+2x+3;(2)①∵ y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且 CD∥x 轴,∵ A(﹣ 1,0),∴S四边形ACFD=S△ACD+S△FCD= ×2×3+ ×2×( 4﹣3)=4;②∵点 P在线段 AB 上,∴∠ DAQ不可能为直角,∴当△ AQD为直角三角形时,有∠ ADQ=9°0或∠AQD=9°0, i.当∠ ADQ=90°时,则 DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线 AD 解析式为 y=x+1,∴可设直线 DQ 解析式为 y=﹣x+b′,把 D(2,3)代入可求得 b′ =,5∴直线 DQ 解析式为 y=﹣x+5,联立直线 DQ 和抛物线解析式可得∴Q(1,4);ii.当∠ AQD=90°时,设 Q(t,﹣t2+2t+3),设直线 AQ 的解析式为把 A、Q 坐标代入可得,解得 k1=﹣( t ﹣3),设直线 DQ 解析式为 y=k2x+b2,同理可求得 k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即 t(t﹣ 3) =﹣1,解得 t=2当 t= 时,﹣ t 2+2t+3= ,当 t= 时,﹣ t 2+2t+3= ,∴Q 点坐标为(,)或(,);综上可知 Q点坐标为( 1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在( 1)中注意待定系数法的应用,在( 2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

2018年海南省中考数学模拟试题及参考答案

2018年海南省中考数学模拟试题及参考答案

购买的质量(千克) 不超过 10 千 超过 10 千


每千克价格
6元
5元
张欣两次共购买了 25 千克这种水果(第二次多于第一次),共付款132 元.问张
欣第一次、第二次分别购买了多少千克这种水果?
22.(8 分如图,AB 是⊙O 直径,点 C 在⊙O 上,AD 平分∠CAB,BD 是⊙O 的切线,AD 与 BC 相交于点 E. (1)求证:BD=BE; (2)若 DE=2,BD= ,求 CE 的长.
21.(8 分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进 行“使用手机目的”和“每周使用手机的时间 ”的问卷调查,并绘制成如图①,②的 统计图,已知“查资料”的人数是 40 人.
23.(12 分)如图,AM 是△ABC 的中线,D 是线段 AM 上一点(不与点 A 重 合).DE∥AB 交 AC 于点 F,CE∥AM,连结 AE.
∵CE∥AM, ∴四边形 DMGE 是平行四边形, ∴ED=GM,且 ED∥GM,
由(1)可知 AB=GM,AB∥GM, ∴AB∥DE,AB=DE, ∴四边形 ABDE 是平行四边形. (3)①如图 3 中,取线段 HC 的中点 I,连接 MI,
∵BM=MC, ∴MI 是△BHC 的中位线, ∴MI∥BH,MI= BH, ∵BH⊥AC,且 BH=AM. ∴MI= AM,MI⊥AC, ∴∠CAM=30°. ②设 DH=x,则 AH= x,AD=2x, ∴AM=4+2x, ∴BH=4+2x, ∵四边形 ABDE 是平行四边形, ∴DF∥AB, ∴=, ∴= , 解得 x=1+ 或 1﹣ (舍弃),
2018 年海南省中考模拟试题 数学试卷
第Ⅰ卷(选择题) 一、选择题(本大题共 14 小题,每小题 3 分,共 42 分) 1.在实数﹣3,2,0,﹣4 中,最大的数是( ) A.﹣3 B.2 C.0 D.﹣4 2.下列计算正确的是( ) A.a•a2=a3 B.(a3)2=a5 C.a+a2=a3 D.a6÷a2=a3 3.已知 x2﹣2x﹣3=0,则 2x2﹣4x 的值为( ) A.6 B.﹣6 C.﹣2 或 6D.﹣2 或 30 4.下列四个图形中,是轴对称图形,但不是中心对称图形的是( )

2018年海南省中考数学试卷(含答案解析版)

2018年海南省中考数学试卷(含答案解析版)

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106 C. 4.85×107 D.0.485×1084.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC 位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20°D.25°8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)(2018•海南)五边形的内角和的度数是.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M 是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA 为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH 上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)(2018•海南)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【考点】14:相反数.【专题】1 :常规题型.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)(2018•海南)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【考点】46:同底数幂的乘法.【专题】11 :计算题.【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)(2018•海南)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106 C. 4.85×107 D.0.485×108【考点】1I:科学记数法—表示较大的数.【专题】1 :常规题型.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)(2018•海南)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【考点】W5:众数.【专题】1 :常规题型.【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)(2018•海南)下列四个几何体中,主视图为圆的是()A.B.C.D.【考点】U1:简单几何体的三视图.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)(2018•海南)如图,在平面直角坐标系中,△ABC 位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【考点】Q3:坐标与图形变化﹣平移.【专题】1 :常规题型;558:平移、旋转与对称.【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P (x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)(2018•海南)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10° B.15° C.20°D.25°【考点】JA:平行线的性质.【专题】1 :常规题型;551:线段、角、相交线与平行线.【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)(2018•海南)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【考点】C4:在数轴上表示不等式的解集.【专题】1 :常规题型;524:一元一次不等式(组)及应用.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)(2018•海南)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【考点】B2:分式方程的解.【专题】11 :计算题;522:分式方程及应用.【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)(2018•海南)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【考点】X4:概率公式.【专题】1 :常规题型.【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)(2018•海南)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限【考点】G6:反比例函数图象上点的坐标特征.【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)(2018•海南)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【考点】KQ:勾股定理;R2:旋转的性质;T7:解直角三角形.【专题】55:几何图形.【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)(2018•海南)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【考点】KX:三角形中位线定理;L5:平行四边形的性质.【专题】555:多边形与平行四边形.【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)(2018•海南)如图1,分别沿长方形纸片ABCD 和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【考点】L7:平行四边形的判定与性质;LB:矩形的性质;LE:正方形的性质;PC:图形的剪拼.【专题】556:矩形菱形正方形.【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP 的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)(2018•海南)比较实数的大小:3>(填“>”、“<”或“=”).【考点】2A:实数大小比较.【专题】11 :计算题.【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)(2018•海南)五边形的内角和的度数是540°.【考点】L3:多边形内角与外角.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)(2018•海南)如图,在平面直角坐标系中,点M 是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【考点】F8:一次函数图象上点的坐标特征.【专题】11 :计算题.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN是解本题的关键.18.(4.00分)(2018•海南)如图,在平面直角坐标系中,点A 的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA 为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【考点】KQ:勾股定理;L5:平行四边形的性质;M2:垂径定理.【专题】1 :常规题型.【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)(2018•海南)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【考点】2C:实数的运算;36:去括号与添括号;4C:完全平方公式;6F:负整数指数幂.【专题】1 :常规题型.【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)(2018•海南)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【考点】8A:一元一次方程的应用.【专题】34 :方程思想;521:一次方程(组)及应用.【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)(2018•海南)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β=65度(m、β均取整数).【考点】VB:扇形统计图;VC:条形统计图.【专题】1 :常规题型;542:统计的应用.【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)(2018•海南)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH 上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】552:三角形.【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)(2018•海南)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)(2018•海南)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【考点】HF:二次函数综合题.【专题】16 :压轴题;32 :分类讨论;41 :待定系数法;523:一元二次方程及应用;537:函数的综合应用;554:等腰三角形与直角三角形.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A 到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ 则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),∴S四边形ACFD=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

海南省琼海市2018年中考模拟考试(一)数学试卷

海南省琼海市2018年中考模拟考试(一)数学试卷

琼海市2018年中考模拟测试(一)数学科试题(时间:100分钟 满分:120分)欢迎你参加这次测试,祝你取得好成绩!一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请在答题卷上把你认为正确的答案的字母代号按要求...填写. 1.2018的倒数是 A .2018B .-2018C .20181D .20181-2.若代数式3+x 的值等于2,则x 等于 A . 1 B .-1 C .5 D .-5 3.下列计算正确的是A . a 2•a 4=a 6B .a 2+a 5=a 7C .3a ﹣2a =1D . (ab )3=ab 3 4.风从海上来,潮起海之南,今年是海南建省办经济特区30周年.在过去的五年里,海南民生支出累计4613亿元。

将数据4613亿用科学记数法表示为 A .8104613⨯B .9103.461⨯C .1110613.4⨯D .1010613.4⨯5.如图1,已知AB ∥CD ,∠2=135°,则∠1的度数是 A .35° B .45° C .55°D .65°6.如图2所示的几何体是由6个相同的小正方体组合而成的,则这个几何体的俯视图是 A .B .C .D .7.分式方程xx 325=-的解是 A .x =3B .x =3-C .x =34D .x =34-8.将点A (3,2)关于y 轴对称的点的坐标是 A .(﹣3,2) B .(﹣3,﹣2) C .(3,﹣2) D .(2,3)9.已知一组数据5、2、3、x 、4的众数为4,则这组数据的中位数为A BCD12图1图2A. 2B. 3C. 4D. 4.510.一个不透明的袋子中有2个白球,3个黄球和1个红球,这些球除颜色不同外其它完全相同,则从袋子中随机摸出一个球是白球的概率为 A .12 B .16 C .23D .1311.如图3,点A 、B 、C 在⊙O 上,∠ABO =32°,∠ACO =38°,则∠BOC 等于A .60°B .70°C .120°D .140°12. 如图4,菱形ABCD 中,∠B =600,4AB =,则以AC 为边长的正方形ACEF 的周长为A .14B .15C .16D .17 13. 如图5,已知点A (-1,0)和点B (1,2),在坐标轴...上确定点P ,使得△ABP 为直角三角形,那么满足条件的点P 共有A .2个B .4个C .6个D .7个14.如图6,等腰直角三角形ABC 位于第一象限,AB=AC=2,直角顶点A 在直线y =x 上,其中A 点的横坐标为1,且两条直角边AB 、AC 分别平行于x 轴、y 轴,若双曲线ky x=(k ≠0)与ABC ∆有交点,则k 的取值范围是 A .14k ≤≤ B . 14k <≤ C .12k << D .13k ≤≤二.填空题(每小题4分,共16分)15.分解因式:x 2-16= .16. 购买单价为a 元的笔记本5本和单价为b 元的铅笔6支应付款 元.17. 如图7,SO ,SA 分别是圆锥的高和母线,若SA=12cm ,∠ASO=30°,则这个圆锥的侧面积是 cm 2.图3图4图5 图618. 如图8,Rt △ABC 中,∠ABC =90°,DE 垂直平分AC ,垂足为O ,AD ∥BC ,且AB =3,BC =4,则AD 的长为 .三.解答题(本大题满分62分) 19.(每小题5分,满分10分)(1)计算:1-2459⨯+-- (2)解不等式组:⎪⎩⎪⎨⎧≥+<-132063x x20.(满分8分)某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.求每辆A 型车和B 型车的售价各为多少万元?21.(满分8分)为了迎接2018年高中招生考试,某中学对全校九年级进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图9-1和图9-2,请你根据图中所给的信息解答下列问题。

(真题)2018年海南省中考数学试卷(有答案)

(真题)2018年海南省中考数学试卷(有答案)

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)五边形的内角和的度数是.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x 轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限C.三、四象限D.二、四象限【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3>(填“>”、“<”或“=”).【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)五边形的内角和的度数是540°.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x 轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN是解本题的关键.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β= 65度(m、β均取整数).【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS 定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;∴S四边形ACFD②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

海口市2018年中考模拟考试数学科参考答案及评分标准

海口市2018年中考模拟考试数学科参考答案及评分标准

海口市2018年初中毕业生学业模拟考试数学科参考答案及评分标准一、DBDAC BADBB CACC 二、15.2(a -2)2 16. 4 17.2118. 45 三、19.(1)原式=4341-+ …(4分)=35- …(5分)(2)解不等式①,得x <2,解不等式②,得x >-2.5. …(2分) ∴ 该不等式组的解集是-2.5<x <2. …(4分) ∴ 该不等式组所有整数解为:-2,-1,0,1. …(5分)20.设调价前碳酸饮料每瓶x 元,果汁饮料每瓶y 元. …(1分)根据题意,得⎩⎨⎧=-++=+5.17%)51(2%)101(3,7y x y x …(5分)解这个方程组,得⎩⎨⎧==.4,3y x …(7分)答:调价前碳酸饮料每瓶3元,果汁饮料每瓶4元. …(8分)21.(1)50;(2)14,如图1所示;(3)72;(4)180. …(8分)22. 在Rt △ACP 中,∠APC =∠α=74°,tan ∠APC =CPAC,即tan74°=CP 868≈3.5,∴ CP =248(米).如图2,过点Q 作QD ⊥AB 交AB 的延长线于点D . …(3分)设PQ =x .在Rt △BDQ 中,∠β=30°,DQ =AC =868,BD =CP +PQ -AB =248+x -1=247+xBD DQ=βtan ,即3124786830tan =+=︒x , …(6分) 解得x =8683-247≈1229(米),∴ 这座大桥的长度约为1229米. (8分)捐款户数分组条形统计图A 组别B C D E 图1图223.(1)① ∵ 四边形ABCD 是正方形,∴ AB =AD ,∠B =∠D =90°.∵ △AEP ≌△ADP ,∴ AE =AD ,∠AEP =∠D =90°. ∴ AB =AE ,∠B =∠AEQ =90°. 又∵ AQ =AQ ,∴ △ABQ ≌△AE …(3分) ② 由 △ABQ ≌△AEQ ,△AEP ≌△ADP , ∴ BQ =EQ ,DP =EP ,∴ PQ =EQ +PE=BQ +DP . …(4分)(2)如图3.2,∵ BQ =DP ,BQ =EQ ,DP =EP , ∴ BQ =EQ =EP =DP =CE ,CQ =CP ,∴ AC 是PQ 的垂直平分线,在正方形ABCD 中,AE =AB =1,AC =2,∴ PD =CE =12-. …(7分)(3)位置关系:EC ∥AQ ;数量关系:52=AQ EC .证明:如图3.3,连结BE . ∵ PC =2DP ,BC =CD =1, ∴ PE =DP =31,PC =32. 设BQ =EQ =x ,则QC =1-x ,PQ =x +31,在Rt △PCQ 中,根据勾股定理,得PC 2+QC 2=PQ 2,即(32)2+(1-x )2=(x +31)2,解得,x =21,即BQ =EQ =QC =21.∴ △BEC 是直角三角形,∠BEC =90°,即CE ⊥BE . ∵ AB =AE ,BQ =EQ ,∴ AQ 是BE 的垂直平分线.∴ EC ∥AQ . …(12分) ∴ ∠AQB =∠ECB ,在Rt △BAQ 中,AB BQ 21=, ∴ cos ∠AQB =51=AQ BQ . 即BC =AB =552AQ . 在Rt △BEC 中,cos ∠ECB =51=BC EC ,∴ BC =5EC . ∴552AQ =5EC ,即 52=AQ EC (或AQ =25EC ). …(14分) (注:用其它方法求解参照以上标准给分.)24.(1)直线y =-2x +3与x 轴、y 轴的交点坐标分别为: C (0,3),D (23,0). 图3.2AD CBQP E图3.3AD CB E Q PF 图3.1A D CB EQ P∵ 抛物线与x 轴交于A (-1,0)、B (3,0)两点,∴ 设所求抛物线的函数关系式为 y =a (x +1)(x -3), 把点C (0,3)代入,得3=a (0+1)(0-3),解得a =-1.∴ 所求抛物线的函数关系式为:y =-(x +1)(x -3),即y =-x 2+2x +3. (4分) (2)① 如图4.1,过点P 作PE ⊥y 轴于点F ,交DC 于点E ,由题意,设点P 的坐标为(t ,-t 2+2t +3),则点E 的纵坐标为-t 2+2t +3.以y =-t 2+2t +3代入y =-2x +3,得222tt x -=∴ 点E 的坐标为(222tt -,-t 2+2t +3),∴ PE =242222tt t t t +-=--. …(6∴ S △PCD =21PE ·CO .=324212⨯+-⨯t t )4(432t t --=3)2(432+--=t .…(8分)∵ a =23-<0,且0<t <3,∴ 当t =2时,△PCD 的面积最大值为3. …(9分)【解法一】 ② △PCD 是以CD 为直角边的直角三角形分两种情况: …(10分)(Ⅰ)若∠PCD =90°,如图4.2,过点P 作PG ⊥y 轴于点G ,则△PGC ∽△COD ,∴ DOCG CO PG =,即5.1232t t t +-=. 整理得 2t 2-3t =0,解得 t 1=23,t 2=0(舍去).∴ 点P 的坐标为(3,15). …(12分)(Ⅱ)若∠PDC =90°,如图4.3,过点P 作PH ⊥x 轴于点H ,则△PHD ∽△DOC ,∴ CODH DO PH =,即35.15.1322-=++-t t t . 整理得 4t 2-6t -15=0,解得 t 1=4693+,t 2=4693- (舍去).∴ 点P 的坐标为(4693+,8693+-). 综上所述,当△PCD 是以CD 为直角边的直角三角形时,点P 的坐标为(23,415)或(4693+,8693+-). …(14分)【解法二】 ② △PCD 是以CD 为直角边的直角三角形分两种情况:(Ⅰ)若∠PDC =90°,如图4.4,延长PD 交y 轴于点M ,则△DOM ∽△COD ,∴ CO DO OD OM =,即35.15.1=OM . ∴ OM =43,即点M 的坐标为(0,43-).∴ 直线DM 所对应的函数关系式为4321-=x y .∵ 点P 的坐标为(t ,-t 2+2t +3),∴ 4321322-=++-t t t ,整理得 4t 2-6t -15=0,解得 t 1=4693+,t 2=4693- (舍去).∴ 点P 的坐标为(693+,8693+-). …(12分)(Ⅱ) 若∠PCD =90°,如图4.5,则PC ∥DM ,∴ 直线CP 所对应的函数关系式为321+=x y .∵ 点P 的坐标为(t ,-t 2+2t +3),∴ 321322+=++-t t t ,整理得 2t 2-3t =0,解得 t 1=23,t 2=0(舍去). ∴ 点P 的坐标为(23,415).综上所述,当△PCD 是以CD 为直角边的直角三角形时,点P 的坐标为(23,415)或(4693+,8693+-). …(14分)(注:用其它方法求解参照以上标准给分.)。

最新-海南省2018初中数学模拟试题(一) 精品

最新-海南省2018初中数学模拟试题(一) 精品

2018年海南省初中毕业生学业考试数 学 科 试 题 (一)(含超量题全卷满分110分,考试时间100分钟) 一、选择题(本大题满分20分,每小题2分) 1. 如图,数轴上A 点表示的数减去B 点表示的数,结果是( ).A .8B .-8C .2D .-22. 下列各运算中,错误的个数是( )①01333-+=-=235(2)8a a = ④844a a a -÷=-A .1B .2C .3D .43. 2018年北京奥运会全球共选拔21880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为( )A.31022⨯ B.5102.2⨯ C.4102.2⨯ D.51022.0⨯ 4. 计算a b a bb a a +⎛⎫-÷⎪⎝⎭的结果为( ) A .a b b - B .a b b + C .a b a - D .a b a+ 5. 分式方程112x x =+的解是( ) A .1x = B .1x =- C .2x = D .2x =-6. 甲、乙两支解放军小分队将救灾物资送往某重灾小镇,甲队先出发,从部队基地到小镇只有唯一通道,且路程为24k m ,如图是他们行走的路程关于时间的函数图象,四位同学观察此函数图象得出有关信息,其中正确的个数是( )A .1B .2C .3D .47. 平行四边形ABCD 中,AC ,BD 是两条对角线,如果添加一个条件,即可推出平行四边形ABCD 是矩形,那么这个条件是( ) A .AB =BC B .AC =BD C .AC ⊥BD D .AB ⊥BD8. 如图1,P 为⊙O 外一点,PA 切⊙O 于点A ,且OP=5,PA=4,则sin ∠APO 等于 ( )A. 54B. 53C. 34D. 430 15-3A B9. 如图2是每个面上都有一个汉字的正方体的一种展开图,那么在正方体的表面,与“迎”相对的面上的汉字是( ) A. 文B. 明C. 奥D. 运10.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( )A .24B .18C .16D .6 二、填空题(本大题满分24分,每小题3分) 11. 若代数式12x x -+的值为零,则x =;函数y =x 的取值范围为 .12. 不等式组84113422x x x x +<-⎧⎪⎨-⎪⎩≥的解集是 .13. 对某班最近一次数学测试成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如图3所示的频数分布直方图,根据直方图提供的信息,在这次测试中,成绩为A 等(80分以上,不含80分)的百分率为 . 14. 分别以梯形ABCD 的上底AD 、下底BC 的长为直径作1O 、2O ,若两圆的圆心距等于这个梯形的中位线长,则这两个圆的位置关系是 .15. 数据6,8,8,x 的众数有两个,则这组数据的中位数是 . 16. 一个函数具有下列性质:①它的图像经过点(-1,1);②它的图像在二、四象限内; ③在每个象限内,函数值y 随自变量x 的增大而增大.则这个函数的解析式可以为 .17. 已知:如图4,△OAD ≌△OBC ,且∠O =70°,∠C =25°,则∠AEB = 度. 18. 如图5,观察下列图案,它们都是由边长为1cm 的小正方形按一定规律拼接而成的,依此规律,则第10个图案中的小正方形有 个.P OA· 图1 讲文 明 迎 奥 运 图2 图350.5 60.5 70.5 80.5 90.5 100.5OA B C D E 图4图案1图案2图案3 图案4…… 图5三、解答题(本大题满分66分) 19.(本题满分10分)(1).101231)2-⎛⎫⨯+-+ ⎪⎝⎭.(5分).(2).解方程组:⎩⎨⎧=+=+.173,7y x y x (5分)20.(本题满分10分)512汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务. 厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半. 首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务! 根据两人对话,问该厂原来每天生产多少顶帐篷?21.(本题满分10分)图①、图②反映的是某综合商场今年1-5月份的商品销售额统计情况.观察图①和图②,解答下面问题:(1)来自商场财务部的报告表明,商场1-5月份的销售总额一共是370万元,请你根据这一信息补全图①,并写出两条由如上两图获得的信息; (2)商场服装部5月份的销售额是多少万元?(3)小华观察图②后认为,5月份服装部的销售额比4月份减少了.你同意他的看法吗?为什么?图①商场各月销售总额统计图销售总额(万元)月份90807060504030201005月4月3月2月1月服装部各月销售额占商场当月销售总额的百分比图②1月2月3月4月5月5%月份百分比22.(本题满分10分)如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的ABC △是格点三角形.在建立平面直角坐标系后,点B 的坐标为(11)--,.(1)把ABC △向左平移8格后得到111A B C △,画出111A B C △的图形并写出点1B 的坐标; (2)把ABC △绕点C 按顺时针方向旋转90后得到22A B C △,画出22A B C △的图形并写出点2B 的坐标;(3)把ABC △以点A 为位似中心放大,使放大前后对应边长的比为1:2,画出33AB C △的图形.23.(本题满分12分)如图,在△ABC 中,∠ABC=900,AB=BC,O 是斜边AC 的中点,P 是AC 上一动点,D 为BC 上一点,且PB=PD ,DE ⊥AC 于E.(1)求证:PE=OB(2)若AC=4,AP=x,四边形PBDE 的面积为y.①求y 与x 的函数关系式,并指出自变量x 的取值范围.②四边形PBDE 的面积是否存在最大值?如果存在,请求出这个最大值,并指出此时x 的值;若不存在,请说明理由。

海南省2018年中考数学试题含答案-精品

海南省2018年中考数学试题含答案-精品

海南省2018 年初中毕业生学业水平考试数学科试题(考试时间100 分钟,满分120 分)一、选择题(本大题满分42 分,每小题3 分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按.要.求.用2B 铅笔涂黑.1.2018 的相反数是A.-2018 B.2018 C.12018D.120182.计算a2•a3,结果正确的是A.a5 B.a6 C.a8 D.a93.在海南建省办经济特区 30 周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4 月份互联网信息中提及“海南”一词的次数约48 500 000 次.数据48 500 000 用科学记数法表示为A.485×105 B.48.5×106 C.4.85×107 D.0.485×1084.一组数据:1,2,4,2,2,5,这组数据的众数是A.1 B.2 C.4 D.55.下列四个几何体中,主视图为圆的是A.B C.D.6.如图1,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是A.(-2,3)B.(3,-1)C.(-3,1)D.(-5,2)7.将一把直尺和一块含30°和60°角的三角板ABC 按如图2 所示的位置放置,如果∠CDE=40°,那么∠BAF 的大小为A.10°B.15°C.20°D.25°8.下列四个不等式组中,解集在数轴上表示如图 3 所示的是A .23x x ≥⎧⎨-⎩f 1 B .23x x ≤⎧⎨-⎩p C .23x x ≥⎧⎨-⎩p D .23x x ≤⎧⎨-⎩f9.分式方程2101x x -=+的解是 A .-1 B .1 C . ± 1 D .无解10.在一个不透明的袋子中装有 n 个小球,这些球除颜色外均相同,其中红球有 2 个,如果从袋子中随机摸出一个球,这个球是红球的概率为 13,那么 n 的值是 A .6B .7C .8D .911.已知反比例函数 y =k x的图像经过点P (-1,2),则这个函数的图像位于 A .二、三象限 B .一、三象限 C .三、四象限 D .二、四象限12.如图 4,在△ABC 中,AB =8,AC =6,∠BAC =30°,将△ABC 绕点A逆时针旋转 60°得 到△AB 1C 1,连接 B C 1,则 B C 1 的长为A .6 B. 8 C. 10 D. 1213.如图 5,□ABCD 的周长为 36,对角线 AC 、BD 相交于点 O ,点 E 是 CD 的中点,BD =12, 则△DOE 的周长为A .15B .18C .21D .2414.如图 6-1,分别沿长方形纸片 ABCD 和正方形纸片 EFGH 的对角线 AC 、EG 剪开,拼成 如图6-2 所示的□KLM N ,若中间空白部分四边形 OPQR 恰好是正方形,且□KLM N 的 面积为 50,则正方形 EFGH 的面积为A .24B .25C .26D .27二.填空题(本大题满分16分,每小题4分)15.比较实数的大小:>”、“<”或“=”).16.五边形内角和的度数是 .17.如图 7,在平面直角坐标系中,点 M 是直线 y = -x 上的动点,过点 M 作 MN ⊥x 轴,交直线 y = x 于点 N ,当 MN ≤8 时,设点 M 的横坐标为 m ,则 m 的取值范围为 .18.如图 8,在平面直角坐标系中,点 A 的坐标是(20,0),点 B 的坐标是(16,0),点 C 、D 在以 OA 为直径的半圆 M 上,且四边形 OCDB 是平行四边形,则点 C 的坐标为 .三.解答题(本大题满分62分)19.(满分10分)计算(1)21322--⨯ (2) (a +1)2+2(1-a )20.(满分 8 分)“绿水青山就是金山银山”.海南省委省政府高度重视环境生态保护,截至 2017年底,全省建立国家级、省级和市县级自然保护区共 49 个,其中国家级 10 个,省级比 市县级多 5 个.问省级和市县级自然保护区各多少个?21.(满分 8 分)海南建省 30 年来,各项事业取得令人瞩目的成就.以 2016 年为例,全省社会固定资产总投资约 3730 亿元,其中包括中央项目、省属项目、地(市)属项目、县(市) 属项目和其他项目.图 9-1、图 9-2 分别是这五个项目的投资额不完整的条形统计图和扇 形统计图.请完成下列问题:(1)在图 9-1 中,先计算地(市)属项目投资额为 亿元,然后将条形统计图补充完整;(2)在图 9-2 中,县(市)属项目部分所占百分比为 m %、对应的圆心角为 β,则 m = , β =度(m 、β 均取整数).22.(满分8 分)如图10,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在A 处用高1.5 米的测角仪测得古树顶端H 的仰角∠HDE 为45°,此时教学楼顶端G 恰好在视线DH 上,再向前走7 米到达B 处,又测得教学楼顶端G 的仰角∠GEF 为60°,点A、B、C 三点在同一水平线上.(1)计算古树BH 的高;(2)计算教学楼CG 的高.≈1.4,≈1.7)23.(满分13 分)已知,如图11-1,在□ABCD中,点E 是AB 中点,连接DE 并延长,交CB 的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图11-2,点G 是边BC 上任意一点(点G 不与点B、C 重合),连接AG 交DF 于点H,连接HC,过点A 作AK∥HC,交DF 于点K.①求证:HC=2AK;②当点G 是边BC 中点时,恰有HD=n·HK(n 为正整数),求n 的值.24.(满分15 分)如图12-1,抛物线y=ax2+bx+3 交x 轴于点A(-1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图12-2,该抛物线与y 轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD 的面积;②点P 是线段AB 上的动点(点P 不与点A、B 重合),过点P 作PQ⊥x 轴交该抛物线于点Q,连接AQ、DQ,当△AQD 是直角三角形时,求出所有满足条件的点Q 的坐标.。

(真题)2018年海南省中考数学试卷(有答案)

(真题)2018年海南省中考数学试卷(有答案)

2018年海南省中考数学试卷一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a93.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×1084.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.55.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.911.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限B.一、三象限C.三、四象限D.二、四象限12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.1213.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.2414.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3(填“>”、“<”或“=”).16.(4.00分)五边形的内角和的度数是.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为.三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=,β=度(m、β均取整数).22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.2018年海南省中考数学试卷参考答案与试题解析一、选择题(本大题满分42分,每小题3分)在下列各题的四个备选答案中,有且只有一个是正确的,请在答题卡上把你认为正确的答案的字母代号按要求用2B铅笔涂黑1.(3.00分)2018的相反数是()A.﹣2018 B.2018 C.﹣D.【分析】直接利用相反数的定义分析得出答案.【解答】解:2018的相反数是:﹣2018.故选:A.【点评】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.(3.00分)计算a2•a3,结果正确的是()A.a5B.a6C.a8D.a9【分析】根据同底数幂的乘法法则解答即可.【解答】解:a2•a3=a5,故选:A.【点评】此题考查同底数幂的乘法,关键是根据同底数的幂的乘法解答.3.(3.00分)在海南建省办经济特区30周年之际,中央决定创建海南自贸区(港),引发全球高度关注.据统计,4月份互联网信息中提及“海南”一词的次数约48500000次,数据48500000科学记数法表示为()A.485×105B.48.5×106C.4.85×107D.0.485×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:48500000用科学记数法表示为4.85×107,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3.00分)一组数据:1,2,4,2,2,5,这组数据的众数是()A.1 B.2 C.4 D.5【分析】根据众数定义可得答案.【解答】解:一组数据:1,2,4,2,2,5,这组数据的众数是2,故选:B.【点评】此题主要考查了众数,关键是掌握一组数据中出现次数最多的数据叫做众数.5.(3.00分)下列四个几何体中,主视图为圆的是()A.B.C.D.【分析】先分析出四种几何体的主视图的形状,即可得出主视图为圆的几何体.【解答】解:A、圆柱的主视图是长方形,故A错误;B、圆锥的主视图是三角形,故B错误;C、球的主视图是圆,故C正确;D、正方体的主视图是正方形,故D错误.故选:C.【点评】本题考查了利用几何体判断三视图,培养了学生的观察能力和对几何体三种视图的空间想象能力.6.(3.00分)如图,在平面直角坐标系中,△ABC位于第一象限,点A的坐标是(4,3),把△ABC向左平移6个单位长度,得到△A1B1C1,则点B1的坐标是()A.(﹣2,3)B.(3,﹣1)C.(﹣3,1)D.(﹣5,2)【分析】根据点的平移的规律:向左平移a个单位,坐标P(x,y)⇒P(x﹣a,y),据此求解可得.【解答】解:∵点B的坐标为(3,1),∴向左平移6个单位后,点B1的坐标(﹣3,1),故选:C.【点评】本题主要考查坐标与图形的变化﹣平移,解题的关键是掌握点的坐标的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.7.(3.00分)将一把直尺和一块含30°和60°角的三角板ABC按如图所示的位置放置,如果∠CDE=40°,那么∠BAF的大小为()A.10°B.15°C.20°D.25°【分析】由DE∥AF得∠AFD=∠CDE=40°,再根据三角形的外角性质可得答案.【解答】解:由题意知DE∥AF,∴∠AFD=∠CDE=40°,∵∠B=30°,∴∠BAF=∠AFD﹣∠B=40°﹣30°=10°,故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等与三角形外角的性质.8.(3.00分)下列四个不等式组中,解集在数轴上表示如图所示的是()A.B.C.D.【分析】根据不等式组的表示方法,可得答案.【解答】解:由解集在数轴上的表示可知,该不等式组为,故选:D.【点评】本题考查了在数轴上表示不等式的解集,利用不等式组的解集的表示方法:大小小大中间找是解题关键.9.(3.00分)分式方程=0的解是()A.﹣1 B.1 C.±1 D.无解【分析】根据解分式方程的步骤计算可得.【解答】解:两边都乘以x+1,得:x2﹣1=0,解得:x=1或x=﹣1,当x=1时,x+1≠0,是方程的解;当x=﹣1时,x+1=0,是方程的增根,舍去;所以原分式方程的解为x=1,故选:B.【点评】本题主要考查分式方程的解,解题的关键是熟练掌握解分式方程的步骤.10.(3.00分)在一个不透明的袋子中装有n个小球,这些球除颜色外均相同,其中红球有2个,如果从袋子中随机摸出一个球,这个球是红球的概率为,那么n的值是()A.6 B.7 C.8 D.9【分析】根据概率公式得到=,然后利用比例性质求出n即可.【解答】解:根据题意得=,解得n=6,所以口袋中小球共有6个.故选:A.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.11.(3.00分)已知反比例函数y=的图象经过点P(﹣1,2),则这个函数的图象位于()A.二、三象限 B.一、三象限C.三、四象限D.二、四象限【分析】先根据点P的坐标求出反比例函数的比例系数k,再由反比例函数的性质即可得出结果.【解答】解:反比例函数y=的图象经过点P(﹣1,2),∴2=.∴k=﹣2<0;∴函数的图象位于第二、四象限.故选:D.【点评】本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.12.(3.00分)如图,在△ABC中,AB=8,AC=6,∠BAC=30°,将△ABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为()A.6 B.8 C.10 D.12【分析】根据旋转的性质得出AC=AC1,∠BAC1=90°,进而利用勾股定理解答即可.【解答】解:∵将△ABC绕点A逆时针旋转60°得到△AB1C1,∴AC=AC1,∠CAC1=90°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在Rt△BAC1中,BC1的长=,故选:C.【点评】此题考查旋转的性质,关键是根据旋转的性质得出AC=AC1,∠BAC1=90°.13.(3.00分)如图,▱ABCD的周长为36,对角线AC、BD相交于点O,点E是CD的中点,BD=12,则△DOE的周长为()A.15 B.18 C.21 D.24【分析】利用平行四边形的性质,三角形中位线定理即可解决问题;【解答】解:∵平行四边形ABCD的周长为36,∴BC+CD=18,∵OD=OB,DE=EC,∴OE+DE=(BC+CD)=9,∵BD=12,∴OD=BD=6,∴△DOE的周长为9+6=15,故选:A.【点评】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形中位线定理,属于中考常考题型.14.(3.00分)如图1,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图2所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为()A.24 B.25 C.26 D.27【分析】如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b,构建方程即可解决问题;【解答】解:如图,设PM=PL=NR=AR=a,正方形ORQP的边长为b.由题意:a2+b2+(a+b)(a﹣b)=50,∴a2=25,∴正方形EFGH的面积=a2=25,故选:B.【点评】本题考查图形的拼剪,矩形的性质,正方形的性质等知识,解题的关键是学会利用参数构建方程解决问题,学会利用数形结合的思想解决问题,属于中考选择题中的压轴题.二.填空题(本大题满分16分,每小题4分)15.(4.00分)比较实数的大小:3>(填“>”、“<”或“=”).【分析】根据3=>计算.【解答】解:∵3=,>,∴3>.故答案是:>.【点评】本题考查了实数的大小比较的应用,主要考查了学生的比较能力.16.(4.00分)五边形的内角和的度数是540°.【分析】根据n边形的内角和公式:180°(n﹣2),将n=5代入即可求得答案.【解答】解:五边形的内角和的度数为:180°×(5﹣2)=180°×3=540°.故答案为:540°.【点评】此题考查了多边形的内角和公式.此题比较简单,准确记住公式是解此题的关键.17.(4.00分)如图,在平面直角坐标系中,点M是直线y=﹣x上的动点,过点M作MN⊥x轴,交直线y=x于点N,当MN≤8时,设点M的横坐标为m,则m的取值范围为﹣4≤m≤4.【分析】先确定出M,N的坐标,进而得出MN=|2m|,即可建立不等式,解不等式即可得出结论.【解答】解:∵点M在直线y=﹣x上,∴M(m,﹣m),∵MN⊥x轴,且点N在直线y=x上,∴N(m,m),∴MN=|﹣m﹣m|=|2m|,∵MN≤8,∴|2m|≤8,∴﹣4≤m≤4,故答案为:﹣4≤m≤4.【点评】此题主要考查了一次函数图象上点的坐标特征,解不等式,表示出MN是解本题的关键.18.(4.00分)如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为(2,6).【分析】过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,由勾股定理可求得MF的长,从而得出OE的长,然后写出点C的坐标.【解答】解:∵四边形OCDB是平行四边形,B(16,0),∴CD∥OA,CD=OB=16,过点M作MF⊥CD于点F,则CF=CD=8,过点C作CE⊥OA于点E,∵A(20,0),∴OE=OM﹣ME=OM﹣CF=10﹣8=2.连接MC,则MC=OA=10,∴在Rt△CMF中,由勾股定理得MF==6∴点C的坐标为(2,6)故答案为:(2,6).【点评】本题考查了勾股定理、垂径定理以及平行四边形的性质,正确作出辅助线构造出直角三角形是解题关键.三、解答题(本大题满分62分)19.(10.00分)计算:(1)32﹣﹣|﹣2|×2﹣1(2)(a+1)2+2(1﹣a)【分析】(1)直接利用二次根式性质和负指数幂的性质分别化简得出答案;(2)直接利用完全平方公式去括号进而合并同类项得出答案.【解答】解:(1)原式=9﹣3﹣2×=5;(2)原式=a2+2a+1+2﹣2a=a2+3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.(8.00分)“绿水青山就是金山银山”,海南省委省政府高度重视环境生态保护,截至2017年底,全省建立国家级、省级和市县级自然保护区共49个,其中国家级10个,省级比市县级多5个.问省级和市县级自然保护区各多少个?【分析】设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据国家级、省级和市县级自然保护区共49个,即可得出关于x的一元一次方程,解之即可得出结论.【解答】解:设市县级自然保护区有x个,则省级自然保护区有(x+5)个,根据题意得:10+x+5+x=49,解得:x=17,∴x+5=22.答:省级自然保护区有22个,市县级自然保护区有17个.【点评】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.21.(8.00分)海南建省30年来,各项事业取得令人瞩目的成就,以2016年为例,全省社会固定资产总投资约3730亿元,其中包括中央项目、省属项目、地(市)属项目、县(市)属项目和其他项目.图1、图2分别是这五个项目的投资额不完整的条形统计图和扇形统计图,请完成下列问题:(1)在图1中,先计算地(市)属项目投资额为830亿元,然后将条形统计图补充完整;(2)在图2中,县(市)属项目部分所占百分比为m%、对应的圆心角为β,则m=18,β= 65度(m、β均取整数).【分析】(1)用全省社会固定资产总投资约3730亿元减去其他项目的投资即可求得地(市)属项目投资额,从而补全图象;(2)用县(市)属项目投资除以总投资求得m的值,再用360度乘以县(市)属项目投资额所占比例可得.【解答】解:(1)地(市)属项目投资额为3730﹣(200+530+670+1500)=830(亿元),补全图形如下:故答案为:830;(2)(市)属项目部分所占百分比为m%=×100%≈18%,即m=18,对应的圆心角为β=360°×≈65°,故答案为:18、65.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8.00分)如图,某数学兴趣小组为测量一棵古树BH和教学楼CG的高,先在A处用高1.5米的测角仪测得古树顶端H的仰角∠HDE为45°,此时教学楼顶端G恰好在视线DH上,再向前走7米到达B处,又测得教学楼顶端G的仰角∠GEF为60°,点A、B、C三点在同一水平线上.(1)计算古树BH的高;(2)计算教学楼CG的高.(参考数据:≈14,≈1.7)【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.构建方程即可解决问题;【解答】解:(1)由题意:四边形ABED是矩形,可得DE=AB=7米.在Rt△DEH中,∵∠EDH=45°,∴HE=DE=7米.(2)作HJ⊥CG于G.则△HJG是等腰三角形,四边形BCJH是矩形,设HJ=GJ=BC=x.在Rt△BCG中,tan60°=,∴=,∴x=+.∴CG=CF+FG=×1.7+3.5+1.5=11.3米.【点评】本题考查解直角三角形的应用﹣仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.23.(13.00分)已知,如图1,在▱ABCD中,点E是AB中点,连接DE并延长,交CB的延长线于点F.(1)求证:△ADE≌△BFE;(2)如图2,点G是边BC上任意一点(点G不与点B、C重合),连接AG交DF于点H,连接HC,过点A作AK∥HC,交DF于点K.①求证:HC=2AK;②当点G是边BC中点时,恰有HD=n•HK(n为正整数),求n的值.【分析】(1)根据平行四边形的性质得到AD∥BC,得到∠ADE=∠BFE,∠A=∠FBE,利用AAS定理证明即可;(2)作BN∥HC交EF于N,根据全等三角形的性质、三角形中位线定理证明;(3)作GM∥DF交HC于M,分别证明△CMG∽△CHF、△AHD∽△GHF、△AHK∽△HGM,根据相似三角形的性质计算即可.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠ADE=∠BFE,∠A=∠FBE,在△ADE和△BFE中,,∴△ADE≌△BFE;(2)如图2,作BN∥HC交EF于N,∵△ADE≌△BFE,∴BF=AD=BC,∴BN=HC,由(1)的方法可知,△AEK≌△BFN,∴AK=BN,∴HC=2AK;(3)如图3,作GM∥DF交HC于M,∵点G是边BC中点,∴CG=CF,∵GM∥DF,∴△CMG∽△CHF,∴==,∵AD∥FC,∴△AHD∽△GHF,∴===,∴=,∵AK∥HC,GM∥DF,∴△AHK∽△HGM,∴==,∴=,即HD=4HK,∴n=4.【点评】本题考查的是平行四边形的性质、全等三角形的判定和性质、相似三角形的判定和性质,掌握它们的判定定理和性质定理是解题的关键.24.(15.00分)如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).(1)求该抛物线所对应的函数解析式;(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.①求四边形ACFD的面积;②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.【分析】(1)由A、B两点的坐标,利用待定系数法即可求得抛物线解析式;(2)①连接CD,则可知CD∥x轴,由A、F的坐标可知F、A到CD的距离,利用三角形面积公式可求得△ACD和△FCD的面积,则可求得四边形ACFD的面积;②由题意可知点A处不可能是直角,则有∠ADQ=90°或∠AQD=90°,当∠ADQ=90°时,可先求得直线AD解析式,则可求出直线DQ解析式,联立直线DQ和抛物线解析式则可求得Q点坐标;当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,则可用t表示出k′,设直线DQ解析式为y=k2x+b2,同理可表示出k2,由AQ⊥DQ则可得到关于t的方程,可求得t的值,即可求得Q点坐标.【解答】解:(1)由题意可得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴F(1,4),∵C(0,3),D(2,3),∴CD=2,且CD∥x轴,∵A(﹣1,0),=S△ACD+S△FCD=×2×3+×2×(4﹣3)=4;∴S四边形ACFD②∵点P在线段AB上,∴∠DAQ不可能为直角,∴当△AQD为直角三角形时,有∠ADQ=90°或∠AQD=90°,i.当∠ADQ=90°时,则DQ⊥AD,∵A(﹣1,0),D(2,3),∴直线AD解析式为y=x+1,∴可设直线DQ解析式为y=﹣x+b′,把D(2,3)代入可求得b′=5,∴直线DQ解析式为y=﹣x+5,联立直线DQ和抛物线解析式可得,解得或,∴Q(1,4);ii.当∠AQD=90°时,设Q(t,﹣t2+2t+3),设直线AQ的解析式为y=k1x+b1,把A、Q坐标代入可得,解得k1=﹣(t﹣3),设直线DQ解析式为y=k2x+b2,同理可求得k2=﹣t,∵AQ⊥DQ,∴k1k2=﹣1,即t(t﹣3)=﹣1,解得t=,当t=时,﹣t2+2t+3=,当t=时,﹣t2+2t+3=,∴Q点坐标为(,)或(,);综上可知Q点坐标为(1,4)或(,)或(,).【点评】本题为二次函数的综合应用,涉及待定系数法、三角形的面积、二次函数的性质、直角三角形的性质及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)①中注意把四边形转化为两个三角形,在②利用互相垂直直线的性质是解题的关键.本题考查知识点较多,综合性较强,难度适中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

海南省中考数学科模拟试题(一)
(考试时间90分钟,满分120分)
、选择题(本答题满分42分,每小题3分)
4.如图是一个由3个相同的正方体组成的立体图形,贝尼的主视图为( )
6.近期浙江大学的科学家们研制出今为止世界上最轻的材料,这种被称为“全碳气凝胶”的固态材 料密度仅每立方厘米0. 00016克,数据0.00016用科学记数法表示应是(

4
3
4
5
A . 1.6 10
B . 0.16 10
C . 1.6 10
D . 16 10
2,1,3, 1的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数
1 75,贝U 2的大小是
1.
5的绝对值是(
)
A . 5
B . 5
C 1
5
2
.
下列计算正确的是( )
.235
A . xx x
2
3
6
B . x
• x x C . 2
3
5
x
x
3 . 在平面直角坐标系中,
点P 2,1在(
)
A .第一象限
B .第二象限
C
.第三象限
D .第四象限
7
/
tf F 出

/
(A)
(C)
5 .下列数据3,2,3,4,5,2,2的中位数是( )
(D)
C . 3
D . 2
的概率是(
A . 1
5
一只因损坏而倾斜的椅子, 2 C . 3
5 5
从背后看到的形状如图

D .-
5
其中两组对边的平行关系没有发生变化,
7.分别标有数字0, A . 75o 115o C . 65o D . 105o
如图⑵,四边形ABCD 是平行四边形,点
E 在边BC 上.如果点
F 是边AD 上的点,那么△ CDF
与△ ABE 不一定全等的条件是
A . DF BE
B . AF CE
C . CF AE
D . CF // AE
A . 5
B . 4
2x11
11
.不等式组
4 2x J 。

的解在数轴上表示为(

13 .如图⑸,矩形ABCD 的对角线AC 10, BC 8,则图中五个小矩形的周长之和为(

14 .如图⑹,AB 是的直径,点C , D 都在上,连结CA, CB, DC , DB .已知 D 30°BC 3, 则AB 的长是(

A . 5
B . 3.2
C . 2、3
D . 6
二、填空题(本答题满分16分,每小题4分) 15 .分解因式 a 2 2a 1= ___________
16 .函数y r~2的自变量x 的取值范围是 _______________
17 .如图,在Rt △ ABC 中,/ C 90° AC 4,将厶ABC 沿CB 向右平移得到 △ DEF
,若平移距离为
10.如图(3) , △ ABC 中,DE // BC ,
AD DB 1
-,DE 2cm ,贝U BC 边的长是(
A . 6 cm
B . 4cm
C . 8cm
D . 7 cm
12 .如图(4),一次函数y 二kx
3的图象与反比例函数y=
m
的图象交于A,B 两点,则k 、m 的值为
x
A . k 1, m 2
B . k 2, m 1
C . k 2, m 2 A . 14
B . 16
C . 20
D . 28
矗4 d
□+J
i a 2+J
D . k 1, m 1
2,贝U 四边形ABED 的面积等于
(8)
18 •如图(8)是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,
AB CD 20cm , BD 200cm ,且AB, CD 与水平地面都是垂直的.则这个圆弧形门的最高点离地 面的高度是 _____________________ cm 三、解答题(本答题满分62分) 19.(本题满分10分,每小题5分)
⑵解方程: 0.
20 .(本题满分8分)最美女教师'张丽莉,为抢救两名学生,以致双腿高位截肢,社会各界纷纷 为她捐款,我市某中学九年级10班40名同学参加了捐款活动,共捐款 400元,捐款情况如下表: 表格中捐款10元和15元的人数不小心被墨水污染已看不清楚.请你用你学过的知识算出捐款 10元
和15元的人数各是多少名?
摘款(元)
(2013 n 2cos30 ;
21.(本题满分8分)为了解学生的艺术特长发展情况,某校音乐组决定围绕“在舞蹈、乐器、声乐、 戏曲、其它活动项目中,你最喜欢哪一项活动(每人只限一项)”的问题,在全校范围内随机抽取部 分学生进行问卷调查,并将调查结果绘制成如下两幅不完整的统计图.
请你根据统计图解答下列问题:
(1) 在这次调查中一共抽查了 ________ 学生; (2) 请将最喜欢活动为 “戏曲”的条形统计图补充完整;
⑶ 你认为在扇形统计图中,“其他”所在的扇形对应的圆心角的度数是 ____________ ° (4)若该校共有3100名学生,请你估计全校对“乐器”最喜欢的人数是 _________ 人.
22.(本题满分8分)如图,为测量某塔 AB 的高度,在离塔底部10米处目测其塔顶 A ,仰角为60°,目高1.5
米,试求该塔的高度。


2沁1.41, 3沁1.73
23. (本题满分14分)如图1,在菱形ABCD 中,AC 2, / ABC=60 , AC , BD 相交于点O.
(1) 如图 1, AH 丄BC,求证:△ ABH^^ACH (2) 如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD 的顶点A 处,绕点A 左右旋转, 其中三角板60°角的两边分别与边BC , CD
相交于
18161412W06 吗
2
碉乐器声储戏曲甚他顶目
点E, F ,连接EF与AC相交于点G.
①判断△ AEF是哪一种特殊三角形,并说明理由;
②旋转过程中,当点E为边BC的四等分点时BE CE,求CG的长.
24. (本题满分14分)在平面直角坐标系xOy中,抛物线y x2 bx c与x轴交于A, B两点(点A
x沿y轴向上平移3个单位长在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y 度
后恰好经过B, C两点.
(1)求抛物线的解析式;
(2)设抛物线的顶点为D,点P在抛物线的对称轴上,且APD ACB,求点P的坐标;
(3)连结CD,求OCA与OCD两角和的度数.。

相关文档
最新文档