概率与统计1

合集下载

概率论与数理统计 第一章1.1随机事件

概率论与数理统计 第一章1.1随机事件

事件的关系与运算
注:(1) 事件的关系与运算可用维恩图形象表之
(2) 事件的和与积的运算可推广到有限个事 件或可数无限个事件的情形.
A B A B, (3) 事件的和与积的另一记法:
A B AB.
事件的关系与运算
8. 完备事件组 设 A1 , A2 ,, An , 是有限或可数个事件,若其 满足:

随机事件
在随机试验中,人们除了关心试验的结果本身外,
往往还关心试验的结果 是否具备某一指定的可观
察的特征,概率论中将这一可观察的特征称为一 个事件 , 它分三类:
随机事件
1. 随机事件:在试验中可能发生也可能不发生的 事件; 2. 必然事件:在每次试验中都必然发生的事件; 3. 不可能事件:在任何一次试验中都不可能发 生的事件. 例如,在抛掷一枚骰子的试验中,我们也许会关
A : “点数为奇数”,B : “点数小于5”.
则 A B {1,2,3,4,5}; A B {1,3};
A - B {5}.
6. 若 A B , 则称事件 A 与 B 是互不相 容的(或互斥的).
7. 若 A B S 且 A B ,
事件的关系与运算
由于随机现象的结果事先不能预知, 初看似乎 毫无规律. 然而人们发现 同一随机现象大量重 其每种可能的结果 出现的频率具有 复出现时,
稳定性, 从而表明随机现象也有其固有的规律
性. 人们把随机现象在大量重复出现时 所表现 出的量的规律性 称为随机现象的统计规律性.
随机现象的统计规律性
概率论与数理统计是研究 随机现象统计规律性 的一门学科. 为了对随机现象的统计规律性进行研究,就需 对随机现象进行重复观察,我们把对随机现象

12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)

12第一部分 板块二 专题四 概率与统计 第1讲 概率与统计(小题)

第1讲概率与统计(小题)热点一随机抽样1.随机抽样的各种方法中,每个个体被抽到的概率都是相等的.2.系统抽样又称“等距”抽样,被抽到的各个号码间隔相同.3.分层抽样满足:各层抽取的比例都等于样本容量在总体容量中的比例.例1(1)(2019·汉中联考)某机构对青年观众是否喜欢跨年晚会进行了调查,人数如下表所示:不喜欢喜欢男性青年观众3010女性青年观众3050现要在所有参与调查的人中用分层抽样的方法抽取n人做进一步的调研,若在“不喜欢的男性青年观众”的人中抽取了6人,则n等于()A.12 B.16 C.20 D.24(2)(2019·上饶联考)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查,若抽到的最大学号为48,则抽到的最小学号为________.跟踪演练1(1)(2019·漳州质检)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号为()A .522B .324C .535D .578(2)(2019·合肥质检)某工厂生产的A ,B ,C 三种不同型号的产品数量之比为2∶3∶5,为研究这三种产品的质量,现用分层抽样的方法从该工厂生产的A ,B ,C 三种产品中抽出样本容量为n 的样本,若样本中A 型产品有10件,则n 的值为( ) A .15 B .25 C .50 D .60 热点二 用样本估计总体1.频率分布直方图中横坐标表示组距,纵坐标表示频率组距,频率=组距×频率组距.2.频率分布直方图中各小长方形的面积之和为1. 3.利用频率分布直方图求众数、中位数与平均数 频率分布直方图中:(1)最高的小长方形底边中点的横坐标即众数. (2)中位数左边和右边的小长方形的面积和相等.(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.4.对于其他的统计图表,要注意结合问题背景分析其所表达的意思,进而解决所给问题. 例2 (1)(2019·厦门质检)下图是某公司2018年1月至12月空调销售任务及完成情况的气泡图,气泡的大小表示完成率的高低,如10月份销售任务是400台,完成率为90%,则下列叙述不正确的是( )A .2018年3月的销售任务是400台B .2018年月销售任务的平均值不超过600台C .2018年第一季度总销售量为830台D .2018年月销售量最大的是6月份(2)(2019·临沂质检)已知8位学生的某次数学测试成绩的茎叶图如图,则下列说法正确的是( )A .众数为7B .极差为19C.中位数为64.5 D.平均数为64跟踪演练2(1)已知某高中的一次测验中,甲、乙两个班级的九科平均分的雷达图如图所示,下列判断错误的是()A.乙班的理科综合成绩强于甲班B.甲班的文科综合成绩强于乙班C.两班的英语平均分分差最大D.两班的语文平均分分差最小(2)(2019·黄冈模拟)学校为了了解新课程标准提升阅读要求对学生阅读兴趣的影响情况,随机抽取了100名学生进行调查.根据调查结果绘制学生周末阅读时间的频率分布直方图如图所示:将阅读时间不低于30分钟的学生称为“阅读霸”,则下列命题正确的是()A.抽样表明,该校约有一半学生为阅读霸B.该校只有50名学生不喜欢阅读C.该校只有50名学生喜欢阅读D.抽样表明,该校有50名学生为阅读霸热点三变量间的相关关系、统计案例高考中解决变量间的相关关系问题时需注意:(1)回归直线一定过样本点的中心(x,y).(2)随机变量K2的观测值k越大,说明“两个变量有关系”的可能性越大.例3(1)(2019·皖江联考)某单位为了了解用电量y(度)与气温x(℃)之间的关系,随机统计了某4天的用电量与当天气温,并制作了对照表:气温x (℃) 18 13 10 -1 用电量y (度)24343864由表中数据得线性回归方程y ^=b ^x +a ^中b ^=-2,预测当温度为-5 ℃时,用电量的度数约为( )A .64B .66C .68D .70(2)某研究型学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如下表:使用智能手机不使用智能手机总计 学习成绩优秀 4 8 12 学习成绩不优秀16 2 18 总计201030附表:P (K 2≥k 0)0.15 0.10 0.05 0.025 0.010 0.005 0.001 k 02.0722.7063.8415.0246.6357.87910.828经计算K 2的观测值k =10,则下列选项正确的是( ) A .有99.5%的把握认为使用智能手机对学习有影响 B .有99.5%的把握认为使用智能手机对学习无影响 C .有99.9%的把握认为使用智能手机对学习有影响 D .有99.9%的把握认为使用智能手机对学习无影响跟踪演练3 (1)(2019·长春质检)某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),上图为选取的15名志愿者身高与臂展的折线图,下图为身高与臂展所对应的散点图,并求得其回归方程为y ^=1.16x -30.75,以下结论中不正确的为( )A .15名志愿者身高的极差小于臂展的极差B .15名志愿者身高和臂展成正相关关系C .可估计身高为190厘米的人臂展大约为189.65厘米D .身高相差10厘米的两人臂展都相差11.6厘米(2)(2019·泸州模拟)随着国家二胎政策的全面放开,为了调查一线城市和非一线城市的二胎生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如下表.非一线城市一线城市 总计 愿生 45 20 65 不愿生 13 22 35 总计5842100附表:P (K 2≥k 0)0.100 0.050 0.010 0.001 k 02.7063.8416.63510.828由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算得,K 2的观测值k =100×(45×22-20×13)258×42×35×65≈9.616,参照附表,得到的正确结论是( )A .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”B .在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”C .有99%以上的把握认为“生育意愿与城市级别有关”D .有99%以上的把握认为“生育意愿与城市级别无关”真题体验1.(2019·全国Ⅰ,文,6)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生2.(2018·全国Ⅰ,文,3)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半3.(2018·全国Ⅲ,文,14)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是________.押题预测1.某市气象部门根据2018年各月的每天最高气温平均值与最低气温平均值(单位:℃)数据,绘制如下折线图:那么,下列叙述错误的是( )A .各月最高气温平均值与最低气温平均值总体呈正相关B .全年中,2月份的最高气温平均值与最低气温平均值的差值最大C .全年中各月最低气温平均值不高于10 ℃的月份有5个D .从2018年7月至12月该市每天最高气温平均值与最低气温平均值都呈下降趋势 2.给出如下列联表患心脏病 患其他病 总 计 高血压 20 10 30 非高血压 30 50 80 总 计5060110P (K 2≥10.828)≈0.001,P (K 2≥6.635)≈0.010,参照公式k =n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),得到的正确结论是( )A .有99%以上的把握认为“高血压与患心脏病无关”B .有99%以上的把握认为“高血压与患心脏病有关”C .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病无关”D .在犯错误的概率不超过0.1%的前提下,认为“高血压与患心脏病有关” 3.某设备的使用年数x 与所支出的维修总费用y 的统计数据如下表:使用年数x (单位:年) 2 3 4 5 6 维修总费用y (单位:万元)1.54.55.56.57.5根据上表可得线性回归方程为y ^=1.4x +a ^.若该设备维修总费用超过12万元就报废,据此模型预测该设备最多可使用________年.A 组 专题通关1.(2019·河北省五个一名校联盟联考)经调查,某市骑行共享单车的老年人、中年人、青年人的比例为1∶3∶6,用分层抽样的方法抽取了一个容量为n 的样本进行调查,其中中年人数为12人,则n 等于( ) A .30 B .40 C .60D .802.某校李老师本学期负责高一甲、乙两个班的数学课,两个班都是50个学生,如图反映的是两个班的本学期5次数学测试中的班级平均分对比情况,根据图中信息,下列结论不正确的是( )A .甲班的数学平均成绩高于乙班B .乙班的数学成绩没有甲班稳定C .下次测试乙班的数学平均分高于甲班D .在第1次测试中,甲、乙两个班总平均分为783.(2019·全国Ⅲ)《西游记》《三国演义》《水浒传》和《红楼梦》是中国古典文学瑰宝,并称为中国古典小说四大名著.某中学为了解本校学生阅读四大名著的情况,随机调查了100位学生,其中阅读过《西游记》或《红楼梦》的学生共有90位,阅读过《红楼梦》的学生共有80位,阅读过《西游记》且阅读过《红楼梦》的学生共有60位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( ) A .0.5 B .0.6 C .0.7 D .0.84.某学校为落实学生掌握社会主义核心价值观的情况,用系统抽样的方法从全校2 400名学生中抽取30人进行调查.现将2 400名学生随机地从1~2 400编号,按编号顺序平均分成30组(1~80号,81~160号,…,2 321~2 400号),若第3组与第4组抽出的号码之和为432,则第6组抽到的号码是( ) A .416 B .432 C .448 D .4645.(2019·郑州质检)若1,2,3,4,m (m ∈R )这五个数的平均数等于其中位数,则m 等于( ) A .0或5 B .0或52 C .5或52 D .0或5或526.(2019·长春质检)下列命题:①在线性回归模型中,相关指数R 2表示解释变量x 对于预报变量y 的贡献率,R 2越接近于1,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1;③在线性回归方程y ^=-0.5x +2中,当解释变量x 每增加一个单位时,预报变量y ^平均减少0.5个单位;④对分类变量X 与Y ,它们的随机变量K 2的观测值k 来说,k 越小,“X 与Y 有关系”的把握程度越大.其中正确命题的个数是( ) A .1 B .2 C .3 D .47.(2019·衡水质检)某校进行了一次创新作文大赛,共有100名同学参赛,经过评判,这100名参赛者的得分都在[40,90]之间,其得分的频率分布直方图如图所示,则下列结论错误的是( )A .得分在[40,60)之间的共有40人B .从这100名参赛者中随机选取1人,其得分在[60,80)的概率为0.5C .估计得分的众数为55D .这100名参赛者得分的中位数为658.(2019·济宁模拟)如图为某市国庆节7天假期的楼房认购量与成交量的折线图,小明同学根据折线图对这7天的认购量(单位:套)与成交量(单位:套)作出如下判断:①日成交量的中位数是16;②日成交量超过日平均成交量的有2天;③认购量与日期正相关;④10月7日认购量的增幅大于10月7日成交量的增幅.则上述判断正确的个数为( )A .0B .1C .2D .39.(2019·广东天河区普通高中测试)为保证树苗的质量,林业管理部门在每年3月12日植树节前都对树苗进行检测,现从甲、乙两种树苗中各抽测了10株树苗的高度(单位:cm),其茎叶图如图所示,则下列描述正确的是( )A .甲种树苗的平均高度大于乙种树苗的平均高度,甲种树苗比乙种树苗长得整齐B .甲种树苗的平均高度大于乙种树苗的平均高度,乙种树苗比甲种树苗长得整齐C .乙种树苗的平均高度大于甲种树苗的平均高度,乙种树苗比甲种树苗长得整齐D .乙种树苗的平均高度大于甲种树苗的平均高度,甲种树苗比乙种树苗长得整齐10.利用独立性检验的方法调查大学生的性别与爱好某项运动是否有关,通过随机询问110名不同的大学生是否爱好该项运动,得出2×2列联表,由计算可得K 2≈8.806.P (K 2≥k 0)0.10 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.828参照附表,得到的正确结论是( )A .有99.5%以上的把握认为“爱好该项运动与性别无关”B .有99.5%以上的把握认为“爱好该项运动与性别有关”C .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别有关”D .在犯错误的概率不超过0.05%的前提下,认为“爱好该项运动与性别无关”11.已知变量x ,y 之间的线性回归方程为y ^=-0.7x +10.3,且变量x ,y 之间的一组数据如下表所示,则下列说法中错误的是( )x 6 8 10 12 y6m32A.变量x ,y 之间呈现负相关关系 B .可以预测当x =20时,y ^=-3.7 C .m =4D .由表格数据知,该回归直线必过点(9,4)12.(2019·江淮质检)为了了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为100的调查样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图(如图所示),其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A .是否倾向选择生育二胎与户籍有关B .是否倾向选择生育二胎与性别有关C .倾向选择生育二胎的人员中,男性人数与女性人数相同D .倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数13.(2019·河南省九师联盟质检)为了了解世界各国的早餐饮食习惯,现从由中国人、美国人、英国人组成的总体中用分层抽样的方法抽取一个容量为m 的样本进行分析.若总体中的中国人有400人、美国人有300人、英国人有300人,且所抽取的样本中,中国人比美国人多10人,则样本容量m =________.14.某班40名学生参加普法知识竞赛,成绩都在区间[40,100]内,其频率分布直方图如图所示,则成绩不低于60分的人数为________.15.(2019·成都模拟)节能降耗是企业的生存之本,树立一种“点点滴滴降成本,分分秒秒增效益”的节能意识,以最好的管理,来实现节能效益的最大化.为此某国企进行节能降耗技术改造,下面是该国企节能降耗技术改造后连续五年的生产利润:年号1 2 3 4 5 年生产利润y (单位:千万元)0.70.811.11.4预测第8年该国企的生产利润约为________千万元.参考公式及数据:b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=∑i =1nx i y i -n x y∑i =1nx 2i -n x2;a ^=y -b ^x ,∑i =15(x i -x )(y i-y )=1.7, i =15(x i -x )2=10.根据该折线图,下列结论正确的是________(填序号). ①月接待游客量逐月增加;②年接待游客量逐年增加; ③各年的月接待游客量髙峰期大致在7,8月份;④各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳.B 组 能力提高17.(2019·葫芦岛模拟)近日,据媒体报道称,“杂交水稻之父”袁隆平及其团队培育的超级杂交稻品种“湘两优900(超优千号)”再创亩产世界纪录,经第三方专家测产,该品种的水稻在实验田内亩产1 203.36公斤.中国工程院院士袁隆平在1973年率领科研团队开启了杂交水稻王国的大门,在数年的时间内就解决了十多亿人的吃饭问题,有力回答了世界“谁来养活中国”的疑问.2012年,在袁隆平的实验田内种植了A ,B 两个品种的水稻,为了筛选出更优的品种,在A ,B 两个品种的实验田中分别抽取7块实验田,如图所示的茎叶图记录了这14块实验田的亩产量(单位:10 kg),通过茎叶图比较两个品种的平均数及方差,并从中挑选一个品种进行以后的推广,有如下结论:①A 品种水稻的平均产量高于B 品种水稻,推广A 品种水稻;②B 品种水稻的平均产量高于A 品种水稻,推广B 品种水稻;③A 品种水稻的产量比B 品种水稻更稳定,推广A 品种水稻;④B 品种水稻的产量比A 品种水稻更稳定,推广B 品种水稻;其中正确结论的编号为( )A .①②B .①③C .②④D .①④18.(2019·南昌模拟)已知具有线性相关的五个样本点A 1(0,0),A 2(2,2),A 3(3,2),A 4(4,2),A 5(6,4),用最小二乘法得到回归直线l 1:y ^=b ^x +a ^,过点A 1,A 2的直线l 2:y =mx +n ,那么下列说法中,正确的有________.(填序号) ①m >b ^,a ^>n ; ②直线l 1过点A 3;③∑i =15(y i -b ^x i -a ^)2≥∑i =15 (y i -mx i -n )2; ④∑i =15|y i -b ^x i -a ^|≥∑i =15|y i -mx i -n |.⎝ ⎛⎭⎪⎪⎫参考公式:b ^=∑i =1nx i y i-n x y ∑i =1nx 2i-n x 2= ∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x。

概率与统计课件(一)概率论的基本概念

概率与统计课件(一)概率论的基本概念

2
0
A B
表示事件A与事件B中至少有一个事件发生,称此事
件为事件A与事件B的和(并)事件,或记为A+B. 事件A1,A2,…An 的和记为 ,或A1 ∪ A2 ∪ … ∪ An
上一页 下一页 返回
表示事件A与事件B同时发生, 称为事件A与事件B的 积(交)事件,记为AB。积事件AB是由A与B的公共
上一页
下一页
返回
例1.27 一张英语试卷,有10道选择填空题,每题有4 个选择答案,且其中只有一个是正确答案.某同学投机 取巧,随意填空,试问他至少填对6道的概率是多大?
解 设B=“他至少填对6道”.每答一道题有两个可能的 结果:A=“答对”及 =“答错”,P(A)=1/4,故 作10道题就是10重贝努里试验,n=10,所求概率为
定义1.2: 设事件A在n次重复试验中发生了k次, n很大时, 频率 稳定在某一数值p的附近波动,而随着试验次数 n的增加,波动的幅度越来越小,则称p为事件A发生的 概率,记为 P ( A) p
上一页
下一页
返回
2、概率的公理化定义
定义1.3
上一页
下一页
返回
概率的性质:
上一页
下一页
返回
上一页
解 设A1,A2,A3表示产品来自甲、乙、丙三个车间, B表示产品为“次品”的事件,易知A1,A2,A3是样本 空间Ω的一个划分,且有 P(A1)=0.45,P(A2)=0.35,P(A3)=0.2, P(B|A1)=0.04,P(B|A2)=0.02,P(B|A3)=0.05.
上一页 下一页 返回
第三节 条件概率、全概率公式
1、条件概率的定义
上一页
下一页
返回
• 考察有两个小孩的家庭,其样本空间为{bb,bg,gb,gg} • (1)事件A=“家中至少有一个女孩“发生的概率? • (2)若已知事件B=“家中至少有一个男孩”,再求事 件A发生的概率? •

概率论与数理统计第1章随机事件及其概率

概率论与数理统计第1章随机事件及其概率
骰子朝上的点数为 i ,第二颗骰子朝上的点数为 j . (3) (i) S1 {( 正品,次品 ),( 正品,正品 ),( 次品,正品 )} ;
(ii) S2 {( 正品,次品 ),( 正品,正品 )} .
若用“1 ”表示“正品”,“ 0 ”表示“次品”,这里的两个样本空
间又可表示为
(i) S1 {(1,0),(1,1),(0,1)} ;(ii) S2 {(1,0),(1,1)}. (4) (i) S1 {t t 0};(ii) S2 { 合格品, 不合格品} . 若用“1 ”表示“合格品”,“ 0 ”表示“不合格品”, S2 又可表示为 S2 {1,0} . (5) S5 {(x, y) x2 y2 100}.
字母 E T A O I N S R H
使用频率 0.126 8 0.097 8 0.078 8 0.077 6 0.070 7 0.070 6 0.063 4 0.059 4 0.057 3
字母 L D U C F M W Y G
使用频率 0.039 4 0.038 9 0.028 0 0.026 8 0.025 6 0.024 4 0.021 4 0.020 2 0.018 7
第1章 随机事件及其概率
§1.1 随机事件
1.1.1 随机现象
在自然界以及生产实践和科学实验中普遍存在着两类现象.一类是 在一定条件下,重复进行试验,某一结果必然发生或必然不发生,即是可 以事前预言的,称为确定性现象.
除去确定性现象,人们发现还存在另一类现象,它是事前不可预言 的,即在相同条件下重复进行试验,每次的结果不一定相同,这一类现象 我们称之为偶然性现象或随机现象.
在一定条件下,随机现象有多种可能的结果发生,事前不能预知 将出现哪种结果,但通过大量的重复观察,出现的结果会呈现出某种 规律,称为随机现象的统计规律性.

概率与统计1

概率与统计1

【解析】三人均达标为0.8×0.6×0.5=0.24, 解析】三人均达标为0.8×0.6× 0.8 三人中至少有一人达标为1 三人中至少有一人达标为1-0.04=0.96
5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 5.(湖北卷14)明天上午李明要参加奥运志愿者活动, 14 为了准时起床,他用甲、乙两个闹钟叫醒自己, 为了准时起床,他用甲、乙两个闹钟叫醒自己,假设 甲闹钟准时响的概率是0.80, 甲闹钟准时响的概率是0.80,乙闹钟准时响的概率是 0.80 0.90, 0.90,则两个闹钟至少有一准时响的概率是 。.
题型二 相互独立事件同时发生的概率问题 2009北京卷文)(本小题共13分 北京卷文)(本小题共13 例2 (2009北京卷文)(本小题共13分) 某学生在上学路上要经过4个路口, 某学生在上学路上要经过4个路口,假设在各路口 是否遇到红灯是相互独立的, 是否遇到红灯是相互独立的,遇到红灯的概率都
1 1 1 4 P ( A) = 1 − × 1 − × = 3 3 3 27
(Ⅱ)设这名学生在上学路上因遇到红灯停留的总时间至多 是4min为事件B,这名学生在上学路上遇到 4min为事件B 为事件 的事件
Bk ( k = 0,1, 2 )
2 16 P ( B0 ) = = 3 81
1 的概率都是 2 若某人获得两个“支持” 则给予10万元的创业资助; 10万元的创业资助 .若某人获得两个“支持”,则给予10万元的创业资助;若只获得
一个“支持”,则给予5万元的资助;若未获得“支持”,则不予 一个“支持” 则给予5万元的资助;若未获得“支持” 资助. 资助.求: 该公司的资助总额为零的概率; (1) 该公司的资助总额为零的概率; (2)该公司的资助总额超过15万元的概率. 该公司的资助总额超过15万元的概率. 15万元的概率

概率论与数理统计第1章

概率论与数理统计第1章
记 Ai={第i台机器需要照管}, i=1,2,3;
A1A2 A3 A1 A2 A3 A1A2 A3
A1 A2 A3
例9 三人独立地去破译一份密码,已知各人能 译出的概率分别为1/5,1/3,1/4,问三人中至 少有一人能将密码译出的概率是多少?
P(AB)=P(B)P(A|B) (2)
P(AB)=P(BA)
P(BA)=P(A)P(B|A)
P(AB)=P(A)P(B|A) (3)
(2)和(3)式都称为乘法公式,利用它们可计算 两个事件同时发生的概率。
推广到多个事件的乘法公式:
当P(A1A2…An-1)>0时,有 P (A1A2…An) =P(A1)P(A2|A1) …P(An| A1A2…An-1)
当有了新的信息(知道B发生),人们对诸 事件发生可能性大小P(Ai | B)有了新的估计.
贝叶斯公式从数量上刻划了这种变化。
1.5事件的独立性
一、两事件的独立性 将一颗均匀骰子连掷两次,

A =“第一次掷出6点”, B =“第二次掷出6点”,
显然
P(B|A)=P(B)=1/6
这就是说,已知事件A发生,并不影响事件B发
例如
甲、乙两人向同一目标射击,记 A={甲命中}, B={乙命中},A与B是否独立?
由于“甲命中”并不影响“乙命中”的
概率,故认为A、B独立 .
(即一事件发生与否并不影响另一事件发生 的概率)
又如:一批产品共n件,从中抽取2件,设 Ai={第i件是合格品} i=1,2
若抽取是有放回的, 则A1与A2独立. 因为第二次抽取的结果不受第一次抽取的影响.
P( A | B) P( AB) , P(B)
P(B)>0

概率论与数据统计1-1 随机试验

概率论与数据统计1-1  随机试验

事件 A={掷出奇数点}
事件B = {掷出点数为1,3,5}
显然 A=B
B A
A B
S
3、两事件A与B的和
“事件A、B中至少有一个发生”是一事件
把这一事件称为A与B的和,
记作 A B, 或A B
A或 B
S
A B A+B
即 A U B A、B中至少有一个发生
问如何用 Bi 表示A和 A ? A= B1B2
A B1B2 B1B2 B1B2 B1 B2
( B1B2 B1B2 ) ( B1B2 B1B2 )
例2 设A、B、C为三个事件,用A、B、 C的运算关系表示下列各事件.
1. A发生, B与C不发生
AB C

A B C
些随机事件。 1、包含关系
若果事件A的发生必然导致事件B发生,
则称事件A包含于B,或称B包含A
记作A B, 或B A
对任一事件A有:
B
A A B
S
φ A S
2、两事件A与B相等
若A B且B A 同时成立, 则称A 与B相等 记作A B,
试验E:掷一颗骰子,观察出现的点数
事件A、B对立(互逆)
AB 且A+B S
事件A、B互不相容(互斥)
c
两事件A、B互逆或互为对立事件: 除要求A、B互斥即AB= 外,还要求 A+B=S
6. “A、B都发生”与“A、B不都发生”是 对立事件. 正确 7. “A、B都发生”与“A、B都不发生”是 对立事件. 错误

因为A、B都发生是 A、B都不发生是
AB的对立事件是
AB
AB

概率论与统计1-3 随机事件的概率

概率论与统计1-3 随机事件的概率

基本事件总数为 10 10 10 103 , A 所包含基本事件的个数为 6 6 4, 6 6 4 0.144 . 故 P ( A) 3 10
同类型的问题还有:
1) 电话号码问题;
2) 骰子问题.
3) 英文单词、书、报等排列问题.
例6
分房模型
有n个人,每个人都以同样的概率 1/N 被分配在N(n≤N)间房中的每一间中,试求 下列各事件的概率:
nH
1061 2048 6019 12012
f
德.摩根 蒲丰 K.皮尔逊 K.皮尔逊
0.5181 0.5069 0.5016 0.5005
f (H ) n的增大
1 . 2
重要结论
频率当 n 较小时波动幅度比较大,当 n 逐渐增 大时 , 频率趋于稳定值, 这个稳定值从本质上反映 了事件在试验中出现可能性的大小.它就是事件的
满足等式
rn r r1 r2 n n n n
根据定1.2知 P ( A1 Am ) P ( A1 ) P ( Am )
说明
概率的统计定义直观地描述了事件发生的 可能性大小,反映了概率的本质内容,但也有 不足,即无法根据此定义计算某事件的概率.
三、古典概型
1.古典概型定 义
m Cn ( N 1)nm
m C n ( N 1) n m P (C ) Nn
同类型的问题还有: 1) 球在杯中的分配问题; (球人,杯房) 2) 生日问题; (日 房,N=365天) ( 或 月 房,N=12月)
3) 旅客下站问题; ( 站房 )
4) 印刷错误问题; (印刷错误人,页房)
mn 基本事件总数为: C M N m n CM CN A 所包含基本事件的个数为

高中二年级数学概率与统计初步

高中二年级数学概率与统计初步

高中二年级数学概率与统计初步概率与统计是高中数学中的一门重要课程,它涵盖了概率和统计两个方面。

概率是用来描述事件发生的可能性,而统计则是通过对数据进行收集、分析和解释,来给出结论。

本文将从概率和统计两个角度来介绍高中二年级数学中的初步内容。

一、概率1.1 概率的基本概念概率是描述随机事件发生可能性的数值。

在实际生活中,我们经常会遇到概率的问题,比如投掷一枚硬币正面朝上的概率是多少,抽一张扑克牌时抽到黑桃的概率是多少等等。

1.2 事件与样本空间在概率问题中,事件是指某个具体结果的集合,样本空间是指所有可能结果的集合。

例如,投掷一枚硬币,事件可以是正面朝上,样本空间可以是{正面,反面}。

1.3 概率的计算方法在概率的计算中,有两种主要的方法:频率法和古典概型法。

频率法是通过做大量的实验来计算概率,古典概型法是通过确定每个结果出现的可能性来计算概率。

二、统计2.1 数据的收集与整理统计的第一步是收集数据,并对数据进行整理和分类。

我们可以使用表格、图表等形式来展示数据,以便更好地进行分析。

2.2 数据的描述性统计描述性统计是用来对收集到的数据进行概括和描述的方法。

常用的描述性统计方法包括平均数、中位数、众数、标准差等。

2.3 样本与总体在统计学中,我们通常会采集一部分数据作为样本,用来对整个总体进行推断。

样本的选择要具有代表性,以确保结果的可靠性。

2.4 统计推断统计推断是通过对样本数据进行分析,来推断总体的特征和性质。

常用的统计推断方法包括假设检验、置信区间等。

结论概率与统计是高中数学中的一门重要课程,它们在实际生活和各个领域中都有广泛的应用。

通过学习概率与统计,学生可以培养逻辑思维能力,提高数据分析和决策能力,为将来的学习和工作打下坚实的基础。

希望本文对读者对高中二年级数学概率与统计初步有所帮助。

《概率论与统计原理》第1章

《概率论与统计原理》第1章
P (B) =
P (A ) P ( B A )
i
i 1
i
n
例13 两台车床加工同样的零件,第一台的废品率为 0.04,第二台的废品率为0.07,加工出来的零件混 放,并设第一台加工的零件是第二台加工零件的2 倍。现任取一零件,求它是的合格品的概率。
1.5.4 贝叶斯公式
设 Ai ( i =1,2,…,n)是样本空间的一个划分,且 P( Ai )>0,则对任意事件 B,有
例10 已知P(A)=P(B)=P(C)=1/4,P(AC) =P(BC)=1/16,P(AB)=0,求事件A,B,C都 不发生的概率。
§1.5
条件概率和事件的独立性
1.5.1 条件概率 在事件 B 发生的条件下,事件 A的条件概率为
P( AB) P( B A) P( A) 理解条件概率的意义
第一章 事件的概率
§1.1 随机事件和样本空间
1.1.1 随机现象与随机试验 1、确定性现象和随机现象
确定性现象是指在一定条件下必然会发生的现象
随机现象是指在一定条件可能发生也可能不发生的 现象,其出现的结果不确定 概率论研究的主要问题就是随机现象的规律性
2、随机试验
对随机现象的观察称为随机试验,简称为试验,用 字母E来表示 随机试验的特点: (1)可重复性 试验在相同的条件下可以重复进行
(2)可观测性 每次试验的可能结果不止一个,而且 事先能明确试验的所有可能结果
(3)随机性 在每次试验之前不能准确预知将会出现 的结果 一些随机试验的例子: E1:掷一颗均匀对称的骰子,观察出现的点数
E2:记录一段时间内某城市110报警次数 E3:从含有三件次品a1,a2,a3和三件正品b1,b2, b3的六件产品中,任取两件,观察出现正品和次品 的情况 E4:从一批电脑中任取一台,观察无故障运行的时 间 E5:设平面上有一簇间距为a的平行线,现反复用一 枚长度为l(l<a)的针投掷下去,投掷n次后,观察 针与平行线相交的数目 E6:向坐标平面区域D:x2 +y2≤100内随机投掷一点 (假设点必落在D内),观察落点M的坐标

《概率论与数理统计》1-123(频率与概率)

《概率论与数理统计》1-123(频率与概率)

某一事件发生
它包含的一个样本点出现
三、事件间的关系及其运算
试验E S(样本空间) 事件A 必然事件 S 基本事件
不可能事件
A(子集) 样本点
1.事件的关系
① 包含、相等关系 A发生必然导致B发生
AB
称事件A包含于B或B包含A.
文氏图(Venn图)
A与B相等 ,记为A=B
例1: 产品有长度、直径、外观三个质量指标,
②(有﹏放﹏回﹏选﹏取﹏)从n个不同元素中有放回地抽取r个,依 次排成一列,称为可重复排列,排列数记
例 将三封信投入4个信箱,问在下列情形下各有几种 投法? ⑴ 每个信箱至多允许投入一封信。 ⑵ 每个信箱允许投入的信的数量不受限制。 解:⑴ 无重复排列:
⑵ 可重复排列:
Ⅳ. 组合 从n个元素中每次取出r个元素,构成一组,称为从n个 元素里每次取出r个元素的组合。 组合数为 或 几个常用性质:
两两互不相容。
证明 由三公理中的可列可加性,令
则由性质1可得 所以下式成立
如果




,0≤
≤1
(加法公式) 推广:
P11
例1 (天气问题) 某人外出旅游两天,据天气预报知: 第一天下雨的概率为0.6,第二天下雨的概率为0.3, 两天都下雨的概率为0.1 试求下列事件的概率: (1) 第一天下雨,第二天不下雨; (2) 第一天不下雨,第二天下雨; (3) 至少有一天下雨; (4) 两天都不下雨; (5) 至少有一天不下雨
解:设A、B分别表示第一、二天下雨 则 (1) (2) (3) (4) (5)
例2 (订报问题) 在某城市中,共发行三种报纸A,B,
C,订购A,B,C的用户占用分别为45%,35%,30%,

概率论与数理统计第1章

概率论与数理统计第1章
17
例5:某人连续三次购买体育彩票,每次一张, 令A、B、C分别表示其第一、二、三次所买的 彩票中奖事件,试用A、B、C表示下列事件: (1) 第三次未中奖; (2) 只有第三次中了奖; (3) 恰有一次中奖; (4) 至少有一次中奖; (5) 不止一次中奖; (6) 至多中奖两次。
18
§1.3 概率的古典意义
例2: A1 =“2个样品中有一个次品”; A2 =“2个样品全是次品”; B =“2个样品中至少有一个次品”, 求 A2 , B。
16
例3:p.11,第3题。
例4:掷骰子,A=“掷出奇数点”;B=“点数 不
超过3”;C=“点数大于2”;A D=“A C掷出5点”。
求 A∪B;B∪C;AB;BD; ; ; A-B;B-A。
26
2、具体例子 ⑴ 设有20个某种零件,其中16个为一级品, 4个为二级品,现从中任取三个,求: ① 只有一个一级品的概率; ② 至少有一个一级品的概率。
⑵ 从0、1、2、3这4个数字中任取3个进行排 列,求“取得的3个数字排成的数是三位数且 是偶数”的概率。
27
⑶ 一口袋中有5红2白7个球,从袋中任取一
2
例1:判断下列现象为随机现象还是决定性现 象? (1) 扔一枚分币; (2) 从93个产品(其中90正3次)中抽取一个 产品; (3) 在标准大气压下将水加热至100℃必沸腾;
(4) 火箭速度超过第一宇宙速度就会摆脱地球 引力而飞出地球。
3
二、随机试验与样本空间 定义:概率论中将对随机现象的观察或为观察 随机现象而进行的试验称为随机试验,它应具 备以下三个特征: ⑴ 每次试验的可能结果不止一个,且事先明确 知道试验的所有可能性结果。 ⑵ 进行试验之前不能确定哪一个结果会发生。 ⑶ 试验可以在相同条件下重复进行。 随机试验简称试验,用英文字母E表示。 4

概率论与数理统计 1总结

概率论与数理统计   1总结

② P(AC)= P(A)P(C) ④ P(ABC)=P(A)P(B)P(C)
多个事件相互独立的必要条件:
P( A1 A2 An ) P( A1 ) P( A2 ) P( An )
3. n个独立事件和的概率
n个独立事件“至少有一个发生”的概率为
P ( A1 A2 An ) 1 P ( A1 ) P ( A2 )„P ( An )
二、样本空间和样本点
样本点:把随机试验中每一个基本事件用只包含一个 元素的单元素集合 { }来表示.这样的元素 ω 称为样本点.
样本空间:由试验的所有样本点组成的集合. 用 Ω表示.
事件
一一对应
集合
样本空间:由所有样本点组成的全集.
Ω={1 , 2 ,, n ,}
基本事件:单元素集合 {1 },{2 },,{n },
练习: 设A、B为互斥事件,且 P(A)>0 , P(B)>0 ,下面四 个结论中,正确的是: 1. P(B|A)>0 3. P(A|B)=0 2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
设A、B为独立事件,且 P(A)>0 , P(B)>0 ,下面四 个结论中,正确的是: 1. P(B|A)>0 3. P(A|B)=0 2. P(A|B)=P(A) 4. P(AB)=P(A)P(B)
A
A与Φ互斥
P ( A ) P ( A) P () A与Φ独立
若 P( A) 0 或 P( B) 0 ,则独立且互斥
独立性简化了乘法公式
P(AB)=P(A)P(B|A) → P(AB)=P(A)P(B)
互斥性简化了加法公式
P(A+B)=P(A)+P(B)-P(AB) → P(A+B)=P(A)+P(B)

概率与统计(1)

概率与统计(1)

概率与统计作者:王进来源:《高考进行时·高三数学》2012年第11期概率统计是研究随机现象的科学。

高中阶段,同学们通过实际问题情境,学习随机抽样、样本估计、概率统计等来体会用样本估计总体及其特征的思想,体会概率模型的作用及运用概率思考问题的特点,初步形成用随机观念观察、分析问题的意识。

一、考纲要求根据《2012年江苏省高考数学学科考试说明》,考纲给出的能级要求如下:从表格中可以看出高考对这一部分内容的考查注重考查基础知识和基本方法。

1. 统计部分了解简单随机抽样、系统抽样和分层抽样的方法及各自的适用范围,能读懂频率分布直方图,了解茎叶图,能根据公式计算样本数据的平均数和方差,了解方差的统计学意义。

2. 概率部分通过学习,要能区分古典概型和几何概型的异同点,能通过枚举法计算简单的古典概型,而对于几何概型,只要掌握一维和二维图形的几何概型即可。

二、难点疑点1. 会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征。

2. 古典概型的适用条件:(1)试验结果的有限性,(2)所有结果的等可能性。

三、经典练习回顾--!> 1. 若k1,k2,…,k8的方差为3,则2(k1-3),2(k2-3),…,2(k8-3)的方差为 .2. 将一颗质地均匀的骰子(它是一种各面上分别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷2次,至少出现一次6点向上的概率是.3. 两根相距6 m的木杆上系一根绳子,并在绳子上挂一盏灯,求灯与两端距离都大于2 m 的概率.4. 甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为.四、例题精析【例1】将一颗骰子先后抛掷两次,观察向上的点数,求:(1)两数和是3的倍数的概率;(2)点数之和为质数的概率;(3)点数之和不低于10的概率;(4)概率最大时,点数之和.解(1)将骰子抛掷1次,它出现的点数有1,2,3,4,5,6这6种结果,对于每一种结果,第二次抛时又都有6种可能的结果,于是共有6×6=36种不同的结果.记“两次向上点数之和是3的倍数”为事件A,则事件A的结果有12种.两次向上点数之和是3的倍数的概率为: P(A)=1236=13.(2)记“点数之和为质数”为事件B,则事件B的结果有15种.点数之和为质数的概率为:P(B)=1536=512.(3)记“两次向上点数之和不低于10”为事件C,则事件C的结果有6种,因此所求概率为:P(C)=636=16.(4)点数之和为7时,概率最大,且概率为:636=16.点拨事件A概率的计算,关键是准确计算样本空间所含基本事件个数n与事件A中包含的结果数m,因此,必须解决好下面三个方面的问题:(1)本实验是否等可能;(2)本实验的基本事件有多少个;(3)事件A是什么,它包含多少个基本事件。

《概率论与数理统计》第一章知识点

《概率论与数理统计》第一章知识点

第一章随机事件及概率1.1随机事件1.1.1随机试验一、人在实际生活中会遇到两类现象:1.确定性现象:在一定条件下实现与之其结果。

2.随机现象(偶然现象):在一定条件下事先无法预知其结果的现象。

二、随机试验满足条件:1.实验可以在相同条件写可以重复进行;(可重复性)2.事先的所有可能结果是事先明确可知的;(可观察性)3.每次实验之前不能确定哪一个结果一定会出现。

(不确定性)1.1.2样本空间1.样本点:每次随机试验E 的每一个可能的结果,称为随机试验的一个样本点,用w 表示。

2.样本空间:随机试验E 的所有样本点组成的集合成为试验E 的样本空间。

1.1.3随机事件1.随机事件:一随机事件中可能发生也可能不发生的事件称为试验的随机事件。

2.基本事件:试验的每一可能的结果称为基本事件。

一个样本点w 组成的单点集{w}就是随机试验的基本事件。

3.必然事件:每次实验中必然发生的事件称为必然事件。

用Ω表示。

样本空间是必然事件。

4.不可能事件:每次试验中不可能发生的事件称为不可能事件,用空集符号表示。

1.1.4事件之间的关系和运算1.事件的包含及相等“如果事件A 发生必然导致事件B 发生”,则称事件B 包含事件A ,也称事件A 是B 的子事件,记作A B B A ⊃⊂或。

2.事件的和(并⋃)“事件A 与B 中至少有一个事件发生”,这样的事件称为事件A 与B 的和事件,记作B A 。

3.事件的积(交⋂)“事件A 与B 同时发生”,这样的事件称作事件A 与B 的积(或交)事件,记作AB B A 或 。

4.事件的差“事件A 发生而事件B 不发生”,这样的事件称为事件A 与B 的差事件,记作A-B 。

5.事件互不相容(互斥事件)“事件A 与事件B 不能同时发生”,也就是说,AB 是一个不可能事件,即=AB 空集,即此时称事件A 与事件B 是互不相容的(或互斥的)6.对立事件“若A 是一个事件,令A A -Ω=,称A 是A 的对立事件,或称为事件A 的逆事件”事件A 与事件A 满足关系:=A A 空集,Ω=A A 对立事件一定是互斥事件;互斥事件不一定是对立事件。

概率论与数理统计第一章——随机事件及概率

概率论与数理统计第一章——随机事件及概率
P65 = 6 5 4 3 2 = 720 (个)
ex2: 从0,1,2,3,4,5, 这六个数字中任取四 个,问能组成多少个四位偶数?
解:组成的四位数是偶数,要求末位为0,2或
4,可先选末位数,共P31 种,前三位数的选取方法有
P53 种,而0不能作首位,所以所组成的偶数个数为
P1 P3 − P1 P1 P2 = 156 (个)
◼ 为方便起见,记Φ为不可能事件,Φ不 包含任何样本点。
(三) 事件的关系及运算 ❖事件的关系(包含、相等)
1A B:事件A发生一定导致B发生
2A=B
A B
B A
B A
例:
✓ 记A={明天天晴},B={明天无雨} B A ✓ 记A={至少有10人候车},B={至少有5人候车}
B A
✓ 抛两颗均匀的骰子,两颗骰子出现的点数分别 记为x,y.记A={x+y为奇数},B={两次的骰子点
A
B
n Ai:A1, A2,An至少有一发生
i=1
n Ai:A1, A 2 ,An同时发生
i =1
✓当AB= Φ时,称事件A与B是互不相
容的,或互斥的。
A
B
A A= A B =
A的逆事件记为A, A A =
, 若 A B =
,
称A, B互逆(互为对立事件)
AA
A
B
事件A对事件B的差事件:
◼可以在相同条件下重复进行(重复性); ◼事先知道所有可能出现的结果(明确性); ◼每次试验前并不知道哪个试验结果会发生 (随机性)。
例: ❖抛一枚硬币,观察试验结果; ❖对某路公交车某停靠站登记下车人数; ❖对某批同型号灯泡,抽取其中一只测 验其使用寿命(按小时计)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

- 1 -
概率与统计
1. 了解抽样方法、总体分布的估计与总体特征数的估计.统计部分在高考中依然会以填空题的形式出现,主要考查数据处理意识和初步的数据处理能力,难度较小.
2. 了解随机事件概率及几何概型,掌握古典概型的处理方法,了解互斥事件及其发生的概率.概率部分在高考中主要还是以填空题的形式出现.
2. 设不等式组⎩
⎪⎨⎪⎧0≤x ≤2,
0≤y ≤2表示的平面区域为D.在区域D 内随机取一个点,则此点到坐标原点的
距离大于2的概率是________.
3. 某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差s 2=________.
4. 现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.
题型一 抽样问题
例1 某初级中学共有学生2 000名,各年级男、女生人数如下表:
(1) 求
x 的值;
(2) 先用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名学生. (3) 已知y ≥245,z ≥245,求初三年级中女生比男生多的概率.
题型二 古典概率问题
例2 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.
(1) 若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;
(2) 若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.
现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9.若从中一次随
机抽取2根竹竿,则它们的长度恰好相差0.3 m 的概率为________.
题型三 几何概率问题
例3 已知椭圆x 2a 2+y 2b 2=1(a>b>0)的离心率为3
5
,短轴的一个端点到右焦点的距离为5.
(1) 求椭圆的方程;
(2) 若“椭圆的长半轴长为a ,短半轴长为b 时,则椭圆的面积为πab ” .请针对(1)中的椭圆,求解下列问题:
①若m 、n 是实数,且|m|≤5, |n|≤4.求点P(m, n)落在椭圆内的概率;
②若m 、n 是整数,且|m|≤5, |n|≤4.求点P(m, n)落在椭圆外的概率及P 落在椭圆上的概率.
题型四 统计综合问题
例4 育新中学高二(一)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.
(1) 求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;
(2) 经过一个月的学习、讨论,这个兴趣小组决定选出两名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选一名同学做实验,求选出的两名同学中恰有一名女同学的概率;
(3) 实验结束后,第一次做实验的同学得到的实验数据为68,70,71,72,74,第二次做实验的同学得到的实验数据为69,70,70,72,74,请问哪次做实验的同学的实验更稳定?并说明理由.
1. (2014·全国卷Ⅰ)4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为________.
2. (2014·湖北卷)由不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x -2≤0
确定的平面区域记为Ω1,不等式组⎩⎪⎨⎪⎧x +y ≤1,x +y ≥-2确定的平
面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.
- 2 -
3. (2014·天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.
4. (2014·陕西卷)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为_________.
5. (2014·广东卷)随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:30,42,41,36,44,40,37,37,25,45,29,43,31,36,49,34,33,43,38,42,32,34,46,39,3
6.
分组 频数 频率
[25,30]
3 0.12 (30,35]
5
0.20 (35,40]
8 0.32 (40,45]
n 1 f 1 (45,50]
n 2 f 2 (1) 确定样本频率分布表中1212(2) 根据上述频率分布表,画出样本频率分布直方图;
(3) 根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.
6. (2013·陕西卷)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次,根据年龄将大众评委分为5组,各组的人数如下:
组别
A B C D E 人数
50 100 150 150 50 (1) 为了调查评委对B 组中抽取了6人.请将其余各组抽取的人数填入下表.
组别
A B C D E 人数
50 100 150 150 50 抽取人数
6 (2) 在(1)中,若A 分别任选1人,求这2人都支持1号歌手的概率.
(本题模拟高考评分标准,满分14分)
本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租车不超过两小时免费,超过两小时的部分每小时收费标准为2元(不足1小时的部分按1小时计算).有甲、乙两人互相独立来该租车点租车骑游(各租一车一次).设甲、乙不超过两小时还车的概率
分别为14、12;两小时以上且不超过三小时还车的概率分别为12、1
4;两人租车时间都不会超过四小时.
(1) 分别求出甲、乙在三小时以上且不超过四小时还车的概率; (2) 求甲、乙两人所付的租车费用之和小于6元的概率.
1. 在如图所示的茎叶图中,甲、乙两组数据的中位数分别是________,________.
2. 投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A ,B 中至少有一件发生的概率是____________.
3. 样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在[6,10)内的频数为________,数据落在[2,10)内的概率约为__________.
4. 在区间[-1,2]上随机取一个数x ,则|x|≤1的概率为____________.
5. 以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.
(1) 如果X =8,求乙组同学植树棵数的平均数和方差;
(2) 如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵
数为19的概率.(注:方差s 2
=1n
[(x 1-x -)2+(x 2-x -)2+…+(x n -x -)2],其中x -为x 1,
x 2,…,x n 的平均数)。

相关文档
最新文档